1
|
Usman S, Aldehlawi H, Nguyen TKN, Teh MT, Waseem A. Impact of N-Terminal Tags on De Novo Vimentin Intermediate Filament Assembly. Int J Mol Sci 2022; 23:ijms23116349. [PMID: 35683030 PMCID: PMC9181571 DOI: 10.3390/ijms23116349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vimentin, a type III intermediate filament protein, is found in most cells along with microfilaments and microtubules. It has been shown that the head domain folds back to associate with the rod domain and this association is essential for filament assembly. The N-terminally tagged vimentin has been widely used to label the cytoskeleton in live cell imaging. Although there is previous evidence that EGFP tagged vimentin fails to form filaments but is able to integrate into a pre-existing network, no study has systematically investigated or established a molecular basis for this observation. To determine whether a tag would affect de novo filament assembly, we used vimentin fused at the N-terminus with two different sized tags, AcGFP (239 residues, 27 kDa) and 3 × FLAG (22 residues; 2.4 kDa) to assemble into filaments in two vimentin-deficient epithelial cells, MCF-7 and A431. We showed that regardless of tag size, N-terminally tagged vimentin aggregated into globules with a significant proportion co-aligning with β-catenin at cell–cell junctions. However, the tagged vimentin aggregates could form filaments upon adding untagged vimentin at a ratio of 1:1 or when introduced into cells containing pre-existing filaments. The resultant filament network containing a mixture of tagged and untagged vimentin was less stable compared to that formed by only untagged vimentin. The data suggest that placing a tag at the N-terminus may create steric hinderance in case of a large tag (AcGFP) or electrostatic repulsion in case of highly charged tag (3 × FLAG) perhaps inducing a conformational change, which deleteriously affects the association between head and rod domains. Taken together our results shows that a free N-terminus is essential for filament assembly as N-terminally tagged vimentin is not only incapable of forming filaments, but it also destabilises when integrated into a pre-existing network.
Collapse
Affiliation(s)
- Saima Usman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
| | - Hebah Aldehlawi
- Department of Oral Diagnostic Sciences, Division of Oral Pathology and Medicine, Faculty of Dentistry, King Abdul Aziz University, Jeddah 21589, Saudi Arabia;
| | - Thuan Khanh Ngoc Nguyen
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
- Centre for Immunobiology and Regenerative Medicine, Blizard Institute, 4 Newark Street, London E1 2AT, UK
- Correspondence: ; Tel.: +44-207-882-2387; Fax: +44-207-882-7137
| |
Collapse
|
2
|
Yamamoto A, Matsunaga KI, Anai T, Kawano H, Ueda T, Matsumoto T, Ando S. Characterization of an Intermediate Filament Protein from the Platyhelminth, Dugesia japonica. Protein Pept Lett 2020; 27:432-446. [PMID: 31652112 DOI: 10.2174/0929866526666191025102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Intermediate Filaments (IFs) are major constituents of the cytoskeletal systems in animal cells. OBJECTIVE To gain insights into the structure-function relationship of invertebrate cytoplasmic IF proteins, we characterized an IF protein from the platyhelminth, Dugesia japonica, termed Dif-1. METHODS cDNA cloning, in situ hybridization, immunohistochemical analysis, and IF assembly experiments in vitro using recombinant Dif-1, were performed for protein characterization. RESULTS The structure deduced from the cDNA sequence showed that Djf-1 comprises 568 amino acids and has a tripartite domain structure (N-terminal head, central rod, and C-terminal tail) that is characteristic of IF proteins. Similar to nuclear IF lamins, Djf-1 contains an extra 42 residues in the coil 1b subdomain of the rod domain that is absent from vertebrate cytoplasmic IF proteins and a nuclear lamin-homology segment of approximately 105 residues in the tail domain; however, it contains no nuclear localization signal. In situ hybridization analysis showed that Djf-1 mRNA is specifically expressed in cells located within the marginal region encircling the worm body. Immunohistochemical analysis showed that Djf-1 protein forms cytoplasmic IFs located close to the microvilli of the cells. In vitro IF assembly experiments using recombinant proteins showed that Djf-1 alone polymerizes into IFs. Deletion of the extra 42 residues in the coil 1b subdomain resulted in the failure of IF formation. CONCLUSION Together with data from other histological studies, our results suggest that Djf- 1 is expressed specifically in anchor cells within the glandular adhesive organs of the worm and that Djf-1 IFs may play a role in protecting the cells from mechanical stress.
Collapse
Affiliation(s)
- Akiko Yamamoto
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga Prefecture 849-8501, Japan
| | - Ken-Ichiro Matsunaga
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga Prefecture 849-8501, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University, 1 Honjo-cho, Saga, Saga Prefecture 840-8502, Japan
| | - Hitoshi Kawano
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga Prefecture 849-8501, Japan
| | - Toshihisa Ueda
- Faculty of Agriculture, Saga University, 1 Honjo-cho, Saga, Saga Prefecture 840-8502, Japan
| | - Toshihiko Matsumoto
- Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Kumamoto Prefecture 860-0082, Japan
| | - Shoji Ando
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga Prefecture 849-8501, Japan.,Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Kumamoto Prefecture 860-0082, Japan
| |
Collapse
|
3
|
Brodehl A, Hedde PN, Dieding M, Fatima A, Walhorn V, Gayda S, Šarić T, Klauke B, Gummert J, Anselmetti D, Heilemann M, Nienhaus GU, Milting H. Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants. J Biol Chem 2012; 287:16047-57. [PMID: 22403400 PMCID: PMC3346104 DOI: 10.1074/jbc.m111.313841] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/27/2012] [Indexed: 11/06/2022] Open
Abstract
Mutations in the DES gene coding for the intermediate filament protein desmin may cause skeletal and cardiac myopathies, which are frequently characterized by cytoplasmic aggregates of desmin and associated proteins at the cellular level. By atomic force microscopy, we demonstrated filament formation defects of desmin mutants, associated with arrhythmogenic right ventricular cardiomyopathy. To understand the pathogenesis of this disease, it is essential to analyze desmin filament structures under conditions in which both healthy and mutant desmin are expressed at equimolar levels mimicking an in vivo situation. Here, we applied dual color photoactivation localization microscopy using photoactivatable fluorescent proteins genetically fused to desmin and characterized the heterozygous status in living cells lacking endogenous desmin. In addition, we applied fluorescence resonance energy transfer to unravel short distance structural patterns of desmin mutants in filaments. For the first time, we present consistent high resolution data on the structural effects of five heterozygous desmin mutations on filament formation in vitro and in living cells. Our results may contribute to the molecular understanding of the pathological filament formation defects of heterozygous DES mutations in cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- From the E. & H. Klessmann Institute for Cardiovascular Research & Development and
| | - Per Niklas Hedde
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Mareike Dieding
- the Experimental Biophysics and Applied Nanoscience, Faculty of Physics and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Bielefeld University, 33615 Bielefeld, Germany
| | - Azra Fatima
- the Institute for Neurophysiology, Medical Center, University of Cologne, 50931 Cologne, Germany
| | - Volker Walhorn
- the Experimental Biophysics and Applied Nanoscience, Faculty of Physics and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Bielefeld University, 33615 Bielefeld, Germany
| | - Susan Gayda
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Tomo Šarić
- the Institute for Neurophysiology, Medical Center, University of Cologne, 50931 Cologne, Germany
| | - Bärbel Klauke
- From the E. & H. Klessmann Institute for Cardiovascular Research & Development and
| | - Jan Gummert
- the Clinic of Cardio-Thoracic Surgery, Heart and Diabetes Center NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Dario Anselmetti
- the Experimental Biophysics and Applied Nanoscience, Faculty of Physics and Bielefeld Institute for Biophysics and Nanoscience (BINAS), Bielefeld University, 33615 Bielefeld, Germany
| | - Mike Heilemann
- the Department of Biotechnology & Biophysics, Julius-Maximilians-University Würzburg, 97074 Würzburg, Germany, and
| | - Gerd Ulrich Nienhaus
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
- the Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Hendrik Milting
- From the E. & H. Klessmann Institute for Cardiovascular Research & Development and
| |
Collapse
|
4
|
Cabeen MT, Herrmann H, Jacobs-Wagner C. The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function. Cytoskeleton (Hoboken) 2011; 68:205-19. [PMID: 21360832 PMCID: PMC3087291 DOI: 10.1002/cm.20505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 01/08/2023]
Abstract
Crescentin is a bacterial filament-forming protein that exhibits domain organization features found in metazoan intermediate filament (IF) proteins. Structure-function studies of eukaryotic IFs have been hindered by a lack of simple genetic systems and easily quantifiable phenotypes. Here we exploit the characteristic localization of the crescentin structure along the inner curvature of Caulobacter crescentus cells and the loss of cell curvature associated with impaired crescentin function to analyze the importance of the domain organization of crescentin. By combining biochemistry and ultrastructural analysis in vitro with cellular localization and functional studies, we show that crescentin requires its distinctive domain organization, and furthermore that different structural elements have distinct structural and functional contributions. The head domain can be functionally subdivided into two subdomains; the first (amino-terminal) is required for function but not assembly, while the second is necessary for structure assembly. The rod domain is similarly required for structure assembly, and the linker L1 appears important to prevent runaway assembly into nonfunctional aggregates. The data also suggest that the stutter and the tail domain have critical functional roles in stabilizing crescentin structures against disassembly by monovalent cations in the cytoplasm. This study suggests that the IF-like behavior of crescentin is a consequence of its domain organization, implying that the IF protein layout is an adaptable cytoskeletal motif, much like the actin and tubulin folds, that is broadly exploited for various functions throughout life from bacteria to humans.
Collapse
Affiliation(s)
- Matthew T Cabeen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | | | | |
Collapse
|
5
|
Aziz A, Hess JF, Budamagunta MS, Voss JC, FitzGerald PG. Site-directed spin labeling and electron paramagnetic resonance determination of vimentin head domain structure. J Biol Chem 2010; 285:15278-15285. [PMID: 20231271 DOI: 10.1074/jbc.m109.075598] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intermediate filament (IF) proteins have been predicted to have a conserved tripartite domain structure consisting of a largely alpha-helical central rod domain, flanked by head and tail domains. However, crystal structures have not been reported for any IF or IF protein. Although progress has been made in determining central rod domain structure, no structural data have been reported for either the head or tail domains. We used site-directed spin labeling and electron paramagnetic resonance to analyze 45 different spin labeled mutants spanning the head domain of vimentin. The data, combined with results from a previous study, provide strong evidence that the polypeptide backbones of the head domains form a symmetric dimer of closely apposed backbones that fold back onto the rod domain, imparting an asymmetry to the dimer. By following the behavior of spin labels during the process of in vitro assembly, we show that head domain structure is dynamic, changing as a result of filament assembly. Finally, because the vimentin head domain is the major site of the phosphorylation that induces disassembly at mitosis, we studied the effects of phosphorylation on head domain structure and demonstrate that phosphorylation drives specific head domain regions apart. These data provide the first evidence-based model of IF head domain structure.
Collapse
Affiliation(s)
- Atya Aziz
- Departments of Cell Biology and Human Anatomy, University of California, Davis, California 95616
| | - John F Hess
- Departments of Cell Biology and Human Anatomy, University of California, Davis, California 95616
| | - Madhu S Budamagunta
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95616
| | - John C Voss
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95616
| | - Paul G FitzGerald
- Departments of Cell Biology and Human Anatomy, University of California, Davis, California 95616.
| |
Collapse
|
6
|
van Tintelen JP, Van Gelder IC, Asimaki A, Suurmeijer AJ, Wiesfeld AC, Jongbloed JD, van den Wijngaard A, Kuks JB, van Spaendonck-Zwarts KY, Notermans N, Boven L, van den Heuvel F, Veenstra-Knol HE, Saffitz JE, Hofstra RM, van den Berg MP. Severe cardiac phenotype with right ventricular predominance in a large cohort of patients with a single missense mutation in the DES gene. Heart Rhythm 2009; 6:1574-83. [DOI: 10.1016/j.hrthm.2009.07.041] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 07/23/2009] [Indexed: 11/29/2022]
|
7
|
Gohara R, Nishikawa S, Takasaki Y, Ando S. Role of the aromatic residues in the near-amino terminal motif of vimentin in intermediate filament assembly in vitro. J Biochem 2008; 144:675-84. [PMID: 18806271 DOI: 10.1093/jb/mvn116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type III and IV intermediate filament (IF) proteins share a conserved sequence motif of -Tyr-Arg-Arg-X-Phe- at the near-amino termini. To characterize significance of the aromatic residues in the motif, we prepared vimentin mutants in which Tyr-10 and Phe-14 are substituted with Asn and Ser (Vim[Y10N], Vim[F14S] and Vim[Y10N, F14S]), and examined assembly properties in vitro by electron microscopy and viscosity measurements. At 2 s after initiation of assembly reaction at pH 7.2 and 150 mM NaCl, all the vimentin mutants formed so-called unit-length filaments (ULFs) that were slightly larger than ULFs of wild-type vimentin. In following filament elongation, Vim[Y10N, F14S] and Vim[Y10N] performed longitudinal annealing of ULFs very rapidly and formed IFs within only 2.5 and 5 min, respectively, while Vim[F14S] and wild-type vimentin gave IFs by 40-60 min. The IFs of Vim[Y10N, F14S] and Vim[Y10N], however, tended to intertwine each other and formed bundles in parts of the specimens. The intertwinements decreased as the salt concentration decreased, and optimal salt concentration for the two mutants to form normal IFs was 50 mM. These results suggest that the aromatic residues, especially Tyr-10, in the motif have a role in controlling intermolecular interactions involved in IF assembly in vitro and suppress undesirable filament intertwinements at physiological ionic strength.
Collapse
Affiliation(s)
- Rumi Gohara
- Division of Biopolymer Research, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | | | | | | |
Collapse
|
8
|
Khanamiryan L, Li Z, Paulin D, Xue Z. Self-Assembly Incompetence of Synemin Is Related to the Property of Its Head and Rod Domains. Biochemistry 2008; 47:9531-9. [DOI: 10.1021/bi800912w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luiza Khanamiryan
- UPMC Univ Paris 6, UMR 7079, Paris, France, and CNRS UMR 7079, Paris, France
| | - Zhenlin Li
- UPMC Univ Paris 6, UMR 7079, Paris, France, and CNRS UMR 7079, Paris, France
| | - Denise Paulin
- UPMC Univ Paris 6, UMR 7079, Paris, France, and CNRS UMR 7079, Paris, France
| | - Zhigang Xue
- UPMC Univ Paris 6, UMR 7079, Paris, France, and CNRS UMR 7079, Paris, France
| |
Collapse
|
9
|
McLean J, Xiao S, Miyazaki K, Robertson J. A novel peripherin isoform generated by alternative translation is required for normal filament network formation. J Neurochem 2008; 104:1663-73. [PMID: 18205747 DOI: 10.1111/j.1471-4159.2007.05198.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Peripherin is a type III neuronal intermediate filament protein detected within the intraneuronal inclusions characteristic of amyotrophic lateral sclerosis. The constitutively expressed peripherin isoform is encoded by all nine exons of the human and mouse peripherin genes to generate a protein species of approximately 58 kDa on sodium dodecyl sulfate-polyacrylamide gels. Expression of this isoform, termed Per-58, generates a filament network in transfected SW13 vim cells. On immunoblots of cell lysates derived from these transfected cells, we have consistently observed a second peripherin species of approximately 45 kDa. In this study, we show that this species is a novel peripherin isoform generated through the use of an in-frame downstream initiation codon. This isoform, that we have designated Per-45, is co-expressed together with Per-58 and, thus, constitutive in both human and mouse. Using mutational analysis, we show that Per-45 is required for normal network formation, with the absence of Per-45 leading to irregular filamentous structures. We further show that peripherin expression in the normal nervous system is characterized by tissue-specific Per-58 : Per-45 isoform ratios. Taken together, these results identify novel processing requirements for peripherin expression and indicate a hitherto unrecognized role for neuronal intermediate filament network formation through intra-isoform associations.
Collapse
Affiliation(s)
- Jesse McLean
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Höllrigl A, Hofner M, Stary M, Weitzer G. Differentiation of cardiomyocytes requires functional serine residues within the amino-terminal domain of desmin. Differentiation 2007; 75:616-26. [PMID: 17381546 PMCID: PMC7615843 DOI: 10.1111/j.1432-0436.2007.00163.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Desmin contributes to the stability of the myocardium and its amino-terminal domain influences intermediate filament formation and interacts with a variety of proteins and DNAs. Specific serine residues located in this domain are reversibly phosphorylated in a cell cycle and developmental stage-dependent manner as has been demonstrated also for other cytoplasmic type III intermediate filament proteins. Although absence of desmin apparently does not affect cardiomyogenesis, homozygous deletion of the amino-terminal domain of desmin severely inhibited in vitro cardiomyogenesis. To demonstrate the significance of phosphorylation of this domain in cardiomyogenic commitment and differentiation, we inhibited phosphorylation of serine residues 6, 7, and 8 by mutation to alanine, and investigated early cardiomyogenesis in heterozygous embryoid bodies. As control, serine residues 31 and 32, which are not phosphorylated by kinases mutating serine residues 6, 7, and 8, were mutated to alanine in a second set. Desmin(S6,7,8A) interfered with cardiomyogenesis and myofibrillogenesis in a dominant negative fashion, whereas desmin(S31,32A) produced only a mild phenotype. Desmin(S6,7,8A) led to the down-regulation of the transcription factor genes brachyury, goosecoid, nkx2.5, and mef2C and increased apoptosis of presumptive mesoderm and differentiating cardiomyocytes. Surviving cardiomyocytes which were few in number had no myofibrils. Demonstration that some but not any mutant desmin interfered with the very beginning of cardiomyogenesis suggests an important function of temporarily phosphorylated serine residues 6, 7, and 8 in the amino-terminal domain of desmin in cardiomyogenic commitment and differentiation.
Collapse
Affiliation(s)
- Alexandra Höllrigl
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9, A1030 Vienna, Austria
| | | | | | | |
Collapse
|
11
|
Bergman JEH, Veenstra-Knol HE, van Essen AJ, van Ravenswaaij CMA, den Dunnen WFA, van den Wijngaard A, van Tintelen JP. Two related Dutch families with a clinically variable presentation of cardioskeletal myopathy caused by a novel S13F mutation in the desmin gene. Eur J Med Genet 2007; 50:355-66. [PMID: 17720647 DOI: 10.1016/j.ejmg.2007.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 06/08/2007] [Indexed: 11/28/2022]
Abstract
Desmin-related myopathy is characterised by skeletal muscle weakness often combined with cardiac involvement. Mutations in the desmin gene have been described as a cause of desmin-related myopathy (OMIM 601419). We report here on two distantly related Dutch families with autosomal dominant inheritance of desmin-related myopathy affecting 15 family members. A highly heterogeneous clinical picture is apparent, varying from isolated dilated cardiomyopathy to a more generalised skeletal myopathy and mild respiratory problems. Morphological analysis of muscle biopsies revealed intracytoplasmic desmin aggregates (desmin and p62 staining). In both families we identified an identical novel pathogenic heterozygous missense mutation, S13F, in the 'head' domain of the desmin gene which cosegregates with the disease phenotype. This is the 5th reported missense mutation located at the 'head' domain of the desmin gene and the first reported Dutch family with desmin-related myopathy. This article illustrates the importance of analysing the desmin gene in patients with (familial) cardiac conduction disease, dilated cardiomyopathy and/or a progressive skeletal myopathy resembling limb-girdle muscular dystrophy.
Collapse
Affiliation(s)
- Jorieke E H Bergman
- Department of Genetics, University Medical Center Groningen, University of Groningen, Post Box 30001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
12
|
Bär H, Strelkov SV, Sjöberg G, Aebi U, Herrmann H. The biology of desmin filaments: how do mutations affect their structure, assembly, and organisation? J Struct Biol 2005; 148:137-52. [PMID: 15477095 DOI: 10.1016/j.jsb.2004.04.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Indexed: 12/31/2022]
Abstract
Desmin, the major intermediate filament (IF) protein of muscle, is evolutionarily highly conserved from shark to man. Recently, an increasing number of mutations of the desmin gene has been described to be associated with human diseases such as certain skeletal and cardiac myopathies. These diseases are histologically characterised by intracellular aggregates containing desmin and various associated proteins. Although there is progress regarding our knowledge on the cellular function of desmin within the cytoskeleton, the impact of each distinct mutation is currently not understood at all. In order to get insight into how such mutations affect filament assembly and their integration into the cytoskeleton we need to establish IF structure at atomic detail. Recent progress in determining the dimer structure of the desmin-related IF-protein vimentin allows us to assess how such mutations may affect desmin filament architecture.
Collapse
Affiliation(s)
- Harald Bär
- Department of Cell Biology, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | | | | | | | | |
Collapse
|
13
|
Gu L, Troncoso JC, Wade JB, Monteiro MJ. In vitro assembly properties of mutant and chimeric intermediate filament proteins: insight into the function of sequences in the rod and end domains of IF. Exp Cell Res 2004; 298:249-61. [PMID: 15242779 DOI: 10.1016/j.yexcr.2004.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 04/19/2004] [Indexed: 11/30/2022]
Abstract
The factors and mechanisms regulating assembly of intermediate filament (IF) proteins to produce filaments with their characteristic 10 nm diameter are not fully understood. All IF proteins contain a central rod domain flanked by variable head and tail domains. To elucidate the role that different domains of IF proteins play in filament assembly, we used negative staining and electron microscopy (EM) to study the in vitro assembly properties of purified bacterially expressed IF proteins, in which specific domains of the proteins were either mutated or swapped between a cytoplasmic (mouse neurofilament-light (NF-L) subunit) and nuclear intermediate filament protein (human lamin A). Our results indicate that filament formation is profoundly influenced by the composition of the assembly buffer. Wild type (wt) mouse NF-L formed 10 nm filaments in assembly buffer containing 175 mM NaCl, whereas a mutant deleted of 18 NH2-terminal amino acids failed to assemble under similar conditions. Instead, the mutant assembled efficiently in buffers containing CaCl2 > or = 6 mM forming filaments that were 10 times longer than those formed by wt NF-L, although their diameter was significantly smaller (6-7 nm). These results suggest that the 18 NH2-terminal sequence of NF-L might serve two functions, to inhibit filament elongation and to promote lateral association of NF-L subunits. We also demonstrate that lengthening of the NF-L rod domain, by inserting a 42 aa sequence unique to nuclear IF proteins, does not compromise filament assembly in any noticeable way. Our results suggests that the known inability of nuclear lamin proteins to assemble into 10 nm filaments in vitro cannot derive solely from their longer rod domain. Finally, we demonstrate that the head domain of lamin A can substitute for that of NF-L in filament assembly, whereas substitution of both the head and tail domains of lamins for those of NF-L compromises assembly. Therefore, the effect of lamin A "tail" domain alone, or the synergistic effect of lamin "head" and the "tail" domains together, interferes with assembly into 10-nm filaments.
Collapse
Affiliation(s)
- Lisa Gu
- Molecular and Cell Biology Graduate Program, University of Maryland Biotechnology Institute, Baltimore 21201, USA
| | | | | | | |
Collapse
|
14
|
Windoffer R, Wöll S, Strnad P, Leube RE. Identification of novel principles of keratin filament network turnover in living cells. Mol Biol Cell 2004; 15:2436-48. [PMID: 15004233 PMCID: PMC404035 DOI: 10.1091/mbc.e03-09-0707] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is generally assumed that turnover of the keratin filament system occurs by exchange of subunits along its entire length throughout the cytoplasm. We now present evidence that a circumscribed submembranous compartment is actually the main site for network replenishment. This conclusion is based on the following observations in living cells synthesizing fluorescent keratin polypeptides: 1) Small keratin granules originate in close proximity to the plasma membrane and move toward the cell center in a continuous motion while elongating into flexible rod-like fragments that fuse with each other and integrate into the peripheral KF network. 2) Recurrence of fluorescence after photobleaching is first seen in the cell periphery where keratin filaments are born that translocate subsequently as part of the network toward the cell center. 3) Partial keratin network reformation after orthovanadate-induced disruption is restricted to a distinct peripheral zone in which either keratin granules or keratin filaments are transiently formed. These findings extend earlier investigations of mitotic cells in which de novo keratin network formation was shown to originate from the cell cortex. Taken together, our results demonstrate that the keratin filament system is not homogeneous but is organized into temporally and spatially distinct subdomains. Furthermore, the cortical localization of the regulatory cues for keratin filament turnover provides an ideal way to adjust the epithelial cytoskeleton to dynamic cellular processes.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Department of Anatomy, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
15
|
Perng MD, Wen SF, van den IJssel P, Prescott AR, Quinlan RA. Desmin aggregate formation by R120G alphaB-crystallin is caused by altered filament interactions and is dependent upon network status in cells. Mol Biol Cell 2004; 15:2335-46. [PMID: 15004226 PMCID: PMC404027 DOI: 10.1091/mbc.e03-12-0893] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The R120G mutation in alphaB-crystallin causes desmin-related myopathy. There have been a number of mechanisms proposed to explain the disease process, from altered protein processing to loss of chaperone function. Here, we show that the mutation alters the in vitro binding characteristics of alphaB-crystallin for desmin filaments. The apparent dissociation constant of R120G alphaB-crystallin was decreased while the binding capacity was increased significantly and as a result, desmin filaments aggregated. These data suggest that the characteristic desmin aggregates seen as part of the disease histopathology can be caused by a direct, but altered interaction of R120G alphaB-crystallin with desmin filaments. Transfection studies show that desmin networks in different cell backgrounds are not equally affected. Desmin networks are most vulnerable when they are being made de novo and not when they are already established. Our data also clearly demonstrate the beneficial role of wild-type alphaB-crystallin in the formation of desmin filament networks. Collectively, our data suggest that R120G alphaB-crystallin directly promotes desmin filament aggregation, although this gain of a function can be repressed by some cell situations. Such circumstances in muscle could explain the late onset characteristic of the myopathies caused by mutations in alphaB-crystallin.
Collapse
Affiliation(s)
- Ming Der Perng
- School of Biological and Biomedical Sciences, The University of Durham, Durham DH1 3LE, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Shoeman RL, Hartig R, Berthel M, Traub P. Deletion Mutagenesis of the Amino-Terminal Head Domain of Vimentin Reveals Dispensability of Large Internal Regions for Intermediate Filament Assembly and Stability. Exp Cell Res 2002; 279:344-53. [PMID: 12243759 DOI: 10.1006/excr.2002.5618] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that the non-alpha-helical head domain of vimentin is required for polymerization of intermediate filaments (IFs) and, furthermore, a nonapeptide highly conserved among type III IF subunit proteins at their extreme amino-terminus is essential for this process. Recombinant DNA technology was employed to produce specific vimentin deletion mutant proteins (for in vitro studies) or vimentin protein expression plasmids (for in vivo studies), which were used to identify other regions of the vimentin head domain important for polymerization. Various vimentin proteins lacking either residues 25-38, 44-95, or 40-95 polymerized into wild-type or largely normal IFs, both in vitro and in vivo. Vimentin proteins lacking residues 44-69 or 25-63 failed to form IFs in vitro, but assembled into IFs in vivo. Vimentin proteins lacking residues 25-68, 44-103, or 88-103 failed to form IFs in vitro or in vivo. Taken together with previous results, these data demonstrate that the middle of the vimentin non-alpha-helical head domain, which is known to be the site of nucleic acid binding, is completely dispensable for IF formation, whereas both ends of the vimentin non-alpha-helical head domain are required for IF formation. The simplest explanation for these results is that the middle of the vimentin non-alpha-helical head domain loops out, thereby permitting the juxtaposition of the ends of the head domain and their productive interaction with other protein domains (probably the C-terminus of the rod domain) during IF polymerization. The ability of some of the mutant proteins to form IFs in vivo, but not in vitro, suggests that as-yet-unknown cellular proteins may interact with and, in some cases, enable polymerization of IFs, even though they are not absolutely required for IF formation by wild-type vimentin.
Collapse
Affiliation(s)
- Robert L Shoeman
- Max-Planck-Institut für Zellbiologie, Schriesheimerstrasse 101, Rosenhof, 68526, Ladenburg, Germany
| | | | | | | |
Collapse
|
17
|
Husmark J, Heldin NE, Nilsson M. Follicular growth of a thyroid carcinoma cell line (KAT-4) with abnormal E-cadherin and impaired epithelial barrier. Thyroid 2002; 12:781-90. [PMID: 12481943 DOI: 10.1089/105072502760339343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Loss of the epithelial phenotype is a well-established phenomenon during progression of carcinomas to a more malignant state. In the present study, we describe a human thyroid tumor cell line (KAT-4), established from a poorly differentiated carcinoma, which displays exceptional features. In culture, the KAT-4 cells had a fast proliferation rate that was not restricted by high cell density, resulting in multilayered growth. Unexpectedly, the cells expressed normal levels of epithelial markers, e.g., cytokeratin, occludin, and E-cadherin, showed apical-basolateral polarization of the plasma membrane including microvilli and junction complexes, and formed intercellular lumens resembling thyroid follicles. Yet, when grown on filter, the cells were unable to establish a tight paracellular barrier. Moreover, E-cadherin expressed at the cell surface consisted of two peptides with abnormal size (135 and 95 kd, respectively) as compared to mature E-cadherin (120 kd) in nonneoplastic thyrocytes. Northern blot analysis and examination of immunoreactivity, glycosylation, and catenin binding suggested that E-cadherin was aberrant because of altered posttranscriptional processing. Thus, the KAT-4 thyroid carcinoma cell line has a unique phenotype, with maintained epithelial morphology despite dysfunctioning tight junctions, abnormal E-cadherin, and loss of contact-inhibited growth, that is not previously identified in other wild-type tumor cell lines.
Collapse
Affiliation(s)
- Johanna Husmark
- Institute of Anatomy and Cell Biology, Göteborg University, Göteborg, Sweden
| | | | | |
Collapse
|
18
|
Höllrigl A, Puz S, Al-Dubai H, Kim JU, Capetanaki Y, Weitzer G. Amino-terminally truncated desmin rescues fusion of des(-/-) myoblasts but negatively affects cardiomyogenesis and smooth muscle development. FEBS Lett 2002; 523:229-33. [PMID: 12123837 DOI: 10.1016/s0014-5793(02)02995-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Desmin fulfils important functions in maintenance of muscle cells and mutations in the desmin gene have been linked to a variety of myopathies. To ascertain the role of desmin's amino-terminal domain in muscle cells we generated embryonic stem cells constitutively expressing desmin(Delta1-48) in a null background and investigated muscle cell development in vitro. Desmin(Delta1-48) lacking the first 48 amino acid residues promotes fusion of myoblasts, rescues myogenesis and down-regulates vimentin expression in embryoid bodies, but hampers cardiomyogenesis and blocks smooth muscle development. These results demonstrate that desmin's amino-terminus has different roles in skeletal, cardiac, and smooth muscle cell development and function.
Collapse
Affiliation(s)
- Alexandra Höllrigl
- Institute of Medical Biochemistry, Vienna Bio Center, University of Vienna, Dr. Bohrgasse 9, A-1030, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
19
|
Windoffer R, Leube RE. De novo formation of cytokeratin filament networks originates from the cell cortex in A-431 cells. CELL MOTILITY AND THE CYTOSKELETON 2001; 50:33-44. [PMID: 11746670 DOI: 10.1002/cm.1039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Of the three major cytoskeletal filament systems, the intermediate filaments are the least understood. Since they differ fundamentally from the actin- and microtubule-based networks by their lack of polarity, it has remained a mystery how and where these principally endless filaments are formed. Using a recently established epithelial cell system in which fluorescently labeled intermediate filaments of the cytokeratin type can be monitored in living cells, we address these issues. By multidimensional time-lapse fluorescence microscopy, we examine de novo intermediate filament network formation from non-filamentous material at the end of mitosis and show that it mirrors disassembly. It is demonstrated that filament formation is initiated from the cell cortex without focal preference after cytokinesis. Furthermore, it is shown that this process is dependent on energy, on the integrity of the actin filament network and the microtubule system, and that it can be inhibited by the tyrosine phosphatase inhibitor pervanadate. Based on these observations, a two-step working model is proposed involving (1) interactions within the planar cortical layer acting as an organizing center forming a two-dimensional network and (2) subsequent radial dynamics facilitating the formation of a mature three-dimensional network.
Collapse
Affiliation(s)
- R Windoffer
- Department of Anatomy, Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|
20
|
Schweitzer SC, Klymkowsky MW, Bellin RM, Robson RM, Capetanaki Y, Evans RM. Paranemin and the organization of desmin filament networks. J Cell Sci 2001; 114:1079-89. [PMID: 11228152 DOI: 10.1242/jcs.114.6.1079] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
De novo expression of vimentin, GFAP or peripherin leads to the assembly of an extended intermediate filament network in intermediate filament-free SW13/cl.2 cells. Desmin, in contrast, does not form extended filament networks in either SW13/cl.2 or intermediate filament-free mouse fibroblasts. Rather, desmin formed short thickened filamentous structures and prominent spot-like cytoplasmic aggregates that were composed of densely packed 9–11 nm diameter filaments. Analysis of stably transfected cell lines indicates that the inability of desmin to form extended networks is not due to a difference in the level of transgene expression. Nestin, paranemin and synemin are large intermediate filament proteins that coassemble with desmin in muscle cells. Although each of these large intermediate filament proteins colocalized with desmin when coexpressed in SW-13 cells, expression of paranemin, but not synemin or nestin, led to the formation of an extended desmin network. A similar rescue of desmin network organization was observed when desmin was coexpressed with vimentin, which coassembles with desmin, or with keratins, which formed a distinct filament network. These studies demonstrate that desmin filaments differ in their organizational properties from the other vimentin-like intermediate filament proteins and appear to depend upon coassembly with paranemin, at least when they are expressed in non-muscle cells, in order to form an extended filament network.
Collapse
Affiliation(s)
- S C Schweitzer
- Department of Pathology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | |
Collapse
|
21
|
Gohara R, Tang D, Inada H, Inagaki M, Takasaki Y, Ando S. Phosphorylation of vimentin head domain inhibits interaction with the carboxyl-terminal end of alpha-helical rod domain studied by surface plasmon resonance measurements. FEBS Lett 2001; 489:182-6. [PMID: 11165246 DOI: 10.1016/s0014-5793(01)02108-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The amino-terminal head domain of vimentin is the target site for several protein kinases and phosphorylation induces disassembly of the vimentin intermediate filaments in vivo and in vitro. To better understand molecular mechanisms involved in phosphorylation-dependent disassembly, we examined domain interactions involving the head domain and the effect of phosphorylation on the interaction, using surface plasmon resonance. We observed that the head domain binds to the carboxyl-terminal helix 2B in the rod domain, under physiological ionic strength. This interaction was interfered with by A-kinase phosphorylation of the head domain. Deletion of the carboxyl-terminal 20 amino acids of helix 2B resulted in loss of the interaction. Furthermore, peptide representing the carboxyl-terminal 20 residues of helix 2B had a substantial affinity with the head domain but not with the phosphorylated one. These findings support the idea that the interaction between the head domain and the last 20 residues of helix 2B is essential for association of vimentin tetramers into the intermediate filaments and that the phosphorylation-dependent disassembly is the result of loss of the interaction.
Collapse
Affiliation(s)
- R Gohara
- Chemistry Laboratory, Saga Medical School, Saga, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Lowrie DJ, Stickney JT, Ip W. Properties of the nonhelical end domains of vimentin suggest a role in maintaining intermediate filament network structure. J Struct Biol 2000; 132:83-94. [PMID: 11162730 DOI: 10.1006/jsbi.2000.4315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To investigate the functional role of the nonhelical domains of the intermediate filament (IF) protein vimentin, we carried out transient transfection of constructs encoding fusion proteins of these domains with enhanced green fluorescent protein (EGFP). Expression of these fusion proteins did not have any effect on the endogenous IF networks of transfected cells. However, the head domain-EGFP fusion protein localized almost exclusively to the nucleus. This localization could be disrupted in a reversible fashion by chilling cells. Furthermore, the head domain was capable of targeting to the nucleus a strictly cytoplasmic protein, pyruvate kinase. Thus, the vimentin head domain contains information that specifically directs proteins into the nucleus. In contrast, the nonhelical tail domain of vimentin, when expressed as a fusion protein with EGFP, was retained in the cytoplasm. Cytoplasmic retention of tail domain-containing fusion proteins appeared to be dependent on the integrity of the microtubule network. Our results are consistent with a proposal that the nonhelical end domains of vimentin are involved in maintaining an extended IF network by exerting oppositely directed forces along the filaments. The head domains exert a nuclear-directed force while the tail domains extend the IF network toward the cell periphery via a microtubule-dependent mechanism.
Collapse
Affiliation(s)
- D J Lowrie
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA
| | | | | |
Collapse
|
23
|
Bellin RM, Sernett SW, Becker B, Ip W, Huiatt TW, Robson RM. Molecular characteristics and interactions of the intermediate filament protein synemin. Interactions with alpha-actinin may anchor synemin-containing heterofilaments. J Biol Chem 1999; 274:29493-9. [PMID: 10506213 DOI: 10.1074/jbc.274.41.29493] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Synemin is a cytoskeletal protein originally identified as an intermediate filament (IF)-associated protein because of its colocalization and copurification with the IF proteins desmin and vimentin in muscle cells. Our sequencing studies have shown that synemin is an unusually large member (1,604 residues, 182,187 Da) of the IF protein superfamily, with the majority of the molecule consisting of a long C-terminal tail domain. Molecular interaction studies demonstrate that purified synemin interacts with desmin, the major IF protein in mature muscle cells, and with alpha-actinin, an integral myofibrillar Z-line protein. Furthermore, expressed synemin rod and tail domains interact, respectively, with desmin and alpha-actinin. Analysis of endogenous protein expression in SW13 clonal lines reveals that synemin is coexpressed and colocalized with vimentin IFs in SW13.C1 vim+ cells but is absent in SW13.C2 vim- cells. Transfection studies indicate that synemin requires the presence of another IF protein, such as vimentin, in order to assemble into IFs. Taken in toto, our results suggest synemin functions as a component of heteropolymeric IFs and plays an important cytoskeletal cross-linking role by linking these IFs to other components of the cytoskeleton. Synemin in striated muscle cells may enable these heterofilaments to help link Z-lines of adjacent myofibrils and, thereby, play an important role in cytoskeletal integrity.
Collapse
Affiliation(s)
- R M Bellin
- Muscle Biology Group, Department of Biochemistry, Iowa State University, Ames, Iowa 50011-3260, USA
| | | | | | | | | | | |
Collapse
|
24
|
Ching GY, Liem RK. Analysis of the roles of the head domains of type IV rat neuronal intermediate filament proteins in filament assembly using domain-swapped chimeric proteins. J Cell Sci 1999; 112 ( Pt 13):2233-40. [PMID: 10362553 DOI: 10.1242/jcs.112.13.2233] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV neuronal intermediate filament proteins consist of alpha-internexin, which can self-assemble into filaments and the neurofilament triplet proteins, which are obligate heteropolymers, at least in rodents. These IF proteins therefore provide good systems for elucidating the mechanism of intermediate filament assembly. To analyze the roles of the head domains of these proteins in contributing to their differential assembly properties, we generated chimeric proteins by swapping the head domains between rat alpha-internexin and either rat NF-L or NF-M and examined their assembly properties in transfected cells that lack their own cytoplasmic intermediate filament network. Lalphaalpha and Malphaalpha, the chimeric proteins generated by replacing the head domain of alpha-internexin with those of NF-L and NF-M, respectively, were unable to self-assemble into filaments. In contrast, alphaLL, a chimeric NF-L protein generated by replacing the head domain of NF-L with that of alpha-internexin, was able to self-assemble into filaments, whereas MLL, a chimeric NF-L protein containing the NF-M head domain, was unable to do so. These results demonstrate that the alpha-internexin head domain is essential for alpha-internexin's ability to self-assemble. While coassembly of Lalphaalpha with NF-M and coassembly of Malphaalpha with NF-L resulted in formation of filaments, coassembly of Lalphaalpha with NF-L and coassembly of Malphaalpha with NF-M yielded punctate patterns. These coassembly results show that heteropolymeric filament formation requires that one partner has the NF-L head domain and the other partner has the NF-M head domain. Thus, the head domains of rat NF-L and NF-M play important roles in determining the obligate heteropolymeric nature of filament formation. The data obtained from these self-assembly and coassembly studies provide some new insights into the mechanism of intermediate filament assembly.
Collapse
Affiliation(s)
- G Y Ching
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
25
|
Muñoz-Mármol AM, Strasser G, Isamat M, Coulombe PA, Yang Y, Roca X, Vela E, Mate JL, Coll J, Fernández-Figueras MT, Navas-Palacios JJ, Ariza A, Fuchs E. A dysfunctional desmin mutation in a patient with severe generalized myopathy. Proc Natl Acad Sci U S A 1998; 95:11312-7. [PMID: 9736733 PMCID: PMC21639 DOI: 10.1073/pnas.95.19.11312] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/1998] [Indexed: 11/18/2022] Open
Abstract
Mice lacking desmin produce muscle fibers with Z disks and normal sarcomeric organization. However, the muscles are mechanically fragile and degenerate upon repeated contractions. We report here a human patient with severe generalized myopathy and aberrant intrasarcoplasmic accumulation of desmin intermediate filaments. Muscle tissue from this patient lacks the wild-type desmin allele and has a desmin gene mutation encoding a 7-aa deletion within the coiled-coil segment of the protein. We show that recombinant desmin harboring this deletion cannot form proper desmin intermediate filament networks in cultured cells, nor is it able to assemble into 10-nm filaments in vitro. These findings provide direct evidence that a mutation in desmin can cause human myopathies.
Collapse
|
26
|
Marvin MJ, Dahlstrand J, Lendahl U, McKay RD. A rod end deletion in the intermediate filament protein nestin alters its subcellular localization in neuroepithelial cells of transgenic mice. J Cell Sci 1998; 111 ( Pt 14):1951-61. [PMID: 9645943 DOI: 10.1242/jcs.111.14.1951] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuroepithelial and radial glial cells span between the ventricular and the pial surfaces of the neural tube and express two intermediate filaments (IFs), nestin and vimentin, which form a filamentous network throughout the length of the cells. In this report we study the polymerization characteristics of nestin and examine how mutations affect the assembly and localization of the nestin protein in cultured cells and in the developing CNS of transgenic mice. A wild-type rat nestin gene transfected into the IF-free SW13 cell line failed to assemble into a filamentous network but was incorporated into the existing IF network of a subclone expressing vimentin, demonstrating that nestin requires vimentin for proper assembly. In transgenic mice, rat nestin formed a network indistinguishable from that formed by endogenous nestin and vimentin, but a mutant form lacking five amino acids at the carboxy terminus of the rod domain was largely restricted to the pial endfeet. Since nestin mRNA is localized to the pial endfoot region we propose that both transgenes are translated there, but that the wild-type protein is preferentially incorporated into the IF network. These observations provide evidence for hierarchical assembly and a complex organization of the IF network along the ventricular-pial axis in the early CNS.
Collapse
Affiliation(s)
- M J Marvin
- Laboratory of Molecular Biology, Basic Neurosciences Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. . harvard.edu
| | | | | | | |
Collapse
|
27
|
Ching GY, Liem RK. Roles of head and tail domains in alpha-internexin's self-assembly and coassembly with the neurofilament triplet proteins. J Cell Sci 1998; 111 ( Pt 3):321-33. [PMID: 9427681 DOI: 10.1242/jcs.111.3.321] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of the head and tail domains of alpha-internexin, a type IV neuronal intermediate filament protein, in its self-assembly and coassemblies with neurofilament triplet proteins, were examined by transient transfections with deletion mutants in a non-neuronal cell line lacking an endogenous cytoplasmic intermediate filament network. The results from the self-assembly studies showed that the head domain was essential for alpha-internexin's ability to self-assemble into a filament network and the tail domain was important for establishing a proper filament network. The data from the coassembly studies demonstrated that alpha-internexin interacted differentially with the neurofilament triplet protein subunits. Wild-type NF-L or NF-M, but not NF-H, was able to complement and form a normal filament network with the tailless alpha-internexin mutant, the alpha-internexin head-deletion mutant, or the alpha-internexin mutant missing the entire tail and some amino-terminal portion of the head domain. In contrast, neither the tailless NF-L mutant nor the NF-L head-deletion mutant was able to form a normal filament network with any of these alpha-internexin deletion mutants. However, coassembly of the tailless NF-M mutant with the alpha-internexin head-deletion mutant and coassembly of the NF-M head-deletion mutant with the tailless alpha-internexin mutant resulted in the formation of a normal filament network. Thus, the coassembly between alpha-internexin and NF-M exhibits some unique characteristics previously not observed with other intermediate filament proteins: only one intact tail and one intact head are required for the formation of a normal filament network, and they can be present within the same partner or separately in two partners.
Collapse
Affiliation(s)
- G Y Ching
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
28
|
Hemken PM, Bellin RM, Sernett SW, Becker B, Huiatt TW, Robson RM. Molecular characteristics of the novel intermediate filament protein paranemin. Sequence reveals EAP-300 and IFAPa-400 are highly homologous to paranemin. J Biol Chem 1997; 272:32489-99. [PMID: 9405460 DOI: 10.1074/jbc.272.51.32489] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Paranemin was initially found to copurify with the intermediate filament (IF) proteins vimentin and desmin from embryonic chick skeletal muscle and was described as an IF-associated protein (IFAP). We have purified paranemin from embryonic chick skeletal muscle, prepared antibodies, and demonstrated that they label at the Z-lines of both adult avian and porcine cardiac and skeletal muscle myofibrils. We determined the cDNA sequence of paranemin by immunoscreening a lambdagt22A cDNA library from embryonic chick skeletal muscle. Northern blot analysis revealed a single transcript of 5.3 kilobases, which is much smaller than predicted from the size of paranemin (280 kDa) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The derived amino acid sequence of paranemin (1,606 residues; 178,161 kDa) contains the conserved IF rod domain (308 amino acids), which has highest homology to the rod domains of nestin and tanabin. Thus, paranemin is an IF protein rather than an IFAP. Sequence analysis also revealed that the partial cDNA sequences of two proteins, namely EAP-300 and IFAPa-400, are almost identical to regions of the cDNA sequence of paranemin. The complete paranemin cDNA was expressed in a cell line (SW13) with, and without, detectable cytoplasmic IFs. Antibody labeling of these cells suggests that paranemin does not form IFs by itself, but rather is incorporated into heteropolymeric IFs with vimentin.
Collapse
Affiliation(s)
- P M Hemken
- Muscle Biology Group, Departments of Biochemistry and Biophysics and of Animal Science, Iowa State University, Ames, Iowa 50011-3260, USA
| | | | | | | | | | | |
Collapse
|
29
|
Raats JM, Gell D, Vickers L, Heasman J, Wylie C. Modified mRNA rescue of maternal CK1/8 mRNA depletion in Xenopus oocytes. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1997; 7:263-77. [PMID: 9303179 DOI: 10.1089/oli.1.1997.7.263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This work addresses two issues, the use of antisense oligodeoxynucleotides to deplete specific mRNAs in Xenopus oocytes to analyze their functions during development and the role of cytokeratin filaments in cells of the early Xenopus embryo. We have shown previously that depletion of cytokeratin CK1/8 mRNA causes defects in the early embryo. In this study, we show that the oligos, modified with phosphoramidate linkages to improve stability, are capable of degrading exogenous mRNA up to 27 hours after injection in the oocyte. For this reason, the phenotype could not be rescued by injection of a synthetic CK1/8 mRNA. However, modification of the synthetic CK1/8 mRNA, which prevents annealing of the antisense oligonucleotide used for depleting the endogenous CK1/8 mRNA, did result in the rescue of the CK1/8 depletion phenotype. These results demonstrate that the phenotype observed after depletion of the CK1/8 mRNA is truly caused by the lack of CK1/8 protein. Injection of the closely related type II cytokeratin (CK55) did not result in the same level of rescue of the CK1/8 depletion phenotype, suggesting that structurally similar members of the cytokeratin family, expressed at different stages of development, cannot substitute for each other in the early embryo.
Collapse
Affiliation(s)
- J M Raats
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Hartig R, Huang Y, Janetzko A, Shoeman R, Grüb S, Traub P. Binding of fluorescence- and gold-labeled oligodeoxyribonucleotides to cytoplasmic intermediate filaments in epithelial and fibroblast cells. Exp Cell Res 1997; 233:169-86. [PMID: 9184086 DOI: 10.1006/excr.1997.3543] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previously, in vitro experiments have demonstrated the capacity of intermediate filaments (IFs) to associate with polyanionic compounds, including nucleic acids. To prove that this activity is also shown by IFs in quasi-intact cells, digitonin-permeabilized epithelial PtK2 and mouse fibroblast cells were treated with FITC-labeled, single-stranded oligodeoxyribonucleotides and analyzed, after indirect decoration of their IF systems with TRITC-conjugated antibodies, by fluorescence microscopy. While cytokeratin IFs exhibited a strong affinity for and exact codistribution with oligo(dG)25, vimentin IFs were less active in binding this oligonucleotide. Other oligonucleotides, like oligo(dT)25, oligo[d(GT)12G] and oligo[d(G3T2A)4G], were bound to IFs with lower efficiency. In general, the introduction of dA residues into oligo(dG)n or oligo(dGT)n tracts reduced the IF-binding potential of the nucleic acids. This, however, increased significantly upon reduction of the ionic strength to half physiological, indicating a strong electrostatic binding component. The binding reaction was often obscured by simultaneous association of the oligonucleotides with cellular membranes mostly in the perinuclear region, an activity that was largely abolished by prior cell extraction with nonionic detergent. Strongly IF-binding oligonucleotides also disassembled microtubules, presumably via their interaction with microtubule-associated proteins, but left microfilaments intact. In PtK2 cells, oligo(dG)25-loaded IFs were frequently seen coaligned with microfilaments and to cross-bridge stress fibers with the formation of rope ladder-like configurations. Employing microinjection and confocal laser scanning microscopy, association of IFs with oligonucleotides could also be visualized in intact cells. In accord with these fluorescence microscopic data, transmission electron microscopy of permeabilized cells treated with gold-conjugated oligonucleotides revealed decoration of IFs and membrane systems with gold particles, whereby in PtK2 cells these structures showed a distinctly heavier labeling than in fibroblasts. These results demonstrate that in animal cells IFs are able to bind nucleic acids and, very likely, also nucleoprotein particles and suggest that this capacity is exploited by the cells for transient storage and, in cooperation with microtubules and microfilaments, controlled transport of such material in the cytoplasm.
Collapse
Affiliation(s)
- R Hartig
- Max-Planck-Institut für Zellbiologie, Rosenhof, Ladenburg/Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Paramio JM, Casanova ML, Alonso A, Jorcano JL. Keratin intermediate filament dynamics in cell heterokaryons reveals diverse behaviour of different keratins. J Cell Sci 1997; 110 ( Pt 9):1099-111. [PMID: 9175706 DOI: 10.1242/jcs.110.9.1099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the dynamics of keratin intermediate filaments, we fused two different types of epithelial cells (PtK2 and BMGE+H) and studied how the keratins from the parental cells recombine and copolymerize to form the heterokaryon cytoskeleton. The behaviour of the keratins during this process was followed by immunofluorescence using specific antibodies. After fusion, the parental cytoskeletons undergo a depolymerization process most apparent in the region adjacent to the fusion area. The depolymerized subunits spread throughout the heterokaryon and copolymerize into a new hybrid cytoskeleton. The complete process is very rapid, occurring in 3–4 hours, thus demonstrating the highly dynamic nature of the keratin cytoskeleton. Although newly synthesised subunits contribute to the formation of the hybrid cytoskeleton, the process takes place with similar kinetics in the absence of protein synthesis, showing the dynamic nature of the keratins from pre-existing cytoskeletons. During this process, specific keratins behave differently. Keratins K8, K18, K5 and K10 are mobilised from the parental cytoskeletons and reassemble rapidly into the hybrid cytoskeleton (3–6 hours), whereas K14 requires a substantially longer period (9–24 hours). Thus, different keratins, even when they form part of the same heterodimeric/tetrameric complexes, as is the case for K5 and K14, exhibit different dynamics. This suggests that individual polypeptides or homopolymeric complexes rather than exclusively heterodimeric/ tetrameric subunits, as is currently thought, can also take part in keratin intermediate filament assembly and dynamics. Biochemical analysis performed in the absence of protein synthesis revealed greater amounts of K5 than of K14 in the soluble pool of BMGE+H cells. Crosslinking and immunoprecipitation experiments indicated an excess of monomeric K5, as well as of K5/K14 heterodimers and K5 homodimers in the soluble pool. These results are in agreement with the different dynamic behaviour of these keratins observed in immunofluorescence. On the contrary, the phosphorylation levels of K5 and K14 are similar in both the soluble pool and the polymerized fraction, suggesting that phosphorylation does not play an important role in the different dynamics displayed by these two proteins. In summary, our results demonstrate that, following fusion, the keratin intermediate filament network reshapes rather rapidly and that keratins are highly dynamic proteins, although this mobility depends on each particular polypeptide.
Collapse
Affiliation(s)
- J M Paramio
- Department of Cell and Molecular Biology, CIEMAT, Madrid, Spain.
| | | | | | | |
Collapse
|
32
|
Herrmann H, Häner M, Brettel M, Müller SA, Goldie KN, Fedtke B, Lustig A, Franke WW, Aebi U. Structure and assembly properties of the intermediate filament protein vimentin: the role of its head, rod and tail domains. J Mol Biol 1996; 264:933-53. [PMID: 9000622 DOI: 10.1006/jmbi.1996.0688] [Citation(s) in RCA: 268] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have investigated the functional role of the non-helical end domains of vimentin on its assembly properties using truncated Xenopus and human recombinant proteins. Removal of the amino-terminal "head" domain yielded a molecule that did not assemble into 10 nm filaments but remained in a soluble oligomeric particle form with a sedimentation coefficient considerably smaller than that of wild-type vimentin (Vim(wt)). In contrast, removal of the carboxy-terminal "tail" domain had no obvious effect on the sedimentation characteristics. In particular, sedimentation equilibrium analysis under low ionic strength conditions yielded oligomeric particle species of Mr 135,000 to 360,000, indistinguishable from those obtained with Vim(wt). When induced to form filaments from this state by rapid dilution into filament forming buffer, Vim(wt) and Vim(deltaT) protein generated similar viscosity profiles. However, as determined by scanning transmission electron microscopy, under these conditions Vim(deltaT) formed filaments of heterogeneous diameter, corresponding to various distinct mass-per-length (MPL) values: whereas Vim(wt) yielded MPL values peaking between 40 and 45 kDa/nm, Vim(deltaT) filaments produced histograms which could be fitted by three Gaussian curves peaking between 37 and 131 kDa/nm. In contrast, when dialyzed against, instead of being rapidly diluted into, filament forming buffer, Vim(deltaT) gave histograms with one major peak at about 54 kDa/nm. The MPL heterogeneity observed for Vim(deltaT) was already evident at the earliest stages of assembly. For example, ten seconds after initiation, "unit-length" filament segments (58 to 63 nm) were formed with both wt and deltaT proteins, but the diameters were considerably larger for Vim(deltaT) compared to Vim(wt) (20(+/- 3) nm versus 16(+/- 3)nm), indicating a distinct role of the carboxy-terminal tail domain in the width control during unit-length filament formation. Despite this difference both Vim(deltaT) and Vim(wt) filaments appeared to grow stepwise in a modular fashion from such unit-length filament segments. This suggests that assembly occurred by a principally similar mechanism involving the end-on-fusion or annealing of unit-length filaments.
Collapse
Affiliation(s)
- H Herrmann
- Division of Cell Biology, German Cancer Research Center, Heidelberg
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Specialized cytoskeletons play many fascinating roles, including mechanical integrity and wound-healing in epidermal cells, cell polarity in simple epithelia, contraction in muscle cells, hearing and balance in the inner ear cells, axonal transport in neurons, and neuromuscular junction formation between muscle cells and motor neurons. These varied functions are dependent upon cytoplasmic networks of actin microfilaments (6 nm), intermediate filaments (10 nm) and microtubules (23 nm), and their many associated proteins. In this chapter, I review what is known about the cytoskeletons of intermediate filaments and their associated proteins. I focus largely on epidermal cells, which devote most of their protein-synthesizing machinery to producing an extensive intermediate filament network composed of keratin. Recent studies have shown that many of the devastating human disorders that arise from degeneration of this cell type have as their underlying basis either defects in the genes encoding keratins or abnormalities in keratin IF networks. I discuss what we know about the functions of IFs, and how the link to genetic disease has enhanced this understanding.
Collapse
Affiliation(s)
- E Fuchs
- Howard Hughes Medical Institute, University of Chicago, Illinois 60637, USA
| |
Collapse
|
34
|
Inagaki M, Matsuoka Y, Tsujimura K, Ando S, Tokui T, Takahashi T, Inagaki N. Dynamic property of intermediate filaments: Regulation by phosphorylation. Bioessays 1996. [DOI: 10.1002/bies.950180610] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Chan Y, Anton-Lamprecht I, Yu QC, Jäckel A, Zabel B, Ernst JP, Fuchs E. A human keratin 14 "knockout": the absence of K14 leads to severe epidermolysis bullosa simplex and a function for an intermediate filament protein. Genes Dev 1994; 8:2574-87. [PMID: 7525408 DOI: 10.1101/gad.8.21.2574] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Since their discovery, the function of intermediate filaments (IFs) has remained obscure. In skin, epidermal cells have extensive cytoskeletal architectures of IFs, composed of type I and type II keratin heterodimers. Clues to possible functions of these proteins have come from recent studies showing that several autosomal-dominant, blistering skin disorders are caused by defects in genes that encode epidermal keratins. These diseases all exhibit cell degeneration and keratin network perturbations in cells that express the particular mutant keratin gene. However, it is not clear from these studies whether cytolysis arises from the presence of large insoluble keratin aggregates that compromise cellular physiology or from the absence of an extensive keratin filament network, which jeopardizes mechanical integrity. We report here the analysis of an extremely rare case of severe recessive epidermolysis bullosa simplex (EBS), where the patient lacks a discernible keratin filament network in basal epidermal cells. Genetic analyses revealed a homozygous point mutation that yielded a premature termination codon in the major basal type I keratin gene and caused complete ablation of K14. The consanguineous parents were normal, each harboring one copy of the null K14 mutation. Analysis of cultured keratinocytes enabled us to document that the loss of K14 is not compensated for by the up-regulation of any other type I keratin. When taken together with the in vivo studies showing the presence of cell fragility generated from the lack of an extensive basal keratin network, these findings provide the first clear demonstration of loss of function associated with the absence of an IF protein in vivo.
Collapse
Affiliation(s)
- Y Chan
- Howard Hughes Medical Institute, University of Chicago, Illinois 60637
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
All intermediate filament proteins consist of an alpha-helical rod domain flanked by non-helical N-terminal head and C-terminal tail domains. The roles of the non-helical domains of various intermediate filament proteins in the assembly and co-assembly of higher-order filamentous structures have been studied by many groups but with quite contradictory results. Type III intermediate filaments are unique in that they can form homopolymers both in vitro and in vivo. The expression and assembly characteristics of carboxy- and amino-terminal deletion mutants of glial fibrillary acidic protein (GFAP), an astrocyte-specific type III intermediate filament protein, were examined by transient transfections of either vimentin-positive or vimentin-negative variants of human adrenocarcinoma-derived SW13 cell lines. Whereas complete deletion of the C-terminal tail domain of GFAP results in the formation of polymorphic aggregates, both intranuclear and cytoplasmic in self-assembly experiments, efficient co-assembly of these tail-less GFAP mutants with vimentin can be achieved as long as the KLLEGEE sequence at the C-terminal end of the rod domain is preserved. Up to one-fifth of the C-terminal end of the tail domain can be deleted without affecting the capability of GFAP to self-assemble. The highly conserved RDG-containing motif in the tail domain may be important for self-assembly but is not sufficient. The entire head domain seems to be required for self-assembly. All N-terminal deletion mutants of GFAP share the same phenotype of diffuse cytoplasmic staining when expressed in vimentin-negative SW13 cells. Although co-assembly with vimentin can still be achieved with completely head-less GFAP, preservation of some of the head domain greatly enhanced the efficiency. Our results form the basis for further, more detailed mapping of the essential regions in filament assembly of GFAP and other type III IFs.
Collapse
Affiliation(s)
- W J Chen
- Department of Pathology and Anatomy, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | | |
Collapse
|
37
|
Ralton JE, Lu X, Hutcheson AM, Quinlan RA. Identification of two N-terminal non-alpha-helical domain motifs important in the assembly of glial fibrillary acidic protein. J Cell Sci 1994; 107 ( Pt 7):1935-48. [PMID: 7983160 DOI: 10.1242/jcs.107.7.1935] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The non-alpha-helical N-terminal domain of intermediate filament proteins plays a key role in filament assembly. Previous studies have identified a nonapeptide motif, SSYRRIFGG, in the non-alpha-helical N-terminal domain of vimentin that is required for assembly. This motif is also found in desmin, peripherin and the type IV intermediate filament proteins. GFAP is the only type III intermediate filament protein in which this motif is not readily identified. This study has identified two motifs in the non-alpha-helical N-terminal domain of mouse GFAP that play important roles in GFAP assembly. One motif is located at the very N terminus and has the consensus sequence, MERRRITS-ARRSY. It has some characteristics in common with the vimentin nonapeptide motif, SSYRRIFGG, including its location in the non-alpha-helical N-terminal domain and a concentration of arginine residues. Unlike the vimentin motif in which even conserved sequence changes affect filament assembly, the GFAP consensus sequence, MERRRITS-ARRSY, can be replaced by a completely unrelated sequence; namely, the heptapeptide, MVRANKR, derived from the lambda cII protein. When fused to GFAP sequences with sequential deletions of the N-terminal domain, the lambda cII heptapeptide was used to help identify a second motif, termed the RP-box, which is located just upstream of the GFAP alpha-helical rod domain. This RP-box affected the efficiency of filament assembly as well as protein-protein interactions in the filament, as shown by sedimentation assays and electron microscopy. These results are supported by previous data, which showed that the dramatic reorganization of GFAP within cells was due to phosphorylation-dephosphorylation of a site located in this RP-box. The results in this study suggest the RP-box motif to be a key modulator in the mechanism of GFAP assembly, and support a role for this motif in both the nucleation and elongation phases of filament assembly. The RP-box motif in GFAP has the consensus sequence, RLSL-RM-PP. Sequences similar to the GFAP RP-box motif are also to be found in vimentin, desmin and peripherin. Like GFAP, these include phosphorylation and proteolysis sites and are adjacent to the start of the central alpha-helical rod domain, suggesting that this motif of general importance to type III intermediate filament protein assembly.
Collapse
Affiliation(s)
- J E Ralton
- Department of Biochemistry, The University, Dundee, UK
| | | | | | | |
Collapse
|
38
|
Hatzfeld M, Burba M. Function of type I and type II keratin head domains: their role in dimer, tetramer and filament formation. J Cell Sci 1994; 107 ( Pt 7):1959-72. [PMID: 7527050 DOI: 10.1242/jcs.107.7.1959] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine the role of the keratin head region and its subdomains in filament assembly we constructed several deletion mutants of type I and type II keratins and analysed their in vitro IF forming capacity. The delta K8 (1–74) and delta K18 (1–56), mutants formed only soluble oligomers, predominantly tetramers with their heterotypic partners. K8 mutants that retained either the entire (delta K8 (1–64)) or nearly the entire (delta K8 (1–66)) H1 subdomain formed some short and irregular IF-like structures with K18. However, filaments never reached the normal length and more protofilamentous material was observed. Analysis of the soluble complexes in 2 M guanidine-HCl indicated that tetramer formation was impaired in the truncated molecules. The length of the deletion correlated with the degree of tetramer destabilization. These results suggest that the head domain--specifically the H1 subdomain of type II keratins-plays a direct role in IF assembly. Its functions include a stabilization of the tetramer molecule, suggesting a role in directing the alignment of dimers as well as in elongation. We also analysed whether both head domains are required or if either type I or type II head domains alone are sufficient for IF formation. Hybrid molecules carrying their partner keratins head domains (K18 (8 head) and K8 (18 head)) were combined with their wild-type partners and tested for IF-forming ability. Both combinations formed filaments distinct from normal IF. The effect of the ‘replaced’ head domains was not compensated when both hybrid molecules were combined. Taken together, the results indicate that complete removal of the head domains of either K8 or K18 arrested IF assembly at the state of soluble oligomers. Replacement of the head domains by head domains of the complementary partner partly compensated for the effect. However, regular IF formation could not take place when either the head domain was missing or it was replaced by the partner's keratin head.
Collapse
Affiliation(s)
- M Hatzfeld
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, FRG
| | | |
Collapse
|
39
|
Syder AJ, Yu QC, Paller AS, Giudice G, Pearson R, Fuchs E. Genetic mutations in the K1 and K10 genes of patients with epidermolytic hyperkeratosis. Correlation between location and disease severity. J Clin Invest 1994; 93:1533-42. [PMID: 7512983 PMCID: PMC294170 DOI: 10.1172/jci117132] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Epidermolytic hyperkeratosis (EH) is a skin disease caused by mutations in the genes encoding K1 and K10, the differentiation-specific keratins of epidermis. To explore the heterogeneity of mutations and to assess whether a correlation exists between disease severity and the extent to which a mutation interferes with keratin network formation, we determined the genetic bases of four severe incidences of EH and one unusually mild case. Two severe cases have the same mutation, K10-R156:C, at a conserved arginine that we previously showed was mutated to a histidine in two unrelated EH families. An additional severe case has a mutation six residues away, still within the amino end of the alpha-helical rod domain of K10. The other severe case has a mutation in the conserved carboxy end of the K1 rod. In contrast, affected members of the atypically mild family have a mutation just proximal to the conserved carboxy end of the K10 rod. By genetic engineering and gene transfection, we demonstrate that each mutation is functionally responsible for the keratin filament aberrations that are typical of keratinocytes cultured from these patients. Moreover, we show that the mild EH mutation less severely affects filament network formation. Taken together, our studies strengthen the link between filament perturbations, cell fragility, and degeneration.
Collapse
Affiliation(s)
- A J Syder
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | | | | | | | | | |
Collapse
|
40
|
Chan YM, Yu QC, LeBlanc-Straceski J, Christiano A, Pulkkinen L, Kucherlapati RS, Uitto J, Fuchs E. Mutations in the non-helical linker segment L1-2 of keratin 5 in patients with Weber-Cockayne epidermolysis bullosa simplex. J Cell Sci 1994; 107 ( Pt 4):765-74. [PMID: 7520042 DOI: 10.1242/jcs.107.4.765] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Keratins are the major structural proteins of the epidermis. Analyzing keratin gene sequences, appreciating the switch in keratin gene expression that takes place as epidermal cells commit to terminally differentiate, and elucidating how keratins assemble into 10 nm filaments, have provided the foundation that has led to the discoveries of the genetic bases of two major classes of human skin diseases, epidermolysis bullosa simplex (EBS) and epidermolytic hyperkeratosis (EH). These diseases involve point mutations in either the basal epidermal keratin pair, K5 and K14 (EBS), or the suprabasal pair, K1 and K10 (EH). In severe cases of EBS and EH, mutations are found in the highly conserved ends of the alpha-helical rod domain, regions that, by random mutagenesis, had already been found to be important for 10 nm filament assembly. In order to identify regions of the keratin polypeptides that might be more subtly involved in 10 nm filament assembly and to explore the diversity in mutations within milder cases of these diseases, we have focused on Weber-Cockayne EBS, where mild blistering occurs primarily on the hands and feet in response to mechanical stress. In this report, we show that affected members of two different W-C EBS families have point mutations within 1 residue of each other in the non-helical linker segment of the K5 polypeptide. Genetic linkage analyses, the absence of this mutation in > 150 wild-type alleles and filament assembly studies suggest that these mutations are responsible for the W-C EBS phenotype. These findings provide the best evidence to date that the non-helical linker region in the middle of the keratin polypeptides plays a subtle but significant role in intermediate filament structure and/or intermediate filament cytoskeletal architecture.
Collapse
Affiliation(s)
- Y M Chan
- Department of Molecular Genetics and Cell Biology, Howard Hughes Medical Institute, University of Chicago, IL 60637
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Makarova I, Carpenter D, Khan S, Ip W. A conserved region in the tail domain of vimentin is involved in its assembly into intermediate filaments. CELL MOTILITY AND THE CYTOSKELETON 1994; 28:265-77. [PMID: 7954854 DOI: 10.1002/cm.970280309] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although the head and rod domains of intermediate filament (IF) proteins are known to play significant roles in filament assembly, the role of the tail domain in this function is unclear and the available information supports contradictory conclusions. We examined this question by comparing transfection of the same cDNA constructs, encoding vimentins with modified tail domains, into cell lines that do and do not contain endogenous IF proteins. By this approach, we were able to distinguish between the ability of a mutant IF protein to initiate assembly de novo, from that of incorporating into existing filament networks. Vimentins with modifications at or near a highly conserved tripeptide, arg-asp-gly (RDG), of the tail domain incorporated into existing IF networks in vimentin-expressing (vim+) cells, but were assembly-incompetent in cells that did not express IF proteins (vim-). The failure of the RDG mutant vimentins to assemble into filament arrays in vim- cells was reversible by re-introducing a wild-type vimentin cDNA, whereupon both wild-type and mutant vimentins coassembled into one and the same IF network. We conclude that the function of the tail domain of type III IF proteins, and possibly of keratins K8 and K18, in IF assembly is distinct from those of other domains; a region encompassing the RDG tripeptide appears to be important in the assembly process.
Collapse
Affiliation(s)
- I Makarova
- Department of Anatomy and Cell Biology, University of Cincinnati College of Medicine
| | | | | | | |
Collapse
|
42
|
Heins S, Wong PC, Müller S, Goldie K, Cleveland DW, Aebi U. The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation. J Cell Biol 1993; 123:1517-33. [PMID: 8253847 PMCID: PMC2290863 DOI: 10.1083/jcb.123.6.1517] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Neurofilaments, assembled from NF-L, NF-M, and NF-H subunits, are the most abundant structural elements in myelinated axons. Although all three subunits contain a central, alpha-helical rod domain thought to mediate filament assembly, only NF-L self-assembles into 10-nm filaments in vitro. To explore the roles of the central rod, the NH2-terminal head and the COOH-terminal tail domain in filament assembly, full-length, headless, tailless, and rod only fragments of mouse NF-L were expressed in bacteria, purified, and their structure and assembly properties examined by conventional and scanning transmission electron microscopy (TEM and STEM). These experiments revealed that in vitro assembly of NF-L into bona fide 10-nm filaments requires both end domains: whereas the NH2-terminal head domain promotes lateral association of protofilaments into protofibrils and ultimately 10-nm filaments, the COOH-terminal tail domain controls lateral assembly of protofilaments so that it terminates at the 10-nm filament level. Hence, the two end domains of NF-L have antagonistic effects on the lateral association of protofilaments into higher-order structures, with the effect of the COOH-terminal tail domain being dominant over that of the NH2-terminal head domain. Consideration of the 21-nm axial beading commonly observed with 10-nm filaments, the approximate 21-nm axial periodicity measured on paracrystals, and recent cross-linking data combine to support a molecular model for intermediate filament architecture in which the 44-46-nm long dimer rods overlap by 1-3-nm head-to-tail, whereas laterally they align antiparallel both unstaggered and approximately half-staggered.
Collapse
Affiliation(s)
- S Heins
- M.E. Müller Institute at the Biocenter, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
Kouklis PD, Hatzfeld M, Brunkener M, Weber K, Georgatos SD. In vitro assembly properties of vimentin mutagenized at the beta-site tail motif. J Cell Sci 1993; 106 ( Pt 3):919-28. [PMID: 8308074 DOI: 10.1242/jcs.106.3.919] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intermediate filament (IF) proteins vimentin, desmin and peripherin share a 9-residue sequence motif (beta-site) located near the end of their COOH-terminal tail domain. Peptide inhibition experiments have previously suggested that the beta-site is involved in interactions that limit the lateral growth of IFs and prevent inappropriate filament-filament associations. To investigate this question further, we have constructed and expressed, in Escherichia coli, hamster vimentin bearing different mutations in the beta-site. We show here that a single exchange of glycine 450 with a valine residue, or an internal deletion of amino acids 444–452, strongly interferes with the normal assembly of IFs under in vitro conditions. These mutants polymerize into irregular fibrils that have a strong tendency to anastomose and laterally aggregate under isotonic conditions. In contrast, a non-conservative substitution of arginine 448 for glutamic acid does not significantly interfere with filament structure and yields subunits that polymerize into long, smooth filaments that show a slight aberration in thickness. All mutant proteins are soluble in low salt and form oligomers similar to the ones formed by wild-type vimentin. On the basis of these findings and on related observations, we propose that the tail domain of type III IF proteins contains important structural elements involved in lateral protofilament-protofilament interactions.
Collapse
Affiliation(s)
- P D Kouklis
- Programme of Cell Biology, European Molecular Biology Laboratory, Heidelberg, FRG
| | | | | | | | | |
Collapse
|
44
|
Abstract
Neurofilaments (NFs), composed of three distinct subunits NF-L, NF-M, and NF-H, are neuron-specific intermediate filaments present in most mature neurons. Using DNA transfection and mice expressing NF transgenes, we find that despite the ability of NF-L alone to assemble into short filaments in vitro NF-L cannot form filament arrays in vivo after expression either in cultured cells or in transgenic oligodendrocytes that otherwise do not contain a cytoplasmic intermediate filament (IF) array. Instead, NF-L aggregates into punctate or sheet like structures. Similar nonfilamentous structures are also formed when NF-M or NF-H is expressed alone. The competence of NF-L to assemble into filaments is fully restored by coexpression of NF-M or NF-H to a level approximately 10% of that of NF-L. Deletion of the head or tail domain of NF-M or substitution of the NF-H tail onto an NF-L subunit reveals that restoration of in vivo NF-L assembly competence requires an interaction provided by the NF-M or NF-H head domains. We conclude that, contrary to the expectation drawn from earlier in vitro assembly studies, NF-L is not sufficient to assemble an extended filament network in an in vivo context and that neurofilaments are obligate heteropolymers requiring NF-L and NF-M or NF-H.
Collapse
Affiliation(s)
- M K Lee
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | |
Collapse
|
45
|
Broers JL, Raymond Y, Rot MK, Kuijpers H, Wagenaar SS, Ramaekers FC. Nuclear A-type lamins are differentially expressed in human lung cancer subtypes. THE AMERICAN JOURNAL OF PATHOLOGY 1993; 143:211-20. [PMID: 8391215 PMCID: PMC1886958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nuclear A-type and B-type lamin expression was investigated in the major human lung cancer subtypes: small cell lung cancer (SCLC), squamous cell carcinomas, and adenocarcinomas (both non-SCLC). Twenty-two human lung cancer cell lines and 46 fresh frozen human lung cancer specimens were examined. Expression of B-type lamins was found in all the different cell lines. A-type lamins were expressed in all non-SCLC cell lines but were absent or only weakly expressed in 14 out of 16 SCLC cell lines. The immunocytochemical results were confirmed by immunoblotting and Northern blot analyses. In sections of SCLCs and non-SCLCs, B-type lamins were found to be expressed in all tumors. However, in some non-SCLCs, particularly in adenocarcinomas, a considerable proportion of the tumor cells were negative for B-type lamins. A-type lamin expression in SCLCs was weakly positive or negative in 14 out of 15 cases. In contrast, all non-SCLCs displayed A-type lamins, but in several of these samples, both cytoplasmic and nuclear staining was observed.
Collapse
Affiliation(s)
- J L Broers
- Department of Molecular Cell Biology & Genetics, University of Limburg, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Miller RK, Khuon S, Goldman RD. Dynamics of keratin assembly: exogenous type I keratin rapidly associates with type II keratin in vivo. J Cell Biol 1993; 122:123-35. [PMID: 7686161 PMCID: PMC2119605 DOI: 10.1083/jcb.122.1.123] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Keratin intermediate filaments (IF) are obligate heteropolymers containing equal amounts of type I and type II keratin. We have previously shown that microinjected biotinylated type I keratin is rapidly incorporated into endogenous bundles of keratin IF (tonofilaments) of PtK2 cells. In this study we show that the earliest steps in the assembly of keratin subunits into tonofilaments involve the extremely rapid formation of discrete aggregates of microinjected keratin. These are seen as fluorescent spots containing both type I and type II keratins within 1 min post-injection as determined by double label immunofluorescence. These observations suggest that endogenous type II keratin subunits can be rapidly mobilized from their endogenous state to form complexes with the injected type I protein. Furthermore, confocal microscopy and immunogold electron microscopy suggest that the type I-type II keratin spots from in close association with the endogenous keratin IF network. When the biotinylated protein is injected at concentrations of 0.3-0.5 mg/ml, the organization of the endogenous network of tonofilaments remains undisturbed during incorporation into tonofilaments. However, microinjection of 1.5-2.0 mg/ml of biotinylated type I results in significant alterations in the organization and assembly state of the endogenous keratin IF network soon after microinjection. The results of this study are consistent with the existence of a state of equilibrium between keratin subunits and polymerized keratin IF in epithelial cells, and provide further proof that IF are dynamic elements of the cytoskeleton of mammalian cells.
Collapse
Affiliation(s)
- R K Miller
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | | | |
Collapse
|
47
|
Wanner R, Förster HH, Tilmans I, Mischke D. Allelic variations of human keratins K4 and K5 provide polymorphic markers within the type II keratin gene cluster on chromosome 12. J Invest Dermatol 1993; 100:735-41. [PMID: 7684424 DOI: 10.1111/1523-1747.ep12475671] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To appreciate point mutations in keratin genes as causes for hereditary epithelial diseases, the normal variation of these gene sequences in the population must be known. Because genetic polymorphism of keratins at the protein level due to allelic variation has been described for the type II keratins 4 and 5, we have analyzed their corresponding genes using single-strand conformation polymorphism gel electrophoresis and sequence analysis of polymerase chain reaction amplified genomic DNA. Although no sequence variations were found in the carboxyl-terminal and rod domains we were able to map the molecular differences among the alleles to their amino-terminal domains. In particular, we have identified three alleles of keratin 4. Two alleles differed by a nucleotide transition causing a neutral amino acid substitution (alanine to valine) and one allele had a 42-bp in-frame deletion corresponding to 14 amino acids within the V1 subdomain. Three alleles were also recognized for the keratin 5 locus, all being elicited by single nucleotide substitutions. Of these, only one altered the amino acid sequence, replacing an uncharged (glycine) with a charged (glutamic acid) amino acid in the H1 subdomain. Pedigree analyses in three families showed the alleles to be inherited as autosomal Mendelian traits. Thus, these normal alleles of keratins 4 and 5 will provide favorable polymorphic markers for linkage analysis directly within the cluster of type II keratin genes located on chromosome 12q to elucidate the potential involvement of these and other keratin genes in disorders of squamous cell differentiation.
Collapse
Affiliation(s)
- R Wanner
- Institut für Experimentelle Onkologie und Transplantationsmedizin, Universitätsklinikum Rudolf Virchow, Freie Universität Berlin, F.R.G
| | | | | | | |
Collapse
|
48
|
van de Klundert FA, Raats JM, Bloemendal H. Intermediate filaments: regulation of gene expression and assembly. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:351-66. [PMID: 8513786 DOI: 10.1111/j.1432-1033.1993.tb17931.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- F A van de Klundert
- Department of Biochemistry, Faculty of Science, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
49
|
Abstract
Intermediate filaments (IFs) have always been considered as the most static and 'skeletal' cellular elements. This view is now changing: new information reveals that IFs exchange subunits at steady-state, that IF networks can be assembled de novo, and that IF proteins are subject to elaborate chemical modification and de-modification during mitosis. I describe below some of the key observations which have made us realize that IFs are dynamic structures. I also discuss some of the remaining questions pertinent to the pathways of IF assembly under in vivo conditions.
Collapse
Affiliation(s)
- S D Georgatos
- Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
50
|
Abstract
The past year has been extremely fruitful for research on intermediate filaments in general, and keratins in particular. Unprecedented progress has been made in our understanding of the structural requirements for keratin filament assembly and network formation, the dynamism characterizing keratin filaments, their function, and implication in human genetic disorders primarily affecting the skin. These exciting findings have several implications for future research.
Collapse
Affiliation(s)
- P A Coulombe
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|