1
|
Mikulski D, Kościelny K, Dróżdż I, Nowicki M, Misiewicz M, Perdas E, Strzałka P, Wierzbowska A, Fendler W. High Serum miR-361-3p Predicts Early Postdischarge Infections after Autologous Stem Cell Transplantation. Infect Chemother 2024; 56:339-350. [PMID: 39098001 PMCID: PMC11458496 DOI: 10.3947/ic.2024.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/24/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Autologous hematopoietic stem cell transplantation (AHSCT) is currently the backbone of the treatment of multiple myeloma (MM) and relapsed and refractory lymphomas. Notably, infections contribute to over 25% of fatalities among AHSCT recipients within the initial 100 days following the procedure. In this study, we aimed to evaluate three selected miRNAs: hsa-miR-155-5p, hsa-miR-320c, and hsa-miR-361-3p, in identifying AHSCT recipients at high risk of infectious events up to 100 days post-transplantation after discharge. MATERIALS AND METHODS The study group consisted of 58 patients (43 with MM, 15 with lymphoma) treated with AHSCT. Blood samples were collected from all patients at the same time point: on day +14 after transplantation. RESULTS Fifteen patients (25.9%) experienced infectious complications after post-transplant discharge within the initial +100 days post-transplantation. The median time to infection onset was 44 days (interquartile range, 25-78). Four patients required hospitalization due to severe infection. High expression of hsa-miR-361-3p (fold change [FC], 1.79; P=0.0139) in the patients experiencing infectious complications and overexpression of hsa-miR-320c (FC, 2.14; P<0.0001) in patients requiring hospitalization were observed. In the multivariate model, both lymphoma diagnosis (odds ratio [OR], 6.88; 95% confidence interval [CI], 1.55-30.56; P=0.0112) and high expression of hsa-miR-361-3p (OR, 3.00; 95% CI, 1.40-6.41; P=0.0047) were independent factors associated with post-discharge infectious complications occurrence. Our model in 10-fold cross-validation preserved its diagnostic potential with an area under the receiver operating characteristic curve of 0.78 (95% CI, 0.64-0.92). CONCLUSION Elevated serum hsa-miR-361-3p emerges as a promising biomarker for identifying patients at risk of infection during the early post-discharge period, potentially offering optimization of the prophylactic use of antimicrobial agents tailored to the specific risk profile of each AHSCT recipient.
Collapse
Affiliation(s)
- Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Hematooncology, Provincial Multi-Specialized Oncology and Trauma Center, Lodz, Poland
| | - Kacper Kościelny
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Mateusz Nowicki
- Department of Hematology and Transplantology, Provincial Multi-Specialized Oncology and Trauma Center, Lodz, Poland
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | | | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Piotr Strzałka
- Department of Hematology and Transplantology, Provincial Multi-Specialized Oncology and Trauma Center, Lodz, Poland
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology and Transplantology, Provincial Multi-Specialized Oncology and Trauma Center, Lodz, Poland
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
2
|
Wilson ZS, Raya-Sandino A, Miranda J, Fan S, Brazil JC, Quiros M, Garcia-Hernandez V, Liu Q, Kim CH, Hankenson KD, Nusrat A, Parkos CA. Critical role of thrombospondin-1 in promoting intestinal mucosal wound repair. JCI Insight 2024; 9:e180608. [PMID: 39078701 PMCID: PMC11385097 DOI: 10.1172/jci.insight.180608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Thrombospondin-1 (TSP1) is a matricellular protein associated with the regulation of cell migration through direct binding interactions with integrin proteins and by associating with other receptors known to regulate integrin function, including CD47 and CD36. We previously demonstrated that deletion of an epithelial TSP1 receptor, CD47, attenuates epithelial wound repair following intestinal mucosal injury. However, the mechanisms by which TSP1 contributes to intestinal mucosal repair remain poorly understood. Our results show upregulated TSP1 expression in colonic mucosal wounds and impaired intestinal mucosal wound healing in vivo upon intestinal epithelium-specific loss of TSP1 (VillinCre/+ Thbs1fl/fl or Thbs1ΔIEC mice). We report that exposure to exogenous TSP1 enhanced migration of intestinal epithelial cells in a CD47- and TGF-β1-dependent manner and that deficiency of TSP1 in primary murine colonic epithelial cells resulted in impaired wound healing. Mechanistically, TSP1 modulated epithelial actin cytoskeletal dynamics through suppression of RhoA activity, activation of Rho family small GTPase (Rac1), and changes in filamentous-actin bundling. Overall, TSP1 was found to regulate intestinal mucosal wound healing via CD47 and TGF-β1, coordinate integrin-containing cell-matrix adhesion dynamics, and remodel the actin cytoskeleton in migrating epithelial cells to enhance cell motility and promote wound repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingyang Liu
- Department of Pathology
- Mary H. Weiser Food Allergy Center, and
| | - Chang H. Kim
- Department of Pathology
- Mary H. Weiser Food Allergy Center, and
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
3
|
Kościelny K, Mikulski D, Nowicki M, Wyka K, Misiewicz M, Perdas E, Wierzbowska A, Fendler W. A low thrombospondin-1 serum concentration is related to increased bacteremia risk in lymphoma patients treated with BeEAM/BEAM conditioning regimen and autologous stem cell transplantation. Transpl Infect Dis 2024; 26:e14212. [PMID: 38112043 DOI: 10.1111/tid.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023]
Abstract
Infectious complications of autologous hematopoietic stem cell transplantation (AHSCT) are the most common adverse effects of the therapy, resulting in prolonged hospitalization and deterioration of patient well-being. Identifying predictors of these complications is essential for improving patient outcomes and guiding clinical management. This study aimed to examine thrombospondin-1 (THBS-1) serum levels as a potential biomarker for predicting bacteremia in AHSCT recipients. Blood samples were collected from 30 patients undergoing BeEAM/BEAM (bendamustine/carmustine, etoposide, cytarabine, melphalan) conditioning regimen at subsequent time points during AHSCT. THBS-1 levels were quantified using ELISA kits. Patients who developed bacteremia (n = 11) during the AHSCT course had lower THBS-1 concentration compared with those without (n = 19) (22.88 ± 11.53 µg/mL vs. 15.24 ± 5.62 µg/mL, p = .0325). The ROC curve analysis revealed that THBS-1 serum concentration at the first day of BeEAM/BEAM regimen had an area under the curve of 0.732 (95%CI: 0.5390.925, p = .0186) with an optimal cut-off value of 16.5 µg/ml resulting in 82% Sensitivity and 53% Specificity for predicting bacteremia with a median of 11 days before its occurrence. Patients with lower THBS-1 concentrations experienced febrile neutropenia significantly earlier, with a median difference of 5 days (p = .0037). Patients with a low concentration of THBS-1 had a higher risk of bacteremia and a shorter time to febrile neutropenia, indicating its potential value as a complications biomarker. Patients with lower serum THBS-1 concentrations, indicating an increased risk, may be more suitable for an inpatient AHSCT procedure, where close monitoring and immediate intervention are accessible.
Collapse
Affiliation(s)
- Kacper Kościelny
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Mateusz Nowicki
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Krystyna Wyka
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | | | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematology and Transplantology, Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Jiang SZ, To JL, Hughes MR, McNagny KM, Kim H. Platelet signaling at the nexus of innate immunity and rheumatoid arthritis. Front Immunol 2022; 13:977828. [PMID: 36505402 PMCID: PMC9732516 DOI: 10.3389/fimmu.2022.977828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disorder characterized by chronic inflammation of the synovial tissues and progressive destruction of bone and cartilage. The inflammatory response and subsequent tissue degradation are orchestrated by complex signaling networks between immune cells and their products in the blood, vascular endothelia and the connective tissue cells residing in the joints. Platelets are recognized as immune-competent cells with an important role in chronic inflammatory diseases such as RA. Here we review the specific aspects of platelet function relevant to arthritic disease, including current knowledge of the molecular crosstalk between platelets and other innate immune cells that modulate RA pathogenesis.
Collapse
Affiliation(s)
- Steven Z. Jiang
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey L. To
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Michael R. Hughes
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M. McNagny
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Murphy-Ullrich JE. Thrombospondin-1 Signaling Through the Calreticulin/LDL Receptor Related Protein 1 Axis: Functions and Possible Roles in Glaucoma. Front Cell Dev Biol 2022; 10:898772. [PMID: 35693935 PMCID: PMC9185677 DOI: 10.3389/fcell.2022.898772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is a matricellular extracellular matrix protein. Matricellular proteins are components of the extracellular matrix (ECM) that regulate key cellular functions and impact ECM organization, but which lack direct primary structural roles in the ECM. TSP-1 expression is upregulated in response to injury, hypoxia, growth factor stimulation, inflammation, glucose, and by reactive oxygen species. Relevant to glaucoma, TSP-1 is also a mechanosensitive molecule upregulated by mechanical stretch. TSP-1 expression is increased in ocular remodeling in glaucoma in both the trabecular meshwork and in the optic nerve head. The exact roles of TSP-1 in glaucoma remain to be defined, however. It plays important roles in cell behavior and in ECM remodeling during wound healing, fibrosis, angiogenesis, and in tumorigenesis and metastasis. At the cellular level, TSP-1 can modulate cell adhesion and migration, protease activity, growth factor activity, anoikis resistance, apoptosis, and collagen secretion and matrix assembly and cross-linking. These multiple functions and macromolecular and receptor interactions have been ascribed to specific domains of the TSP-1 molecule. In this review, we will focus on the cell regulatory activities of the TSP-1 N-terminal domain (NTD) sequence that binds to cell surface calreticulin (Calr) and which regulates cell functions via signaling through Calr complexed with LDL receptor related protein 1 (LRP1). We will describe TSP-1 actions mediated through the Calr/LRP1 complex in regulating focal adhesion disassembly and cytoskeletal reorganization, cell motility, anoikis resistance, and induction of collagen secretion and matrix deposition. Finally, we will consider the relevance of these TSP-1 functions to the pathologic remodeling of the ECM in glaucoma.
Collapse
Affiliation(s)
- Joanne E. Murphy-Ullrich
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Joanne E. Murphy-Ullrich,
| |
Collapse
|
6
|
Tajbakhsh A, Yousefi F, Abedi SM, Rezaee M, Savardashtaki A, Teng Y, Sahebkar A. The cross-talk between soluble "Find me" and "Keep out" signals as an initial step in regulating efferocytosis. J Cell Physiol 2022; 237:3113-3126. [PMID: 35578547 DOI: 10.1002/jcp.30770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
The rapid clearance of apoptotic cells (ACs), known as efferocytosis, prompts the inhibition of inflammatory responses and autoimmunity and maintains homeostatic cell turnover by controlling the release of intracellular contents. The fast clearance of ACs requires professional and nonprofessional phagocytic cells that can accurately and promptly recognize ACs and migrate towards them. Cells undergoing apoptosis alarm their presence by releasing special soluble chemotactic factors, such as lactoferrin, that act as "Find me," "Keep out," or "Stay away" signals to recruit phagocytic cells, such as macrophages or prevent granulocyte migration. Efferocytosis effectively serves to prevent damage-associated molecular pattern release and secondary necrosis and inhibit inflammation/autoimmunity at the very first step. Since less attention has been given to the cross-talk and balance of "Find me" and "Keep out" signals released from ACs in efferocytosis, we set out to investigate the current knowledge of the roles of "Find me" and "Keep out" signals in the efferocytosis process.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh M Abedi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amir Savardashtaki
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Depatment of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Kaur S, Bronson SM, Pal-Nath D, Miller TW, Soto-Pantoja DR, Roberts DD. Functions of Thrombospondin-1 in the Tumor Microenvironment. Int J Mol Sci 2021; 22:4570. [PMID: 33925464 PMCID: PMC8123789 DOI: 10.3390/ijms22094570] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The identification of thrombospondin-1 as an angiogenesis inhibitor in 1990 prompted interest in its role in cancer biology and potential as a therapeutic target. Decreased thrombospondin-1 mRNA and protein expression are associated with progression in several cancers, while expression by nonmalignant cells in the tumor microenvironment and circulating levels in cancer patients can be elevated. THBS1 is not a tumor suppressor gene, but the regulation of its expression in malignant cells by oncogenes and tumor suppressor genes mediates some of their effects on carcinogenesis, tumor progression, and metastasis. In addition to regulating angiogenesis and perfusion of the tumor vasculature, thrombospondin-1 limits antitumor immunity by CD47-dependent regulation of innate and adaptive immune cells. Conversely, thrombospondin-1 is a component of particles released by immune cells that mediate tumor cell killing. Thrombospondin-1 differentially regulates the sensitivity of malignant and nonmalignant cells to genotoxic stress caused by radiotherapy and chemotherapy. The diverse activities of thrombospondin-1 to regulate autophagy, senescence, stem cell maintenance, extracellular vesicle function, and metabolic responses to ischemic and genotoxic stress are mediated by several cell surface receptors and by regulating the functions of several secreted proteins. This review highlights progress in understanding thrombospondin-1 functions in cancer and the challenges that remain in harnessing its therapeutic potential.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| | - Steven M. Bronson
- Department of Internal Medicine, Section of Molecular Medicine, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| | - Thomas W. Miller
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, 13273 Marseille, France
| | - David R. Soto-Pantoja
- Department of Surgery and Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| |
Collapse
|
8
|
Voices from the dead: The complex vocabulary and intricate grammar of dead cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:1-90. [PMID: 31036289 DOI: 10.1016/bs.apcsb.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Of the roughly one million cells per second dying throughout the body, the vast majority dies by apoptosis, the predominant form of regulated cell death in higher organisms. Long regarded as mere waste, apoptotic cells are now recognized as playing a prominent and active role in homeostatic maintenance, especially resolution of inflammation, and in the sculpting of tissues during development. The activities associated with apoptotic cells are continually expanding, with more recent studies demonstrating their ability to modulate such vital functions as proliferation, survival, differentiation, metabolism, migration, and angiogenesis. In each case, the role of apoptotic cells is active, exerting their effects via new activities acquired during the apoptotic program. Moreover, the capacity to recognize and respond to apoptotic cells is not limited to professional phagocytes. Most, if not all, cells receive and integrate an array of signals from cells dying in their vicinity. These signals comprise a form of biochemical communication. As reviewed in this chapter, this communication is remarkably sophisticated; each of its three critical steps-encoding, transmission, and decoding of the apoptotic cell's "message"-is endowed with exquisite robustness. Together, the abundance and intricacy of the variables at each step comprise the vocabulary and grammar of the language by which dead cells achieve their post-mortem voice. The combinatorial complexity of the resulting communication network permits dying cells, through the signals they emit and the responses those signals elicit, to partake of an expanded role in homeostasis, acting as both sentinels of environmental change and agents of adaptation.
Collapse
|
9
|
Teoh CM, Tan SSL, Tran T. Integrins as Therapeutic Targets for Respiratory Diseases. Curr Mol Med 2016; 15:714-34. [PMID: 26391549 PMCID: PMC5427774 DOI: 10.2174/1566524015666150921105339] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 09/09/2015] [Accepted: 09/19/2015] [Indexed: 01/14/2023]
Abstract
Integrins are a large family of transmembrane heterodimeric proteins that constitute the main receptors for extracellular matrix components. Integrins were initially thought to be primarily involved in the maintenance of cell adhesion and tissue integrity. However, it is now appreciated that integrins play important roles in many other biological processes such as cell survival, proliferation, differentiation, migration, cell shape and polarity. Lung cells express numerous combinations and permutations of integrin heterodimers. The complexity and diversity of different integrin heterodimers being implicated in different lung diseases present a major challenge for drug development. Here we provide a comprehensive overview of the current knowledge of integrins from studies in cell culture to integrin knockout mouse models and provide an update of results from clinical trials for which integrins are therapeutic targets with a focus on respiratory diseases (asthma, emphysema, pneumonia, lung cancer, pulmonary fibrosis and sarcoidosis).
Collapse
Affiliation(s)
| | | | - T Tran
- Department of Physiology, MD9, 2 Medical Drive, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
10
|
Fairaq A, Goc A, Artham S, Sabbineni H, Somanath PR. TNFα induces inflammatory stress response in microvascular endothelial cells via Akt- and P38 MAP kinase-mediated thrombospondin-1 expression. Mol Cell Biochem 2015; 406:227-36. [PMID: 25963668 PMCID: PMC4504829 DOI: 10.1007/s11010-015-2440-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 05/06/2015] [Indexed: 12/14/2022]
Abstract
Tumor necrosis factor-α (TNFα) and thrombospondin-1 (TSP-1) are well-known mediators of inflammation. However, a causal relationship between TNFα stimuli and TSP-1 expression in endothelial cell stress, and the underlying mechanisms has not yet been investigated. In our study, human microvascular endothelial cells (hMEC) were treated with TNFα and analyzed for endothelial dysfunction, TSP-1 expression, and associated mechanisms. TNFα treatment induced a dose-dependent increase in TSP-1 expression in hMEC associated with increased endothelial permeability, apoptosis, and reduced proliferation. Whereas TNFα activated Akt, ERK, and P38 mitogen-activated protein kinase (P38 MAPK) simultaneously in hMEC, inhibitors of Akt and P38 MAPK, but not ERK blunted TNFα-induced TSP-1 expression. Silencing of NFκB gene had no significant effect on TNFα-induced TSP-1 expression. Our study demonstrates the novel role of TNFα in inducing inflammatory stress response in hMEC through Akt- and P38 MAPK-mediated expression of TSP-1, independent of NFκB signaling.
Collapse
Affiliation(s)
- Arwa Fairaq
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical center, Augusta, GA
| | - Anna Goc
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical center, Augusta, GA
| | - Sandeep Artham
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical center, Augusta, GA
| | - Harika Sabbineni
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical center, Augusta, GA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical center, Augusta, GA
- Department of Medicine, Vascular Biology Center and Cancer Center, Georgia Regents University, Augusta, GA
| |
Collapse
|
11
|
|
12
|
Thrombospondin-1 restrains neutrophil granule serine protease function and regulates the innate immune response during Klebsiella pneumoniae infection. Mucosal Immunol 2015; 8:896-905. [PMID: 25492474 PMCID: PMC4465063 DOI: 10.1038/mi.2014.120] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/31/2014] [Indexed: 02/04/2023]
Abstract
Neutrophil elastase (NE) and cathepsin G (CG) contribute to intracellular microbial killing but, if left unchecked and released extracellularly, promote tissue damage. Conversely, mechanisms that constrain neutrophil serine protease activity protect against tissue damage but may have the untoward effect of disabling the microbial killing arsenal. The host elaborates thrombospondin-1 (TSP-1), a matricellular protein released during inflammation, but its role during neutrophil activation following microbial pathogen challenge remains uncertain. Mice deficient in TSP-1 (thbs1(-/-)) showed enhanced lung bacterial clearance, reduced splenic dissemination, and increased survival compared with wild-type (WT) controls during intrapulmonary Klebsiella pneumoniae infection. More effective pathogen containment was associated with reduced burden of inflammation in thbs1(-/-) mouse lungs compared with WT controls. Lung NE activity was increased in thbs1(-/-) mice following K. pneumoniae challenge, and thbs1(-/-) neutrophils showed enhanced intracellular microbial killing that was abrogated with recombinant TSP-1 administration or WT serum. Thbs1(-/-) neutrophils exhibited enhanced NE and CG enzymatic activity, and a peptide corresponding to amino-acid residues 793-801 within the type-III repeat domain of TSP-1 bridled neutrophil proteolytic function and microbial killing in vitro. Thus, TSP-1 restrains proteolytic action during neutrophilic inflammation elicited by K. pneumoniae, providing a mechanism that may regulate the microbial killing arsenal.
Collapse
|
13
|
Krishna SM, Golledge J. The role of thrombospondin-1 in cardiovascular health and pathology. Int J Cardiol 2013; 168:692-706. [DOI: 10.1016/j.ijcard.2013.04.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 03/09/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
|
14
|
Martin-Manso G, Navarathna DHMLP, Galli S, Soto-Pantoja DR, Kuznetsova SA, Tsokos M, Roberts DD. Endogenous thrombospondin-1 regulates leukocyte recruitment and activation and accelerates death from systemic candidiasis. PLoS One 2012; 7:e48775. [PMID: 23144964 PMCID: PMC3492437 DOI: 10.1371/journal.pone.0048775] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 10/01/2012] [Indexed: 01/13/2023] Open
Abstract
Disseminated Candida albicans infection results in high morbidity and mortality despite treatment with existing antifungal drugs. Recent studies suggest that modulating the host immune response can improve survival, but specific host targets for accomplishing this goal remain to be identified. The extracellular matrix protein thrombospondin-1 is released at sites of tissue injury and modulates several immune functions, but its role in C. albicans pathogenesis has not been investigated. Here, we show that mice lacking thrombospondin-1 have an advantage in surviving disseminated candidiasis and more efficiently clear the initial colonization from kidneys despite exhibiting fewer infiltrating leukocytes. By examining local and systemic cytokine responses to C. albicans and other standard inflammatory stimuli, we identify a crucial function of phagocytes in this enhanced resistance. Subcutaneous air pouch and systemic candidiasis models demonstrated that endogenous thrombospondin-1 enhances the early innate immune response against C. albicans and promotes activation of inflammatory macrophages (inducible nitric oxide synthase+, IL-6high, TNF-αhigh, IL-10low), release of the chemokines MIP-2, JE, MIP-1α, and RANTES, and CXCR2-driven polymorphonuclear leukocytes recruitment. However, thrombospondin-1 inhibited the phagocytic capacity of inflammatory leukocytes in vivo and in vitro, resulting in increased fungal burden in the kidney and increased mortality in wild type mice. Thus, thrombospondin-1 enhances the pathogenesis of disseminated candidiasis by creating an imbalance in the host immune response that ultimately leads to reduced phagocytic function, impaired fungal clearance, and increased mortality. Conversely, inhibitors of thrombospondin-1 may be useful drugs to improve patient recovery from disseminated candidiasis.
Collapse
Affiliation(s)
- Gema Martin-Manso
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | | | | | | | | | | |
Collapse
|
15
|
Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis 2010; 15:1007-28. [PMID: 20157780 DOI: 10.1007/s10495-010-0472-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue homeostasis in metazoa requires the rapid and efficient clearance of dying cells by professional or semi-professional phagocytes. Impairment of this finely regulated, fundamental process has been implicated in the development of autoimmune diseases, such as systemic lupus erythematosus. Various studies have provided us a detailed understanding of the interaction between dying cells and phagocytes as well as the current concept that apoptotic cell removal leads to a non- or anti-inflammatory response, whereas necrotic cell removal stimulates a pro-inflammatory reaction. In contrast, our knowledge about the soluble factors released from dying cells is rather limited, although meanwhile it is generally accepted that not only the dying cell itself but also the substances liberated during cell death contribute to the process of corpse clearance and the subsequent immune response. This review article is intended as an up-to-date survey over attraction and danger signals of apoptotic, primary and secondary necrotic cells, their function as chemoattractants in phagocyte recruitment, additional effects on the immune system, and the receptors, which are engaged in this scenario.
Collapse
|
16
|
Llera AS, Girotti MR, Benedetti LG, Podhajcer OL. Matricellular proteins and inflammatory cells: A task force to promote or defeat cancer? Cytokine Growth Factor Rev 2010; 21:67-76. [DOI: 10.1016/j.cytogfr.2009.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Martin-Manso G, Galli S, Ridnour LA, Tsokos M, Wink DA, Roberts DD. Thrombospondin 1 promotes tumor macrophage recruitment and enhances tumor cell cytotoxicity of differentiated U937 cells. Cancer Res 2008; 68:7090-9. [PMID: 18757424 PMCID: PMC2562557 DOI: 10.1158/0008-5472.can-08-0643] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibition of tumor growth by thrombospondin (TSP) 1 is generally attributed to its antiangiogenic activity, but effects on tumor immunity should also be considered. We show that overexpression of TSP1 in melanoma cells increases macrophage recruitment into xenograft tumors grown in nude or beige/nude mice. In vitro, TSP1 acutely induces expression of plasminogen activator inhibitor-1 (PAI-1) by monocytic cells, suggesting that TSP1-induced macrophage recruitment is at least partially mediated by PAI-1. Tumor-associated macrophages (TAM) can either promote or limit tumor progression. The percentage of M1-polarized macrophages expressing inducible nitric oxide synthase is increased in TSP1-expressing tumors. Furthermore, soluble TSP1 stimulates killing of breast carcinoma and melanoma cells by IFN-gamma-differentiated U937 cells in vitro via release of reactive oxygen species. TSP1 causes a significant increase in phorbol ester-mediated superoxide generation from differentiated monocytes by interaction with alpha(6)beta(1) integrin through its NH(2)-terminal region. The NH(2)-terminal domain of TSP2 also stimulates monocyte superoxide production. Extracellular calcium is required for the TSP1-induced macrophage respiratory burst. Thus, TSP1 may play an important role in antitumor immunity by enhancing recruitment and activation of M1 TAMs, which provides an additional selective pressure for loss of TSP1 and TSP2 expression during tumor progression.
Collapse
Affiliation(s)
- Gema Martin-Manso
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
18
|
van de Sande WWJ, Fahal A, Verbrugh H, van Belkum A. Polymorphisms in Genes Involved in Innate Immunity Predispose Toward Mycetoma Susceptibility. THE JOURNAL OF IMMUNOLOGY 2007; 179:3065-74. [PMID: 17709521 DOI: 10.4049/jimmunol.179.5.3065] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Madurella mycetomatis is the main causative agent of mycetoma, a tumorous fungal infection characterized by the infiltration of large numbers of neutrophils at the site of infection. In endemic areas the majority of inhabitants have Abs to M. mycetomatis, although only a small proportion of individuals actually develop mycetomal disease. It therefore appears that neutrophils are unable to clear the infection in some individuals. To test this hypothesis, 11 single nucleotide polymorphisms involved in neutrophil function were studied in a population of Sudanese mycetoma patients vs geographically and ethnically matched controls. Significant differences in allele distribution for IL-8 (CXCL8), its receptor CXCR2, thrombospondin-4 (TSP-4), NO synthase 2 (NOS2), and complement receptor 1 (CR1) were found. Further, the NOS2(Lambaréné) polymorphism was clearly associated with lesion size. The genotypes obtained for CXCL8, its receptor CXCR2, and TSP-4 all predisposed to a higher CXCL8 expression in patients, which was supported by the detection of significantly elevated levels of CXCL8 in patient serum. The NOS2 genotype observed in healthy controls was correlated with an increase in NOS2 expression and higher concentrations of nitrate and nitrite in control serum. We present the first evidence of human genetic predisposition toward susceptibility to mycetoma, a neglected infection of the poor.
Collapse
Affiliation(s)
- Wendy W J van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Kaipainen A, Kieran MW, Huang S, Butterfield C, Bielenberg D, Mostoslavsky G, Mulligan R, Folkman J, Panigrahy D. PPARalpha deficiency in inflammatory cells suppresses tumor growth. PLoS One 2007; 2:e260. [PMID: 17327920 PMCID: PMC1800345 DOI: 10.1371/journal.pone.0000260] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 02/02/2007] [Indexed: 01/09/2023] Open
Abstract
Inflammation in the tumor bed can either promote or inhibit tumor growth. Peroxisome proliferator-activated receptor (PPAR)α is a central transcriptional suppressor of inflammation, and may therefore modulate tumor growth. Here we show that PPARα deficiency in the host leads to overt inflammation that suppresses angiogenesis via excess production of the endogenous angiogenesis inhibitor thrombospondin-1 and prevents tumor growth. Bone marrow transplantation and granulocyte depletion show that PPARα expressing granulocytes are necessary for tumor growth. Neutralization of thrombospondin-1 restores tumor growth in PPARα-deficient mice. These findings suggest that the absence of PPARα activity renders inflammatory infiltrates tumor suppressive and, thus, may provide a target for inhibiting tumor growth by modulating stromal processes, such as angiogenesis.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- Bone Marrow Transplantation
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/pathology
- Cell Line, Transformed/transplantation
- Corneal Neovascularization/genetics
- Granulocytes/physiology
- Inflammation
- Male
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/genetics
- Melanoma, Experimental/pathology
- Mice
- Mice, Knockout
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Pathologic/prevention & control
- PPAR alpha/deficiency
- PPAR alpha/genetics
- PPAR alpha/physiology
- Radiation Chimera
- Thrombospondin 1/physiology
- Vascular Endothelial Growth Factor A/physiology
Collapse
Affiliation(s)
- Arja Kaipainen
- Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark W. Kieran
- Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sui Huang
- Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Catherine Butterfield
- Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diane Bielenberg
- Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gustavo Mostoslavsky
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Mulligan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Judah Folkman
- Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dipak Panigrahy
- Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Chin AC, Parkos CA. Pathobiology of Neutrophil Transepithelial Migration: Implications in Mediating Epithelial Injury. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 2:111-43. [DOI: 10.1146/annurev.pathol.2.010506.091944] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alex C. Chin
- Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322; ,
| | - Charles A. Parkos
- Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322; ,
| |
Collapse
|
21
|
Arguello M, Paz S, Hernandez E, Corriveau-Bourque C, Fawaz LM, Hiscott J, Lin R. Leukotriene A4 hydrolase expression in PEL cells is regulated at the transcriptional level and leads to increased leukotriene B4 production. THE JOURNAL OF IMMUNOLOGY 2006; 176:7051-61. [PMID: 16709867 DOI: 10.4049/jimmunol.176.11.7051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Primary effusion lymphoma (PEL) is a herpesvirus-8-associated lymphoproliferative disease characterized by migration of tumor cells to serous body cavities. PEL cells originate from postgerminal center B cells and share a remarkable alteration in B cell transcription factor expression and/or activation with classical Hodgkin's disease cells. Comparative analysis of gene expression by cDNA microarray of BCBL-1 cells (PEL), L-428 (classical Hodgkin's disease), and BJAB cells revealed a subset of genes that were differentially expressed in BCBL-1 cells. Among these, four genes involved in cell migration and chemotaxis were strongly up-regulated in PEL cells: leukotriene A4 (LTA4) hydrolase (LTA4H), IL-16, thrombospondin-1 (TSP-1), and selectin-P ligand (PSGL-1). Up-regulation of LTA4H was investigated at the transcriptional level. Full-length LTA4H promoter exhibited 50% higher activity in BCBL-1 cells than in BJAB or L-428 cells. Deletion analysis of the LTA4H promoter revealed a positive cis-regulatory element active only in BCBL-1 cells in the promoter proximal region located between -76 and -40 bp. Formation of a specific DNA-protein complex in this region was confirmed by EMSA. Coculture of ionophore-stimulated primary neutrophils with BCBL-1 cells leads to an increased production of LTB4 compared with coculture with BJAB and L-428 cells as measured by enzyme immunoassay, demonstrating the functional significance of LTA4H up-regulation.
Collapse
Affiliation(s)
- Meztli Arguello
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Isordia-Salas I, Manns JM, Sainz I, Parekh H, DeLa Cadena RA. Thromsbospondin-1 binds to the heavy chain of elastase activated coagulation factor V (FVaHNE) and enhances thrombin generation on the surface of a promyelocytic cell line. Thromb Res 2005; 116:533-43. [PMID: 16181989 DOI: 10.1016/j.thromres.2005.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 02/24/2005] [Accepted: 02/24/2005] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Thrombospondin 1 (TSP1) has the ability to bind to HL-60 cells and to reversibly inhibit human neutrophil elastase (HNE). Human factor V (FV) can be cleaved by HNE thereby providing FV with cofactor activity (FVa(HNE)). Experiments were performed to evaluate the ability of HNE expressed on the surface of HL-60 cells to generate FVa(HNE) to support thrombin generation, and to determine the effect of TSP1 on this reaction. RESULTS Western blot analysis showed TSP1 forming a complex with FVa(HNE) within a region corresponding to the heavy chain of FV. Enzymatic reactions were performed to determine the role of TSP1-HNE-FVa(HNE) on the surface of HL-60 cells, namely the assembly of the prothrombinase complex. Thrombin generation was measured by the chromogenic substrate S2238. Exposure of factor V to HL-60 cells prior to the addition of prothrombin and activated factor X provided FV with cofactor activity. HL-60 cells were found capable of synthesizing factor V with cofactor activity, but HL-60 cells failed to synthesize and/or to provide factor X with enzymatic activity. The ability of HL-60 cells to synthesize FV and TSP1 was demonstrated. The addition of exogenous TSP1 enhanced both the rate and amount of thrombin generated on the HL-60 cell surface. CONCLUSION Despite the ability of TSP1 to reversibly inhibit HNE in a purified system, TSP1 expression favors the reactions leading to thrombin generation on the HL-60 cell surface. These observations are relevant to clinical conditions where there is a prothrombotic state such as malignant tumors.
Collapse
Affiliation(s)
- Irma Isordia-Salas
- Temple University School of Medicine, Department of Physiology, The Sol Sherry Thrombosis Research Center, 3400 North Broad Street Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
23
|
Adams JC. Functions of the conserved thrombospondin carboxy-terminal cassette in cell-extracellular matrix interactions and signaling. Int J Biochem Cell Biol 2004; 36:1102-14. [PMID: 15094125 DOI: 10.1016/j.biocel.2004.01.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 01/12/2004] [Accepted: 01/21/2004] [Indexed: 11/19/2022]
Abstract
Thrombospondins (TSPs) are extracellular, multidomain, calcium-binding glycoproteins that function at cell surfaces, in extracellular matrix (ECM) and as bridging molecules in cell-cell interactions. TSPs are multifunctional and modulate cell behavior during development, wound-healing, immune response, tumor growth and in the homeostasis of adult tissues. TSPs are assembled as oligomers that are composed of homologous polypeptides. In all the TSP polypeptides, the most highly-conserved region is the carboxyl-region, which contains a characteristic set of domains comprising EGF domains, TSP type 3 repeats and a globular carboxy-terminal domain. This large region is termed here the thrombospondin carboxy-terminal cassette (TSP-CTC). The strong conservation of the TSP-CTC suggests that it may mediate ancestral functions that are shared by all TSPs. This review summarizes the current knowledge of the TSP-CTC and areas of future interest.
Collapse
Affiliation(s)
- Josephine C Adams
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, NC1-110, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
24
|
Elzie CA, Murphy-Ullrich JE. The N-terminus of thrombospondin: the domain stands apart. Int J Biochem Cell Biol 2004; 36:1090-101. [PMID: 15094124 DOI: 10.1016/j.biocel.2003.12.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 12/18/2003] [Accepted: 12/22/2003] [Indexed: 10/26/2022]
Abstract
Thrombospondin 1 (TSP1) was first recognized as a thrombin-sensitive protein associated with platelet membranes. It is secreted by numerous cell types and its expression is predominant in areas of active tissue remodeling. Thrombospondins 1 and 2 are large, trimeric, matricellular proteins, composed of multiple structural motifs which interact with a diverse array of receptors and molecules. Thrombospondin's capacity to bind multiple receptors renders it multifunctional. The functions of its isolated domains can be overlapping or contradictory. In this review, we focus on the N-terminus of the molecule, first recognized for its strong heparin binding properties and characterized by its susceptibility to proteolytic cleavage from the stalk region of thrombospondin. The N-terminus, called the heparin binding domain (HBD), interacts with a variety of macromolecules including heparan sulfate proteoglycans at the membrane and in the matrix, LDL receptor-related protein (LRP), sulfated glycolipids, calreticulin, and integrins. The HBD mediates endocytosis of thrombospondin. It functions both as a soluble and an insoluble modulator of cell adhesion and motility. In contrast to thrombospondin, the HBD has pro-angiogenic activity. We propose that the HBD of thrombospondins 1 and 2 are found primarily in the cellular microenvironment in conditions of cellular injury, stress and tissue remodeling and that the HBD conveys multiple signals involved in cellular adaptation to injury.
Collapse
Affiliation(s)
- Carrie Ann Elzie
- Department of Pathology, Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, VH 668, 1530 3rd Avenue South, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
25
|
Trujillo G, Kew RR. Platelet-derived thrombospondin-1 is necessary for the vitamin D-binding protein (Gc-globulin) to function as a chemotactic cofactor for C5a. THE JOURNAL OF IMMUNOLOGY 2004; 173:4130-6. [PMID: 15356163 DOI: 10.4049/jimmunol.173.6.4130] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chemotactic activity of C5a and C5a des Arg can be enhanced significantly by the vitamin D-binding protein (DBP), also known as Gc-globulin. DBP is a multifunctional 56-kDa plasma protein that binds and transports several diverse ligands. The objective of this study was to investigate the mechanisms by which DBP functions as a chemotactic cofactor for C5a using neutrophils and U937 cells transfected with the C5aR (U937-C5aR cells). The results demonstrate that U937-C5aR cells show C5a chemotactic enhancement only to DBP in serum, but, unlike mature neutrophils, this cell line cannot respond to DBP in plasma or to purified DBP. Analysis by SDS-PAGE and isoelectric focusing revealed no structural difference between DBP in serum compared with DBP in plasma. However, plasma supplemented with either serum, DBP-depleted serum, or activated platelet releasate provides a required factor and permits DBP to function as a chemotactic cofactor for C5a. Fractionation of activated platelet releasate revealed that the additional factor possessed the properties of thrombospondin-1 (TSP-1). Finally, purified TSP-1 alone could reproduce the effect of serum or platelet releasate, whereas Abs to TSP-1 could block these effects. These results provide clear evidence that TSP-1 is needed for DBP to function as a chemotactic cofactor for C5a.
Collapse
Affiliation(s)
- Glenda Trujillo
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | | |
Collapse
|
26
|
Orr AW, Elzie CA, Kucik DF, Murphy-Ullrich JE. Thrombospondin signaling through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration. J Cell Sci 2003; 116:2917-27. [PMID: 12808019 DOI: 10.1242/jcs.00600] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The matricellular extracellular matrix protein thrombospondin-1 (TSP1) stimulates focal adhesion disassembly through a sequence (known as the hep I peptide) in its heparin-binding domain. This mediates signaling through a receptor co-complex involving calreticulin and low-density lipoprotein (LDL) receptor-related protein (LRP). We postulate that this transition to an intermediate adhesive state enhances cellular responses to dynamic environmental conditions. Since cell adhesion dynamics affect cell motility, we asked whether TSP1/hep I-induced intermediate adhesion alters cell migration. Using both transwell and Dunn chamber assays, we demonstrate that TSP1 and hep I gradients stimulate endothelial cell chemotaxis. Treatment with focal adhesion-labilizing concentrations of TSP1/hep I in the absence of a gradient enhances endothelial cell random migration, or chemokinesis, associated with an increase in cells migrating, migration speed, and total cellular displacement. Calreticulin-null and LRP-null fibroblasts do not migrate in response to TSP1/hep I, nor do endothelial cells treated with the LRP inhibitor receptor-associated protein (RAP). Furthermore, TSP1/hep I-induced focal adhesion disassembly is associated with reduced chemotaxis to basic fibroblast growth factor (bFGF) but enhanced chemotaxis to acidic (a)FGF, suggesting differential modulation of growth factor-induced migration. Thus, TSP1/hep I stimulation of intermediate adhesion regulates the migratory phenotype of endothelial cells and fibroblasts, suggesting a role for TSP1 in remodeling responses.
Collapse
Affiliation(s)
- A Wayne Orr
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | | | | | |
Collapse
|
27
|
Moodley Y, Rigby P, Bundell C, Bunt S, Hayashi H, Misso N, McAnulty R, Laurent G, Scaffidi A, Thompson P, Knight D. Macrophage recognition and phagocytosis of apoptotic fibroblasts is critically dependent on fibroblast-derived thrombospondin 1 and CD36. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:771-9. [PMID: 12598312 PMCID: PMC1868087 DOI: 10.1016/s0002-9440(10)63874-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The induction of fibroblast apoptosis and their clearance by phagocytes is essential for normal wound healing and prevention of scarring. However, little is known about the clearance of apoptotic fibroblasts and whether apoptotic cells are active participants in the recruitment and activation of phagocytes. In this study, we provide the first evidence that apoptotic fibroblasts actively release increased amounts of thrombospondin (TSP1) to actively recruit macrophages. Expression of TSP1 and its receptor CD36 was increased on the surface of apoptotic fibroblasts. By chemical cross-linking and immunoprecipitation we show that TSP1 and CD36 were directly associated. This was confirmed by confocal microscopy. Blockade of either CD36 or TSP1 on apoptotic fibroblasts inhibited phagocytosis. Blockade of alpha v beta 3 integrins as well as CD36 and TSP1 on macrophages inhibited phagocytosis. In contrast, phosphatidylserine or lectins were not involved. These findings suggest that apoptotic fibroblasts release TSP1 as a signal to recruit macrophages while the up-regulated expression of the CD36/TSP1 complex on their cell surface may form a ligand bridging the fibroblast to a complex consisting of alpha v beta 3/CD36/TSP1 on macrophages. These results establish fundamental mechanisms for the clearance of apoptotic fibroblasts and may provide insights into the processes involved in normal wound repair.
Collapse
Affiliation(s)
- Yuben Moodley
- Asthma and Allergy Research Institute, Sir Charles Gairdner Hospital and Department of Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Trumel C, Plantavid M, Lévy-Tolédano S, Ragab A, Caen JP, Aguado E, Malissen B, Payrastre B. Platelet aggregation induced by the C-terminal peptide of thrombospondin-1 requires the docking protein LAT but is largely independent of alphaIIb/beta3. J Thromb Haemost 2003; 1:320-9. [PMID: 12871507 DOI: 10.1046/j.1538-7836.2003.00068.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thrombospondin-1 (TSP1) is abundantly secreted during platelet activation and plays a role in irreversible platelet aggregation. A peptide derived from the C-terminal domain of TSP1, RFYVVMWK (RFY) can activate human platelets at least in part via its binding to integrin-associated protein. Although integrin-associated protein is known to physically interact with alphaIIb/beta3, we found that this major platelet integrin had only a partial implication in RFY-mediated platelet aggregation. Accordingly, RFY induced a significant Glanzmann type I thrombasthenic platelet aggregation. The alphaIIb/beta3-dependent part of platelet aggregation induced by RFY was mainly due to secreted ADP and thromboxane A2. In the absence of alphaIIb/beta3 and fibrinogen, RFY stimulated a rapid tyrosine phosphorylation of a set of proteins, including Syk, linker for activation of T cells (LAT) and phospholipase Cgamma2. This signaling pathway was critical for RFY-mediated platelet activation as revealed by the use of pharmacological inhibitors as well as LAT-deficient mouse platelets. Phosphoinositide 3-kinase activation was also required for RFY-mediated platelet aggregation. Our results unravel a new alphaIIb/beta3 and fibrinogen-independent mechanism for platelet aggregation in response to the active peptide from the C-terminal domain of TSP1.
Collapse
Affiliation(s)
- C Trumel
- INSERM, Unité 563, Centre de Physiopathologie Toulouse Purpan, Department of Oncogenesis and Cell Signaling in Hematopoetic Cells, Hôpital Purpan, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Brock DA, Hatton RD, Giurgiutiu DV, Scott B, Ammann R, Gomer RH. The different components of a multisubunit cell number-counting factor have both unique and overlapping functions. Development 2002; 129:3657-68. [PMID: 12117815 DOI: 10.1242/dev.129.15.3657] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dictyostelium aggregation streams break up into groups of 103 to 2×104 cells. The cells sense the number of cells in a stream or group by the level of a secreted counting factor (CF). CF is a complex of at least 5 polypeptides. When the gene encoding countin (one of the CF polypeptides) was disrupted, the cells could not sense each other’s presence, resulting in non-breaking streams that coalesced into abnormally large groups. To understand the function of the components of CF, we have isolated cDNA sequences encoding a second component of CF, CF50. CF50 is 30% identical to lysozyme (but has very little lysozyme activity) and contains distinctive serine-glycine motifs. Transformants with a disrupted cf50 gene, like countin– cells, form abnormally large groups. Addition of recombinant CF50 protein to developing cf50– cells rescues their phenotype by decreasing group size. Abnormalities seen in aggregating countin– cells (such as high cell-cell adhesion and low motility) are also observed in the cf50– cells. Western blot analysis of conditioned medium sieve column fractions showed that the CF50 protein is present in the same fraction as the 450 kDa CF complex. In the absence of CF50, secreted countin is degraded, suggesting that one function of CF50 may be to protect countin from degradation. However, unlike countin– cells, cf50– cells differentiate into an abnormally high percentage of cells expressing SP70 (a marker expressed in a subset of prespore cells), and this difference can be rescued by exposing cells to recombinant CF50. These observations indicate that unlike other known multisubunit factors, CF contains subunits with both overlapping and unique properties.
Collapse
Affiliation(s)
- Debra A Brock
- Howard Hughes Medical Institute, Rice University, 6100 South Main Street, Houston, TX 77005-1892, USA
| | | | | | | | | | | |
Collapse
|
30
|
Brown S, Heinisch I, Ross E, Shaw K, Buckley CD, Savill J. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 2002; 418:200-3. [PMID: 12110892 DOI: 10.1038/nature00811] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophage recognition and ingestion of 'self' cells undergoing apoptosis in vivo protects tissues from the toxic contents of dying cells and modulates macrophage regulation of inflammatory and immune responses. However, the complex molecular mechanisms mediating macrophage discrimination between viable and apoptotic cells are poorly understood. In particular, little is known of why viable nucleated cells are not engulfed by macrophages. To reveal active repulsion of viable cells and to seek specific capture or 'tethering' of apoptotic cells, we studied macrophage binding of viable and apoptotic leukocytes under conditions of flow. We found that homophilic ligation of CD31 (ref. 4) on viable leukocytes promoted their active, temperature-dependent detachment under low shear, whereas such CD31-mediated detachment was disabled in apoptotic leukocytes, promoting tight binding and macrophage ingestion of dying cells. Here we propose that CD31 (also known as platelet-endothelial cell adhesion molecule-1, PECAM-1) is an example of a cell-surface molecule that prevents phagocyte ingestion of closely apposed viable cells by transmitting 'detachment' signals, and which changes function on apoptosis, promoting tethering of dying cells to phagocytes.
Collapse
Affiliation(s)
- Simon Brown
- Inflammation Repair Group, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh EH8 9AG, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Borgquist JD, Quinn MT, Swain SD. Adhesion to extracellular matrix proteins modulates bovine neutrophil responses to inflammatory mediators. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.5.764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jessica D. Borgquist
- Department of Veterinary Molecular Biology, Marsh Laboratory, Montana State University, Bozeman
| | - Mark T. Quinn
- Department of Veterinary Molecular Biology, Marsh Laboratory, Montana State University, Bozeman
| | - Steve D. Swain
- Department of Veterinary Molecular Biology, Marsh Laboratory, Montana State University, Bozeman
| |
Collapse
|
32
|
Coomber BL, Nyarko KA, Noyes TM, Gentry PA. Neutrophil-platelet interactions and their relevance to bovine respiratory disease. Vet J 2001; 161:41-62. [PMID: 11145829 DOI: 10.1053/tvjl.2000.0516] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Respiratory disease is a serious and significant health problem for the bovine industry. Classically, the clinical and research focus has been on the putative causative agents and conditions, and their interactions with host inflammatory cells, particularly alveolar macrophages and blood neutrophils. There is, currently, growing acceptance of the concept that blood platelets play a primary role in the inflammatory process. This review explores the implications of such pro-inflammatory activity, especially in the context of neutrophil-platelet interactions, and the species specificity of cellular responses. The relevance of these issues for the treatment and prevention of bovine respiratory disease is also discussed.
Collapse
Affiliation(s)
- B L Coomber
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | | | |
Collapse
|
33
|
Majluf-Cruz A, Manns JM, Uknis AB, Yang X, Colman RW, Harris RB, Frazier W, Lawler J, DeLa Cadena RA. Residues F16-G33 and A784-N823 within platelet thrombospondin-1 play a major role in binding human neutrophils: evaluation by two novel binding assays. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2000; 136:292-302. [PMID: 11039850 DOI: 10.1067/mlc.2000.109407] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The thrombospondin-1 (TSP1) structural requirements within its heparin-binding domain (HBD)(30 kd) or within the other domains of the molecule (450 kd) that interact with neutrophils (PMNs) have not been delineated. Synthetic peptides based on the HBD, a TSP1 proteolytic fragment lacking the HBD, a large C-terminal domain of TSP1 (210 kd), a TSP1 recombinant fragment (rTSP1(784-932)), and a monoclonal antibody directed against the TSP1 type 3 repeats (mAb D4.6) were utilized to map such structural requirements on TSP1. Synthetic peptides containing a heparin-binding motif and encompassing residues F16-G33 or A74-S95 of TSP1 competed quantitatively with iodine 125-labeled TSP1 for binding to heparinagarose beads. However, only F16-G33 was a competitor of TSP1 binding to PMNs, suggesting that the sequence F16-G33 within the HBD plays a role in PMN binding. The interaction site within the 450-kd fragment was further narrowed. A TSP1 -derived proteolytic fragment (210 kd), a recombinant TSP1 fragment (rTSP1(784-932)), and a type 3 repeat anti-TSP1 monoclonal antibody (mAb D4.6) competed for the binding of 125I-labeled TSP1 to PMNs. The N-terminal of rTSP1(784-932) and C-terminal sequence analysis of TSP1-210 kd delineated the structural requirements for the second binding region for PMNs-namely, residues A784-N823.
Collapse
Affiliation(s)
- A Majluf-Cruz
- Sol Sherry Thrombosis Research Center, Department of Physiology, Temple University School of Medicine, Philadelphia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bonnefoy A, Legrand C. Proteolysis of subendothelial adhesive glycoproteins (fibronectin, thrombospondin, and von Willebrand factor) by plasmin, leukocyte cathepsin G, and elastase. Thromb Res 2000; 98:323-32. [PMID: 10822079 DOI: 10.1016/s0049-3848(99)00242-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The degradation of extracellular matrix (ECM) adhesive glycoproteins, fibronectin (FN), thrombospondin (TSP) and von Willebrand factor (vWF), by human leukocyte cathepsin G and elastase, and by plasmin or thrombin, was analysed by immunoblotting after incubation of physiologic doses of the proteases with confluent human umbilical vein endothelial cells. Elastase induced an almost complete disappearance of intact FN, TSP, and vWF from the ECM at 0.02 units/ml within 5 minutes of incubation at 37 degrees C. Plasmin (0.2 units/ml) was also active on all three substrates, whereas cathepsin G (0.2 units/ml) had a preferential effect on TSP. Most remarkably, these degradations occurred with no apparent change in endothelial cell morphology, as shown by phase-contrast microscopy. In contrast, thrombin (0.2 units/ml) had no apparent proteolytic action on ECM glycoproteins, where it induced cell retraction and rounding. The release of adhesive glycoproteins from the ECM was accompanied by the detection of proteolytic fragments in the conditioned medium. Kinetic studies indicated that proteolysis started within minutes and proceeded for at least 1 hour. TSP was extremely sensitive to degradation by all enzymes except thrombin, whereas vWF released from the ECM was more resistant to proteolysis than constitutively secreted vWF, and FN was poorly degraded by plasmin. Our results indicate that serine proteinases, locally produced during inflammation and/or thrombolysis, can release extracellular matrix components and generate proteolytic fragments with potential biological activities.
Collapse
Affiliation(s)
- A Bonnefoy
- Laboratoire des Protéines Adhésives et Protéases des Cellules Vasculaires et Sanguines, INSERM U 353, Institut d'Hématologie, Université Paris VII-Denis Diderot, Hôpital St. Louis, Paris, France
| | | |
Collapse
|
35
|
Goldblum SE, Young BA, Wang P, Murphy-Ullrich JE. Thrombospondin-1 induces tyrosine phosphorylation of adherens junction proteins and regulates an endothelial paracellular pathway. Mol Biol Cell 1999; 10:1537-51. [PMID: 10233161 PMCID: PMC25335 DOI: 10.1091/mbc.10.5.1537] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Thrombospondin-1 (TSP) induces endothelial cell (EC) actin reorganization and focal adhesion disassembly and influences multiple EC functions. To determine whether TSP might regulate EC-EC interactions, we studied the effect of exogenous TSP on the movement of albumin across postconfluent EC monolayers. TSP increased transendothelial albumin flux in a dose-dependent manner at concentrations >/=1 microg/ml (2.2 nM). Increases in albumin flux were observed as early as 1 h after exposure to 30 microg/ml (71 nM) TSP. Inhibition of tyrosine kinases with herbimycin A or genistein protected against the TSP-induced barrier dysfunction by >80% and >50%, respectively. TSP-exposed monolayers exhibited actin reorganization and intercellular gap formation, whereas pretreatment with herbimycin A protected against this effect. Increased staining of phosphotyrosine-containing proteins was observed in plaque-like structures and at the intercellular boundaries of TSP-treated cells. In the presence of protein tyrosine phosphatase inhibition, TSP induced dose- and time-dependent increments in levels of phosphotyrosine-containing proteins; these TSP dose and time requirements were compatible with those defined for EC barrier dysfunction. Phosphoproteins that were identified include the adherens junction proteins focal adhesion kinase, paxillin, gamma-catenin, and p120(Cas). These combined data indicate that TSP can modulate endothelial barrier function, in part, through tyrosine phosphorylation of EC proteins.
Collapse
Affiliation(s)
- S E Goldblum
- Division of Infectious Diseases, Department of Medicine, Department of Veterans Affairs Medical Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
36
|
Phelan MW, Forman LW, Perrine SP, Faller DV. Hypoxia increases thrombospondin-1 transcript and protein in cultured endothelial cells. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1998; 132:519-29. [PMID: 9851743 DOI: 10.1016/s0022-2143(98)90131-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The exposure of endothelial cells to hypoxic environments regulates the expression of a number of genes with products that are vasoactive or mitogenic for vascular tissue, including platelet-derived growth factor, endothelin-1, and endothelial nitric oxide synthase. Hypoxia is also known to alter the adhesive properties of endothelium toward a variety of blood cell types. Thrombospondin-1 (TSP-1) is a glycoprotein with major roles in cellular adhesion and vascular smooth muscle proliferation and migration. We report here that hypoxia induces TSP-1 gene and protein expression. Oxygen tensions of < or =30 torr resulted in TSP-1 transcript induction initially apparent at 1 to 6 hours, with maximal induction (6.5-fold+/-1.2-fold) within 24 to 48 hours in both human and bovine endothelial cells. TSP-1 protein levels remain elevated after 72 hours of continuous hypoxic exposure. The induction of TSP-1 steady-state transcript levels is caused in large part, if not entirely, by post-transcriptional stabilization of the TSP-1 mRNA. The TSP-1 induction by hypoxia is a graded and reversible physiologic response and can be mimicked by the use of cobalt chloride or the inhibition of nitric oxide production, suggesting both the involvement of a heme-containing oxygen sensor and a role for the endogenous production of nitric oxide in TSP-1 regulation. The effects of hypoxia both on the stabilization of the TSP-1 transcript and the stimulation of TSP-1 protein production are completely inhibited by arginine butyrate.
Collapse
Affiliation(s)
- M W Phelan
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, MA 02118, USA
| | | | | | | |
Collapse
|
37
|
Lawler J, Sunday M, Thibert V, Duquette M, George EL, Rayburn H, Hynes RO. Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J Clin Invest 1998; 101:982-92. [PMID: 9486968 PMCID: PMC508649 DOI: 10.1172/jci1684] [Citation(s) in RCA: 355] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The thrombospondins are a family of extracellular calcium-binding proteins that modulate cellular phenotype. Thrombospondin-1 (TSP-1) reportedly regulates cellular attachment, proliferation, migration, and differentiation in vitro. To explore its function in vivo, we have disrupted the TSP-1 gene by homologous recombination in the mouse genome. Platelets from these mice are completely deficient in TSP-1 protein; however, thrombin-induced platelet aggregation is not diminished. TSP-1-deficient mice display a mild and variable lordotic curvature of the spine that is apparent from birth. These mice also display an increase in the number of circulating white blood cells, with monocytes and eosinophils having the largest percent increases. The brain, heart, kidney, spleen, stomach, intestines, aorta, and liver of TSP-1-deficient mice showed no major abnormalities. However, consistent with high levels of expression of TSP-1 in lung, we observe abnormalities in the lungs of mice that lack the protein. Although normal at birth, histopathological analysis of lungs from 4-wk-old TSP-1-deficient mice reveals extensive acute and organizing pneumonia, with neutrophils and macrophages. The macrophages stain for hemosiderin, indicating that diffuse alveolar hemorrhage is occurring. At later times, the number of neutrophils decreases and a striking increase in the number of hemosiderin-containing macrophages is observed associated with multiple-lineage epithelial hyperplasia and the deposition of collagen and elastin. A thickening and ruffling of the epithelium of the airways results from increasing cell proliferation in TSP-1-deficient mice. These results indicate that TSP-1 is involved in normal lung homeostasis.
Collapse
Affiliation(s)
- J Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Koch AE, Szekanecz Z, Friedman J, Haines GK, Langman CB, Bouck NP. Effects of thrombospondin-1 on disease course and angiogenesis in rat adjuvant-induced arthritis. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1998; 86:199-208. [PMID: 9473383 DOI: 10.1006/clin.1997.4480] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leukocyte extravasation into the synovium is important in rheumatoid arthritis (RA). Thrombospondin (TSP)-1 mediates cell adhesion and migration and inhibits angiogenesis, and it has been implicated in RA. However, little information is available on the role of TSP-1 in arthritis-associated inflammation and neovascularization. Therefore, we analyzed the effects of TSP-1 in adjuvant-induced arthritis (AIA), a rat model for RA. Hydron pellets containing TSP-1 were implanted in one ankle of AIA rats post-adjuvant injection, while the contralateral ankle received sham implants. Body weight loss and joint swelling were determined in comparison to nonimplanted AIA controls. In addition, synovial vessel counts were obtained in TSP-1-versus sham-implanted ankles of the same rat. The implantation of TSP-1 pellets into one ankle resulted in an enhancement of swelling in both ankles. Furthermore, TSP-1 exhibited a biphasic modulatory effect on synovial vessel counts (P < 0.05). In conclusion, TSP-1 implanted into one ankle of AIA rats may augment the severity of the disease. One possible explanation, among others, for the modulating effect of TSP-1 on inflammation may be its effect on arthritis-related angiogenesis.
Collapse
Affiliation(s)
- A E Koch
- Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
39
|
Scott-Drew S, ffrench-Constant C. Expression and function of thrombospondin-1 in myelinating glial cells of the central nervous system. J Neurosci Res 1997; 50:202-14. [PMID: 9373030 DOI: 10.1002/(sici)1097-4547(19971015)50:2<202::aid-jnr9>3.0.co;2-j] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The thrombospondin (TSP) family of extracellular matrix glycoproteins are widely expressed in the developing and adult central nervous system although their function remains poorly defined. We have used cell culture techniques to analyse the expression and function of TSPs in glial cells derived from myelinated regions of the central nervous system. These experiments show that TSP-1 mRNA, but not TSP-2 or TSP-3 mRNA, is expressed by astrocytes from these regions. TSP-1 mRNA levels in astrocytes are under the regulation of growth factors, being increased by TGFbeta1 and decreased by bFGF. Oligodendrocyte precursors do not express TSP-1, TSP-2, or TSP-3 mRNA. Migration of oligodendrocyte precursor cells is stimulated by TSP-1 substrates as measured either by time-lapse microscopy or using a microchemotaxis chamber assay. Taken together, these results suggest that the extracellular matrix molecule TSP-1 plays a role in normal central nervous system development by contributing to the regulation of oligodendrocyte precursor migration.
Collapse
Affiliation(s)
- S Scott-Drew
- Wellcome/CRC Institute of Developmental Biology and Cancer, University of Cambridge, United Kingdom
| | | |
Collapse
|
40
|
Gotis-Graham I, Hogg PJ, McNeil HP. Significant correlation between thrombospondin 1 and serine proteinase expression in rheumatoid synovium. ARTHRITIS AND RHEUMATISM 1997; 40:1780-7. [PMID: 9336411 DOI: 10.1002/art.1780401009] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Thrombospondin 1 (TSP1) is a potent active site inhibitor of leukocyte elastase and cathepsin G. This effect is markedly dependent on the disulfide-bond conformation of TSP1, with one isoform, TSP1(0.1), being the most potent. The aims of this study were to examine the expression of different disulfide-bonded isoforms of TSP1 in inflammatory environments in which elastase and cathepsin G are present in variable amounts, and to determine the relationship between these proteinases and their potential inhibitor. METHODS Immunohistochemical staining and histomorphometric analysis were used to examine adjacent sections of synovial tissue from patients with rheumatoid arthritis (RA), osteoarthritis (OA), and meniscal trauma (MT), for expression of TSP1 and the TSP1(0.1) isoform, elastase, cathepsin G, and chymase. RESULTS TSP1 localized to vessels and cells within the synovium. TSP1 expression was highly up-regulated in RA (mean density 98 cells and vessels/mm2, compared with 13/mm2 in OA and 17/mm2 in MT). The TSP1(0.1) isoform was found virtually exclusively in RA, with 44% of vascular TSP1 staining being due to the TSP1(0.1) isoform in RA, as compared with 7% in OA (P = 0.0047). Elastase- and cathepsin G-positive cells were abundant in RA, with mean densities of 106 cells/mm2 and 103 cells/mm2, respectively, compared with 2 cells/mm2 and 11 cells/mm2 in OA. There was a wide range of both TSP1 and proteinase expression within the RA group, but samples containing large numbers of elastase- and cathepsin G-positive cells also showed high expression of TSP1, especially TSP1(0.1). A strong correlation was found between elastase or cathepsin G densities and TSP1(0.1) expression in blood vessels (r = 0.86 and r = 0.76 respectively, P < 0.01). CONCLUSION TSP1(0.1), with the most potent inhibitory activity in vitro, is specifically up-regulated in RA, and this up-regulation is in proportion to the numbers of surrounding leukocytes containing elastase and cathepsin G. One role of TSP1 may be to act as a matrix-based regulator of leukocyte-derived serine proteinases in vivo.
Collapse
|
41
|
Tolsma SS, Stack MS, Bouck N. Lumen formation and other angiogenic activities of cultured capillary endothelial cells are inhibited by thrombospondin-1. Microvasc Res 1997; 54:13-26. [PMID: 9245640 DOI: 10.1006/mvre.1997.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The large secreted glycoprotein thrombospondin-1 is a potent inhibitor of neovascularization in vivo. In order to better understand its mechanism of action, we have determined the full range of deficits thrombospondin can impose on cultured capillary endothelial cells. Exogenously added thrombospondin-1 blocked the ability of these cells to organize into cords. It blocked the migration of endothelial cells and vascular smooth muscle cells, but not that of fibroblasts, neutrophils, or keratinocytes, demonstrating specificity. Conversely, when the endogenous thrombospondin-1 produced by the endothelial cells was inactivated using antibodies that can neutralize its inhibition of neovascularization in vivo, migration toward basic fibroblast growth factor and cord formation were stimulated, and sparsely plated cells developed cylindrical cavities. These cavities formed by vesicle fusion, extended the depth of the cell, and appeared to be incipient lumens, staining positively for the luminal marker angiotensin converting enzyme. Antiangiogenic levels of thrombospondin-1 had no measurable effect on the overall level of activity of soluble gelatinases or on urokinase plasminogen activator produced by activated endothelial cells. Coupled with previously published data, these results demonstrate thrombospondin-1 is a multifaceted inhibitor able to block the entire program of dedifferentiation and redifferentiation essential to the formation of new vessels. They also support the contention that the endogenously produced protein contributes to the quiescence of the normal vasculature.
Collapse
MESH Headings
- Animals
- Capillaries/cytology
- Cattle
- Cell Aggregation
- Cell Line, Transformed
- Cell Movement
- Cells, Cultured
- Culture Media, Conditioned/chemistry
- Depression, Chemical
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Fibroblast Growth Factor 2/pharmacology
- Fibroblasts/drug effects
- Gelatinases/analysis
- Keratinocytes/drug effects
- Leukocytes/drug effects
- Membrane Glycoproteins/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Neovascularization, Physiologic/drug effects
- Thrombospondins
- Urokinase-Type Plasminogen Activator/analysis
Collapse
Affiliation(s)
- S S Tolsma
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois, 60611, USA
| | | | | |
Collapse
|
42
|
Taraboletti G, Borsotti P, Chirivi RG, Vergani V, Falanga A, Barbui T, Giavazzi R, Rambaldi A. Effect of all trans-retinoic acid (ATRA) on the adhesive and motility properties of acute promyelocytic leukemia cells. Int J Cancer 1997; 70:72-7. [PMID: 8985093 DOI: 10.1002/(sici)1097-0215(19970106)70:1<72::aid-ijc11>3.0.co;2-f] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
All trans-retinoic acid (ATRA) induces complete remission in acute-promyelocytic-leukemia (APL) patients. This study investigated the adhesive properties of APL cells for the endothelium and the extracellular matrix, their motility and the effect of ATRA on these functions. Blasts from 7 APL patients adhered to resting and IL-1-activated endothelium, to the same degree as normal PMN. Adhesion was partially mediated by ICAM-1 and, for IL-1-activated endothelium, by VCAM-1 and E-selectin. These cells showed less adhesiveness for the matrix than PMN, although they maintained the same substrate preference: they adhered to fibronectin and thrombospondin, but not to laminin and type-IV collagen. Exposure to ATRA in vitro (1 microM for 48 to 96 hr) increased the adhesiveness of APL cells; this effect was particularly evident in the case of sub-endothelial matrix and fibronectin. A similar increment in adhesiveness was observed when comparing cells from 2 patients before and after treatment with ATRA. APL cells migrated in response to fMLP and motility was increased by ATRA. In conclusion, APL cells were less adhesive to the matrix than PMN, but treatment with ATRA considerably enhanced their adhesive properties. This could be important in determining the efflux of leukemic cells from the bone marrow and their tissue infiltration during ATRA therapy.
Collapse
Affiliation(s)
- G Taraboletti
- Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gao AG, Lindberg FP, Dimitry JM, Brown EJ, Frazier WA. Thrombospondin modulates alpha v beta 3 function through integrin-associated protein. J Cell Biol 1996; 135:533-44. [PMID: 8896608 PMCID: PMC2121041 DOI: 10.1083/jcb.135.2.533] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Integrin-associated protein (IAP) is a receptor for the carboxyl-terminal "cell-binding domain" (CBD) of thrombospondin 1 (TS1). IAP associates with alpha v beta 3 integrin and mAbs against IAP inhibit certain integrin functions. Here we examine the effects of the TS1 CBD and 4N1K (KRFYVVMWKK), a cell-binding peptide derived from it, on the adhesion and spreading on vitronectin (VN) of C32 human melanoma cells which express IAP, alpha v beta 3, and alpha v beta 5. Cells adhere to VN at low surface densities via alpha v beta 5 and spread very slowly while adhesion to higher density VN involves both alpha v beta 5 and alpha v beta 3 and results in rapid spreading. Spreading of the cells, but not adhesion, on sparse VN coatings is markedly enhanced by the presence of soluble TS1, the recombinant CBD and 4N1K, but not the "mutant" peptide 4NGG, KRFYGGMWKK, which fails to bind IAP. This enhanced spreading is completely blocked by mAb LM609 against alpha v beta 3 and the anti-IAP mAb B6H12. Correlated with this enhanced spreading is increased tyrosine phosphorylation of focal adhesion kinase (FAK), paxillin, and a protein of ca. 90 kD. The enhanced spreading induced by TS1 and 4N1K and the constitutive spreading on higher density VN are both blocked by calphostin C (100 nM), wortmannin (10 nM), and tyrosine kinase inhibitors. In contrast, pertussis toxin specifically blocks only the TS1 stimulated spreading on low density VN, indicating that IAP exerts its effects on signal transduction via a heterotrimeric Gi protein acting upstream of a common cell spreading pathway which includes PI-3 kinase, PKC, and tyrosine kinases.
Collapse
Affiliation(s)
- A G Gao
- Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
44
|
Volpert OV, Ward WF, Lingen MW, Chesler L, Solt DB, Johnson MD, Molteni A, Polverini PJ, Bouck NP. Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J Clin Invest 1996; 98:671-9. [PMID: 8698858 PMCID: PMC507476 DOI: 10.1172/jci118838] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Captopril, an inhibitor of angiotensin converting enzyme, is widely used clinically to manage hypertension and congestive heart failure. Here captopril is shown to be an inhibitor of angiogenesis able to block neovascularization induced in the rat cornea. Captopril acted directly and specifically on capillary endothelial cells, inhibiting their chemotaxis with a biphasic dose-response curve showing an initial decrease at clinically achievable doses under 10 microM and a further slow decline in the millimolar range. Captopril inhibition of endothelial cell migration was not mediated by angiotensin converting enzyme inhibition, but was suppressed by zinc. Direct inhibition by captopril of zinc-dependent endothelial cell-derived 72-and 92-kD metalloproteinases known to be essential for angiogenesis was also seen. When used systemically on rats captopril inhibited corneal neovascularization and showed the antitumor activity expected of an inhibitor of angiogenesis, decreasing the number of mitoses present in carcinogen-induced foci of preneoplastic liver cells and slowing the growth rate of an experimental fibrosarcoma whose cells were resistant to captopril in vitro. These data define this widely used drug as a new inhibitor of neovascularization and raise the possibility that patients on long term captopril therapy may derive unexpected benefits from its antiangiogenic activities.
Collapse
Affiliation(s)
- O V Volpert
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen H, Strickland DK, Mosher DF. Metabolism of thrombospondin 2. Binding and degradation by 3t3 cells and glycosaminoglycan-variant Chinese hamster ovary cells. J Biol Chem 1996; 271:15993-9. [PMID: 8663244 DOI: 10.1074/jbc.271.27.15993] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Thrombospondin 1 (TSP1) and thrombospondin 2 (TSP2) are members of the thrombospondin family that have a similar structural organization but somewhat different functional activities. Iodinated recombinant mouse TSP2 bound to NIH 3T3 cells and was internalized and degraded through a chloroquine-inhibitable pathway. TSP2 degradation was saturable, specific, and similar to the kinetics of degradation of TSP1. Human platelet TSP1, recombinant mouse TSP1, and recombinant mouse TSP2 cross-competed with one another for degradation by 3T3 cells. Degradation of TSP2 was less sensitive to inhibition by heparin than degradation of TSP1. This is in agreement with differences in heparin-binding affinity of the two TSPs. Degradation of TSP2 was slower in cultures of Chinese hamster ovary (CHO) cells lacking heparan sulfate proteoglycans than in wild type CHO cells or in cultures of 3T3 cells treated with heparitinase than in untreated 3T3 cells. Degradation of TSP2 was inhibited by antibodies against the low density lipoprotein receptor-related protein (LRP) or by the 39-kDa receptor-associated protein, a known antagonist of LRP. This study indicates that TSP2 and TSP1 are metabolized by a common internalization and degradation pathway involving heparan sulfate proteoglycan and LRP. Competition for this pathway is a possible mechanism whereby cells can control the levels and ratio of TSP1 and TSP2 in the extracellular milieu.
Collapse
Affiliation(s)
- H Chen
- Department of Medicine, University of Wisconsin, Madison, 53706, USA
| | | | | |
Collapse
|
46
|
Abstract
The extracellular matrix (ECM) protein thrombospondin (TSP) binds to specific receptors on polymorphonuclear leukocytes (PMNs) and stimulates motility. TSP can also enhance the response of PMNs to the formylated peptide, N-formyl-methionyl-leucyl-phenylalanine (FMLP). Our initial evidence suggesting that PMN TSP receptors were linked to GTP-binding proteins (G-proteins) came from studies using pertussis toxin (PT) and cholera toxin (CT) to inhibit TSP-mediated motility. Both PT and CT inhibited TSP-mediated chemotaxis and substrate-associated random migration. Inhibition was not indirectly caused by a rise in cAMP since neither dibutyryl cAMP (300 microM) nor 8-bromo-cAMP (300 microM) significantly affected TSP-mediated motility. In fact, TSP itself caused a significant rise in intracellular cAMP levels (from 7.2 +/- 0.3 to 14.2 +/- 0.1 pmol/10(6) cells). Although we could not test the PT sensitivity of TSP priming for FMLP-mediated chemotaxis (as PT inhibits FMLP-mediated chemotaxis itself), we evaluated the effect of CT on this response. CT completely abolished TSP-dependent priming of FMLP-mediated chemotaxis. Direct evidence for an interaction between TSP receptors and G-proteins was obtained by examining the effect of TSP on alpha-subunit ADP-ribosylation, GTPase activity, and GTP gamma S binding. We observed a decrease in the ability of FMLP to stimulate GTPase activity on membranes isolated from PMNs incubated with TSP. Furthermore, the PT-dependent ribosylation of Ci alpha 2,3 stimulated by FMLP was eliminated by TSP treatment. These data indicated that the two receptors share a pool of G-proteins. However, TSP did not block the CT-dependent ribosylation stimulated by FMLP, suggesting that TSP receptors may also interact with a different pool of Gi alpha 2,3. TSP itself significantly (P < 0.005) increased GTP hydrolysis in PMN membranes (to 110.6 +/- 2.7% of control values). In addition, GTP gamma S binding to membranes increased significantly (P < 0.005) following exposure to 10 nM TSP (to 108 +/- 1.4% of control values). Conversely, GTP treatment reduced the affinity of TSP for its receptor without altering total binding. These data demonstrate that TSP receptors are linked to G-proteins, a subpopulation of which also associates with FMLP receptors.
Collapse
Affiliation(s)
- S J Suchard
- Department of Pediatrics, University of Michigan, Ann Arbor 48109, USA
| | | |
Collapse
|
47
|
Hugo C, Pichler R, Meek R, Gordon K, Kyriakides T, Floege J, Bornstein P, Couser WG, Johnson RJ. Thrombospondin 1 is expressed by proliferating mesangial cells and is up-regulated by PDGF and bFGF in vivo. Kidney Int 1995; 48:1846-56. [PMID: 8587244 DOI: 10.1038/ki.1995.483] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Thrombospondin 1 has been shown to be linked to PDGF-mediated mesangial cell proliferation and migration in vitro, but little is known regarding its expression or regulation in glomerular disease. Experimental mesangial proliferative nephritis was induced in rats by injection of anti-Thy1 antibody. Mesangial cell proliferation was associated with de novo expression of thrombospondin 1 mRNA (detected by Northern blot and in situ hybridization) and protein (by Western blot and immunostaining). Although some thrombospondin 1 was expressed by platelets and macrophages, double labeling showed that most thrombospondin 1 mRNA and protein were expressed by proliferating alpha-actin-positive mesangial cells. Thrombospondin 1 expression in anti-Thy1 nephritis was complement-dependent and could be reduced by treatment with anti-PDGF or anti-bFGF antibodies. Thrombospondin 1 could also be induced in normal rats by infusion of PDGF and in rats which were primed with low dose anti-Thy1 antibody by infusion of PDGF of bFGF. Thus, this study demonstrates that proliferating mesangial cells express thrombospondin 1 de novo in disease and that thrombospondin 1 expression in vivo is regulated by PDGF and bFGF.
Collapse
Affiliation(s)
- C Hugo
- Department of Medicine, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Polverini PJ. The pathophysiology of angiogenesis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1995; 6:230-47. [PMID: 8785263 DOI: 10.1177/10454411950060030501] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The formation of new capillary blood vessels, a process termed "angiogenesis", is one of the most pervasive and fundamentally essential biological processes encountered in mammalian organizations. Angiogenesis is an important event in a variety of physiological settings, such as embryonic development, chronic inflammation, and wound repair. It is a process that is tightly regulated in both time and space. Angiogenesis is driven by a cocktail of growth factors and pro-angiogenic cytokines and is tempered by an equally diverse group of inhibitors of neovascularization. Angiogenesis is also central to the etiology and pathogenesis of a number of pathological processes that include, among others, solid tumors, diseases of the eye, and chronic inflammatory disorders such as rheumatoid arthritis, psoriasis, and periodontitis. Based on recent work from several laboratories, it is now eminently clear that most if not all angiogenesis and vasoproliferative-dependent disease processes are not only a consequence of the unrestricted production of normal or aberrant forms of pro-angiogenic mediators but also the result of a relative deficiency in angiogenic-inhibitory molecules. In this review, I will describe how these multifunctional mediator systems function to coordinate and regulate the angiogenic response, and how disruption in the molecular controls that regulate the production of pro-angiogenic and angiostatic mediators leads to aberrant angiogenesis and disease. The implications of these findings in the development of novel therapeutic strategies for the treatment of diseases characterized by disregulated angiogenesis will also be discussed.
Collapse
Affiliation(s)
- P J Polverini
- Department of Oral Medicine, Pathology, and Surgery, University of Michigan School of Dentistry, Ann Arbor 48109-1078
| |
Collapse
|
49
|
Adams JC. Formation of stable microspikes containing actin and the 55 kDa actin bundling protein, fascin, is a consequence of cell adhesion to thrombospondin-1: implications for the anti-adhesive activities of thrombospondin-1. J Cell Sci 1995; 108 ( Pt 5):1977-90. [PMID: 7657718 DOI: 10.1242/jcs.108.5.1977] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The organisation of the actin cytoskeleton was examined in H9c2 and human intestinal smooth muscle cells adherent on fibronectin or thrombospondin-1. Whereas cells adherent on fibronectin adopted a polygonal shape and rapidly assembled prominent stress fibres and focal contacts, cells adherent on thrombospondin-1 assumed a more irregular morphology with large lamellae containing radial actin microspikes. Focal contacts were not detected in cells adherent on thrombospondin-1, as determined by indirect immunofluorescence staining for vinculin and other focal contact components. Instead, the radial microspikes stained positively for the actin-bundling protein, 55 kDa/fascin, and myosins. In cells adherent on fibronectin, 55 kDa/fascin immunoreactivity was diffuse and tended to be concentrated in the perinuclear region. In long-term adherent cells cultured in serum-containing medium, 55 kDa/fascin was detected in membrane ruffles, in stress fibres and in the perinuclear region. The microspikes formed within 40 minutes of plating cells on thrombospondin-1 and remained present when cells were treated with sodium orthovandate and hydrogen peroxide to increase intracellular phosphotyrosine levels. Indeed, although vanadate-treated cells tended to retract, the microspikes became more prominent and showed an increased intensity of staining for fascin. Under these conditions, a proportion of the microspikes did not appear to be in contact with the substratum: these spikes stained weakly for focal adhesion kinase, talin and vinculin. Cells treated with genistein also spread and formed fascin-containing microspikes which tended to be more slender than those of control cells. In contrast, cells adherent on fibronectin displayed a complex rearrangement of the actin cytoskeleton and a transient enrichment of 55 kDa/fascin-containing structures at the cell surface when treated with sodium orthovanadate and hydrogen peroxide. These observations indicate that cell interactions with fibronectin or thrombospondin-1 send distinct organisational signals to the actin cytoskeleton and may offer a mechanistic framework for further investigations of the anti-adhesive properties of thrombospondin-1.
Collapse
Affiliation(s)
- J C Adams
- MRC Laboratory for Molecular Cell Biology, Department of Biology, University College London, UK
| |
Collapse
|
50
|
Bull BS, Bull MH. Hypothesis: disseminated intravascular inflammation as the inflammatory counterpart to disseminated intravascular coagulation. Proc Natl Acad Sci U S A 1994; 91:8190-4. [PMID: 8058778 PMCID: PMC44571 DOI: 10.1073/pnas.91.17.8190] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have identified a leukocyte activation syndrome that is occasionally associated with the transfusion of intraoperatively recovered erythrocytes. This syndrome appears to result from intravascular damage caused by leukocytes activated during the erythrocyte salvage process. We hypothesize that this syndrome is part of a larger disease grouping: disseminated intravascular inflammation (DII). DII is the analog of the coagulation disorder disseminated intravascular coagulation. In disseminated intravascular coagulation, the organ damage results from uncontrolled activation of the clotting pathway; in DII the damage is caused by leukocytes that have become activated by direct contact with bacteria or in rare instances--such as erythrocyte salvage--in the absence of bacteria and bacterial products. Recent studies of the hazards associated with intraoperative blood salvage indicate that activation of leukocytes can be achieved by exposure to activated platelets alone. If such activated leukocytes are reinfused along with the washed erythrocytes, widespread organ damage may result. The lung is the organ most severely affected by activated leukocytes. Adult respiratory distress syndrome is one outcome. It is likely that DII is a presently unrecognized pathophysiological process that complicates a variety of primary disease states and increases their lethality.
Collapse
Affiliation(s)
- B S Bull
- Department of Pathology and Human Anatomy, Loma Linda University, School of Medicine, CA 92354
| | | |
Collapse
|