1
|
Morales-Magaña J, Arciniega-Martínez IM, Drago-Serrano ME, Reséndiz-Albor AA, Jarillo-Luna RA, Cruz-Baquero A, Gómez-López M, Guzmán-Mejía F, Pacheco-Yépez J. Cholecystokinin Outcome on Markers of Intestinal IgA Antibody Response. Curr Issues Mol Biol 2022; 44:2542-2553. [PMID: 35735614 PMCID: PMC9221551 DOI: 10.3390/cimb44060173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Cholecystokinin 8 (CCK8) is an entero-octapeptide that participates in crosstalk with components of intestinal immunity via the CCK receptor (CCKR), but its role in modulation of the IgA response is not fully known under physiological conditions. Male eight-week-old BALB/c mice each were intraperitoneally injected once during 7 days with CCK8, devazapide (CCKR1 antagonist), L365,260 (CCKR2 antagonist) or vehicle (sham group). In intestinal lavages, total and secretory IgA (SIgA) were determined by ELISA; in lamina propria, IgA+ B lymphocytes and IgA+ plasma cells were analyzed by flow cytometry; mRNA levels of polymeric immunoglobulin receptor (pIgR) in epithelial cells and α chain, interleukins (ILs) in lamina propria cells were assessed by qRTPCR. Regarding the sham conditions, IgA+ plasma-cell percentage and IL-2, IL-5, IL-10 and transforming growth factor-β (TGF-β) mRNA levels were either increased by CCK8 or decreased by both CCKR antagonists. For IgA/SIgA responses, IL-4/IL-6 mRNA levels were decreased by all drugs and pIgR mRNA was increased by CCK8 and reduced by L365,260. IgA+ B cell percentage and α chain mRNA levels were elicited by CCK8 and L365,260. Data suggested a presumable differential role of CCK/CCKR on the IgA-response; outcome of L365,260 on the elicitation of IgA+ B cells and α chain mRNA needs further examination.
Collapse
Affiliation(s)
- Juan Morales-Magaña
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
| | - Ivonne Maciel Arciniega-Martínez
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (I.M.A.-M.); (A.A.R.-A.)
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso No. 1100, Mexico City 04960, Mexico; (M.E.D.-S.); (F.G.-M.)
| | - Aldo Arturo Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (I.M.A.-M.); (A.A.R.-A.)
| | - Rosa Adriana Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
- Departamento de Formación Básica Disciplinaria, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico
| | - Andrea Cruz-Baquero
- Bacteriología, Facultad de Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca, Bogotá 111311, Colombia;
| | - Modesto Gómez-López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
| | - Fabiola Guzmán-Mejía
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso No. 1100, Mexico City 04960, Mexico; (M.E.D.-S.); (F.G.-M.)
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis esq. Salvador Díaz Mirón s/n, Mexico City 11340, Mexico; (J.M.-M.); (R.A.J.-L.); (M.G.-L.)
- Correspondence: ; Tel.: +52-5557296000 (ext. 62817)
| |
Collapse
|
2
|
The Escherichia coli O157:H7 carbon starvation-inducible lipoprotein Slp contributes to initial adherence in vitro via the human polymeric immunoglobulin receptor. PLoS One 2019; 14:e0216791. [PMID: 31188867 PMCID: PMC6561548 DOI: 10.1371/journal.pone.0216791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/29/2019] [Indexed: 01/19/2023] Open
Abstract
Escherichia coli O157:H7 is the most well-studied serotype of the enterohemorrhagic E. coli (EHEC) class of E. coli intestinal pathogens and is responsible for many outbreaks of serious food-borne illness worldwide each year. Adherence mechanisms are a critical component of its pathogenesis, persistence in natural reservoirs, and environmental contamination. E. coli O157:H7 has a highly effective virulence operon, the Locus of Enterocyte Effacement (LEE), and its encoded intimate adherence mechanism is well characterized. However, factors involved in the preceding initial attachment are not well understood. In this study, we propose a mechanism of initial adherence used by E. coli O157:H7 in vitro. We describe a bacterial protein not previously reported to be involved in adherence, Slp, and its interactions with the human host protein polymeric immunoglobulin receptor (pIgR). The human pIgR has previously been shown to act as an adherence receptor for some mucosal pathogens and is highly expressed in the intestine. Following observation of significant colocalization between E. coli O157:H7 bacteria and pIgR location on Caco-2 cells, a co-immunoprecipitation (Co-IP) assay using a human recombinant Fc-tagged pIgR protein led to the identification of this protein. Disruption of Slp expression in E. coli O157:H7, through deletion of its encoding gene slp, produced a significant adherence deficiency to Caco-2 cells at early time points associated with initial adherence. Plasmid complementation of the slp gene fully restored the wild-type phenotype. Furthermore, immunofluorescence microscopy revealed evidence that this interaction is specific to the pathogenic strains of E. coli tested and not the nonpathogenic control strain E. coli K12. Additionally, deletion of slp gene resulted in the absence of the corresponding protein band in further Co-IP assays, while the plasmid-encoded slp gene complementation of the deletion mutant strain restored the wild-type pattern. These data support the proposal that Slp directly contributes to initial adherence, with the pIgR protein as its proposed receptor.
Collapse
|
3
|
Fung KYY, Fairn GD, Lee WL. Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities. Traffic 2017; 19:5-18. [PMID: 28985008 DOI: 10.1111/tra.12533] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/31/2022]
Abstract
Vesicle-mediated transcellular transport or simply "transcytosis" is a cellular process used to shuttle macromolecules such as lipoproteins, antibodies, and albumin from one surface of a polarized cell to the other. This mechanism is in contrast to the transit of small molecules such as anions, cations and amino acids that occur via uptake, diffusion through the cytosol and release and is also distinct from paracellular leak between cells. Importantly, transcytosis has evolved as a process to selectively move macromolecules between 2 neighboring yet unique microenvironments within a multicellular organism. Examples include the movement of lipoproteins out of the circulatory system and into tissues and the delivery of immunoglobulins to mucosal surfaces. Regardless of whether the transport is conducted by endothelial or epithelial cells, the process often involves receptor-mediated uptake of a ligand into an endocytic vesicle, regulated transit of the carrier through the cytoplasm and release of the cargo via an exocytic event. While transcytosis has been examined in detail in epithelial cells, for both historical and technical reasons, the process is less understood in endothelial cells. Here, we spotlight aspects of epithelial transcytosis including recent findings and review the comparative dearth of knowledge regarding the process in endothelial cells highlighting the opportunity for further study.
Collapse
Affiliation(s)
- Karen Y Y Fung
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery & Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St Michael's Hospital, Toronto, Ontario, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St Michael's Hospital, Toronto, Ontario, Canada.,Departments of Medicine, Laboratory Medicine and Pathobiology,& Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Thuenauer R, Müller SK, Römer W. Pathways of protein and lipid receptor-mediated transcytosis in drug delivery. Expert Opin Drug Deliv 2016; 14:341-351. [DOI: 10.1080/17425247.2016.1220364] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
How Does Streptococcus pneumoniae Invade the Brain? Trends Microbiol 2016; 24:307-315. [DOI: 10.1016/j.tim.2015.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 02/07/2023]
|
6
|
|
7
|
Gallo LI, Liao Y, Ruiz WG, Clayton DR, Li M, Liu YJ, Jiang Y, Fukuda M, Apodaca G, Yin XM. TBC1D9B functions as a GTPase-activating protein for Rab11a in polarized MDCK cells. Mol Biol Cell 2014; 25:3779-97. [PMID: 25232007 PMCID: PMC4230784 DOI: 10.1091/mbc.e13-10-0604] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rab11a is a key modulator of vesicular trafficking processes, but there is limited information about the GEFs and GAPs that regulate its GTP-GDP cycle. TBC1D9B is identified as a Rab11a GAP in MDCK cells, where it regulates the Rab11a-dependent basolateral-to-apical transcytotic pathway. Rab11a is a key modulator of vesicular trafficking processes, but there is limited information about the guanine nucleotide-exchange factors and GTPase-activating proteins (GAPs) that regulate its GTP-GDP cycle. We observed that in the presence of Mg2+ (2.5 mM), TBC1D9B interacted via its Tre2-Bub2-Cdc16 (TBC) domain with Rab11a, Rab11b, and Rab4a in a nucleotide-dependent manner. However, only Rab11a was a substrate for TBC1D9B-stimulated GTP hydrolysis. At limiting Mg2+ concentrations (<0.5 mM), Rab8a was an additional substrate for this GAP. In polarized Madin–Darby canine kidney cells, endogenous TBC1D9B colocalized with Rab11a-positive recycling endosomes but less so with EEA1-positive early endosomes, transferrin-positive recycling endosomes, or late endosomes. Overexpression of TBC1D9B, but not an inactive mutant, decreased the rate of basolateral-to-apical IgA transcytosis—a Rab11a-dependent pathway—and shRNA-mediated depletion of TBC1D9B increased the rate of this process. In contrast, TBC1D9B had no effect on two Rab11a-independent pathways—basolateral recycling of the transferrin receptor or degradation of the epidermal growth factor receptor. Finally, expression of TBC1D9B decreased the amount of active Rab11a in the cell and concomitantly disrupted the interaction between Rab11a and its effector, Sec15A. We conclude that TBC1D9B is a Rab11a GAP that regulates basolateral-to-apical transcytosis in polarized MDCK cells.
Collapse
Affiliation(s)
- Luciana I Gallo
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yong Liao
- Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wily G Ruiz
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Dennis R Clayton
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Min Li
- Pathology, University of Pittsburgh, Pittsburgh, PA 15261 Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202
| | - Yong-Jian Liu
- Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yu Jiang
- Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Gerard Apodaca
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261 Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Xiao-Ming Yin
- Pathology, University of Pittsburgh, Pittsburgh, PA 15261 Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202
| |
Collapse
|
8
|
|
9
|
Asmat TM, Agarwal V, Räth S, Hildebrandt JP, Hammerschmidt S. Streptococcus pneumoniae infection of host epithelial cells via polymeric immunoglobulin receptor transiently induces calcium release from intracellular stores. J Biol Chem 2011; 286:17861-9. [PMID: 21454571 DOI: 10.1074/jbc.m110.212225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae (pneumococci) that interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. This interaction promotes bacterial colonization and bacterial internalization by initiating host signal transduction cascades. Here, we examined alterations of intracellular calcium ([Ca(2+)](i)) levels in epithelial cells during host cell infections with pneumococci via the PspC-hpIgR mechanism. The release of [Ca(2+)](i) from intracellular stores in host cells was significantly increased by wild-type pneumococci but not by PspC-deficient pneumococci. The increase in [Ca(2+)](i) was dependent on phospholipase C as pretreatment of cells with a phospholipase C-specific inhibitor U73122 abolished the increase in [Ca(2+)](i). In addition, we demonstrated the effect of [Ca(2+)](i) on pneumococcal internalization by epithelial cells. Uptake of pneumococci was significantly increased after pretreatment of epithelial cells with the cell-permeable calcium chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid-tetraacetoxymethyl ester or use of EGTA as an extracellular Ca(2+)-chelating agent. In contrast, thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)ATPase, which increases [Ca(2+)](i) in a sustained fashion, significantly reduced pIgR-mediated pneumococcal invasion. Importantly, pneumococcal adherence to pIgR-expressing cells was not altered in the presence of inhibitors as demonstrated by immunofluorescence microscopy. In conclusion, these results demonstrate that pneumococcal infections induce mobilization of [Ca(2+)](i) from intracellular stores. This may constitute a defense response of host cells as the experimental reduction of intracellular calcium levels facilitates pneumococcal internalization by pIgR-expressing cells, whereas elevated calcium levels diminished bacterial internalization by host epithelial cells.
Collapse
Affiliation(s)
- Tauseef M Asmat
- Department of Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
10
|
Su T, Bryant DM, Luton F, Vergés M, Ulrich SM, Hansen KC, Datta A, Eastburn DJ, Burlingame AL, Shokat KM, Mostov KE. A kinase cascade leading to Rab11-FIP5 controls transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol 2010; 12:1143-53. [PMID: 21037565 PMCID: PMC3072784 DOI: 10.1038/ncb2118] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 10/06/2010] [Indexed: 01/26/2023]
Abstract
Polymeric immunoglobulin A (pIgA) transcytosis, mediated by the polymeric immunoglobulin receptor (pIgR), is a central component of mucosal immunity and a model for regulation of polarized epithelial membrane traffic. Binding of pIgA to pIgR stimulates transcytosis in a process requiring Yes, a Src family tyrosine kinase (SFK). We show that Yes directly phosphorylates EGF receptor (EGFR) on liver endosomes. Injection of pIgA into rats induced EGFR phosphorylation. Similarly, in MDCK cells, pIgA treatment significantly increased phosphorylation of EGFR on various sites, subsequently activating extracellular signal-regulated protein kinase (ERK). Furthermore, we find that the Rab11 effector Rab11-FIP5 is a substrate of ERK. Knocking down Yes or Rab11-FIP5, or inhibition of the Yes-EGFR-ERK cascade, decreased pIgA-pIgR transcytosis. Finally, we demonstrate that Rab11-FIP5 phosphorylation by ERK controls Rab11a endosome distribution and pIgA-pIgR transcytosis. Our results reveal a novel Yes-EGFR-ERK-FIP5 signalling network for regulation of pIgA-pIgR transcytosis.
Collapse
Affiliation(s)
- Tao Su
- Department of Anatomy, University of California, San Francisco, CA 94158-2517, USA
- Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - David M. Bryant
- Department of Anatomy, University of California, San Francisco, CA 94158-2517, USA
- Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - Frédéric Luton
- Department of Anatomy, University of California, San Francisco, CA 94158-2517, USA
- Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis, CNRS-UMR6097, 06560 Sophia-Antipolis, France
| | - Marcel Vergés
- Department of Anatomy, University of California, San Francisco, CA 94158-2517, USA
- Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
- Cardiovascular Genetics Centre, IdIBGi - University of Girona, 17003 Girona, Spain
| | - Scott M. Ulrich
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-2280, USA
- Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA
| | - Kirk C. Hansen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517, USA
- Proteomics Core, University of Colorado Health Sciences Centre, Aurora, CO 80045, USA
| | - Anirban Datta
- Department of Anatomy, University of California, San Francisco, CA 94158-2517, USA
- Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - Dennis J. Eastburn
- Department of Anatomy, University of California, San Francisco, CA 94158-2517, USA
- Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517, USA
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-2280, USA
| | - Keith E. Mostov
- Department of Anatomy, University of California, San Francisco, CA 94158-2517, USA
- Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| |
Collapse
|
11
|
Abstract
Polarized epithelial cells contain apical and basolateral surfaces with distinct protein compositions. To establish and maintain this asymmetry, newly made plasma membrane proteins are sorted in the trans Golgi network for delivery to apical or basolateral surfaces. Signals for basolateral sorting are generally located in the cytoplasmic domain of the protein, whereas signals for apical sorting can be in any part of the protein and can depend on N-linked glycosylation of the protein. Signals for constitutive transcytosis to the apical surface have not been reported. In this study, we used the polymeric immunoglobulin receptor (pIgR), which is biosynthetically delivered to the basolateral surface. There the pIgR can bind a ligand and, with or without bound ligand, the pIgR can then be transcytosed to the apical surface. We found that the glycosylation of the pIgR did not affect the biosynthetic transport of the pIgR. However, glycosylation had an effect on pIgR apical transcytosis. Importantly, analysis of the cytoplasmic tail of the pIgR suggested that a short peptide segment was sufficient to transcytose the pIgR or a neutral reporter from the basolateral to the apical surface. This apical transcytosis sorting signal was not involved in polarized biosynthetic traffic of the pIgR.
Collapse
Affiliation(s)
- Frédéric Luton
- Department of Anatomy, and Biochemistry and Biophysics, and Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2140, USA
| | | | | | | |
Collapse
|
12
|
Agarwal V, Hammerschmidt S. Cdc42 and the phosphatidylinositol 3-kinase-Akt pathway are essential for PspC-mediated internalization of pneumococci by respiratory epithelial cells. J Biol Chem 2009; 284:19427-36. [PMID: 19473971 DOI: 10.1074/jbc.m109.003442] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae, the cause of lobar pneumonia and invasive diseases. PspC interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. By adopting the retrograde machinery of human pIgR, this protein-protein interaction promotes colonization and transcytosis across the epithelial layer. Here, we explored the role of Rho family guanosine triphosphatases (GTPases), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) for ingestion of pneumococci via the human pIgR. Inhibition experiments suggested that the host-cell actin microfilaments and microtubules are essential for this pneumococcal uptake mechanism. By using specific GTPase-modifying toxins, inhibitors, and GTPase expression constructs we demonstrate that Cdc42, but not Rac1 and RhoA are involved in PspC-mediated invasion of pneumococci into host cells. Accordingly, Cdc42 is time-dependently activated during ingestion of pneumococci. In addition, PI3K and Akt are essential for ingestion of pneumococci by respiratory epithelial cells via the PspC-pIgR interaction. The subunit p85alpha of PI3K and Akt was activated during the infection process. Moreover, Akt activation upon pneumococcal invasion depends on PI3K. In conclusion, our results illustrate for the first time key signaling molecules of host cells that are required for PspC-pIgR-mediated invasion of pneumococci into epithelial cells. This unique and specific bacterial entry process is dependent on the cooperation and activation of Rho family GTPase Cdc42, PI3K, and Akt.
Collapse
Affiliation(s)
- Vaibhav Agarwal
- Department of Genetics of Microorganisms, Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, Greifswald D-17487, Germany
| | | |
Collapse
|
13
|
Evans E, Zhang W, Jerdeva G, Chen CY, Chen X, Hamm-Alvarez SF, Okamoto CT. Direct interaction between Rab3D and the polymeric immunoglobulin receptor and trafficking through regulated secretory vesicles in lacrimal gland acinar cells. Am J Physiol Cell Physiol 2008; 294:C662-74. [PMID: 18171724 PMCID: PMC4046641 DOI: 10.1152/ajpcell.00623.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lacrimal gland is responsible for tear production, and a major protein found in tears is secretory component (SC), the proteolytically cleaved fragment of the extracellular domain of the polymeric Ig receptor (pIgR), which is the receptor mediating the basal-to-apical transcytosis of polymeric immunoglobulins across epithelial cells. Immunofluorescent labeling of rabbit lacrimal gland acinar cells (LGACs) revealed that the small GTPase Rab3D, a regulated secretory vesicle marker, and the pIgR are colocalized in subapical membrane vesicles. In addition, the secretion of SC from primary cultures of LGACs was stimulated by the cholinergic agonist carbachol (CCH), and its release rate was very similar to that of other regulated secretory proteins in LGACs. In pull-down assays from resting LGACs, recombinant wild-type Rab3D (Rab3DWT) or the GDP-locked mutant Rab3DT36N both pulled down pIgR, but the GTP-locked mutant Rab3DQ81L did not. When the pull-down assays were performed in the presence of guanosine-5'-(gamma-thio)-triphosphate, GTP, or guanosine-5'-O-(2-thiodiphosphate), binding of Rab3DWT to pIgR was inhibited. In blot overlays, recombinant Rab3DWT bound to immunoprecipitated pIgR, suggesting that Rab3D and pIgR may interact directly. Adenovirus-mediated overexpression of mutant Rab3DT36N in LGACs inhibited CCH-stimulated SC release, and, in CCH-stimulated LGACs, pull down of pIgR with Rab3DWT and colocalization of pIgR with endogenous Rab3D were decreased relative to resting cells, suggesting that the pIgR-Rab3D interaction may be modulated by secretagogues. These data suggest that the novel localization of pIgR to the regulated secretory pathway of LGACs and its secretion therefrom may be affected by its novel interaction with Rab3D.
Collapse
Affiliation(s)
| | | | - Galina Jerdeva
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089-9121
| | - Chiao-Yu Chen
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089-9121
| | | | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089-9121
| | - Curtis T. Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089-9121
| |
Collapse
|
14
|
O'Connor N, Silver RB. Ratio imaging: practical considerations for measuring intracellular Ca2+ and pH in living cells. Methods Cell Biol 2007; 81:415-33. [PMID: 17519177 DOI: 10.1016/s0091-679x(06)81019-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nathan O'Connor
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
15
|
Gupta S, Heacock M, Perez A, Davis PB. Antibodies to the polymeric immunoglobulin receptor with different binding and trafficking patterns. Am J Respir Cell Mol Biol 2005; 33:363-70. [PMID: 15994431 PMCID: PMC2715344 DOI: 10.1165/rcmb.2005-0132oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The polymeric immunoglobulin receptor (pIgR) has been proposed as a therapeutic target, but its potential depends on the efficiency of uptake and trafficking of the receptor ligand. Mouse monoclonal antibodies (Mabs) directed against pIgR, selected for strong binding to secretory component (SC) and secretory IgA (sIgA), were tested in a transcytosis assay in 16HBEo--cells (human bronchial epithelial cell line) transfected with human pIgR. Intracellular trafficking was followed by confocal microscopy. Mabs fell into two classes. For two Mabs, transcytosis from basolateral to apical surface is rapid, unidirectional, and little Mab is retained in the cell. For three Mabs, basolateral to apical transcytosis occurs to a significantly lesser extent, reverse transcytosis is permitted, and some of the Mab is retained in the perinuclear region even after 24 h. When tested for their ability to recognize and immunoprecipitate pIgR with systematic truncations and deletions of the five immunoglobulin (Ig)-like domains, all Mabs bound to the fifth Ig-like domain, but three of them also bound to the C-terminal region of pIgR near the plasma membrane. Different binding sites probably account for the different trafficking of these Mabs and may predict differential therapeutic utility.
Collapse
Affiliation(s)
- Sanhita Gupta
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | |
Collapse
|
16
|
Ogura Y. Transient expression of polymeric immunoglobulin receptor in human adenocarcinoma cell line HT-29. J Oral Sci 2005; 47:15-20. [PMID: 15881224 DOI: 10.2334/josnusd.47.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Human polymeric immunoglobulin receptor (pIgR) protein was expressed in the adeno-carcinoma cell line HT-29 using a recombinant vaccinia virus transfection method. The pIgR protein was detected as 110- and 120-kDa bands by immunoprecipitation after metabolic labeling. PIgR was released as a free secretory component into the culture supernatant and was detected as a 110-kDa band. PIgR cleavage was investigated by adding the proteinase inhibitor leupeptin or protein kinase C activator PMA. Consistent with previous observations in the Madin Darby canine kidney cell system, cleavage of pIgR was inhibited by leupeptin and enhanced by PMA stimulation, thus indicating that it is regulated by common mechanisms. This experimental system should be very useful for pIgR investigation.
Collapse
Affiliation(s)
- Yoshitaka Ogura
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
17
|
Carpenter GH, Proctor GB, Garrett JR. Preganglionic parasympathectomy decreases salivary SIgA secretion rates from the rat submandibular gland. J Neuroimmunol 2005; 160:4-11. [PMID: 15710452 DOI: 10.1016/j.jneuroim.2004.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 10/20/2004] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
Immunoglobulin A (IgA) is transported into saliva by salivary cells expressing the polymeric immunoglobulin receptor (pIgR). In rat salivary glands, autonomic nerves stimulate this process. To examine how nerves affect pIgR-mediated IgA secretion, the chorda-lingual nerve was sectioned. One week after preganglionic parasympathectomy, both the stimulated and unstimulated rates of salivary IgA secretion were reduced, despite similar glandular amounts of IgA. Biochemical analysis of cells from parasympathectomised and control glands indicated reduced membrane expression of pIgR. It appears the removal of long-term parasympathetic input has affected the routing of pIgR within salivary cells and reduced the SIgA transport into saliva.
Collapse
Affiliation(s)
- G H Carpenter
- Salivary Research Group, Division Oral Medicine, Guy's King's and St Thomas' School of Dentistry, United Kingdom.
| | | | | |
Collapse
|
18
|
Seyedi N, Mackins CJ, Machida T, Reid AC, Silver RB, Levi R. Histamine H3-receptor-induced attenuation of norepinephrine exocytosis: a decreased protein kinase a activity mediates a reduction in intracellular calcium. J Pharmacol Exp Ther 2005; 312:272-80. [PMID: 15306634 DOI: 10.1124/jpet.104.072504] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We had reported that activation of presynaptic histamine H(3)-receptors inhibits norepinephrine exocytosis from depolarized cardiac sympathetic nerve endings, an action associated with a marked decrease in intraneuronal Ca(2+) that we ascribed to a decreased Ca(2+) influx. An H(3)-receptor-mediated inhibition of cAMP-dependent phosphorylation of Ca(2+) channels could cause a sequential attenuation of Ca(2+) influx, intraneuronal Ca(2+) and norepinephrine exocytosis. We tested this hypothesis in sympathetic nerve endings (cardiac synaptosomes) expressing native H(3)-receptors and in human neuroblastoma SH-SY5Y cells transfected with H(3)-receptors. Norepinephrine exocytosis was elicited by K(+) or by stimulation of adenylyl cyclase with forskolin. H(3)-receptor activation markedly attenuated the K(+)- and forskolin-induced norepinephrine exocytosis; pretreatment with pertussis toxin prevented this effect. Similar to forskolin, 8-bromo-cAMP elicited norepinephrine exocytosis but, unlike forskolin, it was unaffected by H(3)-receptor activation, demonstrating that inhibition of adenylyl cyclase is a pivotal step in the H(3)-receptor transductional cascade. Indeed, we found that H(3)-receptor activation attenuated norepinephrine exocytosis concomitantly with a decrease in intracellular cAMP and PKA activity in SH-SY5Y-H(3) cells. Moreover, pharmacological PKA inhibition acted synergistically with H(3)-receptor activation to reduce K(+)-induced peak intracellular Ca(2+) in SH-SY5Y-H(3) cells and norepinephrine exocytosis in cardiac synaptosomes. Furthermore, H(3)-receptor activation synergized with N- and L-type Ca(2+) channel blockers to reduce norepinephrine exocytosis in cardiac synaptosomes. Our findings suggest that the H(3)-receptor-mediated inhibition of norepinephrine exocytosis from cardiac sympathetic nerves results sequentially from H(3)-receptor-G(i)/G(o) coupling, inhibition of adenylyl cyclase activity, and decreased cAMP formation, leading to diminished PKA activity, and thus, decreased Ca(2+) influx through voltage-operated Ca(2+) channels.
Collapse
Affiliation(s)
- Nahid Seyedi
- Department of Pharmacology, 1300 York Ave., Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Carpenter GH, Proctor GB, Ebersole LE, Garrett JR. Secretion of IgA by rat parotid and submandibular cells in response to autonomimetic stimulation in vitro. Int Immunopharmacol 2004; 4:1005-14. [PMID: 15222975 DOI: 10.1016/j.intimp.2004.03.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 03/22/2004] [Accepted: 03/22/2004] [Indexed: 11/22/2022]
Abstract
The major antibody in saliva is IgA, which is actively transported by pIgR expressed by parenchymal cells within the salivary glands. The rate of IgA secretion into saliva is regulated by the autonomic nerves supplying the glands in vivo. This study examined the mechanism of increased IgA secretion into saliva with autonomimetic stimulation. In vitro stimulation of IgA secretion from cells prepared by digestion of rat salivary glands found submandibular cell preparations responded to alpha- and beta-adrenergic stimuli whereas the parotid cells responded only to beta-adrenergic stimulation, although cells from both glands responded similarly to cholinergic stimulation. The additional responsiveness of submandibular cells to alpha-adrenergic stimulation probably reflects the presence of granular duct cells (absent in parotid glands) which are known to secrete protein in response to high frequency sympathetic stimulation. The increased secretion of IgA was not dependant upon increased plasma cell activation since isolated salivary gland plasma cells did not respond to agonists. Further evidence for the regulating role of parenchymal cells in IgA secretion into saliva was revealed by analysis of polymeric immunoglobulin receptor (pIgR) levels expressed on cells. Following in vivo nerve stimulation, there was an increased amount of pIgR expressed on the membrane surface. This was functionally demonstrated in vitro by increased uptake of human IgA by acutely prepared rat salivary cells following stimulation by adrenaline, indicating increased mobilisation of pIgR with stimulation. This study confirms that salivary cells increase the delivery of IgA into saliva by a pIgR-mediated mechanism in response to autonomic stimulation.
Collapse
Affiliation(s)
- Guy H Carpenter
- Salivary Research Group, Guy's King's and St. Thomas' School of Dentistry, The Rayne Institute, 123 Coldharbour Lane, London SE5 9NU, UK.
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Randi B Silver
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA
| |
Collapse
|
22
|
Ferkol T, Cohn LA, Phillips TE, Smith A, Davis PB. Targeted delivery of antiprotease to the epithelial surface of human tracheal xenografts. Am J Respir Crit Care Med 2003; 167:1374-9. [PMID: 12615618 DOI: 10.1164/rccm.200209-1119oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The cystic fibrosis (CF) lung is uniquely susceptible to Pseudomonas aeruginosa, and infection with this organism incites an intense, compartmentalized inflammatory response that leads to chronic airway obstruction and bronchiectasis. Neutrophils migrate into the airway, and released neutrophil elastase contributes to the progression of the lung disease characteristic of CF. We have developed a strategy that permits the delivery of antiproteases to the inaccessible CF airways by targeting the respiratory epithelium via the human polymeric immunoglobulin receptor (hpIgR). A fusion protein consisting of a single-chain Fv directed against secretory component, the extracellular portion of the pIgR, linked to human alpha1-antitrypsin is effectively ferried across human tracheal xenografts and delivers the antiprotease to the apical surface to a much greater extent than occurs by passive diffusion of human alpha1-antitrypsin alone. Targeted antiprotease delivery paralleled hpIgR expression in the respiratory epithelium in vivo and was not increased by escalating dose, so airway penetration was receptor-dependent, not dose-dependent. Thus, this approach provides us with the ability to deliver therapeutics, like antiproteases, specifically to the lumenal surface of the respiratory epithelium, within the airway surface fluid, where it will be in highest concentration at this site.
Collapse
Affiliation(s)
- Thomas Ferkol
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | |
Collapse
|
23
|
Proctor GB, Carpenter GH. Neural control of salivary S-IgA secretion. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 52:187-212. [PMID: 12498105 DOI: 10.1016/s0074-7742(02)52010-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gordon B Proctor
- Salivary Research Group, Guy's, King's and St. Thomas' School of Dentistry, King's College London, Rayne Institute, London SE5 9NU, United Kingdom
| | | |
Collapse
|
24
|
van Ijzendoorn SCD, Mostov KE, Hoekstra D. Role of Rab Proteins in Epithelial Membrane Traffic. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 232:59-88. [PMID: 14711116 DOI: 10.1016/s0074-7696(03)32002-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Small GTPase rab proteins play an important role in various aspects of membrane traffic, including cargo selection, vesicle budding, vesicle motility, tethering, docking, and fusion. Recent data suggest also that rabs, and their divalent effector proteins, organize organelle subdomains and as such may define functional organelle identity. Most rabs are ubiquitously expressed. However, some rabs are preferentially expressed in epithelial cells where they appear intimately associated with the epithelial-specific transcytotic pathway and/or tight junctions. This review discusses the role of rabs in epithelial membrane transport.
Collapse
Affiliation(s)
- Sven C D van Ijzendoorn
- Department of Membrane Cell Biology, University of Groningen, Groningen 9713AV, The Netherlands
| | | | | |
Collapse
|
25
|
Abstract
IgA, IgG and IgM are transported across epithelial cells in a receptor-mediated process known as transcytosis. In addition to neutralizing pathogens in the lumen of the gastrointestinal, respiratory and urogenital tracts, these antibody-receptor complexes are now known to mediate intracellular neutralization of pathogens and might also be important in immune activation and tolerance. Recent studies on the intracellular transport pathways of antibody-receptor complexes and antibody-stimulated receptor-mediated transcytosis are providing new insight into the nature and regulation of endocytic pathways.
Collapse
Affiliation(s)
- Raul Rojas
- Laboratory of Epithelial Cell Biology, Renal Electrolyte Division of the Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
26
|
van IJzendoorn SCD, Tuvim MJ, Weimbs T, Dickey BF, Mostov KE. Direct interaction between Rab3b and the polymeric immunoglobulin receptor controls ligand-stimulated transcytosis in epithelial cells. Dev Cell 2002; 2:219-28. [PMID: 11832247 DOI: 10.1016/s1534-5807(02)00115-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have examined the role of rab3b in epithelial cells. In MDCK cells, rab3b localizes to vesicular structures containing the polymeric immunoglobulin receptor (pIgR) and located subjacent to the apical surface. We found that GTP-bound rab3b directly interacts with the cytoplasmic domain of pIgR. Binding of dIgA to pIgR causes a dissociation of the interaction with rab3b, a process that requires dIgA-mediated signaling, Arg657 in the cytoplasmic domain of pIgR, and possibly GTP hydrolysis by rab3b. Binding of dIgA to pIgR at the basolateral surface stimulates subsequent transcytosis to the apical surface. Overexpression of GTP-locked rab3b inhibits dIgA-stimulated transcytosis. Together, our data demonstrate that a rab protein can bind directly to a specific cargo protein and thereby control its trafficking.
Collapse
Affiliation(s)
- Sven C D van IJzendoorn
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
27
|
Silver RB, Poonwasi KS, Seyedi N, Wilson SJ, Lovenberg TW, Levi R. Decreased intracellular calcium mediates the histamine H3-receptor-induced attenuation of norepinephrine exocytosis from cardiac sympathetic nerve endings. Proc Natl Acad Sci U S A 2002; 99:501-6. [PMID: 11752397 PMCID: PMC117589 DOI: 10.1073/pnas.012506099] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of presynatic histamine H(3) receptors (H(3)R) down-regulates norepinephrine exocytosis from cardiac sympathetic nerve terminals, in both normal and ischemic conditions. Analogous to the effects of alpha(2)-adrenoceptors, which also act prejunctionally to inhibit norepinephrine release, H(3)R-mediated antiexocytotic effects could result from a decreased Ca(2+) influx into nerve endings. We tested this hypothesis in sympathetic nerve terminals isolated from guinea pig heart (cardiac synaptosomes) and in a model human neuronal cell line (SH-SY5Y), which we stably transfected with human H(3)R cDNA (SH-SY5Y-H(3)). We found that reducing Ca(2+) influx in response to membrane depolarization by inhibiting N-type Ca(2+) channels with omega-conotoxin (omega-CTX) greatly attenuated the exocytosis of [(3)H]norepinephrine from both SH-SY5Y and SH-SY5Y-H(3) cells, as well as the exocytosis of endogenous norepinephrine from cardiac synaptosomes. Similar to omega-CTX, activation of H(3)R with the selective H(3)R-agonist imetit also reduced both the rise in intracellular Ca(2+) concentration (Ca(i)) and norepinephrine exocytosis in response to membrane depolarization. The selective H(3)R antagonist thioperamide prevented this effect of imetit. In the parent SH-SY5Y cells lacking H(3)R, imetit affected neither the rise in Ca(i) nor [(3)H]norepinephrine exocytosis, demonstrating that the presence of H(3)R is a prerequisite for a decrease in Ca(i) in response to imetit and that H(3)R activation modulates norepinephrine exocytosis by limiting the magnitude of the increase in Ca(i). Inasmuch as excessive norepinephrine exocytosis is a leading cause of cardiac dysfunction and arrhythmias during acute myocardial ischemia, attenuation of norepinephrine release by H(3)R agonists may offer a novel therapeutic approach to this condition.
Collapse
Affiliation(s)
- Randi B Silver
- Department of Physiology-Biophysics, Cornell University, Weill Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
28
|
Lupu-Meiri M, Silver RB, Simons AH, Gershengorn MC, Oron Y. Constitutive signaling by Kaposi's sarcoma-associated herpesvirus G-protein-coupled receptor desensitizes calcium mobilization by other receptors. J Biol Chem 2001; 276:7122-8. [PMID: 11116138 DOI: 10.1074/jbc.m006359200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We coexpressed Kaposi's sarcoma-associated herpesvirus G protein-coupled receptors (KSHV-GPCRs) with thyrotropin-releasing hormone (TRH) receptors or m1-muscarinic-cholinergic receptors in Xenopus oocytes and in mammalian cells. In oocytes, KSHV-GPCR expression resulted in pronounced (81%) inhibition (heterologous desensitization) of Ca(2+)-activated chloride current responses to TRH and acetylcholine. Similar inhibitions of cytoplasmic free Ca(2+) responses to TRH were observed in human embryonic kidney HEK 293 EM cells and in mouse pituitary AtT20 cells. Further study of oocytes showed that this inhibition was partially reversed by interferon-gamma-inducible protein 10 (IP-10), an inverse agonist of KSHV-GPCR. The basal rate of (45)Ca(2+) efflux in oocytes expressing KSHV-GPCRs was 4.4 times greater than in control oocytes, and IP-10 rapidly inhibited increased (45)Ca(2+) efflux. In the absence of IP-10, growth-related oncogene alpha caused a further 2-fold increase in (45)Ca(2+) efflux. In KSHV-GPCR-expressing oocytes, responses to microinjected inositol 1,4,5-trisphosphate were inhibited by 74%, and this effect was partially reversed by interferon-gamma-inducible protein 10. Treatment with thapsigargin suggested that the pool of calcium available for mobilization by TRH was decreased in oocytes coexpressing KSHV-GPCRs. These results suggest that constitutive signaling by KSHV-GPCR causes heterologous desensitization of responses mediated by other receptors, which signal via the phosphoinositide/calcium pathway, which is caused by depletion of intracellular calcium pools.
Collapse
Affiliation(s)
- M Lupu-Meiri
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
29
|
Silver RB, Mackins CJ, Smith NC, Koritchneva IL, Lefkowitz K, Lovenberg TW, Levi R. Coupling of histamine H3 receptors to neuronal Na+/H+ exchange: a novel protective mechanism in myocardial ischemia. Proc Natl Acad Sci U S A 2001; 98:2855-9. [PMID: 11226330 PMCID: PMC30229 DOI: 10.1073/pnas.051599198] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In myocardial ischemia, adrenergic nerves release excessive amounts of norepinephrine (NE), causing dysfunction and arrhythmias. With anoxia and the concomitant ATP depletion, vesicular storage of NE is impaired, resulting in accumulation of free NE in the axoplasm of sympathetic nerves. Intraneuronal acidosis activates the Na(+)/H(+) exchanger (NHE), leading to increased Na(+) entry in the nerve terminals. These conditions favor availability of the NE transporter to the axoplasmic side of the membrane, causing massive carrier-mediated efflux of free NE. Neuronal NHE activation is pivotal in this process; NHE inhibitors attenuate carrier-mediated NE release. We previously reported that activation of histamine H(3) receptors (H(3)R) on cardiac sympathetic nerves also reduces carrier-mediated NE release and alleviates arrhythmias. Thus, H(3)R activation may be negatively coupled to NHE. We tested this hypothesis in individual human SKNMC neuroblastoma cells stably transfected with H(3)R cDNA, loaded with the intracellular pH (pH(i)) indicator BCECF. These cells possess amiloride-sensitive NHE. NHE activity was measured as the rate of Na(+)-dependent pH(i) recovery in response to an acute acid pulse (NH(4)Cl). We found that the selective H(3)R-agonist imetit markedly diminished NHE activity, and so did the amiloride derivative EIPA. The selective H(3)R antagonist thioperamide abolished the imetit-induced NHE attenuation. Thus, our results provide a link between H(3)R and NHE, which may limit the excessive release of NE during protracted myocardial ischemia. Our previous and present findings uncover a novel mechanism of cardioprotection: NHE inhibition in cardiac adrenergic neurons as a means to prevent ischemic arrhythmias associated with carrier-mediated NE release.
Collapse
Affiliation(s)
- R B Silver
- Departments of Physiology-Biophysics and Pharmacology, Cornell University, Weill Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Giffroy D, Courtoy PJ, Vaerman JP. Polymeric IgA binding to the human pIgR elicits intracellular signalling, but fails to stimulate pIgR-transcytosis. Scand J Immunol 2001; 53:56-64. [PMID: 11169207 DOI: 10.1046/j.1365-3083.2001.00843.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The intracellular pathway of polymeric immunoglobulin receptor (pIgR) is governed by multiple signals that lead to constitutive transcytosis. In addition, in transfected polarized MDCK cells, polymeric immunoglobulin A (pIgA) binding stimulates rabbit pIgR-transcytosis, owing to phospholipase-C gamma 1 activation and increase of intracellular calcium. Transcytosis of rat pIgR across hepatocytes is similarly accelerated by pIgA injection. In contrast we show here that human Madrin-Darby Canine Kidney (pIgR)-transcytosis, in human Calu-3 and human pIgR-transfected MDCK cells, is not promoted by pIgA, as monitored by a continuous apical release of its secreted ectodomain. However, the incubation of cells expressing human or rabbit pIgR with pIgA induces a comparable IP3 production, and pIgR-transcytosis of either species is accelerated by the protein kinase C (PKC)-activator phorbol myristate acetate. Without pIgA, mimicking phospholipase-C activation by combining low concentrations of phorbol myristate acetate with ionomycin, or high concentrations of ionomycin alone, stimulates the rabbit, but not the human, pIgR transcytosis. These data suggest that the species difference in pIgA-induced pIgR-transcytosis does not stem from the defective production of second messengers, but from a different sensitivity of pIgR to intracellular calcium. Our results outline the danger of extrapolating to humans the abundant data obtained from mucosal vaccination of laboratory animals.
Collapse
Affiliation(s)
- D Giffroy
- Experimental Medicine, Université catholique de Louvain and Christian de Duve Institute of Cell Pathology, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
31
|
Proctor GB, Carpenter GH, Garrett JR. Sympathetic decentralization abolishes increased secretion of immunoglobulin A evoked by parasympathetic stimulation of rat submandibular glands. J Neuroimmunol 2000; 109:147-54. [PMID: 10996216 DOI: 10.1016/s0165-5728(00)00316-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Salivary secretion of immunoglobulin A (IgA) in response to electrical stimulation of the parasympathetic nerve supply was assessed bilaterally in the submandibular glands of anaesthetized rats 1 week following unilateral pre-ganglionic sympathectomy (decentralization). Nerve-mediated stimulation on the non-denervated side increased IgA secretion several fold above an unstimulated rate of secretion whereas sympathetic decentralization reduced the parasympathetically stimulated secretion of IgA without affecting the basal rate. Glandular levels of IgA were increased following decentralization compared to the control glands. Salivary levels of free secretory component (FSC), the cleaved polymeric immunoglobulin receptor (plgR), were increased by parasympathetic stimulation and reduced by sympathectomy, though not as much as IgA. The decreased secretion of FSC suggests a reduced production of plgR and may account in part, for reduced IgA secretion following long-term removal of sympathetic nerve impulses.
Collapse
Affiliation(s)
- G B Proctor
- Secretory and Soft Tissue Research Unit, Guy's, King's and St Thomas' School of Dentistry, The Rayne Institute, 123 Coldharbour Lane, SE5 9NU, London, UK.
| | | | | |
Collapse
|
32
|
Pol A, Calvo M, Lu A, Enrich C. EGF triggers caveolin redistribution from the plasma membrane to the early/sorting endocytic compartment of hepatocytes. Cell Signal 2000; 12:537-40. [PMID: 11027946 DOI: 10.1016/s0898-6568(00)00100-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we demonstrate that, in rat liver, epidermal growth factor (EGF) is responsible for the partial redistribution of caveolin-1 from the plasma membrane into the early/sorting endocytic compartment. Highly purified endosomes and plasma membrane fractions were isolated from control rat liver and from rats injected with EGF or pIgA for different times. Whereas in subcellular fractions from control hepatocytes most of caveolin was concentrated in the plasma membrane and the receptor-recycling fractions, after EGF injection there was a significant redistribution of caveolin toward the early/sorting (CURL) endocytic fractions. The recruitment of caveolin into the endocytic compartment was not induced by pIgA.
Collapse
Affiliation(s)
- A Pol
- Departament de Biologia Cellular, Institut dí Investigacions Biomèdiques August Pi Sunyer, Facultat de Medicina, Universitat de Barcelona, Casanova 143. 08036-, Barcelona, Spain
| | | | | | | |
Collapse
|
33
|
Abstract
Epithelial cells contain apical and basolateral surfaces with distinct compositions. Sorting of certain proteins to the basolateral surface involves the epithelial-specific mu 1b clathrin adaptor subunit. Recent results have shown that targeting to the basolateral surface utilizes the exocyst, whereas traffic to the apical surface uses syntaxin 3. Endocytosis at the apical surface is regulated by ARF6. Transcytosis of IgA is regulated by the p62Yes tyrosine kinase.
Collapse
Affiliation(s)
- K E Mostov
- Department of Anatomy, University of California, San Francisco, 94143-0452, USA.
| | | | | |
Collapse
|
34
|
Ferkol T, Eckman E, Swaidani S, Silski C, Davis P. Transport of bifunctional proteins across respiratory epithelial cells via the polymeric immunoglobulin receptor. Am J Respir Crit Care Med 2000; 161:944-51. [PMID: 10712347 DOI: 10.1164/ajrccm.161.3.9907018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neutrophil elastase (NE) contributes to progression of the lung disease characteristic of cystic fibrosis (CF). We developed a strategy that permits the delivery of alpha(1)-antitrypsin (alpha(1)-AT) to inaccessible CF airways by targeting the respiratory epithelium via the polymeric immunoglobulin receptor (pIgR). A fusion protein consisting of a single-chain Fv directed against human secretory component (SC) and linked to human alpha(1)-AT was effectively transported in a basolateral-to-apical direction across in vitro model systems of polarized respiratory epithelium consisting of 16HBEo cells transfected with human pIgR complementary DNA, which overexpress the receptor, and human respiratory epithelial cells grown in primary culture at an air-liquid interface. When applied to the basolateral surface, the anti-SC Fv/alpha(1)-AT fusion protein penetrated the respiratory epithelia, with transcytosis of the fusion protein being related to the amount of SC detected at the apical surface. Significantly less fusion protein crossed the cells in the opposite direction. In addition, because the antihuman SC Fv/alpha(1)-AT fusion protein was transported vectorially and deposited into the small volume of apical surface fluid, the antiprotease component of this protein was concentrated atop the epithelium. Thus, in cell models, this system is capable of concentrating the antiprotease of the fusion protein, in the thin film of epithelial surface fluid to a level expected to be therapeutic in the airways of many patients with CF.
Collapse
Affiliation(s)
- T Ferkol
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
35
|
Crottet P, Peitsch MC, Servis C, Corthésy B. Covalent homodimers of murine secretory component induced by epitope substitution unravel the capacity of the polymeric Ig receptor to dimerize noncovalently in the absence of IgA ligand. J Biol Chem 1999; 274:31445-55. [PMID: 10531346 DOI: 10.1074/jbc.274.44.31445] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant secretory immunoglobulin A containing a bacterial epitope in domain I of the secretory component (SC) moiety can serve as a mucosal delivery vehicle triggering both mucosal and systemic responses (Corthésy, B., Kaufmann, M., Phalipon, A., Peitsch, M., Neutra, M. R., and Kraehenbuhl, J.-P. (1996) J. Biol. Chem. 271, 33670-33677). To load recombinant secretory IgA with multiple B and T epitopes and extend its biological functions, we selected, based on molecular modeling, five surface-exposed sites in domains II and III of murine SC. Loops predicted to be exposed at the surface of SC domains were replaced with the DYKDDDDK octapeptide (FLAG). Another two mutants were obtained with the FLAG inserted in between domains II and III or at the carboxyl terminus of SC. As shown by mass spectrometry, internal substitution of the FLAG into four of the mutants induced the formation of disulfide-linked homodimers. Three of the dimers and two of the monomers from SC mutants could be affinity-purified using an antibody to the FLAG, mapping them as candidates for insertion. FLAG-induced dimerization also occurred with the polymeric immunoglobulin receptor (pIgR) and might reflect the so-far nondemonstrated capacity of the receptor to oligomerize. By co-expressing in COS-7 cells and epithelial Caco-2 cells two pIgR constructs tagged at the carboxyl terminus with hexahistidine or FLAG, we provide the strongest evidence reported to date that the pIgR dimerizes noncovalently in the plasma membrane in the absence of polymeric IgA ligand. The implication of this finding is discussed in terms of IgA transport and specific antibody response at mucosal surfaces.
Collapse
Affiliation(s)
- P Crottet
- Institut Suisse de Recherches, Expérimentales sur le Cancer, CH-1066 Epalinges, Switzerland
| | | | | | | |
Collapse
|
36
|
Luton F, Vergés M, Vaerman JP, Sudol M, Mostov KE. The SRC family protein tyrosine kinase p62yes controls polymeric IgA transcytosis in vivo. Mol Cell 1999; 4:627-32. [PMID: 10549294 DOI: 10.1016/s1097-2765(00)80213-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcytosis of polymeric immunoglobulin A (pIgA) across epithelial cells is mediated by the polymeric immunoglobulin receptor (pIgR). Binding of pIgA to pIgR stimulates transcytosis of the pIgA-pIgR complex via a signal transduction pathway that is dependent on a protein tyrosine kinase (PTK) of the SRC family. Here we identify the PTK as p62yes. We demonstrate the specific physical and functional association of the pIgR with p62yes in rodent liver. Analysis of p62yes knockout mice revealed a dramatic reduction in the association of tyrosine kinase activity with the pIgR and in transcytosis of pIgA. We conclude that p62yes controls pIgA transcytosis in vivo.
Collapse
Affiliation(s)
- F Luton
- Department of Anatomy, University of California, San Francisco 94143-0452, USA
| | | | | | | | | |
Collapse
|
37
|
Praetor A, Ellinger I, Hunziker W. Intracellular traffic of the MHC class I-like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells. J Cell Sci 1999; 112 ( Pt 14):2291-9. [PMID: 10381385 DOI: 10.1242/jcs.112.14.2291] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transfer of passive immunity from mother to the fetus or newborn involves the transport of IgG across several epithelia. Depending on the species, IgG is transported prenatally across the placenta and yolk sac or is absorbed from colostrum and milk by the small intestine of the suckling newborn. In both cases apical to basolateral transepithelial transport of IgG is thought to be mediated by FcRn, an IgG Fc receptor with homology to MHC class I antigens. We have now expressed the human FcRn in polarized MDCK cells and analyzed the intracellular routing of the receptor. FcRn showed a predominant intracellular localization at steady state. Newly synthesized FcRn was delivered in a non-vectorial fashion to both the apical and basolateral surfaces of MDCK cell monolayers. Following internalization from the apical or basolateral domain, the receptor transcytosed to the opposite surface. These findings provide direct evidence for the transepithelial transport function of FcRn and indicate that the receptor undergoes multiple rounds of transcytosis.
Collapse
Affiliation(s)
- A Praetor
- Institute of Biochemistry, University of Lausanne, BIL Biomedical Research Center, 1066 Epalinges, Switzerland
| | | | | |
Collapse
|
38
|
Luton F, Mostov KE. Transduction of basolateral-to-apical signals across epithelial cells: ligand-stimulated transcytosis of the polymeric immunoglobulin receptor requires two signals. Mol Biol Cell 1999; 10:1409-27. [PMID: 10233153 PMCID: PMC25293 DOI: 10.1091/mbc.10.5.1409] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transcytosis of the polymeric immunoglobulin receptor (pIgR) is stimulated by binding of its ligand, dimeric IgA (dIgA). During this process, dIgA binding at the basolateral surface of the epithelial cell transmits a signal to the apical region of the cell, which in turn stimulates the transport of dIgA-pIgR complex from a postmicrotubule compartment to the apical surface. We have previously reported that the signal of stimulation was controlled by a protein-tyrosine kinase (PTK) activated upon dIgA binding. We now show that this signal of stimulation moves across the cell independently of pIgR movement or microtubules and acts through the tyrosine kinase activity by releasing Ca++ from inositol trisphosphate-sensitive intracellular stores. Surprisingly we have found that a second independent signal is required to achieve dIgA-stimulated transcytosis of pIgR. This second signal depends on dIgA binding to the pIgR solely at the basolateral surface and the ability of pIgR to dimerize. This enables pIgR molecules that have bound dIgA at the basolateral surface to respond to the signal of stimulation once they reach the postmicrotubule compartment. We propose that the use of two signals may be a general mechanism by which signaling receptors maintain specificity along their signaling and trafficking pathways.
Collapse
Affiliation(s)
- F Luton
- Departments of Anatomy and Biochemistry and Cardiovascular Research Institute, University of California, San Francisco, California 94143-0452, USA
| | | |
Collapse
|
39
|
Loman S, Jansen HM, Out TA, Lutter R. Interleukin-4 and interferon-gamma synergistically increase secretory component gene expression, but are additive in stimulating secretory immunoglobulin A release by Calu-3 airway epithelial cells. Immunology 1999; 96:537-43. [PMID: 10233739 PMCID: PMC2326789 DOI: 10.1046/j.1365-2567.1999.00731.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/1998] [Revised: 11/20/1998] [Accepted: 11/27/1998] [Indexed: 11/20/2022] Open
Abstract
Interleukin-4 (IL-4) and interferon-gamma (IFN-gamma) synergize to express polymeric immunoglobulin receptor (pIgR) but their combined effect, and that of IL-4 alone, on secretory immunoglobulin A (sIgA) release is unknown. Recently, we have developed an airway epithelial cell model that allows assessment of the integrated effect of a stimulus on pIgR gene and protein expression and sIgA release. With this model we show here that IL-4 and IFN-gamma dose-dependently increased pIgR mRNA and protein expression, and sIgA release. IFN-gamma and IL-4 induced similar maximal expression of pIgR, but IFN-gamma enhanced sIgA release more than IL-4. When added together, IL-4 and IFN-gamma synergistically increased pIgR mRNA and protein expression, but sIgA release was stimulated in an additive manner. Thus, IL-4 and IFN-gamma may be implicated in the increase of sIgA levels as found in mucosal inflammatory diseases. In addition, our results indicate that transport and release of empty pIgR is subject to regulatory mechanisms different from those of pIgR with bound dimeric IgA.
Collapse
Affiliation(s)
- S Loman
- Department of Pulmonology, Clinical and Laboratory Immunology Unit, Academic Medical Centre, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
40
|
Stefaner I, Praetor A, Hunziker W. Nonvectorial surface transport, endocytosis via a Di-leucine-based motif, and bidirectional transcytosis of chimera encoding the cytosolic tail of rat FcRn expressed in Madin-Darby canine kidney cells. J Biol Chem 1999; 274:8998-9005. [PMID: 10085147 DOI: 10.1074/jbc.274.13.8998] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transfer of passive immunity from the mother to the fetus or newborn involves the transport of IgG across several epithelia. Depending on the species, IgG is transported prenatally across the placenta and yolk sac or is absorbed from colostrum and milk by the small intestine of the suckling newborn. In both cases apical to basolateral transepithelial transport of IgG is thought to be mediated by FcRn, an IgG Fc receptor with homology to major histocompatibility class I antigens. Here, we analyzed the intracellular routing of chimera encoding the rat FcRn tail fused to the ecto- and transmembrane domain of the macrophage FcgammaRIIb. Newly synthesized chimera were delivered in a nonvectorial manner to the apical and basolateral cell surface, from where the chimera were able to internalize and transcytose. Apical to basolateral and basolateral to apical transcytosis were differently regulated. This intracellular routing of the chimera is similar to that of the native FcRn, indicating that the cytosolic tail of the receptor is necessary and sufficient to endow an unrelated FcR with the intracellular transport behavior of FcRn. Furthermore, the di-leucine motif in the cytosolic domain of FcRn was required for rapid and efficient endocytosis but not for basolateral sorting of the chimera.
Collapse
Affiliation(s)
- I Stefaner
- Institute of Biochemistry, University of Lausanne, BIL Biomedical Research Center, 155 Ch. des Boveresses, 1066 Epalinges, Switzerland
| | | | | |
Collapse
|
41
|
Carpenter GH, Garrett JR, Hartley RH, Proctor GB. The influence of nerves on the secretion of immunoglobulin A into submandibular saliva in rats. J Physiol 1998; 512 ( Pt 2):567-73. [PMID: 9763644 PMCID: PMC2231220 DOI: 10.1111/j.1469-7793.1998.567be.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The influence of sympathetic and parasympathetic nerve stimulations on salivary secretion of immunoglobulin A (IgA) was studied in the submandibular glands of anaesthetized rats by stimulating the nerve supplies with bipolar electrodes. 2. Although the flow of saliva from sympathetically stimulated glands was only 23% of that from parasympathetically stimulated glands the output of IgA was over 2-fold greater. This difference was attributable to influences of the nerves on IgA secretion through the epithelial cell polymeric immunoglobulin receptor-mediated pathway, as Western blotting with specific antibodies to IgA and secretory component revealed that secretory IgA (SIgA) dominated in all saliva samples. 3. Study of saliva secreted in sequential periods of nerve stimulation or following rest pauses suggested that SIgA secretion occurred in the absence of stimulation but this was upregulated 2.6- and 6-fold by parasympathetic and sympathetic nerve stimulations, respectively, compared with the calculated unstimulated rate. 4. The IgA content of extensively stimulated glands was 77% of levels in unstimulated contralateral control glands despite a secretion into saliva equivalent to almost 90% of the glandular IgA content. The IgA may be synthesized and secreted by glandular plasma cells at a rate which exceeds demand and/or such synthesis may be upregulated by nerve impulses. 5. The results indicate that salivary secretion of SIgA is upregulated by nerve impulses and that sympathetic nerves induce a greater effect than parasympathetic nerves.
Collapse
Affiliation(s)
- G H Carpenter
- Secretory and Soft Tissue Research Unit, King's College School of Medicine and Dentistry, 123 Coldharbour Lane, London SE5 9NU, UK
| | | | | | | |
Collapse
|
42
|
Gibson A, Futter CE, Maxwell S, Allchin EH, Shipman M, Kraehenbuhl JP, Domingo D, Odorizzi G, Trowbridge IS, Hopkins CR. Sorting mechanisms regulating membrane protein traffic in the apical transcytotic pathway of polarized MDCK cells. J Cell Biol 1998; 143:81-94. [PMID: 9763422 PMCID: PMC2132803 DOI: 10.1083/jcb.143.1.81] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/1998] [Revised: 07/29/1998] [Indexed: 02/01/2023] Open
Abstract
The transcytotic pathway followed by the polymeric IgA receptor (pIgR) carrying its bound ligand (dIgA) from the basolateral to the apical surface of polarized MDCK cells has been mapped using morphological tracers. At 20 degreesC dIgA-pIgR internalize to interconnected groups of vacuoles and tubules that comprise the endosomal compartment and in which they codistribute with internalized transferrin receptors (TR) and epidermal growth factor receptors (EGFR). Upon transfer to 37 degreesC the endosome vacuoles develop long tubules that give rise to a distinctive population of 100-nm-diam cup-shaped vesicles containing pIgR. At the same time, the endosome gives rise to multivesicular endosomes (MVB) enriched in EGFR and to 60-nm-diam basolateral vesicles. The cup-shaped vesicles carry the dIgA/pIgR complexes to the apical surface where they exocytose. Using video microscopy and correlative electron microscopy to study cells grown thin and flat we show that endosome vacuoles tubulate in response to dIgA/pIgR but that the tubules contain TR as well as pIgR. However, we show that TR are removed from these dIgA-induced tubules via clathrin-coated buds and, as a result, the cup-shaped vesicles to which the tubules give rise become enriched in dIgA/pIgR. Taken together with the published information available on pIgR trafficking signals, our observations suggest that the steady-state concentrations of TR and unoccupied pIgR on the basolateral surface of polarized MDCK cells are maintained by a signal-dependent, clathrin-based sorting mechanism that operates along the length of the transcytotic pathway. We propose that the differential sorting of occupied receptors within the MDCK endosome is achieved by this clathrin-based mechanism continuously retrieving receptors like TR from the pathways that deliver pIgR to the apical surface and EGFR to the lysosome.
Collapse
Affiliation(s)
- A Gibson
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Human IgG receptors constitute a family of glycoprotein complexes consisting of ligand-binding, and associated signaling chains. Three leukocyte classes (Fc gamma RI, II, and III) and one separate endothelial Fc gamma R class (FcRB) are defined which are expressed on hematopoietic and endothelial cells. Upon interaction with IgG, Fc gamma R initiate a plethora of signaling cascades involving receptor signaling motifs, and protein tyrosine kinases and phosphatases. These cascades ultimately culminate in activation or deactivation of effector cells, resulting in initiation or down-modulation of cellular processes. Recent evidence points to a crucial in vivo role of Fc gamma R in both initiation and regulation of inflammatory and cytotoxic responses. These Fc gamma R-mediated immune responses can be exploited to develop novel immunotherapies.
Collapse
Affiliation(s)
- I A Heijnen
- Department of Immunology and Medarex Europe BV, G04.614, University Hospital Utrecht, The Netherlands
| | | |
Collapse
|
44
|
Abstract
Transcytosis plays a central role in the immunological functions of epithelia, including the sampling of antigens that enter the body via the digestive, respiratory and urogenital tracts and their presentation to underlying lymphoid tissues, the secretion of specific immunoglobulins required for the immune protection of mucosal surfaces and the transfer of maternal immunoglobulins to the fetus or newborn, providing the latter with passive immunity for the first weeks of independent life.
Collapse
Affiliation(s)
- W Hunziker
- Institute of Biochemistry, University of Lausanne, BIL Research Center, Epalinges, Switzerland.
| | | |
Collapse
|
45
|
Luton F, Cardone MH, Zhang M, Mostov KE. Role of tyrosine phosphorylation in ligand-induced regulation of transcytosis of the polymeric Ig receptor. Mol Biol Cell 1998; 9:1787-802. [PMID: 9658171 PMCID: PMC25419 DOI: 10.1091/mbc.9.7.1787] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Accepted: 03/31/1998] [Indexed: 01/27/2023] Open
Abstract
The polymeric Ig receptor (pIgR) transcytoses its ligand, dimeric IgA (dIgA), from the basolateral to the apical surface of epithelial cells. Although the pIgR is constitutively transcytosed in the absence of ligand, binding of dIgA stimulates transcytosis of the pIgR. We recently reported that dIgA binding to the pIgR induces translocation of protein kinase C, production of inositol triphosphate, and elevation of intracellular free calcium. We now report that dIgA binding causes rapid, transient tyrosine phosphorylation of several proteins, including phosphatidyl inositol-specific phospholipase C-gammal. Protein tyrosine kinase inhibitors or deletion of the last 30 amino acids of pIgR cytoplasmic tail prevents IgA-stimulated protein tyrosine kinase activation, tyrosine phosphorylation of phospholipase C-gammal, production of inositol triphosphate, and the stimulation of transcytosis by dIgA. Analysis of pIgR deletion mutants reveals that the same discrete portion of the cytoplasmic domain, residues 727-736 (but not the Tyr734), controls both the ability of pIgR to cause dIgA-induced tyrosine phosphorylation of the phospholipase C-gammal and to undergo dIgA-stimulated transcytosis. In addition, dIgA transcytosis can be strongly stimulated by mimicking phospholipase C-gammal activation. In combination with our previous results, we conclude that the protein tyrosine kinase(s) and phospholipase C-gammal that are activated upon dIgA binding to the pIgR control dIgA-stimulated pIgR transcytosis.
Collapse
Affiliation(s)
- F Luton
- Departments of Anatomy and Biochemistry, and Cardiovascular Research Institute, University of California, San Francisco, California 94143-0452, USA
| | | | | | | |
Collapse
|
46
|
Aroeti B, Okhrimenko H, Reich V, Orzech E. Polarized trafficking of plasma membrane proteins: emerging roles for coats, SNAREs, GTPases and their link to the cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:57-90. [PMID: 9666078 DOI: 10.1016/s0304-4157(98)00005-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- B Aroeti
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | | | |
Collapse
|
47
|
Singer KL, Mostov KE. Dimerization of the polymeric immunoglobulin receptor controls its transcytotic trafficking. Mol Biol Cell 1998; 9:901-15. [PMID: 9529387 PMCID: PMC25316 DOI: 10.1091/mbc.9.4.901] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/1997] [Accepted: 01/26/1998] [Indexed: 02/07/2023] Open
Abstract
Binding of dimeric immunoglobulin (Ig)A to the polymeric Ig receptor (pIgR) stimulates transcytosis of pIgR across epithelial cells. Through the generation of a series of pIgR chimeric constructs, we have tested the ability of ligand to promote receptor dimerization and the subsequent role of receptor dimerization on its intracellular trafficking. Using the cytoplasmic domain of the T cell receptor-zeta chain as a sensitive indicator of receptor oligomerization, we show that a pIgR:zeta chimeric receptor expressed in Jurkat cells initiates a zeta-specific signal transduction cascade when exposed to dimeric or tetrameric IgA, but not when exposed to monomeric IgA. In addition, we replaced the pIgR's transmembrane domain with that of glycophorin A to force dimerization or with a mutant glycophorin transmembrane domain to prevent dimerization. Forcing dimerization stimulated transcytosis of the chimera, whereas preventing dimerization abolished ligand-stimulated transcytosis. We conclude that binding of dimeric IgA to the pIgR induces its dimerization and that this dimerization is necessary and sufficient to stimulate pIgR transcytosis.
Collapse
Affiliation(s)
- K L Singer
- Department of Anatomy and Department of Biochemistry and Biophysics, and Cardiovascular Research Institute, University of California, San Francisco, California 94143-0452, USA
| | | |
Collapse
|
48
|
Silver RB. Ratio imaging: practical considerations for measuring intracellular calcium and pH in living tissue. Methods Cell Biol 1998; 56:237-51. [PMID: 9500141 DOI: 10.1016/s0091-679x(08)60429-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- R B Silver
- Department of Physiology and Biophysics, Cornell University Medical College, New York, New York 10021, USA
| |
Collapse
|
49
|
Abstract
Cell surface receptors play a central role in the regulation of both cellular and systemic physiology by mediating intercellular communication, facilitating protein trafficking, and regulating virtually all intracellular processes. Receptor expression is often cell specific and is determined by cellular lineage, genetics, and a variety of factors in the extracellular milieu. As receptors are generally localized on the plasma membrane and differentially expressed in certain cell types and tissues, they provide a potential target for drug delivery. However, since most receptors are integrally connected with intracellular signal transduction networks, targeting via these receptors may elicit a biological response. This review describes some established and emerging concepts regarding the structure and functions of receptors. In addition, some aspects related to the regulation and crosstalk between receptors are discussed.
Collapse
|
50
|
Bjørbaek C, Uotani S, da Silva B, Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem 1997; 272:32686-95. [PMID: 9405487 DOI: 10.1074/jbc.272.51.32686] [Citation(s) in RCA: 648] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Leptin receptors include a long form (OBRl) with 302 cytoplasmic residues that is presumed to mediate most or all of leptins signaling, and several short forms, including one (OBRs) that has 34 cytoplasmic residues, is widely expressed, and is presumed not to signal but to mediate transport or clearance of leptin. We studied the abilities of these two receptor isoforms to mediate signaling in transfected cells. In response to leptin, OBRl, but not OBRs, underwent tyrosine phosphorylation that was enhanced by co-expression with JAK2. In cells expressing receptors and JAK2, both OBRs and OBRl mediated leptin-dependent tyrosine phosphorylation of JAK2, and this was abolished with OBRs when the Box 1 motif was mutated. In cells expressing receptors, JAK2 and IRS-1, leptin induced tyrosine phosphorylation of IRS-1 through OBRs and OBRl. In COS cells expressing hemagglutinin-ERK1 and receptors, leptin increased ERK1 kinase activity through OBRl, with the magnitude increased by co-expression of JAK1 or JAK2, and to a lesser degree through OBRs, despite greater receptor expression. In stable Chinese hamster ovary cell lines expressing OBRs or OBRl, leptin stimulated endogenous ERK2 phosphorylation. Whereas leptin stimulated tyrosine phosphorylation of hemagglutinin-STAT3 and induction of a c-fos luciferase reporter plasmid through OBRl, OBRs was without effect in these assays. In conclusion, OBRl is capable of signaling to IRS-1 and mitogen-activated protein kinase via JAK, in addition to activating STAT pathways. Although substantially weaker than OBRl, OBRs is capable of mediating signal transduction via JAK, but these activities are of as yet unknown significance for leptin biology in vivo.
Collapse
Affiliation(s)
- C Bjørbaek
- Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|