1
|
Miyazaki T, Tanaka S, Sanjay A, Baron R. The role of c-Src kinase in the regulation of osteoclast function. Mod Rheumatol 2014. [DOI: 10.3109/s10165-006-0460-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
2
|
Tomatis VM, Papadopulos A, Malintan NT, Martin S, Wallis T, Gormal RS, Kendrick-Jones J, Buss F, Meunier FA. Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin. ACTA ACUST UNITED AC 2013; 200:301-20. [PMID: 23382463 PMCID: PMC3563687 DOI: 10.1083/jcb.201204092] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Before undergoing neuroexocytosis, secretory granules (SGs) are mobilized and tethered to the cortical actin network by an unknown mechanism. Using an SG pull-down assay and mass spectrometry, we found that myosin VI was recruited to SGs in a Ca(2+)-dependent manner. Interfering with myosin VI function in PC12 cells reduced the density of SGs near the plasma membrane without affecting their biogenesis. Myosin VI knockdown selectively impaired a late phase of exocytosis, consistent with a replenishment defect. This exocytic defect was selectively rescued by expression of the myosin VI small insert (SI) isoform, which efficiently tethered SGs to the cortical actin network. These myosin VI SI-specific effects were prevented by deletion of a c-Src kinase phosphorylation DYD motif, identified in silico. Myosin VI SI thus recruits SGs to the cortical actin network, potentially via c-Src phosphorylation, thereby maintaining an active pool of SGs near the plasma membrane.
Collapse
Affiliation(s)
- Vanesa M Tomatis
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Burgo A, Casano AM, Kuster A, Arold ST, Wang G, Nola S, Verraes A, Dingli F, Loew D, Galli T. Increased activity of the vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor TI-VAMP/VAMP7 by tyrosine phosphorylation in the Longin domain. J Biol Chem 2013; 288:11960-72. [PMID: 23471971 DOI: 10.1074/jbc.m112.415075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vesicular (v)- and target (t)-SNAREs play essential roles in intracellular membrane fusion through the formation of cytoplasmic α-helical bundles. Several v-SNAREs have a Longin N-terminal extension that, by promoting a closed conformation, plays an autoinhibitory function and decreases SNARE complex formation and membrane fusion efficiency. The molecular mechanism leading to Longin v-SNARE activation is largely unknown. Here we find that exocytosis mediated by the Longin v-SNARE TI-VAMP/VAMP7 is activated by tonic treatment with insulin and insulin-like growth factor-1 but not by depolarization and intracellular calcium rise. In search of a potential downstream mechanism, we found that TI-VAMP is phosphorylated in vitro by c-Src kinase on tyrosine 45 of the Longin domain. Accordingly, a mutation of tyrosine 45 into glutamate, but not phenylalanine, activates both t-SNARE binding and exocytosis. Activation of TI-VAMP-mediated exocytosis thus relies on tyrosine phosphorylation.
Collapse
Affiliation(s)
- Andrea Burgo
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Regulation of SRC family kinases in human cancers. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:865819. [PMID: 21776389 PMCID: PMC3135246 DOI: 10.1155/2011/865819] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/08/2011] [Indexed: 11/22/2022]
Abstract
The nonreceptor protein tyrosine kinase Src plays a crucial role in the signal transduction pathways involved in cell division, motility, adhesion, and survival in both normal and cancer cells. Although the Src family kinases (SFKs) are activated in various types of cancers, the exact mechanisms through which they contribute to the progression of individual tumors remain to be defined. The activation of Src in human cancers may occur through a variety of mechanisms that include domain interaction and structural remodeling in response to various activators or upstream kinases and phosphatastes. Because of Src's prominent roles in invasion and tumor progression, epithelial-to-mesenchymal transition, angiogenesis, and the development of metastasis, Src is a promising target for cancer therapy. Several small molecule inhibitors of Src are currently being investigated in clinical trials. In this article, we will summarize the mechanisms regulating Src kinase activity in normal and cancer cells and discuss the status of Src inhibitor development against various types of cancers.
Collapse
|
5
|
Zhu S, Bjorge JD, Fujita DJ. PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res 2007; 67:10129-37. [PMID: 17974954 DOI: 10.1158/0008-5472.can-06-4338] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Src-specific activity has been reported to be elevated in a high percentage of colon cancer cell lines and tumors, but the underlying mechanisms are largely unknown. In this study, we report that, in the seven cancer cell lines tested, Src-specific activity was elevated (5.2- to 18.7-fold) relative to normal colon cells (FHC). This activation of Src correlated with reduced phosphorylation at Y530 of Src, whereas there was no significant change in the level of phosphorylation at Y419. The membrane tyrosine phosphatase activity for a Src family-specific phosphopeptide substrate FCP (Fyn COOH-terminal peptide phosphorylated by Csk) was greatly increased in the cancer cells and was attributed to PTP1B in most of the cell lines. Membrane PTP1B protein levels were also greatly increased. Overexpression of PTP1B increased Src specific activity in colon cancer cells by reducing phosphorylation at Y530 of Src. It also increased anchorage-independent cell growth and this increase was blocked by the Src inhibitor PP2 and Src small interfering RNA (siRNA). Down-regulating PTP1B activity by PTP1B inhibitor CinnGEL 2Me or knocking down PTP1B using siRNA also reduced Src kinase activity and colony formation ability of colon cancer cells. PTP1B siRNA reduced tumor growth in nonobese diabetic/severe combined immunodeficient mice. This study suggests that (a) PTP1B can act as an important activator of Src in colon cancer cells via dephosphorylation at Y530 of Src and (b) elevated levels of PTP1B can increase tumorigenicity of colon cancer cells by activating Src.
Collapse
Affiliation(s)
- Shudong Zhu
- Department of Biochemistry and Molecular Biology, and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
6
|
Kasahara K, Nakayama Y, Kihara A, Matsuda D, Ikeda K, Kuga T, Fukumoto Y, Igarashi Y, Yamaguchi N. Rapid trafficking of c-Src, a non-palmitoylated Src-family kinase, between the plasma membrane and late endosomes/lysosomes. Exp Cell Res 2007; 313:2651-66. [PMID: 17537435 DOI: 10.1016/j.yexcr.2007.05.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 04/18/2007] [Accepted: 05/02/2007] [Indexed: 01/05/2023]
Abstract
Src-family kinases (SFKs) are co-expressed with multiple combinations of each member in a single cell and involved in various signalings. Recently, we showed by sucrose-density gradient fractionation that the subcellular distribution of c-Src is distinct from that of Lyn. However, little is known about the trafficking of c-Src in living cells. Here, we show by time-lapse monitoring combined with photobleaching techniques that c-Src, a non-palmitoylated SFK, is rapidly exchanged between the plasma membrane and intracellular organelles representing late endosomes/lysosomes possibly through its cytosolic release. Although Lyn, a palmitoylated SFK, is exocytosed to the plasma membrane via the Golgi apparatus along the secretory pathway, lack of palmitoylation directs Lyn away from the exocytotic transport to the c-Src-type trafficking between the plasma membrane and late endosomes/lysosomes. Intriguingly, c-Src and a non-palmitoylated Lyn mutant are efficiently delivered and immobilized to focal adhesions when their SH2 domains are able to mediate protein-protein interactions in place of intramolecular bindings. However, palmitoylation of Lyn inhibits its recruitment to focal adhesions. These results suggest that palmitoylation of SFKs is critical for SFK localization and trafficking and implicate that two distinct trafficking pathways for SFKs may be involved in SFKs' specific functions.
Collapse
Affiliation(s)
- Kousuke Kasahara
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Miyazaki T, Tanaka S, Sanjay A, Baron R. The role of c-Src kinase in the regulation of osteoclast function. Mod Rheumatol 2006; 16:68-74. [PMID: 16633924 DOI: 10.1007/s10165-006-0460-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 01/23/2006] [Indexed: 10/24/2022]
Abstract
The targeted disruption of c-Src impairs osteoclast bone resorbing activity, causing osteopetrosis. Although it has been reported that restoring only the c-Src adaptor function at least partly rescues the skeletal phenotypes, the importance of c-Src kinase activity remains controversial. We here highlight the contributions of the Src adaptor and kinase activities in cytoskeletal organization and osteoclast function using adenovirus vectors containing various mutants of Src or Pyk2. In addition, we describe the importance of c-Src in mitochondria, where it phosphorylates cytochrome c oxidase (Cox). Src-induced Cox activity is also required for bone resorbing activity of osteoclasts that require high levels of ATP. Thus, c-Src kinase activity not only on the plasma membrane but also within mitochondria is essential for the regulation of osteoclastic bone resorption.
Collapse
Affiliation(s)
- Tsuyoshi Miyazaki
- Department of Orthopaedic Surgery, Tokyo Metropolitan Komagome Hospital, 3-18-22 Komagome, Bunkyo-ku, Tokyo, 113-8677, Japan.
| | | | | | | |
Collapse
|
8
|
Jevsek M, Jaworski A, Polo-Parada L, Kim N, Fan J, Landmesser LT, Burden SJ. CD24 is expressed by myofiber synaptic nuclei and regulates synaptic transmission. Proc Natl Acad Sci U S A 2006; 103:6374-9. [PMID: 16606832 PMCID: PMC1435367 DOI: 10.1073/pnas.0601468103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genes encoding several synaptic proteins, including acetylcholine receptors, acetylcholinesterase, and the muscle-specific kinase, MuSK, are expressed selectively by a small number of myofiber nuclei positioned near the synaptic site. Genetic analysis of mutant mice suggests that additional genes, expressed selectively by synaptic nuclei, might encode muscle-derived retrograde signals that regulate the differentiation of motor axon terminals. To identify candidate retrograde signals, we used a microarray screen to identify genes that are preferentially expressed in the synaptic region of muscle, and we analyzed one such gene, CD24, further. We show that CD24, which encodes a small, variably and highly glycosylated, glycosylphosphatidylinositol (GPI)-linked protein, is expressed preferentially by myofiber synaptic nuclei in embryonic and adult muscle, and that CD24 expression is restricted to the central region of muscle independent of innervation. Moreover, we show that CD24 has a role in presynaptic differentiation, because synaptic transmission is depressed and fails entirely, in a cyclical manner, after repetitive stimulation of motor axons in CD24 mutant mice. These deficits in synaptic transmission, which are accompanied by aberrant stimulus-dependent uptake of AM1-43 from axons, indicate that CD24 is required for normal presynaptic maturation and function. Because CD24 is also expressed in some neurons, additional experiments will be required to determine whether pre- or postsynaptic CD24 mediates these effects on presynaptic development and function.
Collapse
Affiliation(s)
- Marko Jevsek
- *Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, NY 10016; and
| | - Alexander Jaworski
- *Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, NY 10016; and
| | - Luis Polo-Parada
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Natalie Kim
- *Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, NY 10016; and
| | - Jihua Fan
- *Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, NY 10016; and
| | - Lynn T. Landmesser
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Steven J. Burden
- *Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, NY 10016; and
| |
Collapse
|
9
|
Baldwin ML, Cammarota M, Sim ATR, Rostas JAP. Src family tyrosine kinases differentially modulate exocytosis from rat brain nerve terminals. Neurochem Int 2006; 49:80-6. [PMID: 16500731 DOI: 10.1016/j.neuint.2006.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have studied the role of src family tyrosine kinases in regulating synaptic transmitter release from rat brain synaptosomes by using two assays that measure different aspects of synaptic vesicle exocytosis: glutamate release (that directly measures exocytosis of vesicle contents) and release of FM 2-10 styryl dye (that is proportional to the time the synaptic vesicle is fused to the plasma membrane). Depolarisation was induced by KCl (30 mM) or 4-aminopyridine (4AP: 0.3mM) to induce release by full fusion (FF) exocytosis, or by 1 mM 4AP to induce release by both FF and kiss-and-run (KR)-like exocytosis. The src family selective inhibitor, PP1 (10 microM), increased KCl and 0.3 mM 4AP-evoked Ca2+ -dependent release of glutamate, but had little effect upon exocytosis evoked by 1mM 4AP. PP1 did not affect the release of FM 2-10 under any of the depolarisation conditions used. PP1 also had no effect on overall intracellular calcium levels, as measured by FURA2, suggesting that the effects of the inhibitor are downstream of calcium entry. At the same concentration the inactive analogue of this compound, PP3, had no effect on any measure. Immunoblotting with an antibody to phosphotyrosine revealed that phosphorylation of many synaptosomal proteins was reduced by PP1. The immunoreactivity of three protein bands increased upon depolarisation and this increase was blocked by PP1. Phosphorylation of src at tyrosine-416 was reduced by PP1 but changes in its phosphorylation did not correlate with the effects of PP1 on release. These results suggest one or more members of the src family of tyrosine kinases is a negative regulator of the KR mode of exocytosis in synaptosomes, perhaps by tonically inhibiting KR under normal stimulation conditions.
Collapse
Affiliation(s)
- Monique L Baldwin
- School of Biomedical Sciences, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia
| | | | | | | |
Collapse
|
10
|
Shyu KG, Jow GM, Lee YJ, Wang SJ. PP2 inhibits glutamate release from nerve endings by affecting vesicle mobilization. Neuroreport 2005; 16:1969-72. [PMID: 16272889 DOI: 10.1097/01.wnr.0000189758.57164.85] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Src kinase is widely expressed in the brain and its inhibition with PP2 has previously been shown to depress depolarization-evoked glutamate release from rat cerebrocortical synaptosomes by reducing voltage-dependent Ca2+ entry. In this study, we further showed that the inhibitory effect of PP2 on 4-aminopyridine-evoked glutamate release results from a reduction of vesicular exocytosis and not from an inhibition of non-vesicular release. In addition, PP2 significantly inhibited ionomycin-induced or hypertonic sucrose-induced glutamate release. Also, disruption of cytoskeleton organization with cytochalasin D occluded the inhibitory action of PP2 on 4-aminopyridine and ionomycin-evoked glutamate release. These results suggest that PP2-mediated inhibition of glutamate release involves the modulation of some exocytotic steps, possibly through a regulation of actin cytoskeleton dynamics.
Collapse
Affiliation(s)
- Kou-Gi Shyu
- aSchool of Medicine, Fu Jen Catholic University, Hsin-Chuang, Taipei Hsien, Taiwan
| | | | | | | |
Collapse
|
11
|
Kasahara K, Nakayama Y, Ikeda K, Fukushima Y, Matsuda D, Horimoto S, Yamaguchi N. Trafficking of Lyn through the Golgi caveolin involves the charged residues on alphaE and alphaI helices in the kinase domain. ACTA ACUST UNITED AC 2004; 165:641-52. [PMID: 15173188 PMCID: PMC2172378 DOI: 10.1083/jcb.200403011] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Src-family kinases, known to participate in signaling pathways of a variety of surface receptors, are localized to the cytoplasmic side of the plasma membrane through lipid modification. We show here that Lyn, a member of the Src-family kinases, is biosynthetically transported to the plasma membrane via the Golgi pool of caveolin along the secretory pathway. The trafficking of Lyn from the Golgi apparatus to the plasma membrane is inhibited by deletion of the kinase domain or Csk-induced “closed conformation” but not by kinase inactivation. Four residues (Asp346 and Glu353 on αE helix, and Asp498 and Asp499 on αI helix) present in the C-lobe of the kinase domain, which can be exposed to the molecular surface through an “open conformation,” are identified as being involved in export of Lyn from the Golgi apparatus toward the plasma membrane but not targeting to the Golgi apparatus. Thus, the kinase domain of Lyn plays a role in Lyn trafficking besides catalysis of substrate phosphorylation.
Collapse
Affiliation(s)
- Kousuke Kasahara
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Bard F, Mazelin L, Péchoux-Longin C, Malhotra V, Jurdic P. Src regulates Golgi structure and KDEL receptor-dependent retrograde transport to the endoplasmic reticulum. J Biol Chem 2003; 278:46601-6. [PMID: 12975382 DOI: 10.1074/jbc.m302221200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tyrosine kinase Src is present on the Golgi membranes. Its role, however, in the overall function and organization of the Golgi apparatus is unclear. We have found that in a cell line called SYF, which lacks the three ubiquitous Src-like kinases (Src, Yes, and Fyn), the organization of the Golgi apparatus is perturbed. The Golgi apparatus is composed of collapsed stacks and bloated cisternae in these cells. Expression of an activated form of Src relocated the KDEL receptor (KDEL-R) from the Golgi apparatus to the endoplasmic reticulum. Other Golgi-specific marker proteins were not affected under these conditions. Because of the specific effect of Src on the location of KDEL-R, we tested whether protein transport between ER and the Golgi apparatus involves Src. Transport of Pseudomonas exotoxin, which is transported to the ER by binding to the KDEL-R is accelerated by inhibition or genetic ablation of Src. Protein transport from ER to the Golgi apparatus however, is unaffected by Src deletion or inhibition. We propose that Src has an appreciable role in the organization of the Golgi apparatus, which may be linked to its involvement in protein transport from the Golgi apparatus to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Frédéric Bard
- UCSD Biological Sciences Division, Cell and Developmental Biology Department, University of California-San Diego, La Jolla, CA 92093-0347, USA.
| | | | | | | | | |
Collapse
|
13
|
Wang SJ. A role for Src kinase in the regulation of glutamate release from rat cerebrocortical nerve terminals. Neuroreport 2003; 14:1519-22. [PMID: 12960777 DOI: 10.1097/00001756-200308060-00024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Src tyrosine kinase is widely expressed in the CNS and has been implicated in the regulation of neural excitability and plasticity. In order to investigate the role of Src kinase on neurotransmmiter glutamate release, we studied the effect of PP2, an Src family tyrosine kinase-specific inhibitor, on depolarization-induced glutamate release. PP2 inhibited glutamate release from cerebrocortical synaptosomes stimulated with 3 mM 4AP in a concentration-dependent manner. This inhibitory effect was not result from a decrease in synaptosomal excitability because PP2 did not alter 4AP-evoked depolarization of the synaptosomal plasma membrane potential. In addition, examination of the effect of PP2 on the influx of Ca2+ elicited by 4AP indicated that inhibition of Src activity resulted in an decrease of voltage-dependent Ca2+ influx. These results suggest that protein phosphorylation effected by Src may increase presynaptic Ca2+ channel activity and in so doing enhance evoked glutamate release. Inhibition of Src may represent a neuroprotective effect to limit the release of glutamate.
Collapse
Affiliation(s)
- Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, 510 Chung-Cheng Road, Hsin-Chuang, Taipei Hsien, Taiwan 24205.
| |
Collapse
|
14
|
Miyazaki T, Neff L, Tanaka S, Horne WC, Baron R. Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J Cell Biol 2003; 160:709-18. [PMID: 12615910 PMCID: PMC2173369 DOI: 10.1083/jcb.200209098] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The function of the nonreceptor tyrosine kinase c-Src as a plasma membrane-associated molecular effector of a variety of extracellular stimuli is well known. Here, we show that c-Src is also present within mitochondria, where it phosphorylates cytochrome c oxidase (Cox). Deleting the c-src gene reduces Cox activity, and this inhibitory effect is restored by expressing exogenous c-Src. Furthermore, reducing endogenous Src kinase activity down-regulates Cox activity, whereas activating Src has the opposite effect. Src-induced Cox activity is required for normal function of cells that require high levels of ATP, such as mitochondria-rich osteoclasts. The peptide hormone calcitonin, which inhibits osteoclast function, also down-regulates Cox activity. Increasing Src kinase activity prevented the inhibitory effect of calcitonin on Cox activity and osteoclast function. These results suggest that c-Src plays a previously unrecognized role in maintaining cellular energy stores by activating Cox in mitochondria.
Collapse
Affiliation(s)
- Tsuyoshi Miyazaki
- Department of Cell Biology, Yale University School of Medicine, PO Box 208044, New Haven, CT 06520-8044, USA
| | | | | | | | | |
Collapse
|
15
|
Hübner K, Windoffer R, Hutter H, Leube RE. Tetraspan vesicle membrane proteins: synthesis, subcellular localization, and functional properties. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 214:103-59. [PMID: 11893164 DOI: 10.1016/s0074-7696(02)14004-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetraspan vesicle membrane proteins (TVPs) are characterized by four transmembrane regions and cytoplasmically located end domains. They are ubiquitous and abundant components of vesicles in most, if not all, cells of multicellular organisms. TVP-containing vesicles shuttle between various membranous compartments and are localized in biosynthetic and endocytotic pathways. Based on gene organization and amino acid sequence similarities TVPs can be grouped into three distinct families that are referred to as physins, gyrins, and secretory carrier-associated membrane proteins (SCAMPs). In mammals synaptophysin, synaptoporin, pantophysin, and mitsugumin29 constitute the physins, synaptogyrin 1-4 the gyrins, and SCAMP1-5 the SCAMPs. Members of each family are cell-type-specifically synthesized resulting in unique patterns of TVP coexpression and subcellular colocalization. TVP orthologs have been identified in most multicellular organisms, including diverse animal and plant species, but have not been detected in unicellular organisms. They are subject to protein modification, most notably to phosphorylation, and are part of multimeric complexes. Experimental evidence is reviewed showing that TVPs contribute to vesicle trafficking and membrane morphogenesis.
Collapse
Affiliation(s)
- Kirsten Hübner
- Department of Anatomy, Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
16
|
Tarsa L, Goda Y. Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci U S A 2002; 99:1012-6. [PMID: 11792847 PMCID: PMC117422 DOI: 10.1073/pnas.022575999] [Citation(s) in RCA: 270] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptophysin is an abundant synaptic vesicle protein without a definite synaptic function. Here, we examined a role for synaptophysin in synapse formation in mixed genotype micro-island cultures of wild-type and synaptophysin-mutant hippocampal neurons. We show that synaptophysin-mutant synapses are poor donors of presynaptic terminals in the presence of competing wild-type inputs. In homogenotypic cultures, however, mutant neurons display no apparent deficits in synapse formation compared with wild-type neurons. The reduced extent of synaptophysin-mutant synapse formation relative to wild-type synapses in mixed genotype cultures is attenuated by blockers of synaptic transmission. Our findings indicate that synaptophysin plays a previously unsuspected role in regulating activity-dependent synapse formation.
Collapse
Affiliation(s)
- Leila Tarsa
- Division of Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0366, USA
| | | |
Collapse
|
17
|
Bard F, Patel U, Levy JB, Jurdic P, Horne WC, Baron R. Molecular complexes that contain both c-Cbl and c-Src associate with Golgi membranes. Eur J Cell Biol 2002; 81:26-35. [PMID: 11893076 DOI: 10.1078/0171-9335-00217] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cbl is an adaptor protein that is phosphorylated and recruited to several receptor and non-receptor tyrosine kinases upon their activation. After binding to the activated receptor, Cbl plays a key role as a kinase inhibitor and as an E3 ubiquitin ligase, thereby contributing to receptor down-regulation and internalization. In addition, Cbl translocates to intracellular vesicular compartments following receptor activation. We report here that Cbl also associates with Golgi membranes. Confocal immunofluorescence staining of Cbl in a variety of unstimulated cells, including CHO cells, revealed a prominent perinuclear colocalization of Cbl and a Golgi marker. Both the prominent Cbl staining and the Golgi marker were dispersed by brefeldin A. Subcellular fractionation of CHO cells demonstrated that about 10% of Cbl is stably associated with membranes, and that Golgi-enriched membrane fractions produced by isopycnic density centrifugation and free-flow electrophoresis are also enriched in Cbl, relative to other membrane fractions. The membrane-bound Cbl was hyperphosphorylated and it co-immunoprecipitated with endogenous Src. By immunofluorescence, some Src colocalized with Cbl and Golgi markers, and Src, like Cbl, was present in the Golgi-enriched fraction prepared by sequential density centrifugation and free-flow electrophoresis. Transfection of an activated form of Src, but not wild-type Src, increased the amount of Src that co-immunoprecipitated with Cbl, and increased the intensity of Cbl staining on the Golgi. This result, together with the increased tyrosine phosphorylation of the membrane-associated Cbl, suggests that Golgi-associated Cbl could be part of a molecular complex that contains activated Src. The localization and interaction of Src and Cbl at the Golgi and the regulation of the interaction of Cbl with Golgi membrane suggest that this complex may contribute to the regulation of Golgi function.
Collapse
Affiliation(s)
- Frederic Bard
- Department of Orthopaedics, Yale University School of Medicine, New Haven, CT 06520-8044, USA
| | | | | | | | | | | |
Collapse
|
18
|
Ohnishi H, Yamamori S, Ono K, Aoyagi K, Kondo S, Takahashi M. A src family tyrosine kinase inhibits neurotransmitter release from neuronal cells. Proc Natl Acad Sci U S A 2001; 98:10930-5. [PMID: 11535829 PMCID: PMC58576 DOI: 10.1073/pnas.191368198] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tyrosine kinases are expressed in many tissues, particularly in the central nervous system, and regulate various cellular functions. We report here that a src family tyrosine kinase-specific inhibitor, PP2, enhances neurotransmitter release from PC12 cells and primary cultured neurons. PP2 enhances only Ca(2+)-dependent release; it does not affect basal release. These effects result from an enhancement of vesicular exocytosis and not from the reuptake or refilling of neurotransmitters because Ca(2+)-dependent secretion of an exogenously expressed reporter protein, the human growth hormone (hGH), is also enhanced by PP2. Overexpression of constitutive active v-src, but not of a kinase-inactive mutant, suppressed Ca(2+)-dependent release. In PP2-treated cells, Pyk2, paxillin, and some other proteins showed a decrease in tyrosine phosphorylation, and the enhancement of tyrosine phosphorylation of these proteins in response to Ca(2+) influx was also reduced. Electron and fluorescence microscopy showed that PP2 treatment induced morphological change and decreased phalloidin reactivity at the filopodium-like structures on the processes of PC12 cells. Interestingly, inhibition of actin polymerization with cytochalasin D and latrunculin A enhanced Ca(2+)-dependent, but not basal, release. It is possible that a src family tyrosine kinase, through the regulation of actin dynamics, has an inhibitory function to regulate neurotransmitter release.
Collapse
Affiliation(s)
- H Ohnishi
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Src, Fyn, and Yes are not required for neuromuscular synapse formation but are necessary for stabilization of agrin-induced clusters of acetylcholine receptors. J Neurosci 2001. [PMID: 11312300 DOI: 10.1523/jneurosci.21-09-03151.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mice deficient in src and fyn or src and yes move and breathe poorly and die perinatally, consistent with defects in neuromuscular function. Src and Fyn are associated with acetylcholine receptors (AChRs) in muscle cells, and Src and Yes can act downstream of ErbB2, suggesting roles for Src family kinases in signaling pathways regulating neuromuscular synapse formation. We studied neuromuscular synapses in src(-/-); fyn(-/-) and src(-/-); yes(-/-) mutant mice and found that muscle development, motor axon pathfinding, clustering of postsynaptic proteins, and synapse-specific transcription are normal in these double mutants, showing that these pairs of kinases are not required for early steps in synapse formation. We generated muscle cell lines lacking src and fyn and found that neural agrin and laminin-1 induced normal clustering of AChRs and that agrin induced normal tyrosine phosphorylation of the AChR beta subunit in the absence of Src and Fyn. Another Src family member, most likely Yes, was associated with AChRs and phosphorylated by agrin in myotubes lacking Src and Fyn, indicating that Yes may compensate for the loss of Src and Fyn. Nevertheless, PP1 and PP2, inhibitors of Src-class kinases, did not inhibit agrin signaling, suggesting that Src class kinase activity is dispensable for agrin-induced clustering and tyrosine phosphorylation of AChRs. AChR clusters, however, were less stable in myotubes lacking Src and Fyn but not in PP1- or PP2-treated wild-type cells. These data show that the stabilization of agrin-induced AChR clusters requires Src and Fyn and suggest that the adaptor activities, rather than the kinase activities, of these kinases are essential for this stabilization.
Collapse
|
20
|
Smith CL, Mittaud P, Prescott ED, Fuhrer C, Burden SJ. Src, Fyn, and Yes are not required for neuromuscular synapse formation but are necessary for stabilization of agrin-induced clusters of acetylcholine receptors. J Neurosci 2001; 21:3151-60. [PMID: 11312300 PMCID: PMC6762551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Mice deficient in src and fyn or src and yes move and breathe poorly and die perinatally, consistent with defects in neuromuscular function. Src and Fyn are associated with acetylcholine receptors (AChRs) in muscle cells, and Src and Yes can act downstream of ErbB2, suggesting roles for Src family kinases in signaling pathways regulating neuromuscular synapse formation. We studied neuromuscular synapses in src(-/-); fyn(-/-) and src(-/-); yes(-/-) mutant mice and found that muscle development, motor axon pathfinding, clustering of postsynaptic proteins, and synapse-specific transcription are normal in these double mutants, showing that these pairs of kinases are not required for early steps in synapse formation. We generated muscle cell lines lacking src and fyn and found that neural agrin and laminin-1 induced normal clustering of AChRs and that agrin induced normal tyrosine phosphorylation of the AChR beta subunit in the absence of Src and Fyn. Another Src family member, most likely Yes, was associated with AChRs and phosphorylated by agrin in myotubes lacking Src and Fyn, indicating that Yes may compensate for the loss of Src and Fyn. Nevertheless, PP1 and PP2, inhibitors of Src-class kinases, did not inhibit agrin signaling, suggesting that Src class kinase activity is dispensable for agrin-induced clustering and tyrosine phosphorylation of AChRs. AChR clusters, however, were less stable in myotubes lacking Src and Fyn but not in PP1- or PP2-treated wild-type cells. These data show that the stabilization of agrin-induced AChR clusters requires Src and Fyn and suggest that the adaptor activities, rather than the kinase activities, of these kinases are essential for this stabilization.
Collapse
Affiliation(s)
- C L Smith
- Molecular Neurobiology Program, Skirball Institute for Biomolecular Medicine, New York University Medical School, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Since the discovery of the v-src and c-src genes and their products, much progress has been made in the elucidation of the structure, regulation, localization, and function of the Src protein. Src is a non-receptor protein tyrosine kinase that transduces signals that are involved in the control of a variety of cellular processes such as proliferation, differentiation, motility, and adhesion. Src is normally maintained in an inactive state, but can be activated transiently during cellular events such as mitosis, or constitutively by abnormal events such as mutation (i.e. v-Src and some human cancers). Activation of Src occurs as a result of disruption of the negative regulatory processes that normally suppress Src activity, and understanding the various mechanisms behind Src activation has been a target of intense study. Src associates with cellular membranes, in particular the plasma membrane, and endosomal membranes. Studies indicate that the different subcellular localizations of Src could be important for the regulation of specific cellular processes such as mitogenesis, cytoskeletal organization, and/or membrane trafficking. This review will discuss the history behind the discovery and initial characterization of Src and the regulatory mechanisms of Src activation, in particular, regulation by modification of the carboxy-terminal regulatory tyrosine by phosphatases and kinases. Its focus will then turn to the different subcellular localizations of Src and the possible roles of nuclear and perinuclear targets of Src. Finally, a brief section will review some of our present knowledge regarding Src involvement in human cancers.
Collapse
Affiliation(s)
- J D Bjorge
- Cancer Biology Research Group, Department of Biochemistry and Molecular Biology, University of Calgary Medical Center, 3330 Hospital Dr. N.W., Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
22
|
Carréno S, Gouze ME, Schaak S, Emorine LJ, Maridonneau-Parini I. Lack of palmitoylation redirects p59Hck from the plasma membrane to p61Hck-positive lysosomes. J Biol Chem 2000; 275:36223-9. [PMID: 10967098 DOI: 10.1074/jbc.m003901200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hck, a protein-tyrosine kinase of phagocytes, is the unique member of the Src family expressed under two alternatively translated isoforms differing in their N-terminal site of acylation: p61(Hck) has an additional 21-amino acid sequence comprising a single myristoylation motif, whereas p59(Hck) N terminus has myristoylation and palmitoylation sites. To identify the molecular determinants involved in the targeting of each isoform, they were fused to GFP and expressed in HeLa and CHO cells. p61(Hck) was associated with lysosomal vesicles, whereas p59(Hck) was found at the plasma membrane and to a low extent associated with lysosomes. Their unique N-terminal domains were sufficient to target GFP to the corresponding intracellular compartments. Mutation of the palmitoylation site of p59(Hck) redirected this isoform to lysosomes, indicating that the palmitoylation state governs the association of p59(Hck) with the plasma membrane or with lysosomes. In addition, both isoforms and the nonpalmitoylated p59(Hck) mutant were found on the Golgi apparatus, suggesting a role of this organelle in the subcellular sorting of Hck isoforms. Regarding their subcellular localizations, we propose that bi-acylated p59(Hck) might transduce plasma membrane receptor signals, whereas p61(Hck) and the nonpalmitoylated p59(Hck) might control the biogenesis of phagolysosomes, two functions yet proposed for Hck in phagocytes.
Collapse
Affiliation(s)
- S Carréno
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5089, 31077 Toulouse, France
| | | | | | | | | |
Collapse
|
23
|
Zhao W, Cavallaro S, Gusev P, Alkon DL. Nonreceptor tyrosine protein kinase pp60c-src in spatial learning: synapse-specific changes in its gene expression, tyrosine phosphorylation, and protein-protein interactions. Proc Natl Acad Sci U S A 2000; 97:8098-103. [PMID: 10884433 PMCID: PMC16676 DOI: 10.1073/pnas.97.14.8098] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
c-src is a nonreceptor tyrosine protein kinase that is highly concentrated in synaptic regions, including synaptic vesicles and growth cones. Here, we report that the mRNA signal of pp60c-src is widely distributed in the rat brain with particularly high concentrations in the hippocampus. After spatial maze learning, up-regulation of c-src mRNA was observed in the CA3 region of the hippocampus, which was accompanied by increases in pp60c-src protein in hippocampal synaptosomal preparations. Training also triggered an increase in c-src protein tyrosine kinase activity that was correlated with its tyrosine dephosphorylation in the synaptic membrane fraction. After training, pp60c-src from hippocampus showed enhanced interactions with synaptic proteins such as synapsin I, synaptophysin, and the type 2 N-methyl-d-aspartate receptor, as well as the cytoskeletal protein actin. The association of pp60c-src with insulin receptor in the synaptic membrane fraction, however, was temporally decreased after training. Furthermore, in vitro results showed that Ca(2+) and protein kinase C might be involved in the regulation of protein-protein interactions of pp60c-src. These results suggest, therefore, that pp60c-src participates in the regulation of hippocampal synaptic activity during learning and memory.
Collapse
Affiliation(s)
- W Zhao
- Laboratory of Adaptive Systems, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
24
|
Kwong J, Roundabush FL, Hutton Moore P, Montague M, Oldham W, Li Y, Chin LS, Li L. Hrs interacts with SNAP-25 and regulates Ca(2+)-dependent exocytosis. J Cell Sci 2000; 113 ( Pt 12):2273-84. [PMID: 10825299 DOI: 10.1242/jcs.113.12.2273] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synaptosome-associated protein of 25 kDa (SNAP-25) is a neuronal membrane protein essential for synaptic vesicle exocytosis. To investigate the mechanisms by which SNAP-25 mediates neurosecretion, we performed a search for proteins that interact with SNAP-25 using a yeast two-hybrid screen. Here, we report the isolation and characterization of a SNAP-25-interacting protein that is the rat homologue of mouse hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs). Hrs specifically interacts with SNAP-25, but not SNAP-23/syndet. The association of Hrs and SNAP-25 is mediated via coiled-coil interactions. Using an Hrs-specific antibody, we have shown that Hrs is highly enriched in brain, where it codistributes with SNAP-25 in most brain regions. Subcellular fractionation studies demonstrate that in brain, Hrs exists in both cytosolic and membrane-associated pools. Studies using indirect immunofluorescence and confocal microscopy reveal that, in addition to early endosomes, Hrs is also localized to large dense-core secretory granules and synaptic-like microvesicles in nerve growth factor-differentiated PC12 cells. Moreover, overexpression of Hrs in PC12 cells inhibits Ca(2+)-dependent exocytosis. These results suggest that Hrs is involved in regulation of neurosecretion through interaction with SNAP-25.
Collapse
Affiliation(s)
- J Kwong
- Department of Pharmacology, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Goi T, Shipitsin M, Lu Z, Foster DA, Klinz SG, Feig LA. An EGF receptor/Ral-GTPase signaling cascade regulates c-Src activity and substrate specificity. EMBO J 2000; 19:623-30. [PMID: 10675331 PMCID: PMC305600 DOI: 10.1093/emboj/19.4.623] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
c-Src is a membrane-associated tyrosine kinase that can be activated by many types of extracellular signals, and can regulate the function of a variety of cellular protein substrates. We demonstrate that epidermal growth factor (EGF) and beta-adrenergic receptors activate c-Src by different mechanisms leading to the phosphorylation of distinct sets of c-Src substrates. In particular, we found that EGF receptors, but not beta(2)-adrenergic receptors, activated c-Src by a Ral-GTPase-dependent mechanism. Also, c-Src activated by EGF treatment or expression of constitutively activated Ral-GTPase led to tyrosine phosphorylation of Stat3 and cortactin, but not Shc or subsequent Erk activation. In contrast, c-Src activated by isoproterenol led to tyrosine phosphorylation of Shc and subsequent Erk activation, but not tyrosine phosphorylation of cortactin or Stat3. These results identify a role for Ral-GTPases in the activation of c-Src by EGF receptors and the coupling of EGF to transcription through Stat3 and the actin cytoskeleton through cortactin. They also show that c-Src kinase activity can be used differently by individual extracellular stimuli, possibly contributing to their ability to generate unique cellular responses.
Collapse
Affiliation(s)
- T Goi
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
26
|
Schaefer AW, Kamiguchi H, Wong EV, Beach CM, Landreth G, Lemmon V. Activation of the MAPK signal cascade by the neural cell adhesion molecule L1 requires L1 internalization. J Biol Chem 1999; 274:37965-73. [PMID: 10608864 DOI: 10.1074/jbc.274.53.37965] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L1-mediated axon growth involves intracellular signaling, but the precise mechanisms involved are not yet clear. We report a role for the mitogen-activated protein kinase (MAPK) cascade in L1 signaling. L1 physically associates with the MAPK cascade components Raf-1, ERK2, and the previously identified p90(rsk) in brain. In vitro, ERK2 can phosphorylate L1 at Ser(1204) and Ser(1248) of the L1 cytoplasmic domain. These two serines are conserved in the L1 family of cell adhesion molecules, also being found in neurofascin and NrCAM. The ability of ERK2 to phosphorylate L1 suggests that L1 signaling could directly regulate L1 function by phosphorylation of the L1 cytoplasmic domain. In L1-expressing 3T3 cells, L1 cross-linking can activate ERK2. Remarkably, the activated ERK localizes with endocytosed vesicular L1 rather than cell surface L1, indicating that L1 internalization and signaling are coupled. Inhibition of L1 internalization with dominant-negative dynamin prevents activation of ERK. These results show that L1-generated signals activate the MAPK cascade in a manner most likely to be important in regulating L1 intracellular trafficking.
Collapse
Affiliation(s)
- A W Schaefer
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-4975, USA
| | | | | | | | | | | |
Collapse
|
27
|
Janz R, Südhof TC, Hammer RE, Unni V, Siegelbaum SA, Bolshakov VY. Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 1999; 24:687-700. [PMID: 10595519 DOI: 10.1016/s0896-6273(00)81122-8] [Citation(s) in RCA: 263] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have generated mice lacking synaptogyrin I and synaptophysin I to explore the functions of these abundant tyrosine-phosphorylated proteins of synaptic vesicles. Single and double knockout mice were alive and fertile without significant morphological or biochemical changes. Electrophysiological recordings in the hippocampal CA1 region revealed that short-term and long-term synaptic plasticity were severely reduced in the synaptophysin/synaptogyrin double knockout mice. LTP was decreased independent of the induction protocol, suggesting that the defect in LTP was not caused by insufficient induction. Our data show that synaptogyrin I and synaptophysin I perform redundant and essential functions in synaptic plasticity without being required for neurotransmitter release itself.
Collapse
Affiliation(s)
- R Janz
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical School, Dallas 75235, USA
| | | | | | | | | | | |
Collapse
|
28
|
Prinetti A, Iwabuchi K, Hakomori S. Glycosphingolipid-enriched signaling domain in mouse neuroblastoma Neuro2a cells. Mechanism of ganglioside-dependent neuritogenesis. J Biol Chem 1999; 274:20916-24. [PMID: 10409636 DOI: 10.1074/jbc.274.30.20916] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differentiation and neuritogenesis of mouse neuroblastoma Neuro2a cells are induced by exogenous ganglioside but are not induced by nerve growth factor because its receptor is absent in these cells. In view of the emerging concept of the "glycosphingolipid-enriched domain" (GEM), we studied the mechanism of the ganglioside effect, focusing on the structure and function of such a domain. GEM in Neuro2a cells, separated as a low density membrane fraction, contains essentially all glycosphingolipids and sphingomyelin, together with five signal transducer molecules (c-Src, Lyn, Csk, Rho A, Ha-Ras). (3)H-Labeled Il(3)NeuAc-LacCer (GM3), Gb4Cer (globoside), and Il(3)NeuAc-Gg4Cer (GM1) added exogenously to cells were incorporated and concentrated in the low density GEM fraction. In contrast, more than 50% of glycerophospholipids and 30% of cholesterol were found in the high density fraction. (3)H-Labeled phosphatidylcholine added exogenously to cells was incorporated exclusively in the high density fraction. c-Src, the predominant signal transducer in the microdomain, was coimmunoprecipitated with anti-GM3 antibody DH2 or with anti-Csk; reciprocally, Csk was coimmunoprecipitated with anti-c-Src, indicating a close association of GM3, c-Src, and Csk. Brief stimulation of an isolated GEM fraction by the exogenous addition of GM3, but not lactosylceramide, caused enhanced c-Src phosphorylation with a concomitant decrease of Csk level in GEM. A decreased Csk/c-Src ratio in GEM may cause activation of c-Src because Csk is a negative regulator of c-Src. The effect of exogenous GM3 on c-Src activity was also observed in intact Neuro2a cells. Activation of c-Src was followed by rapid and prolonged (60 min) enhancement of mitogen-activated protein kinase activity leading to neuritogenesis. Thus, the ganglioside induction of neuritogenesis in Neuro2a cells is mediated by GEM structure and function.
Collapse
Affiliation(s)
- A Prinetti
- Pacific Northwest Research Institute, Seattle, Washington 98122 and the Departments of Pathobiology and Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
29
|
Sugita S, Janz R, Südhof TC. Synaptogyrins regulate Ca2+-dependent exocytosis in PC12 cells. J Biol Chem 1999; 274:18893-901. [PMID: 10383386 DOI: 10.1074/jbc.274.27.18893] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptogyrins constitute a family of synaptic vesicle proteins of unknown function. With the full-length structure of a new brain synaptogyrin isoform, we now show that the synaptogyrin family in vertebrates includes two neuronal and one ubiquitous isoform. All of these synaptogyrins are composed of a short conserved N-terminal cytoplasmic sequence, four homologous transmembrane regions, and a variable cytoplasmic C-terminal tail that is tyrosine-phosphorylated. The localization, abundance, and conservation of synaptogyrins suggest a function in exocytosis. To test this, we employed a secretion assay in PC12 cells expressing transfected human growth hormone (hGH) as a reporter protein. When Ca2+-dependent hGH secretion from PC12 cells was triggered by high K+ or alpha-latrotoxin, co-transfection of all synaptogyrins with hGH inhibited hGH exocytosis as strongly as co-transfection of tetanus toxin light chain. Synaptophysin I, which is distantly related to synaptogyrins, was also inhibitory but less active. Inhibition was independent of the amount of hGH expressed but correlated with the amount of synaptogyrin transfected. Inhibition of exocytosis was not observed with several other synaptic proteins, suggesting specificity. Analysis of the regions of synaptogyrin required for inhibition revealed that the conserved N-terminal domain of synaptogyrin is essential for inhibition, whereas the long C-terminal cytoplasmic tail is largely dispensable. Our results suggest that synaptogyrins are conserved components of the exocytotic apparatus, which function as regulators of Ca2+-dependent exocytosis.
Collapse
Affiliation(s)
- S Sugita
- Center for Basic Neuroscience, Department of Molecular Genetics and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-9050, USA
| | | | | |
Collapse
|
30
|
Bijlmakers MJ, Marsh M. Trafficking of an acylated cytosolic protein: newly synthesized p56(lck) travels to the plasma membrane via the exocytic pathway. J Cell Biol 1999; 145:457-68. [PMID: 10225948 PMCID: PMC2185081 DOI: 10.1083/jcb.145.3.457] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Src-related tyrosine kinase p56(lck) (Lck) is primarily expressed in T lymphocytes where it localizes to the cytosolic side of the plasma membrane and associates with the T cell coreceptors CD4 and CD8. As a model for acylated proteins, we studied how this localization of Lck is achieved. We followed newly synthesized Lck by pulse-chase analysis and found that membrane association of Lck starts soon after synthesis, but is not complete until at least 30-45 min later. Membrane-binding kinetics are similar in CD4/CD8-positive and CD4/CD8-negative cells. In CD4-positive T cells, the interaction with CD4 rapidly follows membrane association of Lck. Studying the route via which Lck travels from its site of synthesis to the plasma membrane, we found that: CD4 associates with Lck within 10 min of synthesis, long before CD4 has reached the plasma membrane; Lck associates with intracellular CD4 early after synthesis and with cell surface CD4 at later times; and transport of CD4-bound Lck to the plasma membrane is inhibited by Brefeldin A. These data indicate that the initial association of newly synthesized Lck with CD4, and therefore with membranes, occurs on intracellular membranes of the exocytic pathway. From this location Lck is transported to the plasma membrane.
Collapse
Affiliation(s)
- M J Bijlmakers
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
31
|
Andreev J, Simon JP, Sabatini DD, Kam J, Plowman G, Randazzo PA, Schlessinger J. Identification of a new Pyk2 target protein with Arf-GAP activity. Mol Cell Biol 1999; 19:2338-50. [PMID: 10022920 PMCID: PMC84026 DOI: 10.1128/mcb.19.3.2338] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein tyrosine kinase Pyk2 is activated by a variety of G-protein-coupled receptors and by extracellular signals that elevate intracellular Ca2+ concentration. We have identified a new Pyk2 binding protein designated Pap. Pap is a multidomain protein composed of an N-terminal alpha-helical region with a coiled-coil motif, followed by a pleckstrin homology domain, an Arf-GAP domain, an ankyrin homology region, a proline-rich region, and a C-terminal SH3 domain. We demonstrate that Pap forms a stable complex with Pyk2 and that activation of Pyk2 leads to tyrosine phosphorylation of Pap in living cells. Immunofluorescence experiments demonstrate that Pap is localized in the Golgi apparatus and at the plasma membrane, where it is colocalized with Pyk2. In addition, in vitro recombinant Pap exhibits strong GTPase-activating protein (GAP) activity towards the small GTPases Arf1 and Arf5 and weak activity towards Arf6. Addition of recombinant Pap protein to Golgi preparations prevented Arf-dependent generation of post-Golgi vesicles in vitro. Moreover, overexpression of Pap in cultured cells reduced the constitutive secretion of a marker protein. We propose that Pap functions as a GAP for Arf and that Pyk2 may be involved in regulation of vesicular transport through its interaction with Pap.
Collapse
Affiliation(s)
- J Andreev
- Department of Pharmacology, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Brown MT, Andrade J, Radhakrishna H, Donaldson JG, Cooper JA, Randazzo PA. ASAP1, a phospholipid-dependent arf GTPase-activating protein that associates with and is phosphorylated by Src. Mol Cell Biol 1998; 18:7038-51. [PMID: 9819391 PMCID: PMC109286 DOI: 10.1128/mcb.18.12.7038] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/1998] [Accepted: 08/21/1998] [Indexed: 11/20/2022] Open
Abstract
Membrane trafficking is regulated in part by small GTP-binding proteins of the ADP-ribosylation factor (Arf) family. Arf function depends on the controlled exchange and hydrolysis of GTP. We have purified and cloned two variants of a 130-kDa phosphatidylinositol 4, 5-biphosphate (PIP2)-dependent Arf1 GTPase-activating protein (GAP), which we call ASAP1a and ASAP1b. Both contain a pleckstrin homology (PH) domain, a zinc finger similar to that found in another Arf GAP, three ankyrin (ANK) repeats, a proline-rich region with alternative splicing and SH3 binding motifs, eight repeats of the sequence E/DLPPKP, and an SH3 domain. Together, the PH, zinc finger, and ANK repeat regions possess PIP2-dependent GAP activity on Arf1 and Arf5, less activity on Arf6, and no detectable activity on Arl2 in vitro. The cDNA for ASAP1 was independently identified in a screen for proteins that interact with the SH3 domain of the tyrosine kinase Src. ASAP1 associates in vitro with the SH3 domains of Src family members and with the Crk adapter protein. ASAP1 coprecipitates with Src from cell lysates and is phosphorylated on tyrosine residues in cells expressing activated Src. Both coimmunoprecipitation and tyrosine phosphorylation depend on the same proline-rich class II Src SH3 binding site required for in vitro association. By directly interacting with both Arfs and tyrosine kinases involved in regulating cell growth and cytoskeletal organization, ASAP1 could coordinate membrane remodeling events with these processes.
Collapse
Affiliation(s)
- M T Brown
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
33
|
Arvan P, Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 1998; 332 ( Pt 3):593-610. [PMID: 9620860 PMCID: PMC1219518 DOI: 10.1042/bj3320593] [Citation(s) in RCA: 415] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Secretory granules are specialized intracellular organelles that serve as a storage pool for selected secretory products. The exocytosis of secretory granules is markedly amplified under physiologically stimulated conditions. While granules have been recognized as post-Golgi carriers for almost 40 years, the molecular mechanisms involved in their formation from the trans-Golgi network are only beginning to be defined. This review summarizes and evaluates current information about how secretory proteins are thought to be sorted for the regulated secretory pathway and how these activities are positioned with respect to other post-Golgi sorting events that must occur in parallel. In the first half of the review, the emerging role of immature secretory granules in protein sorting is highlighted. The second half of the review summarizes what is known about the composition of granule membranes. The numerous similarities and relatively limited differences identified between granule membranes and other vesicular carriers that convey products to and from the plasmalemma, serve as a basis for examining how granule membrane composition might be established and how its unique functions interface with general post-Golgi membrane traffic. Studies of granule formation in vitro offer additional new insights, but also important challenges for future efforts to understand how regulated secretory pathways are constructed and maintained.
Collapse
Affiliation(s)
- P Arvan
- Division of Endocrinology and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
34
|
Foster-Barber A, Bishop JM. Src interacts with dynamin and synapsin in neuronal cells. Proc Natl Acad Sci U S A 1998; 95:4673-7. [PMID: 9539797 PMCID: PMC22549 DOI: 10.1073/pnas.95.8.4673] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The nonreceptor tyrosine kinase Src is expressed at a high level in cells that are specialized for regulated secretion, such as the neuron, and is concentrated on secretory vesicles or at the site of exocytosis. To investigate the possibility that Src may play a role in regulating membrane traffic, we searched for neuronal proteins that will interact with Src. The SH3 domain of Src, but not that of the splice variant N-Src, bound to three proteins from mouse synaptosomes or PC12 cells: dynamin, synapsin Ia, and synapsin Ib. Dynamin and the synapsins coprecipitated with Src from PC12 cell extracts, and they colocalized with a subset of Src in the PC12 cell by immunofluorescence. Neither dynamin nor the synapsins were phosphorylated by Src, suggesting that the interaction of these proteins serves to direct the kinase activity of Src toward other proteins in the vesicle population. In immunoprecipitates containing Src and dynamin, the clathrin adaptor protein alpha-adaptin was also found. The association of Src and synapsin suggests a role for Src in the life cycle of the synaptic vesicle. The identification of a complex containing Src, dynamin, and alpha-adaptin indicates that Src may play a more general role in membrane traffic as well.
Collapse
Affiliation(s)
- A Foster-Barber
- G. W. Hooper Foundation, University of California, San Francisco, CA 94143-0552, USA
| | | |
Collapse
|
35
|
Janz R, Südhof TC. Cellugyrin, a novel ubiquitous form of synaptogyrin that is phosphorylated by pp60c-src. J Biol Chem 1998; 273:2851-7. [PMID: 9446595 DOI: 10.1074/jbc.273.5.2851] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Synaptogyrin is an abundant membrane protein of synaptic vesicles containing four transmembrane regions and a C-terminal cytoplasmic tail that is tyrosine phosphorylated. We have now identified a novel isoform of synaptogyrin called cellugyrin that exhibits 47% sequence identity with synaptogyrin. In rat tissues, cellugyrin and synaptogyrins are expressed in mirror image patterns. Cellugyrin is ubiquitously present in all tissues tested with the lowest levels in brain tissue, whereas synaptogyrin protein is only detectable in brain. Transfection studies in COS cells demonstrated that both cellugyrin and synaptogyrin are tyrosine phosphorylated in vivo by pp60c-src, and experiments with recombinant proteins showed that pp60c-src phosphorylates the cytoplasmic tails of these proteins in vitro. Cellugyrin and synaptogyrin co-localize when transfected into COS cells but are differentially distributed in brain, the only tissue where both proteins are detectable. Our data suggest that the synaptic vesicle protein synaptogyrin is a specialized version of a ubiquitous protein, cellugyrin, with the two proteins sharing structural similarity but differing in localization. This finding supports the emerging concept of synaptic vesicles as the simplified and specialized form of a generic trafficking organelle. The conserved tyrosine phosphorylation of cellugyrin and synaptogyrins suggests a link between tyrosine phosphorylation via pp60c-src and membrane traffic.
Collapse
Affiliation(s)
- R Janz
- Department of Molecular Genetics and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | |
Collapse
|
36
|
Onofri F, Giovedì S, Vaccaro P, Czernik AJ, Valtorta F, De Camilli P, Greengard P, Benfenati F. Synapsin I interacts with c-Src and stimulates its tyrosine kinase activity. Proc Natl Acad Sci U S A 1997; 94:12168-73. [PMID: 9342381 PMCID: PMC23739 DOI: 10.1073/pnas.94.22.12168] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/1997] [Indexed: 02/05/2023] Open
Abstract
Synapsin I is a synaptic vesicle-associated phosphoprotein that has been implicated in the formation of presynaptic specializations and in the regulation of neurotransmitter release. The nonreceptor tyrosine kinase c-Src is enriched on synaptic vesicles, where it accounts for most of the vesicle-associated tyrosine kinase activity. Using overlay, affinity chromatography, and coprecipitation assays, we have now shown that synapsin I is the major binding protein for the Src homology 3 (SH3) domain of c-Src in highly purified synaptic vesicle preparations. The interaction was mediated by the proline-rich domain D of synapsin I and was not significantly affected by stoichiometric phosphorylation of synapsin I at any of the known regulatory sites. The interaction of purified c-Src and synapsin I resulted in a severalfold stimulation of tyrosine kinase activity and was antagonized by the purified c-Src-SH3 domain. Depletion of synapsin I from purified synaptic vesicles resulted in a decrease of endogenous tyrosine kinase activity. Portions of the total cellular pools of synapsin I and Src were coprecipitated from detergent extracts of rat brain synaptosomal fractions using antibodies to either protein species. The interaction between synapsin I and c-Src, as well as the synapsin I-induced stimulation of tyrosine kinase activity, may be physiologically important in signal transduction and in the modulation of the function of axon terminals, both during synaptogenesis and at mature synapses.
Collapse
Affiliation(s)
- F Onofri
- Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Via di Tor Vergata 135, 00133 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abu-Amer Y, Ross FP, Schlesinger P, Tondravi MM, Teitelbaum SL. Substrate recognition by osteoclast precursors induces C-src/microtubule association. J Cell Biol 1997; 137:247-58. [PMID: 9105052 PMCID: PMC2139850 DOI: 10.1083/jcb.137.1.247] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/1996] [Revised: 01/07/1997] [Indexed: 02/04/2023] Open
Abstract
The osteoclast is distinguished from other macrophage polykaryons by its polarization, a feature induced by substrate recognition. The most striking component of the polarized osteoclast is its ruffled membrane, probably reflecting insertion of intracellular vesicles into the bone apposed plasmalemma. The failure of osteoclasts in c-src-/- osteopetrotic mice to form ruffled membranes indicates pp60(c-src) (c-src) is essential to osteoclast polarization. Interestingly, c-src itself is a vesicular protein that targets the ruffled membrane. This being the case, we hypothesized that matrix recognition by osteoclasts, and their precursors, induces c-src to associate with microtubules that traffic proteins to the cell surface. We find abundant c-src associates with tubulin immunoprecipitated from avian marrow macrophages (osteoclast precursors) maintained in the adherent, but not nonadherent, state. Since the two proteins colocalize only within adherent avian osteoclast-like cells examined by double antibody immunoconfocal microscopy, c-src/tubulin association reflects an authentic intracellular event. C-src/tubulin association is evident within 90 min of cell-substrate recognition, and the event does not reflect increased expression of either protein. In vitro kinase assay demonstrates tubulin-associated c-src is enzymatically active, phosphorylating itself as well as exogenous substrate. The increase in microtubule-associated kinase activity attending adhesion mirrors tubulin-bound c-src and does not reflect enhanced specific activity. The fact that microtubule-dissociating drugs, as well as cold, prevent adherence-induced c-src/tubulin association indicates the protooncogene complexes primarily, if not exclusively, with polymerized tubulin. Association of the two proteins does not depend upon protein tyrosine phosphorylation and is substrate specific, as it is induced by vitronectin and fibronectin but not type 1 collagen. Finally, consistent with cotransport of c-src and the osteoclast vacuolar proton pump to the polarized plasmalemma, the H+-ATPase decorates microtubules in a manner similar to the protooncogene, specifically coimmunoprecipitates with c-src from the osteoclast light Golgi membrane fraction, and is present, with c-src, in preparations enriched with acidifying vesicles reconstituted from the osteoclast ruffled membrane.
Collapse
Affiliation(s)
- Y Abu-Amer
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
38
|
Welch H, Maridonneau-Parini I. Hck is activated by opsonized zymosan and A23187 in distinct subcellular fractions of human granulocytes. J Biol Chem 1997; 272:102-9. [PMID: 8995234 DOI: 10.1074/jbc.272.1.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Regulation of neutrophil responses is known to involve tyrosine phosphorylation. Hck, a major neutrophil protein-tyrosine kinase, becomes expressed during differentiation of human promyelocytic NB4 cells into neutrophil-like cells. Hck is mainly localized in a secretory granule-enriched cell fraction, but it is also present in a granule-free membrane fraction and the cytosol. Hck is rapidly and transiently activated upon stimulation of differentiated NB4 cells or human neutrophils with serum-opsonized zymosan or the calcium ionophore A23187, but not by phorbol 12-myristate 13-acetate. In NB4 cells, Hck is also weakly activated by fMet-Leu-Phe. Cell fractionation showed that opsonized zymosan and A23187 induce Hck activation in distinct subcellular fractions. Both stimuli activate Hck in the secretory granule-enriched fraction, but only A23187 activates the kinase in the granule-free membrane fraction. Our results suggest that Hck might regulate early signal transduction events induced by opsonized zymosan and A23187, and that the different subcellular fractions of Hck might serve discrete functions, one of which could be regulation of the degranulation response.
Collapse
Affiliation(s)
- H Welch
- Institut de Pharmacologie et de Biologie Structurale, CNRS, UPR 9062, Toulouse, France
| | | |
Collapse
|
39
|
Swierczynski SL, Blackshear PJ. Myristoylation-dependent and electrostatic interactions exert independent effects on the membrane association of the myristoylated alanine-rich protein kinase C substrate protein in intact cells. J Biol Chem 1996; 271:23424-30. [PMID: 8798548 DOI: 10.1074/jbc.271.38.23424] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The myristoylated alanine-rich protein kinase C substrate (MARCKS) is a widely expressed, prominent substrate for protein kinase C. MARCKS is largely associated with membranes in cells, and hydrophobic interactions involving the amino-terminal myristoyl moiety are thought to play a role in anchoring MARCKS to cellular membranes. In addition, experiments in cell-free systems have suggested that electrostatic interactions between the positively charged phosphorylation site/calmodulin binding domain (PSD) of MARCKS and negatively charged membrane lipids are also involved in this association. Although it has been inferred from phosphorylation experiments, the electrostatic nature of the interaction between the PSD and membranes has not been demonstrated directly in intact cells. We expressed human MARCKS mutated in the myristoylation site and the PSD in REF52 cells; the cells were then fractionated by ultracentrifugation. Both nonmyristoylatable MARCKS and MARCKS in which the four serines in the PSD were mutated to aspartic acids, mimicking phosphorylation, exhibited decreased membrane affinity when compared to the fully myristoylated, wild-type, tetra-Ser protein or a myristoylated, tetra-Asn mutant. A double mutant, nonmyristoylatable protein in which the four serines in the PSD were mutated to aspartic acids exhibited negligible membrane association. Similar results were obtained in 293 cells that stably expressed chicken MARCKS mutated in the same domains. The double mutant, nonmyristoylatable tetra-Asp chicken protein exhibited little membrane association as determined by both subcellular fractionation and immunoelectron microscopy. These results indicate that myristoylation and electrostatic interactions involving the PSD exert independent, essentially additive effects on the membrane association of MARCKS in intact cells.
Collapse
Affiliation(s)
- S L Swierczynski
- Howard Hughes Medical Institute, Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
40
|
Abstract
pp60c-src and the structurally related members of the Src family are non-receptor tyrosine kinases that reside within the cell associated with cell membranes and appear to transduce signals from transmembrane receptors to the cell interior. Many intracellular pathways can be stimulated upon Src activation, and a variety of cellular consequences can result, including morphological changes and cell proliferation. pp60c-src activity is normally suppressed by phosphorylation on its carboxy-terminal tail by an enzyme known as CSK. Various cellular stimuli or mutations within pp60c-src can activate its endogenous kinase activity. In this paper, we review aspects of pp60c-src activation and regulation and discuss results obtained in our laboratory in two experimental systems: (i) in melanoma cell lines and primary pigmented normal human melanocytes and (ii) using activated mutant forms of purified human pp60c-src protein.
Collapse
Affiliation(s)
- J D Bjorge
- Department of Medical Biochemistry, University of Calgary, AB, Canada
| | | | | |
Collapse
|
41
|
McMahon HT, Bolshakov VY, Janz R, Hammer RE, Siegelbaum SA, Südhof TC. Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proc Natl Acad Sci U S A 1996; 93:4760-4. [PMID: 8643476 PMCID: PMC39352 DOI: 10.1073/pnas.93.10.4760] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Synaptophysin (syp I) is a synaptic vesicle membrane protein that constitutes approximately 7% of the total vesicle protein. Multiple lines of evidence implicate syp I in a number of nerve terminal functions. To test these, we have disrupted the murine Syp I gene. Mutant mice lacking syp I were viable and fertile. No changes in the structure and protein composition of the mutant brains were observed except for a decrease in synaptobrevin/VAMP II. Synaptic transmission was normal with no detectable changes in synaptic plasticity or the probability of release. Our data demonstrate that one of the major synaptic vesicle membrane proteins is not essential for synaptic transmission, suggesting that its function is either redundant or that it has a more subtle function not apparent in the assays used.
Collapse
Affiliation(s)
- H T McMahon
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical School, Dallas 75235, USA
| | | | | | | | | | | |
Collapse
|
42
|
Chang S, Hemmings HC, Aderem A. Stimulus-dependent phosphorylation of MacMARCKS, a protein kinase C substrate, in nerve termini and PC12 cells. J Biol Chem 1996; 271:1174-8. [PMID: 8557647 DOI: 10.1074/jbc.271.2.1174] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
MacMARCKS (also known as myristoylated alanine-rich C kinase substrate (MARCKS)-related protein) is a member of the MARCKS family of protein kinase C substrates, which binds Ca2+/calmodulin in a phosphorylation-dependent manner. Immunoprecipitation demonstrated that MacMARCKS is present in both PC12 cells and in neurons. Upon depolarization of PC12 cells with 60 mM KCl, MacMARCKS phosphorylation increased 4-fold over basal levels in a Ca(2+)-dependent manner. By immunofluorescence microscopy, MacMARCKS was colocalized in PC12 cells to neurite tips with the synaptic vesicle membrane protein synaptophysin and to vesicles in the perinuclear region. Subcellular fractionation demonstrated that MacMARCKS associates tightly with membranes in PC12 cells. In Percoll-purified rat cerebrocortical synaptosomes, depolarization with 60 mM KCl in the presence of exogenous Ca2+ transiently increased MacMARCKS phosphorylation, whereas phorbol ester promoted a sustained increase in MacMARCKS phosphorylation. Subcellular fractionation of rat brain indicated that MacMARCKS was present in both soluble and particulate fractions; particulate MacMARCKS was associated with both small vesicles and highly purified synaptic vesicles. These results are consistent with a role for MacMARCKS in integrating Ca(2+)-calmodulin and protein kinase C-dependent signals in the regulation of neurosecretion.
Collapse
Affiliation(s)
- S Chang
- Laboratory of Signal Transduction, Rockefeller University, New York, New York 10021-6399, USA
| | | | | |
Collapse
|
43
|
Stieber A, Chen Y, Gonatas J, Dougall W, Qian X, O'Rourke D, Samanta A, Greene MI, Gonatas NK. Identification of a 140 kDa protein of rat presynaptic terminal membranes encompassing the active zones. Brain Res 1995; 700:261-70. [PMID: 8624720 DOI: 10.1016/0006-8993(95)00981-u] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A polyclonal antiserum raised against the carboxy-terminal 17 amino acids of the rat p185c-neu (anct) reacted with a 140 kDa polypeptide in membranes of synaptosome fractions from neocortex and hippocampus of 11-day-old and adult rats. The same antiserum reacted with a 185 kDa polypeptide in microsome membranes from rat pheochromocytoma cells (PC12). By light microscopic immunocytochemistry, the anct antibodies against the 140 kDa protein were localized in the neuropile of brain, cerebellum and spinal cord of 11-day-old and adult rats. Especially prominent staining was obtained in the CA2-CA3 zones of the hippocampus, and in the substantia gelatinosa in the spinal cord. The finely granular and diffuse pattern of the immunostain was consistent with synaptic localizations. Interestingly, antibodies against the entire endodomain of p185c-neu (a-Bacneu) were localized in granular structures, probably representing axo-somatic and axo-dendritic synapses, on a subset of pyramidal neurons of the CA3 zone. By immunoelectron terminals in the giant mossy fiber type in the CA3 and CA4 regions. The immunolocalization of the anct antibodies was restricted in segments of the presynaptic membrane facing the synaptic cleft which include the active zone. The identify and function of the 140 kDa membrane protein of rat brain presynaptic terminals, detected by the anct antibodies, is unknown. The 140 kDa protein may be related to p185c-neu, a tyrosine kinase, or to other known or unknown kinases.
Collapse
Affiliation(s)
- A Stieber
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104-6079, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Grant SG, Karl KA, Kiebler MA, Kandel ER. Focal adhesion kinase in the brain: novel subcellular localization and specific regulation by Fyn tyrosine kinase in mutant mice. Genes Dev 1995; 9:1909-21. [PMID: 7544314 DOI: 10.1101/gad.9.15.1909] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Signaling by tyrosine kinases is required for the induction of synaptic plasticity in the central nervous system. Comparison of fyn, src, yes, and abl nonreceptor tyrosine kinase mutant mice shows a specific requirement for Fyn in the induction of long-term potentiation at CA1 synapses in the hippocampus. To identify components of a Fyn-dependent pathway that may be involved with hippocampus function we examined tyrosine-phosphorylated proteins in kinase mutant mice. We found that nine proteins were hypophosphorylated specifically in fyn mutants. One of the hypophosphorylated proteins was focal adhesion tyrosine kinase (FAK). FAK also showed reduced activity in immunocomplex kinase assays only in fyn mutants. FAK is expressed at very high levels in the brain but in contrast to non-neural cells, FAK was not restricted to focal adhesion contacts. FAK was found in axons, dendrites, and the intermediate filament cytoskeleton of astrocytes. Brain extracts from the mutants also show specific patterns of compensatory changes in the activity of the remaining Src family kinases. Tyrosine phosphorylation is a critical regulator of FAK, and impairments in FAK signal transduction in fyn mutants may contribute to the mutant neural phenotype.
Collapse
Affiliation(s)
- S G Grant
- Center for Genome Research, University of Edinburgh, UK
| | | | | | | |
Collapse
|
45
|
Gross SD, Hoffman DP, Fisette PL, Baas P, Anderson RA. A phosphatidylinositol 4,5-bisphosphate-sensitive casein kinase I alpha associates with synaptic vesicles and phosphorylates a subset of vesicle proteins. J Cell Biol 1995; 130:711-24. [PMID: 7622570 PMCID: PMC2120523 DOI: 10.1083/jcb.130.3.711] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In interphase cells, alpha-casein kinase I (alpha-CKI) is found associated with cytosolic vesicular structures, the centrosome, and within the nucleus. To identify the specific vesicular structures with which alpha-CKI is associated, established cell lines and primary rat neurons were immunofluorescently labeled with an antibody raised to alpha-CKI. In nonneuronal cells, alpha-CKI colocalizes with vesicular structures which align with microtubules and are partially coincident with both Golgi and endoplasmic reticulum markers. In neurons, alpha-CKI colocalizes with synaptic vesicle markers. When synaptic vesicles were purified from rat brain, they were highly enriched in a CKI, based on activity and immunoreactivity. The synaptic vesicle-associated CKI is an extrinsic kinase and was eluted from synaptic vesicles and purified. This purified CKI has properties most similar to alpha-CKI. When the activities of casein kinase I or II were specifically inhibited on isolated synaptic vesicles, CKI was shown to phosphorylate a specific subset of vesicle proteins, one of which was identified as the synaptic vesicle-specific protein SV2. As with alpha-CKI, the synaptic vesicle CKI is inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2). However, synthesis of PIP2 was detected only in plasma membrane-containing fractions. Therefore, PIP2 may spatially regulate CKI. Since PIP2 synthesis is required for secretion, this inhibition of CKI may be important for the regulation of secretion.
Collapse
Affiliation(s)
- S D Gross
- Department of Pharmacology, University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | | | |
Collapse
|
46
|
Robbins SM, Quintrell NA, Bishop JM. Myristoylation and differential palmitoylation of the HCK protein-tyrosine kinases govern their attachment to membranes and association with caveolae. Mol Cell Biol 1995; 15:3507-15. [PMID: 7791757 PMCID: PMC230587 DOI: 10.1128/mcb.15.7.3507] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human proto-oncogene HCK encodes two versions of a protein-tyrosine kinase, with molecular weights of 59,000 (p59hck) and 61,000 (p61hck). The two proteins arise from a single mRNA by alternative initiations of translation. In this study, we explored the functions of these proteins by determining their locations within cells and by characterizing lipid modifications required for the proteins to reach those locations. We found that p59hck is entirely associated with cellular membranes, including the organelles known as caveolae; in contrast, only a portion of p61hck is situated on membranes, and none is detectable in preparations of caveolae. These distinctions can be attributed to differential modification of the two HCK proteins with fatty acids. Both proteins are at least in part myristoylated, p59hck more so than p61hck. In addition, however, p59hck is palmitoylated on cysteine 3 in the protein. Palmitoylation of the protein requires prior myristoylation and, in turn, is required for targeting to caveolae. These findings are in accord with recent reports for other members of the SRC family of protein-tyrosine kinases. Taken together, the results suggest that HCK and several of its relatives may participate in the functions of caveolae, which apparently include the transduction of signals across the plasma membrane to the interior of the cell.
Collapse
Affiliation(s)
- S M Robbins
- Department of Microbiology, University of California, San Francisco 94143-0552, USA
| | | | | |
Collapse
|
47
|
Swierczynski SL, Blackshear PJ. Membrane association of the myristoylated alanine-rich C kinase substrate (MARCKS) protein. Mutational analysis provides evidence for complex interactions. J Biol Chem 1995; 270:13436-45. [PMID: 7768946 DOI: 10.1074/jbc.270.22.13436] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The myristoylated alanine-rich C kinase substrate (MARCKS) protein, a prominent cellular substrate for protein kinase C, is associated with membranes in various cell types. MARCKS is myristoylated at its amino terminus; this modification is thought to play the major role in anchoring MARCKS to cellular membranes. Recent studies have suggested that the protein's basic phosphorylation site/calmodulin binding domain may also be involved in the membrane association of MARCKS through electrostatic interactions. The present studies used mutations in the primary structure of the protein to investigate the nature of the association between MARCKS and cell membranes. In chick embryo fibroblasts, activation of protein kinase C led to a decrease in MARCKS membrane association as determined by cell fractionation techniques. Cell-free assays revealed that nonmyristoylated MARCKS exhibited almost no affinity for fibroblast membranes, despite readily demonstrable binding of the wild-type protein. Similar experiments in which the four serines in the phosphorylation site domain were mutated to aspartic acids, mimicking phosphorylation, decreased, but did not eliminate, membrane binding when compared to either the wild-type protein or a comparable tetra-asparagine mutant. Addition of calmodulin in the presence of Ca2+ also inhibited binding of the wild-type protein to membranes, presumably by neutralizing the phosphorylation site domain, or by physically interfering with its membrane association. Surprisingly, expression of a nonmyristoylatable mutant form of MARCKS in intact cells led to only a 46% decrease in its plasma membrane association, as determined by cell fractionation and immunoelectron microscopy. These results are consistent with a complex model of the interaction of MARCKS with cellular membranes, in which the myristoyl moiety, the positively charged phosphorylation site domain, and possibly other domains make independent contributions to membrane binding in intact cells.
Collapse
Affiliation(s)
- S L Swierczynski
- Howard Hughes Medical Institute, Durham, North Carolina 27710, USA
| | | |
Collapse
|
48
|
David-Pfeuty T, Nouvian-Dooghe Y. Highly specific antibody to Rous sarcoma virus src gene product recognizes nuclear and nucleolar antigens in human cells. J Virol 1995; 69:1699-713. [PMID: 7853507 PMCID: PMC188772 DOI: 10.1128/jvi.69.3.1699-1713.1995] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An antiserum to the Rous sarcoma virus-transforming protein pp60v-src, raised in rabbits immunized with the bacterially produced protein alpha p60 serum (M. D. Resh and R. L. Erikson, J. Cell Biol. 100:409-417, 1985) previously reported to detect very specifically a novel population of pp60v-src and pp60c-src molecules associated with juxtareticular nuclear membranes in normal and Rous sarcoma virus-infected cells of avian and mammalian origin, was used here to investigate by immunofluorescence microscopy localization patterns of Src molecules in human cell lines, either normal or derived from spontaneous tumors. We found that the alpha p60 serum reveals nuclear and nucleolar concentrations of antigens in all the human cell lines tested and in two rat and mouse hepatoma cell lines derived from adult tumorous tissues but not in any established rat and mouse cell lines either untransformed or transformed by the src and ras oncogenes. Both the nuclear and nucleolar stainings can be totally extinguished by preincubation of the serum with highly purified chicken c-Src. We show also that the partitioning of the alpha p60-reactive proteins among the whole nucleus and the nucleolus depends mostly on two different parameters: the position in the cell cycle and the degree of cell confluency. Our observations raise the attractive possibility that, in differentiated cells, pp60c-src and related proteins might be involved not only in mediating the transduction of mitogenic signals at the plasma membrane level but also in controlling progression through the cell cycle and entry in mitosis by interacting with cell division cycle regulatory components at the nuclear level.
Collapse
Affiliation(s)
- T David-Pfeuty
- Section de Biologie, Institut Curie, Centre Universitaire, Orsay, France
| | | |
Collapse
|
49
|
McPherson PS, Takei K, Schmid SL, De Camilli P. p145, a major Grb2-binding protein in brain, is co-localized with dynamin in nerve terminals where it undergoes activity-dependent dephosphorylation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43787-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
50
|
Damer CK, Creutz CE. Secretory and synaptic vesicle membrane proteins and their possible roles in regulated exocytosis. Prog Neurobiol 1994; 43:511-36. [PMID: 7816934 DOI: 10.1016/0301-0082(94)90051-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C K Damer
- Program in Neuroscience, University of Virginia, Charlottesville 22908
| | | |
Collapse
|