1
|
View from an mRNP: The Roles of SR Proteins in Assembly, Maturation and Turnover. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:83-112. [PMID: 31811631 DOI: 10.1007/978-3-030-31434-7_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Serine- and arginine-rich proteins (SR proteins) are a family of multitasking RNA-binding proteins (RBPs) that are key determinants of messenger ribonucleoprotein (mRNP) formation, identity and fate. Apart from their essential functions in pre-mRNA splicing, SR proteins display additional pre- and post-splicing activities and connect nuclear and cytoplasmic gene expression machineries. Through changes in their post-translational modifications (PTMs) and their subcellular localization, they provide functional specificity and adjustability to mRNPs. Transcriptome-wide UV crosslinking and immunoprecipitation (CLIP-Seq) studies revealed that individual SR proteins are present in distinct mRNPs and act in specific pairs to regulate different gene expression programmes. Adopting an mRNP-centric viewpoint, we discuss the roles of SR proteins in the assembly, maturation, quality control and turnover of mRNPs and describe the mechanisms by which they integrate external signals, coordinate their multiple tasks and couple subsequent mRNA processing steps.
Collapse
|
2
|
Puvion-Dutilleul F, Besse S, Diaz JJ, Kindbeiter K, Vigneron M, Warren SL, Kedinger C, Madjar JJ, Puvion E. Identification of transcription factories in nuclei of HeLa cells transiently expressing the Us11 gene of herpes simplex virus type 1. Gene Expr 2018; 6:315-32. [PMID: 9368102 PMCID: PMC6148282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nuclear distribution and migration of herpes simplex virus type 1 Us11 transcripts were studied in transient expression at the ultrastructural level and compared to that of RNA polymerase II protein. Transcription was monitored by autoradiography following a short pulse with tritiated uridine. Us11 transcripts accumulated mainly over the foci of intermingled RNP fibrils as demonstrated by the presence of silver grains localizing incorporated radioactive uridine superimposed to these structures in which the presence of Us11 RNA and poly(A) tails was previously demonstrated. Silver grains were also scattered over the remaining nucleoplasm but not in the clusters of interchromatin granules, and over the dense fibrillar component of the nucleolus as in control, nontransfected HeLa cells. Pulse-chase experiments revealed the transient presence of migrating RNA in the clusters of interchromatin granules. RNA polymerase II was revealed by immunogold labeling following the use of two monoclonal antibodies: mAb H5, which recognizes the hyperphosphorylated form of the carboxy-terminal domain (CTD) of the molecule, and mAb 7C2, which recognizes both its hyperphosphorylated and unphosphorylated forms. The two mAbs bind to the newly formed Us11 transcription factories and the clusters of interchromatin granules of transfected cells. In control cells, however, clusters of interchromatin granules were labeled with mAb H5 but not with mAB 7C2. Taken together, our data demonstrate the involvement of the clusters of interchromatin granules in the intranuclear migration of Us11 RNA in transient expression. They also suggest the occurrence of changes in the accessibility of the RNA polymerase II CTD upon expression of the Us11 gene after transfection by exposing some epitopes, otherwise masked in nontransfected cells.
Collapse
Affiliation(s)
- F Puvion-Dutilleul
- Laboratoire Organisation fonctionnelle du Noyau, CNRS UPR 9044, Villejuif, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
4
|
Abstract
Transcription and splicing are fundamental steps in gene expression. These processes have been studied intensively over the past four decades, and very recent findings are challenging some of the formerly established ideas. In particular, splicing was shown to occur much faster than previously thought, with the first spliced products observed as soon as splice junctions emerge from RNA polymerase II (Pol II). Splicing was also found coupled to a specific phosphorylation pattern of Pol II carboxyl-terminal domain (CTD), suggesting a new layer of complexity in the CTD code. Moreover, phosphorylation of the CTD may be scarcer than expected, and other post-translational modifications of the CTD are emerging with unanticipated roles in gene expression regulation.
Collapse
Affiliation(s)
- Noélia Custódio
- a Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisboa , Portugal
| | - Maria Carmo-Fonseca
- a Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
5
|
Martínez-Redondo V, Jannig PR, Correia JC, Ferreira DMS, Cervenka I, Lindvall JM, Sinha I, Izadi M, Pettersson-Klein AT, Agudelo LZ, Gimenez-Cassina A, Brum PC, Dahlman-Wright K, Ruas JL. Peroxisome Proliferator-activated Receptor γ Coactivator-1 α Isoforms Selectively Regulate Multiple Splicing Events on Target Genes. J Biol Chem 2016; 291:15169-84. [PMID: 27231350 DOI: 10.1074/jbc.m115.705822] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 11/06/2022] Open
Abstract
Endurance and resistance exercise training induces specific and profound changes in the skeletal muscle transcriptome. Peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α) coactivators are not only among the genes differentially induced by distinct training methods, but they also participate in the ensuing signaling cascades that allow skeletal muscle to adapt to each type of exercise. Although endurance training preferentially induces PGC-1α1 expression, resistance exercise activates the expression of PGC-1α2, -α3, and -α4. These three alternative PGC-1α isoforms lack the arginine/serine-rich (RS) and RNA recognition motifs characteristic of PGC-1α1. Discrete functions for PGC-1α1 and -α4 have been described, but the biological role of PGC-1α2 and -α3 remains elusive. Here we show that different PGC-1α variants can affect target gene splicing through diverse mechanisms, including alternative promoter usage. By analyzing the exon structure of the target transcripts for each PGC-1α isoform, we were able to identify a large number of previously unknown PGC-1α2 and -α3 target genes and pathways in skeletal muscle. In particular, PGC-1α2 seems to mediate a decrease in the levels of cholesterol synthesis genes. Our results suggest that the conservation of the N-terminal activation and repression domains (and not the RS/RNA recognition motif) is what determines the gene programs and splicing options modulated by each PGC-1α isoform. By using skeletal muscle-specific transgenic mice for PGC-1α1 and -α4, we could validate, in vivo, splicing events observed in in vitro studies. These results show that alternative PGC-1α variants can affect target gene expression both quantitatively and qualitatively and identify novel biological pathways under the control of this system of coactivators.
Collapse
Affiliation(s)
- Vicente Martínez-Redondo
- From the Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology Unit and
| | - Paulo R Jannig
- From the Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology Unit and School of Physical Education and Sport, University of São Paulo, 05508-030 São Paulo, Brazil, and
| | - Jorge C Correia
- From the Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology Unit and
| | - Duarte M S Ferreira
- From the Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology Unit and
| | - Igor Cervenka
- From the Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology Unit and
| | - Jessica M Lindvall
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Indranil Sinha
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Manizheh Izadi
- From the Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology Unit and
| | - Amanda T Pettersson-Klein
- From the Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology Unit and
| | - Leandro Z Agudelo
- From the Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology Unit and
| | - Alfredo Gimenez-Cassina
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Patricia C Brum
- School of Physical Education and Sport, University of São Paulo, 05508-030 São Paulo, Brazil, and
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Jorge L Ruas
- From the Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology Unit and
| |
Collapse
|
6
|
Howard JM, Sanford JR. The RNAissance family: SR proteins as multifaceted regulators of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:93-110. [PMID: 25155147 DOI: 10.1002/wrna.1260] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 12/29/2022]
Abstract
Serine and arginine-rich (SR) proteins play multiple roles in the eukaryotic gene expression pathway. Initially described as constitutive and alternative splicing factors, now it is clear that SR proteins are key determinants of exon identity and function as molecular adaptors, linking the pre-messenger RNA (pre-mRNA) to the splicing machinery. In addition, now SR proteins are implicated in many aspects of mRNA and noncoding RNA (ncRNA) processing well beyond splicing. These unexpected roles, including RNA transcription, export, translation, and decay, may prove to be the rule rather than the exception. To simply define, this family of RNA-binding proteins as splicing factors belies the broader roles of SR proteins in post-transcriptional gene expression.
Collapse
Affiliation(s)
- Jonathan M Howard
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | | |
Collapse
|
7
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
8
|
Murugan R, Kreiman G. Theory on the coupled stochastic dynamics of transcription and splice-site recognition. PLoS Comput Biol 2012; 8:e1002747. [PMID: 23133354 PMCID: PMC3486868 DOI: 10.1371/journal.pcbi.1002747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 09/05/2012] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic genes are typically split into exons that need to be spliced together to form the mature mRNA. The splicing process depends on the dynamics and interactions among transcription by the RNA polymerase II complex (RNAPII) and the spliceosomal complex consisting of multiple small nuclear ribonucleo proteins (snRNPs). Here we propose a biophysically plausible initial theory of splicing that aims to explain the effects of the stochastic dynamics of snRNPs on the splicing patterns of eukaryotic genes. We consider two different ways to model the dynamics of snRNPs: pure three-dimensional diffusion and a combination of three- and one-dimensional diffusion along the emerging pre-mRNA. Our theoretical analysis shows that there exists an optimum position of the splice sites on the growing pre-mRNA at which the time required for snRNPs to find the 5′ donor site is minimized. The minimization of the overall search time is achieved mainly via the increase in non-specific interactions between the snRNPs and the growing pre-mRNA. The theory further predicts that there exists an optimum transcript length that maximizes the probabilities for exons to interact with the snRNPs. We evaluate these theoretical predictions by considering human and mouse exon microarray data as well as RNAseq data from multiple different tissues. We observe that there is a broad optimum position of splice sites on the growing pre-mRNA and an optimum transcript length, which are roughly consistent with the theoretical predictions. The theoretical and experimental analyses suggest that there is a strong interaction between the dynamics of RNAPII and the stochastic nature of snRNP search for 5′ donor splicing sites. The DNA encoding most eukaryotic genes is interrupted by long sequences called introns. These introns need to be removed through the process of splicing to produce the mature messenger RNA. The process of splicing plays a critical role in determining the exact aminoacid content of the ensuing protein. Several molecules denominated small nuclear ribonucleo proteins (snRNPs) are involved in finding the appropriate 5′ donor splicing sites for splicing. Transcription and splicing occur simultaneously and the ultimate product depends on the relative speed of transcription and the stochastic dynamics underlying splicing. Here we propose a biophysically plausible theory that describes the ongoing interactions between transcription and splicing. We show that the theoretical predictions are consistent with experimental measurements of the abundance patterns of different exons and transcripts across tissues.
Collapse
Affiliation(s)
- Rajamanickam Murugan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
- Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gabriel Kreiman
- Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- Swartz Center for Theoretical Neuroscience, Harvard University, Cambridge, Massachusetts, United States of America
- Program in Biophysics, Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Misteli T, Spector DL. Protein phosphorylation and the nuclear organization of pre-mRNA splicing. Trends Cell Biol 2012; 7:135-8. [PMID: 17708924 DOI: 10.1016/s0962-8924(96)20043-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Controlled execution of transcription and pre-mRNA splicing is crucial for proper gene expression. The organization of these essential events within the cell nucleus is only beginning to be understood. Here, we describe a model for the cellular arrangement of transcription and pre-mRNA splicing based on recent biochemical and morphological data: transcription and pre-mRNA splicing are spatially and temporally coordinated, and protein phosphorylation regulates both the activity and the subnuclear localization of pre-mRNA splicing factors in nuclear subcompartments.
Collapse
|
10
|
Montes M, Becerra S, Sánchez-Álvarez M, Suñé C. Functional coupling of transcription and splicing. Gene 2012; 501:104-17. [DOI: 10.1016/j.gene.2012.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/13/2023]
|
11
|
Bartkowiak B, Mackellar AL, Greenleaf AL. Updating the CTD Story: From Tail to Epic. GENETICS RESEARCH INTERNATIONAL 2011; 2011:623718. [PMID: 22567360 PMCID: PMC3335468 DOI: 10.4061/2011/623718] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/10/2011] [Indexed: 12/03/2022]
Abstract
Eukaryotic RNA polymerase II (RNAPII) not only synthesizes mRNA but also coordinates transcription-related processes via its unique C-terminal repeat domain (CTD). The CTD is an RNAPII-specific protein segment consisting of repeating heptads with the consensus sequence Y1S2P3T4S5P6S7 that has been shown to be extensively post-transcriptionally modified in a coordinated, but complicated, manner. Recent discoveries of new modifications, kinases, and binding proteins have challenged previously established paradigms. In this paper, we examine results and implications of recent studies related to modifications of the CTD and the respective enzymes; we also survey characterizations of new CTD-binding proteins and their associated processes and new information regarding known CTD-binding proteins. Finally, we bring into focus new results that identify two additional CTD-associated processes: nucleocytoplasmic transport of mRNA and DNA damage and repair.
Collapse
Affiliation(s)
- Bartlomiej Bartkowiak
- Department of Biochemistry and Center for RNA Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
12
|
Abstract
Messenger RNAs undergo 5' capping, splicing, 3'-end processing, and export before translation in the cytoplasm. It has become clear that these mRNA processing events are tightly coupled and have a profound effect on the fate of the resulting transcript. This processing is represented by modifications of the pre-mRNA and loading of various protein factors. The sum of protein factors that stay with the mRNA as a result of processing is modified over the life of the transcript, conferring significant regulation to its expression.
Collapse
Affiliation(s)
- Sami Hocine
- Department for Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
13
|
Fabian Z, O’Brien P, Pajęcka K, Fearnhead HO. TPCK-induced apoptosis and labelling of the largest subunit of RNA polymerase II in Jurkat cells. Apoptosis 2009; 14:1154-64. [DOI: 10.1007/s10495-009-0386-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Sapra AK, Ankö ML, Grishina I, Lorenz M, Pabis M, Poser I, Rollins J, Weiland EM, Neugebauer KM. SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo. Mol Cell 2009; 34:179-90. [PMID: 19394295 DOI: 10.1016/j.molcel.2009.02.031] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/19/2008] [Accepted: 02/25/2009] [Indexed: 11/30/2022]
Abstract
The SR proteins are a family of pre-mRNA splicing factors with additional roles in gene regulation. To investigate individual family members in vivo, we generated a comprehensive panel of stable cell lines expressing GFP-tagged SR proteins under endogenous promoter control. Recruitment of SR proteins to nascent FOS RNA was transcription dependent and RNase sensitive, with unique patterns of accumulation along the gene specified by the RNA recognition motifs (RRMs). In addition, all SR protein interactions with Pol II were RNA dependent, indicating that SR proteins are not preassembled with Pol II. SR protein interactions with RNA were confirmed in situ by FRET/FLIM. Interestingly, SC35-GFP also exhibited FRET with DNA and failed to associate with cytoplasmic mRNAs, whereas all other SR proteins underwent nucleocytoplasmic shuttling and associated with specific nuclear and cytoplasmic mRNAs. Because different constellations of SR proteins bound nascent, nuclear, and cytoplasmic mRNAs, mRNP remodeling must occur throughout an mRNA's lifetime.
Collapse
Affiliation(s)
- Aparna K Sapra
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bogolyubov D, Stepanova I, Parfenov V. Universal nuclear domains of somatic and germ cells: some lessons from oocyte interchromatin granule cluster and Cajal body structure and molecular composition. Bioessays 2009; 31:400-9. [DOI: 10.1002/bies.200800100] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Bogolyubov DS, Batalova FM, Ogorzałek A. Localization of interchromatin granule cluster and Cajal body components in oocyte nuclear bodies of the hemipterans. Tissue Cell 2007; 39:353-64. [PMID: 17889915 DOI: 10.1016/j.tice.2007.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/05/2007] [Accepted: 07/12/2007] [Indexed: 11/25/2022]
Abstract
An oocyte nucleus contains different extrachromosomal nuclear domains collectively called nuclear bodies (NBs). In the present work we revealed, using immunogold labeling electron microscopy, some marker components of interchromatin granule clusters (IGCs) and Cajal bodies (CBs) in morphologically heterogeneous oocyte NBs studied in three hemipteran species: Notostira elongata, Capsodes gothicus (Miridae) and Velia caprai (Veliidae). Both IGC and CB counterparts were revealed in oocyte nuclei of the studied species but morphological and biochemical criteria were found to be not sufficient to determine carefully the define type of oocyte NBs. We found that the molecular markers of the CBs (coilin and non-phosphorylated RNA polymerase II) and IGCs (SC35 protein) may be localized in the same NB. Anti-SC35 antibody may decorate not only a granular material representing "true" interchromatin granules but also masks some fibrillar parts of complex NBs. Our first observations on the hemipteran oocyte NBs confirm the high complexity and heterogeneity of insect oocyte IGCs and CBs in comparison with those in mammalian somatic cells and amphibian oocytes.
Collapse
Affiliation(s)
- D S Bogolyubov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 St. Petersburg, Russia.
| | | | | |
Collapse
|
17
|
McAlinden A, Liang L, Mukudai Y, Imamura T, Sandell LJ. Nuclear protein TIA-1 regulates COL2A1 alternative splicing and interacts with precursor mRNA and genomic DNA. J Biol Chem 2007; 282:24444-54. [PMID: 17580305 DOI: 10.1074/jbc.m702717200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The RNA-binding protein TIA-1 (T-cell-restricted intracellular antigen-1) functions in regulating post-transcriptional mechanisms, including precursor mRNA (pre-mRNA) alternative splicing and mRNA translation. Utilizing a mini-gene consisting of part of the type II procollagen gene (COL2A1), we show that TIA-1 interacts with a conserved AU-rich cis element in COL2A1 intron 2 and modulates alternative splicing of exon 2. This unique, highly conserved cis element containing stem-loop secondary structure was previously identified in our laboratory as an essential motif that controls the developmentally regulated exon 2 splicing switch during chondrogenesis (McAlinden, A., Havlioglu, N., Liang, L., Davies, S. R., and Sandell, L. J. (2005) J. Biol. Chem. 280, 32700-32711). In vivo binding of endogenous TIA-1 to the AU-rich cis element in COL2A1 pre-mRNA was confirmed by the ribonucleoprotein immunoprecipitation assay. Importantly, we also show that TIA-1 interacts with the equivalent DNA sequence with a preference for single-stranded rather than double-stranded DNA. Chromatin immunoprecipitation assays (including an additional RNase step) confirmed this interaction in vivo. Competition assays showed that TIA-1 apparently binds with higher affinity to DNA than to RNA. Finally, we show that this strong DNA-TIA-1 interaction can be disrupted by an RNA polymerase during active transcription. This suggests a potentially novel, dual role for TIA-1 in shuttling between DNA and RNA ligands to co-regulate COL2A1 expression at the level of transcription and pre-mRNA alternative splicing.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
18
|
Stepanova IS, Bogolyubov DS, Parfenov VN. Cajal bodies in insects. II. Molecular composition of cajal bodies in oocytes of house cricket. Relationship between cajal bodies and interchromatin granule clusters. ACTA ACUST UNITED AC 2007. [DOI: 10.1134/s1990519x07010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Kornblihtt AR. Coupling Transcription and Alternative Splicing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:175-89. [DOI: 10.1007/978-0-387-77374-2_11] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
de la Mata M, Kornblihtt AR. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat Struct Mol Biol 2006; 13:973-80. [PMID: 17028590 DOI: 10.1038/nsmb1155] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 09/15/2006] [Indexed: 01/02/2023]
Abstract
Previous studies have linked the C-terminal domain (CTD) of RNA polymerase II (pol II) with cotranscriptional precursor messenger RNA processing, but little is known about the CTD's function in regulating alternative splicing. We have examined this function using alpha-amanitin-resistant pol II CTD mutants and fibronectin reporter minigenes. We found that the CTD is required for the inhibitory action of the serine/arginine-rich (SR) protein SRp20 on the inclusion of a fibronectin cassette exon in the mature mRNA. CTD phosphorylation controls transcription elongation, which is a major contributor to alternative splicing regulation. However, the effect of SRp20 is still observed when transcription elongation is reduced. These results suggest that the CTD promotes exon skipping by recruiting SRp20 and that this contributes independently of elongation to the transcriptional control of alternative splicing.
Collapse
Affiliation(s)
- Manuel de la Mata
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
| | | |
Collapse
|
21
|
Lacadie SA, Tardiff DF, Kadener S, Rosbash M. In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Genes Dev 2006; 20:2055-66. [PMID: 16882983 PMCID: PMC1536057 DOI: 10.1101/gad.1434706] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/01/2006] [Indexed: 11/25/2022]
Abstract
Spliceosome assembly in the budding yeast Saccharomyces cerevisiae was recently shown to occur at the site of transcription. However, evidence for cotranscriptional splicing as well as for coupling between transcription and splicing is still lacking. Using modifications of a previously published chromatin immunoprecipitation (ChIP) assay, we show that cotranscriptional splicing occurs approximately 1 kb after transcription of the 3' splice site (3'SS). This pathway furthermore protects most intron-containing nascent transcripts from the effects of cleavage by an intronic hammerhead ribozyme. This suggests that a high percentage of introns are recognized cotranscriptionally. This observation led us to screen a small deletion library for strains that sensitize a splicing reporter to ribozyme cleavage. Characterization of the Deltamud2 strain indicates that the early splicing factor Mud2p functions with U1 snRNP to form a cross-intron bridging complex on nascent pre-mRNA. The complex helps protect the transcript from ribozyme-mediated destruction and suggests an intron-definition event early in the spliceosome assembly process. The transcription elongation mutant strains Deltadst1 and Deltapaf1 show different cotranscriptional splicing phenotypes, suggesting that different transcription pathways differentially impact the efficiency of nascent intron definition.
Collapse
Affiliation(s)
- Scott A Lacadie
- Howard Hughes Medical Institute, Biology Department, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
22
|
Sánchez-Alvarez M, Goldstrohm AC, Garcia-Blanco MA, Suñé C. Human transcription elongation factor CA150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions. Mol Cell Biol 2006; 26:4998-5014. [PMID: 16782886 PMCID: PMC1489151 DOI: 10.1128/mcb.01991-05] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 11/15/2005] [Accepted: 04/22/2006] [Indexed: 11/20/2022] Open
Abstract
The human transcription elongation factor CA150 contains three N-terminal WW domains and six consecutive FF domains. WW and FF domains, versatile modules that mediate protein-protein interactions, are found in nuclear proteins involved in transcription and splicing. CA150 interacts with the splicing factor SF1 and with the phosphorylated C-terminal repeat domain (CTD) of RNA polymerase II (RNAPII) through its WW and FF domains, respectively. WW and FF domains may, therefore, serve to link transcription and splicing components and play a role in coupling transcription and splicing in vivo. In the study presented here, we investigated the subcellular localization and association of CA150 with factors involved in pre-mRNA transcriptional elongation and splicing. Endogenous CA150 colocalized with nuclear speckles, and this was not affected either by inhibition of cellular transcription or by RNAPII CTD phosphorylation. FF domains are essential for the colocalization to speckles, while WW domains are not required for colocalization. We also performed biochemical assays to understand the role of WW and FF domains in mediating the assembly of transcription and splicing components into higher-order complexes. Transcription and splicing components bound to a region in the amino-terminal part of CA150 that contains the three WW domains; however, we identified a region of the C-terminal FF domains that was also critical. Our results suggest that sequences located at both the amino and carboxyl regions of CA150 are required to assemble transcription/splicing complexes, which may be involved in the coupling of those processes.
Collapse
Affiliation(s)
- Miguel Sánchez-Alvarez
- Department of Molecular Biology, Instituto de Parasitología y Biomedicine, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento s/n, Armilla, 18100 Granada, Spain
| | | | | | | |
Collapse
|
23
|
Tan JS, Mohandas N, Conboy JG. Evolutionarily conserved coupling of transcription and alternative splicing in the EPB41 (protein 4.1R) and EPB41L3 (protein 4.1B) genes. Genomics 2005; 86:701-7. [PMID: 16242908 DOI: 10.1016/j.ygeno.2005.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 07/27/2005] [Accepted: 08/11/2005] [Indexed: 01/14/2023]
Abstract
Recent studies have shown that transcription and alternative splicing can be mechanistically coupled. In the EPB41 (protein 4.1R) and EPB41L3 (protein 4.1B) genes, we showed previously that promoter/alternative first exon choice is coupled to downstream splicing events in exon 2. Here we demonstrate that this coupling is conserved among several vertebrate classes from fish to mammals. The EPB41 and EPB41L3 genes from fish, bird, amphibian, and mammal genomes exhibit shared features including alternative first exons and differential splice acceptors in exon 2. In all cases, the 5'-most exon (exon 1A) splices exclusively to a weaker internal acceptor site in exon 2, skipping a fragment designated as exon 2'. Conversely, alternative first exons 1B and 1C always splice to the stronger first acceptor site, retaining exon 2'. These correlations are independent of cell type or species of origin. Since exon 2' contains a translation initiation site, splice variants generate protein isoforms with distinct N-termini. We propose that these genes represent a physiologically relevant model system for mechanistic analysis of transcription-coupled alternative splicing.
Collapse
Affiliation(s)
- Jeff S Tan
- Life Sciences Division and Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
24
|
Walgraffe D, Devaux S, Lecordier L, Dierick JF, Dieu M, Van den Abbeele J, Pays E, Vanhamme L. Characterization of subunits of the RNA polymerase I complex in Trypanosoma brucei. Mol Biochem Parasitol 2005; 139:249-60. [PMID: 15664659 DOI: 10.1016/j.molbiopara.2004.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 11/17/2004] [Indexed: 11/21/2022]
Abstract
The Trypanosoma brucei homologue of the RNA polymerase I (RNA Pol I) subunit Rpa12p of Saccharomyces cerevisiae was cloned and characterized. This protein did not appear to be essential for growth in either bloodstream or procyclic forms of the parasite. Trypanosomes expressing a C-terminal tagged version of TbRPA12 were generated in order to purify RNA Pol I from both developmental stages. Tandem affinity purification (TAP) revealed a number of proteins associating with TbRPA12, some of which appeared to be stage-specific. Mass spectrometry allowed the identification of four subunits in addition to TbRPA12, namely TbRPA1, TbRPA2, TbRPC40 and one isoform of TbRPB5 (Tb1RPB5), as well as an unknown 30kDa protein and histones H2A and H3. Whereas these studies demonstrated that TbRPA1 was phosphorylated, no evidence for phosphorylation of TbRPA2 was found.
Collapse
Affiliation(s)
- David Walgraffe
- Laboratory of Molecular Parasitology, Department of Molecular Biology, IBMM, Free University of Brussels, 12, rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Metz A, Soret J, Vourc'h C, Tazi J, Jolly C. A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. J Cell Sci 2005; 117:4551-8. [PMID: 15331664 DOI: 10.1242/jcs.01329] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Exposure of cells to stressful conditions results in the rapid synthesis of a subset of specialized proteins termed heat shock proteins (HSPs) which function in protecting the cell against damage. The stress-induced activation of hsp genes is controlled by the heat shock transcription factor 1 (HSF1). At the cellular level, one of the most striking effects of stress is the rapid and reversible redistribution of HSF1 into a few nuclear structures termed nuclear stress granules which form primarily on the 9q12 locus in humans. Within these structures, HSF1 binds to satellite III repeated elements and drives the RNA polymerase II-dependent transcription of these sequences into stable RNAs which remain associated with the 9q12 locus for a certain time after synthesis. Other proteins, in particular splicing factors, were also shown to relocalize to the granules upon stress. Here, we investigated the role of stress-induced satellite III transcripts in the relocalization of splicing factors to the granules. We show that the recruitment of the two serine/arginine-rich (SR) proteins SF2/ASF and SRp30c requires the presence of stress-induced satellite III transcripts. In agreement with these findings, we identified the second RNA-recognition motif (RRM2) of hSF2/ASF as the motif required for the targeting to the granules, and we showed by immunoprecipitation that the endogenous hSF2/ASF protein is present in a complex with satellite III transcripts in stressed cells in vivo. Interestingly, satellite III transcripts also immunoprecipitate together with small nuclear ribonucleoproteins (snRNPs) in vivo whereas the intronless hsp70 transcripts do not, supporting the proposal that these transcripts are subject to splicing. Altogether, these data highlight the central role for satellite III transcripts in the targeting and/or retention of splicing factors into the granules upon stress.
Collapse
Affiliation(s)
- Alexandra Metz
- INSERM U309, Institut Albert Bonniot, Domaine de la Merci, 38706 La Tronche CEDEX, France
| | | | | | | | | |
Collapse
|
26
|
Kornblihtt AR, de la Mata M, Fededa JP, Munoz MJ, Nogues G. Multiple links between transcription and splicing. RNA (NEW YORK, N.Y.) 2004; 10:1489-98. [PMID: 15383674 PMCID: PMC1370635 DOI: 10.1261/rna.7100104] [Citation(s) in RCA: 367] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transcription and pre-mRNA splicing are extremely complex multimolecular processes that involve protein-DNA, protein-RNA, and protein-protein interactions. Splicing occurs in the close vicinity of genes and is frequently cotranscriptional. This is consistent with evidence that both processes are coordinated and, in some cases, functionally coupled. This review focuses on the roles of cis- and trans-acting factors that regulate transcription, on constitutive and alternative splicing. We also discuss possible functions in splicing of the C-terminal domain (CTD) of the RNA polymerase II (pol II) largest subunit, whose participation in other key pre-mRNA processing reactions (capping and cleavage/polyadenylation) is well documented. Recent evidence indicates that transcriptional elongation and splicing can be influenced reciprocally: Elongation rates control alternative splicing and splicing factors can, in turn, modulate pol II elongation. The presence of transcription factors in the spliceosome and the existence of proteins, such as the coactivator PGC-1, with dual activities in splicing and transcription can explain the links between both processes and add a new level of complexity to the regulation of gene expression in eukaryotes.
Collapse
Affiliation(s)
- Alberto R Kornblihtt
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE-CONICET, Ciudad Universitaria, Pabellón II (C1428EHA) Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
27
|
Delva L, Gallais I, Guillouf C, Denis N, Orvain C, Moreau-Gachelin F. Multiple functional domains of the oncoproteins Spi-1/PU.1 and TLS are involved in their opposite splicing effects in erythroleukemic cells. Oncogene 2004; 23:4389-99. [PMID: 15064749 DOI: 10.1038/sj.onc.1207578] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The hematopoietic transcription factor Spi-1/PU.1 is an oncoprotein participating to the malignant transformation of proerythroblasts in the Friend erythroleukemia or in the erythroleukemic process developed in spi-1 transgenic mice. Overexpression of Spi-1 in proerythroblasts blocks their differentiation. We have shown that Spi-1 promotes the use of the proximal 5'-splice site during the E1A pre-mRNA splicing and interferes with the effect of TLS (Translocated in LipoSarcoma) in this splicing assay. TLS was identified from chromosomal translocations in human liposarcoma and acute myeloid leukemia. Here, we determine the function of Spi-1 domains in splicing and in the interference with TLS. In transient transfection assays in erythroid cells, we show that the DNA binding domain cooperates with the transactivation domain or the PEST region of Spi-1 to modify the function of TLS in splicing. Interestingly, the 27 C-terminal amino acids, which determine the DNA binding activity of Spi-1, are necessary for the splicing function of Spi-1 as well as for its ability to interfere with TLS. Finally, we demonstrate that in leukemic proerythroblasts overexpressing Spi-1, TLS has lost its splicing effect. Thus, we hypothesize that oncogenic pathways in proerythroblasts may involve the ability of Spi-1 to alter splicing.
Collapse
Affiliation(s)
- Laurent Delva
- Inserm U528, Section de recherche, Institut Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
28
|
Robson H, Savendahl L, Phillip M, Wit JM. The Third European Growth Plate Working Group Symposium. 17th September 2003, Ljubljana, Slovenia. J Pediatr Endocrinol Metab 2004; 17:685-94. [PMID: 15198303 DOI: 10.1515/jpem.2004.17.4.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Helen Robson
- Department of Clinical Research, Christie Hospital NHS Trust, Manchester, UK.
| | | | | | | |
Collapse
|
29
|
Fomenkov A, Huang YP, Topaloglu O, Brechman A, Osada M, Fomenkova T, Yuriditsky E, Trink B, Sidransky D, Ratovitski E. P63 alpha mutations lead to aberrant splicing of keratinocyte growth factor receptor in the Hay-Wells syndrome. J Biol Chem 2003; 278:23906-14. [PMID: 12692135 DOI: 10.1074/jbc.m300746200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p63, a p53 family member, is required for craniofacial and limb development as well as proper skin differentiation. However, p63 mutations associated with the ankyloblepharon-ectodermal dysplasia-clefting (AEC) syndrome (Hay-Wells syndrome) were found in the p63 carboxyl-terminal region with a sterile alpha-motif. By two-hybrid screen we identified several proteins that interact with the p63alpha carboxyl terminus and its sterile alpha-motif, including the apobec-1-binding protein-1 (ABBP1). AEC-associated mutations completely abolished the physical interaction between ABBP1 and p63alpha. Moreover the physical association of p63alpha and ABBP1 led to a specific shift of FGFR-2 alternative splicing toward the K-SAM isoform essential for epithelial differentiation. We thus propose that a p63alpha-ABBP1 complex differentially regulates FGFR-2 expression by supporting alternative splicing of the K-SAM isoform of FGFR-2. The inability of mutated p63alpha to support this splicing likely leads to the inhibition of epithelial differentiation and, in turn, accounts for the AEC phenotype.
Collapse
Affiliation(s)
- Alexey Fomenkov
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Eukaryotic mRNA is processed by enzymes and packaged with proteins within nuclei to generate functional messenger ribonucleoprotein (mRNP) particles. Processing and packaging factors can interact with mRNA cotranscriptionally to form an early mRNP. Erroneous mRNP formation leads to nuclear retention and degradation of the mRNA. It therefore appears that one function of cotranscriptional mRNP assembly is to discard aberrant mRNPs early in their biogenesis. Cotranscriptional mRNP assembly may also enable the transcription machinery to respond to improper mRNP formation.
Collapse
Affiliation(s)
- Torben Heick Jensen
- Department of Molecular Biology, Aarhus University, C.F. Møllers Alle, Building 130, 8000 Aarhus C., Denmark.
| | | | | | | |
Collapse
|
31
|
Pardee TS, Ghazy MA, Ponticelli AS. Yeast and Human RNA polymerase II elongation complexes: evidence for functional differences and postinitiation recruitment of factors. EUKARYOTIC CELL 2003; 2:318-27. [PMID: 12684381 PMCID: PMC154848 DOI: 10.1128/ec.2.2.318-327.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immobilized DNA templates, glycerol gradient centrifugation, and native gel analysis were utilized to isolate and compare functional RNA polymerase II (RNAPII) elongation complexes from Saccharomyces cerevisiae and human cell nuclear extracts. Yeast elongation complexes blocked by incorporation of 3'-O-methyl-GTP into the nascent transcript exhibited a sedimentation coefficient of 35S, were less tightly associated to the template than their human counterparts, and displayed no detectable 3'-5' exonuclease activity on the associated transcript. In contrast, blocked human elongation complexes were more tightly bound to the template, and multiple forms were identified, with the largest exhibiting a sedimentation coefficient of 60S. Analysis of the associated transcripts revealed that a subset of the human elongation complexes exhibited strong 3'-5' exonuclease activity. Although isolated human preinitiation complexes were competent for efficient transcription, their ability to generate 60S elongation complexes was strikingly impaired. These findings demonstrate functional and size differences between S. cerevisiae and human RNAPII elongation complexes and support the view that the formation of mature elongation complexes involves recruitment of nuclear factors after the initiation of transcription.
Collapse
Affiliation(s)
- Timothy S Pardee
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214-3000, USA
| | | | | |
Collapse
|
32
|
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a highly dynamic post-translational modification of cytoplasmic and nuclear proteins. Although the function of this abundant modification is yet to be definitively elucidated, all O-GlcNAc proteins are phosphoproteins. Further, the serine and threonine residues substituted with O-GlcNAc are often sites of, or close to sites of, protein phosphorylation. This implies that there may be a dynamic interplay between these two post-translational modifications to regulate protein function. In this review, the functions of some of the proteins that are modified by O-GlcNAc will be considered in the context of the potential role of the O-GlcNAc modification. Furthermore, predictions will be made as to how cellular function and developmental regulation might be affected by changes in O-GlcNAc levels.
Collapse
Affiliation(s)
- Niall O'Donnell
- Department of Cellular and Molecular Medicine, The Howard Hughes Medical Institute, Glycobiology Research and Training Center, University of California San Diego, La Jolla 92093, USA
| |
Collapse
|
33
|
Matsuda KI, Ochiai I, Nishi M, Kawata M. Colocalization and ligand-dependent discrete distribution of the estrogen receptor (ER)alpha and ERbeta. Mol Endocrinol 2002; 16:2215-30. [PMID: 12351687 DOI: 10.1210/me.2002-0110] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To investigate the relationships between the loci expressing functions of estrogen receptor (ER)alpha and that of ERbeta, we analyzed the subnuclear distribution of ERalpha and ERbeta in response to ligand in single living cells using fusion proteins labeled with different spectral variants of green fluorescent protein. Upon activation with ligand treatment, fluorescent protein-tagged (FP)-ERbeta redistributed from a diffuse to discrete pattern within the nucleus, showing a similar time course as FP-ERalpha, and colocalized with FP-ERalpha in the same discrete cluster. Analysis using deletion mutants of ERalpha suggested that the ligand-dependent redistribution of ERalpha might occur through a large part of the receptor including at least the latter part of activation function (AF)-1, the DNA binding domain, nuclear matrix binding domain, and AF-2/ligand binding domain. In addition, a single AF-1 region within ERalpha homodimer, or a single DNA binding domain as well as AF-1 region within the ERalpha/ERbeta heterodimer, could be sufficient for the cluster formation. More than half of the discrete clusters of FP-ERalpha and FP-ERbeta were colocalized with hyperacetylated histone H4 and a component of the chromatin remodeling complex, Brg-1, indicating that ERs clusters might be involved in structural changes of chromatin.
Collapse
Affiliation(s)
- Ken-ichi Matsuda
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | | | | | | |
Collapse
|
34
|
Howe KJ. RNA polymerase II conducts a symphony of pre-mRNA processing activities. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:308-24. [PMID: 12213660 DOI: 10.1016/s0167-4781(02)00460-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA polymerase II (RNAP II) and its associated factors interact with a diverse collection of nuclear proteins during the course of precursor messenger RNA synthesis. This growing list of known contacts provides compelling evidence for the existence of large multifunctional complexes, a.k.a. transcriptosomes, within which the biosynthesis of mature mRNAs is coordinated. Recent studies have demonstrated that the unique carboxy-terminal domain (CTD) of the largest subunit of RNAP II plays an important role in recruiting many of these activities to the transcriptional machinery. Throughout the transcription cycle the CTD undergoes a variety of covalent and structural modifications which can, in turn, modulate the interactions and functions of processing factors during transcription initiation, elongation and termination. New evidence suggests that the possibility that interaction of some of these processing factors with the polymerase can affect its elongation rate. Besides the CTD, proteins involved in pre-mRNA processing can interact with general transcription factors (GTFs) and transcriptional activators, which associate with polymerase at promoters. This suggests a mechanism for the recruitment of specific processing activities to different transcription units. This harmonic integration of transcriptional and post-transcriptional activities, many of which once were considered to be functionally isolated within the cell, supports a general model for the coordination of gene expression by RNAP II within the nucleus.
Collapse
Affiliation(s)
- Kenneth James Howe
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
35
|
Abstract
Processing of RNA precursors to their mature form often occurs co-transcriptionally. Consequently, the ternary complex of DNA template, RNA polymerase and nascent RNA chain is the physiological substrate for factors that modify the nascent RNA by capping, splicing and cleavage/polyadenylation. mRNA production is thought to occur within a "factory" that contains the RNA polymerase II transcription machine and the processing machines. Newly discovered protein-protein contacts between RNA polymerase and factors that process mRNA precursors are beginning to illuminate how the "mRNA factory" works.
Collapse
Affiliation(s)
- David Bentley
- Department of Biochemistry and Molecular Genetics, UCHSC, B121, 4200 East 9th Avenue, Denver, CO 80262, USA.
| |
Collapse
|
36
|
Robert F, Blanchette M, Maes O, Chabot B, Coulombe B. A human RNA polymerase II-containing complex associated with factors necessary for spliceosome assembly. J Biol Chem 2002; 277:9302-6. [PMID: 11773074 PMCID: PMC4492735 DOI: 10.1074/jbc.m110516200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription and splicing are coordinated processes in mammalian cells. We have used affinity chromatography with immobilized transcription elongation factor SII to purify a protein complex that contains core RNA polymerase II (RNA Pol II), the general transcription initiation factors, and several splicing factors, including the U1, U2, and U4 small nuclear RNPs, the U2AF(65), and serine/arginine-rich proteins. The splicing factors and the transcription machinery co-purify through a gel filtration column and co-immunoprecipitate in experiments using an anti-U2AF(65) antibody, indicating that they are part of a unique complex. Although the RNA Pol II-containing complex does not possess splicing activity, it can complement small nuclear RNP-inactivated extracts and can promote the formation of a pre-spliceosome complex. Because interactions between components of the splicing and transcription machineries occur in the context of a complex containing a hypophosphorylated RNA Pol II capable of initiating transcription, our results suggest that the coupling between transcription and splicing begins before transcription initiation.
Collapse
Affiliation(s)
- Francois Robert
- Laboratory of Gene Transcription, Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | |
Collapse
|
37
|
Bogolyubov D, Parfenov V. Immunogold localization of RNA polymerase II and pre-mRNA splicing factors in Tenebrio molitor oocyte nuclei with special emphasis on karyosphere development. Tissue Cell 2001; 33:549-61. [PMID: 11827099 DOI: 10.1054/tice.2001.0210] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ultrastructural and immunomorphological characteristics of the developing karyosphere and extrachromosomal nuclear bodies (NBs) in Tenebrio molitor oocytes are presented. Three consecutive stages of karyosphere development were identified: reticular, compact and ring-shaped. At the beginning of the karyosphere development (reticular and compact stages), condensed chromosomes are associated with a fibrogranular material (FGM). The successive karyosphere development is accompanied by the reorganization of FGM into fibrogranular NBs. Special attention was given to the nuclear distribution of hyperphosphorylated and non-phosphorylated forms of RNA polymerase II (pol II) and pre-mRNA splicing factors (snRNPs and SC35 protein) during karyosphere development and NB formation. The immunoelectron microscopy revealed that two forms of pol II and splicing factors being assembled in FGM are deposited in appropriate NBs. Some NBs were also shown to contain coilin, a marker protein for Cajal (coiled) bodies. We suggest that different types of NBs appearing in T. molitor oocyte nuclei along with the cessation of transcriptional activity during the karyosphere development represent storage domains for inactive RNA transcription/processing machinery to later usage in early embryogenesis.
Collapse
Affiliation(s)
- D Bogolyubov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg.
| | | |
Collapse
|
38
|
Goldstrohm AC, Albrecht TR, Suñé C, Bedford MT, Garcia-Blanco MA. The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Mol Cell Biol 2001; 21:7617-28. [PMID: 11604498 PMCID: PMC99933 DOI: 10.1128/mcb.21.22.7617-7628.2001] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2001] [Accepted: 08/17/2001] [Indexed: 11/20/2022] Open
Abstract
CA150 represses RNA polymerase II (RNAPII) transcription by inhibiting the elongation of transcripts. The FF repeat domains of CA150 bind directly to the phosphorylated carboxyl-terminal domain of the largest subunit of RNAPII. We determined that this interaction is required for efficient CA150-mediated repression of transcription from the alpha(4)-integrin promoter. Additional functional determinants, namely, the WW1 and WW2 domains of CA150, were also required for efficient repression. A protein that interacted directly with CA150 WW1 and WW2 was identified as the splicing-transcription factor SF1. Previous studies have demonstrated a role for SF1 in transcription repression, and we found that binding of the CA150 WW1 and WW2 domains to SF1 correlated exactly with the functional contribution of these domains for repression. The binding specificity of the CA150 WW domains was found to be unique in comparison to known classes of WW domains. Furthermore, the CA150 binding site, within the carboxyl-terminal half of SF1, contains a novel type of proline-rich motif that may be recognized by the CA150 WW1 and WW2 domains. These results support a model for the recruitment of CA150 to repress transcription elongation. In this model, CA150 binds to the phosphorylated CTD of elongating RNAPII and SF1 targets the nascent transcript.
Collapse
Affiliation(s)
- A C Goldstrohm
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
39
|
Goldstrohm AC, Greenleaf AL, Garcia-Blanco MA. Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing. Gene 2001; 277:31-47. [PMID: 11602343 DOI: 10.1016/s0378-1119(01)00695-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nascent transcripts are the true substrates for many splicing events in mammalian cells. In this review we discuss transcription, splicing, and alternative splicing in the context of co-transcriptional processing of pre-mRNA. The realization that splicing occurs co-transcriptionally requires two important considerations: First, the cis-acting elements in the splicing substrate are synthesized at different times in a 5' to 3' direction. This dynamic view of the substrate implies that in a 100 kb intron the 5' splice site will be synthesized as much as an hour before the 3' splice site. Second, the transcription machinery and the splicing machinery, which are both complex and very large, are working in close proximity to each other. It is therefore likely that these two macromolecular machines interact, and recent data supporting this notion is discussed. We propose a model for co-transcriptional pre-mRNA processing that incorporates the concepts of splice site-tethering and dynamic exon definition. Also, we present a dynamic view of the alternative splicing of FGF-R2 and suggest that this view could be generally applicable to many regulated splicing events.
Collapse
Affiliation(s)
- A C Goldstrohm
- Department of Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
40
|
Dass B, Attaya EN, Michelle Wallace A, MacDonald CC. Overexpression of the CstF-64 and CPSF-160 polyadenylation protein messenger RNAs in mouse male germ cells. Biol Reprod 2001; 64:1722-9. [PMID: 11369601 DOI: 10.1095/biolreprod64.6.1722] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Messenger RNAs for several components of the transcriptional apparatus are greatly overexpressed in postmeiotic male germ cells in rodents (Schmidt and Schibler, Development 1995; 121:2373-2383). Because of the tight coupling of polyadenylation and transcription, we examined expression in germ cells of mRNAs for key polyadenylation factors. The mRNA for the 64 000 M(r) subunit of the cleavage stimulation factor (CstF-64) was expressed at least 250-fold greater in mouse testicular RNA than in liver RNA. RNA blot analysis showed that the mRNA for the 160 000 M(r) subunit of the cleavage and polyadenylation specificity factor was similarly overexpressed, as was the mRNA for the large subunit of RNA polymerase II. General transcription factors, such as the TATA-binding protein and transcription factor IIH, and splicing factors, such as components of the small nuclear ribonucleoproteins, were also expressed in meiotic and postmeiotic germ cells. The X-linked CstF-64 protein is expressed before and after but not during meiosis in the mouse (Wallace et al., Proc Natl Acad Sci U S A 1999; 96:6763-6768), which suggests that overexpression of mRNA transcription and processing factors plays an essential role in postmeiotic germ cell mRNA metabolism.
Collapse
Affiliation(s)
- B Dass
- Department of Cell Biology & Biochemistry and Southwest Cancer Center at University Medical Center, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | | | | | | |
Collapse
|
41
|
Abstract
The major functions of the cell nucleus, including transcription, pre-mRNA splicing and ribosome assembly, have been studied extensively by biochemical, genetic and molecular methods. An overwhelming amount of information about their molecular mechanisms is available. In stark contrast, very little is known about how these processes are integrated into the structural framework of the cell nucleus and how they are spatially and temporally co-ordinated within the three-dimensional confines of the nucleus. It is also largely unknown how nuclear architecture affects gene expression. In order to understand how genomes are organized, and how they function, the basic principles that govern nuclear architecture and function must be uncovered. Recent work combining molecular, biochemical and cell biological methods is beginning to shed light on how the nucleus functions and how genes are expressed in vivo. It has become clear that the nucleus contains distinct compartments and that many nuclear components are highly dynamic. Here we describe the major structural compartments of the cell nucleus and discuss their established and proposed functions. We summarize recent observations regarding the dynamic properties of chromatin, mRNA and nuclear proteins, and we consider the implications these findings have for the organization of nuclear processes and gene expression. Finally, we speculate that self-organization might play a substantial role in establishing and maintaining nuclear organization.
Collapse
Affiliation(s)
- M Dundr
- National Cancer Institute, NIH, 41 Library Drive, Building 41, Bethesda, MD 20892, USA
| | | |
Collapse
|
42
|
Fong N, Bentley DL. Capping, splicing, and 3' processing are independently stimulated by RNA polymerase II: different functions for different segments of the CTD. Genes Dev 2001; 15:1783-95. [PMID: 11459828 PMCID: PMC312735 DOI: 10.1101/gad.889101] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2001] [Accepted: 05/25/2001] [Indexed: 12/24/2022]
Abstract
Capping, splicing, and cleavage/polyadenylation of pre-mRNAs are interdependent events that are all stimulated in vivo by the carboxy-terminal domain (CTD) of RNA Pol II. We show that the CTD independently enhances splicing and 3' processing and that stimulation of splicing by enhancers is facilitated by the CTD. We provide evidence that stimulation of 3' processing by the CTD requires contact with the 50-kD subunit of the cleavage stimulation factor, CstF. Overexpression of the CTD-binding domain of CstF p50 had a dominant-negative effect on 3' processing without disrupting the CstF complex. The CTD comprises 52 heptad repeats. The CTD carboxyl terminus including heptads 27-52 supported capping, splicing, and 3' processing but the amino terminus supported only capping. We conclude that the CTD independently stimulates all three major pre-mRNA processing steps and that different regions of the CTD can serve distinct functions in pre-mRNA processing.
Collapse
Affiliation(s)
- N Fong
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Science Center (UCHSC), Denver, Colorado 80262, USA
| | | |
Collapse
|
43
|
Adams DJ, van der Weyden L, Mayeda A, Stamm S, Morris BJ, Rasko JE. ZNF265--a novel spliceosomal protein able to induce alternative splicing. J Cell Biol 2001; 154:25-32. [PMID: 11448987 PMCID: PMC2196870 DOI: 10.1083/jcb.200010059] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The formation of the active spliceosome, its recruitment to active areas of transcription, and its role in pre-mRNA splicing depends on the association of a number of multifunctional serine/arginine-rich (SR) proteins. ZNF265 is an arginine/serine-rich (RS) domain containing zinc finger protein with conserved pre-mRNA splicing protein motifs. Here we show that ZNF265 immunoprecipitates from splicing extracts in association with mRNA, and that it is able to alter splicing patterns of Tra2-beta1 transcripts in a dose-dependent manner in HEK 293 cells. Yeast two-hybrid analysis and immunoprecipitation indicated interaction of ZNF265 with the essential splicing factor proteins U1-70K and U2AF(35). Confocal microscopy demonstrated colocalization of ZNF265 with the motor neuron gene product SMN, the snRNP protein U1-70K, the SR protein SC35, and with the transcriptosomal components p300 and YY1. Transfection of HT-1080 cells with ZNF265-EGFP fusion constructs showed that nuclear localization of ZNF265 required the RS domain. Alignment with other RS domain-containing proteins revealed a high degree of SR dipeptide conservation. These data show that ZNF265 functions as a novel component of the mRNA processing machinery.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Alternative Splicing
- Amino Acid Sequence
- Arginine/chemistry
- Blotting, Western
- Cell Line
- Cell Nucleus/metabolism
- Cloning, Molecular
- Conserved Sequence
- Dose-Response Relationship, Drug
- Fluorescent Antibody Technique, Indirect
- Humans
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Plasmids/metabolism
- Precipitin Tests
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/physiology
- Sequence Homology, Amino Acid
- Serine/chemistry
- Spliceosomes/physiology
- Transfection
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- D J Adams
- The University of Sydney, Basic & Clinical Genomics Laboratory, Department of Physiology and Institute for Biomedical Research, Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Cramer P, Srebrow A, Kadener S, Werbajh S, de la Mata M, Melen G, Nogués G, Kornblihtt AR. Coordination between transcription and pre-mRNA processing. FEBS Lett 2001; 498:179-82. [PMID: 11412852 DOI: 10.1016/s0014-5793(01)02485-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large body of work has proved that transcription by RNA polymerase II and pre-mRNA processing are coordinated events within the cell nucleus. Capping, splicing and polyadenylation occur while transcription proceeds, suggesting that RNA polymerase II plays a role in the regulation of these events. The presence and degree of phosphorylation of the carboxy-terminal domain of RNA polymerase II large subunit is important for functioning of the capping enzymes, the assembly of spliceosomes and the binding of the cleavage/polyadenylation complex. Nuclear architecture and gene promoter structure have also been shown to play key roles in coupling between transcription and splicing.
Collapse
Affiliation(s)
- P Cramer
- Laboratorio de Fisiología y Biología Molecular, Departamento de Ciencias Biológicas, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Li Y, Chen ZY, Wang W, Baker CC, Krug RM. The 3'-end-processing factor CPSF is required for the splicing of single-intron pre-mRNAs in vivo. RNA (NEW YORK, N.Y.) 2001; 7:920-31. [PMID: 11421366 PMCID: PMC1370139 DOI: 10.1017/s1355838201010226] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We describe a new approach to elucidate the role of 3'-end processing in pre-mRNA splicing in vivo using the influenza virus NS1A protein. The effector domain of the NS1A protein, which inhibits the function of the CPSF and PABII factors of the cellular 3'-end-processing machinery, is sufficient for the inhibition of not only 3'-end formation but also the splicing of single-intron pre-mRNAs in vivo. We demonstrate that inhibition of the splicing of single-intron pre-mRNAs results from inhibition of 3'-end processing, thereby establishing that 3'-end processing is required for the splicing of a 3' terminal intron in vivo. Because the NS1A protein causes a global suppression of 3'-end processing in trans, we avoid the ambiguities caused by the activation of cryptic poly(A) sites that occurs when mutations are introduced into the AAUAAA sequence in the pre-mRNA. In addition, this strategy enabled us to establish that the function of a particular 3'-end-processing factor, namely CPSF, is required for the splicing of single-intron pre-mRNAs in vivo: splicing is inhibited only when the effector domain of the NS1A protein binds and inhibits the function of the 30-kDa CPSF protein in 3'-end formation. In contrast, the 3'-end processing factor PABII is not required for splicing. We discuss the implications of these results for cellular and influenza viral mRNA splicing.
Collapse
Affiliation(s)
- Y Li
- Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas at Austin, 78712, USA
| | | | | | | | | |
Collapse
|
46
|
Stoss O, Olbrich M, Hartmann AM, Konig H, Memmott J, Andreadis A, Stamm S. The STAR/GSG family protein rSLM-2 regulates the selection of alternative splice sites. J Biol Chem 2001; 276:8665-73. [PMID: 11118435 DOI: 10.1074/jbc.m006851200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We identified the rat Sam68-like mammalian protein (rSLM-2), a member of the STAR (signal transduction and activation of RNA) protein family as a novel splicing regulatory protein. Using the yeast two-hybrid system, coimmunoprecipitations, and pull-down assays, we demonstrate that rSLM-2 interacts with various proteins involved in the regulation of alternative splicing, among them the serine/arginine-rich protein SRp30c, the splicing-associated factor YT521-B and the scaffold attachment factor B. rSLM-2 can influence the splicing pattern of the CD44v5, human transformer-2beta and tau minigenes in cotransfection experiments. This effect can be reversed by rSLM-2-interacting proteins. Employing rSLM-2 deletion variants, gel mobility shift assays, and linker scan mutations of the CD44 minigene, we show that the rSLM-2-dependent inclusion of exon v5 of the CD44 pre-mRNA is dependent on a short purine-rich sequence. Because the related protein of rSLM-2, Sam68, is believed to play a role as an adapter protein during signal transduction, we postulate that rSLM-2 is a link between signal transduction pathways and pre-mRNA processing.
Collapse
Affiliation(s)
- O Stoss
- Max-Planck Institute of Neurobiology, Am Klopferspitz 18a, D-82152 Martinsried, the Forschungszentrum Karlsruhe, Institut für Genetik, Postfach 3640, D-76021 Karlsruhe, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Cajal bodies are small nuclear organelles first described nearly 100 years ago by Ramón y Cajal in vertebrate neural tissues. They have since been found in a variety of animal and plant nuclei, suggesting that they are involved in basic cellular processes. Cajal bodies contain a marker protein of unknown function, p80-coilin, and many components involved in transcription and processing of nuclear RNAs. Among these are the three eukaryotic RNA polymerases and factors required for transcribing and processing their respective nuclear transcripts: mRNA, rRNA, and pol III transcripts. A model is discussed in which Cajal bodies are the sites for preassembly of transcriptosomes, unitary particles involved in transcription and processing of RNA. A parallel is drawn to the nucleolus and the preassembly of ribosomes, which are unitary particles involved in translation of proteins.
Collapse
Affiliation(s)
- J G Gall
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21210, USA.
| |
Collapse
|
48
|
Abstract
The past decade has seen an explosive increase in information about regulation of eukaryotic gene transcription, especially for protein-coding genes. The most striking advances in our knowledge of transcriptional regulation involve the chromatin template, the large complexes recruited by transcriptional activators that regulate chromatin structure and the transcription apparatus, the holoenzyme forms of RNA polymerase II involved in initiation and elongation, and the mechanisms that link mRNA processing with its synthesis. We describe here the major advances in these areas, with particular emphasis on the modular complexes associated with RNA polymerase II that are targeted by activators and other regulators of mRNA biosynthesis.
Collapse
Affiliation(s)
- T I Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
49
|
Mohamed MR, Latner DR, Condit RC, Niles EG. Interaction between the J3R subunit of vaccinia virus poly(A) polymerase and the H4L subunit of the viral RNA polymerase. Virology 2001; 280:143-52. [PMID: 11162828 DOI: 10.1006/viro.2000.0749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
J3R, the 39-kDa subunit of vaccinia virus poly(A) polymerase, is a multifunctional protein that catalyzes (nucleoside-2'-O-)-methyltransferase activity, serves as a poly(A) polymerase stimulatory factor, and acts as a postreplicative positive transcription elongation factor. Prior results support an association between poly(A) polymerase and the virion RNA polymerase. A possible direct interaction between J3R and H4L subunit of virion RNA polymerase was evaluated. J3R was shown to specifically bind to H4L amino acids 235-256, C terminal to NPH I binding site on H4L. H4L binds to the C-terminal region of J3R between amino acids 169 and 333. The presence of a J3R binding site near to the NPH I binding region on H4L led us to evaluate a physical interaction between NPH I and J3R. The NPH I binding site was located on J3R between amino acids 169 and 249, and J3R was shown to bind to NPH I between amino acids 457 and 524. To evaluate a role for J3R in early gene mRNA synthesis, transcription termination, and/or release, a transcription-competent extract prepared from cells infected with mutant virus lacking J3R, J3-7. Analysis of transcription activity demonstrated that J3R is not required for early mRNA synthesis and is not an essential factor in early gene transcription termination or transcript release in vitro. J3R interaction with NPH I and H4L may serve as a docking site for J3R on the virion RNA polymerase, linking transcription to mRNA cap formation and poly(A) addition.
Collapse
Affiliation(s)
- M R Mohamed
- Department of Biochemistry, SUNY School of Medicine and Biomedical Science at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
50
|
Morris DP, Greenleaf AL. The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 2000; 275:39935-43. [PMID: 10978320 DOI: 10.1074/jbc.m004118200] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We showed previously that the WW domain of the prolyl isomerase, Ess1, can bind the phosphorylated carboxyl-terminal domain (phospho-CTD) of the largest subunit of RNA Polymerase II. Analysis of phospho-CTD binding by four other WW domain-containing Saccharomyces cerevisiae proteins indicates the splicing factor, Prp40, and the RNA polymerase II ubiquitin ligase, Rsp5, can also bind the phospho-CTD. The identification of Prp40 as a phospho-CTD binding protein represents the first demonstration of direct interaction between a documented splicing factor and the phospho-CTD. Domain dissection studies reveal that phospho-CTD binding occurs at multiple locations in Prp40, including sites in both the WW and FF domain regions. Because the conserved repeats of the CTD make it an ideal ligand for multi-site binding events, the implications of multi-site binding are discussed. Our data suggest a mechanism by which the phospho-CTD of elongating RNA polymerase II facilitates commitment complex formation by juxtaposing the 5' and 3' splice sites.
Collapse
Affiliation(s)
- D P Morris
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|