1
|
Hahn KM, Itano MS, Loew LM, Vitriol EA. Celebrating the creative scientific life of Ken Jacobson. Biophys J 2023; 122:E1-E4. [PMID: 37643609 PMCID: PMC10541490 DOI: 10.1016/j.bpj.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Affiliation(s)
- Klaus M Hahn
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michelle S Itano
- Department of Cell Biology & Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Leslie M Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Eric A Vitriol
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia.
| |
Collapse
|
2
|
Stone MB, Shelby SA, Veatch SL. Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane. Chem Rev 2017; 117:7457-7477. [PMID: 28211677 PMCID: PMC5471115 DOI: 10.1021/acs.chemrev.6b00716] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.
Collapse
Affiliation(s)
- Matthew B Stone
- Biophysics, University of Michigan, Chemistry 930 N University Ave, Ann Arbor 48109
| | - Sarah A Shelby
- Biophysics, University of Michigan, Chemistry 930 N University Ave, Ann Arbor 48109
| | - Sarah L Veatch
- Biophysics, University of Michigan, Chemistry 930 N University Ave, Ann Arbor 48109
| |
Collapse
|
3
|
Lagerholm BC, Andrade DM, Clausen MP, Eggeling C. Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:063001. [PMID: 28458397 PMCID: PMC5390782 DOI: 10.1088/1361-6463/aa519e] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 05/06/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below the diffraction limit of conventional microscopy. However, a major disparity in interpretation of data from SPT and STED-FCS remains, namely the proposed existence of a very fast (unhindered) lateral diffusion coefficient, ⩾5 µm2 s-1, in the plasma membrane of live cells at very short length scales, ≈⩽ 100 nm, and time scales, ≈1-10 ms. This fast diffusion coefficient has been advocated in several high-speed SPT studies, for lipids and membrane proteins alike, but the equivalent has not been detected in STED-FCS measurements. Resolving this ambiguity is important because the assessment of membrane dynamics currently relies heavily on SPT for the determination of heterogeneous diffusion. A possible systematic error in this approach would thus have vast implications in this field. To address this, we have re-visited the analysis procedure for SPT data with an emphasis on the measurement errors and the effect that these errors have on the measurement outputs. We subsequently demonstrate that STED-FCS and SPT data, following careful consideration of the experimental errors of the SPT data, converge to a common interpretation which for the case of a diffusing phospholipid analogue in the plasma membrane of live mouse embryo fibroblasts results in an unhindered, intra-compartment, diffusion coefficient of ≈0.7-1.0 µm2 s-1, and a compartment size of about 100-150 nm.
Collapse
Affiliation(s)
- B Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Débora M Andrade
- Centre for Neural Circuits and Behaviour, University of Oxford, Mansfield Road, Oxford OX1 3SR, UK
| | - Mathias P Clausen
- MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Christian Eggeling
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
4
|
Imaging approaches for analysis of cholesterol distribution and dynamics in the plasma membrane. Chem Phys Lipids 2016; 199:106-135. [PMID: 27016337 DOI: 10.1016/j.chemphyslip.2016.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/04/2016] [Indexed: 11/21/2022]
Abstract
Cholesterol is an important lipid component of the plasma membrane (PM) of mammalian cells, where it is involved in control of many physiological processes, such as endocytosis, cell migration, cell signalling and surface ruffling. In an attempt to explain these functions of cholesterol, several models have been put forward about cholesterol's lateral and transbilayer organization in the PM. In this article, we review imaging techniques developed over the last two decades for assessing the distribution and dynamics of cholesterol in the PM of mammalian cells. Particular focus is on fluorescence techniques to study the lateral and inter-leaflet distribution of suitable cholesterol analogues in the PM of living cells. We describe also several methods for determining lateral cholesterol dynamics in the PM including fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), single particle tracking (SPT) and spot variation FCS coupled to stimulated emission depletion (STED) microscopy. For proper interpretation of such measurements, we provide some background in probe photophysics and diffusion phenomena occurring in cell membranes. In particular, we show the equivalence of the reaction-diffusion approach, as used in FRAP and FCS, and continuous time random walk (CTRW) models, as often invoked in SPT studies. We also discuss mass spectrometry (MS) based imaging of cholesterol in the PM of fixed cells and compare this method with fluorescence imaging of sterols. We conclude that evidence from many experimental techniques converges towards a model of a homogeneous distribution of cholesterol with largely free and unhindered diffusion in both leaflets of the PM.
Collapse
|
5
|
Manzo C, Garcia-Parajo MF. A review of progress in single particle tracking: from methods to biophysical insights. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:124601. [PMID: 26511974 DOI: 10.1088/0034-4885/78/12/124601] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Optical microscopy has for centuries been a key tool to study living cells with minimum invasiveness. The advent of single molecule techniques over the past two decades has revolutionized the field of cell biology by providing a more quantitative picture of the complex and highly dynamic organization of living systems. Amongst these techniques, single particle tracking (SPT) has emerged as a powerful approach to study a variety of dynamic processes in life sciences. SPT provides access to single molecule behavior in the natural context of living cells, thereby allowing a complete statistical characterization of the system under study. In this review we describe the foundations of SPT together with novel optical implementations that nowadays allow the investigation of single molecule dynamic events with increasingly high spatiotemporal resolution using molecular densities closer to physiological expression levels. We outline some of the algorithms for the faithful reconstruction of SPT trajectories as well as data analysis, and highlight biological examples where the technique has provided novel insights into the role of diffusion regulating cellular function. The last part of the review concentrates on different theoretical models that describe anomalous transport behavior and ergodicity breaking observed from SPT studies in living cells.
Collapse
Affiliation(s)
- Carlo Manzo
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
| | | |
Collapse
|
6
|
Mechanisms Underlying Anomalous Diffusion in the Plasma Membrane. CURRENT TOPICS IN MEMBRANES 2015; 75:167-207. [DOI: 10.1016/bs.ctm.2015.03.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, Neupane B, Wang G, Li J, Cheng JX, Huang B, Fang N. Single cell optical imaging and spectroscopy. Chem Rev 2013; 113:2469-527. [PMID: 23410134 PMCID: PMC3624028 DOI: 10.1021/cr300336e] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Anthony S. Stender
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Kyle Marchuk
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Chang Liu
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Suzanne Sander
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Matthew W. Meyer
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Emily A. Smith
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| | - Bhanu Neupane
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Gufeng Wang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Junjie Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Bo Huang
- Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Ning Fang
- Department of Chemistry, Iowa State University and Ames Laboratory, U. S. Department of Energy, Ames, IA 50011, USA
| |
Collapse
|
8
|
Wu X, Yu T, Bullard DC, Kucik DF. SDF-1α (CXCL12) regulation of lateral mobility contributes to activation of LFA-1 adhesion. Am J Physiol Cell Physiol 2012; 303:C666-72. [PMID: 22875786 DOI: 10.1152/ajpcell.00190.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of integrin activity enables leukocytes to circulate freely, avoiding inappropriate adhesion while maintaining the ability to adhere quickly at sites of infection or inflammation. This regulation involves at least two components: affinity for ligand and affinity-independent avidity effects such as lateral mobility. Using lymphocyte function associated antigen-1 (LFA-1) as a model, we investigated the role of integrin release from cytoskeletal motion constraints in response to the chemokine stromal cell-derived factor-1 (SDF-1α) in this process. All experiments were done in primary T cells to avoid nonphysiological activation processes often seen with the use of cell lines. We found that SDF-1α releases LFA-1 from cytoskeletal constraints as effectively as does cytochalasin D. The resultant increased diffusion is correlated with a robust increase in LFA-1-mediated adhesion under physiological shear stress. We further investigated the role of the highly conserved GFFKR sequence in the LFA-1 cytoplasmic domain. We report that the GFFKR sequence is both necessary and sufficient for regulation of the SDF-1α-triggered proadhesive release from cytoskeleton interactions. While this does not address the role of transient SDF-1α-induced conformational changes in the activation process, these results strongly suggest that any model of chemokine-induced LFA-1 activation must take into account chemokine-induced integrin lateral mobility. In addition, these results have ramifications for models of differential binding of LFA-1 to surface-bound vs. soluble intercellular adhesion molecule-1.
Collapse
Affiliation(s)
- Xing Wu
- Univ. of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Biological research has always tremendously benefited from the development of key methodology. In fact, it was the advent of microscopy that shaped our understanding of cells as the fundamental units of life. Microscopic techniques are still central to the elucidation of biological units and processes, but equally important are methods that allow access to the dimension of time, to investigate the dynamics of molecular functions and interactions. Here, fluorescence spectroscopy with its sensitivity to access the single-molecule level, and its large temporal resolution, has been opening up fully new perspectives for cell biology. Here we summarize the key fluorescent techniques used to study cellular dynamics, with the focus on lipid and membrane systems.
Collapse
|
10
|
Jung M, Vogel N, Köper I. Nanoscale patterning of solid-supported membranes by integrated diffusion barriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7008-7015. [PMID: 21520932 DOI: 10.1021/la200027e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ultraflat nanostructured substrates have been used as a template to create patterned solid-supported bilayer membranes with polymerizable tethered lipids acting as diffusion barriers. Patterns in the size range of 100 nm were successfully produced and characterized. The diffusion barriers were embedded directly into the phospholipid bilayer and could be used to control the fluidity of the membrane as well as to construct isolated membrane corrals. By using nanosphere lithography to structure the templates it was possible to systematically adjust the lipid diffusion coefficients in a range comparable to those observed in cellular membranes. Single colloids applied as mask in the patterning process yielded substrates for creation of isolated fluid membrane patches corralled by diffusion barriers. Numerous potential applications for this new model system can be envisioned, ranging from the study of cellular interactions or of molecular diffusion in confined geometries to biosensor arrays.
Collapse
Affiliation(s)
- Mathieu Jung
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | | |
Collapse
|
11
|
Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy. FEBS Lett 2010; 584:1814-23. [PMID: 20178787 DOI: 10.1016/j.febslet.2010.02.047] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/15/2010] [Accepted: 02/15/2010] [Indexed: 11/20/2022]
Abstract
Single-molecule tracking and fluorescence correlation spectroscopy (FCS) applied to the plasma membrane in living cells have allowed a number of unprecedented observations, thus fostering a new basic understanding of molecular diffusion, interaction, and signal transduction in the plasma membrane. It is becoming clear that the plasma membrane is a heterogeneous entity, containing diverse structures on nano-meso-scales (2-200 nm) with a variety of lifetimes, where certain membrane molecules stay together for limited durations. Molecular interactions occur in the time-dependent inhomogeneous two-dimensional liquid of the plasma membrane, which might be a key for plasma membrane functions.
Collapse
|
12
|
Hall D, Hoshino M. Effects of macromolecular crowding on intracellular diffusion from a single particle perspective. Biophys Rev 2010; 2:39-53. [PMID: 21088688 PMCID: PMC2957576 DOI: 10.1007/s12551-010-0029-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/08/2010] [Indexed: 01/07/2023] Open
Abstract
Compared to biochemical reactions taking place in relatively well-defined aqueous solutions in vitro, the corresponding reactions happening in vivo occur in extremely complex environments containing only 60-70% water by volume, with the remainder consisting of an undefined array of bio-molecules. In a biological setting, such extremely complex and volume-occupied solution environments are termed 'crowded'. Through a range of intermolecular forces and pseudo-forces, this complex background environment may cause biochemical reactions to behave differently to their in vitro counterparts. In this review, we seek to highlight how the complex background environment of the cell can affect the diffusion of substances within it. Engaging the subject from the perspective of a single particle's motion, we place the focus of our review on two areas: (1) experimental procedures for conducting single particle tracking experiments within cells along with methods for extracting information from these experiments; (2) theoretical factors affecting the translational diffusion of single molecules within crowded two-dimensional membrane and three-dimensional solution environments. We conclude by discussing a number of recent publications relating to intracellular diffusion in light of the reviewed material.
Collapse
Affiliation(s)
- Damien Hall
- Institute of Basic Medical Science, University of Tsukuba, Lab 225-B, Building D, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki-ken 305-8577 Japan
| | - Masaru Hoshino
- Department of Pharmaceutical Science, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku Kyoto, 606-8501 Japan
| |
Collapse
|
13
|
Both MHC class II and its GPI-anchored form undergo hop diffusion as observed by single-molecule tracking. Biophys J 2008; 95:435-50. [PMID: 18339737 DOI: 10.1529/biophysj.107.123018] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previously, investigations using single-fluorescent-molecule tracking at frame rates of up to 65 Hz, showed that the transmembrane MHC class II protein and its GPI-anchored modified form expressed in CHO cells undergo simple Brownian diffusion, without any influence of actin depolymerization with cytochalasin D. These results are at apparent variance with the view that GPI-anchored proteins stay with cholesterol-enriched raft domains, as well as with the observation that both lipids and transmembrane proteins undergo short-term confined diffusion within a compartment and long-term hop diffusion between compartments. Here, this apparent discrepancy has been resolved by reexamining the same paradigm, by using both high-speed single-particle tracking (50 kHz) and single fluorescent-molecule tracking (30 Hz). Both molecules exhibited rapid hop diffusion between 40-nm compartments, with an average dwell time of 1-3 ms in each compartment. Cytochalasin D hardly affected the hop diffusion, consistent with previous observations, whereas latrunculin A increased the compartment sizes with concomitant decreases of the hop rates, which led to an approximately 50% increase in the median macroscopic diffusion coefficient. These results indicate that the actin-based membrane skeleton influences the diffusion of both transmembrane and GPI-anchored proteins.
Collapse
|
14
|
Hall D. Analysis and interpretation of two-dimensional single-particle tracking microscopy measurements: effect of local surface roughness. Anal Biochem 2008; 377:24-32. [PMID: 18358822 DOI: 10.1016/j.ab.2008.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 12/29/2007] [Accepted: 02/19/2008] [Indexed: 10/22/2022]
Abstract
Methodological advances in light microscopy have made it possible to record the motions of individual lipid and protein molecules resident in the membrane of living cells down to the nanometer level of precision in the x, y plane. Such measurement of a single molecule's trajectory for a sufficiently long period of time or the measurement of multiple molecules' trajectories for a shorter period of time can in principle provide the necessary information to derive the particle's macroscopic two-dimensional-diffusion coefficient-a quantity of vital biological interest. However, one drawback of the light microscopy procedures used in such experiments is their relatively poor discriminatory capability for determining spatial differences along the z axis in comparison to those in the x, y plane. In this study we used computer simulation to examine the likely effect of local surface roughness over the nanometer to micrometer scale on the determination of diffusion constants in the membrane bilayer by the use of such optical-microscope-based single-particle tracking (SPT) procedures. We specifically examined motion of a single molecule along (i) a locally planar and (ii) a locally rough surface. Our results indicate a need for caution in applying overly simplistic analytical strategies to the analysis of data from SPT measurements and provide upper and lower bounds for the likely degree of error introduced on the basis of surface roughness effects alone. Additionally we present an empirical method based on an autocorrelation function approach that may prove useful in identifying the existence of surface roughness and give some idea of its extent.
Collapse
Affiliation(s)
- Damien Hall
- Institute for Protein Research, Osaka University. 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
15
|
Hess GT, Humphries WH, Fay NC, Payne CK. Cellular binding, motion, and internalization of synthetic gene delivery polymers. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1583-8. [PMID: 17888530 PMCID: PMC2121221 DOI: 10.1016/j.bbamcr.2007.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 07/09/2007] [Accepted: 07/16/2007] [Indexed: 12/30/2022]
Abstract
Using fluorescence microscopy we have tracked the cellular binding, surface motion, and internalization of polyarginine and polyethylenimine, cationic ligands used for gene and protein delivery. Each ligand was complexed with a quantum dot to provide a photostable probe. Transfection with exogenous DNA was used to relate the observed motion to gene delivery. Cell surface motion was independent of sulfated proteoglycans, but dependent on cholesterol. Cellular internalization required sulfated proteoglycans and cholesterol. These observations suggest that sulfated proteoglycans act as cellular receptors for the cationic ligands, rather than only passive binding sites. Understanding the interaction of polyarginine and polyethylenimine with the plasma membrane may assist in designing more efficient gene delivery systems.
Collapse
Affiliation(s)
- Gaelen T Hess
- Biophysics Program, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Studying the properties of individual events and molecules offers a host of advantages over taking only macroscopic measurements of populations. Here we review such advantages, as well as some pitfalls, focusing on examples from biological imaging. Examples include single proteins, their interactions in cells, organelles, and their interactions both with each other and with parts of the cell. Additionally, we discuss constraints that limit the study of single events, along with the criteria that must be fulfilled to determine whether single molecules or events are being detected.
Collapse
Affiliation(s)
- Stefan Wennmalm
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
17
|
Levi V, Gratton E. Exploring dynamics in living cells by tracking single particles. Cell Biochem Biophys 2007; 48:1-15. [PMID: 17703064 DOI: 10.1007/s12013-007-0010-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/19/2022]
Abstract
In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells.
Collapse
Affiliation(s)
- Valeria Levi
- Laboratorio de Electrónica Cuántica, Departamento de Física, Universidad de Buenos Aires, Pabellón I Ciudad Universitaria, Buenos Aires, Argentina
| | | |
Collapse
|
18
|
Ritchie K, Spector J. Single molecule studies of molecular diffusion in cellular membranes: Determining membrane structure. Biopolymers 2007; 87:95-101. [PMID: 17610260 DOI: 10.1002/bip.20801] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since the advent of single particle/molecule microscopies, researchers have applied these techniques to understanding the fluid membranes of cells. By observing diffusion of membrane proteins and lipids in live cell membranes of eukaryotic cells, it has been found that membranes contain a mosaic of fluid compartments. Such structure may be instrumental in understanding key characteristics of the membrane. Recent single molecule observations on prokaryotic cell membranes will also be discussed.
Collapse
Affiliation(s)
- Ken Ritchie
- Department of Physics, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
19
|
Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. ACTA ACUST UNITED AC 2005; 34:351-78. [PMID: 15869394 DOI: 10.1146/annurev.biophys.34.040204.144637] [Citation(s) in RCA: 828] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advancements in single-molecule tracking methods with nanometer-level precision now allow researchers to observe the movement, recruitment, and activation of single molecules in the plasma membrane in living cells. In particular, on the basis of the observations by high-speed single-particle tracking at a frame rate of 40,000 frames s(1), the partitioning of the fluid plasma membrane into submicron compartments throughout the cell membrane and the hop diffusion of virtually all the molecules have been proposed. This could explain why the diffusion coefficients in the plasma membrane are considerably smaller than those in artificial membranes, and why the diffusion coefficient is reduced upon molecular complex formation (oligomerization-induced trapping). In this review, we first describe the high-speed single-molecule tracking methods, and then we critically review a new model of a partitioned fluid plasma membrane and the involvement of the actin-based membrane-skeleton "fences" and anchored-transmembrane protein "pickets" in the formation of compartment boundaries.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Kusumi Membrane Organizer Project, Exploratory Research for Advanced Technology Organization, Department of Biological Science and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fehrenbacher KL, Yang HC, Gay AC, Huckaba TM, Pon LA. Live cell imaging of mitochondrial movement along actin cables in budding yeast. Curr Biol 2004; 14:1996-2004. [PMID: 15556861 DOI: 10.1016/j.cub.2004.11.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 10/07/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Mitochondrial inheritance is essential for cell division. In budding yeast, mitochondrial movement from mother to daughter requires (1) actin cables, F-actin bundles that undergo retrograde movement during elongation from buds into mother cells; (2) the mitochore, a mitochondrial protein complex implicated in linking mitochondria to actin cables; and (3) Arp2/3 complex-mediated force generation on mitochondria. RESULTS We observed three new classes of mitochondrial motility: anterograde movement at velocities of 0.2-0.33 microm/s, retrograde movement at velocities of 0.26-0.51 microm/s, and no net anterograde or retrograde movement. In all cases, motile mitochondria were associated with actin cables undergoing retrograde flow at velocities of 0.18-0.62 microm/s. Destabilization of actin cables or mutations of the mitochore blocked all mitochondrial movements. In contrast, mutations in the Arp2/3 complex affected anterograde but not retrograde mitochondrial movements. CONCLUSIONS Actin cables are required for movement of mitochondria, secretory vesicles, mRNA, and spindle alignment elements in yeast. We provide the first direct evidence that one of the proposed cargos use actin cables as tracks. In the case of mitochondrial inheritance, anterograde movement drives transfer of the organelle from mothers to buds, while retrograde movement contributes to retention of the organelle in mother cells. Interaction of mitochondria with actin cables is required for anterograde and retrograde movement. In contrast, force generation on mitochondria is required only for anterograde movement. Finally, we propose a novel mechanism in which actin cables serve as "conveyor belts" that drive retrograde organelle movement.
Collapse
Affiliation(s)
- Kammy L Fehrenbacher
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
The techniques of single particle tracking (SPT) and optical force microscopy (OFM) as described above allow direct imaging of the motion of molecules in the membrane of live cells, and provide a means of controlling the movement by an almost noninvasive method. Combination of these techniques with other single-molecule methods, such as single-fluorophore imaging, allows direct comparison of motion at video rate (because faster than video rate imaging of fluorophore is still not generally feasible) to determine any effect due to the attached colloidal gold particle. Also, simultaneous use of the two techniques allows for monitoring two molecules, one at high time resolution. As such, the system can then be used in conjunction with green fluorescent protein (GFP) transfection to watch simultaneously the motion of an internal component of, say, a signaling pathway while seeing the motion of the transmembrane signaling receptor.
Collapse
Affiliation(s)
- Ken Ritchie
- Department of Biological Sciences, Nagoya University, Japan
| | | |
Collapse
|
22
|
Abstract
Leukocyte adhesion must be tightly controlled in order for leukocytes to patrol the body as nonadherent cells, yet stop and emigrate from the blood into tissues at sites of infection or inflammation. A key element in this process is activation of beta2 integrins. While beta2 integrin activation involves conformational changes that increase affinity for ligand, evidence is accumulating that rearrangement of integrins, resulting in increases in avidity, is at least as important in regulating binding capacity. Recent work has established the importance of diffusion and rearrangement of integrins to activation of leukocyte adhesion, and has begun to unravel the molecular basis of its regulation.
Collapse
Affiliation(s)
- Dennis F Kucik
- Research Service, Birmingham VA Medical Center and University of Alabama at Birmingham, USA.
| |
Collapse
|
23
|
Affiliation(s)
- Arnd Pralle
- Cell Biology and Biophysics Program, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | |
Collapse
|
24
|
Daumas F, Destainville N, Millot C, Lopez A, Dean D, Salomé L. Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking. Biophys J 2003; 84:356-66. [PMID: 12524289 PMCID: PMC1302617 DOI: 10.1016/s0006-3495(03)74856-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Single particle tracking is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. We used this technique to study the micro -opioid receptor belonging to the large family of the G-protein-coupled receptors involved with other partners in a signal transduction pathway. The specific labeling of the receptor coupled to a T7-tag at its N-terminus, stably expressed in fibroblastic cells, was achieved by colloidal gold coupled to a monoclonal anti T7-tag antibody. The lateral movements of the particles were followed by nanovideomicroscopy at 40 ms time resolution during 2 min with a spatial precision of 15 nm. The receptors were found to have either a slow or directed diffusion mode (10%) or a walking confined diffusion mode (90%) composed of a long-term random diffusion and a short-term confined diffusion, and corresponding to a diffusion confined within a domain that itself diffuses. The results indicate that the confinement is due to an effective harmonic potential generated by long-range attraction between the membrane proteins. A simple model for interacting membrane proteins diffusion is proposed that explains the variations with the domain size of the short-term and long-term diffusion coefficients.
Collapse
MESH Headings
- Bacteriophage T7/chemistry
- Cell Line
- Cell Membrane/chemistry
- Cell Membrane/physiology
- Cell Membrane/ultrastructure
- Diffusion
- Fibroblasts/chemistry
- Fibroblasts/physiology
- Fibroblasts/ultrastructure
- GTP-Binding Protein Regulators/chemistry
- GTP-Binding Protein Regulators/physiology
- GTP-Binding Protein Regulators/ultrastructure
- GTP-Binding Proteins/chemistry
- GTP-Binding Proteins/physiology
- GTP-Binding Proteins/ultrastructure
- Gold Colloid/chemistry
- Kidney/chemistry
- Kidney/physiology
- Kidney/ultrastructure
- Microscopy, Video/instrumentation
- Microscopy, Video/methods
- Microspheres
- Models, Biological
- Models, Chemical
- Motion
- Nanotechnology/instrumentation
- Nanotechnology/methods
- Particle Size
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/physiology
- Receptors, Cell Surface/ultrastructure
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/physiology
- Receptors, Opioid, mu/ultrastructure
- Signal Transduction/physiology
- Staining and Labeling/methods
Collapse
Affiliation(s)
- Frédéric Daumas
- Institut de Pharmacologie et Biologie Structurale, CNRS UMR 5089, 205, route de Narbonne, 31077 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Fluorescence correlation spectroscopy (FCS) can measure dynamics of fluorescent molecules in cells. FCS measures the fluctuations in the number of fluorescent molecules in a small volume illuminated by a thin beam of excitation light. These fluctuations are processed statistically to yield an autocorrelation function from which rates of diffusion, convection, chemical reaction, and other processes can be extracted. The advantages of this approach include the ability to measure the mobility of a very small number of molecules, even down to the single molecule level, over a wide range of rates in very small regions of a cell. In addition to rates of diffusion and convection, FCS also provides unique information about the local concentration, states of aggregation and molecular interaction using fluctuation amplitude and cross-correlation methods. Recent advances in technology have rendered these once difficult measurements accessible to routine use in cell biology and biochemistry. This review provides a summary of the FCS method and describes current areas in which the FCS approach is being extended beyond its original scope.
Collapse
Affiliation(s)
- E L Elson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
Caspi A, Yeger O, Grosheva I, Bershadsky AD, Elbaum M. A new dimension in retrograde flow: centripetal movement of engulfed particles. Biophys J 2001; 81:1990-2000. [PMID: 11566772 PMCID: PMC1301673 DOI: 10.1016/s0006-3495(01)75849-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Centripetal motion of surface-adherent particles is a classic experimental system for studying surface dynamics on a eukaryotic cell. To investigate bead migration over the entire cell surface, we have developed an experimental assay using multinuclear giant fibroblasts, which provide expanded length scales and an unambiguous frame of reference. Beads coated by adhesion ligands concanavalin A or fibronectin are placed in specific locations on the cell using optical tweezers, and their subsequent motion is tracked over time. The adhesion, as well as velocity and directionality of their movement, expose distinct regions of the cytoplasm and membrane. Beads placed on the peripheral lamella initiate centripetal motion, whereas beads placed on the central part of the cell attach to a stationary cortex and do not move. Careful examination by complementary three-dimensional methods shows that the motion of a bead placed on the cell periphery takes place after engulfment into the cytoplasm, whereas stationary beads, placed near the cell center, are not engulfed. These results demonstrate that centripetal motion of adhering particles may occur inside as well as outside the cell. Inhibition of actomyosin activity is used to explore requirements for engulfment and aspects of the bead movement. Centripetal movement of adherent particles seems to depend on mechanisms distinct from those driving overall cell contractility.
Collapse
Affiliation(s)
- A Caspi
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
27
|
Kucik DF, O'Toole TE, Zheleznyak A, Busettini DK, Brown EJ. Activation-enhanced alpha(IIb)beta(3)-integrin-cytoskeleton interactions outside of focal contacts require the alpha-subunit. Mol Biol Cell 2001; 12:1509-18. [PMID: 11359939 PMCID: PMC34601 DOI: 10.1091/mbc.12.5.1509] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Integrins link the cell's cytoskeleton to the extracellular matrix, as well as to receptors on other cells. These links occur not only at focal contacts but also at smaller integrin-containing protein complexes outside of focal contacts. We previously demonstrated the importance of focal contact-independent integrin-cytoskeleton interactions of beta(2) integrins: activation of adhesion resulted from a release of integrins from cytoskeletal constraints. To determine whether changes in integrin-cytoskeleton interactions were related to activation of the integrin, we used single particle tracking to examine focal contact-independent cytoskeletal associations of alpha(IIb)beta(3)-integrin, in which activation results in a large conformational change. Direct activation of alpha(IIb)beta(3) by mutation did not mimic activation of lymphocytes with phorbol ester, because it enhanced integrin-cytoskeleton interactions, whereas activation of lymphocytes decreased them. Using additional integrin mutants, we found that both alpha- and beta-cytoplasmic domains were required for these links. This suggests that 1) both beta(2)- and beta(3)-integrins interact with the cytoskeleton outside of focal contacts; 2) activation of a cell and activation of an integrin are distinct processes, and both can affect integrin-cytoskeleton interactions; and 3) the role of the alpha-subunit in integrin-cytoskeleton interactions in at least some circumstances is more direct than generally supposed.
Collapse
Affiliation(s)
- D F Kucik
- Research Service, Birmingham Veterans Administration Medical Center, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Membrane proteins and lipids often appear to be distributed in patches on the cell surface. These patches are often assumed to be membrane domains, arising from specific molecular associations. However, a computer simulation (Gheber and Edidin, 1999) shows that membrane patchiness may result from a combination of vesicle trafficking and dynamic barriers to lateral mobility. The simulation predicts that the steady-state patches of proteins and lipids seen on the cell surface will decay if vesicle trafficking is inhibited. To test this prediction, we compared the apparent sizes and intensities of patches of class I HLA molecules, integral membrane proteins, before and after inhibiting endocytic vesicle traffic from the cell surface, either by incubation in hypertonic medium or by expression of a dominant-negative mutant dynamin. As predicted by the simulation, the apparent sizes of HLA patches increased, whereas their intensities decreased after endocytosis and vesicle trafficking were inhibited.
Collapse
Affiliation(s)
- Q Tang
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
29
|
Abstract
Single-molecule detection in single living cells has been achieved by using confocal fluorescence microscopy and externally tagged probe molecules. The intracellular background fluorescence is substantially higher than that in aqueous buffer, but this background is continuous and stable and does not significantly interfere with the measurement of single-molecule photon bursts. As a result, single-molecule data have been obtained on three types of fluorescent probes at spatially resolved locations (e.g., cytoplasm and nucleus) inside human HeLa cells. First, the iron transport protein transferrin labeled with tetramethylrhodamine undergoes rapid receptor-mediated endocytosis, and single transferrin molecules are detected inside living cells. Second, the cationic dye rhodamine 6G (R6G) enters cultured cells by a potential-driven process, and single R6G molecules are observed as intense photon bursts when they move in and out of the intracellular laser beam. Third, we report results on synthetic oligonucleotides that are tagged with a fluorescent dye and are taken up by living cells via a passive, nonendocytic pathway.
Collapse
Affiliation(s)
- T A Byassee
- Department of Chemistry, Indiana University, Bloomington 47405, USA
| | | | | |
Collapse
|
30
|
Kwiatkowska K, Sobota A. Local accumulation of alpha-spectrin-related protein under plasma membrane during capping and phagocytosis in Acanthamoeba. CELL MOTILITY AND THE CYTOSKELETON 2000; 36:253-65. [PMID: 9067621 DOI: 10.1002/(sici)1097-0169(1997)36:3<253::aid-cm6>3.0.co;2-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During capping and phagocytosis the interaction between cluster cell surface receptors and the submembraneous actin-based skeleton may be mediated by spectrin-like proteins. To test this possibility we examined the localization of an alpha-spectrin immunoanalogue, that had been previously identified in whole extracts of Acanthamoeba, during capping of Con A receptors and during phagocytosis of Con A-coated yeast. During capping alpha-spectrin and filamentous actin co-migrated with the Con A receptors and accumulated in the region of cap formation, as demonstrated by double immunofluorescence studies. Immunoelectron microscopy revealed submembraneous location of alpha-spectrin in cells exposed to Con A, both at the time of initial cross-linking and during accumulation of alpha-spectrin in the region of the cap. Phagocytosis studies showed that alpha-spectrin and actin filaments were concentrated around phagocytic cups that enclosed ConA-coated yeast upon internalization. The proteins also surrounded nascent phagosomes present in the vicinity of the plasma membrane but were absent at the later time point of phagosome maturation. These data demonstrate a correlation between clustering of cell surface receptors and submembraneous localization of alpha-spectrin, suggesting an involvement of spectrin-like proteins in mediating the interaction of receptor clusters with the actin cytoskeleton.
Collapse
Affiliation(s)
- K Kwiatkowska
- Nencki Institute of Experimental Biology, Department of Cell Biology, Warsaw, Poland
| | | |
Collapse
|
31
|
Abstract
The ability of calcium (Ca(2+)) to effect changes in growth cone motility requires remodeling of the actin cytoskeleton. To understand the mechanisms involved, we evaluated the effect of elevated intracellular calcium ([Ca(2+)](i)) on actin bundle dynamics, organization, and retrograde flow in the large growth cones of identified Helisoma neurons. Depolarization with 15 mM KCl (high K(+)) for 30 min caused a rapid and sustained increase in [Ca(2+)](i) and resulted in longer filopodia, shorter actin ribs, and a decrease in lamellipodia width. Time-lapse microscopy revealed that increasing [Ca(2+)](i) affected actin bundle dynamics differently at the proximal and distal ends. Filopodial lengthening resulted from assembly-driven elongation of actin bundles whereas actin rib shortening resulted from a distal shift in the location of breakage. Buckling of ribs occurred before breakage, suggesting nonuniform forces were applied to ribs before shortening. Calcium (Ca(2+)) influx also resulted in a decrease in density of F-actin in bundles, as determined by contrast changes in ribs imaged by differential interference contrast microscopy and fluorescent intensity changes in rhodamine-labeled ribs. The velocity of retrograde flow decreased by 50% after elevation of [Ca(2+)](i). However, no significant change in retrograde flow occurred when the majority of changes in actin bundles were blocked by phalloidin. This suggests that inhibition of retrograde flow resulted from Ca(2+)-induced changes in the actin cytoskeleton. These results implicate Ca(2+) as a regulator of actin dynamics and, as such, provide a mechanism by which Ca(2+) can influence growth cone motility and behavior.
Collapse
|
32
|
Kusumi A, Suzuki K, Koyasako K. Mobility and cytoskeletal interactions of cell adhesion receptors. Curr Opin Cell Biol 1999; 11:582-90. [PMID: 10508652 DOI: 10.1016/s0955-0674(99)00020-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Clustering of cell adhesion receptors and their interactions with the cytoskeleton are key events in the formation and function of cell adhesion structures. On the free cell surface, cadherin molecules interact with the cytoskeleton/membrane skeleton by being bound or corralled, and such interactions are greatly enhanced by the formation of cadherin oligomers. Corralled cadherin molecules undergo hop diffusion from one compartment to an adjacent one (membrane skeleton fence model), which prompts the initial formation of small adhesion clusters at cell-cell contact sites, but larger-scale assemblies of cadherin and actin filaments might require a further co-ordinated recruitment of these molecules.
Collapse
Affiliation(s)
- A Kusumi
- Department of Biological Science Graduate School of Science Nagoya University Chikusa-ku, 464-8602, Kusumi Membrane Organizer Project ERATO, JST Kumazaki Building, Chiyoda 5-11-33, Nagoya, 460-0012, Japan.
| | | | | |
Collapse
|
33
|
Welnhofer EA, Zhao L, Cohan CS. Calcium influx alters actin bundle dynamics and retrograde flow in Helisoma growth cones. J Neurosci 1999; 19:7971-82. [PMID: 10479697 PMCID: PMC6782479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
The ability of calcium (Ca(2+)) to effect changes in growth cone motility requires remodeling of the actin cytoskeleton. To understand the mechanisms involved, we evaluated the effect of elevated intracellular calcium ([Ca(2+)](i)) on actin bundle dynamics, organization, and retrograde flow in the large growth cones of identified Helisoma neurons. Depolarization with 15 mM KCl (high K(+)) for 30 min caused a rapid and sustained increase in [Ca(2+)](i) and resulted in longer filopodia, shorter actin ribs, and a decrease in lamellipodia width. Time-lapse microscopy revealed that increasing [Ca(2+)](i) affected actin bundle dynamics differently at the proximal and distal ends. Filopodial lengthening resulted from assembly-driven elongation of actin bundles whereas actin rib shortening resulted from a distal shift in the location of breakage. Buckling of ribs occurred before breakage, suggesting nonuniform forces were applied to ribs before shortening. Calcium (Ca(2+)) influx also resulted in a decrease in density of F-actin in bundles, as determined by contrast changes in ribs imaged by differential interference contrast microscopy and fluorescent intensity changes in rhodamine-labeled ribs. The velocity of retrograde flow decreased by 50% after elevation of [Ca(2+)](i). However, no significant change in retrograde flow occurred when the majority of changes in actin bundles were blocked by phalloidin. This suggests that inhibition of retrograde flow resulted from Ca(2+)-induced changes in the actin cytoskeleton. These results implicate Ca(2+) as a regulator of actin dynamics and, as such, provide a mechanism by which Ca(2+) can influence growth cone motility and behavior.
Collapse
Affiliation(s)
- E A Welnhofer
- Department of Anatomy and Cell Biology, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
34
|
Smith PR, Morrison IE, Wilson KM, Fernández N, Cherry RJ. Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking. Biophys J 1999; 76:3331-44. [PMID: 10354459 PMCID: PMC1300303 DOI: 10.1016/s0006-3495(99)77486-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Single-particle tracking (SPT) was used to determine the mobility characteristics of MHC (major histocompatibility complex) class I molecules at the surface of HeLa cells at 22 degrees C and on different time scales. MHC class I was labeled using the Fab fragment of a monoclonal antibody (W6/32), covalently bound to either R-phycoerythrin or fluorescent microspheres, and the particles were tracked using high-sensitivity fluorescence imaging. Analysis of the data for a fixed time interval suggests a reasonable fit to a random diffusion model. The best fit values of the diffusion coefficient D decreased markedly, however, with increasing time interval, demonstrating the existence of anomalous diffusion. Further analysis of the data shows that the diffusion is anomalous over the complete time range investigated, 4-300 s. Fitting the results obtained with the R-phycoerythrin probe to D = D0talpha-1, where Do is a constant and t is the time, gave D0 = (6.7 +/- 4.5) x 10(-11) cm2 s-1 and alpha = 0.49 +/- 0.16. Experiments with fluorescent microspheres were less reproducible and gave slower anomalous diffusion. The R-phycoerythrin probe is considered more reliable for fluorescent SPT because it is small (11 x 8 nm) and monovalent. The type of motion exhibited by the class I molecules will greatly affect their ability to migrate in the plane of the membrane. Anomalous diffusion, in particular, greatly reduces the distance a class I molecule can travel on the time scale of minutes. The present data are discussed in relation to the possible role of diffusion and clustering in T-cell activation.
Collapse
Affiliation(s)
- P R Smith
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, England
| | | | | | | | | |
Collapse
|
35
|
Kucik DF, Elson EL, Sheetz MP. Weak dependence of mobility of membrane protein aggregates on aggregate size supports a viscous model of retardation of diffusion. Biophys J 1999; 76:314-22. [PMID: 9876143 PMCID: PMC1302520 DOI: 10.1016/s0006-3495(99)77198-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Proteins in plasma membranes diffuse more slowly than proteins inserted into artificial lipid bilayers. On a long-range scale (>250 nm), submembrane barriers, or skeleton fences that hinder long-range diffusion and create confinement zones, have been described. Even within such confinement zones, however, diffusion of proteins is much slower than predicted by the viscosity of the lipid. The cause of this slowing of diffusion on the micro scale has not been determined and is the focus of this paper. One way to approach this question is to determine the dependence of particle motion on particle size. Some current models predict that the diffusion coefficient of a membrane protein aggregate will depend strongly on its size, while others do not. We have measured the diffusion coefficients of membrane glycoprotein aggregates linked together by concanavalin A molecules bound to beads of various sizes, and also the diffusion coefficients of individual concanavalin A binding proteins. The measurements demonstrate at most a weak dependence of diffusion coefficient on aggregate size. This finding supports retardation by viscous effects, and is not consistent with models involving direct interaction of diffusing proteins with cytoskeletal elements.
Collapse
Affiliation(s)
- D F Kucik
- Birmingham Veterans Affairs Medical Center, Birmingham, AL and Department of Pathology, University of Alabama, Birmingham 35294, USA.
| | | | | |
Collapse
|
36
|
Abstract
Two dimensional motion of membrane receptors provides a mechanism for interaction among receptors in the plane of the membrane. In some cases the lateral diffusion leads to formation of clusters which may also be mobile. We have used image cross-correlation (ICCS) spectroscopy technique to measure the translational motion of transferrin receptors in the membrane of 3T3 fibroblasts and HEp2 carcinoma cells. The technique is based on the measurement and analysis of fluctuations in the intensity observed in fluorescence confocal microscope images measured as a function of time. The fluorescence fluctuations arise from stochastic concentration fluctuations about the equilibrium concentration caused by movement of receptors. The amplitude of the fluctuations depend on the number of fluorescent molecules in the observation volume and the dynamics provide the rate of movement. The diffusion observed by this analysis is orders of magnitude slower than that measured by conventional photobleaching techniques. The slower motion corresponds to the diffusion of receptor clusters which provide the more dominant fluctuations.
Collapse
Affiliation(s)
- M Srivastava
- Department of Chemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
37
|
Weisiger RA. Modulation of aspartate aminotransferase release and fatty acid uptake by ethanol. Hepatology 1998; 27:1162-3. [PMID: 9537459 DOI: 10.1002/hep.510270435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
38
|
Sako Y, Nagafuchi A, Tsukita S, Takeichi M, Kusumi A. Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J Cell Biol 1998; 140:1227-40. [PMID: 9490734 PMCID: PMC2132701 DOI: 10.1083/jcb.140.5.1227] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The translational movement of E-cadherin, a calcium-dependent cell-cell adhesion molecule in the plasma membrane in epithelial cells, and the mechanism of its regulation were studied using single particle tracking (SPT) and optical tweezers (OT). The wild type (Wild) and three types of artificial cytoplasmic mutants of E-cadherin were expressed in L-cells, and their movements were compared. Two mutants were E-cadherins that had deletions in the COOH terminus and lost the catenin-binding site(s) in the COOH terminus, with remaining 116 and 21 amino acids in the cytoplasmic domain (versus 152 amino acids for Wild); these are called Catenin-minus and Short-tailed in this paper, respectively. The third mutant, called Fusion, is a fusion protein between E-cadherin without the catenin-binding site and alpha-catenin without its NH2-terminal half. These cadherins were labeled with 40-nm phi colloidal gold or 210-nm phi latex particles via a monoclonal antibody to the extracellular domain of E-cadherin for SPT or OT experiments, respectively. E-cadherin on the dorsal cell surface (outside the cell-cell contact region) was investigated. Catenin-minus and Short-tailed could be dragged an average of 1.1 and 1.8 micron by OT (trapping force of 0.8 pN), and exhibited average microscopic diffusion coefficients (Dmicro) of 1.2 x 10(-10) and 2.1 x 10(-10) cm2/s, respectively. Approximately 40% of Wild, Catenin-minus, and Short-tailed exhibited confined-type diffusion. The confinement area was 0.13 micron2 for Wild and Catenin-minus, while that for Short-tailed was greater by a factor of four. In contrast, Fusion could be dragged an average of only 140 nm by OT. Average Dmicro for Fusion measured by SPT was small (0.2 x 10(-10) cm2/s). These results suggest that Fusion was bound to the cytoskeleton. Wild consists of two populations; about half behaves like Catenin- minus, and the other half behaves like Fusion. It is concluded that the movements of the wild-type E-cadherin in the plasma membrane are regulated via the cytoplasmic domain by (a) tethering to actin filaments through catenin(s) (like Fusion) and (b) a corralling effect of the network of the membrane skeleton (like Catenin-minus). The effective spring constants of the membrane skeleton that contribute to the tethering and corralling effects as measured by the dragging experiments were 30 and 5 pN/micron, respectively, indicating a difference in the skeletal structures that produce these two effects.
Collapse
Affiliation(s)
- Y Sako
- Department of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
39
|
Simson R, Yang B, Moore SE, Doherty P, Walsh FS, Jacobson KA. Structural mosaicism on the submicron scale in the plasma membrane. Biophys J 1998; 74:297-308. [PMID: 9449330 PMCID: PMC1299382 DOI: 10.1016/s0006-3495(98)77787-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The lateral mobility of the neural cell adhesion molecule (NCAM) was examined using single particle tracking (SPT). Various isoforms of human NCAM, differing in their ectodomain, their membrane anchorage mode, or the size of their cytoplasmic domain, were expressed in National Institutes of Health 3T3 cells and C2C12 muscle cells. On a 6.6-s time scale, SPT measurements on both transmembrane and glycosylphosphatidylinositol (GPI) anchored isoforms of NCAM expressed in 3T3 cells could be classified into mobile (Brownian diffusion), slow diffusion, corralled diffusion, and immobile subpopulations. On a 90-s time scale, SPT studies in C2C12 cells revealed that 40-60% of transfected NCAM was mobile, whereas a smaller fraction (approximately 10-30%) experienced much slower diffusion. In addition, a fraction of approximately 30% of both transfected GPI and transmembrane isoforms and endogenous NCAM isoforms in C2C12 cells experienced transient confinement for approximately 8 s within regions of approximately 300-nm diameter. Diffusion within both these and the slow diffusion regions was anomalous, consistent with movements through a dense field of obstacles, whereas diffusion outside these regions was normal. Thus the membrane appears as a mosaic containing regions that permit free diffusion as well as regions in which NCAM is transiently confined to small or more extended domains. These results, including a large, freely diffusing fraction, similar confinement of transmembrane and GPI isoforms, a significant slowly diffusing fraction, and relatively large interdomain distances, are at some variance with the membrane skeleton fence model (Kusumi and Sako, 1996). Possible revisions to the model that incorporate these data are discussed.
Collapse
Affiliation(s)
- R Simson
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | | | | | |
Collapse
|
40
|
Saxton MJ, Jacobson K. Single-particle tracking: applications to membrane dynamics. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1997; 26:373-99. [PMID: 9241424 DOI: 10.1146/annurev.biophys.26.1.373] [Citation(s) in RCA: 1237] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Measurements of trajectories of individual proteins or lipids in the plasma membrane of cells show a variety of types of motion. Brownian motion is observed, but many of the particles undergo non-Brownian motion, including directed motion, confined motion, and anomalous diffusion. The variety of motion leads to significant effects on the kinetics of reactions among membrane-bound species and requires a revision of existing views of membrane structure and dynamics.
Collapse
Affiliation(s)
- M J Saxton
- Institute of Theoretical Dynamics, University of California, Davis 95616, USA.
| | | |
Collapse
|
41
|
|
42
|
Abstract
Single-particle tracking and laser tweezers have facilitated the observation of the mechanics of molecular interactions in the plasma membrane of living cells at the level of single (or a few) molecules at nanometer/piconewton precision. These techniques have recently revealed that the membrane skeleton provides both confining and binding effects on the movement of membrane proteins, and that it can play a pivotal role in the molecular organization of the plasma membrane, especially in the formation of special membrane domains.
Collapse
Affiliation(s)
- A Kusumi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153, Japan.
| | | |
Collapse
|
43
|
Roth J. The silver anniversary of gold: 25 years of the colloidal gold marker system for immunocytochemistry and histochemistry. Histochem Cell Biol 1996; 106:1-8. [PMID: 8858362 DOI: 10.1007/bf02473197] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Since 1971, when W.P. Faulk and G.M. Taylor published "An immunocolloid method for the electron microscope", colloidal gold has become a very widely used marker in microscopy. It has been used to detect a huge range of cellular and extracellular constituents by in situ hybridization, immunogold, lectin-gold, and enzyme-gold labeling. Besides its use in light microscopic immunogold and lectin-gold silver staining, colloidal gold remains the label of choice for transmission electron microscopy studying thin sections, freeze-etch, and surface replicas, as well as for scanning electron microscopy. The year 1996 is the 25th anniversary of the introduction of colloidal gold as a marker in immunoelectron microscopy and this overview outlines some of the major milestones in the development of the colloidal gold marker system.
Collapse
Affiliation(s)
- J Roth
- Department of Pathology, University of Zürich, Switzerland
| |
Collapse
|
44
|
Feder TJ, Brust-Mascher I, Slattery JP, Baird B, Webb WW. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys J 1996; 70:2767-73. [PMID: 8744314 PMCID: PMC1225256 DOI: 10.1016/s0006-3495(96)79846-6] [Citation(s) in RCA: 344] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Protein lateral mobility in cell membranes is generally measured using fluorescence photobleaching recovery (FPR). Since the development of this technique, the data have been interpreted by assuming free Brownian diffusion of cell surface receptors in two dimensions, an interpretation that requires that a subset of the diffusing species remains immobile. The origin of this so-called immobile fraction remains a mystery. In FPR, the motions of thousands of particles are inherently averaged, inevitably masking the details of individual motions. Recently, tracking of individual cell surface receptors has identified several distinct types of motion (Gross and Webb, 1988; Ghosh and Webb, 1988, 1990, 1994; Kusumi et al. 1993; Qian et al. 1991; Slattery, 1995), thereby calling into question the classical interpretation of FPR data as free Brownian motion of a limited mobile fraction. We have measured the motion of fluorescently labeled immunoglobulin E complexed to high affinity receptors (Fc epsilon RI) on rat basophilic leukemia cells using both single particle tracking and FPR. As in previous studies, our tracking results show that individual receptors may diffuse freely, or may exhibit restricted, time-dependent (anomalous) diffusion. Accordingly, we have analyzed FPR data by a new model to take this varied motion into account, and we show that the immobile fraction may be due to particles moving with the anomalous subdiffusion associated with restricted lateral mobility. Anomalous subdiffusion denotes random molecular motion in which the mean square displacements grow as a power law in time with a fractional positive exponent less than one. These findings call for a new model of cell membrane structure.
Collapse
Affiliation(s)
- T J Feder
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
45
|
Kucik DF, Dustin ML, Miller JM, Brown EJ. Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J Clin Invest 1996; 97:2139-44. [PMID: 8621804 PMCID: PMC507289 DOI: 10.1172/jci118651] [Citation(s) in RCA: 274] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Lymphocytes activate adhesion to intracellular adhesion mlecule 1 (ICAM-1) via leukocyte function associated antigen 1 (LFA-1), their major beta 2 integrin, in response to PMA (phorbol 12-myristate 13-acetate) without an increase in the number of receptors expressed. The molecular details of the mechanism are unknown. To determine the effect of PMA activation on LFA-1 movement within the plasma membrane, we used the single particle tracking technique to measure the diffusion rate of LFA-1 molecules on EBV-transformed B cells before and after PMA activation. Diffusion of LFA-1 on unactivated cells was restricted compared to CR1 (CD35), another transmembrane protein of equivalent size. PMA caused a 10-fold increase in the diffusion rate of LFA-1 without any effect on CD35. The increased LFA-1 motion induced by PMA was random, not directed, indicating that it was due to a release of constraints rather than the application of forces. The diffusion rates of LFA-1 are consistent with cytoskeletal attachment before and free diffusion after PMA. Cytochalasin D led to an equivalent increase in mobility and, at low doses, stimulated adhesion, implying that the nonadhesive state of LFA-1 is actively maintained by the lymphocyte cytoskeleton.
Collapse
Affiliation(s)
- D F Kucik
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA,
| | | | | | | |
Collapse
|
46
|
Silletti S, Raz A. Regulation of autocrine motility factor receptor expression in tumor cell locomotion and metastasis. Curr Top Microbiol Immunol 1996; 213 ( Pt 2):137-69. [PMID: 9053289 DOI: 10.1007/978-3-642-61109-4_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- S Silletti
- Karmanos Cancer Institute, Detroit, MI 48201, USA
| | | |
Collapse
|
47
|
Abstract
During the growth of axons, the surface area of the neuron increases dramatically. Membrane addition as well as exchange could contribute to rapid membrane dynamics or flow. Using diffusing latex beads to monitor membrane flow, we find that axonal membrane flows rapidly (7 microns/min) from growth cone to cell body during axon growth and that flow is inhibited by brefeldin A. To power this flow, there is a membrane lesion gradient from growth cone to cell body that could draw the membrane over the axon at that rate. Further, when an artificial flow is induced to the center of the axon by use of laser tweezers, the primary source of the membrane is from the growth cone. We suggest that during neuron growth, there is excess membrane added at the growth cone in chick dorsal ganglia (DRGs) that undergoes edcocytosis at the cell body, thereby creating a flow that can rapidly alter the content of the axon membrane.
Collapse
Affiliation(s)
- J Dai
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
48
|
Shotton DM. Robert Feulgen Prize Lecture 1995. Electronic light microscopy: present capabilities and future prospects. Histochem Cell Biol 1995; 104:97-137. [PMID: 8536077 DOI: 10.1007/bf01451571] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Electronic light microscopy involves the combination of microscopic techniques with electronic imaging and digital image processing, resulting in dramatic improvements in image quality and ease of quantitative analysis. In this review, after a brief definition of digital images and a discussion of the sampling requirements for the accurate digital recording of optical images, I discuss the three most important imaging modalities in electronic light microscopy--video-enhanced contrast microscopy, digital fluorescence microscopy and confocal scanning microscopy--considering their capabilities, their applications, and recent developments that will increase their potential. Video-enhanced contrast microscopy permits the clear visualisation and real-time dynamic recording of minute objects such as microtubules, vesicles and colloidal gold particles, an order of magnitude smaller than the resolution limit of the light microscope. It has revolutionised the study of cellular motility, and permits the quantitative tracking of organelles and gold-labelled membrane bound proteins. In combination with the technique of optical trapping (optical tweezers), it permits exquisitely sensitive force and distance measurements to be made on motor proteins. Digital fluorescence microscopy enables low-light-level imaging of fluorescently labelled specimens. Recent progress has involved improvements in cameras, fluorescent probes and fluorescent filter sets, particularly multiple bandpass dichroic mirrors, and developments in multiparameter imaging, which is becoming particularly important for in situ hybridisation studies and automated image cytometry, fluorescence ratio imaging, and time-resolved fluorescence. As software improves and small computers become more powerful, computational techniques for out-of-focus blur deconvolution and image restoration are becoming increasingly important. Confocal microscopy permits convenient, high-resolution, non-invasive, blur-free optical sectioning and 3D image acquisition, but suffers from a number of limitations. I discuss advances in confocal techniques that address the problems of temporal resolution, spherical and chromatic aberration, wavelength flexibility and cross-talk between fluorescent channels, and describe new optics to enhance axial resolution and the use of two-photon excitation to reduce photobleaching. Finally, I consider the desirability of establishing a digital image database, the BioImage database, which would permit the archival storage of, and public Internet access to, multidimensional image data from all forms of biological microscopy. Submission of images to the BioImage database would be made in coordination with the scientific publication of research results based upon these data.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D M Shotton
- Department of Zoology, University of Oxford, UK
| |
Collapse
|
49
|
Abstract
Structural proteins of the membrane skeleton are thought to form "corrals" at the membrane surface, and these corrals may restrict lateral diffusion of membrane proteins. Recent experimental developments in single-particle tracking and laser trapping make it possible to examine the corral model in detail. Techniques to interpret these experiments are presented. First, escape times for a diffusing particle in a corral are obtained from Monte Carlo calculations and analytical solutions for various corral sizes, shapes, and escape probabilities, and reduced to a common curve. Second, the identification of corrals in tracking experiments is considered. The simplest way to identify corrals is by sight. If the walls are impermeable enough, a trajectory fills the corral before the diffusing particle escapes. The fraction of distinct sites visited before escape is calculated for corrals of various sizes, shapes, and escape probabilities, and reduced to a common curve. This fraction is also a measure of the probability that the diffusing species will react with another species in the corral before escaping. Finally, the effect of the sampling interval on the measurement of the short-range diffusion coefficient is examined.
Collapse
Affiliation(s)
- M J Saxton
- Institute of Theoretical Dynamics, University of California, Davis 95616, USA
| |
Collapse
|
50
|
Abstract
A model is presented for the steric interaction between a plasma membrane protein and the membrane cytoskeleton in the human erythrocyte. The cytoskeleton is treated as a network of polymer chains attached to a flat bilayer, and the membrane protein is a hemisphere of effective radius R(e) with center on the bilayer edge. The simulation is used to investigate the barrier-free path L for linear guided motion of a protein in the bilayer plane. It is shown that the barrier-free paths of small proteins can be used to extract the effective in-plane diameter of cytoskeletal components. For example, the in-plane diameter of an ankyrin attachment site is found to be approximately 12 nm in the simulation, or twice the computational spectrin diameter. The barrier-free paths of large proteins (R(e) > 23 nm) vanish when the proteins are corralled by the cytoskeleton. For intermediate size proteins, L decreases approximately as L is directly proportional to S-1.4 where S is proportional to the sum of the protein and cytoskeleton chain radii.
Collapse
Affiliation(s)
- D H Boal
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|