1
|
Tous C, Kinstlinger IS, Rice MEL, Deng J, Wong WW. Multiplexing light-inducible recombinases to control cell fate, Boolean logic, and cell patterning in mammalian cells. SCIENCE ADVANCES 2025; 11:eadt1971. [PMID: 40344052 PMCID: PMC12063640 DOI: 10.1126/sciadv.adt1971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/03/2025] [Indexed: 05/11/2025]
Abstract
Light-inducible regulatory proteins are powerful tools to interrogate fundamental mechanisms driving cellular behavior. In particular, genetically encoded photosensory domains fused to split proteins can tightly modulate protein activity and gene expression. While light-inducible split protein systems have performed well individually, few multichromatic and orthogonal gene regulation systems exist in mammalian cells. The design space for multichromatic circuits is limited by the small number of orthogonally addressable optogenetic switches and the types of effectors that can be actuated by them. We developed a library of red light-inducible recombinases and directed patterned myogenesis in a mesenchymal fibroblast-like cell line. To address the limited number of light-inducible domains (LIDs) responding to unique excitation spectra, we multiplexed light-inducible recombinases with our "Boolean logic and arithmetic through DNA excision" (BLADE) platform. Multiplexed optogenetic tools will be transformative for understanding the role of multiple interacting genes and their spatial context in endogenous signaling networks.
Collapse
Affiliation(s)
- Cristina Tous
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Ian S. Kinstlinger
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Maya E. L. Rice
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Jenny Deng
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Wilson W. Wong
- Department of Biomedical Engineering, Biological Design Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
2
|
Porpiglia E, Blau HM. Plasticity of muscle stem cells in homeostasis and aging. Curr Opin Genet Dev 2022; 77:101999. [PMID: 36308777 DOI: 10.1016/j.gde.2022.101999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 01/27/2023]
Abstract
We are living longer, but our healthspan has not increased. The goal of regenerative medicine is to increase quality of life through an understanding of the cellular and molecular processes that underlie effective tissue repair in order to restore damaged tissues. The drivers of muscle regeneration are the muscle stem cells that cycle between quiescent and activated states to meet tissue regenerative demands. Here we review recent findings on the role of the niche, or tissue microenvironment, in the modulation of muscle stem cell plasticity and the mechanisms responsible for the drastic loss of stem cell function with aging. These new studies unveil fundamental mechanisms of stem cell plasticity with broad relevance to other tissues and lay the foundation for the development of therapeutic strategies to boost the regenerative potential of aged muscle stem cells.
Collapse
Affiliation(s)
- Ermelinda Porpiglia
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark. https://twitter.com/richlopez41
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Belcheva KT, Chaudhuri J. Maintenance of Lineage Identity: Lessons from a B Cell. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2073-2081. [PMID: 36426973 DOI: 10.4049/jimmunol.2200497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 01/04/2023]
Abstract
The maintenance of B cell identity requires active transcriptional control that enforces a B cell-specific program and suppresses alternative lineage genes. Accordingly, disrupting the B cell identity regulatory network compromises B cell function and induces cell fate plasticity by allowing derepression of alternative lineage-specific transcriptional programs. Although the B lineage is incredibly resistant to most differentiating factors, loss of just a single B lineage-specific transcription factor or the forced expression of individual non-B cell lineage transcription factors can radically disrupt B cell maintenance and allow dedifferentiation or transdifferentiation into entirely distinct lineages. B lymphocytes thereby offer an insightful and useful case study of how a specific cell lineage can maintain a stable identity throughout life and how perturbations of a single master regulator can induce cellular plasticity. In this article, we review the regulatory mechanisms that safeguard B cell identity, and we discuss how dysregulation of the B cell maintenance program can drive malignant transformation and enable therapeutic resistance.
Collapse
Affiliation(s)
- Kalina T Belcheva
- Biochemistry, Cellular and Molecular Biology Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY; and
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
4
|
Rinkevich B, Ballarin L, Martinez P, Somorjai I, Ben‐Hamo O, Borisenko I, Berezikov E, Ereskovsky A, Gazave E, Khnykin D, Manni L, Petukhova O, Rosner A, Röttinger E, Spagnuolo A, Sugni M, Tiozzo S, Hobmayer B. A pan-metazoan concept for adult stem cells: the wobbling Penrose landscape. Biol Rev Camb Philos Soc 2022; 97:299-325. [PMID: 34617397 PMCID: PMC9292022 DOI: 10.1111/brv.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Loriano Ballarin
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaAv. Diagonal 643Barcelona08028Spain
- Institut Català de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
| | - Ildiko Somorjai
- School of BiologyUniversity of St AndrewsSt Andrews, FifeKY16 9ST, ScotlandUK
| | - Oshrat Ben‐Hamo
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Ilya Borisenko
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon UniversityJardin du Pharo, 58 Boulevard Charles LivonMarseille13007France
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesUlitsa Vavilova, 26Moscow119334Russia
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques MonodParisF‐75006France
| | - Denis Khnykin
- Department of PathologyOslo University HospitalBygg 19, Gaustad Sykehus, Sognsvannsveien 21Oslo0188Norway
| | - Lucia Manni
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Olga Petukhova
- Collection of Vertebrate Cell CulturesInstitute of Cytology, Russian Academy of SciencesTikhoretsky Ave. 4St. Petersburg194064Russia
| | - Amalia Rosner
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN)Nice06107France
- Université Côte d'Azur, Federative Research Institute – Marine Resources (IFR MARRES)28 Avenue de ValroseNice06103France
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | - Michela Sugni
- Department of Environmental Science and Policy (ESP)Università degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV)06234 Villefranche‐sur‐MerVillefranche sur MerCedexFrance
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences, University of InnsbruckTechnikerstrInnsbruck256020Austria
| |
Collapse
|
5
|
Alfaro-García JP, Granados-Alzate MC, Vicente-Manzanares M, Gallego-Gómez JC. An Integrated View of Virus-Triggered Cellular Plasticity Using Boolean Networks. Cells 2021; 10:cells10112863. [PMID: 34831086 PMCID: PMC8616224 DOI: 10.3390/cells10112863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Virus-related mortality and morbidity are due to cell/tissue damage caused by replicative pressure and resource exhaustion, e.g., HBV or HIV; exaggerated immune responses, e.g., SARS-CoV-2; and cancer, e.g., EBV or HPV. In this context, oncogenic and other types of viruses drive genetic and epigenetic changes that expand the tumorigenic program, including modifications to the ability of cancer cells to migrate. The best-characterized group of changes is collectively known as the epithelial–mesenchymal transition, or EMT. This is a complex phenomenon classically described using biochemistry, cell biology and genetics. However, these methods require enormous, often slow, efforts to identify and validate novel therapeutic targets. Systems biology can complement and accelerate discoveries in this field. One example of such an approach is Boolean networks, which make complex biological problems tractable by modeling data (“nodes”) connected by logical operators. Here, we focus on virus-induced cellular plasticity and cell reprogramming in mammals, and how Boolean networks could provide novel insights into the ability of some viruses to trigger uncontrolled cell proliferation and EMT, two key hallmarks of cancer.
Collapse
Affiliation(s)
- Jenny Paola Alfaro-García
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
| | - María Camila Granados-Alzate
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: (M.V.-M.); (J.C.G.-G.)
| | - Juan Carlos Gallego-Gómez
- Molecular and Translation Medicine Group, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia; (J.P.A.-G.); (M.C.G.-A.)
- Correspondence: (M.V.-M.); (J.C.G.-G.)
| |
Collapse
|
6
|
Faiz A, Harkness LM, Tjin G, Bernal V, Horvatovich P, James A, Elliot JG, Burgess JK, Ashton AW. Angiogenic regulatory influence of extracellular matrix deposited by resting state asthmatic and non-asthmatic airway smooth muscle cells is similar. J Cell Mol Med 2021; 25:6438-6447. [PMID: 34146379 PMCID: PMC8256353 DOI: 10.1111/jcmm.16648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022] Open
Abstract
The extracellular matrix (ECM) is the tissue microenvironment that regulates the characteristics of stromal and systemic cells to control processes such as inflammation and angiogenesis. Despite ongoing anti-inflammatory treatment, low levels of inflammation exist in the airways in asthma, which alters ECM deposition by airway smooth muscle (ASM) cells. The altered ECM causes aberrant behaviour of cells, such as endothelial cells, in the airway tissue. We therefore sought to characterize the composition and angiogenic potential of the ECM deposited by asthmatic and non-asthmatic ASM. After 72 hours under non-stimulated conditions, the ECM deposited by primary human asthmatic ASM cells was equal in total protein, collagen I, III and fibronectin content to that from non-asthmatic ASM cells. Further, the matrices of non-asthmatic and asthmatic ASM cells were equivalent in regulating the growth, activity, attachment and migration of primary human umbilical vein endothelial cells (HUVECs). Under basal conditions, asthmatic and non-asthmatic ASM cells intrinsically deposit an ECM of equivalent composition and angiogenic potential. Previous findings indicate that dysregulation of the airway ECM is driven even by low levels of inflammatory provocation. This study suggests the need for more effective anti-inflammatory therapies in asthma to maintain the airway ECM and regulate ECM-mediated aberrant angiogenesis.
Collapse
Affiliation(s)
- Alen Faiz
- Respiratory Cellular and Molecular BiologyWoolcock Institute of Medical Research. SydneyNSWAustralia
- Emphysema CenterWoolcock Institute of Medical ResearchThe University of SydneyGlebeNSWAustralia
- Respiratory Bioinformatics and Molecular BiologyFaculty of ScienceUniversity of Technology SydneyUltimoNSWAustralia
- Department of Pathology and Medical BiologyGroningen Research Institute for Asthma and COPDUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of PulmonologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Discipline of PharmacologySchool of Medical SciencesThe University of SydneySydneyNSWAustralia
- Central Clinical SchoolThe University of SydneySydneyNSWAustralia
| | - Louise M. Harkness
- Respiratory Cellular and Molecular BiologyWoolcock Institute of Medical Research. SydneyNSWAustralia
- Department of PulmonologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Discipline of PharmacologySchool of Medical SciencesThe University of SydneySydneyNSWAustralia
| | - Gavin Tjin
- Respiratory Cellular and Molecular BiologyWoolcock Institute of Medical Research. SydneyNSWAustralia
- Discipline of PharmacologySchool of Medical SciencesThe University of SydneySydneyNSWAustralia
- Central Clinical SchoolThe University of SydneySydneyNSWAustralia
- Present address:
St Vincent’s Institute Medical ResearchFitzroyVic.Australia
| | - Victor Bernal
- Bernoulli Institute (BI)University of GroningenGroningenThe Netherlands
- Department of PharmacyAnalytical BiochemistryUniversity of GroningenGroningenThe Netherlands
| | - Peter Horvatovich
- Department of PharmacyAnalytical BiochemistryUniversity of GroningenGroningenThe Netherlands
| | - Alan James
- Department of Pulmonary Physiology and Sleep MedicineWest Australian Sleep Disorders Research InstituteSir Charles Gairdner HospitalPerthWAAustralia
- School of Medicine and PharmacologyUniversity of Western AustraliaPerthWAAustralia
| | - John G. Elliot
- Department of Pulmonary Physiology and Sleep MedicineWest Australian Sleep Disorders Research InstituteSir Charles Gairdner HospitalPerthWAAustralia
| | - Janette K. Burgess
- Respiratory Cellular and Molecular BiologyWoolcock Institute of Medical Research. SydneyNSWAustralia
- Department of Pathology and Medical BiologyGroningen Research Institute for Asthma and COPDUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of PulmonologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Discipline of PharmacologySchool of Medical SciencesThe University of SydneySydneyNSWAustralia
- Central Clinical SchoolThe University of SydneySydneyNSWAustralia
- Department of Pathology and Medical BiologyKOLFF InstituteUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Anthony W. Ashton
- Division of Perinatal ResearchKolling Institute of Medical ResearchSydneyNSWAustralia
| |
Collapse
|
7
|
Almeida N, Chung MWH, Drudi EM, Engquist EN, Hamrud E, Isaacson A, Tsang VSK, Watt FM, Spagnoli FM. Employing core regulatory circuits to define cell identity. EMBO J 2021; 40:e106785. [PMID: 33934382 PMCID: PMC8126924 DOI: 10.15252/embj.2020106785] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The interplay between extrinsic signaling and downstream gene networks controls the establishment of cell identity during development and its maintenance in adult life. Advances in next-generation sequencing and single-cell technologies have revealed additional layers of complexity in cell identity. Here, we review our current understanding of transcription factor (TF) networks as key determinants of cell identity. We discuss the concept of the core regulatory circuit as a set of TFs and interacting factors that together define the gene expression profile of the cell. We propose the core regulatory circuit as a comprehensive conceptual framework for defining cellular identity and discuss its connections to cell function in different contexts.
Collapse
Affiliation(s)
- Nathalia Almeida
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Matthew W H Chung
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Elena M Drudi
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Elise N Engquist
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Eva Hamrud
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Abigail Isaacson
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Victoria S K Tsang
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| | - Francesca M Spagnoli
- Centre for Stem Cells and Regenerative MedicineGuy’s HospitalKing’s College LondonLondonUK
| |
Collapse
|
8
|
Erez N, Israitel L, Bitman-Lotan E, Wong WH, Raz G, Cornelio-Parra DV, Danial S, Flint Brodsly N, Belova E, Maksimenko O, Georgiev P, Druley T, Mohan RD, Orian A. A Non-stop identity complex (NIC) supervises enterocyte identity and protects from premature aging. eLife 2021; 10:62312. [PMID: 33629655 PMCID: PMC7936876 DOI: 10.7554/elife.62312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
A hallmark of aging is loss of differentiated cell identity. Aged Drosophila midgut differentiated enterocytes (ECs) lose their identity, impairing tissue homeostasis. To discover identity regulators, we performed an RNAi screen targeting ubiquitin-related genes in ECs. Seventeen genes were identified, including the deubiquitinase Non-stop (CG4166). Lineage tracing established that acute loss of Non-stop in young ECs phenocopies aged ECs at cellular and tissue levels. Proteomic analysis unveiled that Non-stop maintains identity as part of a Non-stop identity complex (NIC) containing E(y)2, Sgf11, Cp190, (Mod) mdg4, and Nup98. Non-stop ensured chromatin accessibility, maintaining the EC-gene signature, and protected NIC subunit stability. Upon aging, the levels of Non-stop and NIC subunits declined, distorting the unique organization of the EC nucleus. Maintaining youthful levels of Non-stop in wildtype aged ECs safeguards NIC subunits, nuclear organization, and suppressed aging phenotypes. Thus, Non-stop and NIC, supervise EC identity and protects from premature aging.
Collapse
Affiliation(s)
- Neta Erez
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lena Israitel
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eliya Bitman-Lotan
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Wing H Wong
- Division of Pediatric Hematology and Oncology, Washington University, Saint-Louis, United States
| | - Gal Raz
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dayanne V Cornelio-Parra
- Department of Genetics, Developmental & Evolutionary Biology, School of Biological and Chemical Sciences University of Missouri, Kansas City, United States
| | - Salwa Danial
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Na'ama Flint Brodsly
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elena Belova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russian Federation
| | - Oksana Maksimenko
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russian Federation
| | - Todd Druley
- Division of Pediatric Hematology and Oncology, Washington University, Saint-Louis, United States
| | - Ryan D Mohan
- Department of Genetics, Developmental & Evolutionary Biology, School of Biological and Chemical Sciences University of Missouri, Kansas City, United States
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Bitman-Lotan E, Orian A. Nuclear organization and regulation of the differentiated state. Cell Mol Life Sci 2021; 78:3141-3158. [PMID: 33507327 PMCID: PMC8038961 DOI: 10.1007/s00018-020-03731-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022]
Abstract
Regulation of the differentiated identity requires active and continued supervision. Inability to maintain the differentiated state is a hallmark of aging and aging-related disease. To maintain cellular identity, a network of nuclear regulators is devoted to silencing previous and non-relevant gene programs. This network involves transcription factors, epigenetic regulators, and the localization of silent genes to heterochromatin. Together, identity supervisors mold and maintain the unique nuclear environment of the differentiated cell. This review describes recent discoveries regarding mechanisms and regulators that supervise the differentiated identity and protect from de-differentiation, tumorigenesis, and attenuate forced somatic cell reprograming. The review focuses on mechanisms involved in H3K9me3-decorated heterochromatin and the importance of nuclear lamins in cell identity. We outline how the biophysical properties of these factors are involved in self-compartmentalization of heterochromatin and cell identity. Finally, we discuss the relevance of these regulators to aging and age-related disease.
Collapse
Affiliation(s)
- Eliya Bitman-Lotan
- Rappaport Research Institute and Faculty of Medicine, The Rappaport Faculty of Medicine Technion-IIT, Technion Integrative Cancer Center (TICC), Technion-Israel Institute of Technology, Bat-Galim, 3109610, Haifa, Israel
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, The Rappaport Faculty of Medicine Technion-IIT, Technion Integrative Cancer Center (TICC), Technion-Israel Institute of Technology, Bat-Galim, 3109610, Haifa, Israel.
| |
Collapse
|
10
|
Wesolowski R, Kowenz-Leutz E, Zimmermann K, Dörr D, Hofstätter M, Slany RK, Mildner A, Leutz A. Myeloid transformation by MLL- ENL depends strictly on C/EBP. Life Sci Alliance 2021; 4:e202000709. [PMID: 33144337 PMCID: PMC7652399 DOI: 10.26508/lsa.202000709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/02/2022] Open
Abstract
Chromosomal rearrangements of the mixed-lineage leukemia gene MLL1 are the hallmark of infant acute leukemia. The granulocyte-macrophage progenitor state forms the epigenetic basis for myelomonocytic leukemia stemness and transformation by MLL-type oncoproteins. Previously, it was shown that the establishment of murine myelomonocytic MLL-ENL transformation, but not its maintenance, depends on the transcription factor C/EBPα, suggesting an epigenetic hit-and-run mechanism of MLL-driven oncogenesis. Here, we demonstrate that compound deletion of Cebpa/Cebpb almost entirely abrogated the growth and survival of MLL-ENL-transformed cells. Rare, slow-growing, and apoptosis-prone MLL-ENL-transformed escapees were recovered from compound Cebpa/Cebpb deletions. The escapees were uniformly characterized by high expression of the resident Cebpe gene, suggesting inferior functional compensation of C/EBPα/C/EBPβ deficiency by C/EBPε. Complementation was augmented by ectopic C/EBPβ expression and downstream activation of IGF1 that enhanced growth. Cebpe gene inactivation was accomplished only in the presence of complementing C/EBPβ, but not in its absence, confirming the Cebpe dependency of the Cebpa/Cebpb double knockouts. Our data show that MLL-transformed myeloid cells are dependent on C/EBPs during the initiation and maintenance of transformation.
Collapse
Affiliation(s)
| | | | | | - Dorothea Dörr
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Robert K Slany
- Department of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Achim Leutz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
11
|
Abstract
Stem cells (SCs) maintain tissue homeostasis and repair wounds. Despite marked variation in tissue architecture and regenerative demands, SCs often follow similar paradigms in communicating with their microenvironmental "niche" to transition between quiescent and regenerative states. Here we use skin epithelium and skeletal muscle-among the most highly-stressed tissues in our body-to highlight similarities and differences in niche constituents and how SCs mediate natural tissue rejuvenation and perform regenerative acts prompted by injuries. We discuss how these communication networks break down during aging and how understanding tissue SCs has led to major advances in regenerative medicine.
Collapse
Affiliation(s)
- Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Helen M Blau
- Baxter Foundation Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
|
13
|
Pires CF, Rosa FF, Kurochkin I, Pereira CF. Understanding and Modulating Immunity With Cell Reprogramming. Front Immunol 2019; 10:2809. [PMID: 31921109 PMCID: PMC6917620 DOI: 10.3389/fimmu.2019.02809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022] Open
Abstract
Cell reprogramming concepts have been classically developed in the fields of developmental and stem cell biology and are currently being explored for regenerative medicine, given its potential to generate desired cell types for replacement therapy. Cell fate can be experimentally reversed or modified by enforced expression of lineage specific transcription factors leading to pluripotency or attainment of another somatic cell type identity. The possibility to reprogram fibroblasts into induced dendritic cells (DC) competent for antigen presentation creates a paradigm shift for understanding and modulating the immune system with direct cell reprogramming. PU.1, IRF8, and BATF3 were identified as sufficient and necessary to impose DC fate in unrelated cell types, taking advantage of Clec9a, a C-type lectin receptor with restricted expression in conventional DC type 1. The identification of such minimal gene regulatory networks helps to elucidate the molecular mechanisms governing development and lineage heterogeneity along the hematopoietic hierarchy. Furthermore, the generation of patient-tailored reprogrammed immune cells provides new and exciting tools for the expanding field of cancer immunotherapy. Here, we summarize cell reprogramming concepts and experimental approaches, review current knowledge at the intersection of cell reprogramming with hematopoiesis, and propose how cell fate engineering can be merged to immunology, opening new opportunities to understand the immune system in health and disease.
Collapse
Affiliation(s)
- Cristiana F. Pires
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Fábio F. Rosa
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ilia Kurochkin
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Carlos-Filipe Pereira
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Flint Brodsly N, Bitman-Lotan E, Boico O, Shafat A, Monastirioti M, Gessler M, Delidakis C, Rincon-Arano H, Orian A. The transcription factor Hey and nuclear lamins specify and maintain cell identity. eLife 2019; 8:44745. [PMID: 31310235 PMCID: PMC6634966 DOI: 10.7554/elife.44745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The inability of differentiated cells to maintain their identity is a hallmark of age-related diseases. We found that the transcription factor Hey supervises the identity of differentiated enterocytes (ECs) in the adult Drosophila midgut. Lineage tracing established that Hey-deficient ECs are unable to maintain their unique nuclear organization and identity. To supervise cell identity, Hey determines the expression of nuclear lamins, switching from a stem-cell lamin configuration to a differentiated lamin configuration. Moreover, continued Hey expression is required to conserve large-scale nuclear organization. During aging, Hey levels decline, and EC identity and gut homeostasis are impaired, including pathological reprograming and compromised gut integrity. These phenotypes are highly similar to those observed upon acute targeting of Hey or perturbation of lamin expression in ECs in young adults. Indeed, aging phenotypes were suppressed by continued expression of Hey in ECs, suggesting that a Hey-lamin network safeguards nuclear organization and differentiated cell identity.
Collapse
Affiliation(s)
- Naama Flint Brodsly
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eliya Bitman-Lotan
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Olga Boico
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adi Shafat
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maria Monastirioti
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Manfred Gessler
- Biocenter of Developmental Biochemistry, University of Würzburg, Würzburg, Germany
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Hector Rincon-Arano
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Gegenhuber B, Tollkuhn J. Sex Differences in the Epigenome: A Cause or Consequence of Sexual Differentiation of the Brain? Genes (Basel) 2019; 10:genes10060432. [PMID: 31181654 PMCID: PMC6627918 DOI: 10.3390/genes10060432] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Females and males display differences in neural activity patterns, behavioral responses, and incidence of psychiatric and neurological diseases. Sex differences in the brain appear throughout the animal kingdom and are largely a consequence of the physiological requirements necessary for the distinct roles of the two sexes in reproduction. As with the rest of the body, gonadal steroid hormones act to specify and regulate many of these differences. It is thought that transient hormonal signaling during brain development gives rise to persistent sex differences in gene expression via an epigenetic mechanism, leading to divergent neurodevelopmental trajectories that may underlie sex differences in disease susceptibility. However, few genes with a persistent sex difference in expression have been identified, and only a handful of studies have employed genome-wide approaches to assess sex differences in epigenomic modifications. To date, there are no confirmed examples of gene regulatory elements that direct sex differences in gene expression in the brain. Here, we review foundational studies in this field, describe transcriptional mechanisms that could act downstream of hormone receptors in the brain, and suggest future approaches for identification and validation of sex-typical gene programs. We propose that sexual differentiation of the brain involves self-perpetuating transcriptional states that canalize sex-specific development.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
16
|
Yang L, Yang S, Li X, Li B, Li Y, Zhang X, Ma Y, Peng X, Jin H, Fan Q, Wei S, Liu J, Li H. Tumor organoids: From inception to future in cancer research. Cancer Lett 2019; 454:120-133. [PMID: 30981763 DOI: 10.1016/j.canlet.2019.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
Tumor models have created new avenues for personalized medicine and drug development. A new culture model derived from a three-dimensional system, the tumor organoid, is gradually being used in many fields. An organoid can simulate the physiological structure and function of tissue in situ and maintain the characteristics of tumor cells in vivo, overcoming the disadvantages of traditional experimental tumor models. Organoids can mimic pathological features of tumors and maintain genetic stability, making them suitable for both molecular mechanism studies and pharmacological experiments of clinical transformation. In addition, the application of tumor organoids combined with other technologies, such as liquid biopsy technology, microraft array (MRA), and high-content screening (HCS), for the development of personalized diagnosis and cancer treatment has a promising future. In this review, we introduce the evolution of organoids and discuss their specific application and advantages. We also summarize the characteristics of several tumor organoids culture systems.
Collapse
Affiliation(s)
- Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Bowen Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Xiaodong Zhang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110000, PR China.
| |
Collapse
|
17
|
FACT Sets a Barrier for Cell Fate Reprogramming in Caenorhabditis elegans and Human Cells. Dev Cell 2018; 46:611-626.e12. [PMID: 30078731 PMCID: PMC6137076 DOI: 10.1016/j.devcel.2018.07.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 05/08/2018] [Accepted: 07/03/2018] [Indexed: 01/04/2023]
Abstract
The chromatin regulator FACT (facilitates chromatin transcription) is essential for ensuring stable gene expression by promoting transcription. In a genetic screen using Caenorhabditis elegans, we identified that FACT maintains cell identities and acts as a barrier for transcription factor-mediated cell fate reprogramming. Strikingly, FACT's role as a barrier to cell fate conversion is conserved in humans as we show that FACT depletion enhances reprogramming of fibroblasts. Such activity is unexpected because FACT is known as a positive regulator of gene expression, and previously described reprogramming barriers typically repress gene expression. While FACT depletion in human fibroblasts results in decreased expression of many genes, a number of FACT-occupied genes, including reprogramming-promoting factors, show increased expression upon FACT depletion, suggesting a repressive function of FACT. Our findings identify FACT as a cellular reprogramming barrier in C. elegans and humans, revealing an evolutionarily conserved mechanism for cell fate protection.
Collapse
|
18
|
Alali F, Kochaji N. Proliferative Activity of Myoepithelial Cells in Normal Salivary Glands and Adenoid Cystic Carcinomas Based on Double Immunohistochemical Labeling. Asian Pac J Cancer Prev 2018; 19:1965-1970. [PMID: 30051681 PMCID: PMC6165645 DOI: 10.22034/apjcp.2018.19.7.1965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/01/2018] [Indexed: 01/05/2023] Open
Abstract
Objective: To investigate the proliferative activity of myoepithelial cells (MEC) in normal salivary glands (NSG) and adenoid cystic carcinomas (ACC)) Study design. Twenty -three salivary gland specimens (13 ACC, 10 NSG) were studied using double immunohistochemical labeling for α smooth muscle actin (a-SMA) and proliferative cell nuclear antigen (PCNA)). Results: There was a significant difference in PCNA reactivity in normal samples between myoepithelial cells of the parotid glands and of the submandibular glands, rates being higher in the latter. Neoplastic myoepithelial cells exhibited higher expression than neoplastic epithelial cells. In addition, myoepithelial cells of the cribriform type of ACC showed PCNA reactivity lower than those of the tubular type, whereas there was no statistically significant difference in epithelial cell rates. We could not identify myoepithelial cells in solid pattern due to α-SMA negativity; although high PCNA reactivity was evident. Conclusion: These data suggest that the myoepithelial cell has a key role in ACC oncogenesis, more so than its epithelial cell counterparts. Moreover, the data provide a histopathological interpretation for aggressive clinical features of submandibular ACC, as the myoepithelial cells were less differentiated as compared to those of parotid glands.
Collapse
Affiliation(s)
- Faisal Alali
- Department of Maxillofacial Surgery, Diagnostic Sciences, Prince Sattam Bin Abdulaziz University, Faculty College of Dentistry, Saudi Arabia.
| | | |
Collapse
|
19
|
Mortada I, Mortada R. Dental pulp stem cells and osteogenesis: an update. Cytotechnology 2018; 70:1479-1486. [PMID: 29938380 DOI: 10.1007/s10616-018-0225-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Dental pulp stem cells constitute an attractive source of multipotent mesenchymal stem cells owing to their high proliferation rate and multilineage differentiation potential. Osteogenesis is initiated by osteoblasts, which originate from mesenchymal stem cells. These cells express specific surface antigens that disappear gradually during osteodifferentiation. In parallel, the appearance of characteristic markers, including alkaline phosphatase, collagen type I, osteocalcin and osteopontin characterize the osteoblastic phenotype of dental pulp stem cells. This review will shed the light on the osteogenic differentiation potential of dental pulp stem cells and explore the culture medium components, and markers associated with osteodifferentiation of these cells.
Collapse
|
20
|
Profile of Helen M. Blau. Proc Natl Acad Sci U S A 2017; 114:11561-11563. [PMID: 29078409 DOI: 10.1073/pnas.1715373114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Patel T, Hobert O. Coordinated control of terminal differentiation and restriction of cellular plasticity. eLife 2017; 6. [PMID: 28422646 PMCID: PMC5397285 DOI: 10.7554/elife.24100] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/23/2017] [Indexed: 01/17/2023] Open
Abstract
The acquisition of a specific cellular identity is usually paralleled by a restriction of cellular plasticity. Whether and how these two processes are coordinated is poorly understood. Transcription factors called terminal selectors activate identity-specific effector genes during neuronal differentiation to define the structural and functional properties of a neuron. To study restriction of plasticity, we ectopically expressed C. elegans CHE-1, a terminal selector of ASE sensory neuron identity. In undifferentiated cells, ectopic expression of CHE-1 results in activation of ASE neuron type-specific effector genes. Once cells differentiate, their plasticity is restricted and ectopic expression of CHE-1 no longer results in activation of ASE effector genes. In striking contrast, removal of the respective terminal selectors of other sensory, inter-, or motor neuron types now enables ectopically expressed CHE-1 to activate its ASE-specific effector genes, indicating that terminal selectors not only activate effector gene batteries but also control the restriction of cellular plasticity. Terminal selectors mediate this restriction at least partially by organizing chromatin. The chromatin structure of a CHE-1 target locus is less compact in neurons that lack their resident terminal selector and genetic epistasis studies with H3K9 methyltransferases suggest that this chromatin modification acts downstream of a terminal selector to restrict plasticity. Taken together, terminal selectors activate identity-specific genes and make non-identity-defining genes less accessible, thereby serving as a checkpoint to coordinate identity specification with restriction of cellular plasticity. DOI:http://dx.doi.org/10.7554/eLife.24100.001
Collapse
Affiliation(s)
- Tulsi Patel
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
| |
Collapse
|
22
|
Dental Pulp Stem Cells and Neurogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:63-75. [DOI: 10.1007/5584_2017_71] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Larsson M. Pax2 is persistently expressed by GABAergic neurons throughout the adult rat dorsal horn. Neurosci Lett 2016; 638:96-101. [PMID: 27939388 DOI: 10.1016/j.neulet.2016.12.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022]
Abstract
The transcription factor Pax2 is required for the differentiation of GABAergic neurons in the mouse dorsal horn. Pax2 continues to be expressed in the adult murine spinal cord and has been used as a presumed marker of GABAergic neurons in the superficial dorsal horn of the adult mouse, although a strict association between adult Pax2 expression and presence of GABA throughout the dorsal horn has not been firmly established. Moreover, whether Pax2 is selectively expressed in GABAergic dorsal horn neurons also in the rat is unknown. Here, immunofluorescent labeling of Pax2 and GABA in the lumbar spinal cord of adult rats was used to investigate this issue. Indeed, essentially all GABA immunoreactive neurons in laminae I-V were immunolabeled for Pax2. Conversely, essentially all Pax2 immunopositive neurons in these laminae exhibited somatic GABA immunolabeling. These results indicate persistent Pax2 expression in GABAergic neurons in the adult rat dorsal horn, supporting the hypothesis that Pax2 may be required for the maintenance of a GABAergic phenotype in mature inhibitory dorsal horn neurons in the rat. Furthermore, Pax2 may be used as a selective and specific general somatic marker of such neurons.
Collapse
Affiliation(s)
- Max Larsson
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Sweden.
| |
Collapse
|
24
|
Changing cells: An analysis of the concept of plasticity in the context of cellular differentiation. BIOSOCIETIES 2016. [DOI: 10.1057/s41292-016-0027-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Kim MY, Cho WD, Hong KP, Choi DB, Hong JW, Kim S, Moon YR, Son SM, Lee OJ, Lee HC, Song HG. Novel monoclonal antibody against beta 1 integrin enhances cisplatin efficacy in human lung adenocarcinoma cells. J Biomed Res 2016; 30:217-24. [PMID: 27533932 PMCID: PMC4885170 DOI: 10.7555/jbr.30.2016k0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/03/2022] Open
Abstract
The use of anti-beta 1 integrin monoclonal antibody in lung cancer treatment has proven beneficial. Here, we developed a novel monoclonal antibody (mAb), called P5, by immunizing mice with human peripheral blood mononuclear cells (PBMC). Its anti-tumor effect is now being tested, in a clinical phase III trial, in combinatorial treatments with various chemical drugs. To confirm that P5 indeed binds to beta 1 integrin, cell lysates were immunoprecipitated with commercial anti-beta 1 integrin mAb (TS2/16) and immunoblotted against P5 to reveal a 140 kDa molecular weight band, as expected. Immunoprecipitation with P5 followed by LC/MS protein sequence analysis further verified P5 antigen to be beta 1 integrin. Cisplatin treatment upregulated cell surface expression of beta 1 integrin in A549 cells, while causing inhibition of cell growth. When cells were co-treated with different concentrations of P5 mAb, the cisplatin-mediated inhibitory effect was enhanced in a dose-dependent manner. Our findings show that a combinatorial treatment of P5 mAb and cisplatin in A549 cells resulted in a 30% increase in apoptosis, compared to baseline, and significantly more when compared to either the cisplatin or P5 alone group. The entire peptide sequences in CDR from variable region of Ig heavy and light chain gene for P5 mAb are also disclosed. Together, these results provide evidence of the beneficial effect of P5 mAb in combinatorial treatment of human lung adenocarcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ok-Jun Lee
- Department of Pathology.,Research Institute, Chungbuk National University College of Medicine, Cheongju, 28644, Republic of Korea
| | - Ho-Chang Lee
- Department of Pathology.,Research Institute, Chungbuk National University College of Medicine, Cheongju, 28644, Republic of Korea
| | - Hyung Geun Song
- Department of Pathology.,Research Institute, Chungbuk National University College of Medicine, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
26
|
Chua ILS, Kim HW, Lee JH. Signaling of extracellular matrices for tissue regeneration and therapeutics. Tissue Eng Regen Med 2016; 13:1-12. [PMID: 30603379 DOI: 10.1007/s13770-016-9075-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/18/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022] Open
Abstract
Cells receive important regulatory signals from their extracellular matrix (ECM) and the physical property of the ECM regulates important cellular behaviors like cell proliferation, migration and differentiation. A large part of tissue formation and regeneration depends on cellular interaction with its ECM. A comprehensive understanding of the mechanistic biochemical pathway of the ECM components is necessary for the design of a biomaterial scaffold for tissue engineering. Depending on the type of tissue, the ECM requirement might be different and this would influence its downstream intracellular cell signaling. Here, we reviewed the ECM and its signaling pathway by discussing: 1) classification of the ECM into hard, elastic and soft tissue based on its physical properties, 2) proliferation and differentiation control of the ECM, 3) roles of membrane receptor and its intracellular regulation factor, 4) ECM remodeling via inside-out signaling. By providing a comprehensive overview of the ECM's role in mechanotransduction and the self-regulatory effect of cells back on the ECM, we hope to provide a better insight of the physical and biochemical cues from the ECM. A sound understanding on the in vivo ECM has implication on the choice of materials and surface coating of biomimetic scaffolds used for tissue regeneration and therapeutics in a cell-free scaffold.
Collapse
Affiliation(s)
- Ing Loon Sean Chua
- 1Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore City, Singapore
| | - Hae-Won Kim
- 2Department of Nanobiomedical Sciences and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea.,3Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Korea.,4Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Korea
| | - Jae Ho Lee
- 1Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore City, Singapore.,2Department of Nanobiomedical Sciences and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea.,3Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Korea
| |
Collapse
|
27
|
Lee JW, Park JW, Khang D. Analysis of Osteoblast Differentiation on Polymer Thin Films Embedded with Carbon Nanotubes. PLoS One 2015; 10:e0129856. [PMID: 26076355 PMCID: PMC4468207 DOI: 10.1371/journal.pone.0129856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/12/2015] [Indexed: 11/18/2022] Open
Abstract
Osteoblast differentiation can be modulated by variations in order of nanoscale topography. Biopolymers embedded with carbon nanotubes can cause various orders of roughness at the nanoscale and can be used to investigate the dynamics of extracellular matrix interaction with cells. In this study, clear relationship between the response of osteoblasts to integrin receptor activation, their phenotype, and transcription of certain genes on polymer composites embedded with carbon nanotubes was demonstrated. We generated an ultrathin nanocomposite film embedded with carbon nanotubes and observed improved adhesion of pre-osteoblasts, with a subsequent increase in their proliferation. The expression of genes encoding integrin subunits α5, αv, β1, and β3 was significantly upregulated at the early of time-point when cells initially attached to the carbon nanotube/polymer composite. The advantage of ultrathin nanocomposite film for pre-osteoblasts was demonstrated by staining for the cytoskeletal protein vinculin and cell nuclei. The expression of essential transcription factors for osteoblastogenesis, such as Runx2 and Sp7 transcription factor 7 (known as osterix), was upregulated after 7 days. Consequently, the expression of genes that determine osteoblast phenotype, such as alkaline phosphatase, type I collagen, and osteocalcin, was accelerated on carbon nanotube embedded polymer matrix after 14 days. In conclusion, the ultrathin nanocomposite film generated various orders of nanoscale topography that triggered processes related to osteoblast bone formation.
Collapse
Affiliation(s)
- Jin Woo Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, South Korea
- * E-mail: (J-WP); (DK)
| | - Dongwoo Khang
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
- * E-mail: (J-WP); (DK)
| |
Collapse
|
28
|
Nagano H, Yamagishi N, Tomida C, Yano C, Aibara K, Kohno S, Abe T, Ohno A, Hirasaka K, Okumura Y, Mills EM, Nikawa T, Teshima-Kondo S. A novel myogenic function residing in the 5' non-coding region of Insulin receptor substrate-1 (Irs-1) transcript. BMC Cell Biol 2015; 16:8. [PMID: 25887310 PMCID: PMC4373113 DOI: 10.1186/s12860-015-0054-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/16/2015] [Indexed: 11/20/2022] Open
Abstract
Background There is evidence that several messenger RNAs (mRNAs) are bifunctional RNAs, i.e. RNA transcript carrying both protein-coding capacity and activity as functional non-coding RNA via 5′ and 3′ untranslated regions (UTRs). Results In this study, we identified a novel bifunctional RNA that is transcribed from insulin receptor substrate-1 (Irs-1) gene with full-length 5′UTR sequence (FL-Irs-1 mRNA). FL-Irs-1 mRNA was highly expressed only in skeletal muscle tissue. In cultured skeletal muscle C2C12 cells, the FL-Irs-1 transcript functioned as a bifunctional mRNA. The FL-Irs-1 transcript produced IRS-1 protein during differentiation of myoblasts into myotubes; however, this transcript functioned as a regulatory RNA in proliferating myoblasts. The FL-Irs-1 5′UTR contains a partial complementary sequence to Rb mRNA, which is a critical factor for myogenic differentiation. The overexpression of the 5′UTR markedly reduced Rb mRNA expression, and this reduction was fully dependent on the complementary element and was not compensated by IRS-1 protein. Conversely, knockdown of FL-Irs-1 mRNA increased Rb mRNA expression and enhanced myoblast differentiation into myotubes. Conclusions Our findings suggest that the FL-Irs-1 transcript regulates myogenic differentiation as a regulatory RNA in myoblasts. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0054-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hikaru Nagano
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan. .,Facalty of Nutritional Science, Sagami Women's University, Sagamihara, 252-0383, Japan.
| | - Naoko Yamagishi
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Chisato Tomida
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Chiaki Yano
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Kana Aibara
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Shohei Kohno
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Tomoki Abe
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Ayako Ohno
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Katsuya Hirasaka
- Graduate school of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki, 852-8521, Japan.
| | - Yuushi Okumura
- Facalty of Nutritional Science, Sagami Women's University, Sagamihara, 252-0383, Japan.
| | - Edward M Mills
- Division of Pharmacology/Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas.
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Shigetada Teshima-Kondo
- Department of Nutritional Physiology, Institute of Health Biosciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| |
Collapse
|
29
|
Kaspi H, Pasvolsky R, Hornstein E. Could microRNAs contribute to the maintenance of β cell identity? Trends Endocrinol Metab 2014; 25:285-92. [PMID: 24656914 DOI: 10.1016/j.tem.2014.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/21/2014] [Accepted: 01/29/2014] [Indexed: 12/22/2022]
Abstract
Normal physiology depends on defined functional output of differentiated cells. However, differentiated cells are often surprisingly fragile. As an example, phenotypic collapse and dedifferentiation of β cells were recently discovered in the pathogenesis of type 2 diabetes (T2D). These discoveries necessitate the investigation of mechanisms that function to maintain robust cell type identity. microRNAs (miRNAs), which are small non-coding RNAs, are known to impart robustness to development. miRNAs are interlaced within networks, that include also transcriptional and epigenetic regulators, for continuous control of lineage-specific gene expression. In this Opinion article, we provide a framework for conceptualizing how miRNAs might participate in adult β cell identity and suggest that miRNAs may function as important genetic components in metabolic disorders, including diabetes.
Collapse
Affiliation(s)
- Haggai Kaspi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronit Pasvolsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
30
|
Kim GS, Kim DJ, Hyung JH, Lee MK, Lee SK. Dependence of Filopodia Morphology and the Separation Efficiency of Primary CD4+ T-Lymphocytes on Nanopillars. Anal Chem 2014; 86:5330-7. [DOI: 10.1021/ac5001916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gil-Sung Kim
- Basic Research
Laboratory, Department of Semiconductor Science and Technology, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Dong-Joo Kim
- Basic Research
Laboratory, Department of Semiconductor Science and Technology, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jung-Hwan Hyung
- Basic Research
Laboratory, Department of Semiconductor Science and Technology, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Myung Kyu Lee
- Bionanotechnology
Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Sang-Kwon Lee
- Department
of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
31
|
Looney TJ, Zhang L, Chen CH, Lee JH, Chari S, Mao FF, Pelizzola M, Zhang L, Lister R, Baker SW, Fernandes CJ, Gaetz J, Foshay KM, Clift KL, Zhang Z, Li WQ, Vallender EJ, Wagner U, Qin JY, Michelini KJ, Bugarija B, Park D, Aryee E, Stricker T, Zhou J, White KP, Ren B, Schroth GP, Ecker JR, Xiang AP, Lahn BT. Systematic mapping of occluded genes by cell fusion reveals prevalence and stability of cis-mediated silencing in somatic cells. Genome Res 2014; 24:267-80. [PMID: 24310002 PMCID: PMC3912417 DOI: 10.1101/gr.143891.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 09/04/2013] [Indexed: 01/30/2023]
Abstract
Both diffusible factors acting in trans and chromatin components acting in cis are implicated in gene regulation, but the extent to which either process causally determines a cell's transcriptional identity is unclear. We recently used cell fusion to define a class of silent genes termed "cis-silenced" (or "occluded") genes, which remain silent even in the presence of trans-acting transcriptional activators. We further showed that occlusion of lineage-inappropriate genes plays a critical role in maintaining the transcriptional identities of somatic cells. Here, we present, for the first time, a comprehensive map of occluded genes in somatic cells. Specifically, we mapped occluded genes in mouse fibroblasts via fusion to a dozen different rat cell types followed by whole-transcriptome profiling. We found that occluded genes are highly prevalent and stable in somatic cells, representing a sizeable fraction of silent genes. Occluded genes are also highly enriched for important developmental regulators of alternative lineages, consistent with the role of occlusion in safeguarding cell identities. Alongside this map, we also present whole-genome maps of DNA methylation and eight other chromatin marks. These maps uncover a complex relationship between chromatin state and occlusion. Furthermore, we found that DNA methylation functions as the memory of occlusion in a subset of occluded genes, while histone deacetylation contributes to the implementation but not memory of occlusion. Our data suggest that the identities of individual cell types are defined largely by the occlusion status of their genomes. The comprehensive reference maps reported here provide the foundation for future studies aimed at understanding the role of occlusion in development and disease.
Collapse
Affiliation(s)
- Timothy J. Looney
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Li Zhang
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Chih-Hsin Chen
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Jae Hyun Lee
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Sheila Chari
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Frank Fuxiang Mao
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou 510080, China
| | - Mattia Pelizzola
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Lu Zhang
- Illumina Inc., Hayward, California 94545, USA
| | - Ryan Lister
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Samuel W. Baker
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Croydon J. Fernandes
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Jedidiah Gaetz
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Kara M. Foshay
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Kayla L. Clift
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Zhenyu Zhang
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Wei-Qiang Li
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou 510080, China
| | - Eric J. Vallender
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772, USA
| | - Ulrich Wagner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Jane Yuxia Qin
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Katelyn J. Michelini
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Branimir Bugarija
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Donghyun Park
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Emmanuel Aryee
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
| | - Thomas Stricker
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago and Argonne National Laboratory, Chicago, Illinois 60637, USA
| | - Jie Zhou
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago and Argonne National Laboratory, Chicago, Illinois 60637, USA
| | - Kevin P. White
- Institute for Genomics and Systems Biology, Department of Human Genetics, University of Chicago and Argonne National Laboratory, Chicago, Illinois 60637, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | - Joseph R. Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou 510080, China
| | - Bruce T. Lahn
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, Illinois 60637, USA
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou 510080, China
- Taicang Institute for Life Sciences Information, Taicang 215400, China
| |
Collapse
|
32
|
Batista LFZ. Telomere biology in stem cells and reprogramming. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 125:67-88. [PMID: 24993698 DOI: 10.1016/b978-0-12-397898-1.00003-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Telomerase expression in humans is restricted to different populations of stem and progenitor cells, being silenced in most somatic tissues. Efficient telomere homeostasis is essential for embryonic and adult stem cell function and therefore essential for tissue homeostasis throughout organismal life. Accordingly, the mutations in telomerase culminate in reduced stem cell function both in vivo and in vitro and have been associated with tissue dysfunction in human patients. Despite the importance of telomerase for stem cell biology, the mechanisms behind telomerase regulation during development are still poorly understood, mostly due to difficulties in acquiring and maintaining pluripotent stem cell populations in culture. In this chapter, we will analyze recent developments in this field, including the importance of efficient telomere homeostasis in different stem cell types and the role of telomerase in different techniques used for cellular reprogramming.
Collapse
Affiliation(s)
- Luis F Z Batista
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
33
|
Gramstrup Petersen J, Pocock R. Neuronal cell fate decisions: O2 and CO2 sensing neurons require egl-13/Sox5. WORM 2013; 2:e27284. [PMID: 24744985 DOI: 10.4161/worm.27284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/07/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
We recently conducted a study that aimed to describe the differentiation mechanisms used to generate O2 and CO2 sensing neurons in C. elegans. We identified egl-13/Sox5 to be required for the differentiation of both O2 and CO2 sensing neurons. We found that egl-13 functions cell autonomously to drive O2 and CO2 sensing neuron fate and is therefore essential for O2 and CO2 sensing-induced behaviors. Through systematic dissection of the egl-13 promoter we identified upstream regulators of egl-13 and proposed a model of how differentiation of O2 and CO2 sensing neurons is regulated. In this commentary we discuss our findings and open questions we wish to address in future studies.
Collapse
Affiliation(s)
- Jakob Gramstrup Petersen
- Biotech Research and Innovation Centre; University of Copenhagen; Ole Maaløes Vej 5; Copenhagen, Denmark
| | - Roger Pocock
- Biotech Research and Innovation Centre; University of Copenhagen; Ole Maaløes Vej 5; Copenhagen, Denmark
| |
Collapse
|
34
|
Androgen receptor (AR) positive vs negative roles in prostate cancer cell deaths including apoptosis, anoikis, entosis, necrosis and autophagic cell death. Cancer Treat Rev 2013; 40:31-40. [PMID: 23993415 DOI: 10.1016/j.ctrv.2013.07.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/20/2013] [Accepted: 07/29/2013] [Indexed: 12/21/2022]
Abstract
Androgen/androgen receptor (AR) signaling plays pivotal roles in the prostate development and homeostasis as well as in the progression of prostate cancer (PCa). Androgen deprivation therapy (ADT) with anti-androgens remains as the main treatment for later stage PCa, and it has been shown to effectively suppress PCa growth during the first 12-24 months. However, ADT eventually fails and tumors may re-grow and progress into the castration resistant stage. Recent reports revealed that AR might play complicated and even opposite roles in PCa progression that might depend on cell types and tumor stages. Importantly, AR may influence PCa progression via differential modulation of various cell deaths including apoptosis, anoikis, entosis, necrosis, and autophagic cell deaths. Targeting AR may induce PCa cell apoptosis, autophagic cell deaths and programmed necrosis, yet targeting AR may suppress cell deaths via anoikis and entosis that may potentially lead to increased metastasis. These differential functions of AR in various types of PCa cell death might challenge the current ADT with anti-androgens treatment. Further detailed dissection of molecular mechanisms by which AR modulates different PCa cell deaths will help us to develop a better therapy to battle PCa.
Collapse
|
35
|
Armant O, März M, Schmidt R, Ferg M, Diotel N, Ertzer R, Bryne JC, Yang L, Baader I, Reischl M, Legradi J, Mikut R, Stemple D, van IJcken W, van der Sloot A, Lenhard B, Strähle U, Rastegar S. Genome-wide, whole mount in situ analysis of transcriptional regulators in zebrafish embryos. Dev Biol 2013; 380:351-62. [PMID: 23684812 DOI: 10.1016/j.ydbio.2013.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 01/20/2023]
Abstract
Transcription is the primary step in the retrieval of genetic information. A substantial proportion of the protein repertoire of each organism consists of transcriptional regulators (TRs). It is believed that the differential expression and combinatorial action of these TRs is essential for vertebrate development and body homeostasis. We mined the zebrafish genome exhaustively for genes encoding TRs and determined their expression in the zebrafish embryo by sequencing to saturation and in situ hybridisation. At the evolutionary conserved phylotypic stage, 75% of the 3302 TR genes encoded in the genome are already expressed. The number of expressed TR genes increases only marginally in subsequent stages and is maintained during adulthood suggesting important roles of the TR genes in body homeostasis. Fewer than half of the TR genes (45%, n=1711 genes) are expressed in a tissue-restricted manner in the embryo. Transcripts of 207 genes were detected in a single tissue in the 24h embryo, potentially acting as regulators of specific processes. Other TR genes were expressed in multiple tissues. However, with the exception of certain territories in the nervous system, we did not find significant synexpression suggesting that most tissue-restricted TRs act in a freely combinatorial fashion. Our data indicate that elaboration of body pattern and function from the phylotypic stage onward relies mostly on redeployment of TRs and post-transcriptional processes.
Collapse
Affiliation(s)
- Olivier Armant
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rister J, Desplan C, Vasiliauskas D. Establishing and maintaining gene expression patterns: insights from sensory receptor patterning. Development 2013; 140:493-503. [PMID: 23293281 DOI: 10.1242/dev.079095] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In visual and olfactory sensory systems with high discriminatory power, each sensory neuron typically expresses one, or very few, sensory receptor genes, excluding all others. Recent studies have provided insights into the mechanisms that generate and maintain sensory receptor expression patterns. Here, we review how this is achieved in the fly retina and compare it with the mechanisms controlling sensory receptor expression patterns in the mouse retina and in the mouse and fly olfactory systems.
Collapse
Affiliation(s)
- Jens Rister
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003-6688, USA
| | | | | |
Collapse
|
37
|
Witkiewicz H, Oh P, Schnitzer JE. I. Embryonal vasculature formation recapitulated in transgenic mammary tumor spheroids implanted pseudo-orthotopicly into mouse dorsal skin fold: the organoblasts concept. F1000Res 2013; 2:8. [PMID: 24627767 PMCID: PMC3938277 DOI: 10.12688/f1000research.2-8.v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 01/18/2025] Open
Abstract
Inadequate understanding of cancer biology is a problem. This work focused on cellular mechanisms of tumor vascularization. According to earlier studies, the tumor vasculature derives from host endothelial cells (angiogenesis) or their precursors of bone marrow origin circulating in the blood (neo-vasculogenesis) unlike in embryos. In this study, we observed the neo-vasculature form in multiple ways from local precursor cells. Recapitulation of primitive as well as advanced embryonal stages of vasculature formation followed co-implantation of avascular ( in vitro cultured) N202 breast tumor spheroids and homologous tissue grafts into mouse dorsal skin chambers. Ultrastructural and immunocytochemical analysis of tissue sections exposed the interactions between the tumor and the graft tissue stem cells. It revealed details of vasculature morphogenesis not seen before in either tumors or embryos. A gradual increase in complexity of the vascular morphogenesis at the tumor site reflected a range of steps in ontogenic evolution of the differentiating cells. Malignant- and surgical injury repair-related tissue growth prompted local cells to initiate extramedullar erythropoiesis and vascular patterning. The new findings included: interdependence between the extramedullar hematopoiesis and assembly of new vessels (both from the locally differentiating precursors); nucleo-cytoplasmic conversion (karyolysis) as the mechanism of erythroblast enucleation; the role of megakaryocytes and platelets in vascular pattern formation before emergence of endothelial cells; lineage relationships between hematopoietic and endothelial cells; the role of extracellular calmyrin in tissue morphogenesis; and calmyrite, a new ultrastructural entity associated with anaerobic energy metabolism. The central role of the extramedullar erythropoiesis in the formation of new vasculature (blood and vessels) emerged here as part of the tissue building process including the lymphatic system and nerves, and suggests a cellular mechanism for instigating variable properties of endothelial surfaces in different organs. Those findings are consistent with the organoblasts concept, previously discussed in a study on childhood tumors, and have implications for tissue definition.
Collapse
Affiliation(s)
- Halina Witkiewicz
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Phil Oh
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| |
Collapse
|
38
|
Witkiewicz H, Oh P, Schnitzer JE. I. Embryonal vasculature formation recapitulated in transgenic mammary tumor spheroids implanted pseudo-orthotopicly into mouse dorsal skin fold: the organoblasts concept. F1000Res 2013; 2:8. [PMID: 24627767 PMCID: PMC3938277 DOI: 10.12688/f1000research.2-8.v2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 12/22/2022] Open
Abstract
Inadequate understanding of cancer biology is a problem. This work focused on cellular mechanisms of tumor vascularization. According to earlier studies, the tumor vasculature derives from host endothelial cells (angiogenesis) or their precursors of bone marrow origin circulating in the blood (neo-vasculogenesis) unlike in embryos. In this study, we observed the neo-vasculature form in multiple ways from local precursor cells. Recapitulation of primitive as well as advanced embryonal stages of vasculature formation followed co-implantation of avascular (
in vitro cultured) N202 breast tumor spheroids and homologous tissue grafts into mouse dorsal skin chambers. Ultrastructural and immunocytochemical analysis of tissue sections exposed the interactions between the tumor and the graft tissue stem cells. It revealed details of vasculature morphogenesis not seen before in either tumors or embryos. A gradual increase in complexity of the vascular morphogenesis at the tumor site reflected a range of steps in ontogenic evolution of the differentiating cells. Malignant- and surgical injury repair-related tissue growth prompted local cells to initiate extramedullar erythropoiesis and vascular patterning. The new findings included: interdependence between the extramedullar hematopoiesis and assembly of new vessels (both from the locally differentiating precursors); nucleo-cytoplasmic conversion (karyolysis) as the mechanism of erythroblast enucleation; the role of megakaryocytes and platelets in vascular pattern formation before emergence of endothelial cells; lineage relationships between hematopoietic and endothelial cells; the role of extracellular calmyrin in tissue morphogenesis; and calmyrite, a new ultrastructural entity associated with anaerobic energy metabolism. The central role of the extramedullar erythropoiesis in the formation of new vasculature (blood and vessels) emerged here as part of the tissue building process including the lymphatic system and nerves, and suggests a cellular mechanism for instigating variable properties of endothelial surfaces in different organs. Those findings are consistent with the organoblasts concept, previously discussed in a study on childhood tumors, and have implications for tissue definition.
Collapse
Affiliation(s)
- Halina Witkiewicz
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Phil Oh
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| |
Collapse
|
39
|
Tursun B. Cellular reprogramming processes in Drosophila and C. elegans. Curr Opin Genet Dev 2012; 22:475-84. [PMID: 23063246 DOI: 10.1016/j.gde.2012.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 07/05/2012] [Accepted: 09/17/2012] [Indexed: 12/30/2022]
Abstract
The identity of individual cell types in a multicellular organism appears to be continuously maintained through active processes but is not irreversible. Changes in the identity of individual cell types can be brought about through ectopic mis-expression of regulatory factors, but in a number of cases also occurs in normal development. I will review here these natural cellular reprogramming processes occurring in the invertebrate model organisms Caenorhabditis elegans and Drosophila melanogaster. Furthermore, I will discuss the issue of why only certain cell types can be converted during induced reprogramming processes evoked by ectopic expression of regulatory factors and how recent work in model systems have shown that this cellular context-dependency can be manipulated.
Collapse
Affiliation(s)
- Baris Tursun
- Berlin Institute for Medical Systems Biology at Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin 13125, Germany.
| |
Collapse
|
40
|
Nizzardo M, Simone C, Falcone M, Riboldi G, Comi GP, Bresolin N, Corti S. Direct reprogramming of adult somatic cells into other lineages: past evidence and future perspectives. Cell Transplant 2012; 22:921-44. [PMID: 23044010 DOI: 10.3727/096368912x657477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Direct reprogramming of an adult cell into another differentiated lineage-such as fibroblasts into neurons, cardiomyocytes, or blood cells-without passage through an undifferentiated pluripotent stage is a new area of research that has recently emerged alongside stem cell technology and induced pluripotent stem cell reprogramming; indeed, this avenue of investigation has begun to play a central role in basic biological research and regenerative medicine. Even though the field seems new, its origins go back to the 1980s when it was demonstrated that differentiated adult cells can be converted into another cell lineage through the overexpression of transcription factors, establishing mature cell plasticity. Here, we retrace transdifferentiation experiments from the discovery of master control genes to recent in vivo reprogramming of one somatic cell into another from the perspective of possible applications for the development of new therapeutic approaches for human diseases.
Collapse
Affiliation(s)
- Monica Nizzardo
- Department of Neurological Sciences, Dino Ferrari Centre, University of Milan, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Soza-Ried J, Fisher AG. Reprogramming somatic cells towards pluripotency by cellular fusion. Curr Opin Genet Dev 2012; 22:459-65. [DOI: 10.1016/j.gde.2012.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/01/2012] [Accepted: 07/04/2012] [Indexed: 11/16/2022]
|
42
|
Szabat M, Lynn FC, Hoffman BG, Kieffer TJ, Allan DW, Johnson JD. Maintenance of β-cell maturity and plasticity in the adult pancreas: developmental biology concepts in adult physiology. Diabetes 2012; 61:1365-71. [PMID: 22618775 PMCID: PMC3357305 DOI: 10.2337/db11-1361] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marta Szabat
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Various studies have demonstrated that somatic differentiated cells can be reprogrammed into other differentiated states or into pluripotency, thus showing that the differentiated cellular state is not irreversible. These findings have generated intense interest in the process of reprogramming and in mechanisms that govern the pluripotent state. However, the realization that differentiated cells can be triggered to switch to considerably different lineages also emphasizes that we need to understand how the identity of mature cells is normally maintained. Here we review recent studies on how the differentiated state is controlled at the transcriptional level and discuss how new insights have begun to elucidate mechanisms underlying the stable maintenance of mature cell identities.
Collapse
Affiliation(s)
- Johan Holmberg
- Ludwig Institute for Cancer Research Ltd, BOX 240, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
44
|
Abstract
Transcription factor-induced reprogramming of specialized cells into other cell types and to pluripotency has revolutionized our thinking about cell plasticity, differentiation, and stem cells. The recent advances in this area were enabled by the confluence of a number of experimental breakthroughs that took place over the past 60 years. In this article, I give a historical and personal perspective of the events that set the stage for our current understanding of cellular reprogramming.
Collapse
Affiliation(s)
- Thomas Graf
- ICREA Professor, Center for Genomic Regulation and Pompeu Fabra University, 08003 Barcelona, Spain.
| |
Collapse
|
45
|
Foshay KM, Looney TJ, Chari S, Mao FF, Lee JH, Zhang L, Fernandes CJ, Baker SW, Clift KL, Gaetz J, Di CG, Xiang AP, Lahn BT. Embryonic stem cells induce pluripotency in somatic cell fusion through biphasic reprogramming. Mol Cell 2012; 46:159-70. [PMID: 22445485 DOI: 10.1016/j.molcel.2012.02.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 11/03/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
It is a long-held paradigm that cell fusion reprograms gene expression but the extent of reprogramming and whether it is affected by the cell types employed remain unknown. We recently showed that the silencing of somatic genes is attributable to either trans-acting cellular environment or cis-acting chromatin context. Here, we examine how trans- versus cis-silenced genes in a somatic cell type behave in fusions to another somatic cell type or to embryonic stem cells (ESCs). We demonstrate that while reprogramming of trans-silenced somatic genes occurs in both cases, reprogramming of cis-silenced somatic genes occurs only in somatic-ESC fusions. Importantly, ESCs reprogram the somatic genome in two distinct phases: trans-reprogramming occurs rapidly, independent of DNA replication, whereas cis-reprogramming occurs with slow kinetics requiring DNA replication. We also show that pluripotency genes Oct4 and Nanog are cis-silenced in somatic cells. We conclude that cis-reprogramming capacity is a fundamental feature distinguishing ESCs from somatic cells.
Collapse
Affiliation(s)
- Kara M Foshay
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Eade KT, Fancher HA, Ridyard MS, Allan DW. Developmental transcriptional networks are required to maintain neuronal subtype identity in the mature nervous system. PLoS Genet 2012; 8:e1002501. [PMID: 22383890 PMCID: PMC3285578 DOI: 10.1371/journal.pgen.1002501] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/09/2011] [Indexed: 11/30/2022] Open
Abstract
During neurogenesis, transcription factors combinatorially specify neuronal fates and then differentiate subtype identities by inducing subtype-specific gene expression profiles. But how is neuronal subtype identity maintained in mature neurons? Modeling this question in two Drosophila neuronal subtypes (Tv1 and Tv4), we test whether the subtype transcription factor networks that direct differentiation during development are required persistently for long-term maintenance of subtype identity. By conditional transcription factor knockdown in adult Tv neurons after normal development, we find that most transcription factors within the Tv1/Tv4 subtype transcription networks are indeed required to maintain Tv1/Tv4 subtype-specific gene expression in adults. Thus, gene expression profiles are not simply “locked-in,” but must be actively maintained by persistent developmental transcription factor networks. We also examined the cross-regulatory relationships between all transcription factors that persisted in adult Tv1/Tv4 neurons. We show that certain critical cross-regulatory relationships that had existed between these transcription factors during development were no longer present in the mature adult neuron. This points to key differences between developmental and maintenance transcriptional regulatory networks in individual neurons. Together, our results provide novel insight showing that the maintenance of subtype identity is an active process underpinned by persistently active, combinatorially-acting, developmental transcription factors. These findings have implications for understanding the maintenance of all long-lived cell types and the functional degeneration of neurons in the aging brain. For neurons to function properly, they must establish and then maintain their unique, subtype-specific gene expression profiles. These unique gene expression profiles are established during development by networks of DNA–binding proteins, termed transcription factors (TFs). However, how neurons maintain their unique gene expression profiles in the mature and aging brain is largely unknown. Recent advances in inducible genetic technologies now allow us to manipulate gene expression in adult neurons, after normal development. Applying such techniques, we examined the effect of knocking down TF expression in two adult neuronal subtypes. We show that the TF networks that establish unique gene expression profiles during development are then required to maintain them thereafter. Thus, gene expression profiles are not simply “locked-in,” but must be actively maintained by persistent developmental TF networks. However, we found that critical cross-regulatory relationships that had existed between TFs during development were not present in the adult, even between persisting TFs. This highlights important differences between developmental and maintenance transcriptional networks in individual neurons. The dependence of subtype gene expression on active mechanisms represents a potential Achilles heel for long-lived cells, as deterioration of those active mechanisms could lead to functional degeneration of neurons with advancing age.
Collapse
Affiliation(s)
- Kevin T. Eade
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Hailey A. Fancher
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Marc S. Ridyard
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Douglas W. Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
47
|
Boggs ME, Thompson WR, Farach-Carson MC, Duncan RL, Beebe TP. Co-culture of osteocytes and neurons on a unique patterned surface. Biointerphases 2011; 6:200-9. [PMID: 22239813 PMCID: PMC4082992 DOI: 10.1116/1.3664050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/31/2011] [Indexed: 11/17/2022] Open
Abstract
Neural and skeletal communication is essential for the maintenance of bone mass and transmission of pain, yet the mechanism(s) of signal transduction between these tissues is unknown. The authors established a novel system to co-culture murine long bone osteocyte-like cells (MLO-Y4) and primary murine dorsal root ganglia (DRG) neurons. Assessment of morphology and maturation marker expression on perlecan domain IV peptide (PlnDIV) and collagen type-1 (Col1) demonstrated that PlnDIV was an optimal matrix for MLO-Y4 culture. A novel matrix-specificity competition assay was developed to expose these cells to several extracellular matrix proteins such as PlnDIV, Col1, and laminin (Ln). The competition assay showed that approximately 70% of MLO-Y4 cells preferred either PlnDIV or Col1 to Ln. To co-culture MLO-Y4 and DRG, we developed patterned surfaces using micro-contact printing to create 40 μm × 1 cm alternating stripes of PlnDIV and Ln or PlnDIV and Col1. Co-culture on PlnDIV/Ln surfaces demonstrated that these matrix molecules provided unique cues for each cell type, with MLO-Y4 preferentially attaching to the PlnDIV lanes and DRG neurons to the Ln lanes. Approximately 80% of DRG were localized to Ln. Cellular processes from MLO-Y4 were closely associated with axonal extensions of DRG neurons. Approximately 57% of neuronal processes were in close proximity to nearby MLO-Y4 cells at the PlnDIV-Ln interface. The surfaces in this new assay provided a unique model system with which to study the communication between osteocyte-like cells and neurons in an in vitro environment.
Collapse
Affiliation(s)
- Mary E Boggs
- University of Delaware, Department of Biological Science, Newark, 19716, USA
| | | | | | | | | |
Collapse
|
48
|
Gaetz J, Clift KL, Fernandes CJ, Mao FF, Lee JH, Zhang L, Baker SW, Looney TJ, Foshay KM, Yu WH, Xiang AP, Lahn BT. Evidence for a critical role of gene occlusion in cell fate restriction. Cell Res 2011; 22:848-58. [PMID: 22124232 DOI: 10.1038/cr.2011.190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The progressive restriction of cell fate during lineage differentiation is a poorly understood phenomenon despite its ubiquity in multicellular organisms. We recently used a cell fusion assay to define a mode of epigenetic silencing that we termed "occlusion", wherein affected genes are silenced by cis-acting chromatin mechanisms irrespective of whether trans-acting transcriptional activators are present. We hypothesized that occlusion of lineage-inappropriate genes could contribute to cell fate restriction. Here, we test this hypothesis by introducing bacterial artificial chromosomes (BACs), which are devoid of chromatin modifications necessary for occlusion, into mouse fibroblasts. We found that BAC transgenes corresponding to occluded endogenous genes are expressed in most cases, whereas BAC transgenes corresponding to silent but non-occluded endogenous genes are not expressed. This indicates that the cellular milieu in trans supports the expression of most occluded genes in fibroblasts, and that the silent state of these genes is solely the consequence of occlusion in cis. For the BAC corresponding to the occluded myogenic master regulator Myf5, expression of the Myf5 transgene on the BAC triggered fibroblasts to acquire a muscle-like phenotype. These results provide compelling evidence for a critical role of gene occlusion in cell fate restriction.
Collapse
Affiliation(s)
- Jedidiah Gaetz
- Department of Human Genetics, University of Chicago, Howard Hughes Medical Institute, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The discovery of cytosine hydroxymethylation (5hmC) suggested a simple means of demethylating DNA and activating genes. Further experiments, however, unearthed an unexpectedly complex process, entailing both passive and active mechanisms of DNA demethylation by the ten-eleven translocation (TET) and AID/APOBEC families of enzymes. The consensus emerging from these studies is that removal of cytosine methylation in mammalian cells can occur by DNA repair. These reports highlight that in certain contexts, DNA methylation is not fixed but dynamic, requiring continuous regulation.
Collapse
Affiliation(s)
- Nidhi Bhutani
- Baxter Laboratory for Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5175, USA
| | | | | |
Collapse
|
50
|
Pajcini KV, Corbel SY, Sage J, Pomerantz JH, Blau HM. Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle. Cell Stem Cell 2010; 7:198-213. [PMID: 20682446 DOI: 10.1016/j.stem.2010.05.022] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/29/2010] [Accepted: 05/26/2010] [Indexed: 11/26/2022]
Abstract
An outstanding biological question is why tissue regeneration in mammals is limited, whereas urodele amphibians and teleost fish regenerate major structures, largely by cell cycle reentry. Upon inactivation of Rb, proliferation of postmitotic urodele skeletal muscle is induced, whereas in mammalian muscle this mechanism does not exist. We postulated that a tumor suppressor present in mammals but absent in regenerative vertebrates, the Ink4a product ARF (alternative reading frame), is a regeneration suppressor. Concomitant inactivation of Arf and Rb led to mammalian muscle cell cycle reentry, loss of differentiation properties, and upregulation of cytokinetic machinery. Single postmitotic myocytes were isolated by laser micro-dissection-catapulting, and transient suppression of Arf and Rb yielded myoblast colonies that retained the ability to differentiate and fuse into myofibers upon transplantation in vivo. These results show that differentiation of mammalian cells is reversed by inactivation of Arf and Rb and support the hypothesis that Arf evolved at the expense of regeneration.
Collapse
Affiliation(s)
- Kostandin V Pajcini
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|