1
|
Zinnecker T, Reichl U, Genzel Y. Innovations in cell culture-based influenza vaccine manufacturing - from static cultures to high cell density cultivations. Hum Vaccin Immunother 2024; 20:2373521. [PMID: 39007904 PMCID: PMC11253887 DOI: 10.1080/21645515.2024.2373521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Influenza remains a serious global health concern, causing significant morbidity and mortality each year. Vaccination is crucial to mitigate its impact, but requires rapid and efficient manufacturing strategies to handle timing and supply. Traditionally relying on egg-based production, the field has witnessed a paradigm shift toward cell culture-based methods offering enhanced flexibility, scalability, and process safety. This review provides a concise overview of available cell substrates and technological advancements. We summarize crucial steps toward process intensification - from roller bottle production to dynamic cultures on carriers and from suspension cultures in batch mode to high cell density perfusion using various cell retention devices. Moreover, we compare single-use and conventional systems and address challenges including defective interfering particles. Taken together, we describe the current state-of-the-art in cell culture-based influenza virus production to sustainably meet vaccine demands, guarantee a timely supply, and keep up with the challenges of seasonal epidemics and global pandemics.
Collapse
Affiliation(s)
- Tilia Zinnecker
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Bioprocess Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
2
|
Taaffe J, Ostrowsky JT, Mott J, Goldin S, Friede M, Gsell P, Chadwick C. Advancing influenza vaccines: A review of next-generation candidates and their potential for global health impact. Vaccine 2024; 42:126408. [PMID: 39369576 DOI: 10.1016/j.vaccine.2024.126408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Influenza vaccines are an essential tool for influenza prevention, control and preparedness. However, demand for them and their programmatic suitability globally is significantly influenced by their variable effectiveness against influenza illness annually, limited duration of protection and need for yearly updating and vaccination. As such, the World Health Organization and major funders, such as the United States National Institute of Allergy and Infectious Diseases and Bill and Melinda Gates Foundation, have strongly encouraged developing influenza vaccines with increased efficacy, breadth and duration of protection. Here, we review the next-generation influenza vaccine pipeline, focusing on products in clinical development, and compare their characteristics to currently approved seasonal influenza vaccines. METHODS To identify and characterize next-generation influenza vaccine candidates, we conducted a comprehensive literature review, using the CIDRAP Universal Influenza Vaccine Technology Landscape as a primary reference source and extracting additional information from peer-reviewed manuscripts, clinical trial records and other media in the public domain. RESULTS Our analysis reveals a robust clinical development pipeline for next-generation influenza vaccines, featuring a diversity of approaches to address existing vaccine challenges and several candidates in advanced stages of development. mRNA vaccines emerged as a predominant platform, as evidenced by the number of candidates focused on improved seasonal protection as well as combination vaccine candidates targeting additional respiratory viruses. CONCLUSION While still early in development, results from universal or broadly protective products are promising and warrant continued investment from funders. As most Phase 3 candidates are mRNA-based and include combination vaccines, it is critical to begin considering how these new products may become integrated into the current global influenza vaccine strain selection and manufacturing ecosystems, and existing immunization programmes.
Collapse
Affiliation(s)
| | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, USA
| | - Joshua Mott
- World Health Organization, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
3
|
Chi WY, Hu Y, Huang HC, Kuo HH, Lin SH, Kuo CTJ, Tao J, Fan D, Huang YM, Wu AA, Hung CF, Wu TC. Molecular targets and strategies in the development of nucleic acid cancer vaccines: from shared to personalized antigens. J Biomed Sci 2024; 31:94. [PMID: 39379923 PMCID: PMC11463125 DOI: 10.1186/s12929-024-01082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024] Open
Abstract
Recent breakthroughs in cancer immunotherapies have emphasized the importance of harnessing the immune system for treating cancer. Vaccines, which have traditionally been used to promote protective immunity against pathogens, are now being explored as a method to target cancer neoantigens. Over the past few years, extensive preclinical research and more than a hundred clinical trials have been dedicated to investigating various approaches to neoantigen discovery and vaccine formulations, encouraging development of personalized medicine. Nucleic acids (DNA and mRNA) have become particularly promising platform for the development of these cancer immunotherapies. This shift towards nucleic acid-based personalized vaccines has been facilitated by advancements in molecular techniques for identifying neoantigens, antigen prediction methodologies, and the development of new vaccine platforms. Generating these personalized vaccines involves a comprehensive pipeline that includes sequencing of patient tumor samples, data analysis for antigen prediction, and tailored vaccine manufacturing. In this review, we will discuss the various shared and personalized antigens used for cancer vaccine development and introduce strategies for identifying neoantigens through the characterization of gene mutation, transcription, translation and post translational modifications associated with oncogenesis. In addition, we will focus on the most up-to-date nucleic acid vaccine platforms, discuss the limitations of cancer vaccines as well as provide potential solutions, and raise key clinical and technical considerations in vaccine development.
Collapse
Affiliation(s)
- Wei-Yu Chi
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yingying Hu
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hui-Hsuan Kuo
- Pharmacology PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, TX, USA
| | - Chun-Tien Jimmy Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Julia Tao
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Darrell Fan
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Yi-Min Huang
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Annie A Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - T-C Wu
- Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Luo J, Zhang M, Ye Q, Gao F, Xu W, Li B, Wang Q, Zhao L, Tan WS. A synthetic TLR4 agonist significantly increases humoral immune responses and the protective ability of an MDCK-cell-derived inactivated H7N9 vaccine in mice. Arch Virol 2024; 169:163. [PMID: 38990396 DOI: 10.1007/s00705-024-06082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024]
Abstract
Antigenically divergent H7N9 viruses pose a potential threat to public health, with the poor immunogenicity of candidate H7N9 vaccines demonstrated in clinical trials underscoring the urgent need for more-effective H7N9 vaccines. In the present study, mice were immunized with various doses of a suspended-MDCK-cell-derived inactivated H7N9 vaccine, which was based on a low-pathogenic H7N9 virus, to assess cross-reactive immunity and cross-protection against antigenically divergent H7N9 viruses. We found that the CRX-527 adjuvant, a synthetic TLR4 agonist, significantly enhanced the humoral immune responses of the suspended-MDCK-cell-derived H7N9 vaccine, with significant antigen-sparing and immune-enhancing effects, including robust virus-specific IgG, hemagglutination-inhibiting (HI), neuraminidase-inhibiting (NI), and virus-neutralizing (VN) antibody responses, which are crucial for protection against influenza virus infection. Moreover, the CRX-527-adjuvanted H7N9 vaccine also elicited cross-protective immunity and cross-protection against a highly pathogenic H7N9 virus with a single vaccination. Notably, NI and VN antibodies might play an important role in cross-protection against lethal influenza virus infections. This study showed that a synthetic TLR4 agonist adjuvant has a potent immunopotentiating effect, which might be considered worth further development as a means of increasing vaccine effectiveness.
Collapse
Affiliation(s)
- Jian Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Institute of Biological Products, Shanghai, China
| | - Min Zhang
- Shanghai Institute of Biological Products, Shanghai, China
| | - Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Feixia Gao
- Shanghai Institute of Biological Products, Shanghai, China
| | - Wenting Xu
- Shanghai Institute of Biological Products, Shanghai, China
| | - Beibei Li
- Shanghai Institute of Biological Products, Shanghai, China
| | - Qi Wang
- Shanghai Institute of Biological Products, Shanghai, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
5
|
Wang C, Yuan F. A comprehensive comparison of DNA and RNA vaccines. Adv Drug Deliv Rev 2024; 210:115340. [PMID: 38810703 PMCID: PMC11181159 DOI: 10.1016/j.addr.2024.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Nucleic acid technology has revolutionized vaccine development, enabling rapid design and production of RNA and DNA vaccines for prevention and treatment of diseases. The successful deployment of mRNA and plasmid DNA vaccines against COVID-19 has further validated the technology. At present, mRNA platform is prevailing due to its higher efficacy, while DNA platform is undergoing rapid evolution because it possesses unique advantages that can potentially overcome the problems associated with the mRNA platform. To help understand the recent performances of the two vaccine platforms and recognize their clinical potentials in the future, this review compares the advantages and drawbacks of mRNA and DNA vaccines that are currently known in the literature, in terms of development timeline, financial cost, ease of distribution, efficacy, safety, and regulatory approval of products. Additionally, the review discusses the ongoing clinical trials, strategies for improvement, and alternative designs of RNA and DNA platforms for vaccination.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, United States.
| |
Collapse
|
6
|
Liu S, Li J, Cheng Q, Duan K, Wang Z, Yan S, Tian S, Wang H, Wu S, Lei X, Yang Y, Ma N. A Single-Step Method for Harvesting Influenza Viral Particles from MDCK Cell Culture Supernatant with High Yield and Effective Impurity Removal. Viruses 2024; 16:768. [PMID: 38793649 PMCID: PMC11125750 DOI: 10.3390/v16050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza vaccines, which are recommended by the World Health Organization (WHO), are the most effective preventive measure against influenza virus infection. Madin-Darby canine kidney (MDCK) cell culture is an emerging technology used to produce influenza vaccines. One challenge when purifying influenza vaccines using this cell culture system is to efficiently remove impurities, especially host cell double-stranded DNA (dsDNA) and host cell proteins (HCPs), for safety assurance. In this study, we optimized ion-exchange chromatography methods to harvest influenza viruses from an MDCK cell culture broth, the first step in influenza vaccine purification. Bind/elute was chosen as the mode of operation for simplicity. The anion-exchange Q chromatography method was able to efficiently remove dsDNA and HCPs, but the recovery rate for influenza viruses was low. However, the cation-exchange SP process was able to simultaneously achieve high dsDNA and HCP removal and high influenza virus recovery. For the SP process to work, the clarified cell culture broth needed to be diluted to reduce its ionic strength, and the optimal dilution rate was determined to be 1:2 with purified water. The SP process yielded a virus recovery rate exceeding 90%, as measured using a hemagglutination units (HAUs) assay, with removal efficiencies over 97% for HCPs and over 99% for dsDNA. Furthermore, the general applicability of the SP chromatography method was demonstrated with seven strains of influenza viruses recommended for seasonal influenza vaccine production, including H1N1, H3N2, B (Victoria), and B (Yamagata) strains, indicating that the SP process could be utilized as a platform process. The SP process developed in this study showed four advantages: (1) simple operation, (2) a high recovery rate for influenza viruses, (3) a high removal rate for major impurities, and (4) general applicability.
Collapse
Affiliation(s)
- Sixu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Jingqi Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- GenScript (Shanghai) Biotech Co., Ltd., Shanghai 200131, China
| | - Qingtian Cheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Kangyi Duan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Zhan Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Shuang Yan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Shuaishuai Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Hairui Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- Qilu Pharmaceutical Co., Ltd., Jinan 250104, China
| | - Shaobin Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing 100176, China
| | - Xinkui Lei
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing 100176, China
| | - Yu Yang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Ningning Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| |
Collapse
|
7
|
Tapia R, Medina R, Neira V. Replication kinetics of novel swine influenza A viruses: an approach to vaccine production. AUSTRAL J VET SCI 2024; 56:85-90. [PMID: 39991269 PMCID: PMC11845247 DOI: 10.4206/ajvs.562.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Novel swine Influenza A viruses (IAVs) have been described in South America. The objective of this study was to evaluate the replication kinetics of novel swine IAVs as a first step in vaccine production. Different swine IAV lineages (H1N1, H1N2, and H3N2), infection doses (MOI: 1, 0.1, 0.01, 0.001, 0.0001, and 0.00001), harvest times (every 12 h), and substrates (MDCK and Vero cells) were used. For all IAV strains, MDCK cells were the most efficient substrate, generating titers of ≥128 HAU/50 μL with an MOI of 0.00001 at 60 h post-infection. These data may be useful in vaccine-producing laboratories.
Collapse
Affiliation(s)
- Rodrigo Tapia
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de Chile, Santiago, Chile
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile
| | - Rafael Medina
- Department of Pathology and Experimental Medicine, School of Medicine, Emory University, Atlanta, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile
| |
Collapse
|
8
|
Zinnecker T, Badri N, Araujo D, Thiele K, Reichl U, Genzel Y. From single-cell cloning to high-yield influenza virus production - implementing advanced technologies in vaccine process development. Eng Life Sci 2024; 24:2300245. [PMID: 38584687 PMCID: PMC10991716 DOI: 10.1002/elsc.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
Innovations in viral vaccine manufacturing are crucial for pandemic preparedness and to meet ever-rising global demands. For influenza, however, production still mainly relies on technologies established decades ago. Although modern production shifts from egg-based towards cell culture technologies, the full potential has not yet been fully exploited. Here, we evaluate whether implementation of state-of-the-art technologies for cell culture-based recombinant protein production are capable to challenge outdated approaches in viral vaccine process development. For this, a fully automated single-cell cloning strategy was established to generate monoclonal suspension Madin-Darby canine kidney (MDCK) cells. Among selected cell clones, we could observe distinct metabolic and growth characteristics, with C59 reaching a maximum viable cell concentration of 17.3 × 106 cells/mL and low doubling times in batch mode. Screening for virus production using a panel of human vaccine-relevant influenza A and B viruses in an ambr15 system revealed high titers with yields competing or even outperforming available MDCK cell lines. With C113, we achieved cell-specific virus yields of up to 25,000 virions/cell, making this cell clone highly attractive for vaccine production. Finally, we confirmed process performance at a 50-fold higher working volume. In summary, we present a scalable and powerful approach for accelerated development of high-yield influenza virus production in chemically defined medium starting from a single cell.
Collapse
Affiliation(s)
- Tilia Zinnecker
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | | | - Diogo Araujo
- Sartorius Stedim Biotech S.A.Aubagne CedexFrance
| | | | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Bioprocess EngineeringOtto‐von‐Guericke UniversityMagdeburgGermany
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| |
Collapse
|
9
|
Phan T, Ye Q, Stach C, Lin YC, Cao H, Bowen A, Langlois RA, Hu WS. Synthetic Cell Lines for Inducible Packaging of Influenza A Virus. ACS Synth Biol 2024; 13:546-557. [PMID: 38259154 PMCID: PMC10878389 DOI: 10.1021/acssynbio.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024]
Abstract
Influenza A virus (IAV) is a negative-sense RNA virus that causes seasonal infections and periodic pandemics, inflicting huge economic and human costs on society. The current production of influenza virus for vaccines is initiated by generating a seed virus through the transfection of multiple plasmids in HEK293 cells followed by the infection of seed viruses into embryonated chicken eggs or cultured mammalian cells. We took a system design and synthetic biology approach to engineer cell lines that can be induced to produce all viral components except hemagglutinin (HA) and neuraminidase (NA), which are the antigens that specify the variants of IAV. Upon the transfection of HA and NA, the cell line can produce infectious IAV particles. RNA-Seq transcriptome analysis revealed inefficient synthesis of viral RNA and upregulated expression of genes involved in host response to viral infection as potential limiting factors and offered possible targets for enhancing the productivity of the synthetic cell line. Overall, we showed for the first time that it was possible to create packaging cell lines for the production of a cytopathic negative-sense RNA virus. The approach allows for the exploitation of altered kinetics of the synthesis of viral components and offers a new method for manufacturing viral vaccines.
Collapse
Affiliation(s)
- Thu Phan
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Qian Ye
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Christopher Stach
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yu-Chieh Lin
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haoyu Cao
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Annika Bowen
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ryan A. Langlois
- Department
of Microbiology and Immunology, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wei-Shou Hu
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Shi J, Shen A, Cheng Y, Zhang C, Yang X. 30-Year Development of Inactivated Virus Vaccine in China. Pharmaceutics 2023; 15:2721. [PMID: 38140062 PMCID: PMC10748258 DOI: 10.3390/pharmaceutics15122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inactivated vaccines are vaccines made from inactivated pathogens, typically achieved by using chemical or physical methods to destroy the virus's ability to replicate. This type of vaccine can induce the immune system to produce an immune response against specific pathogens, thus protecting the body from infection. In China, the manufacturing of inactivated vaccines has a long history and holds significant importance among all the vaccines available in the country. This type of vaccine is widely used in the prevention and control of infectious diseases. China is dedicated to conducting research on new inactivated vaccines, actively promoting the large-scale production of inactivated vaccines, and continuously improving production technology and quality management. These efforts enable China to meet the domestic demand for inactivated vaccines and gain a certain competitive advantage in the international market. In the future, China will continue to devote itself to the research and production of inactivated vaccines, further enhancing the population's health levels and contributing to social development. This study presents a comprehensive overview of the 30-year evolution of inactivated virus vaccines in China, serving as a reference for the development and production of such vaccines.
Collapse
Affiliation(s)
- Jinrong Shi
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Ailin Shen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Yao Cheng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Chi Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China; (J.S.); (A.S.); (Y.C.)
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
11
|
Gupta D, Mohan S. Influenza vaccine: a review on current scenario and future prospects. J Genet Eng Biotechnol 2023; 21:154. [PMID: 38030859 PMCID: PMC10686931 DOI: 10.1186/s43141-023-00581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023]
Abstract
Vaccination is a crucial tool in preventing influenza, but it requires annual updates in vaccine composition due to the ever-changing nature of the flu virus. While healthcare and economic burdens have reduced, the virus remains a challenge. Research conducted over the past decade has revealed pathways for improvement through both basic and clinical studies. Viral surveillance plays a vital role in the better selection of candidate viruses for vaccines and the early detection of drug-resistant strains.This page offers a description of future vaccine developments and an overview of current vaccine options. In the coming years, we anticipate significant changes in vaccine production, moving away from traditional egg-based methods towards innovative technologies such as DNA and RNA vaccines. These newer approaches offer significant advantages over traditional egg-based and cell culture-based influenza vaccine manufacturing.
Collapse
Affiliation(s)
- Dipanshi Gupta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Sector-125, Noida, Uttar Pradesh, 201303, India
| | - Sumedha Mohan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Sector-125, Noida, Uttar Pradesh, 201303, India.
| |
Collapse
|
12
|
Shi P, Xu Y, Zhu Z, Zhou C, Wu M, He Y, Zhao H, Liu L, Zhao L, Li X, Qin C. Manganese Mineralization of Pathogenic Viruses as a Universal Vaccine Platform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303615. [PMID: 37867242 PMCID: PMC10667830 DOI: 10.1002/advs.202303615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/12/2023] [Indexed: 10/24/2023]
Abstract
Biomimetic viral mineralization improves viral vaccine stability and immunogenicity using inorganic metals such as Ca, Al, or Fe. Mn is a metal found in high concentrations in mammalian tissues; however, under natural or laboratory conditions, Mn mineralization by medical viruses has yet to be established. Herein, a single IAV particle is successfully encapsulated with manganese phosphate (MnP) under specific conditions using the human influenza A virus (IAV). MnP-mineralized IAVs (IAV@Mn) exhibited physiochemical and in vitro properties similar to Ca-mineralized IAVs. In animal models, IAV@Mn shows limited replication in immune-competent cells and a significant attenuation compared to naïve cells. Moreover, a single-dose vaccination with IAV@Mn induced robust humoral and cellular immune responses and conferred significant protection against a wild-type IAV challenge in mice. Thus, Mn mineralization in pathogenic viruses provides a rapid and universal strategy for generating an emergency vaccine in response to emerging viruses.
Collapse
Affiliation(s)
- Pan‐Deng Shi
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Yan‐Peng Xu
- Laboratory of VirologyBeijing Key Laboratory of Etiology of Viral Diseases in ChildrenCapital Institute of PediatricsBeijing100020China
| | - Zhu Zhu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
- School of MedicineTsinghua UniversityBeijing100091China
| | - Chao Zhou
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Mei Wu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Yangzhige He
- Department of Medical Research CenterState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijing100730China
| | - Hui Zhao
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Liying Liu
- Laboratory of VirologyBeijing Key Laboratory of Etiology of Viral Diseases in ChildrenCapital Institute of PediatricsBeijing100020China
| | - Linqing Zhao
- Laboratory of VirologyBeijing Key Laboratory of Etiology of Viral Diseases in ChildrenCapital Institute of PediatricsBeijing100020China
| | - Xiao‐Feng Li
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Cheng‐Feng Qin
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| |
Collapse
|
13
|
Kackos CM, DeBeauchamp J, Davitt CJH, Lonzaric J, Sealy RE, Hurwitz JL, Samsa MM, Webby RJ. Seasonal quadrivalent mRNA vaccine prevents and mitigates influenza infection. NPJ Vaccines 2023; 8:157. [PMID: 37828126 PMCID: PMC10570305 DOI: 10.1038/s41541-023-00752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Annually, seasonal influenza is responsible for millions of infections and hundreds of thousands of deaths. The current method for managing influenza is vaccination using a standardized amount of the influenza virus' primary surface antigen, hemagglutinin (HA), as the intended target of the immune response. This vaccination strategy results in vaccines with variable efficacy year to year due to antigenic drift of HA, which can be further exacerbated by manufacturing processes optimizing growth of vaccine virus in eggs. Due to these limitations, alternative vaccine platforms are actively being explored to improve influenza vaccine efficacy, including cell-based, recombinant protein, and mRNA vaccines. mRNA's rapid, in vitro production makes it an appealing platform for influenza vaccination, and the success of SARS-CoV-2 mRNA vaccines in the clinic has encouraged the development of mRNA vaccines for other pathogens. Here, the immunogenicity and protective efficacy of a quadrivalent mRNA vaccine encoding HA from four seasonal influenza viruses, A/California/07/2009 (H1N1), A/Hong Kong/4801/2014 (H3N2), B/Brisbane/60/2008 (B-Victoria lineage), and B/Phuket/3073/2013 (B-Yamagata lineage), was evaluated. In mice, a 120 μg total dose of this quadrivalent mRNA vaccine induced robust antibody titers against each subtype that were commensurate with titers when each antigen was administered alone. Following A/California/04/2009 challenge, mice were fully protected from morbidity and mortality, even at doses as low as 1 μg of each antigen. Additionally, a single administration of 10 μg of quadrivalent mRNA was sufficient to prevent weight loss caused by A/California/04/2009. These results support the promise of this mRNA vaccine for prevention and mitigation of influenza vaccine.
Collapse
Affiliation(s)
- Christina M Kackos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Children's Research Hospital Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Jennifer DeBeauchamp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Robert E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
14
|
Li L, Guo T, Yuan Y, Xiao J, Yang R, Wang H, Xu W, Yin Y, Zhang X. ΔA146Ply-HA stem protein immunization protects mice against influenza A virus infection and co-infection with Streptococcus pneumoniae. Mol Immunol 2023; 161:91-103. [PMID: 37531919 DOI: 10.1016/j.molimm.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Influenza virus (IV) is a common pathogen affecting the upper respiratory tract, that causes various diseases. Secondary bacterial pneumonia is a common complication and a major cause of death in influenza patients. Streptococcus pneumoniae (S. pneumoniae) is the predominant co-infected bacteria in the pandemic, which colonizes healthy people but can cause diseases in immunocompromised individuals. Vaccination is a crucial strategy for avoiding infection, however, no universal influenza vaccine (UIV) that is resistant to multiple influenza viruses is available. Despite its limited immunogenicity, the hemagglutinin (HA) stem is a candidate peptide for UIV. ΔA146Ply (pneumolysin with a single deletion of A146) not only retains the Toll-like receptor 4 agonist effect but also is a potential vaccine adjuvant and a candidate protein for the S. pneumoniae vaccine. We constructed the fusion protein ΔA146Ply-HA stem and studied its immunoprotective effect in mice infection models. The results showed that intramuscular immunization of ΔA146Ply-HA stem without adjuvant could induce specific antibodies against HA stem and specific CD4+ T and CD8+ T cellular immunity in BALB/c and C57BL/6 mice, which could improve the survival rate of mice infected with IAV and co-infected with S. pneumoniae, but the protective effect on BALB/c mice was better than that on C57BL/6 mice. ΔA146Ply-HA stem serum antibody could protect BALB/c and C57BL/6 mice from IAV, and recognized HA polypeptides of H3N2, H5N1, H7N9, and H9N2 viruses. Moreover, ΔA146Ply-HA stem intramuscular immunization had a high safety profile with no obvious toxic side effects. The results indicated that coupling ΔA146Ply with influenza protein as a vaccine was a safe and effective strategy against the IV and secondary S. pneumoniae infection.
Collapse
Affiliation(s)
- Lian Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Ting Guo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yuan Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Rui Yang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Hanyi Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Wenlong Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
15
|
Liu Z, Pei M, Liu G, Qiu Z, Wang S, Qiao Z, Wang J, Jin D, Zhang J, Duan K, Nian X, Ma Z, Yang X. CDC20 is a potential target gene to inhibit the tumorigenesis of MDCK cells. Biologicals 2023; 83:101697. [PMID: 37579524 DOI: 10.1016/j.biologicals.2023.101697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/05/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
MDCK is currently the main cell line used for influenza vaccine production in culture. Previous studies have reported that MDCK cells possess tumorigenic ability in nude mice. Although complete cell lysis can be ensured during vaccine production, host cell DNA released after cell lysis may still pose a risk for tumorigenesis. Greater caution is needed in the production of human vaccines; therefore, the use of gene editing to establish cells incapable of forming tumors may significantly improve the safety of influenza vaccines. Knowledge regarding the genes and molecular mechanisms that affect the tumorigenic ability of MDCK cells is crucial; however, our understanding remains superficial. Through monoclonal cell screening, we previously obtained a cell line, CL23, that possesses significantly reduced cell proliferation, migration, and invasion abilities, and tumor-bearing experiments in nude mice showed the absence of tumorigenic cells. With a view to exploring tumorigenesis-related genes in MDCK cells, DIA proteomics was used to compare the differences in protein expression between wild-type (M60) and non-tumorigenic (CL23) cells. Differentially expressed proteins were verified at the mRNA level by RT-qPCR, and a number of genes involved in cell tumorigenesis were preliminarily screened. Immunoblotting further confirmed that related protein expression was significantly reduced in non-tumorigenic cells. Inhibition of CDC20 expression by RNAi significantly reduced the proliferation and migration of MDCK cells and increased the proliferation of the influenza virus; therefore, CDC20 was preliminarily determined to be an effective target gene for the inhibition of cell tumorigenicity. These results contribute to a more comprehensive understanding of the mechanism underlying cell tumorigenesis and provide a basis for the establishment of target gene screening in genetically engineered non-tumorigenic MDCK cell lines.
Collapse
Affiliation(s)
- Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University Lanzhou 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Mengyuan Pei
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, 730030, China
| | - Geng Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, 730030, China
| | - Zhenyu Qiu
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, 730030, China
| | - Siya Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, 730030, China
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University Lanzhou 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University Lanzhou 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Dongwu Jin
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou, 730010, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China; Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China; Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China; Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China
| | - Zhongren Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, 730030, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University Lanzhou 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China; China National Biotech Group Company Limited, Beijing, 100029, China.
| |
Collapse
|
16
|
Martinez MR, Gao J, Wan H, Kang H, Klenow L, Daniels R. Inactivated influenza virions are a flexible vaccine platform for eliciting protective antibody responses against neuraminidase. Vaccine 2023:S0264-410X(23)00629-1. [PMID: 37301705 DOI: 10.1016/j.vaccine.2023.05.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Most seasonal influenza vaccines are produced using hemagglutinin (HA) surface antigens from inactivated virions. However, virions are thought to be a suboptimal source for the less abundant neuraminidase (NA) surface antigen, which is also protective against severe disease. Here, we demonstrate that inactivated influenza virions are compatible with two modern approaches for improving protective antibody responses against NA. Using a DBA/2J mouse model, we show that the strong infection-induced NA inhibitory (NAI) antibody responses are only achieved by high dose immunizations of inactivated virions, likely due to the low viral NA content. Based on this observation, we first produced virions with higher NA content by using reverse genetics to exchange the viral internal gene segments. Single immunizations with these inactivated virions showed enhanced NAI antibody responses and improved NA-based protection from a lethal viral challenge while also allowing for the development of natural immunity to the heterotypic challenge virus HA. Second, we combined inactivated virions with recombinant NA protein antigens. These combination vaccines increased NA-based protection following viral challenge and elicited stronger antibody responses against NA than either component alone, especially when the NAs possessed similar antigenicity. Together, these results indicate that inactivated virions are a flexible platform that can be easily combined with protein-based vaccines to improve protective antibody responses against influenza antigens.
Collapse
Affiliation(s)
- Mira Rakic Martinez
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jin Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hyeog Kang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
17
|
Zhang J, Nian X, Liu B, Zhang Z, Zhao W, Han X, Ma Y, Jin D, Ma H, Zhang Q, Qiu R, Li F, Gong Z, Li X, Yang Y, Tian Y, Zhou L, Duan K, Li X, Ma Z, Yang X. Development of MDCK-based quadrivalent split seasonal influenza virus vaccine with high safety and immunoprotection: A preclinical study. Antiviral Res 2023; 216:105639. [PMID: 37270159 DOI: 10.1016/j.antiviral.2023.105639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
Vaccination remains the best prevention strategy against influenza. The MDCK-based influenza vaccine prompted the development of innovative cell culture manufacturing processes. In the present study, we report the effects of multiple administrations of a candidate, seasonal, MDCK-based, quadrivalent split influenza virus vaccine MDCK-QIV in Sprague-Dawley (SD) rats. Moreover, the effects of the vaccine were evaluated in terms of fertility and early embryonic development, embryo-fetal development, and perinatal toxicity in the SD rats and immunogenicity in Wistar rats and BALB/c mice. Regarding the safety profile, MDCK-QIV demonstrated tolerance in local stimulation with repeated dose administration and presented no significant effect on the development, growth, behavior, fertility, and reproductive performance of the adult male rats, maternal rats, and their offspring. MDCK-QIV elicited strong hemagglutination inhibition neutralizing antibody response and protection against the influenza virus in the mouse model. Thus, data supported that MDCK-QIV could be further evaluated in human clinical trial, which is currently underway.
Collapse
Affiliation(s)
- Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Bo Liu
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Zhegang Zhang
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Wei Zhao
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Xixin Han
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Yumei Ma
- Lanzhou BaiLing Biotech Co., Ltd, 730010, Lanzhou, China
| | - Dongwu Jin
- Lanzhou BaiLing Biotech Co., Ltd, 730010, Lanzhou, China
| | - Hua Ma
- Lanzhou BaiLing Biotech Co., Ltd, 730010, Lanzhou, China
| | - Qingmei Zhang
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Ran Qiu
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Fang Li
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Zheng Gong
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Xuedan Li
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Ying Yang
- Hubei Topgene Biotechnology Co., Ltd, 430074, Wuhan, China
| | - Yichao Tian
- Hubei Topgene Biotechnology Co., Ltd, 430074, Wuhan, China
| | - Li Zhou
- Hubei Topgene Biotechnology Co., Ltd, 430074, Wuhan, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China
| | - Zhongren Ma
- Lanzhou BaiLing Biotech Co., Ltd, 730010, Lanzhou, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, 430207, Wuhan, China; Wuhan Institute of Biological Products Co., Ltd., 430207, Wuhan, China; China National Biotec Group Company Limited, 100029, Beijing, China.
| |
Collapse
|
18
|
Sharp CP, Thompson BH, Nash TJ, Diebold O, Pinto RM, Thorley L, Lin YT, Sives S, Wise H, Clohisey Hendry S, Grey F, Vervelde L, Simmonds P, Digard P, Gaunt ER. CpG dinucleotide enrichment in the influenza A virus genome as a live attenuated vaccine development strategy. PLoS Pathog 2023; 19:e1011357. [PMID: 37146066 PMCID: PMC10191365 DOI: 10.1371/journal.ppat.1011357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/17/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023] Open
Abstract
Synonymous recoding of RNA virus genomes is a promising approach for generating attenuated viruses to use as vaccines. Problematically, recoding typically hinders virus growth, but this may be rectified using CpG dinucleotide enrichment. CpGs are recognised by cellular zinc-finger antiviral protein (ZAP), and so in principle, removing ZAP sensing from a virus propagation system will reverse attenuation of a CpG-enriched virus, enabling high titre yield of a vaccine virus. We tested this using a vaccine strain of influenza A virus (IAV) engineered for increased CpG content in genome segment 1. Virus attenuation was mediated by the short isoform of ZAP, correlated with the number of CpGs added, and was enacted via turnover of viral transcripts. The CpG-enriched virus was strongly attenuated in mice, yet conveyed protection from a potentially lethal challenge dose of wildtype virus. Importantly for vaccine development, CpG-enriched viruses were genetically stable during serial passage. Unexpectedly, in both MDCK cells and embryonated hens' eggs that are used to propagate live attenuated influenza vaccines, the ZAP-sensitive virus was fully replication competent. Thus, ZAP-sensitive CpG enriched viruses that are defective in human systems can yield high titre in vaccine propagation systems, providing a realistic, economically viable platform to augment existing live attenuated vaccines.
Collapse
Affiliation(s)
- Colin P. Sharp
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Beth H. Thompson
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Tessa J. Nash
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Ola Diebold
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Rute M. Pinto
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Luke Thorley
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Yao-Tang Lin
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Samantha Sives
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Helen Wise
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom
| | - Sara Clohisey Hendry
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Finn Grey
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Lonneke Vervelde
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Paul Digard
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Eleanor R. Gaunt
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| |
Collapse
|
19
|
Chia MY, Lin CY, Chen PL, Lai CC, Weng TC, Sung WC, Hu AYC, Lee MS. Characterization and Immunogenicity of Influenza H7N9 Vaccine Antigens Produced Using a Serum-Free Suspension MDCK Cell-Based Platform. Viruses 2022; 14:v14091937. [PMID: 36146744 PMCID: PMC9502495 DOI: 10.3390/v14091937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Human infections with avian-origin H7N9 influenza A viruses were first reported in China, and an approximately 38% human mortality rate was described across six waves from February 2013 to September 2018. Vaccination is one of the most cost-effective ways to reduce morbidity and mortality during influenza epidemics and pandemics. Egg-based platforms for the production of influenza vaccines are labor-intensive and unable to meet the surging demand during pandemics. Therefore, cell culture-based technology is becoming the alternative strategy for producing influenza vaccines. The current influenza H7N9 vaccine virus (NIBRG-268), a reassortant virus from A/Anhui/1/2013 (H7N9) and egg-adapted A/PR/8/34 (H1N1) viruses, could grow efficiently in embryonated eggs but not mammalian cells. Moreover, a freezing-dry formulation of influenza H7N9 vaccines with long-term stability will be desirable for pandemic preparedness, as the occurrence of influenza H7N9 pandemics is not predictable. In this study, we adapted a serum-free anchorage-independent suspension Madin-Darby Canine Kidney (MDCK) cell line for producing influenza H7N9 vaccines and compared the biochemical characteristics and immunogenicity of three influenza H7N9 vaccine antigens produced using the suspension MDCK cell-based platform without freeze-drying (S-WO-H7N9), the suspension MDCK cell-based platform with freeze-drying (S-W-H7N9) or the egg-based platform with freeze-drying (E-W-H7N9). We demonstrated these three vaccine antigens have comparable biochemical characteristics. In addition, these three vaccine antigens induced robust and comparable neutralizing antibody (NT; geometric mean between 1016 and 4064) and hemagglutinin-inhibition antibody (HI; geometric mean between 640 and 1613) titers in mice. In conclusion, the serum-free suspension MDCK cell-derived freeze-dried influenza H7N9 vaccine is highly immunogenic in mice, and clinical development is warranted.
Collapse
Affiliation(s)
- Min-Yuan Chia
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chun-Yang Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Po-Ling Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Tsai-Chuan Weng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence: ; Tel.: +886-(37)-246-166 (ext. 35520); Fax: +886-(37)-583-009
| |
Collapse
|
20
|
Yang Z, Xu X, Silva CAT, Farnos O, Venereo-Sanchez A, Toussaint C, Dash S, González-Domínguez I, Bernier A, Henry O, Kamen A. Membrane Chromatography-Based Downstream Processing for Cell-Culture Produced Influenza Vaccines. Vaccines (Basel) 2022; 10:vaccines10081310. [PMID: 36016198 PMCID: PMC9414887 DOI: 10.3390/vaccines10081310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
New influenza strains are constantly emerging, causing seasonal epidemics and raising concerns to the risk of a new global pandemic. Since vaccination is an effective method to prevent the spread of the disease and reduce its severity, the development of robust bioprocesses for producing pandemic influenza vaccines is exceptionally important. Herein, a membrane chromatography-based downstream processing platform with a demonstrated industrial application potential was established. Cell culture-derived influenza virus H1N1/A/PR/8/34 was harvested from benchtop bioreactor cultures. For the clarification of the cell culture broth, a depth filtration was selected as an alternative to centrifugation. After inactivation, an anion exchange chromatography membrane was used for viral capture and further processing. Additionally, two pandemic influenza virus strains, the H7N9 subtype of the A/Anhui/1/2013 and H3N2/A/Hong Kong/8/64, were successfully processed through similar downstream process steps establishing optimized process parameters. Overall, 41.3–62.5% viral recovery was achieved, with the removal of 86.3–96.5% host cell DNA and 95.5–99.7% of proteins. The proposed membrane chromatography purification is a scalable and generic method for the processing of different influenza strains and is a promising alternative to the current industrial purification of influenza vaccines based on ultracentrifugation methodologies.
Collapse
Affiliation(s)
- Zeyu Yang
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Xingge Xu
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cristina A. T. Silva
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Omar Farnos
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Alina Venereo-Sanchez
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cécile Toussaint
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Shantoshini Dash
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Irene González-Domínguez
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Alice Bernier
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Amine Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence:
| |
Collapse
|
21
|
Rama A, Pai A, Rosa Barreto D, Kumar Kannan S, Naha A. Virus-Like particles as a Novel Targeted Drug Delivery Platform for Biomedical Applications. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2022:2801-2808. [DOI: 10.52711/0974-360x.2022.00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Virus-Like Particles (VLP) mimics virions immunologically which induces high titers of neutralizing antibodies to conformational epitopes due to the high-density display of epitopes, present multiple proteins which are optimal for uptake by dendritic cells and are assembled in vivo. VLP triggers the immune response of the body against the diseases and is broadly two types like non enveloped VLP’s and Enveloped VLP’s. The present review discusses the production, analysis, and mechanism of action of virus-like particles. Various applications, the Indian Scenario of VLP, Limitations, and future scopes are briefly reviewed and discussed. VLPs imitate authentic viruses in antigenic morphology and offer a stable alternative to attenuated and inactivated viruses in the production of vaccines. It can effectively deliver foreign nucleic acids, proteins, or conjugated compounds to the system, or even to particular types of cells, due to their transducing properties. It retains the ability to infiltrate and render cells useful for a wide range of applications. Used as a tool to increase the immunogenicity of poorly immunogenic antigens, VLP therapeutics can be developed and manufactured in a way that would be sufficiently cheap to be seen globally in many countries. The ability to mass-produce them cost-effectively improves their possibility of being introduced to undeveloped countries.
Collapse
Affiliation(s)
- Annamalai Rama
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anuja Pai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Divya Rosa Barreto
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Siva Kumar Kannan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anup Naha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
22
|
Chanthavanich P, Versage E, Van Twuijver E, Hohenboken M. Antibody responses against heterologous A/H5N1 strains for an MF59-adjuvanted cell culture-derived A/H5N1 (aH5N1c) influenza vaccine in healthy pediatric subjects. Vaccine 2021; 39:6930-6935. [PMID: 34711436 DOI: 10.1016/j.vaccine.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Vaccines are the main prophylactic measure against pandemic influenza. Adjuvanted, cell culture-derived vaccines, which are not subject to limitations of egg-based vaccine production, have the potential to elicit an antibody response against heterologous strains and may be beneficial in the event of an A/H5N1 pandemic. METHODS A prespecified exploratory analysis of data from a phase 2, randomized, controlled, observer-blind multicenter trial (NCT01776554) to evaluate the immunogenicity of a MF59-adjuvanted, cell culture-based A/H5N1 influenza vaccine (aH5N1c), containing 7.5 µg hemagglutinin antigen per dose, in subjects 6 months through 17 years of age was conducted. Geometric mean titers (GMT) were determined using hemagglutination inhibition (HI) and microneutralization (MN) assays, and proportions of patients achieving seroconversion, HI and MN titers ≥ 1:40, and a 4-fold increase in MN titers against 5 heterologous strains (influenza A/H5N1 Anhui/2005, Egypt/2010, Hubei/2010, Indonesia/2005, and Vietnam/1203/2004) three weeks after administration of the second dose were assessed. RESULTS After the second dose, HI GMTs against heterologous strains increased between 8- and 40-fold, and MN GMTs increased 13- to 160-fold on Day 43 vs Day 1. On Day 43, 32-72% of subjects had HI titers ≥ 1:40 and achieved seroconversion against the heterologous strains. Using the MN assay, 84-100% of subjects had MN titers ≥ 1:40 and 83-100% achieved an at least 4-fold increase in MN titers against the heterologous strains. The highest responses were consistently against A/H5N1 Egypt/2010. CONCLUSIONS When given to children aged 6 months through 17 years, aH5N1c resulted in increased immunogenicity from baseline against all 5 heterologous A/H5N1 strains tested, demonstrating the potential of an MF59-adjuvanted, cell-derived A/H5N1 vaccine to provide cross-protection against other A/H5N1 strains (NCT01776554).
Collapse
Affiliation(s)
- Pornthep Chanthavanich
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Eve Versage
- Seqirus Inc., Clinical Development, Cambridge, USA
| | | | | |
Collapse
|
23
|
Nuwarda RF, Alharbi AA, Kayser V. An Overview of Influenza Viruses and Vaccines. Vaccines (Basel) 2021; 9:1032. [PMID: 34579269 PMCID: PMC8473132 DOI: 10.3390/vaccines9091032] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023] Open
Abstract
Influenza remains one of the major public health concerns because it causes annual epidemics and can potentially instigate a global pandemic. Numerous countermeasures, including vaccines and antiviral treatments, are in use against seasonal influenza infection; however, their effectiveness has always been discussed due to the ongoing resistance to antivirals and relatively low and unpredictable efficiency of influenza vaccines compared to other vaccines. The growing interest in vaccines as a promising approach to prevent and control influenza may provide alternative vaccine development options with potentially increased efficiency. In addition to currently available inactivated, live-attenuated, and recombinant influenza vaccines on the market, novel platforms such as virus-like particles (VLPs) and nanoparticles, and new vaccine formulations are presently being explored. These platforms provide the opportunity to design influenza vaccines with improved properties to maximize quality, efficacy, and safety. The influenza vaccine manufacturing process is also moving forward with advancements relating to egg- and cell-based production, purification processes, and studies into the physicochemical attributes and vaccine degradation pathways. These will contribute to the design of more stable, optimized vaccine formulations guided by contemporary analytical testing methods and via the implementation of the latest advances in the field.
Collapse
Affiliation(s)
| | | | - Veysel Kayser
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, NSW 2006, Australia; (R.F.N.); (A.A.A.)
| |
Collapse
|
24
|
Hu Y, Liu Y, Yin Y, Zhang X. Protective efficacy of mucosal and subcutaneous immunization with DnaJ-ΔA146Ply against influenza and Streptococcus pneumoniae co-infection in mice. Microbes Infect 2021; 23:104813. [PMID: 33798714 DOI: 10.1016/j.micinf.2021.104813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
Respiratory tract coinfections, specifically involving influenza A virus (IAV) and Streptococcus pneumoniae (S. pneumoniae), remain a major health problem worldwide. Secondary bacterial pneumonia is a common complication and an important cause of mortality related to seasonal and pandemic influenza infections. Vaccination is a basic control strategy against influenza and S. pneumoniae. The fusion protein DnaJ-ΔA146Ply is a vaccine candidate which can induce immune responses against pneumococcal infections via mucosal and subcutaneous immunization in mice. In the present study, we established a co-infection model using mouse-adapted laboratory strains of IAV (PR8) and S. pneumoniae (19F) in mice intranasally and subcutaneously immunized with DnaJ-ΔA146Ply. Our results showed that vaccinated mice suffered decreased weight loss compared with control mice. The survival rates were higher in intranasally and subcutaneously immunized mice than in control mice. In addition, the bacterial loads in nasal washes and lung homogenates were lower in vaccinated mice than in control mice. Furthermore, lung damage was alleviated in vaccinated mice compared with control mice, with less broken alveoli and less proinflammatory cytokine production. Taken together, these results indicate that vaccination with DnaJ-ΔA146Ply shows protective potential against influenza and S. pneumoniae co-infection in mice.
Collapse
Affiliation(s)
- Yi Hu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Yusi Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
25
|
Songaksorn N, Petsophonsakul W, Pringproa K, Lampang KN, Sthitmatee N, Srifawattana N, Piyarungsri K, Thongkorn K. Prevalence of autoantibodies that bind to kidney tissues in cats and association risk with antibodies to feline viral rhinotracheitis, calicivirus, and panleukopenia. J Vet Sci 2021; 22:e38. [PMID: 34056879 PMCID: PMC8170220 DOI: 10.4142/jvs.2021.22.e38] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The feline viral rhinotracheitis, calicivirus, and panleukopenia (FVRCP) vaccine, prepared from viruses grown in the Crandell-Rees feline kidney cell line, can induce antibodies to cross-react with feline kidney tissues. OBJECTIVES This study surveyed the prevalence of autoantibodies to feline kidney tissues and their association with the frequency of FVRCP vaccination. METHODS Serum samples and kidneys were collected from 156 live and 26 cadaveric cats. Antibodies that bind to kidney tissues and antibodies to the FVRCP antigen were determined by enzyme-linked immunosorbent assay (ELISA), and kidney-bound antibody patterns were investigated by examining immunofluorescence. Proteins recognized by antibodies were identified by Western blot analysis. RESULTS The prevalences of autoantibodies that bind to kidney tissues in cats were 41% and 13% by ELISA and immunofluorescence, respectively. Kidney-bound antibodies were observed at interstitial cells, apical border, and cytoplasm of proximal and distal tubules; the antibodies were bound to proteins with molecular weights of 40, 47, 38, and 20 kDa. There was no direct link between vaccination and anti-kidney antibodies, but positive antibodies to kidney tissues were significantly associated with the anti-FVRCP antibody. The odds ratio or association in finding the autoantibody in cats with the antibody to FVRCP was 2.8 times higher than that in cats without the antibody to FVRCP. CONCLUSIONS These preliminary results demonstrate an association between anti-FVRCP and anti-cat kidney tissues. However, an increase in the risk of inducing kidney-bound antibodies by repeat vaccinations could not be shown directly. It will be interesting to expand the sample size and follow-up on whether these autoantibodies can lead to kidney function impairment.
Collapse
Affiliation(s)
- Nisakorn Songaksorn
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Wilaiwan Petsophonsakul
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kannika Na Lampang
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nattawooti Sthitmatee
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nuttawan Srifawattana
- Small Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kakanang Piyarungsri
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kriangkrai Thongkorn
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.,Integrative Research Center for Veterinary Circulatory Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
26
|
Wu Y, Jia H, Lai H, Liu X, Tan WS. Highly efficient production of an influenza H9N2 vaccine using MDCK suspension cells. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00352-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe use of H9N2 subtype avian influenza vaccines is an effective approach for the control of the virus spread among the poultry, and for the upgrading of vaccine manufacturing, cell culture-based production platform could overcome the limitations of conventional egg-based platform and alternate it. The development of serum-free suspension cell culture could allow even higher virus productivity, where a suspension cell line with good performance and proper culture strategies are required. In this work, an adherent Mardin–Darby canine kidney (MDCK) cell line was adapted to suspension growth to cell concentration up to 12 × 106 cells/mL in a serum-free medium in batch cultures. Subsequently, the H9N2 influenza virus propagation in this MDCK cell line was evaluated with the optimization of infection conditions in terms of MOI and cell concentration for infection. Furthermore, various feed strategies were tested in the infection phase for improved virus titer and a maximum hemagglutinin titer of 13 log2 (HAU/50 μL) was obtained using the 1:2 medium dilution strategy. The evaluation of MDCK cell growth and H9N2 virus production in bioreactors with optimized operating conditions showed comparable cell performance and virus yield compared to shake flasks, with a high cell-specific virus yield above 13,000 virions/cell. With the purified H9N2 virus harvested from the bioreactors, the MDCK cell-derived vaccine was able to induce high titers of neutralizing antibodies in chickens. Overall, the results demonstrate the promising application of the highly efficient MDCK cell-based production platform for the avian influenza vaccine manufacturing.
Collapse
|
27
|
Cianci R, Newton EE, Pagliari D. Efforts to Improve the Seasonal Influenza Vaccine. Vaccines (Basel) 2020; 8:E645. [PMID: 33153011 PMCID: PMC7712773 DOI: 10.3390/vaccines8040645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Seasonal influenza is an acute syndrome, principally involving the respiratory tract caused by influenza viruses that are globally present [...].
Collapse
Affiliation(s)
- Rossella Cianci
- General Medicine, Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | | | - Danilo Pagliari
- General Medicine, Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Medical Officer of the Carabinieri Corps, Carabinieri Officers School, 00165 Rome, Italy
| |
Collapse
|
28
|
Lei H, Gao T, Cen Q, Peng X. Haemagglutinin displayed on the surface of Lactococcus lactis confers broad cross-clade protection against different H5N1 viruses in chickens. Microb Cell Fact 2020; 19:193. [PMID: 33059676 PMCID: PMC7557258 DOI: 10.1186/s12934-020-01453-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
Background The highly pathogenic avian influenza (HPAI) H5N1 virus poses a potential threat to the poultry industry. The currently available avian influenza H5N1 vaccines for poultry are clade-specific. Therefore, an effective vaccine for preventing and controlling H5N1 viruses belonging to different clades needs to be developed. Results Recombinant L. lactis/pNZ8148-Spax-HA was generated, and the influenza virus haemagglutinin (HA) protein of A/Vietnam/1203/2004 (H5N1) was displayed on the surface of Lactococcus lactis (L. lactis). Spax was used as an anchor protein. Chickens vaccinated orally with unadjuvanted L. lactis/pNZ8148-Spax-HA could produce significant humoral and mucosal responses and neutralizing activities against H5N1 viruses belonging to different clades. Importantly, unadjuvanted L. lactis/pNZ8148-Spax-HA conferred cross-clade protection against lethal challenge with different H5N1 viruses in the chicken model. Conclusion This study provides insights into the cross-clade protection conferred by unadjuvanted L. lactis/pNZ8148-Spax-HA, and the results might help the establishment of a promising platform for the development of a safe and effective H5N1 cross-clade vaccine for poultry.
Collapse
Affiliation(s)
- Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Tong Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qianhong Cen
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xiaojue Peng
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China
| |
Collapse
|
29
|
Takahashi H, Fujimoto T, Horikoshi F, Uotani T, Okutani M, Shimasaki N, Hamamoto I, Odagiri T, Nobusawa E. Determination of the potency of a cell-based seasonal quadrivalent influenza vaccine using a purified primary liquid standard. Biologicals 2020; 68:32-39. [PMID: 33023810 DOI: 10.1016/j.biologicals.2020.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022] Open
Abstract
In Japan, the practical application of completely cell-based seasonal influenza vaccines is under consideration. Considering the good correlation between the immunogenicity of egg-based influenza vaccines and the hemagglutinin (HA) content determined by the single radial immunodiffusion (SRD) assay, we determined the potency of the first cell-based quadrivalent vaccine experimentally generated in Japan using the SRD assay in this study. A primary liquid standard (PLS) and reference antigen were generated from the purified vaccine virus, and a sheep antiserum was produced against the HA of the vaccine virus. Since the purity of the PLS affects the reliability of vaccine potency testing, the purification steps are significant. We successfully prepared a purified PLS nearly free of cell debris. The HA content in the PLS was first estimated from the total amount of viral protein and the percentage of HA content determined by SDS-PAGE analysis. The HA content in the reference antigen was calibrated to that in the PLS via the SRD assay. The vaccine potency, that is, the HA content in each vaccine, was finally measured using the corresponding reference antigen. Ultimately, the measured vaccine potency of the monovalent vaccine was similar to that of the quadrivalent vaccine.
Collapse
Affiliation(s)
- Hitoshi Takahashi
- Influenza Virus Research Center, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Takao Fujimoto
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Kagawa, Japan
| | - Fumiaki Horikoshi
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Kagawa, Japan
| | - Tae Uotani
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Kagawa, Japan
| | - Mie Okutani
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Kagawa, Japan
| | - Noriko Shimasaki
- Influenza Virus Research Center, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Itsuki Hamamoto
- Influenza Virus Research Center, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Eri Nobusawa
- Influenza Virus Research Center, National Institute of Infectious Diseases (NIID), Tokyo, Japan.
| |
Collapse
|
30
|
López-Gobernado M, Pérez-Rubio A, Eiros JM. [Flu vaccination as the most effective measure to face the clinical and economic impact of the complaint]. GACETA SANITARIA 2020; 35:103-104. [PMID: 32919814 DOI: 10.1016/j.gaceta.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Miguel López-Gobernado
- Servicio de Estudios, Documentación y Estadística, Consejería de Sanidad de la Junta de Castilla y León, Valladolid, España.
| | - Alberto Pérez-Rubio
- Dirección Médica, Hospital Clínico Universitario de Valladolid, Valladolid, España
| | - José María Eiros
- Servicio de Microbiología, Hospital Río Hortega, Valladolid, España
| |
Collapse
|
31
|
Recombinant HA-based vaccine outperforms split and subunit vaccines in elicitation of influenza-specific CD4 T cells and CD4 T cell-dependent antibody responses in humans. NPJ Vaccines 2020; 5:77. [PMID: 32884842 PMCID: PMC7450042 DOI: 10.1038/s41541-020-00227-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Although traditional egg-based inactivated influenza vaccines can protect against infection, there have been significant efforts to develop improved formats to overcome disadvantages of this platform. Here, we have assessed human CD4 T cell responses to a traditional egg-based influenza vaccine with recently available cell-derived vaccines and recombinant baculovirus-derived vaccines. Adults were administered either egg-derived Fluzone®, mammalian cell-derived Flucelvax® or recombinant HA (Flublok®). CD4 T cell responses to each HA protein were assessed by cytokine EliSpot and intracellular staining assays. The specificity and magnitude of antibody responses were quantified by ELISA and HAI assays. By all criteria, Flublok vaccine exhibited superior performance in eliciting both CD4 T cell responses and HA-specific antibody responses, whether measured by mean response magnitude or percent of responders. Although the mechanism(s) underlying this advantage is not yet clear, it is likely that both qualitative and quantitative features of the vaccines impact the response.
Collapse
|
32
|
Comparability of Titers of Antibodies against Seasonal Influenza Virus Strains as Determined by Hemagglutination Inhibition and Microneutralization Assays. J Clin Microbiol 2020; 58:JCM.00750-20. [PMID: 32493784 PMCID: PMC7448638 DOI: 10.1128/jcm.00750-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 11/20/2022] Open
Abstract
We compared titers of antibodies against A/H1N1, A/H3N2, and B influenza virus strains collected pre- and postvaccination using hemagglutination inhibition (HI) and microneutralization (MN) assays and data from two vaccine trials: study 1, performed with a cell-grown trivalent influenza vaccine (TIVc) using cell-grown target virus in both assays, and study 2, performed with an egg-grown adjuvanted quadrivalent influenza vaccine (aQIVe) using egg-grown target virus. The relationships between HI- and MN-derived log-transformed titers were examined using different statistical techniques. We compared titers of antibodies against A/H1N1, A/H3N2, and B influenza virus strains collected pre- and postvaccination using hemagglutination inhibition (HI) and microneutralization (MN) assays and data from two vaccine trials: study 1, performed with a cell-grown trivalent influenza vaccine (TIVc) using cell-grown target virus in both assays, and study 2, performed with an egg-grown adjuvanted quadrivalent influenza vaccine (aQIVe) using egg-grown target virus. The relationships between HI- and MN-derived log-transformed titers were examined using different statistical techniques. Deming regression analyses showed point estimates for slopes generally close to 1 across studies and strains. The slope of regression was closest to 1 for A/H3N2 strain when either cell- or egg-grown viral target virus was used. Bland-Altman plots indicated a very small percentage of results outside 2 and 3 standard deviations. The magnitudes and directions of differences between titers in the two assays varied by study and strain. Mean differences favored the MN assay for A/H1N1 and B strains in study 1, whereas the titers determined by HI were higher than those determined by MN against the A/H3N2 strain. In study 2, mean differences favored the MN assay for A/H3N2 and B strains. Overall, the directions and magnitudes of the mean differences were similar between the two vaccines. The concordance correlation coefficient values ranged from 0.74 (A/H1N1 strain, study 1) to 0.97 (A/H3N2 strain, study 1). The comparative analysis demonstrates an overall strong positive correlation between the HI and MN assays. These data support the use of the MN assay to quantify the immune response of influenza vaccines in clinical studies, particularly for the A/H3N2 strain.
Collapse
|
33
|
Pérez-Rubio A, Ancochea J, Eiros Bouza JM. Quadrivalent cell culture influenza virus vaccine. Comparison to egg-derived vaccine. Hum Vaccin Immunother 2020; 16:1746-1752. [PMID: 32255723 DOI: 10.1080/21645515.2019.1701912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Influenza virus infections pose a serious public health problem and vaccination is the most effective public health intervention against them. The current manufacture of influenza vaccines in embryonated chicken eggs entails significant limitations. These limitations have been overcome by producing vaccines in cell culture, which allow a faster and more flexible response to potential pandemic threats. Given the impact of influenza B virus on disease burden, the availability of quadrivalent vaccines is useful for increasing the rate of protection from disease. This paper analyzes the limitations of the current production of influenza vaccine in eggs and the advantages of vaccines developed in cell culture, as well as their safety, tolerability, efficacy and effectiveness. Additionally, we reflect on the contribution of new quadrivalent vaccines from cell culture as an alternative in seasonal vaccination campaigns against influenza.
Collapse
Affiliation(s)
- Alberto Pérez-Rubio
- Dirección Médica, Hospital Clínico Universitario de Valladolid , Valladolid, Castilla y León, Spain
| | - Julio Ancochea
- Neumology, Hospital Universitario de la Princesa , Madrid, Spain
| | | |
Collapse
|
34
|
Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020; 10:291-312. [PMID: 32292625 PMCID: PMC7104128 DOI: 10.1016/j.jpha.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products. Chromatography techniques are widely implemented at both academic and industrial levels in the purification of viral particles, whole viruses and virus-like particles to remove viral contaminants from biopharmaceutical products. This paper focuses on polysaccharide adsorbents, particulate resins and membrane adsorbers, used in virus purification/removal chromatography processes. Different chromatographic modes are surveyed, with particular attention to ion exchange and affinity/pseudo-affinity adsorbents among which commercially available agarose-based resins (Sepharose®) and cellulose-based membrane adsorbers (Sartobind®) occupy a dominant position. Mainly built on the development of new ligands coupled to conventional agarose/cellulose matrices, the development perspectives of polysaccharide-based chromatography media in this antiviral area are stressed in the conclusive part.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| |
Collapse
|
35
|
Alfano R, Pennybaker A, Halfmann P, Huang CYH. Formulation and production of a blood-free and chemically defined virus production media for VERO cells. Biotechnol Bioeng 2020; 117:3277-3285. [PMID: 32648943 PMCID: PMC7689730 DOI: 10.1002/bit.27486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 11/09/2022]
Abstract
Vaccines provide effective protection against many infectious diseases as well as therapeutics for select pathologies, such as cancer. Many viral vaccines require amplification of virus in cell cultures during manufacture. Traditionally, cell cultures, such as VERO, have been used for virus production in bovine serum-containing culture media. However, due to concerns of potential adventitious agents present in fetal bovine serum (FBS), regulatory agencies suggest avoiding the use of bovine serum in vaccine production. Current serum-free media suitable for VERO-based virus production contains high concentrations of undefined plant hydrolysates. Although these media have been extensively used, the lack of chemical definition has the potential to adversely affect cell growth kinetics and subsequent virus production. As plant hydrolysates are made from plant raw materials, performance variations could be significant among different lots of production. We developed a chemically defined, serum-free medium, OptiVERO, which was optimized specifically for VERO cells. VERO cell growth kinetics were demonstrated to be equivalent to EMEM-10% FBS in this chemically defined medium while the plant hydrolysate-containing medium demonstrated a slower doubling time in both two-dimensional (2D) and 3D cultures. Virus production comparisons demonstrated that the chemically defined OptiVERO medium performed at least as good as the EMEM-10%FBS and better than the plant hydrolysate-containing media. We report the success in using recombinant proteins to replace undefined plant hydrolysates to formulate a chemically defined medium that can efficiently support VERO cell expansion and virus production.
Collapse
Affiliation(s)
- Randall Alfano
- InVitria, Junction City, Kansas.,Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | | | - Peter Halfmann
- Department of Pathobiological Sciences, Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin
| | - Claire Y-H Huang
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
36
|
A Yellow Fever Virus 17D Infection and Disease Mouse Model Used to Evaluate a Chimeric Binjari-Yellow Fever Virus Vaccine. Vaccines (Basel) 2020; 8:vaccines8030368. [PMID: 32660106 PMCID: PMC7564786 DOI: 10.3390/vaccines8030368] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of an effective, live attenuated yellow fever virus (YFV) vaccine (YFV 17D), this flavivirus still causes up to ≈60,000 deaths annually. A number of new approaches are seeking to address vaccine supply issues and improve safety for the immunocompromised vaccine recipients. Herein we describe an adult female IFNAR-/- mouse model of YFV 17D infection and disease that recapitulates many features of infection and disease in humans. We used this model to evaluate a new YFV vaccine that is based on a recently described chimeric Binjari virus (BinJV) vaccine technology. BinJV is an insect-specific flavivirus and the chimeric YFV vaccine (BinJ/YFV-prME) was generated by replacing the prME genes of BinJV with the prME genes of YFV 17D. Such BinJV chimeras retain their ability to replicate to high titers in C6/36 mosquito cells (allowing vaccine production), but are unable to replicate in vertebrate cells. Vaccination with adjuvanted BinJ/YFV-prME induced neutralizing antibodies and protected mice against infection, weight loss and liver pathology after YFV 17D challenge.
Collapse
|
37
|
Barr IG, Rynehart C, Whitney P, Druce J. SARS-CoV-2 does not replicate in embryonated hen's eggs or in MDCK cell lines. ACTA ACUST UNITED AC 2020; 25. [PMID: 32613937 PMCID: PMC7331139 DOI: 10.2807/1560-7917.es.2020.25.25.2001122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The advent of COVID-19, has posed a risk that human respiratory samples containing human influenza viruses may also contain SARS-CoV-2. This potential risk may lead to SARS-CoV-2 contaminating conventional influenza vaccine production platforms as respiratory samples are used to directly inoculate embryonated hen’s eggs and continuous cell lines that are used to isolate and produce influenza vaccines. We investigated the ability of these substrates to propagate SARS-CoV-2 and found that neither could support SARS-CoV-2 replication.
Collapse
Key Words
- Influenza, SARS-CoV-2, vaccine, respiratory, air-borne infections, viral infections, influenza
- severe acute respiratory syndrome – SARS, influenza virus, biosafety, vaccines and immunisation, laboratory
Collapse
Affiliation(s)
- Ian G Barr
- Faculty of Science and Technology, Federation University, Gippsland, VIC, Australia.,Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Cleve Rynehart
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Paul Whitney
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Julian Druce
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Calabrò GE, Specchia ML, Boccalini S, Panatto D, Rizzo C, Merler S, Ferriero AM, Di Pietro ML, Bonanni P, de Waure C. Strengthening the Evidence-Based Approach to Guiding Effective Influenza Vaccination Policies. Vaccines (Basel) 2020; 8:E342. [PMID: 32605108 PMCID: PMC7565028 DOI: 10.3390/vaccines8030342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022] Open
Abstract
The availability of several effective and safe vaccines enables health systems to counteract annual influenza epidemics. However, the criteria of appropriateness and sustainability require that each citizen should receive the right vaccine. The value of each vaccine can be assessed within well-known frameworks, such as the Health Technology Assessment (HTA), a step that is fundamental to the process of allocating resources to vaccination strategies. The paper describes how HTA has been incorporated as an evidence-based tool to support the definition of Italian vaccination strategies, reports the results of the HTA report on the most recently available influenza vaccine in Italy (cell-based quadrivalent vaccine (QIVc)-Flucelvax® Tetra) and elaborates on current and future recommendations in the field of influenza vaccination. Recommendations issued by the Italian Ministry of Health foster the appropriate use of influenza vaccines from 2018-2019 onwards. Evidence of the value of newly available vaccines will hopefully support future decisions and promote the appropriate use of these vaccines on the basis of the characteristics of the target population. However, the success of influenza vaccination will also depend on citizens' empowerment and engagement in the decision-making process.
Collapse
Affiliation(s)
- Giovanna Elisa Calabrò
- Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.E.C.); (M.L.D.P.)
- Value in Health Technology and Academy for Leadership & Innovation (V.I.H.T.A.L.I.), Spin-off of Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Lucia Specchia
- Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.E.C.); (M.L.D.P.)
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Boccalini
- Department of Health Sciences, University of Florence, 50134 Florence, Italy; (S.B.); (P.B.)
| | - Donatella Panatto
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Caterina Rizzo
- Predictive and Preventive Medicine Research Unit, Multifactorial and Complex Disease Research Area, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | | | - Anna Maria Ferriero
- Directorate-General for Health Planning, Ministry of Health, 00144 Rome, Italy;
| | - Maria Luisa Di Pietro
- Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.E.C.); (M.L.D.P.)
| | - Paolo Bonanni
- Department of Health Sciences, University of Florence, 50134 Florence, Italy; (S.B.); (P.B.)
| | - Chiara de Waure
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy;
| |
Collapse
|
39
|
Gränicher G, Coronel J, Trampler F, Jordan I, Genzel Y, Reichl U. Performance of an acoustic settler versus a hollow fiber-based ATF technology for influenza virus production in perfusion. Appl Microbiol Biotechnol 2020; 104:4877-4888. [PMID: 32291490 PMCID: PMC7228903 DOI: 10.1007/s00253-020-10596-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022]
Abstract
Process intensification and integration is crucial regarding an ever increasing pressure on manufacturing costs and capacities in biologics manufacturing. For virus production in perfusion mode, membrane-based alternating tangential flow filtration (ATF) and acoustic settler are the commonly described cell retention technologies. While acoustic settlers allow for continuous influenza virus harvesting, the use of commercially available membranes for ATF systems typically results in the accumulation of virus particles in the bioreactor vessel. Accordingly, with one single harvest at the end of a cultivation, this increases the risk of lowering the product quality. To assess which cell retention device would be most suitable for influenza A virus production, we compared various key performance figures using AGE1.CR.pIX cells at concentrations between 25 and 50 × 106 cells/mL at similar infection conditions using either an ATF system or an acoustic settler. Production yields, process-related impurities, and aggregation of viruses and other large molecules were evaluated. Taking into account the total number of virions from both the bioreactor and the harvest vessel, a 1.5-3.0-fold higher volumetric virus yield was obtained for the acoustic settler. In addition, fewer large-sized aggregates (virus particles and other molecules) were observed in the harvest taken directly from the bioreactor. In contrast, similar levels of process-related impurities (host cell dsDNA, total protein) were obtained in the harvest for both retention systems. Overall, a clear advantage was observed for continuous virus harvesting after the acoustic settler operation mode was optimized. This development may also allow direct integration of subsequent downstream processing steps. KEY POINTS: • High suspension cell density, immortalized avian cell line, influenza vaccine.
Collapse
Affiliation(s)
- Gwendal Gränicher
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| | - Juliana Coronel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Felix Trampler
- SonoSep Technologies, Waldgasse 7, 2371, Hinterbrühl, Austria
| | - Ingo Jordan
- ProBioGen AG, Goethestr 54, 13086, Berlin, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
40
|
Tzeng TT, Chen PL, Weng TC, Tsai SY, Lai CC, Chou HI, Chen PW, Lu CC, Liu MT, Sung WC, Lee MS, Hu AYC. Development of high-growth influenza H7N9 prepandemic candidate vaccine viruses in suspension MDCK cells. J Biomed Sci 2020; 27:47. [PMID: 32241276 PMCID: PMC7115086 DOI: 10.1186/s12929-020-00645-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/27/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Influenza vaccine manufacturers traditionally use egg-derived candidate vaccine viruses (CVVs) to produce high-yield influenza viruses for seasonal or pandemic vaccines; however, these egg-derived CVVs need an adaptation process for the virus to grow in mammalian cells. The low yields of cell-based manufacturing systems using egg-derived CVVs remain an unsolved issue. This study aimed to develop high-growth cell-derived CVVs for MDCK cell-based vaccine manufacturing platforms. METHODS Four H7N9 CVVs were generated in characterized Vero and adherent MDCK (aMDCK) cells. Furthermore, reassortant viruses were amplified in adherent MDCK (aMDCK) cells with certification, and their growth characteristics were detected in aMDCK cells and new suspension MDCK (sMDCK) cells. Finally, the plaque-forming ability, biosafety, and immunogenicity of H7N9 reassortant viruses were evaluated. RESULTS The HA titers of these CVVs produced in proprietary suspension MDCK (sMDCK) cells and chicken embryos were 2- to 8-fold higher than those in aMDCK cells. All H7N9 CVVs showed attenuated characteristics by trypsin-dependent plaque assay and chicken embryo lethality test. The alum-adjuvanted NHRI-RG5 (derived from the fifth wave H7N9 virus A/Guangdong/SP440/2017) vaccine had the highest immunogenicity and cross-reactivity among the four H7N9 CVVs. Finally, we found that AddaVax adjuvant improved the cross-reactivity of low pathogenic H7N9 virus against highly pathogenic H7N9 viruses. CONCLUSIONS Our study indicates that cell-derived H7N9 CVVs possessed high growth rate in new sMDCK cells and low pathogenicity in chicken embryo, and that CVVs generated by this platform are also suitable for both cell- and egg-based prepandemic vaccine production.
Collapse
Affiliation(s)
- Tsai-Teng Tzeng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Po-Ling Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.,Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsai-Chuan Weng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Shin-Yi Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.,College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-I Chou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Pin-Wen Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Chia-Chun Lu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Ming-Tsan Liu
- Centers for Disease Control, Ministry of Health and Welfare, Taipei, 689, Taiwan
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
| |
Collapse
|
41
|
Qiao Z, Yang D, Liu L, Liu Z, Wang J, He D, Wu H, Wang J, Ma Z. Genome-wide identification and characterization of long non-coding RNAs in MDCK cell lines with high and low tumorigenicities. Genomics 2020; 112:1077-1086. [DOI: 10.1016/j.ygeno.2019.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/03/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
42
|
Rajaram S, Boikos C, Gelone DK, Gandhi A. Influenza vaccines: the potential benefits of cell-culture isolation and manufacturing. Ther Adv Vaccines Immunother 2020; 8:2515135520908121. [PMID: 32128506 PMCID: PMC7036483 DOI: 10.1177/2515135520908121] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/14/2020] [Indexed: 12/03/2022] Open
Abstract
Influenza continues to cause severe illness in millions and deaths in hundreds of
thousands annually. Vaccines are used to prevent influenza outbreaks, however,
the influenza virus mutates and annual vaccination is required for optimal
protection. Vaccine effectiveness is also affected by other potential factors
such as the human immune system, a mismatch with the chosen candidate virus, and
egg adaptation associated with egg-based vaccine production. This article
reviews the influenza vaccine development process and describes the implications
of the changes to the cell-culture process and vaccine strain recommendations by
the World Health Organization since the 2017 season. The traditional
manufacturing process for influenza vaccines relies on fertilized chicken eggs
that are used for vaccine production. Vaccines must be produced in large volumes
and the complete process requires approximately 6 months for the egg-based
process. In addition, egg adaptation of seed viruses occurs when viruses adapt
to avian receptors found within eggs to allow for growth in eggs. These changes
to key viral antigens may result in antigenic mismatch and thereby reduce
vaccine effectiveness. By contrast, cell-derived seed viruses do not require
fertilized eggs and eliminate the potential for egg-adapted changes. As a
result, cell-culture technology improves the match between the vaccine virus
strain and the vaccine selected strain, and has been associated with increased
vaccine effectiveness during a predominantly H3N2 season. During the 2017–2018
influenza season, a small number of studies conducted in the United States
compared the effectiveness of egg-based and cell-culture vaccines and are
described here. These observational and retrospective studies demonstrate that
inactivated cell-culture vaccines were more effective than egg-based vaccines.
Adoption of cell-culture technology for influenza vaccine manufacturing has been
reported to improve manufacturing efficiency and the additional benefit of
improving vaccine effectiveness is a key factor for future policy making
considerations.
Collapse
Affiliation(s)
| | | | | | - Ashesh Gandhi
- Medical Affairs, Americas, Seqirus Inc., Cambridge MA, USA
| |
Collapse
|
43
|
Furuyama W, Reynolds P, Haddock E, Meade-White K, Quynh Le M, Kawaoka Y, Feldmann H, Marzi A. A single dose of a vesicular stomatitis virus-based influenza vaccine confers rapid protection against H5 viruses from different clades. NPJ Vaccines 2020; 5:4. [PMID: 31934358 PMCID: PMC6954110 DOI: 10.1038/s41541-019-0155-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/20/2019] [Indexed: 12/02/2022] Open
Abstract
The avian influenza virus outbreak in 1997 highlighted the potential of the highly pathogenic H5N1 virus to cause severe disease in humans. Therefore, effective vaccines against H5N1 viruses are needed to counter the potential threat of a global pandemic. We have previously developed a fast-acting and efficacious vaccine against Ebola virus (EBOV) using the vesicular stomatitis virus (VSV) platform. In this study, we generated recombinant VSV-based H5N1 influenza virus vectors to demonstrate the feasibility of this platform for a fast-acting pan-H5 influenza virus vaccine. We chose multiple approaches regarding antigen design and genome location to define a more optimized vaccine approach. After the VSV-based H5N1 influenza virus constructs were recovered and characterized in vitro, mice were vaccinated by a single dose or prime/boost regimen followed by challenge with a lethal dose of the homologous H5 clade 1 virus. We found that a single dose of VSV vectors expressing full-length hemagglutinin (HAfl) were sufficient to provide 100% protection. The vaccine vectors were fast-acting as demonstrated by uniform protection when administered 3 days prior to lethal challenge. Moreover, single vaccination induced cross-protective H5-specific antibodies and protected mice against lethal challenge with various H5 clade 2 viruses, highlighting the potential of the VSV-based HAfl as a pan-H5 influenza virus emergency vaccine.
Collapse
Affiliation(s)
- Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Pierce Reynolds
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
- Present Address: Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Mai Quynh Le
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, Univeristy of Tokyo, Tokyo, Japan
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| |
Collapse
|
44
|
Liou JF, Wu WR, Chen LR, Shiue YL. Establishment of an induced pluripotent cell line from Taiwan black silkie chick embryonic fibroblasts for replication-incompetent virus production. Sci Rep 2019; 9:15745. [PMID: 31673064 PMCID: PMC6823510 DOI: 10.1038/s41598-019-52282-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to establish a versatile cell line for replication-incompetent virus production and inactivation with formaldehyde to generate a model of cell-based vaccine manufacturing process. To achieve this goal, we took advantage of the easily accessed chick embryonic fibroblasts. Nine-day old chick embryonic fibroblasts were obtained and subjected to be transduced with a set of lentivirus to develop a chick induced pluripotent stem (ciPS) cell line. Morphological features, positive periodic acid-Schiff staining as well as strong immunocytofluorescence of alkaline phosphatase, intestinal (ALPI) and POU class 5 homeobox 1 (POU5F1) proteins suggested that these chick embryonic fibroblasts have been transformed into ciPS cells. Further differentiation and immunocytofluorescence assays confirmed that this ciPS cell line possesses capacities and potentials to form embryoid bodies, differentiate into all three embryonic layers: ectoderm, mesoderm and endoderm with evidence of strongly positive and specific molecular markers. Immunoblot analysis next demonstrated that through recombinant DNA technology and the 2nd generation lentiviral transfer system, the goose hemagglutinin gene (H5) gene was packaged into the replication-incompetent virus and highly expressed in a bladder cancer-derived cell line, T24, after transduction. The titer of ciPS-generated replication-incompetent virus is comparable to that from the Phoenix-AMPHO cell line, which is a commercial and high productive retrovirus producer. Our study successfully established a ciPS cell line which is able to produce replication-incompetent virus, providing a new strategy for cell-based vaccine production after virus inactivation.
Collapse
Affiliation(s)
- Jenn-Fa Liou
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Tainan, Taiwan
| | - Wen-Ren Wu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Lih-Ren Chen
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan. .,Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
45
|
Tzeng TT, Lai CC, Weng TC, Cyue MH, Tsai SY, Tseng YF, Sung WC, Lee MS, Hu AYC. The stability and immunogenicity of inactivated MDCK cell-derived influenza H7N9 viruses. Vaccine 2019; 37:7117-7122. [PMID: 31383484 DOI: 10.1016/j.vaccine.2019.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 10/26/2022]
Abstract
In recent years, cell-based influenza vaccines have gained a great interest over the egg-based vaccines. Several inactivated H7N9 vaccines have been evaluated in clinical trials, including whole-virion vaccines, split vaccines and subunit vaccines. Recently, we developed a new suspension MDCK (sMDCK) cell line for influenza viruses production. However, the properties of purified antigen from sMDCK cells remain unclear. In this study, the stability of influenza H7N9 vaccine bulk derived from sMDCK cells was investigated, and the data were compared with the vaccine antigen derived from our characterized adhesion MDCK (aMDCK) cells in serum-free medium. The influenza H7N9 bulks derived from sMDCK and aMDCK cells were stored at 2-8 °C for different periods of time, and a number of parameters selected to monitor the H7N9 vaccine antigen stability were evaluated at each interval (1, 3 and 12 months). The monitored parameters included virus morphology, hemagglutinin (HA) activity, HA concentration, antigenicity, and immunogenicity. The sMDCK-derived H7N9 bulk showed similar morphology to that of the aMDCK-derived H7N9 bulk, and there were no obvious changes after the extended storage periods. Furthermore, the HA titer, HA concentration, and antigenicity of sMDCK-derived H7N9 bulk were stable after 28 months of storage. Finally, the results of hemagglutination inhibition and neutralization tests showed that sMDCK- and aMDCK-derived H7N9 vaccines had comparable immunogenicity. These results indicated that sMDCK-derived H7N9 bulk has good stability compared to that of aMDCK-derived H7N9 bulk. Thus, the newly developed suspension MDCK cell line shows a great alternative for manufacturing cell-based influenza vaccines.
Collapse
Affiliation(s)
- Tsai-Teng Tzeng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Taiwan
| | - Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Taiwan; College of Life Science, National Tsing Hua University, Taiwan
| | - Tsai-Chuan Weng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Taiwan
| | - Ming-Hong Cyue
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Taiwan
| | - Shin-Yi Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Taiwan
| | - Yu-Fen Tseng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Taiwan
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Taiwan.
| |
Collapse
|
46
|
Trombetta CM, Marchi S, Manini I, Lazzeri G, Montomoli E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev Vaccines 2019; 18:737-750. [DOI: 10.1080/14760584.2019.1639503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giacomo Lazzeri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| |
Collapse
|
47
|
Perez-Rubio A, Eiros JM. Quadrivalent cell culture influenza virus vaccine. Towards improving the efficacy of the influenza vaccine. Med Clin (Barc) 2019; 153:67-69. [PMID: 31027849 DOI: 10.1016/j.medcli.2019.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
|
48
|
Chen PL, Hu AYC, Lin CY, Weng TC, Lai CC, Tseng YF, Cheng MC, Chia MY, Lin WC, Yeh CT, Su IJ, Lee MS. Development of American-Lineage Influenza H5N2 Reassortant Vaccine Viruses for Pandemic Preparedness. Viruses 2019; 11:v11060543. [PMID: 31212631 PMCID: PMC6631248 DOI: 10.3390/v11060543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 11/23/2022] Open
Abstract
Novel low-pathogenic avian influenza (LPAI) H5N2 viruses hit poultry farms in Taiwan in 2003, and evolved into highly pathogenic avian influenza (HPAI) viruses in 2010. These viruses are reassortant viruses containing HA and NA genes from American-lineage H5N2 and six internal genes from local H6N1 viruses. According to a serological survey, the Taiwan H5N2 viruses can cause asymptomatic infections in poultry workers. Therefore, a development of influenza H5N2 vaccines is desirable for pandemic preparation. In this study, we employed reverse genetics to generate a vaccine virus having HA and NA genes from A/Chicken/CY/A2628/2012 (E7, LPAI) and six internal genes from a Vero cell-adapted high-growth H5N1 vaccine virus (Vero-15). The reassortant H5N2 vaccine virus, E7-V15, presented high-growth efficiency in Vero cells (512 HAU, 107.6 TCID50/mL), and passed all tests for qualification of candidate vaccine viruses. In ferret immunization, two doses of inactivated whole virus antigens (3 μg of HA protein) adjuvanted with alum could induce robust antibody response (HI titre 113.14). In conclusion, we have established reverse genetics to generate a qualified reassortant H5N2 vaccine virus for further development.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Chlorocebus aethiops
- Ferrets
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H5N2 Subtype/genetics
- Influenza A Virus, H5N2 Subtype/growth & development
- Influenza A Virus, H5N2 Subtype/immunology
- Influenza A Virus, H5N2 Subtype/isolation & purification
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/isolation & purification
- Influenza, Human/prevention & control
- Neuraminidase/genetics
- Neuraminidase/immunology
- Reassortant Viruses/genetics
- Reassortant Viruses/growth & development
- Reassortant Viruses/immunology
- Reassortant Viruses/isolation & purification
- Reverse Genetics
- Taiwan
- Treatment Outcome
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
- Vero Cells
- Viral Proteins/genetics
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Po-Ling Chen
- National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan.
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Alan Yung-Chih Hu
- National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan.
| | - Chun-Yang Lin
- National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan.
| | - Tsai-Chuan Weng
- National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan.
| | - Chia-Chun Lai
- National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan.
- College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yu-Fen Tseng
- National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan.
| | - Ming-Chu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
- Animal Health Research Institutes, Danshui, New Taipei City 25158, Taiwan.
| | - Min-Yuan Chia
- National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan.
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Wen-Chin Lin
- Institute of Preventive Medicine, National Defence Medical Centre, Taipei 23742, Taiwan.
| | - Chia-Tsui Yeh
- Institute of Preventive Medicine, National Defence Medical Centre, Taipei 23742, Taiwan.
| | - Ih-Jen Su
- National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan.
| | - Min-Shi Lee
- National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan.
| |
Collapse
|
49
|
Blanco-Lobo P, Nogales A, Rodríguez L, Martínez-Sobrido L. Novel Approaches for The Development of Live Attenuated Influenza Vaccines. Viruses 2019; 11:E190. [PMID: 30813325 PMCID: PMC6409754 DOI: 10.3390/v11020190] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 01/04/2023] Open
Abstract
Influenza virus still represents a considerable threat to global public health, despite the advances in the development and wide use of influenza vaccines. Vaccination with traditional inactivate influenza vaccines (IIV) or live-attenuated influenza vaccines (LAIV) remains the main strategy in the control of annual seasonal epidemics, but it does not offer protection against new influenza viruses with pandemic potential, those that have shifted. Moreover, the continual antigenic drift of seasonal circulating influenza viruses, causing an antigenic mismatch that requires yearly reformulation of seasonal influenza vaccines, seriously compromises vaccine efficacy. Therefore, the quick optimization of vaccine production for seasonal influenza and the development of new vaccine approaches for pandemic viruses is still a challenge for the prevention of influenza infections. Moreover, recent reports have questioned the effectiveness of the current LAIV because of limited protection, mainly against the influenza A virus (IAV) component of the vaccine. Although the reasons for the poor protection efficacy of the LAIV have not yet been elucidated, researchers are encouraged to develop new vaccination approaches that overcome the limitations that are associated with the current LAIV. The discovery and implementation of plasmid-based reverse genetics has been a key advance in the rapid generation of recombinant attenuated influenza viruses that can be used for the development of new and most effective LAIV. In this review, we provide an update regarding the progress that has been made during the last five years in the development of new LAIV and the innovative ways that are being explored as alternatives to the currently licensed LAIV. The safety, immunogenicity, and protection efficacy profile of these new LAIVs reveal their possible implementation in combating influenza infections. However, efforts by vaccine companies and government agencies will be needed for controlled testing and approving, respectively, these new vaccine methodologies for the control of influenza infections.
Collapse
Affiliation(s)
- Pilar Blanco-Lobo
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, NY 14642, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, NY 14642, USA.
| | - Laura Rodríguez
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, NY 14642, USA.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, NY 14642, USA.
| |
Collapse
|
50
|
Yamayoshi S, Kawaoka Y. Current and future influenza vaccines. Nat Med 2019; 25:212-220. [PMID: 30692696 DOI: 10.1038/s41591-018-0340-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/19/2018] [Indexed: 11/09/2022]
Abstract
Although antiviral drugs and vaccines have reduced the economic and healthcare burdens of influenza, influenza epidemics continue to take a toll. Over the past decade, research on influenza viruses has revealed a potential path to improvement. The clues have come from accumulated discoveries from basic and clinical studies. Now, virus surveillance allows researchers to monitor influenza virus epidemic trends and to accumulate virus sequences in public databases, which leads to better selection of candidate viruses for vaccines and early detection of drug-resistant viruses. Here we provide an overview of current vaccine options and describe efforts directed toward the development of next-generation vaccines. Finally, we propose a plan for the development of an optimal influenza vaccine.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan. .,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan. .,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI, USA.
| |
Collapse
|