1
|
Critcher M, Pang JM, Huang ML. Mapping the FGF2 Interactome Identifies a Functional Proteoglycan Coreceptor. ACS Chem Biol 2025; 20:105-116. [PMID: 39704408 PMCID: PMC11858877 DOI: 10.1021/acschembio.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Fibroblast growth factor 2 (FGF2) is a multipotent growth factor and signaling protein that exhibits broad functions across multiple cell types. These functions are often initiated by binding to growth factor receptors and fine-tuned by glycosaminoglycan (GAG)-modified proteins called proteoglycans. The various outputs of FGF2 signaling and functions arise from a dynamic and cell type-specific set of binding partners. However, the interactome of FGF2 has yet to be comprehensively determined. Moreover, the identity of the proteoglycan proteins carrying GAG chains is often overlooked and remains unknown in most cell contexts. Here, we perform peroxidase-catalyzed live cell proximity labeling using an engineered APEX2-FGF2 fusion protein to map the interactome of FGF2. Across two cell lines with established and distinct FGF2-driven functions, we greatly expand upon the known FGF2 interactome, identifying >600 new putative FGF2 interactors. Notably, our results demonstrate a key role for the GAG binding capacity of FGF2 in modulating its interactome.
Collapse
Affiliation(s)
- Meg Critcher
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla California 92037, United States
| | - Jia Meng Pang
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla California 92037, United States
| | - Mia L Huang
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla California 92037, United States
| |
Collapse
|
2
|
Ishikawa K, Suzuki H, Ohishi T, Li G, Tanaka T, Kawada M, Ohkoshi A, Kaneko MK, Katori Y, Kato Y. Anti-CD44 Variant 10 Monoclonal Antibody Exerts Antitumor Activity in Mouse Xenograft Models of Oral Squamous Cell Carcinomas. Int J Mol Sci 2024; 25:9190. [PMID: 39273139 PMCID: PMC11395228 DOI: 10.3390/ijms25179190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
CD44 regulates cell adhesion, proliferation, survival, and stemness and has been considered a tumor therapy target. CD44 possesses the shortest CD44 standard (CD44s) and a variety of CD44 variant (CD44v) isoforms. Since the expression of CD44v is restricted in epithelial cells and carcinomas compared to CD44s, CD44v has been considered a promising target for monoclonal antibody (mAb) therapy. We previously developed an anti-CD44v10 mAb, C44Mab-18 (IgM, kappa), to recognize the variant exon 10-encoded region. In the present study, a mouse IgG2a version of C44Mab-18 (C44Mab-18-mG2a) was generated to evaluate the antitumor activities against CD44-positive cells compared with the previously established anti-pan CD44 mAb, C44Mab-46-mG2a. C44Mab-18-mG2a exhibited higher reactivity compared with C44Mab-46-mG2a to CD44v3-10-overexpressed CHO-K1 (CHO/CD44v3-10) and oral squamous cell carcinoma cell lines (HSC-2 and SAS) in flow cytometry. C44Mab-18-mG2a exerted a superior antibody-dependent cellular cytotoxicity (ADCC) against CHO/CD44v3-10. In contrast, C44Mab-46-mG2a showed a superior complement-dependent cytotoxicity (CDC) against CHO/CD44v3-10. A similar tendency was observed in ADCC and CDC against HSC-2 and SAS. Furthermore, administering C44Mab-18-mG2a or C44Mab-46-mG2a significantly suppressed CHO/CD44v3-10, HSC-2, and SAS xenograft tumor growth compared with the control mouse IgG2a. These results indicate that C44Mab-18-mG2a could be a promising therapeutic regimen for CD44v10-positive tumors.
Collapse
Affiliation(s)
- Kenichiro Ishikawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (K.I.); (G.L.); (T.T.); (M.K.K.)
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (A.O.); (Y.K.)
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (K.I.); (G.L.); (T.T.); (M.K.K.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi 410-0301, Shizuoka, Japan;
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan;
| | - Guanjie Li
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (K.I.); (G.L.); (T.T.); (M.K.K.)
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (K.I.); (G.L.); (T.T.); (M.K.K.)
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan;
| | - Akira Ohkoshi
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (A.O.); (Y.K.)
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (K.I.); (G.L.); (T.T.); (M.K.K.)
| | - Yukio Katori
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (A.O.); (Y.K.)
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan; (K.I.); (G.L.); (T.T.); (M.K.K.)
| |
Collapse
|
3
|
Piszczatowski RT, Bülow HE, Steidl U. Heparan sulfates and heparan sulfate proteoglycans in hematopoiesis. Blood 2024; 143:2571-2587. [PMID: 38639475 PMCID: PMC11830984 DOI: 10.1182/blood.2023022736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
ABSTRACT From signaling mediators in stem cells to markers of differentiation and lineage commitment to facilitators for the entry of viruses, such as HIV-1, cell surface heparan sulfate (HS) glycans with distinct modification patterns play important roles in hematopoietic biology. In this review, we provide an overview of the importance of HS and the proteoglycans (HSPGs) to which they are attached within the major cellular subtypes of the hematopoietic system. We summarize the roles of HSPGs, HS, and HS modifications within each main hematopoietic cell lineage of both myeloid and lymphoid arms. Lastly, we discuss the biological advances in the detection of HS modifications and their potential to further discriminate cell types within hematopoietic tissue.
Collapse
Affiliation(s)
- Richard T. Piszczatowski
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Departments of Oncology, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Blood Cancer Institute, Albert Einstein College of Medicine, Bronx, NY
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
4
|
Zuela-Sopilniak N, Morival J, Lammerding J. Multi-level transcriptomic analysis of LMNA -related dilated cardiomyopathy identifies disease-driving processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598511. [PMID: 38915720 PMCID: PMC11195185 DOI: 10.1101/2024.06.11.598511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
LMNA- related dilated cardiomyopathy ( LMNA -DCM) is one of the most severe forms of DCM. The incomplete understanding of the molecular disease mechanisms results in lacking treatment options, leading to high mortality amongst patients. Here, using an inducible, cardiomyocyte-specific lamin A/C depletion mouse model, we conducted a comprehensive transcriptomic study, combining both bulk and single nucleus RNA sequencing, and spanning LMNA -DCM disease progression, to identify potential disease drivers. Our refined analysis pipeline identified 496 genes already misregulated early in disease. The expression of these genes was largely driven by disease specific cardiomyocyte sub-populations and involved biological processes mediating cellular response to DNA damage, cytosolic pattern recognition, and innate immunity. Indeed, DNA damage in LMNA -DCM hearts was significantly increased early in disease and correlated with reduced cardiomyocyte lamin A levels. Activation of cytosolic pattern recognition in cardiomyocytes was independent of cGAS, which is rarely expressed in cardiomyocytes, but likely occurred downstream of other pattern recognition sensors such as IFI16. Altered gene expression in cardiac fibroblasts and immune cell infiltration further contributed to tissue-wide changes in gene expression. Our transcriptomic analysis further predicted significant alterations in cell-cell communication between cardiomyocytes, fibroblasts, and immune cells, mediated through early changes in the extracellular matrix (ECM) in the LMNA -DCM hearts. Taken together, our work suggests a model in which nuclear damage in cardiomyocytes leads to activation of DNA damage responses, cytosolic pattern recognition pathway, and other signaling pathways that activate inflammation, immune cell recruitment, and transcriptional changes in cardiac fibroblasts, which collectively drive LMNA -DCM pathogenesis.
Collapse
|
5
|
Suzuki H, Tawara M, Hirayama A, Goto N, Tanaka T, Kaneko MK, Kato Y. Epitope Mapping of an Anti-CD44v4 Monoclonal Antibody (C 44Mab-108) Using Enzyme-Linked Immunosorbent Assay. Monoclon Antib Immunodiagn Immunother 2024; 43:85-89. [PMID: 38507669 DOI: 10.1089/mab.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
CD44 is a type I transmembrane glycoprotein and possesses various isoforms which are largely classified into CD44 standard (CD44s) and CD44 variant (CD44v) isoforms. Some variant-encoded regions play critical roles in tumor progression. However, the function of CD44 variant 4 (CD44v4)-encoded region has not been fully understood. Using peptide immunization, we developed an anti-CD44v4 monoclonal antibody, C44Mab-108, which is useful for flow cytometry, western blotting, and immunohistochemistry. In this study, we determined the critical epitope of C44Mab-108 by enzyme-linked immunosorbent assay (ELISA). We used the alanine (or glycine)-substituted peptides of the CD44v4-encoded region (amino acids 271-290 of human CD44v3-10) and found that C44Mab-108 did not recognize the alanine-substituted peptides of D280A and W281A. Furthermore, these peptides could not inhibit the recognition of C44Mab-108 in flow cytometry and immunohistochemistry. The results indicate that the critical binding epitope of C44Mab-108 includes Asp280 and Trp281 of CD44v3-10.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayuki Tawara
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Aoi Hirayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nohara Goto
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Farrugia BL, Melrose J. The Glycosaminoglycan Side Chains and Modular Core Proteins of Heparan Sulphate Proteoglycans and the Varied Ways They Provide Tissue Protection by Regulating Physiological Processes and Cellular Behaviour. Int J Mol Sci 2023; 24:14101. [PMID: 37762403 PMCID: PMC10531531 DOI: 10.3390/ijms241814101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This review examines the roles of HS-proteoglycans (HS-PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS-PGs are essential for the functional properties of tissues both in development and in the extracellular matrix (ECM) remodeling that occurs in response to trauma or disease. HS-PGs interact with a biodiverse range of chemokines, chemokine receptors, protease inhibitors, and growth factors in immune regulation, inflammation, ECM stabilization, and tissue protection. Some cell regulatory proteoglycan receptors are dually modified hybrid HS/CS proteoglycans (betaglycan, CD47). Neurexins provide synaptic stabilization, plasticity, and specificity of interaction, promoting neurotransduction, neurogenesis, and differentiation. Ternary complexes of glypican-1 and Robbo-Slit neuroregulatory proteins direct axonogenesis and neural network formation. Specific neurexin-neuroligin complexes stabilize synaptic interactions and neural activity. Disruption in these interactions leads to neurological deficits in disorders of functional cognitive decline. Interactions with HS-PGs also promote or inhibit tumor development. Thus, HS-PGs have complex and diverse regulatory roles in the physiological processes that regulate cellular behavior and the functional properties of normal and pathological tissues. Specialized HS-PGs, such as the neurexins, pikachurin, and Eyes-shut, provide synaptic stabilization and specificity of neural transduction and also stabilize the axenome primary cilium of phototoreceptors and ribbon synapse interactions with bipolar neurons of retinal neural networks, which are essential in ocular vision. Pikachurin and Eyes-Shut interactions with an α-dystroglycan stabilize the photoreceptor synapse. Novel regulatory roles for HS-PGs controlling cell behavior and tissue function are expected to continue to be uncovered in this fascinating class of proteoglycan.
Collapse
Affiliation(s)
- Brooke L. Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School (Northern), University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
7
|
Suzuki H, Goto N, Tanaka T, Ouchida T, Kaneko MK, Kato Y. Development of a Novel Anti-CD44 Variant 8 Monoclonal Antibody C 44Mab-94 against Gastric Carcinomas. Antibodies (Basel) 2023; 12:45. [PMID: 37489367 PMCID: PMC10366929 DOI: 10.3390/antib12030045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. GC with peritoneal metastasis exhibits a poor prognosis due to the lack of effective therapy. A comprehensive analysis of malignant ascites identified the genomic alterations and significant amplifications of cancer driver genes, including CD44. CD44 and its splicing variants are overexpressed in tumors, and play crucial roles in the acquisition of invasiveness, stemness, and resistance to treatments. Therefore, the development of CD44-targeted monoclonal antibodies (mAbs) is important for GC diagnosis and therapy. In this study, we immunized mice with CD44v3-10-overexpressed PANC-1 cells and established several dozens of clones that produce anti-CD44v3-10 mAbs. One of the clones (C44Mab-94; IgG1, kappa) recognized the variant-8-encoded region and peptide, indicating that C44Mab-94 is a specific mAb for CD44v8. Furthermore, C44Mab-94 could recognize CHO/CD44v3-10 cells, oral squamous cell carcinoma cell line (HSC-3), or GC cell lines (MKN45 and NUGC-4) in flow cytometric analyses. C44Mab-94 could detect the exogenous CD44v3-10 and endogenous CD44v8 in western blotting and stained the formalin-fixed paraffin-embedded gastric cancer cells. These results indicate that C44Mab-94 is useful for detecting CD44v8 in a variety of experimental methods and is expected to become usefully applied to GC diagnosis and therapy.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
8
|
Suzuki H, Kitamura K, Goto N, Ishikawa K, Ouchida T, Tanaka T, Kaneko MK, Kato Y. A Novel Anti-CD44 Variant 3 Monoclonal Antibody C 44Mab-6 Was Established for Multiple Applications. Int J Mol Sci 2023; 24:8411. [PMID: 37176118 PMCID: PMC10179237 DOI: 10.3390/ijms24098411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cluster of differentiation 44 (CD44) promotes tumor progression through the recruitment of growth factors and the acquisition of stemness, invasiveness, and drug resistance. CD44 has multiple isoforms including CD44 standard (CD44s) and CD44 variants (CD44v), which have common and unique functions in tumor development. Therefore, elucidating the function of each CD44 isoform in a tumor is essential for the establishment of CD44-targeting tumor therapy. We have established various anti-CD44s and anti-CD44v monoclonal antibodies (mAbs) through the immunization of CD44v3-10-overexpressed cells. In this study, we established C44Mab-6 (IgG1, kappa), which recognized the CD44 variant 3-encoded region (CD44v3), as determined via an enzyme-linked immunosorbent assay. C44Mab-6 reacted with CD44v3-10-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/CD44v3-10) or some cancer cell lines (COLO205 and HSC-3) via flow cytometry. The apparent KD of C44Mab-6 for CHO/CD44v3-10, COLO205, and HSC-3 was 1.5 × 10-9 M, 6.3 × 10-9 M, and 1.9 × 10-9 M, respectively. C44Mab-6 could detect the CD44v3-10 in Western blotting and stained the formalin-fixed paraffin-embedded tumor sections in immunohistochemistry. These results indicate that C44Mab-6 is useful for detecting CD44v3 in various experiments and is expected for the application of tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kaishi Kitamura
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
| | - Kenichiro Ishikawa
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
| | - Tsunenori Ouchida
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
9
|
Piszczatowski RT, Schwenger E, Sundaravel S, Stein CM, Liu Y, Stanley P, Verma A, Zheng D, Seidel RD, Almo SC, Townley RA, Bülow HE, Steidl U. A glycan-based approach to cell characterization and isolation: Hematopoiesis as a paradigm. J Exp Med 2022; 219:e20212552. [PMID: 36066492 PMCID: PMC9455685 DOI: 10.1084/jem.20212552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/28/2022] [Accepted: 07/18/2022] [Indexed: 12/05/2022] Open
Abstract
Cell surfaces display a wide array of molecules that confer identity. While flow cytometry and cluster of differentiation (CD) markers have revolutionized cell characterization and purification, functionally heterogeneous cellular subtypes remain unresolvable by the CD marker system alone. Using hematopoietic lineages as a paradigm, we leverage the extraordinary molecular diversity of heparan sulfate (HS) glycans to establish cellular "glycotypes" by utilizing a panel of anti-HS single-chain variable fragment antibodies (scFvs). Prospective sorting with anti-HS scFvs identifies functionally distinct glycotypes within heterogeneous pools of mouse and human hematopoietic progenitor cells and enables further stratification of immunophenotypically pure megakaryocyte-erythrocyte progenitors. This stratification correlates with expression of a heptad of HS-related genes that is reflective of the HS epitope recognized by specific anti-HS scFvs. While we show that HS glycotyping provides an orthogonal set of tools for resolution of hematopoietic lineages, we anticipate broad utility of this approach in defining and isolating novel, viable cell types across diverse tissues and species.
Collapse
Affiliation(s)
| | - Emily Schwenger
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Catarina M. Stein
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
| | - Amit Verma
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, WI
- Blood Cancer Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY
| | - Ronald D. Seidel
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
| | - Robert A. Townley
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
- Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, WI
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY
- Blood Cancer Institute, Albert Einstein College of Medicine, Bronx, NY
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
10
|
Liao C, Wang Q, An J, Chen J, Li X, Long Q, Xiao L, Guan X, Liu J. CD44 Glycosylation as a Therapeutic Target in Oncology. Front Oncol 2022; 12:883831. [PMID: 35936713 PMCID: PMC9351704 DOI: 10.3389/fonc.2022.883831] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
The interaction of non-kinase transmembrane glycoprotein CD44 with ligands including hyaluronic acid (HA) is closely related to the occurrence and development of tumors. Changes in CD44 glycosylation can regulate its binding to HA, Siglec-15, fibronectin, TM4SF5, PRG4, FGF2, collagen and podoplanin and activate or inhibit c-Src/STAT3/Twist1/Bmi1, PI3K/AKT/mTOR, ERK/NF-κB/NANOG and other signaling pathways, thereby having a profound impact on the tumor microenvironment and tumor cell fate. However, the glycosylation of CD44 is complex and largely unknown, and the current understanding of how CD44 glycosylation affects tumors is limited. These issues must be addressed before targeted CD44 glycosylation can be applied to treat human cancers.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Chen
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaolan Li
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| |
Collapse
|
11
|
Yang C, Lin J, Liang H, Xue L, Kwart A, Jiang M, Zhao J, Ren H, Jiang X, Munshi NC. CD44 v5 domain inhibition represses the polarization of Th2 cells by interfering with the IL-4/IL-4R signaling pathway. Immunol Cell Biol 2022; 100:21-32. [PMID: 34219288 DOI: 10.1111/imcb.12491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022]
Abstract
The balance between T helper type 1 (Th1) and T helper type 2 (Th2) cells is critical for both innate and acquired immune reactions. However, the precise mechanisms of T helper-cell differentiation remain unclear. As an important T-cell activation molecule, CD44 participates in the differentiation of Th1 and Th2 cells. We demonstrated that CD44 variant exon v5 (CD44 v5) is highly expressed by induced human Th2 cells. To investigate the role of the CD44 v5 domain in Th2 cell differentiation, we treated human CD4+ T cells with anti-CD44v5 antibody and observed that the levels of phosphorylated STAT6 and GATA3 and the secretion of interleukin-4 (IL-4) were significantly decreased after the treatment. We also further found that the inhibition of Th2 differentiation was caused by the degradation of the alpha chain of IL-4 receptor (IL-4Rα), the CD44 v5 domain colocalized with IL-4Rα on cell surface and the degradation of IL-4Rα increased after CD44 v5 domain blocking or ablating. Our results indicated that CD44v5 antibody treatment interrupted the interaction between CD44 v5 domain and IL-4Rα, but the CD44 v5 domain blockage would not spoil the colocalization between IL-4R expression and T-cell receptor and the immunological synapse formation; similar results were also found in CD44v5-deficient CD4+ T cells. In conclusion, we revealed the function of the CD44 v5 domain in Th2 cell differentiation; blocking or ablating the CD44 v5 domain could accelerate IL-4Rα degradation and then induce the Th2 cell inhibition.
Collapse
Affiliation(s)
- Chun Yang
- Department of Clinical Laboratory, The 4th Hospital of Harbin Medical University, Harbin, China
- Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jianhong Lin
- Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hongyan Liang
- Department of Clinical Laboratory, The 4th Hospital of Harbin Medical University, Harbin, China
| | - Li Xue
- Department of Clinical Laboratory, The 4th Hospital of Harbin Medical University, Harbin, China
- Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ariel Kwart
- Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Meng Jiang
- Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of General Surgery, The 4th Hospital of Harbin Medical University, Harbin, China
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Huan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaofeng Jiang
- Department of Clinical Laboratory, The 4th Hospital of Harbin Medical University, Harbin, China
| | - Nikhil C Munshi
- Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
12
|
Ren P, Lu L, Cai S, Chen J, Lin W, Han F. Alternative Splicing: A New Cause and Potential Therapeutic Target in Autoimmune Disease. Front Immunol 2021; 12:713540. [PMID: 34484216 PMCID: PMC8416054 DOI: 10.3389/fimmu.2021.713540] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) is a complex coordinated transcriptional regulatory mechanism. It affects nearly 95% of all protein-coding genes and occurs in nearly all human organs. Aberrant alternative splicing can lead to various neurological diseases and cancers and is responsible for aging, infection, inflammation, immune and metabolic disorders, and so on. Though aberrant alternative splicing events and their regulatory mechanisms are widely recognized, the association between autoimmune disease and alternative splicing has not been extensively examined. Autoimmune diseases are characterized by the loss of tolerance of the immune system towards self-antigens and organ-specific or systemic inflammation and subsequent tissue damage. In the present review, we summarized the most recent reports on splicing events that occur in the immunopathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) and attempted to clarify the role that splicing events play in regulating autoimmune disease progression. We also identified the changes that occur in splicing factor expression. The foregoing information might improve our understanding of autoimmune diseases and help develop new diagnostic and therapeutic tools for them.
Collapse
Affiliation(s)
- Pingping Ren
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Luying Lu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Shasha Cai
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Nephrology, The First People’s Hospital of Wenling, Taizhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University of Medicine, Hangzhou, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Dhounchak S, Popp SK, Brown DJ, Laybutt DR, Biden TJ, Bornstein SR, Parish CR, Simeonovic CJ. Heparan sulfate proteoglycans in beta cells provide a critical link between endoplasmic reticulum stress, oxidative stress and type 2 diabetes. PLoS One 2021; 16:e0252607. [PMID: 34086738 PMCID: PMC8177513 DOI: 10.1371/journal.pone.0252607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) consist of a core protein with side chains of the glycosaminoglycan heparan sulfate (HS). We have previously identified (i) the HSPGs syndecan-1 (SDC1), and collagen type XVIII (COL18) inside mouse and human islet beta cells, and (ii) a critical role for HS in beta cell survival and protection from reactive oxygen species (ROS). The objective of this study was to investigate whether endoplasmic reticulum (ER) stress contributes to oxidative stress and type 2 diabetes (T2D) by depleting beta cell HSPGs/HS. A rapid loss of intra-islet/beta cell HSPGs, HS and heparanase (HPSE, an HS-degrading enzyme) accompanied upregulation of islet ER stress gene expression in both young T2D-prone db/db and Akita Ins2WT/C96Y mice. In MIN6 beta cells, HSPGs, HS and HPSE were reduced following treatment with pharmacological inducers of ER stress (thapsigargin or tunicamycin). Treatment of young db/db mice with Tauroursodeoxycholic acid (TUDCA), a chemical protein folding chaperone that relieves ER stress, improved glycemic control and increased intra-islet HSPG/HS. In vitro, HS replacement with heparin (a highly sulfated HS analogue) significantly increased the survival of wild-type and db/db beta cells and restored their resistance to hydrogen peroxide-induced death. We conclude that ER stress inhibits the synthesis/maturation of HSPG core proteins which are essential for HS assembly, thereby exacerbating oxidative stress and promoting beta cell failure. Diminished intracellular HSPGs/HS represent a previously unrecognized critical link bridging ER stress, oxidative stress and beta cell failure in T2D.
Collapse
Affiliation(s)
- Sarita Dhounchak
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Sarah K. Popp
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Debra J. Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - D. Ross Laybutt
- Garvan Institute of Medical Research, St Vincent’s Clinical School, The University of NSW (UNSW), Sydney, New South Wales, Australia
| | - Trevor J. Biden
- Garvan Institute of Medical Research, St Vincent’s Clinical School, The University of NSW (UNSW), Sydney, New South Wales, Australia
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University of Dresden, Dresden, Germany
| | - Christopher R. Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Charmaine J. Simeonovic
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| |
Collapse
|
14
|
Antihuman CD44 antibody BJ18 inhibits platelet phagocytosis by correcting aberrant FcɣR expression and M1 polarization in immune thrombocytopenia. Int Immunopharmacol 2021; 95:107502. [PMID: 33690000 DOI: 10.1016/j.intimp.2021.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disease with a low platelet count. CD44 is a pivotal component involved in phagocytosis and inflammation, and monoclonal antibodies (mAbs) against CD44 have been shown to be beneficial in several autoimmune diseases. In the present study, we investigated the correlation between CD44 levels and disease severity in patients with ITP and explored the immunomodulatory mechanisms of the antihuman CD44 mAb BJ18 on platelet phagocytosis mediated by monocytes/macrophages. METHODS Plasma was collected from 45 participants to measure the circulating concentration of CD44 using ELISA. Peripheral blood mononuclear cells from patients and controls were isolated and induced to differentiate into monocytes/macrophages utilizing cytokines and drugs. CD44 expression on circulating cells and the effects of BJ18 on platelet phagocytosis, Fcɣ receptor (FcɣR) expression and M1/M2 polarization of macrophages were evaluated using flow cytometry and qPCR. RESULTS CD44 levels of both the soluble form found in plasma and the form expressed on the surface of circulating monocytes/macrophages were significantly elevated in ITP patients. Linear correlations were verified between the CD44 levels and major clinical characteristics. In an in vitro study, BJ18 successfully inhibited platelet phagocytosis by monocytes/macrophages obtained from ITP patients. Further studies indicated that BJ18 corrected abnormal FcγR expression on monocytes/macrophages. Moreover, the polarization of proinflammatory M1 macrophages could also be regulated by BJ18. CONCLUSIONS Our data indicated that the CD44 level has potential predictive value for disease severity and that the antihuman CD44 mAb BJ18 may be a promising therapy for ITP patients.
Collapse
|
15
|
Lee SN, Kim SJ, Yoon SA, Song JM, Ahn JS, Kim HC, Choi AMK, Yoon JH. CD44v3-Positive Intermediate Progenitor Cells Contribute to Airway Goblet Cell Hyperplasia. Am J Respir Cell Mol Biol 2021; 64:247-259. [PMID: 33264080 DOI: 10.1165/rcmb.2020-0350oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
In allergic airway diseases, intermediate progenitor cells (IPCs) increase in number in the surface epithelium. IPCs arise from basal cells, the origin of hallmark pathological changes, including goblet cell hyperplasia and mucus hypersecretion. Thus, targeting IPCs will benefit future treatment of allergic airway diseases. However, the lack of adequate cell surface markers for IPCs limits their identification and characterization. We now show that CD44 containing exon v3 (CD44v3) is a surface marker for IPCs that are capable of both proliferating and generating differentiated goblet cells in allergic human nasal epithelium. In primary human nasal epithelial cells that had differentiated at an air-liquid interface, IL-4 upregulated mRNA expression of three CD44v variants that include exon v3 (CD44v3-v6, CD44v3,v8-v10, and CD44v3-v10), and it induced expression of CD44v3 protein in the basal and suprabasal layers of the culture. FACS analysis revealed two subpopulations differing in CD44v3 concentrations, as follows: CD44v3low cells expressed high amounts of proliferative and basal cell markers (Ki-67 and TP63), whereas CD44v3high cells strongly expressed progenitor and immature and mature goblet cell markers (SOX2, CA2, and SPDEF). Importantly, a blocking anti-CD44 antibody suppressed IL-4-induced mucin production by human nasal epithelial cells. Furthermore, CD44v3 was coexpressed with TP63, KRT5, or SOX2 and was upregulated in the basal and suprabasal layers of the nasal surface epithelium of subjects with allergic rhinitis. Taken together, these data demonstrate that high CD44v3 expression contributes to goblet cell hyperplasia in inflammation of the allergic airway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York; and.,Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York
| | - Joo-Heon Yoon
- The Airway Mucus Institute and.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Takei J, Kaneko MK, Ohishi T, Hosono H, Nakamura T, Yanaka M, Sano M, Asano T, Sayama Y, Kawada M, Harada H, Kato Y. A defucosylated anti‑CD44 monoclonal antibody 5‑mG2a‑f exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma. Oncol Rep 2020; 44:1949-1960. [PMID: 33000243 PMCID: PMC7550977 DOI: 10.3892/or.2020.7735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022] Open
Abstract
CD44 is widely expressed on the surface of most tissues and all hematopoietic cells, and regulates many genes associated with cell adhesion, migration, proliferation, differentiation, and survival. CD44 has also been studied as a therapeutic target in several cancers. Previously, an anti-CD44 monoclonal antibody (mAb), C44Mab-5 (IgG1, kappa) was established by immunizing mice with CD44-overexpressing Chinese hamster ovary (CHO)-K1 cells. C44Mab-5 recognized all CD44 isoforms, and showed high sensitivity for flow cytometry and immunohistochemical analysis in oral cancers. However, as the IgG1 subclass of C44Mab-5 lacks antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), the antitumor activity of C44Mab-5 could not be determined. In the present study, we converted the mouse IgG1 subclass antibody C44Mab-5 into an IgG2a subclass antibody, 5-mG2a, and further produced a defucosylated version, 5-mG2a-f, using FUT8-deficient ExpiCHO-S (BINDS-09) cells. Defucosylation of 5-mG2a-f was confirmed using fucose-binding lectins, such as AAL and PhoSL. The dissociation constants (KD) for 5-mG2a-f against SAS and HSC-2 oral cancer cells were determined through flow cytometry to be 2.8×10−10 M and 2.6×10−9 M, respectively, indicating that 5-mG2a-f possesses extremely high binding affinity. Furthermore, immunohistochemical staining using 5-mG2a-f specifically stained the membranes of oral cancer cells. In vitro analysis demonstrated that 5-mG2a-f showed moderate ADCC and CDC activities against SAS and HSC-2 oral cancer cells. In vivo analysis revealed that 5-mG2a-f significantly reduced tumor development in SAS and HSC-2 ×enografts in comparison to control mouse IgG, even after injection seven days post-tumor inoculation. Collectively, these results suggest that treatment with 5-mG2a-f may represent a useful therapy for patients with CD44-expressing oral cancers.
Collapse
Affiliation(s)
- Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8510, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Aoba‑ku, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|
17
|
Jain Singhai N, Ramteke S. CNTs mediated CD44 targeting; a paradigm shift in drug delivery for breast cancer. Genes Dis 2019; 7:205-216. [PMID: 32215290 PMCID: PMC7083711 DOI: 10.1016/j.gendis.2019.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023] Open
Abstract
The breast cancer is one of the most common cancer affecting millions of lives worldwide. Though the prevalence of breast cancer is worldwide; however, the developing nations are having a comparatively higher percentage of breast cancer cases and associated complications. The molecular etiology behind breast cancer is complex and involves several regulatory molecules and their downstream signaling. Studies have demonstrated that the CD44 remains one of the major molecule associated not only in breast cancer but also several other kinds of tumors. The complex structure and functioning of CD44 posed a challenge to develop and deliver precise anti-cancerous drugs against targeted tissue. There are more than 20 isoforms of CD44 reported till date associated with several kinds of tumor in the using breast cancer. The success of any anti-cancerous therapy largely depends on the precise drug delivery system, and in modern days nanotechnology-based drug delivery vehicles are the first choice not only for cancer but several other chronic diseases as well. The Carbon nanotubes (CNTs) have shown tremendous scope in delivering the drug by targeting a particular receptor and molecules. Functionalized CNTs including both SWCNTs and MWCNTs are a pioneer in drug delivery with higher efficacy. The present work emphasized mainly on the potential of CNTs including both SWCNTs and MWCNTs in drug delivery for anti-cancerous therapy. The review provides a comprehensive overview of the development of various CNTs and their validation for effective drug delivery. The work focus on drug delivery approaches for breast cancer, precisely targeting CD44 molecule.
Collapse
Key Words
- Anti-cancerous therapy
- BBB, Blood–Brain Barrier
- Breast cancer
- CD 44, Cluster of Differentiation
- CD44
- DNA, Deoxyribonucleic acid
- Delivery
- Drug
- HA, hyaluronic acid
- HNSCC, Head and neck squamous cell carcinoma
- MMPs, Matrix metalloproteinase
- MWCNTs, Multiwalled Carbon Nanotubes
- Multiwalled carbon nanotubes
- PDT, Photodynamic Therapy
- PTT, Photothermal Therapy
- SWCNTs, Single-walled Carbon Nanotubes
- siRNA, Small Interfering RNA
Collapse
|
18
|
Xu Z, Ni R, Chen Y. Targeting breast cancer stem cells by a self-assembled, aptamer-conjugated DNA nanotrain with preloading doxorubicin. Int J Nanomedicine 2019; 14:6831-6842. [PMID: 31695364 PMCID: PMC6717853 DOI: 10.2147/ijn.s200482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022] Open
Abstract
Background Cancer relapse and metastasis is an obstacle to the treatment of breast cancer. Breast cancer stem cells (BCSCs), which can evade the killing effect of traditional chemotherapies, such as doxorubicin (DOX), may contribute to cancer development. Therefore, it is necessary to develop novel drugs that can target and eliminate BCSCs. While multiple strategies have been conceived, they are normally limited by the low drug loading capacity. Purpose An aptamer-conjugated DNA nanotrain TA6NT-AKTin-DOX, which consists of a CD44 aptamer TA6, DNA building blocks M1 and M2 conjugated with an AKT inhibitor peptide AKTin individually and DOX, was designed. Methods This DNA nanotrain was prepared through hybridization chain reactionand this highly ordered DNA duplex has plenty of sites where DOX and AKTin can be intercalated or anchored. By performing on MCF-7 BCSCs and tumors by xenografting BCSCs into nude mice, efficacy of the newly prepared drug was evaluated and compared with that of free DOX and various DNA nanotrains. Results TA6NT-AKTin-DOX showed better efficacy both in vitro and in vivo. To some extent, the enhanced efficacy could be attributed to the targeting effect of TA6 and the high drug loading capacity of the nanotrain (~20 DOX molecules). Besides, a synergistic response was demonstrated by combining DOX with AKTin, probably due to that the anchored AKTin can reverse the drug resistance of BCSCs including apoptosis resistance and ABC transporters overexpression via the AKT signaling pathway. Conclusion The aptamer-conjugated DNA nanotrain TA6NT-AKTin-DOX demonstrated its targeting capability to BCSCs.
Collapse
Affiliation(s)
- Zhiyuan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Ronghua Ni
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China.,State Key Laboratory of Reproductive Medicine, Nanjing 210029, People's Republic of China
| |
Collapse
|
19
|
Mereiter S, Martins ÁM, Gomes C, Balmaña M, Macedo JA, Polom K, Roviello F, Magalhães A, Reis CA. O‐glycan truncation enhances cancer‐related functions of
CD
44 in gastric cancer. FEBS Lett 2019; 593:1675-1689. [DOI: 10.1002/1873-3468.13432] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Stefan Mereiter
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Álvaro M. Martins
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Catarina Gomes
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Meritxell Balmaña
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Joana A. Macedo
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Karol Polom
- Department of Surgical Oncology Medical University of Gdansk Poland
- General Surgery and Surgical Oncology Department University of Siena Italy
| | - Franco Roviello
- General Surgery and Surgical Oncology Department University of Siena Italy
| | - Ana Magalhães
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
| | - Celso A. Reis
- I3S – Instituto de Investigação e Inovação em Saúde Universidade do Porto Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology University of Porto Portugal
- Faculty of Medicine University of Porto Portugal
- Instituto de Ciências Biomédicas Abel Salazar University of Porto Portugal
| |
Collapse
|
20
|
Geng B, Pan J, Zhao T, Ji J, Zhang C, Che Y, Yang J, Shi H, Li J, Zhou H, Mu X, Xu C, Wang C, Xu Y, Liu Z, Wen H, You Q. Chitinase 3-like 1-CD44 interaction promotes metastasis and epithelial-to-mesenchymal transition through β-catenin/Erk/Akt signaling in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:208. [PMID: 30165890 PMCID: PMC6117920 DOI: 10.1186/s13046-018-0876-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/13/2018] [Indexed: 01/14/2023]
Abstract
Background Enzymatically inactive chitinase-like protein CHI3L1 drives inflammatory response and promotes tumor progression. However, its role in gastric cancer (GC) tumorigenesis and metastasis has not yet been fully elucidated. We determined the significance of CHI3L1 expression in patients with GC. We also explored an as-yet unknown receptor of CHI3L1 and investigated the involved signaling in GC metastasis. Methods CHI3L1 expression was evaluated by immunoblotting, tissue microarray-based immunohistochemistry analysis (n = 100), and enzyme linked immunosorbent assay (ELISA) (n = 150). The interactions between CD44 and CHI3L1 or Interleukin-13 receptor alpha 2 (IL-13Rα2) were analyzed by co-immunoprecipitation, immunofluorescence co-localization assay, ELISA, and bio-layer interferometry. The roles of CHI3L1/CD44 axis in GC metastasis were investigated in GC cell lines and experimental animal model by gain and loss of function. Results CHI3L1 upregulation occurred during GC development, and positively correlated with GC invasion depth, lymph node status, and tumor staging. Mechanically, CHI3L1 binding to CD44 activated Erk and Akt, along with β-catenin signaling by phosphorylating β-catenin at Ser552 and Ser675. CD44 also interacted with IL-13Rα2 to form a complex. Notably, CD44v3 peptide and protein, but not CD44v6 peptide or CD44s protein, bound to both CHI3L1 and IL-13Rα2. Our in vivo and in vitro data further demonstrated that CHI3L1 promoted GC cell proliferation, migration, and metastasis. Conclusions CHI3L1 binding to CD44v3 activates Erk, Akt, and β-catenin signaling, therefore enhances GC metastasis. CHI3L1 expression is a novel biomarker for the prognosis of GC, and these findings have thus identified CHI3L1/CD44 axis as a vital pathway and potential therapeutic target in GC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0876-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biao Geng
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China.,Department of Respiratory Medicine, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, China
| | - Jinshun Pan
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Ting Zhao
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Jie Ji
- First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Zhang
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Ying Che
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Yang
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Hui Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Juan Li
- Cancer Medical Center, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianmin Mu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Che Xu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Chao Wang
- Department of Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Xu
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China
| | - Zheng Liu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Wen
- Department of Surgery, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang You
- Department of Biotherapy, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Nanjing, 210011, Jiangsu, China. .,Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China. .,Cancer Medical Center, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China. .,Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, China. .,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
21
|
The role of heparan sulfate in host macrophage infection by Leishmania species. Biochem Soc Trans 2018; 46:789-796. [PMID: 29934302 DOI: 10.1042/bst20170398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022]
Abstract
The leishmaniases are a group of neglected tropical diseases caused by parasites from the Leishmania genus. More than 20 Leishmania species are responsible for human disease, causing a broad spectrum of symptoms ranging from cutaneous lesions to a fatal visceral infection. There is no single safe and effective approach to treat these diseases and resistance to current anti-leishmanial drugs is emerging. New drug targets need to be identified and validated to generate novel treatments. Host heparan sulfates (HSs) are abundant, heterogeneous polysaccharides displayed on proteoglycans that bind various ligands, including cell surface proteins expressed on Leishmania promastigote and amastigote parasites. The fine chemical structure of HS is formed by a plethora of specific enzymes during biosynthesis, with various positions (N-, 2-O-, 6-O- and 3-O-) on the carbon sugar backbone modified with sulfate groups. Post-biosynthesis mechanisms can further modify the sulfation pattern or size of the polysaccharide, altering ligand affinity to moderate biological functions. Chemically modified heparins used to mimic the heterogeneous nature of HS influence the affinity of different Leishmania species, demonstrating the importance of specific HS chemical sequences in parasite interaction. However, the endogenous structures of host HSs that might interact with Leishmania parasites during host invasion have not been elucidated, nor has the role of HSs in host-parasite biology. Decoding the structure of HSs on target host cells will increase understanding of HS/parasite interactions in leishmaniasis, potentiating identification of new opportunities for the development of novel treatments.
Collapse
|
22
|
Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julio M. Rios de la Rosa
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Annalisa Tirella
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Nicola Tirelli
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; Genova 16163 Italy
| |
Collapse
|
23
|
Yamada S, Itai S, Nakamura T, Yanaka M, Kaneko MK, Kato Y. Detection of high CD44 expression in oral cancers using the novel monoclonal antibody, C 44Mab-5. Biochem Biophys Rep 2018; 14:64-68. [PMID: 29872736 PMCID: PMC5986985 DOI: 10.1016/j.bbrep.2018.03.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 12/04/2022] Open
Abstract
CD44 is a transmembrane glycoprotein that regulates a variety of genes related to cell-adhesion, migration, proliferation, differentiation, and survival. A large number of alternative splicing isoforms of CD44, containing various combinations of alternative exons, have been reported. CD44 standard (CD44s), which lacks variant exons, is widely expressed on the surface of most tissues and all hematopoietic cells. In contrast, CD44 variant isoforms show tissue-specific expression patterns and have been extensively studied as both prognostic markers and therapeutic targets in cancer and other diseases. In this study, we immunized mice with CHO-K1 cell lines overexpressing CD44v3-10 to obtain novel anti-CD44 mAbs. One of the clones, C44Mab-5 (IgG1, kappa), recognized both CD44s and CD44v3-10. C44Mab-5 also reacted with oral cancer cells such as Ca9-22, HO-1-u-1, SAS, HSC-2, HSC-3, and HSC-4 using flow cytometry. Moreover, immunohistochemical analysis revealed that C44Mab-5 detected 166/182 (91.2%) of oral cancers. These results suggest that the C44Mab-5 antibody may be useful for investigating the expression and function of CD44 in various cancers. CD44 is related to migration, proliferation, and differentiation of cancer cells. Sensitive and specific C44Mab-5 mAb against CD44s was produced. C44Mab-5 mAb reacted with oral cancer cells sensitively in flow cytometry. C44Mab-5 mAb detected 166/182 (91.2%) of oral cancers in Immunohistochemistry.
Collapse
Key Words
- ACC, adenoid cystic carcinoma
- BSA, bovine serum albumin
- CBIS, cell-based immunization and screening
- CD44
- DAB, 3,3-diaminobenzidine tetrahydrochloride
- DMEM, Dulbecco's Modified Eagle's Medium
- EDTA, ethylenediaminetetraacetic acid
- FBS, fetal bovine serum
- Immunohistochemistry
- MEC, mucoepidermoid carcinoma
- Monoclonal antibody
- Oral cancer
- PBS, phosphate-buffered saline
- SCC, squamous cell carcinoma
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
24
|
Biodiversity of CS–proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem J 2018; 475:587-620. [DOI: 10.1042/bcj20170820] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/20/2017] [Accepted: 01/07/2018] [Indexed: 12/19/2022]
Abstract
Chondroitin sulphate (CS) glycosaminoglycan chains on cell and extracellular matrix proteoglycans (PGs) can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the CS chain structure are a source of significant biological information to cells and their surrounding environment. CS sulphation motifs have been shown to interact with a wide variety of bioactive molecules, e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways, thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, CS PGs play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here, we review (i) the biodiversity of CS PGs and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair.
Collapse
|
25
|
The Pharmaceutical Device Prisma ® Skin Promotes in Vitro Angiogenesis through Endothelial to Mesenchymal Transition during Skin Wound Healing. Int J Mol Sci 2017; 18:ijms18081614. [PMID: 28757565 PMCID: PMC5578006 DOI: 10.3390/ijms18081614] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/12/2017] [Accepted: 07/22/2017] [Indexed: 12/18/2022] Open
Abstract
Glycosaminoglycans are polysaccharides of the extracellular matrix supporting skin wound closure. Mesoglycan is a mixture of glycosaminoglycans such as chondroitin-, dermatan-, heparan-sulfate and heparin and is the main component of Prisma® Skin, a pharmaceutical device developed by Mediolanum Farmaceutici S.p.a. Here, we show the in vitro effects of this device in the new vessels formation by endothelial cells, since angiogenesis represents a key moment in wound healing. We found a strong increase of migration and invasion rates of these cells treated with mesoglycan and Prisma® Skin which mediate the activation of the pathway triggered by CD44 receptor. Furthermore, endothelial cells form longer capillary-like structures with a great number of branches, in the presence of the same treatments. Thus, the device, thanks to the mesoglycan, leads the cells to the Endothelial-to-Mesenchymal Transition, suggesting the switch to a fibroblast-like phenotype, as shown by immunofluorescence assays. Finally, we found that mesoglycan and Prisma® Skin inhibit inflammatory reactions such as nitric oxide secretion and NF-κB nuclear translocation in endothelial cells and Tumor Necrosis Factor-α production by macrophages. In conclusion, based on our data, we suggest that Prisma® Skin may be able to accelerate angiogenesis in skin wound healing, and regulate inflammation avoiding chronic, thus pathological, responses.
Collapse
|
26
|
Gaviglio AL, Knelson EH, Blobe GC. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. FASEB J 2017; 31:1903-1915. [PMID: 28174207 DOI: 10.1096/fj.201600828r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/09/2017] [Indexed: 12/15/2022]
Abstract
High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.
Collapse
Affiliation(s)
- Angela L Gaviglio
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Erik H Knelson
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; and
| | - Gerard C Blobe
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA; .,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
27
|
Teye K, Numata S, Ishii N, Krol RP, Tsuchisaka A, Hamada T, Koga H, Karashima T, Ohata C, Tsuruta D, Saya H, Haftek M, Hashimoto T. Isolation of All CD44 Transcripts in Human Epidermis and Regulation of Their Expression by Various Agents. PLoS One 2016; 11:e0160952. [PMID: 27505250 PMCID: PMC4978388 DOI: 10.1371/journal.pone.0160952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/27/2016] [Indexed: 01/06/2023] Open
Abstract
CD44, a cell surface proteoglycan, is involved in many biological events. CD44 transcripts undergo complex alternative splicing, resulting in many functionally distinct isoforms. To date, however, the nature of these isoforms in human epidermis has not been adequately determined. In this study, we isolated all CD44 transcripts from normal human epidermis, and studied how their expressions are regulated. By RT-PCR, we found that a number of different CD44 transcripts were expressed in human epidermis, and we obtained all these transcripts from DNA bands in agarose and acrylamide gels by cloning. Detailed sequence analysis revealed 18 CD44 transcripts, 3 of which were novel. Next, we examined effects of 10 different agents on the expression of CD44 transcripts in cultured human keratinocytes, and found that several agents, particularly epidermal growth factor, hydrogen peroxide, phorbol 12-myristate 13-acetate, retinoic acid, calcium and fetal calf serum differently regulated their expressions in various patterns. Furthermore, normal and malignant keratinocytes were found to produce different CD44 transcripts upon serum stimulation and subsequent starvation, suggesting that specific CD44 isoforms are involved in tumorigenesis via different CD44-mediated biological pathways.
Collapse
Affiliation(s)
- Kwesi Teye
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Sanae Numata
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Norito Ishii
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Rafal P Krol
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Atsunari Tsuchisaka
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Takahiro Hamada
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Hiroshi Koga
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Tadashi Karashima
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Chika Ohata
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Marek Haftek
- University of Lyon 1, EA 4169 and CNRS, Lyon, France
| | - Takashi Hashimoto
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
28
|
Ilangumaran S, Villalobos-Hernandez A, Bobbala D, Ramanathan S. The hepatocyte growth factor (HGF)–MET receptor tyrosine kinase signaling pathway: Diverse roles in modulating immune cell functions. Cytokine 2016; 82:125-39. [PMID: 26822708 DOI: 10.1016/j.cyto.2015.12.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 12/14/2022]
|
29
|
Guvench O. Revealing the Mechanisms of Protein Disorder and N-Glycosylation in CD44-Hyaluronan Binding Using Molecular Simulation. Front Immunol 2015; 6:305. [PMID: 26136744 PMCID: PMC4468915 DOI: 10.3389/fimmu.2015.00305] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/28/2015] [Indexed: 11/13/2022] Open
Abstract
The extracellular N-terminal hyaluronan binding domain (HABD) of CD44 is a small globular domain that confers hyaluronan (HA) binding functionality to this large transmembrane glycoprotein. When recombinantly expressed by itself, HABD exists as a globular water-soluble protein that retains the capacity to bind HA. This has enabled atomic-resolution structural biology experiments that have revealed the structure of HABD and its binding mode with oligomeric HA. Such experiments have also pointed to an order-to-disorder transition in HABD that is associated with HA binding. However, it had remained unclear how this structural transition was involved in binding since it occurs in a region of HABD distant from the HA-binding site. Furthermore, HABD is known to be N-glycosylated, and such glycosylation can diminish HA binding when the associated N-glycans are capped with sialic acid residues. The intrinsic flexibility of disordered proteins and of N-glycans makes it difficult to apply experimental structural biology approaches to probe the molecular mechanisms of how the order-to-disorder transition and N-glycosylation can modulate HA binding by HABD. We review recent results from molecular dynamics simulations that provide atomic-resolution mechanistic understanding of such modulation to help bridge gaps between existing experimental binding and structural biology data. Findings from these simulations include: Tyr42 may function as a molecular switch that converts the HA-binding site from a low affinity to a high affinity state; in the partially disordered form of HABD, basic amino acids in the C-terminal region can gain sufficient mobility to form direct contacts with bound HA to further stabilize binding; and terminal sialic acids on covalently attached N-glycans can form charge-paired hydrogen bonding interactions with basic amino acids that could otherwise bind to HA, thereby blocking HA binding to glycosylated CD44 HABD.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy , Portland, ME , USA
| |
Collapse
|
30
|
Soares da Costa D, Márquez-Posadas MDC, Araujo AR, Yang Y, Merino S, Groth T, Reis RL, Pashkuleva I. Adhesion of adipose-derived mesenchymal stem cells to glycosaminoglycan surfaces with different protein patterns. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10034-10043. [PMID: 25902379 DOI: 10.1021/acsami.5b02479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proteins and glycosaminoglycans (GAGs) are the main constituents of the extracellular matrix (ECM). They act in synergism and are equally critical for the development, growth, function, or survival of an organism. In this work, we developed surfaces that display these two classes of biomacromolecules, namely, GAGs and proteins, in a spatially controlled fashion. The generated surfaces can be used as a minimalistic but straightforward model aiding the elucidation of cell-ECM interactions. GAGs (hyaluronic acid and heparin) were covalently bound to amino functionalized surfaces, and albumin or fibronectin was patterned by microcontact printing on top of them. We demonstrate that adipose-derived stem cells (ASCs) can adhere either on the protein or on the GAG pattern as a function of the patterned molecules. ASCs found on the GAG pattern had different morphology and expressed different surface markers than the cells adhered on the protein pattern. ASCs morphology and spreading were also dependent on the size of the pattern. These results show that the developed supports can also be used for ASCs differentiation into different lineages.
Collapse
Affiliation(s)
- Diana Soares da Costa
- †3B's Research Group, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ‡ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Maria del Carmen Márquez-Posadas
- §IK4-Tekniker, Micro and Nano Manufacture Unit, Polo Tecnológico De Eibar, C/Iñaki Goenaga 5, 20600 Eibar, Gipuzkoa Spain
- ∥CIC microGUNE, Polo de Innovación Garaia, Goiru kalea 9, 20500 Arrasate-Mondragón, Gipuzkoa Spain
| | - Ana R Araujo
- †3B's Research Group, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ‡ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Yuan Yang
- ⊥Biomedical Materials Group, Martin Luther University, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Saxony-Anhalt, Germany
| | - Santos Merino
- §IK4-Tekniker, Micro and Nano Manufacture Unit, Polo Tecnológico De Eibar, C/Iñaki Goenaga 5, 20600 Eibar, Gipuzkoa Spain
- ∥CIC microGUNE, Polo de Innovación Garaia, Goiru kalea 9, 20500 Arrasate-Mondragón, Gipuzkoa Spain
| | - Thomas Groth
- ⊥Biomedical Materials Group, Martin Luther University, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Saxony-Anhalt, Germany
| | - Rui L Reis
- †3B's Research Group, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ‡ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Iva Pashkuleva
- †3B's Research Group, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ‡ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
31
|
Lemjabbar-Alaoui H, McKinney A, Yang YW, Tran VM, Phillips JJ. Glycosylation alterations in lung and brain cancer. Adv Cancer Res 2015; 126:305-44. [PMID: 25727152 DOI: 10.1016/bs.acr.2014.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alterations in glycosylation are common in cancer and are thought to contribute to disease. Lung cancer and primary malignant brain cancer, most commonly glioblastoma, are genetically heterogeneous diseases with extremely poor prognoses. In this review, we summarize the data demonstrating that glycosylation is altered in lung and brain cancer. We then use specific examples to highlight the diverse roles of glycosylation in these two deadly diseases and illustrate shared mechanisms of oncogenesis. In addition to alterations in glycoconjugate biosynthesis, we also discuss mechanisms of postsynthetic glycan modification in cancer. We suggest that alterations in glycosylation in lung and brain cancer provide novel tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hassan Lemjabbar-Alaoui
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, California, USA
| | - Andrew McKinney
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA
| | - Yi-Wei Yang
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, California, USA
| | - Vy M Tran
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA; Department of Pathology, University of California, San Francisco, California, USA.
| |
Collapse
|
32
|
Orian-Rousseau V, Ponta H. Perspectives of CD44 targeting therapies. Arch Toxicol 2014; 89:3-14. [PMID: 25472903 DOI: 10.1007/s00204-014-1424-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 01/03/2023]
Abstract
CD44 is a family of single-span transmembrane glycoproteins. Members of this family differ in the extracellular domain where ten variant exons are either excluded or included in various combinations. CD44 isoforms participate in many physiological processes including hematopoiesis, regeneration, lymphocyte homing and inflammation. Most importantly, they are involved in pathological processes and in particular in cancer. In several types of tumors, CD44 together with other antigens specifies for cancer stem cell populations. Mechanistically, CD44 proteins act as receptors for hyaluronan, co-receptor for receptor tyrosine kinases (RTKs) or G-protein-coupled receptors or provide a platform for metalloproteinases. For all these reasons, targeting CD44 may be a successful approach in cancer therapy. In this review, we discuss the various possibilities of targeting CD44. Among these are the production of CD44 ectodomains, antibodies, peptides or aptamers. Also inhibition of CD44 expression has been proposed. Finally, the function of CD44 as a hyaluronan receptor was also taken advantage of. We are convinced that the success of these therapies will depend on an increased understanding of the molecular functions of specific CD44 isoforms in particular in cancer stem cells.
Collapse
Affiliation(s)
- V Orian-Rousseau
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021, Karlsruhe, Germany,
| | | |
Collapse
|
33
|
Faller CE, Guvench O. Terminal sialic acids on CD44 N-glycans can block hyaluronan binding by forming competing intramolecular contacts with arginine sidechains. Proteins 2014; 82:3079-89. [PMID: 25116630 DOI: 10.1002/prot.24668] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/25/2014] [Accepted: 08/03/2014] [Indexed: 01/29/2023]
Abstract
Specific sugar residues and their linkages form the basis of molecular recognition for interactions of glycoproteins with other biomolecules. Seemingly small changes, like the addition of a single monosaccharide in the covalently attached glycan component of glycoproteins, can greatly affect these interactions. For instance, the sialic acid capping of glycans affects protein-ligand binding involved in cell-cell and cell-matrix interactions. CD44 is a single-pass transmembrane glycoprotein whose binding with its carbohydrate ligand hyaluronan (HA), an extracellular matrix component, mediates processes such as leukocyte homing, cell adhesion, and tumor metastasis. This binding is highly regulated by glycosylation of the N-terminal extracellular hyaluronan-binding domain (HABD); specifically, sialic acid capped N-glycans of HABD inhibit ligand binding. However, the molecular mechanism behind this sialic acid mediated regulation has remained unknown. Two of the five N-glycosyation sites of HABD have been previously identified as having the greatest inhibitory effect on HA binding, but only if the glycans contain terminal sialic acid residues. These two sites, Asn25 and Asn120, were chosen for in silico glycosylation in this study. Here, from extensive standard molecular dynamics simulations and biased simulations, we propose a molecular mechanism for this behavior based on spontaneously-formed charge-paired hydrogen bonding interactions between the negatively-charged sialic acid residues and positively-charged Arg sidechains known to be critically important for binding to HA, which itself is negatively charged. Such intramolecular hydrogen bonds would preclude associations critical to hyaluronan binding. This observation suggests how CD44 and related glycoprotein binding is regulated by sialylation as cellular environments fluctuate.
Collapse
Affiliation(s)
- Christina E Faller
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, ortland, Maine, 04103
| | | |
Collapse
|
34
|
Heparan sulfate signaling in cancer. Trends Biochem Sci 2014; 39:277-88. [PMID: 24755488 DOI: 10.1016/j.tibs.2014.03.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 01/03/2023]
Abstract
Heparan sulfate (HS) is a biopolymer consisting of variably sulfated repeating disaccharide units. The anticoagulant heparin is a highly sulfated intracellular variant of HS. HS has demonstrated roles in embryonic development, homeostasis, and human disease via non-covalent interactions with numerous cellular proteins, including growth factors and their receptors. HS can function as a co-receptor by enhancing receptor-complex formation. In other contexts, HS disrupts signaling complexes or serves as a ligand sink. The effects of HS on growth factor signaling are tightly regulated by the actions of sulfyltransferases, sulfatases, and heparanases. HS has important emerging roles in oncogenesis, and heparin derivatives represent potential therapeutic strategies for human cancers. Here we review recent insights into HS signaling in tumor proliferation, angiogenesis, metastasis, and differentiation. A cancer-specific understanding of HS signaling could uncover potential therapeutic targets in this highly actionable signaling network.
Collapse
|
35
|
Brazil JC, Liu R, Sumagin R, Kolegraff KN, Nusrat A, Cummings RD, Parkos CA, Louis NA. α3/4 Fucosyltransferase 3-dependent synthesis of Sialyl Lewis A on CD44 variant containing exon 6 mediates polymorphonuclear leukocyte detachment from intestinal epithelium during transepithelial migration. THE JOURNAL OF IMMUNOLOGY 2013; 191:4804-17. [PMID: 24068663 DOI: 10.4049/jimmunol.1301307] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polymorphonuclear leukocyte (PMN) migration across the intestinal epithelium closely parallels disease symptoms in patients with inflammatory bowel disease. PMN transepithelial migration (TEM) is a multistep process that terminates with PMN detachment from the apical epithelium into the lumen. Using a unique mAb (GM35), we have previously demonstrated that engagement of the CD44 variant containing exon 6 (CD44v6) blocks both PMN detachment and cleavage of CD44v6. In this article, we report that PMN binding to CD44v6 is mediated by protein-specific O-glycosylation with sialyl Lewis A (sLe(a)). Analyses of glycosyltransferase expression identified fucosyltransferase 3 (Fut3) as the key enzyme driving sLe(a) biosynthesis in human intestinal epithelial cells (IECs). Fut3 transfection of sLe(a)-deficient IECs resulted in robust expression of sLe(a). However, this glycan was not expressed on CD44v6 in these transfected IECs; therefore, engagement of sLe(a) had no effect on PMN TEM across these cells. Analyses of sLe(a) in human colonic mucosa revealed minimal expression in noninflamed areas, with striking upregulation under colitic conditions that correlated with increased expression of CD44v6. Importantly, intraluminal administration of mAb GM35 blocked PMN TEM and attenuated associated increases in intestinal permeability in a murine intestinal model of inflammation. These findings identify a unique role for protein-specific O-glycosylation in regulating PMN-epithelial interactions at the luminal surface of the intestine.
Collapse
Affiliation(s)
- Jennifer C Brazil
- Division of Neonatal-Perinatal Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Rampanelli E, Rouschop K, Teske GJD, Claessen N, Leemans JC, Florquin S. CD44v3-v10 reduces the profibrotic effects of TGF-β1 and attenuates tubular injury in the early stage of chronic obstructive nephropathy. Am J Physiol Renal Physiol 2013; 305:F1445-54. [PMID: 24026183 DOI: 10.1152/ajprenal.00340.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD44 family members are cell surface glycoproteins, which are expressed on tubular epithelial cells (TEC) solely upon kidney injury and are involved in renal fibrosis development. Renal interstitial fibrosis is the final manifestation of chronic kidney diseases and is regulated by a complex network of cytokines, including the profibrotic factor transforming growth factor-β1 (TGF-β1) and the two antifibrotic cytokines bone morphogenic protein-7 (BMP-7) and hepatocyte growth factor (HGF). The present study investigates the potential role of CD44 standard (CD44s) and CD44v3-v10 (CD44v3) isoforms as modulators of the balance between TGF-β1 and HGF/BMP-7. CD44s is the shortest and most common isoform. CD44v3-v10 (CD44v3) has heparan sulfate moieties, which enable the binding to HGF/BMP-7, and hence, might exert renoprotective effects. Using transgenic mice overexpressing either CD44s or CD44v3 specifically on proximal TEC, we found that in vitro the overexpression of CD44v3 on primary TEC renders cells less susceptible to TGF-β1 profibrotic actions and more sensitive to BMP-7 and HGF compared with TEC overexpressing CD44s. One day after unilateral ureteric obstruction, obstructed kidneys from CD44v3 transgenic mice showed less tubular damage and myofibroblasts accumulation, which was associated with decreased TGF-β1 signaling and increased BMP-7 synthesis and signaling compared with kidneys from wild-type and CD44s transgenic mice. These data suggest that CD44v3 plays a renoprotective role in early stage of chronic obstructive nephropathy.
Collapse
Affiliation(s)
- Elena Rampanelli
- Dept. of Pathology, Rm. L2-112, Academic Medical Center, P.O. Box 22660, 1100 AZ, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Gupta A, Cao W, Sadashivaiah K, Chen W, Schneider A, Chellaiah MA. Promising noninvasive cellular phenotype in prostate cancer cells knockdown of matrix metalloproteinase 9. ScientificWorldJournal 2013; 2013:493689. [PMID: 23476138 PMCID: PMC3580924 DOI: 10.1155/2013/493689] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/23/2012] [Indexed: 02/08/2023] Open
Abstract
Cell surface interaction of CD44 and MMP9 increases migration and invasion of PC3 cells. We show here that stable knockdown of MMP9 in PC3 cells switches CD44 isoform expression from CD44s to CD44v6 which is more glycosylated. These cells showed highly adhesive morphology with extensive cell spreading which is due to the formation of focal adhesions and well organized actin-stress fibers. MMP9 knockdown blocks invadopodia formation and matrix degradation activity as well. However, CD44 knockdown PC3 cells failed to develop focal adhesions and stress fibers; hence these cells make unstable adhesions. A part of the reason for these changes could be caused by silencing of CD44v6 as well. Immunostaining of prostate tissue microarray sections illustrated significantly lower levels of CD44v6 in adenocarcinoma than normal tissue. Our results suggest that interaction between CD44 and MMP9 is a potential mechanism of invadopodia formation. CD44v6 expression may be essential for the protection of non-invasive cellular phenotype. CD44v6 decrease may be a potential marker for prognosis and therapeutics.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Wei Cao
- Laboratory of Oral Tumor Biology, Department of Oral and Maxillofacial Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kavitha Sadashivaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Wantao Chen
- Laboratory of Oral Tumor Biology, Department of Oral and Maxillofacial Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Meenakshi A. Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
38
|
Distinct kinetic and molecular requirements govern CD44 binding to hyaluronan versus fibrin(ogen). Biophys J 2013; 103:415-423. [PMID: 22947857 DOI: 10.1016/j.bpj.2012.06.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 12/28/2022] Open
Abstract
CD44 is a multifunctional glycoprotein that binds to hyaluronan and fibrin(ogen). Alternative splicing is responsible for the generation of numerous different isoforms, the smallest of which is CD44s. Insertion of variant exons into the extracellular membrane proximal region generates the variant isoforms (CD44v). Here, we used force spectroscopy to delineate the biophysical and molecular requirements of CD44-HA and CD44-fibrin(ogen) interactions at the single-molecule level. CD44v-HA and CD44s-HA single bonds exhibit similar kinetic and micromechanical properties because the HA-binding motif on CD44 is common to all of the isoforms. Although this is the primary binding site, O- and N-linked glycans and sulfation also contribute to the tensile strength of the CD44-HA bond. The CD44s-fibrin pair has a lower unstressed dissociation rate and a higher tensile strength than CD44s-fibrinogen but is weaker than the CD44-HA bond. In contrast to CD44-HA binding, the molecular interaction between CD44 and fibrin(ogen) is predominantly mediated by the chondroitin sulfate and dermatan sulfate on CD44. Blocking sulfation on CD44s modestly decreases the tensile strength of CD44s-fibrin(ogen) binding, which is in stark contrast to CD44v-fibrin interaction. Collectively, the results obtained by force spectroscopy in conjunction with biochemical interventions enable us to delineate the biophysical parameters and molecular constituents of CD44 binding to hyaluronan and fibrin(ogen).
Collapse
|
39
|
Stem cell CD44v isoforms promote intestinal cancer formation in Apc(min) mice downstream of Wnt signaling. Oncogene 2013; 33:665-70. [PMID: 23318432 DOI: 10.1038/onc.2012.611] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 11/12/2012] [Accepted: 11/12/2012] [Indexed: 02/06/2023]
Abstract
A gene signature specific for intestinal stem cells (ISCs) has recently been shown to predict relapse in colorectal cancer (CRC) but the tumorigenic role of individual signature genes remains poorly defined. A prominent ISC-signature gene is the cancer stem cell marker CD44, which encodes various splice variants comprising a diverse repertoire of adhesion and signaling molecules. Using Lgr5 as ISC marker, we have fluorescence-activated cell sorting-purified ISCs to define their CD44 repertoire. ISCs display a specific set of CD44 variant isoforms (CD44v), but remarkably lack the CD44 standard (CD44s) isoform. These CD44v also stand-out in transformed human ISCs isolated from microadenomas of familial adenomatous polyposis patients. By employing knock-in mice expressing either CD44v4-10 or CD44s, we demonstrate that the CD44v isoform, but not CD44s, promotes adenoma initiation in Apc(Min/+)mice. Our data identify CD44v as component of the ISCs program critical for tumor initiation, and as potential treatment target in CRC.
Collapse
|
40
|
Raso-Barnett L, Banky B, Barbai T, Becsagh P, Timar J, Raso E. Demonstration of a melanoma-specific CD44 alternative splicing pattern that remains qualitatively stable, but shows quantitative changes during tumour progression. PLoS One 2013; 8:e53883. [PMID: 23342032 PMCID: PMC3544768 DOI: 10.1371/journal.pone.0053883] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022] Open
Abstract
The role of CD44 in the progression of human melanoma has mostly been characterised by qualitative changes in expression of its individual variable exons. These exons however, may be expressed to form a number of molecules, the alternative splice variants of CD44, which may be structurally and functionally different. Using real-time PCR measurements with variable exon specific primers we have determined that all are expressed in human melanoma. To permit comparison between different tumours we identified a stable CD44 variable exon (CD44v) expression pattern, or CD44 ‘fingerprint’. This was found to remain unchanged in melanoma cell lines cultured in different matrix environments. To evaluate evolution of this fingerprint during tumour progression we established a scid mouse model, in which the pure expression pattern of metastatic primary tumours, circulating cells and metastases, non-metastatic primary tumours and lung colonies could be studied. Our analyses demonstrated, that although the melanoma CD44 fingerprint is qualitatively stable, quantitative changes are observed suggesting a possible role in tumour progression.
Collapse
Affiliation(s)
- Livia Raso-Barnett
- Department of Tumour Progression, 2 Institute of Pathology, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
41
|
Perez A, Neskey DM, Wen J, Pereira L, Reategui EP, Goodwin WJ, Carraway KL, Franzmann EJ. CD44 interacts with EGFR and promotes head and neck squamous cell carcinoma initiation and progression. Oral Oncol 2012; 49:306-13. [PMID: 23265944 DOI: 10.1016/j.oraloncology.2012.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/21/2012] [Accepted: 11/23/2012] [Indexed: 01/24/2023]
Abstract
OBJECTIVES CD44 is a promising target for therapy in head and neck squamous cell carcinoma (HNSCC) and has two defined roles in tumorigenesis: it is a cancer stem cell (CSC) marker and it promotes migration and proliferation through interaction with many signaling molecules. The purpose of this study was to investigate the role of CD44 in HNSCC carcinogenesis. MATERIALS AND METHODS The effects of CD44 in cell proliferation, migration, apoptosis and cisplatin resistance were studied by its overexpression in HNSCC cells. We also evaluated the effect of CD44 on tumor progression by siRNA methodology, immunohistochemistry (IHC) and western blot analysis. CD44 and EGFR colocalization were examined in CAL 27 cells by laser scanning confocal microscopy. The interaction between CD44 and EGFR was analyzed by immunoprecipation. RESULTS Overexpression of CD44 enhances cell proliferation and migration and correlates with increased cisplatin resistance and apoptosis inhibition in SCC25 cells. Downregulation of CD44 in CAL27 cells inhibited constitutive EGFR phosphorylation and significantly reduced tumor growth in nude mice. CD44 and EGFR colocalized in CAL 27 cells. CD44 coimmunoprecipated with EGFR in CAL 27 cells, indicating that these proteins interact with each other. CONCLUSION CD44 therapy in HNSCC may target the CSC population and alter EGFR signaling.
Collapse
Affiliation(s)
- Aymee Perez
- University of Miami Miller School of Medicine, Department of Cell Biology, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Keenan TDL, Clark SJ, Unwin RD, Ridge LA, Day AJ, Bishop PN. Mapping the differential distribution of proteoglycan core proteins in the adult human retina, choroid, and sclera. Invest Ophthalmol Vis Sci 2012; 53:7528-38. [PMID: 23074202 DOI: 10.1167/iovs.12-10797] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To examine the presence and distribution of proteoglycan (PG) core proteins in the adult human retina, choroid, and sclera. METHODS Postmortem human eye tissue was dissected into Bruch's membrane/choroid complex, isolated Bruch's membrane, or neurosensory retina. PGs were extracted and partially purified by anion exchange chromatography. Trypsinized peptides were analyzed by tandem mass spectrometry and PG core proteins identified by database search. The distribution of PGs was examined by immunofluorescence microscopy on human macular tissue sections. RESULTS The basement membrane PGs perlecan, agrin, and collagen-XVIII were identified in the human retina, and were present in the internal limiting membrane, blood vessel walls, and Bruch's membrane. The hyalectans versican and aggrecan were also detected. Versican was identified in Bruch's membrane, while aggrecan was distributed throughout the retina, choroid, and sclera. The cartilage link protein HAPLN1 was abundant in the interphotoreceptor matrix and sclera, while HAPLN4 (brain link protein 2) was found throughout the retina and choroid. The small leucine-rich repeat PG (SLRP) family members biglycan, decorin, fibromodulin, lumican, mimecan, opticin, and prolargin were present, with different patterns of distribution in the retina, choroid, and sclera. CONCLUSIONS A combination of proteomics and immunohistochemistry approaches has provided for the first time a comprehensive analysis of the presence and distribution of PG core proteins throughout the human retina, choroid, and sclera. This complements our knowledge of glycosaminoglycan chain distribution in the human eye, and has important implications for understanding the structure and functional regulation of the eye in health and disease.
Collapse
Affiliation(s)
- Tiarnan D L Keenan
- Centre for Ophthalmology and Vision Research, Institute of Human Development, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
43
|
Suga N, Sugimura M, Koshiishi T, Yorifuji T, Makino S, Takeda S. Heparin/heparan sulfate/CD44-v3 enhances cell migration in term placenta-derived immortalized human trophoblast cells. Biol Reprod 2012; 86:134, 1-8. [PMID: 22321833 DOI: 10.1095/biolreprod.111.093690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The function of CD44-v3 and heparin/heparan sulfate (HS) signaling was investigated during trophoblast cell migration to identify their role in the renewal of syncytial layer damage caused by increased hemodynamic turbulence in the intervillous space and maintenance of syncytial integrity in pre-eclampsia. We evaluated the effect of heparin/HS/CD44-v3-mediated processes during scratch wound closure in monolayer immortalized human trophoblast cells derived from term placenta (TCL-1 cells). Western blot analysis showed that these cultured human trophoblast cells express the epidermal growth factor receptor and CD44-v3 but do not express syndecan 4. An in vitro scratch wound healing assay showed enhanced migration of trophoblast cells in a dose-dependent manner in the presence of heparin compared with controls when cultured under serum-free conditions. Conversely, an anti-CD44 function-blocking antibody and CD44 siRNA suppressed the migration of trophoblast cells in the presence of heparin in a similar scratch assay. Furthermore, both heparin treatment and in vitro scratch wounding induced the phosphorylation of p21-activated kinase 1 (PAK1), whereas the anti-CD44-v3 antibody suppressed the heparin-induced phosphorylation of PAK1 in trophoblast cells. These results indicate that heparin/HS/CD44-v3-mediated signaling, in the absence of growth factor networks, enhances the direct repair of the damaged trophoblast layer through the migration of trophoblast cells. This renewed cell coverage may lead to the maintenance of syncytiotrophoblast cell function and an associated reduction in pathogenic soluble factors derived from the damaged trophoblast cells.
Collapse
Affiliation(s)
- Naoko Suga
- Department of Obstetrics and Gynecology, School of Medicine, Juntendo University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Sackstein R. The biology of CD44 and HCELL in hematopoiesis: the 'step 2-bypass pathway' and other emerging perspectives. Curr Opin Hematol 2011; 18:239-48. [PMID: 21546828 PMCID: PMC3145154 DOI: 10.1097/moh.0b013e3283476140] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW The homing and egress of hematopoietic stem and progenitor cells (HSPCs) to and from marrow, respectively, and the proliferation and differentiation of HSPCs within marrow are complex processes critically regulated by the ordered expression and function of adhesion molecules that direct key cell-cell and cell-matrix interactions. The integral membrane molecule CD44, known primarily for its role in binding hyaluronic acid, is characteristically expressed on HSPCs. Conspicuously, human HSPCs uniquely display a specialized glycoform of CD44 known as hematopoietic cell E-/L-selectin ligand (HCELL), which is the most potent ligand for both E-selectin and L-selectin expressed on human cells. This review focuses on recent advances in our understanding of the biology of CD44 and HCELL in hematopoiesis. RECENT FINDINGS New data indicate that CD44-mediated events in hematopoiesis are more complex than previously imagined. Ex-vivo glycan engineering has established that HCELL serves as a 'bone marrow homing receptor'. Moreover, biochemical studies now show that CD44 forms bimolecular complexes with a variety of membrane proteins, one of which is VLA-4. Engagement of CD44 or of HCELL directly induces VLA-4 activation via G-protein-dependent signaling, triggering a 'step 2-bypass pathway' of cell migration, and extravascular lodgment, in absence of chemokine receptor engagement. SUMMARY Recent studies have further clarified the roles of CD44 and its glycoform HCELL in hematopoietic processes, providing key insights on how targeting these molecules may be beneficial in promoting hematopoiesis and in treating hematologic malignancies.
Collapse
Affiliation(s)
- Robert Sackstein
- Department of Dermatology, Brigham and Women's Hospital, Harvard Skin Disease Research Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
45
|
De Francesco MA, Baronio M, Poiesi C. HIV-1 p17 matrix protein interacts with heparan sulfate side chain of CD44v3, syndecan-2, and syndecan-4 proteoglycans expressed on human activated CD4+ T cells affecting tumor necrosis factor alpha and interleukin 2 production. J Biol Chem 2011; 286:19541-8. [PMID: 21482826 DOI: 10.1074/jbc.m110.191270] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
HIV-1 p17 contains C- and N-terminal sequences with positively charged residues and a consensus cluster for heparin binding. We have previously demonstrated by affinity chromatography that HIV-1 p17 binds strongly to heparin-agarose at physiological pH and to human activated CD4(+) T cells. In this study we demonstrated that the viral protein binds to heparan sulfate side chains of syndecan-2, syndecan-4, and CD44v3 purified from HeLa cells and that these heparan sulfate proteoglycans (HSPGs) co-localize with HIV-1 p17 on activated human CD4(+) T cells by confocal fluorescence analysis. Moreover, we observed a stimulatory or inhibitory activity when CD4(+) T cells were activated with mitogens together with nanomolar or micromolar concentrations of the matrix protein.
Collapse
|
46
|
Somasunderam A, Thiviyanathan V, Tanaka T, Li X, Neerathilingam M, Lokesh GLR, Mann A, Peng Y, Ferrari M, Klostergaard J, Gorenstein DG. Combinatorial selection of DNA thioaptamers targeted to the HA binding domain of human CD44. Biochemistry 2010; 49:9106-12. [PMID: 20843027 PMCID: PMC2981344 DOI: 10.1021/bi1009503] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD44, the primary receptor for hyaluronic acid, plays an important role in tumor growth and metastasis. CD44-hyaluronic acid interactions can be exploited for targeted delivery of anticancer agents specifically to cancer cells. Although various splicing variants of CD44 are expressed on the plasma membrane of cancer cells, the hyaluronic acid binding domain (HABD) is highly conserved among the CD44 splicing variants. Using a novel two-step process, we have identified monothiophosphate-modified aptamers (thioaptamers) that specifically bind to the CD44's HABD with high affinities. Binding affinities of the selected thioaptamers for the HABD were in the range of 180-295 nM, an affinity significantly higher than that of hyaluronic acid (K(d) above the micromolar range). The selected thioaptamers bound to CD44 positive human ovarian cancer cell lines (SKOV3, IGROV, and A2780) but failed to bind the CD44 negative NIH3T3 cell line. Our results indicated that thio substitution at specific positions of the DNA phosphate backbone results in specific and high-affinity binding of thioaptamers to CD44. The selected thioaptamers will be of great interest for further development as a targeting or imaging agent for the delivery of therapeutic payloads for cancer tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jim Klostergaard
- Corresponding authors David G. Gorenstein, Institute of Molecular Medicine, University of Texas Health Science Center, 1825 Pressler, Houston, TX 77030, ; Phone: 713 500 2233; Fax: 713 500 2420. Jim Klostergaard, Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030. Phone: 713 792 8962; Fax: 713 794 3270
| | - David G. Gorenstein
- Corresponding authors David G. Gorenstein, Institute of Molecular Medicine, University of Texas Health Science Center, 1825 Pressler, Houston, TX 77030, ; Phone: 713 500 2233; Fax: 713 500 2420. Jim Klostergaard, Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030. Phone: 713 792 8962; Fax: 713 794 3270
| |
Collapse
|
47
|
Crispín JC, Keenan BT, Finnell MD, Bermas BL, Schur P, Massarotti E, Karlson EW, Fitzgerald LM, Ergin S, Kyttaris VC, Tsokos GC, Costenbader KH. Expression of CD44 variant isoforms CD44v3 and CD44v6 is increased on T cells from patients with systemic lupus erythematosus and is correlated with disease activity. ARTHRITIS AND RHEUMATISM 2010; 62:1431-7. [PMID: 20213807 PMCID: PMC2879041 DOI: 10.1002/art.27385] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To quantify the expression of CD44 and variant isoforms CD44v3 and CD44v6 on T cells from patients with systemic lupus erythematosus (SLE), and to assess correlations of the level of expression of these molecules with disease manifestations. METHODS Information on clinical and demographic characteristics was collected, and blood samples were obtained from 72 patients with SLE and 32 healthy control subjects matched to the patients by sex, race, and age. Expression of CD44 and variants CD44v3 and v6 on T cell subsets was determined by flow cytometry, and Pearson's correlations of their expression levels with clinical variables, SLE Disease Activity Index (SLEDAI) scores, and presence of lupus nephritis were determined. Wilcoxon's rank sum tests and conditional multivariable regression analyses were applied to identify differences in the expression of CD44 between patients with SLE and healthy controls. RESULTS Expression of CD44 was higher on CD4+ and CD8+ T cells from SLE patients compared with controls (P CONCLUSION These results indicate that expression levels of CD44v3 and CD44v6 on T cells may represent useful biomarkers of SLE activity.
Collapse
Affiliation(s)
- José C Crispín
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Peal DS, Burns CG, Macrae CA, Milan D. Chondroitin sulfate expression is required for cardiac atrioventricular canal formation. Dev Dyn 2010; 238:3103-10. [PMID: 19890913 DOI: 10.1002/dvdy.22154] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Defects in cardiac valvulogenesis are a common cause of congenital heart disease, and the study of this process promises to provide mechanistic insights and lead to novel therapeutics. Normal valve development involves multiple signaling pathways, and recently roles have been identified for extracellular matrix components, including glycosaminoglycans. We, therefore, explored the role of the glycosaminoglycan chondroitin sulfate during zebrafish cardiac development. Beginning at 33 hr, there is a distinct zone of chondroitin sulfate expression in the atrioventricular (AV) boundary, in the cardiac jelly between the endocardium and myocardium. This expression is both spatially and temporally restricted, and is undetectable after 48 hr. Chemical as well as genetic inhibition of chondroitin synthesis results in AV canal (AVC) defects, including loss of the atrioventricular constriction, blood regurgitation, and failure of circulation. Lack of chondroitin disrupts a marker of cell migration, results in a loss of myocardial and endothelial markers of valvulogenesis, and misregulates bone morphogenetic protein expression, supporting an early role in AVC development. In summary, we have defined a requirement for chondroitin sulfate expression in the normal patterning of the AV boundary, suggesting that this component of the cardiac jelly provides a necessary signal in this critical transition in vertebrate cardiogenesis.
Collapse
Affiliation(s)
- David S Peal
- Harvard Medical School, Massachusetts General Hospital, Cardiovascular Research Center and Cardiology Division, Charlestown, Massachusetts, USA
| | | | | | | |
Collapse
|
49
|
Abstract
A specific splice variant of the CD44 cell- surface protein family, CD44v6, has been shown to act as a coreceptor for the receptor tyrosine kinase c-Met on epithelial cells. Here we show that also on endothelial cells (ECs), the activity of c-Met is dependent on CD44v6. Furthermore, another receptor tyrosine kinase, VEGFR-2, is also regulated by CD44v6. The CD44v6 ectodomain and a small peptide mimicking a specific extracellular motif of CD44v6 or a CD44v6-specific antibody prevent CD44v6-mediated receptor activation. This indicates that the extracellular part of CD44v6 is required for interaction with c-Met or VEGFR-2. In the cytoplasm, signaling by activated c-Met and VEGFR-2 requires association of the CD44 carboxy-terminus with ezrin that couples CD44v6 to the cytoskeleton. CD44v6 controls EC migration, sprouting, and tubule formation induced by hepatocyte growth factor (HGF) or VEGF-A. In vivo the development of blood vessels from grafted EC spheroids and angiogenesis in tumors is impaired by CD44v6 blocking reagents, suggesting that the coreceptor function of CD44v6 for c-Met and VEGFR-2 is a promising target to block angiogenesis in pathologic conditions.
Collapse
|
50
|
Zen K, Liu DQ, Li LM, Chen CXJ, Guo YL, Ha B, Chen X, Zhang CY, Liu Y. The heparan sulfate proteoglycan form of epithelial CD44v3 serves as a CD11b/CD18 counter-receptor during polymorphonuclear leukocyte transepithelial migration. J Biol Chem 2009; 284:3768-76. [PMID: 19073595 PMCID: PMC2635047 DOI: 10.1074/jbc.m807805200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/09/2008] [Indexed: 11/06/2022] Open
Abstract
Leukocyte beta2-integrin CD11b/CD18 mediates the firm adhesion and subsequent transepithelial migration of polymorphonuclear leukocytes, but the identity of its counter-receptor(s) on epithelia remains elusive. Here we identified a monoclonal antibody, clone C3H7, which strongly bound to the basolateral membranes of epithelial cells and inhibited both the adhesion of epithelial cells to immobilized CD11b/CD8 and the transepithelial migration of PMNs in a physiologically relevant basolateral-to-apical direction. C3H7 antigen expression in epithelial monolayers was significantly increased by treatment with proinflammatory cytokine interferon-gamma or a combination of interferon-gamma and tumor necrosis factor-alpha. Up-regulation of C3H7 antigen was also observed in the epithelium of inflamed human colon tissues. Microsequencing and Western blotting of the purified antigen showed it to be CD44 variant 3 (CD44v3), a approximately 160-kDa membrane glycoprotein. Further studies demonstrated that this epithelial CD44v3 specifically binds to CD11b/CD18 through its heparan sulfate moieties. In summary, our study demonstrates for the first time that the heparan sulfate proteoglycan form of epithelial CD44v3 plays a critical role in facilitating PMN recruitment during inflammatory episodes via directly binding to CD11b/CD18.
Collapse
Affiliation(s)
- Ke Zen
- Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.
| | | | | | | | | | | | | | | | | |
Collapse
|