1
|
He W, Liu W, Liu X, Tan W. The mechanism of L1 cell adhesion molecule interacting with protein tyrosine kinase 2 to regulate the focal adhesion kinase-growth factor receptor-bound protein 2-son of sevenless-rat sarcoma pathway in the identification and treatment of type I high-risk endometrial cancer. Cytojournal 2024; 21:34. [PMID: 39563667 PMCID: PMC11574687 DOI: 10.25259/cytojournal_50_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/06/2024] [Indexed: 11/21/2024] Open
Abstract
Objective The objective of this study was to investigate how L1 cell adhesion molecule (L1CAM) interacting with protein tyrosine kinase 2 (PTK2) affects endometrial cancer (EC) progression and determine its association with the focal adhesion kinase (FAK)-growth factor receptor-bound protein 2 (GRB2)-son of sevenless (SOS)-rat sarcoma (RAS) pathway. EC is a female cancer of major concern in the world, and its incidence has increased rapidly in recent years. L1CAM is considered a reliable marker of poor prognosis in patients with EC. Material and Methods A single-center and prospective study was conducted using data from the Cancer Genome Atlas and samples from normal and EC tissues to explore the differential expression of L1CAM. Additional experimental models included human immortalized endometrial epithelium cells (hEECs) and EC cell lines such as KLE, RL95-2, and Ishikawa. L1CAM expression was regulated using lentiviruses designed for either overexpression or interference, and PTK2/focal adhesion kinase (FAK) signaling was inhibited with PF431396. Transfected KLE cells were injected into mice, and tumor growth was monitored over 14 days. Cellular proliferation and survival were assessed using cell counting kit, colony formation, and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate (dUTP) nick-end labeling assays. Metastatic behavior was evaluated through Transwell assays for cell migration and invasion. The expression levels of matrix metallopeptidase (MMP) 2 and MMP9 were determined by Western blot. In addition, the activation of the FAK-GRB2-SOS-RAS pathway was examined by assessing the protein levels of FAK, GRB2, SOS, and RAS. Results There was a significant difference in L1CAM expression between EC tumor tissues and normal tissues, and L1CAM messenger RNA (1.85-fold) and L1CAM protein (2.59-fold) were significantly more expressed in EC tissues (P < 0.01) than in normal tissues. The tumor growth of L1CAM overexpressing EC cells was faster than that of negative control EC cells (6.43 fold; P < 0.001). L1CAM promoted the expression of FAK (1.43-2.72-fold; P < 0.001); enhanced EC cell proliferation (P < 0.01), survival and motility (P < 0.001), migration (P < 0.001), and invasion (P < 0.001); and activated the FAK-GRB2-SOS-RAS pathway, all of which were reversed when FAK expression was not upregulated (P < 0.001). Conclusion By upregulating PTK2 and its encoded protein FAK, L1CAM was found to promote tumor progression and increase the activation of the FAK-GRB2-SOS-RAS pathway. These findings establish L1CAM and PTK2 as reference genes for poor prognostic prediction in EC and as targets for EC therapy, providing a valuable basis for distinguishing between benign and malignant endometrial conditions and justifying the necessity of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Wei He
- Department of Gynaecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Liu
- Department of Gynaecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiumei Liu
- Department of Gynecology and Oncology, Maternal and Child Care Health Hospital of Qinhuangdao, Qinhuangdao, China
| | - Wenhua Tan
- Department of Gynaecology and Obstetrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Sutanto H. Mechanobiology of Type 1 hypersensitivity: Elucidating the impacts of mechanical forces in allergic reactions. MECHANOBIOLOGY IN MEDICINE 2024; 2:100041. [PMID: 40395452 PMCID: PMC12082325 DOI: 10.1016/j.mbm.2024.100041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 05/22/2025]
Abstract
Type 1 hypersensitivity involves an exaggerated immune reaction triggered by allergen exposure, leading to rapid release of inflammatory mediators. Meanwhile, mechanobiology explores how physical forces influence cellular processes, and recent research underscores its relevance in allergic reactions. This review provides a concise overview of Type 1 hypersensitivity, highlighting the pivotal role of mast cells and immunoglobulin E (IgE) antibodies in orchestrating allergic reactions. Recognizing the dynamic nature of cellular responses in allergies, this study subsequently delves into the emerging field of mechanobiology and its significance in understanding the mechanical forces governing immune cell behavior. Furthermore, molecular forces during mast cell activation and degranulation are explored, elucidating the mechanical aspects of IgE binding and cytoskeletal rearrangements. Next, we discuss the intricate interplay between immune cells and the extracellular matrix, emphasizing the impact of matrix stiffness on cellular responses. Additionally, we examine key mechanosensitive signaling pathways, including the mitogen-activated protein kinase (MAPK) pathway, Rho guanosine triphosphatase (GTPase) and integrin-mediated focal adhesion signaling, shedding light on their contributions to hypersensitivity reactions. This interplay of mechanobiology and Type 1 hypersensitivity provides insights into potential therapeutic targets and biomarkers, paving the way for better clinical management of Type 1 hypersensitivity reactions.
Collapse
Affiliation(s)
- Henry Sutanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
3
|
Cruz-Soca M, Faundez-Contreras J, Córdova-Casanova A, Gallardo FS, Bock-Pereda A, Chun J, Casar JC, Brandan E. Activation of skeletal muscle FAPs by LPA requires the Hippo signaling via the FAK pathway. Matrix Biol 2023; 119:57-81. [PMID: 37137584 DOI: 10.1016/j.matbio.2023.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a lysophospholipid that signals through six G-protein coupled receptors (LPARs), LPA1 to LPA6. LPA has been described as a potent modulator of fibrosis in different pathologies. In skeletal muscle, LPA increases fibrosis-related proteins and the number of fibro/adipogenic progenitors (FAPs). FAPs are the primary source of ECM-secreting myofibroblasts in acute and chronic damage. However, the effect of LPA on FAPs activation in vitro has not been explored. This study aimed to investigate FAPs' response to LPA and the downstream signaling mediators involved. Here, we demonstrated that LPA mediates FAPs activation by increasing their proliferation, expression of myofibroblasts markers, and upregulation of fibrosis-related proteins. Pretreatment with the LPA1/LPA3 antagonist Ki16425 or genetic deletion of LPA1 attenuated the LPA-induced FAPs activation, resulting in decreased expression of cyclin e1, α-SMA, and fibronectin. We also evaluated the activation of the focal adhesion kinase (FAK) in response to LPA. Our results showed that LPA induces FAK phosphorylation in FAPs. Treatment with the P-FAK inhibitor PF-228 partially prevented the induction of cell responses involved in FAPs activation, suggesting that this pathway mediates LPA signaling. FAK activation controls downstream cell signaling within the cytoplasm, such as the Hippo pathway. LPA induced the dephosphorylation of the transcriptional coactivator YAP (Yes-associated protein) and promoted direct expression of target pathway genes such as Ctgf/Ccn2 and Ccn1. The blockage of YAP transcriptional activity with Super-TDU further confirmed the role of YAP in LPA-induced FAPs activation. Finally, we demonstrated that FAK is required for LPA-dependent YAP dephosphorylation and the induction of Hippo pathway target genes. In conclusion, LPA signals through LPA1 to regulate FAPs activation by activating FAK to control the Hippo pathway.
Collapse
Affiliation(s)
- Meilyn Cruz-Soca
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Jennifer Faundez-Contreras
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Adriana Córdova-Casanova
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Felipe S Gallardo
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Alexia Bock-Pereda
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Juan Carlos Casar
- Departamento de Neurología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Brandan
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330025, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
4
|
Collagen XV Promotes ER Stress-Induced Inflammation through Activating Integrin β1/FAK Signaling Pathway and M1 Macrophage Polarization in Adipose Tissue. Int J Mol Sci 2021; 22:ijms22189997. [PMID: 34576160 PMCID: PMC8465275 DOI: 10.3390/ijms22189997] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Collagen XV (Col XV), a basement membrane (BM) component, is highly expressed in adipose tissue, and studies have found that Col XV is related to extracellular matrix (ECM) remodeling involving in adipose tissue fibrosis and inflammation. Furthermore, the ECM is essential for maintaining normal development and tissue function. In this study, we found that Col XV is related to the endoplasmic reticulum stress (ERS) and inflammation of adipose tissue. Moreover, we found that overexpression of Col XV in mice could cause macrophages to infiltrate white adipose tissue (iWAT). At the same time, the expression of the ERS sensor IRE1α (Inositol-Requiring Enzyme-1α) was significantly up-regulated, which intensified the inflammation of adipose tissue and the polarization of M1 macrophages after the overexpression of Col XV in mice. In addition, after overexpression of Col XV, the intracellular Ca2+ concentration was significantly increased. Using focal adhesion kinase (FAK) inhibitor PF573228, we found that PF-573228 inhibited the phosphorylation of FAK and reversed the upward trend of Col XV-induced protein expression levels of IRE1α, C/EBP-homologous protein (CHOP), and 78 kDa glucose-regulated protein (GRP78). After treatment with IRE1α inhibitor STF-083010, the results showed that the expression of adipocyte inflammation-related genes interleukin 6 (IL-6) and tumor necrosis factor α (TNFα) significantly were decreased. Our results demonstrate that Col XV induces ER-stress in adipocytes by activating the Integrinβ1/FAK pathway and disrupting the intracellular Ca2+ balance. At the same time, Col XV regulates the inflammation induced by ER stress in adipocytes by promoting IRE1α/XBP1 (X-Box binding protein 1) signaling. Our study provides new ideas for solving the problems of adipose tissue metabolism disorders caused by abnormal accumulation of ECM.
Collapse
|
5
|
Chong ZX, Yeap SK, Ho WY. Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma. Pharmacol Res 2021; 172:105818. [PMID: 34400316 DOI: 10.1016/j.phrs.2021.105818] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/01/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is one of the most prevalent primary bone tumors with a high metastatic and recurrence rate with poor prognosis. MiRNAs are short and non-coding RNAs that could regulate various cellular activities and one of them is the epithelial-to-mesenchymal transition (EMT). Osteosarcoma cells that have undergone EMT would lose their cellular polarity and acquire invasive and metastatic characteristics. Our literature search showed that many pre-clinical and clinical studies have reported the roles of miRNAs in modulating the EMT process in osteosarcoma and compared to other cancers like breast cancer, there is a lack of review article which effectively summarizes the various roles of EMT-regulating miRNAs in osteosarcoma. This review, therefore, was aimed to discuss and summarize the EMT-promoting and EMT-suppressing roles of different miRNAs in osteosarcoma. The review would begin with the discussion on the concepts and principles of EMT, followed by the exploration of the diverse roles of EMT-regulating miRNAs in osteosarcoma. Subsequently, the potential use of miRNAs as prognostic biomarkers in osteosarcoma to predict the likelihood of metastases and as therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
6
|
Wang Z, Zhang L, Labib M, Chen H, Wei M, Poudineh M, Green BJ, Duong B, Das J, Ahmed S, Sargent EH, Kelley SO. Peptide-Functionalized Nanostructured Microarchitectures Enable Rapid Mechanotransductive Differentiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41030-41037. [PMID: 31600052 DOI: 10.1021/acsami.9b13694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microenvironmental factors play critical roles in regulating stem cell fate, providing a rationale to engineer biomimetic microenvironments that facilitate rapid and effective stem cell differentiation. Three-dimensional (3D) hierarchical microarchitectures have been developed to enable rapid neural differentiation of multipotent human mesenchymal stromal cells (HMSCs) via mechanotransduction. However, low cell viability during long-term culture and poor cell recovery efficiency from the architectures were also observed. Such problems hinder further applications of the architectures in stem cell differentiation. Here, we present improved 3D nanostructured microarchitectures functionalized with cell-adhesion-promoting arginylglycylaspartic acid (RGD) peptides. These RGD-functionalized architectures significantly upregulated long-term cell viability and facilitated effective recovery of differentiated cells from the architectures while maintaining high differentiation efficiency. Efficient recovery of highly viable differentiated cells enabled the downstream analysis of morphology and protein expression to be performed. Remarkably, even after the removal of the mechanical stimulus provided by the 3D microarchitectures, the recovered HMSCs showed a neuron-like elongated morphology for 10 days and consistently expressed microtubule-associated protein 2, a mature neural marker. RGD-functionalized nanostructured microarchitectures hold great potential to guide effective differentiation of highly viable stem cells.
Collapse
Affiliation(s)
- Zongjie Wang
- The Edward S. Rogers Sr., Department of Electrical & Computer Engineering , University of Toronto , Toronto M5S 3G4 , Canada
- Institute for Biomaterials and Biomedical Engineering , University of Toronto , Toronto M5S 3G9 , Canada
| | - Libing Zhang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| | - Haijie Chen
- The Edward S. Rogers Sr., Department of Electrical & Computer Engineering , University of Toronto , Toronto M5S 3G4 , Canada
| | - Mingyang Wei
- The Edward S. Rogers Sr., Department of Electrical & Computer Engineering , University of Toronto , Toronto M5S 3G4 , Canada
| | - Mahla Poudineh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| | - Brenda J Green
- Institute for Biomaterials and Biomedical Engineering , University of Toronto , Toronto M5S 3G9 , Canada
| | - Bill Duong
- Department of Biochemistry, Faculty of Medicine , University of Toronto , Toronto M5S 1A8 , Canada
| | - Jagotamoy Das
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr., Department of Electrical & Computer Engineering , University of Toronto , Toronto M5S 3G4 , Canada
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering , University of Toronto , Toronto M5S 3G9 , Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
- Department of Biochemistry, Faculty of Medicine , University of Toronto , Toronto M5S 1A8 , Canada
| |
Collapse
|
7
|
Andisha NM, McMillan DC, Gujam FJA, Roseweir A, Edwards J. The relationship between phosphorylation status of focal adhesion kinases, molecular subtypes, tumour microenvironment and survival in patients with primary operable ductal breast cancer. Cell Signal 2019; 60:91-99. [PMID: 30981841 DOI: 10.1016/j.cellsig.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Despite advances in therapies to treat breast cancer, over 100,000 patients die in the UK of this disease per year, highlighting the need to develop effect predictive and prognostic markers for patients with primary operable ductal breast cancer. Therefore, the aim of the present study was to examine the relationship between membranous, cytoplasmic and nuclear expression of focal adhesion kinase (phosphorylated at Y 397, Y 861 and Y 925), molecular subtypes, tumour microenvironment and survival in patients with primary operable ductal breast cancer. METHODS Four hundred and seventy-four patients presenting between 1995 and 1998 with primary operable ductal breast cancer were included in this study. Using tissue microarrays expression of membranous, cytoplasmic and nuclear tumour cell phosphorylation of FAK at Y397, Y861 and Y925 was assessed, and associations with clinicopathological characteristics, tumour microenvironment and cancer-specific survival (CSS) were examined. RESULTS No significant association was observed for ph-FAK Y861 with survival at all sites. However, high expression of membranous ph-FAK Y397 was associated with increased tumour grade (P < .001), molecular subtypes (P < .001), increased tumour necrosis (P < .001), high Klintrup-Mäkinen grade (P < .001), increased CD138+ plasma cells (P = .031), endocrine therapy (P = .001) and poor cancer specific survival (P = .040). Similarly, high expression of nuclear ph-FAK Y397 was associated with decreased age (P = .042), increased CD138+ plasma cells (P = .001) and poor cancer specific survival (P = .003). Furthermore, high expression of cytoplasmic ph-FAK Y925 was associated with decreased tumour grade (P < .001), less involved lymph node (P = .020), molecular subtypes (P < .001), decreased tumour necrosis (P < .001), low Klintrup-Mäkinen grade (P < .001), decreased CD4+ T-cells (P = .006), decreased CD138+ plasma cells (P = .034), endocrine therapy (P < .001), chemotherapy (P = .048), and improved cancer specific survival (P = .044). On multivariate analysis, high expression of nuclear ph-FAK Y397 was independently associated with reduced cancer specific survival (P = .017). CONCLUSION The results of the present study show that membranous and nuclear ph-FAK Y397 and cytoplasmic ph-FAK Y925 were associated with prognosis in patients with primary operable ductal breast cancer. In addition, high expression of nuclear ph-FAK Y397 was an independent prognostic factor in patients with primary operable ductal breast cancer and could be incorporated into clinical practice.
Collapse
Affiliation(s)
- Najla M Andisha
- Academic Unit of Surgery, College of Medical, Veterinary and Life Sciences-University of Glasgow, Royal Infirmary, Glasgow, UK; Unit of Gastrointestinal cancer and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences-University of Glasgow, Glasgow, UK.
| | - Donald C McMillan
- Academic Unit of Surgery, College of Medical, Veterinary and Life Sciences-University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Fadia J A Gujam
- Academic Unit of Surgery, College of Medical, Veterinary and Life Sciences-University of Glasgow, Royal Infirmary, Glasgow, UK; Unit of Gastrointestinal cancer and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences-University of Glasgow, Glasgow, UK
| | - Antonia Roseweir
- Unit of Gastrointestinal cancer and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences-University of Glasgow, Glasgow, UK
| | - Joanne Edwards
- Unit of Gastrointestinal cancer and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences-University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Luo L, Matthews JD, Robinson BS, Jones RM. Vibrio parahaemolyticus VopA Is a Potent Inhibitor of Cell Migration and Apoptosis in the Intestinal Epithelium of Drosophila melanogaster. Infect Immun 2019; 87:e00669-18. [PMID: 30617204 PMCID: PMC6386545 DOI: 10.1128/iai.00669-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/22/2018] [Indexed: 11/20/2022] Open
Abstract
Animal models have played a key role in providing an understanding of the mechanisms that govern the pathophysiology of intestinal diseases. To expand on the repertoire of organisms available to study enteric diseases, we report on the use of the Drosophila melanogaster model to identify a novel function of an effector protein secreted by Vibrio parahaemolyticus, which is an enteric pathogen found in contaminated seafood. During pathogenesis, V. parahaemolyticus secretes effector proteins that usurp the host's innate immune signaling pathways, thus allowing the bacterium to evade detection by the innate immune system. One secreted effector protein, VopA, has potent inhibitory effects on mitogen-activated protein kinase (MAPK) signaling pathways via the acetylation of critical residues within the catalytic loops of mitogen-activated protein kinase kinases (MAPKKs). Using the Drosophila model and cultured mammalian cells, we show that VopA also has potent modulating activity on focal adhesion complex (FAC) proteins, where VopA markedly reduced the levels of focal adhesion kinase (FAK) phosphorylation at Ser910, whereas the phosphorylation levels of FAK at Tyr397 and Tyr861 were markedly increased. Cultured cells expressing VopA were also impaired in their ability to migrate and repopulate areas subjected to a scratch wound. Consistently, expression of VopA in Drosophila midgut enterocytes disrupted the normal enterocyte arrangement. Finally, VopA inhibited apoptosis in both Drosophila tissues and mammalian cultured cells. Together, our data show that VopA can alter normal intestinal homeostatic processes to facilitate opportunities for V. parahaemolyticus to prolong infection within the host.
Collapse
Affiliation(s)
- Liping Luo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jason D Matthews
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brian S Robinson
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rheinallt M Jones
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Kaburagi T, Kizuka Y, Kitazume S, Taniguchi N. The Inhibitory Role of α2,6-Sialylation in Adipogenesis. J Biol Chem 2016; 292:2278-2286. [PMID: 28031460 DOI: 10.1074/jbc.m116.747667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/17/2016] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue plays critical roles in obesity and related diseases such as diabetes and cardiovascular diseases. Previous reports suggest that glycans, the most common posttranslational modifications, are involved in obesity-related diseases, but what type of glycan regulates adipogenesis during obesity remains unclear. In this study, we first quantified the mRNA levels of 167 genes (encoding 144 glycosyltransferases and 23 related enzymes) in visceral adipose tissues (VATs) from control mice and high-fat diet (HFD)-induced obese mice. We found that a gene encoding β-galactoside α2,6-sialyltransferase-1 (St6gal1), a key enzyme responsible for the biosynthesis of α2,6-linked sialic acid in N-linked glycans, was most down-regulated in VATs from obese mice. We confirmed the reduction in α2,6-sialic acid in VATs from obese mice and differentiated adipocyte model 3T3-L1 cells. Using proteomic analysis, integrin-β1 was identified as one of the target α2,6-sialylated proteins in adipose tissues, and phosphorylation of its downstream molecule focal adhesion kinase was found to be decreased after HFD feeding. St6gal1 overexpression in differentiating 3T3-L1 cells inhibited adipogenesis with increased phosphorylation of focal adhesion kinase. Furthermore, St6gal1 knockout mice exhibited increased bodyweight and VAT weight after HFD feeding. The down-regulation of St6gal1 during adipogenesis was canceled by treatment with a DNA methyltransferase inhibitor, suggesting an involvement of epigenetic DNA methylation in St6gal1 silencing. Our findings suggest that ST6GAL1 has an inhibitory role in adipogenesis through integrin-β1 activation, providing new insights into the roles and regulation mechanisms of glycans in adipocytes during obesity.
Collapse
Affiliation(s)
- Tomoko Kaburagi
- From the Department of Health Science, Faculty of Sports and Health Sciences, Daito Bunka University, Higashi-Matsuyama, Saitama 355-8681, Japan and .,the Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yasuhiko Kizuka
- the Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Shinobu Kitazume
- the Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Naoyuki Taniguchi
- the Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Xanthine Oxidase-Derived ROS Display a Biphasic Effect on Endothelial Cells Adhesion and FAK Phosphorylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9346242. [PMID: 27528888 PMCID: PMC4978831 DOI: 10.1155/2016/9346242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 11/17/2022]
Abstract
In pathological situations such as ischemia-reperfusion and acute respiratory distress syndrome, reactive oxygen species (ROS) are produced by different systems which are involved in endothelial cells injury, ultimately leading to severe organ dysfunctions. The aim of this work was to study the effect of ROS produced by hypoxanthine-xanthine oxidase (Hx-XO) on the adhesion of human umbilical vein endothelial cells (HUVEC) and on the signaling pathways involved. Results show that Hx-XO-derived ROS induced an increase in HUVEC adhesion in the early stages of the process (less than 30 min), followed by a decrease in adhesion in the later stages of the process. Interestingly, Hx-XO-derived ROS induced the same biphasic effect on the phosphorylation of the focal adhesion kinase (FAK), a nonreceptor tyrosine kinase critical for cell adhesion, but not on ERK1/2 phosphorylation. The biphasic effect was not seen with ERK1/2 where a decrease in phosphorylation only was observed. Wortmannin, a PI3-kinase inhibitor, inhibited ROS-induced cell adhesion and FAK phosphorylation. Orthovanadate, a protein tyrosine phosphatase inhibitor, and Resveratrol (Resv), an antioxidant agent, protected FAK and ERK1/2 from dephosphorylation and HUVEC from ROS-induced loss of adhesion. This study shows that ROS could have both stimulatory and inhibitory effects on HUVEC adhesion and FAK phosphorylation and suggests that PI3-kinase and tyrosine phosphatase control these effects.
Collapse
|
11
|
Wang S, Xie J, Li J, Liu F, Wu X, Wang Z. Cisplatin suppresses the growth and proliferation of breast and cervical cancer cell lines by inhibiting integrin β5-mediated glycolysis. Am J Cancer Res 2016; 6:1108-1117. [PMID: 27294003 PMCID: PMC4889724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/18/2016] [Indexed: 06/06/2023] Open
Abstract
Cancer cells harbor lower energy consumption after rounds of anticancer drugs, but the underlying mechanism remains unclear. In this study, we investigated metabolic alterations in cancer cells exposed to cisplatin. The present study exhibited cisplatin, known as a chemotherapeutic agent interacting with DNA, also acted as an anti-metabolic agent. We found that glycolysis levels of breast and cervical cancer cells were reduced after cisplatin treatment, resulting in cells growth and proliferation inhibition. We demonstrated that cisplatin suppressed glycolysis-related proteins expression, including glucose transporter 1 (GLUT1), glucose transporter 4 (GLUT4) and lactate dehydrogenase B (LDHB), through down-regulating integrin β5 (ITGB5)/focal adhesion kinase (FAK) signaling pathway. ITGB5 overexpression rescued cisplatin-induced inhibition of cancer cell glycolysis, growth and proliferation. Conclusively, we reveal a novel insight into cisplatin-induced anticancer mechanism, suggesting alternative strategies to the current therapeutic approaches of targeting ITGB5, as well as of a combination of cisplatin with glucose up-regulation chemotherapeutic agents to enhance anticancer effect.
Collapse
Affiliation(s)
- Shaojia Wang
- Cancer institute and Department of Gynecological Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University270 Dong’an Road, Shanghai 200032, China
| | - Jie Xie
- Department of Medical Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University270 Dong’an Road, Shanghai 200032, China
| | - Jiajia Li
- Cancer institute and Department of Gynecological Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University270 Dong’an Road, Shanghai 200032, China
| | - Fei Liu
- Cancer institute and Department of Gynecological Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University270 Dong’an Road, Shanghai 200032, China
| | - Xiaohua Wu
- Cancer institute and Department of Gynecological Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
| | - Ziliang Wang
- Cancer institute and Department of Gynecological Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Medical Oncology, Fudan University Shanghai Cancer CenterShanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University270 Dong’an Road, Shanghai 200032, China
| |
Collapse
|
12
|
Nam SH, Kang M, Ryu J, Kim HJ, Kim D, Kim DG, Kwon NH, Kim S, Lee JW. Suppression of lysyl-tRNA synthetase, KRS, causes incomplete epithelial-mesenchymal transition and ineffective cell‑extracellular matrix adhesion for migration. Int J Oncol 2016; 48:1553-60. [PMID: 26891990 DOI: 10.3892/ijo.2016.3381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 11/05/2022] Open
Abstract
The cell-adhesion properties of cancer cells can be targeted to block cancer metastasis. Although cytosolic lysyl-tRNA synthetase (KRS) functions in protein synthesis, KRS on the plasma membrane is involved in cancer metastasis. We hypothesized that KRS is involved in cell adhesion-related signal transduction for cellular migration. To test this hypothesis, colon cancer cells with modulated KRS protein levels were analyzed for cell-cell contact and cell-substrate adhesion properties and cellular behavior. Although KRS suppression decreased expression of cell-cell adhesion molecules, cells still formed colonies without being scattered, supporting an incomplete epithelial mesenchymal transition. Noteworthy, KRS-suppressed cells still exhibited focal adhesions on laminin, with Tyr397-phopshorylated focal adhesion kinase (FAK), but they lacked laminin-adhesion-mediated extracellular signal-regulated kinase (ERK) and paxillin activation. KRS, p67LR and integrin α6β1 were found to interact, presumably to activate ERK for paxillin expression and Tyr118 phosphorylation even without involvement of FAK, so that specific inhibition of ERK or KRS in parental HCT116 cells blocked cell-cell adhesion and cell-substrate properties for focal adhesion formation and signaling activity. Together, these results indicate that KRS can promote cell-cell and cell-ECM adhesion for migration.
Collapse
Affiliation(s)
- Seo Hee Nam
- Interdisciplinary Program in Genetic Engineering, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Minkyung Kang
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihye Ryu
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Jin Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Doyeun Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Gyu Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Hoon Kwon
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghoon Kim
- Interdisciplinary Program in Genetic Engineering, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Weon Lee
- Interdisciplinary Program in Genetic Engineering, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin β1-ERK pathway. Br J Cancer 2014; 111:1400-9. [PMID: 25093489 PMCID: PMC4183856 DOI: 10.1038/bjc.2014.435] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/22/2014] [Accepted: 07/10/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Insulin-like growth factor binding protein-2 (IGFBP-2) is significantly increased in the serum of patients with malignant gliomas. High plasma IGFBP-2 levels are correlated with poor prognosis in glioma patients. However, the exact role of exogenous IGFBP-2 in gliomas is unclear. METHODS AND RESULTS Using the MTT cell viability assay, cell cycle analysis, and the transwell migration assay, it was demonstrated that IGFBP-2 treatment stimulated proliferation and invasion in U87 and U251 cell lines and primary SU3 glioma cells. Western blot analysis and immunofluorescence staining revealed that IGFBP-2 promoted ERK phosphorylation and nuclear translocation. Moreover, blocking ERK activation using the inhibitor PD98059 markedly reduced the effects of IGFBP-2 in glioma cells. As IGFBP-2 has an integrin-binding domain, the contribution of integrin β1 to these IGFBP-2-mediated processes was examined. Neutralisation or knockdown of the expression of integrin β1 inhibited IGFBP-2-induced ERK activation, cell proliferation, and cell invasion. Significantly, IGFBP-2 induced temozolomide resistance in glioma cells in an integrin β1/ERK-dependent manner. CONCLUSIONS Exogenous IGFBP-2 induces proliferation, invasion, and chemoresistance in glioma cells via integrin β1/ERK signaling, suggesting that targeting this pathway could represent a potential therapeutic strategy for the treatment of gliomas. The identification of this pathway in glioma progression provides insight into the mechanism by which serum IGFBP-2 levels can predict the prognosis of glioma patients.
Collapse
|
14
|
Zhu J, Wu YN, Zhang W, Zhang XM, Ding X, Li HQ, Geng M, Xie ZQ, Wu HM. Monocarboxylate transporter 4 facilitates cell proliferation and migration and is associated with poor prognosis in oral squamous cell carcinoma patients. PLoS One 2014; 9:e87904. [PMID: 24498219 PMCID: PMC3907573 DOI: 10.1371/journal.pone.0087904] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/30/2013] [Indexed: 01/04/2023] Open
Abstract
Monocarboxylate transporter 4 (MCT4) is a cell membrane transporter of lactate. Recent studies have shown that MCT4 is over-expressed in various cancers; however, its role in cancer maintenance and aggressiveness has not been fully demonstrated. This study investigated the role of MCT4 in oral squamous cell carcinoma (OSCC), and found that it is highly expressed in OSCC patients by using immunohistochemistry. Moreover, this over-expression of MCT4 was closely associated with tumor size, TNM classification, lymphatic metastasis, distant metastasis and tumor recurrence, and also poor prognosis. To further study mechanisms of MCT4 in vitro, we used small-interfering RNA to silence its expression in OSCC cell lines. The results showed that knock-down of MCT4 decreased cell proliferation, migration, and invasion. The inhibition of proliferation was associated with down-regulation of p-AKT and p-ERK1/2, while decreased cell migration and invasion may be caused by down-regulation of integrin β4-SRC-FAK and MEK-ERK signaling. Together, these findings provide new insight into the critical role of MCT4 in cell proliferation and metastasis in OSCC.
Collapse
Affiliation(s)
- Jiang Zhu
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Jiangsu Province, Nanjing, PR China
| | - Yu-Nong Wu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Jiangsu Province, Nanjing, PR China
| | - Wei Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Jiangsu Province, Nanjing, PR China
| | - Xiao-Min Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Jiangsu Province, Nanjing, PR China
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Jiangsu Province, Nanjing, PR China
| | - Huai-Qi Li
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Jiangsu Province, Nanjing, PR China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai, China
| | - Zuo-Quan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai, China
- * E-mail: (ZQX); (HMW)
| | - He-Ming Wu
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Jiangsu Province, Nanjing, PR China
- * E-mail: (ZQX); (HMW)
| |
Collapse
|
15
|
El Touny LH, Vieira A, Mendoza A, Khanna C, Hoenerhoff MJ, Green JE. Combined SFK/MEK inhibition prevents metastatic outgrowth of dormant tumor cells. J Clin Invest 2013; 124:156-68. [PMID: 24316974 DOI: 10.1172/jci70259] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/03/2013] [Indexed: 12/27/2022] Open
Abstract
Breast cancer (BC) can recur as metastatic disease many years after primary tumor removal, suggesting that disseminated tumor cells survive for extended periods in a dormant state that is refractory to conventional therapies. We have previously shown that altering the tumor microenvironment through fibrosis with collagen and fibronectin deposition can trigger tumor cells to switch from a dormant to a proliferative state. Here, we used an in vivo preclinical model and a 3D in vitro model of dormancy to evaluate the role of Src family kinase (SFK) in regulating this dormant-to-proliferative switch. We found that pharmacological inhibition of SFK signaling or Src knockdown results in the nuclear localization of cyclin-dependent kinase inhibitor p27 and prevents the proliferative outbreak of dormant BC cells and metastatic lesion formation; however, SFK inhibition did not kill dormant cells. Dormant cell proliferation also required ERK1/2 activation. Combination treatment of cells undergoing the dormant-to-proliferative switch with the Src inhibitor (AZD0530) and MEK1/2 inhibitor (AZD6244) induced apoptosis in a large fraction of the dormant cells and delayed metastatic outgrowth, neither of which was observed with either inhibitor alone. Thus, targeting Src prevents the proliferative response of dormant cells to external stimuli, but requires MEK1/2 inhibition to suppress their survival. These data indicate that treatments targeting Src in combination with MEK1/2 may prevent BC recurrence.
Collapse
|
16
|
The role of bioactive nanofibers in enamel regeneration mediated through integrin signals acting upon C/EBPα and c-Jun. Biomaterials 2013; 34:3303-14. [PMID: 23398885 DOI: 10.1016/j.biomaterials.2013.01.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 12/15/2022]
Abstract
Enamel formation involves highly orchestrated intracellular and extracellular events; following development, the tissue is unable to regenerate, making it a challenging target for tissue engineering. We previously demonstrated the ability to trigger enamel differentiation and regeneration in the embryonic mouse incisor using a self-assembling matrix that displayed the integrin-binding epitope RGDS (Arg-Gly-Asp-Ser). To further elucidate the intracellular signaling pathways responsible for this phenomenon, we explore here the coupling response of integrin receptors to the biomaterial and subsequent downstream gene expression profiles. We demonstrate that the artificial matrix activates focal adhesion kinase (FAK) to increase phosphorylation of both c-Jun N-terminal kinase (JNK) and its downstream transcription factor c-Jun (c-Jun). Inhibition of FAK blocked activation of the identified matrix-mediated pathways, while independent inhibition of JNK nearly abolished phosphorylated-c-Jun (p-c-Jun) and attenuated the pathways identified to promote enamel regeneration. Cognate binding sites in the amelogenin promoter were identified to be transcriptionally up-regulated in response to p-c-Jun. Furthermore, the artificial matrix induced gene expression as evidenced by an increased abundance of amelogenin, the main protein expressed during enamel formation, and the CCAAT enhancer binding protein alpha (C/EBPα), which is the known activator of amelogenin expression. Elucidating these cues not only provides guidelines for the design of synthetic regenerative strategies and opportunities to manipulate pathways to regulate enamel regeneration, but can provide insight into the molecular mechanisms involved in tissue formation.
Collapse
|
17
|
Cieslik KA, Trial J, Carlson S, Taffet GE, Entman ML. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J 2013; 27:1761-71. [PMID: 23303205 DOI: 10.1096/fj.12-220145] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With age, the collagen content of the heart increases, leading to interstitial fibrosis. We have shown that CD44(pos) fibroblasts derived from aged murine hearts display reduced responsiveness to TGF-β but, paradoxically, have increased collagen expression in vivo and in vitro. We postulated that this phenomenon was due to the defect in mesenchymal stem cell (MSC) differentiation in a setting of elevated circulating insulin levels and production that we observed in aging mice. We discovered that cultured fibroblasts derived from aged but not young cardiac MSCs of nonhematopoietic lineage displayed increased basal and insulin-induced (1 nM) collagen expression (2-fold), accompanied by increased farnesyltransferase (FTase) and Erk activities. In a quest for a possible mechanism, we found that a chronic pathophysiologic insulin concentration (1 nM) caused abnormal fibroblast differentiation of MSCs isolated from young hearts. Fibroblasts derived from these MSCs responded to insulin by elevating collagen expression as seen in untreated aged fibroblast cultures, suggesting a causal link between increased insulin levels and defective MSC responses. Here we report an insulin-dependent pathway that specifically targets collagen type I transcriptional activation leading to a unique mechanism of fibrosis that is TGF-β and inflammation-independent in the aged heart.
Collapse
Affiliation(s)
- Katarzyna A Cieslik
- Baylor College of Medicine, Department of Medicine, Division of Cardiovascular Sciences, One Baylor Plaza, Mail Station BCM620, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
18
|
Moore SW, Zhang X, Lynch CD, Sheetz MP. Netrin-1 attracts axons through FAK-dependent mechanotransduction. J Neurosci 2012; 32:11574-85. [PMID: 22915102 PMCID: PMC3461192 DOI: 10.1523/jneurosci.0999-12.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/01/2012] [Accepted: 06/29/2012] [Indexed: 11/21/2022] Open
Abstract
The mechanism by which extracellular cues influence intracellular biochemical cascades that guide axons is important, yet poorly understood. Because of the mechanical nature of axon extension, we explored whether the physical interactions of growth cones with their guidance cues might be involved. In the context of mouse spinal commissural neuron axon attraction to netrin-1, we found that mechanical attachment of netrin-1 to the substrate was required for axon outgrowth, growth cone expansion, axon attraction and phosphorylation of focal adhesion kinase (FAK) and Crk-associated substrate (CAS). Myosin II activity was necessary for traction forces >30 pN on netrin-1. Interestingly, while these myosin II-dependent forces on netrin-1 substrates or beads were needed to increase the kinase activity and phosphorylation of FAK, they were not necessary for netrin-1 to increase CAS phosphorylation. When FAK kinase activity was inhibited, the growth cone's ability to recruit additional adhesions and to generate forces >60 pN on netrin-1 was disrupted. Together, these findings demonstrate an important role for mechanotransduction during chemoattraction to netrin-1 and that mechanical activation of FAK reinforces interactions with netrin-1 allowing greater forces to be exerted.
Collapse
Affiliation(s)
- Simon W Moore
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | | | | | |
Collapse
|
19
|
Bianchi-Smiraglia A, Paesante S, Bakin AV. Integrin β5 contributes to the tumorigenic potential of breast cancer cells through the Src-FAK and MEK-ERK signaling pathways. Oncogene 2012; 32:3049-58. [PMID: 22824793 PMCID: PMC3481019 DOI: 10.1038/onc.2012.320] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer progression, response to therapy and metastasis depend on tumor microenvironment. Integrins are cell-adhesion receptors that mediate interactions of cells with extracellular matrix. The αv-β-family of integrins contributes to tumorigenesis, response to therapy and cancer stem cell biology. Thus, understanding the function of specific integrins in cancer is critical for the development of therapeutic approaches targeting integrins. The study investigated the role of integrin β5 in breast carcinomas by depleting integrin β5 using RNA interference and reexpression of integrin β5. Depletion of integrin β5 in triple-negative breast carcinoma cells markedly reduced tumor take, growth and tumor angiogenesis, whereas reexpression of integrin β5 rescued this phenotype. Reduction in tumor angiogenesis is associated with lower expression of vascular endothelial growth factor-A in integrin β5-depleted tumors. Tumor cells deficient in integrin β5 have lower migration and proliferative capacities. Biochemical assays revealed that integrin β5 mediates the Src-focal adhesion kinase and MEK-extracellular signal-regulated kinase signaling events that operate independently, and inhibition of these pathways phenocopies integrin β5 deficiency. Breast carcinoma cells express high levels of integrin β5, whereas expression of integrin β3 is limited to stromal compartments and integrin β6 is lost in metastatic cells. Together, these findings show a critical role for integrin β5 in the tumorigenic potential of breast carcinoma cells and therapeutic targeting of integrin β5 is especially attractive for triple-negative breast carcinomas, which are refractory to most of the current therapies.
Collapse
Affiliation(s)
- A Bianchi-Smiraglia
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | |
Collapse
|
20
|
mTORC1 inhibition and ECM-cell adhesion-independent drug resistance via PI3K-AKT and PI3K-RAS-MAPK feedback loops. Tumour Biol 2012; 33:885-90. [PMID: 22246604 DOI: 10.1007/s13277-011-0315-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 12/29/2011] [Indexed: 12/17/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) serine threonine kinase is the enzyme that regulates cancer cell growth by altering nutrient supplies to cancer cells. The neuropeptide (proline-rich peptide 1 (PRP-1)), galarmin, produced by the brain neurosecretory cells is a mTOR kinase inhibitor with powerful 80% antiproliferative cytostatic effect in a high-grade chondosarcoma and other mesenchymal tumors. However, the negative feedback loop of phosphatidylinositol 3 kinase-Protein kinase B (PKB), PI3K-AKT and PI3K-rat sarcoma (RAS)-mitogen-activated protein kinase (MAPK) activation is well documented for mTOR inhibitors. This study explored the involvement of those loops in drug resistance after the treatment with mTOR complex 1 (mTORC1) inhibitor, PRP-1. Multidrug resistance assay (MDR) demonstrated that this cytokine did not inhibit permeability glycoprotein-mediated MDR in chondrosarcoma. Phospho-MAPK array in human chondrosarcoma cell line treated with galarmin (10 μg/ml,) showed a strong upregulation of phosphorylated glycogen synthase kinase 3β (GSK3β) via activation of PI3K-AKT and MAPK feedback loops. Such GSK3β inactivation leads to β-catenin accumulation that entails drug resistance. The ability of cells to metastasize is reflected in their capacity to adhere to extracellular matrix and endothelium. Laminin cell adhesion assay demonstrated that PRP-1 in the same concentrations that inhibit mTOR kinase inhibited JJ012 chondrosarcoma cell adhesion. The neuropeptide did not have any effect on the expression of total focal adhesion kinase and its phosphorylated form. Thus, it was not accompanied by total HAT downregulation and total HDAC upregulation. Combinatorial treatments of PRP-1 with MAPK and PI3K/AKT inhibitors most probably will lead to full cytotoxicity overcoming drug resistance.
Collapse
|
21
|
Guilluy C, Swaminathan V, Garcia-Mata R, O’Brien ET, Superfine R, Burridge K. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat Cell Biol 2011; 13:722-7. [PMID: 21572419 PMCID: PMC3107386 DOI: 10.1038/ncb2254] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/06/2011] [Indexed: 12/16/2022]
Abstract
How individual cells respond to mechanical forces is of considerable interest to biologists as force affects many aspects of cell behaviour. The application of force on integrins triggers cytoskeletal rearrangements and growth of the associated adhesion complex, resulting in increased cellular stiffness, also known as reinforcement. Although RhoA has been shown to play a role during reinforcement, the molecular mechanisms that regulate its activity are unknown. By combining biochemical and biophysical approaches, we identified two guanine nucleotide exchange factors (GEFs), LARG and GEF-H1, as key molecules that regulate the cellular adaptation to force. We show that stimulation of integrins with tensional force triggers activation of these two GEFs and their recruitment to adhesion complexes. Surprisingly, activation of LARG and GEF-H1 involves distinct signalling pathways. Our results reveal that LARG is activated by the Src family tyrosine kinase Fyn, whereas GEF-H1 catalytic activity is enhanced by ERK downstream of a signalling cascade that includes FAK and Ras.
Collapse
Affiliation(s)
- Christophe Guilluy
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Vinay Swaminathan
- Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rafael Garcia-Mata
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - E. Timothy O’Brien
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Keith Burridge
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, and UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
22
|
Yang Y, Wu X, Gui P, Wu J, Sheng JZ, Ling S, Braun AP, Davis GE, Davis MJ. Alpha5beta1 integrin engagement increases large conductance, Ca2+-activated K+ channel current and Ca2+ sensitivity through c-src-mediated channel phosphorylation. J Biol Chem 2009; 285:131-41. [PMID: 19887442 DOI: 10.1074/jbc.m109.033506] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Large conductance, calcium-activated K(+) (BK) channels are important regulators of cell excitability and recognized targets of intracellular kinases. BK channel modulation by tyrosine kinases, including focal adhesion kinase and c-src, suggests their potential involvement in integrin signaling. Recently, we found that fibronectin, an endogenous alpha5beta1 integrin ligand, enhances BK channel current through both Ca(2+)- and phosphorylation-dependent mechanisms in vascular smooth muscle. Here, we show that macroscopic currents from HEK 293 cells expressing murine BK channel alpha-subunits (mSlo) are acutely potentiated following alpha5beta1 integrin activation. The effect occurs in a Ca(2+)-dependent manner, 1-3 min after integrin engagement. After integrin activation, normalized conductance-voltage relations for mSlo are left-shifted at free Ca(2+) concentrations >or=1 microm. Overexpression of human c-src with mSlo, in the absence of integrin activation, leads to similar shifts in mSlo Ca(2+) sensitivity, whereas overexpression of catalytically inactive c-src blocks integrin-induced potentiation. However, neither integrin activation nor c-src overexpression potentiates current in BK channels containing a point mutation at Tyr-766. Biochemical tests confirmed the critical importance of residue Tyr-766 in integrin-induced channel phosphorylation. Thus, BK channel activity is enhanced by alpha5beta1 integrin activation, likely through an intracellular signaling pathway involving c-src phosphorylation of the channel alpha-subunit at Tyr-766. The net result is increased current amplitude, enhanced Ca(2+) sensitivity, and rate of activation of the BK channel, which would collectively promote smooth muscle hyperpolarization in response to integrin-extracellular matrix interactions.
Collapse
Affiliation(s)
- Yan Yang
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Acharya M, Edkins AL, Ozanne BW, Cushley W. SDF-1 and PDGF enhance alphavbeta5-mediated ERK activation and adhesion-independent growth of human pre-B cell lines. Leukemia 2009; 23:1807-17. [PMID: 19609283 DOI: 10.1038/leu.2009.126] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD23 acts through the alphavbeta5 integrin to promote growth of human pre-B cell lines in an adhesion-independent manner. alphavbeta5 is expressed on normal B-cell precursors in the bone marrow. Soluble CD23 (sCD23), short CD23-derived peptides containing the arg-lys-cys (RKC) motif recognized by alphavbeta5 and anti-alphavbeta5 monoclonal antibodies (MAbs) all sustain growth of pre-B cell lines. The chemokine stromal cell-derived factor-1 (SDF-1) regulates key processes during B-cell development. SDF-1 enhanced the growth-sustaining effect driven by ligation of alphavbeta5 with anti-alphavbeta5 MAb 15F-11, sCD23 or CD23-derived RKC-containing peptides. This effect was restricted to B-cell precursors and was specific to SDF-1. The enhancement in growth was associated with the activation of extracellular signal-regulated kinase (ERK) and both these responses were attenuated by the MEK inhibitor U0126. Finally, platelet-derived growth factor also enhanced both alphavbeta5-mediated cell growth and ERK activation. The data suggest that adhesion-independent growth-promoting signals delivered to B-cell precursors through the alphavbeta5 integrin can be modulated by cross-talk with receptors linked to both G-protein and tyrosine kinase-coupled signalling pathways.
Collapse
Affiliation(s)
- M Acharya
- Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | |
Collapse
|
24
|
Eisinger DA, Ammer H. Delta-opioid receptors activate ERK/MAP kinase via integrin-stimulated receptor tyrosine kinases. Cell Signal 2008; 20:2324-31. [PMID: 18804531 DOI: 10.1016/j.cellsig.2008.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/01/2008] [Accepted: 09/02/2008] [Indexed: 11/18/2022]
Abstract
Integrin-mediated cell adherence to extracellular matrix proteins results in stimulation of ERK1/2 activity, a mechanism involving focal adhesion tyrosine kinases (pp125FAK, Pyk-2) and epidermal growth factor receptors (EGFRs). G protein-coupled receptors (GPCRs) may also mediate ERK1/2 activation in an integrin-dependent manner, the underlying signaling mechanism of which still remains unclear. Here we demonstrate that the delta-opioid receptor (DOR), a typical GPCR, stimulates ERK1/2 activity in HEK293 cells via integrin-mediated transactivation of EGFR function. Inhibition of integrin signaling by RGDT peptides, cytochalasin, and by keeping the cells in suspension culture both blocked [D-Ala(2), D-Leu(5)]enkephalin (DADLE)- and etorphine-stimulated ERK1/2 activity. Integrin-dependent ERK1/2 activation does not involve FAK/Pyk-2, because over-expression of the FAK/Pyk-2 inhibitor SOCS-3 failed to attenuate DOR signaling. Exposure of the cells to the EGFR inhibitors AG1478 and BPIQ-I blocked DOR-mediated ERK1/2 activation. Because RGDT peptides also prevented DOR-mediated EGFR activation, the present findings indicate that in HEK293 cells DOR-stimulated ERK1/2 activity is mediated by integrin-stimulated EGFRs. Further studies with the phospholipase C (PLC) inhibitors U73122 and ET-18-OCH(3) revealed that opioid-stimulated integrin activation is sensitive to PLC. In contrast, integrin-mediated transactivation of EGFR function appears to be dependent on PKC-delta, as indicated by studies with rottlerin and siRNA knock-down. A similar ERK1/2 signaling pathway was observed for NG108-15 cells, a neuronal cell line endogenously expressing the DOR. In these cells, the nerve growth factor TrkA receptor replaces the EGFR in connecting DOR-activated integrins to the Ras/Raf/ERK1/2 pathway. Together, these data describe an alternative ERK1/2 signaling pathway in which the DOR transactivates the growth factor receptor associated mitogen-activated protein kinase cascade in an integrin-dependent manner.
Collapse
Affiliation(s)
- Daniela A Eisinger
- Institute of Pharmacology, Toxicology and Pharmacy, University of Munich, Königinstrasse 16, D-80539 München, Germany.
| | | |
Collapse
|
25
|
Wang X, Wang C, Qin YW, Yan SK, Gao YR. The association of up-regulation of X-linked inhibitor of apoptosis protein with cell adhesion-mediated drug resistance in U937 cells. Hematol Oncol 2008; 26:21-6. [PMID: 17721914 DOI: 10.1002/hon.828] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An increasing body of evidence indicates that environmental factors may contribute to the drug resistance of acute myeloid leukaemia (AML). CAM-DR (cell adhesion-mediated drug resistance) is a reversible, de novo drug resistance induced by adhesion of tumour cell lines to fibronectin (FN). Adhesion was demonstrated to directly regulate the apoptotic machinery. And it was observed in previous studies that high levels of X-linked inhibitor of apoptosis protein (XIAP) were related to resistance to chemotherapeutics in many cancer cell lines. However, whether XIAP is relevant to CAM-DR of AML cells is unknown. In this report, we demonstrated that the mRNA and protein levels of XIAP were increased by 96.15% and 120.92%, respectively in U937 cells cocultured with FN as compared with controls. Antisense oligonucleotides targeting XIAP down-regulated the expression of XIAP and sensitized U937 cells to daunorubicin. In addition, we investigated the signalling pathway involved in the upregulation of XIAP. The levels of phosphorylated Akt (Ser473) were elevated in U937/FN cells and the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 suppressed XIAP expression and restored the chemosensitivity to daunorubicin. Our findings suggested that adhesion-dependent activation of the PI3K/Akt/XIAP pathway may be one of the factors involved in the CAM-DR of U937 cells. Targeting this pathway may be a useful approach to improve the therapeutic responsiveness of leukaemia cells.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Hematology, Cancer Hospital of Tianjin, Tianjin Medical University, Tianjin 300060, P.R. China
| | | | | | | | | |
Collapse
|
26
|
Gascon E, Vutskits L, Kiss JZ. Polysialic acid–neural cell adhesion molecule in brain plasticity: From synapses to integration of new neurons. ACTA ACUST UNITED AC 2007; 56:101-18. [PMID: 17658613 DOI: 10.1016/j.brainresrev.2007.05.014] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 04/02/2007] [Accepted: 05/24/2007] [Indexed: 11/15/2022]
Abstract
Isoforms of the neuronal cell adhesion molecule (NCAM) carrying the linear homopolymer of alpha 2,8-linked sialic acid (polysialic acid, PSA) have emerged as particularly attractive candidates for promoting plasticity in the nervous system. The large negatively charged PSA chain of NCAM is postulated to be a spacer that reduces adhesion forces between cells allowing dynamic changes in membrane contacts. Accumulating evidence also suggests that PSA-NCAM-mediated interactions lead to activation of intracellular signaling cascades that are fundamental to the biological functions of the molecule. An important role of PSA-NCAM appears to be during development, when its expression level is high and where it contributes to the regulation of cell shape, growth or migration. However, PSA-NCAM does persist in adult brain structures such as the hippocampus that display a high degree of plasticity where it is involved in activity-induced synaptic plasticity. Recent advances in the field of PSA-NCAM research have not only consolidated the importance of this molecule in plasticity processes but also suggest a role for PSA-NCAM in the regulation of higher cognitive functions and psychiatric disorders. In this review, we discuss the role and mode of actions of PSA-NCAM in structural plasticity as well as its potential link to cognitive processes.
Collapse
Affiliation(s)
- Eduardo Gascon
- Department of Neuroscience, University of Geneva Medical School, 1, Rue Michel Servet, CH-1211, Geneva, Switzerland
| | | | | |
Collapse
|
27
|
Lal H, Verma SK, Smith M, Guleria RS, Lu G, Foster DM, Dostal DE. Stretch-induced MAP kinase activation in cardiac myocytes: differential regulation through beta1-integrin and focal adhesion kinase. J Mol Cell Cardiol 2007; 43:137-47. [PMID: 17583725 PMCID: PMC2039913 DOI: 10.1016/j.yjmcc.2007.05.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 05/08/2007] [Accepted: 05/14/2007] [Indexed: 01/01/2023]
Abstract
Mitogen-activated protein (MAP) kinases have been implicated in hemodynamic load induced heart failure. Both angiotensin II (Ang II) and mechanical stretch activate MAP kinases in cardiac myocytes. In this study, we used a neonatal rat ventricular myocyte (NRVM) model to determine the role of focal-adhesion kinase (FAK) in beta1 integrin mediated MAP kinase activation in response to mechanical stretch in presence and absence of Ang II receptor blockade (ATB). NRVM plated on deformable membranes coated with collagen IV were exposed to 20% equiaxial static-stretch. beta1 integrin signaling was blocked by adenovirus-mediated expression of a dominant-negative form of beta1D integrin (tac-beta1D). FAK signaling was disrupted by infecting NRVM with adenovirus expressing FAK-related non-kinase (FRNK). Western blot analysis was used to assess the phosphorylation of MAP kinases. In the presence and absence of ATB, mechanical stretch caused maximal phosphorylation of ERK, p38 and JNK at 5 min, which was significantly attenuated in NRVM expressing tac-beta1D. In the presence of ATB, FRNK overexpression significantly increased basal phosphorylation of ERK (40.2+/-8.6% P<0.05), p38 (39.5+/-11.7%, P<0.05), JNK (86+/-29.4%, P<0.05) and stretch-induced p38 (48.1+/-8.7%, P<0.05) and JNK (85.0+/-19.4%, P<0.05) phosphorylation. However, in the absence of ATB, FRNK overexpression significantly reduced basal and stretch-induced phosphorylation of only ERK. Examination of FAK activation revealed that beta1 integrin was required for stretch-induced phosphorylation of FAK at Y397 and Y925, but not Y861. In summary, mechanical stretch-activated ERK1/2, p38 and JNK through FAK independent and dependent mechanisms. Beta1 integrin was required for FAK independent activation of all three MAP kinases, whereas cross-talk between beta1 integrin and Ang II receptors mediated FAK dependent regulation of ERK1/2.
Collapse
Affiliation(s)
- H Lal
- Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M Health Science Center, Central Texas Veterans Health Care System, 1901 South 1st Street, Bldg. 205, Temple, TX 76504, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Chaturvedi LS, Marsh HM, Basson MD. Src and focal adhesion kinase mediate mechanical strain-induced proliferation and ERK1/2 phosphorylation in human H441 pulmonary epithelial cells. Am J Physiol Cell Physiol 2007; 292:C1701-C1713. [PMID: 17215324 DOI: 10.1152/ajpcell.00529.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary epithelial cells are exposed to repetitive deformation during physiological breathing and mechanical ventilation. Such deformation may influence pulmonary growth, development, and barotrauma. Although deformation stimulates proliferation and activates extracellular signal-regulated kinases (ERK1/2) in human pulmonary epithelial H441 cells, the upstream mechanosensors that induce ERK activation are poorly understood. We investigated whether c-Src or focal adhesion kinase (FAK) mediates cyclic mechanical strain-induced ERK1/2 activation and proliferation in human pulmonary epithelial (NCI-H441) cells. The H441 and A549 cells were grown on collagen I-precoated membranes and were subjected to an average 10% cyclic mechanical strain at 20 cycles/min. Cyclic strain activated Src within 2 min by increasing phosphorylation at Tyr(418), followed by rapid phosphorylation of FAK at Tyr(397) and Tyr(576) and ERK1/2 at Thr(202)/Tyr(204) (n = 5, P < 0.05). Twenty-four (A549 cells) and 24-72 h (H441 cells) of cyclic mechanical strain increased cell numbers compared with static culture. Twenty-four hours of cyclic strain also increased H441 FAK, Src, and ERK phosphorylation without affecting total FAK, Src, or ERK protein. The mitogenic effect was blocked by Src (10 micromol/l PP2 or short interfering RNA targeted to Src) or MEK (50 micromol/l PD-98059) inhibition. PP2 also blocked strain-induced phosphorylation of FAK-Tyr(576) and ERK-Thr(202)/Tyr(204) but not FAK-Tyr(397). Reducing FAK by FAK-targeted short interfering RNA blocked mechanical strain-induced mitogenicity and significantly attenuated strain-induced ERK activation but not strain-induced Src phosphorylation. Together, these results suggest that repetitive mechanical deformation induced by ventilation supports pulmonary epithelial proliferation by a pathway involving Src, FAK, and then ERK signaling.
Collapse
Affiliation(s)
- Lakshmi S Chaturvedi
- John D. Dingell Veterans Affairs Medical Center, 4646 John R. St., Detroit, MI 48201, USA
| | | | | |
Collapse
|
29
|
Fielitz J, Philipp S, Herda LR, Schuch E, Pilz B, Schubert C, Günzler V, Willenbrock R, Regitz-Zagrosek V. Inhibition of prolyl 4-hydroxylase prevents left ventricular remodelling in rats with thoracic aortic banding. Eur J Heart Fail 2007; 9:336-42. [PMID: 17145199 DOI: 10.1016/j.ejheart.2006.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 07/21/2006] [Accepted: 10/09/2006] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Pressure overload leads to myocardial remodelling with collagen accumulation, left ventricular hypertrophy (LVH), neurohormonal activation and myocardial dysfunction. Prolyl 4-hydroxylases (P4H) are involved in collagen maturation. Inhibition of P4H has been shown to prevent LV remodelling and improve survival post-myocardial infarction. AIM To evaluate the role of P4H in pressure overload-induced myocardial remodelling. METHODS Male Wistar rats underwent thoracic aortic banding (AoB) and were treated with a P4H inhibitor (P4HI) or vehicle (control). Echocardiography and haemodynamic measurements were performed after 4 weeks. Collagens, matrix metalloproteinases (MMP), tissue inhibitors of MMPs (TIMP), growth factors and neurohormonal markers were quantitated in LV samples. RESULTS AoB led to LVH, increased LV enddiastolic pressure (LVEDP) and decreased contractility compared to sham. P4HI reversed these effects. AoB increased collagen I and III expression, which was normalized by P4HI. AoB led to deregulation of matrix remodelling enzymes, enhanced expression of growth factors and activation of the endothelin system. P4HI partially prevented deregulation of the MMP/TIMP system, inhibited upregulation of growth factors and normalized AoB-induced ECE-1 and ETB expression. CONCLUSIONS P4HI leads to an improvement of AoB-associated LV dysfunction and reduces imbalance of extracellular matrix turnover and hypertrophy-associated gene expression. P4H inhibition could therefore be of value in treatment of myocardial remodelling accompanying pressure overload hypertrophy.
Collapse
Affiliation(s)
- Jens Fielitz
- Department of Cardiology, CVK, Charite, Universitätsmedizin Berlin, and St. Elisabeth Hospital, Halle, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Plows LD, Cook RT, Davies AJ, Walker AJ. Integrin engagement modulates the phosphorylation of focal adhesion kinase, phagocytosis, and cell spreading in molluscan defence cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:779-86. [PMID: 16766054 DOI: 10.1016/j.bbamcr.2006.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 04/07/2006] [Accepted: 04/07/2006] [Indexed: 12/21/2022]
Abstract
Integrins play a key role in cellular immune responses in a variety of organisms; however, knowledge of integrins and their effects on cell signalling and functional responses in molluscan defence reactions is poor. Using integrin-mediated cell adhesion kits, alphaVbeta3 and beta1 integrin-like subunits were identified on the surface of Lymnaea stagnalis haemocytes. Haemocyte binding via these integrins was found to be dependent on Ca2+/Mg2+. Western blotting with an anti-phospho (anti-active) focal adhesion kinase (FAK) antibody revealed a 120-125 kDa FAK-like protein in these cells; this protein was transiently phosphorylated upon haemocyte adhesion over 90 min, with maximal phosphorylation occurring after 30 min binding. Also, integrin engagement with the tetrapeptide Arg-Gly-Asp-Ser (RGDS) resulted in a rapid increase in phosphorylation of the FAK-like protein; however, RGDS did not affect the phosphorylation of extracellular signal-regulated kinase. Treatment of haemocytes with RGDS (2 mM) inhibited phagocytosis of E. coli bioparticles by 88%. Moreover, at this concentration, RGDS reduced cell spreading by 61%; stress fiber formation was also impaired. Taken together, these results demonstrate a role for integrins in L. stagnalis haemocyte adhesion and defence reactions and, for the first time, link integrin engagement to FAK activation in molluscs.
Collapse
Affiliation(s)
- Louise D Plows
- School of Life Sciences, Kingston University, Penrhyn Road, Kingston-upon-Thames, Surrey, KT1 2EE, UK
| | | | | | | |
Collapse
|
31
|
Reiland J, Kempf D, Roy M, Denkins Y, Marchetti D. FGF2 binding, signaling, and angiogenesis are modulated by heparanase in metastatic melanoma cells. Neoplasia 2006; 8:596-606. [PMID: 16867222 PMCID: PMC1601937 DOI: 10.1593/neo.06244] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heparanase (HPSE) and fibroblast growth factor-2 (FGF2) are critical regulators of melanoma angiogenesis and metastasis. Elevated HPSE expression contributes to melanoma progression; however, further augmentation of HPSE presence can inhibit tumorigenicity. HPSE enzymatically cleaves heparan sulfate glycosaminoglycan chains (HS) from proteoglycans. HS act as both low-affinity FGF2 receptors and coreceptors in the formation of high-affinity FGF2 receptors. We have investigated HPSE's ability to modulate FGF2 activity through HS remodeling. Extensive HPSE degradation of human metastatic melanoma cells (70W) inhibited FGF2 binding. Unexpectedly, treatment of 70W cells with low HPSE concentrations enhanced FGF2 binding. In addition, HPSE-unexposed cells did not phosphorylate extracellular signal-related kinase (ERK) or focal adhesion kinase (FAK) in response to FGF2. Conversely, in cells treated with HPSE, FGF2 stimulated ERK and FAK phosphorylation. Secondly, the presence of soluble HPSE-degraded HS enhanced FGF2 binding and ERK phosphorylation at low HS concentrations. Higher concentrations of soluble HS inhibited FGF2 binding, but FGF2 signaling through ERK remained enhanced. Soluble HS were unable to support FGF2-stimulated FAK phosphorylation irrespective of HPSE treatment. Finally, cell exposure to HPSE or to HPSE-degraded HS modulated FGF2-induced angiogenesis in melanoma. In conclusion, these effects suggest relevant mechanisms for the HPSE modulation of melanoma growth factor responsiveness and tumorigenicity.
Collapse
Affiliation(s)
- Jane Reiland
- Department of Comparative Biomedical Sciences-SVM, Louisiana State University-Baton Rouge, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
32
|
Melo TG, Almeida DS, Meirelles MNSL, Pereira MCS. Disarray of sarcomeric alpha-actinin in cardiomyocytes infected by Trypanosoma cruzi. Parasitology 2006; 133:171-8. [PMID: 16650336 DOI: 10.1017/s0031182006000011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/28/2005] [Accepted: 01/18/2006] [Indexed: 11/06/2022]
Abstract
Infection with Trypanosoma cruzi causes acute myocarditis and chronic cardiomyopathy. Remarkable changes have been demonstrated in the structure and physiology of cardiomyocytes during infection by this parasite that may contribute to the cardiac dysfunction observed in Chagas' disease. We have investigated the expression of alpha-actinin, an actin-binding protein that plays a key role in the formation and maintenance of Z-lines, during the T. cruzi-cardiomyocyte interaction in vitro. Immunolocalization of alpha-actinin in control cardiomyocytes demonstrated a typical periodicity in the Z line of cardiac myofibrils, as well as its distribution at focal adhesion sites and along the cell-cell junctions. No significant changes were observed in the localization of alpha-actinin after 24 h of infection. In contrast, depletion of sarcomeric distribution of alpha-actinin occurred after 72 h in T. cruzi-infected cardiomyocytes, while no change occurred at focal adhesion contacts. Biochemical assays demonstrated a reduction of 46% and 32% in the expression of alpha-actinin after 24 h and 72 h of infection, respectively. Intracellular parasites were also stained with an anti-alpha-actinin antibody that recognized a protein of 78 kDa by Western blot. Taken together, our data demonstrate a degeneration of the myofibrils in cardiomyocytes induced by T. cruzi infection, rather than a disassembly of the I bands within sarcomeres.
Collapse
Affiliation(s)
- T G Melo
- Laboratório de Ultra-Estrutura Celular, Departamento de Ultra-Estrutura e Biologia Celular, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
33
|
Sawhney RS, Cookson MM, Omar Y, Hauser J, Brattain MG. Integrin alpha2-mediated ERK and calpain activation play a critical role in cell adhesion and motility via focal adhesion kinase signaling: identification of a novel signaling pathway. J Biol Chem 2006; 281:8497-510. [PMID: 16461767 DOI: 10.1074/jbc.m600787200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Higher levels of focal adhesion kinase (FAK) are expressed in colon metastatic carcinomas. However, the signaling pathways and their mechanisms that control cell adhesion and motility, important components of cancer metastasis, are not well understood. We sought to identify the integrin-mediated mechanism of FAK cleavage and downstream signaling as well as its role in motility in human colon cancer GEO cells. Our results demonstrate that phosphorylated FAK (tyrosine 397) is cleaved at distinct sites by integrin signaling when cells attach to collagen IV. Specific blocking antibodies (clone P1E6) to integrin alpha2 inhibited FAK activation and cell motility (micromotion). Ectopic expression of the FAK C-terminal domain FRNK attenuated FAK and ERK phosphorylation and micromotion. Calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal blocked FAK cleavage, cell adhesion, and micromotion. Antisense approaches established an important role for mu-calpain in cell motility. Expression of wild type mu-calpain increased cell micromotion, whereas its point mutant reversed the effect. Further, cytochalasin D inhibited FAK phosphorylation and cleavage, cell adhesion, locomotion, and ERK phosphorylation, thus showing FAK activation downstream of actin assembly. We also found a pivotal role for FAK Tyr(861) phosphorylation in cell motility and ERK activation. Our results reveal a novel functional connection between integrin alpha2 engagement, FAK, ERK, and mu-calpain activation in cell motility and a direct link between FAK cleavage and enhanced cell motility. The data suggest that blocking the integrin alpha2/FAK/ERK/mu-calpain pathway may be an important strategy to reduce cancer progression.
Collapse
Affiliation(s)
- Rajinder S Sawhney
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | | | | | |
Collapse
|
34
|
Stawowy P, Fleck E. Proprotein convertases furin and PC5: targeting atherosclerosis and restenosis at multiple levels. J Mol Med (Berl) 2005; 83:865-75. [PMID: 16244876 DOI: 10.1007/s00109-005-0723-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 08/24/2005] [Indexed: 01/08/2023]
Abstract
Several growth factors, chemokines, adhesion molecules, and proteolytic enzymes important for cell-cell/cell-matrix interactions in atherosclerosis and restenosis are initially synthesized as inactive precursor proteins. Activation of proproteins to biologically active molecules is regulated by limited endoproteolytic cleavage at dibasic amino acid residues. This type of activation typically requires the presence of suitable proprotein convertases (PCs). The PC-isozymes furin and PC5 are expressed in human atherosclerotic lesions and have been found to be up-regulated, following vascular injury in animal models in vivo. In vitro, these PCs can regulate vascular smooth muscle cell and macrophage functions and signaling events, through activation of pro-alpha-integrins and/or pro-membrane-type matrix metalloproteinases. Integrins link the cytoskeleton with the extracellular matrix and mediate bidirectional signaling and mechanotransduction, whereas matrix metalloproteinases are the major matrix-degrading enzymes. Both activities are required for cell recruitment to the intima. Furthermore, cleavage of extracellular matrix molecules by matrix metalloproteinases potentially contributes to weakening of the fibrous cap, promoting plaque rupture. Based on these recent in vitro and in vivo data, furin and PC5 are potential contributors to the initiation, progression, and complications of atherosclerosis and restenosis. Targeting these PCs may provide future anti-atherosclerotic therapies.
Collapse
|
35
|
Kanegae K, Tamura M, Kabashima N, Serino R, Tokunaga M, Oikawa S, Nakashima Y. Synergistic induction of monocyte chemoattractant protein-1 by integrins and platelet-derived growth factor via focal adhesion kinase in mesangial cells. Nephrol Dial Transplant 2005; 20:2080-8. [PMID: 16030037 DOI: 10.1093/ndt/gfh998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Growth factors, extracellular matrix and its receptor integrins are upregulated in various glomerular diseases. We investigated the mechanism of collaboration between integrins and platelet-derived growth factor (PDGF) in focal adhesion kinase (FAK)- and extracellular signal-related kinase (ERK)1/2-mediated signal pathways that lead to monocyte chemoattractant protein (MCP)-1 expression in cultured rat mesangial cells (MCs). METHODS Serum-starved MCs were plated on fibronectin- or polylysine-coated plates with or without PDGF, and examined for phosphorylation of ERK1/2, mitogen-activated protein or ERK kinase (MEK)1/2 and FAK by western blotting, and for expression of MCP-1 mRNA and protein by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The effects of dominant-negative FAK on MCP-1 expression were examined. RESULTS Cell adhesion to fibronectin increased phosphorylation of FAK, MEK1/2 and ERK1/2, and induced MCP-1 mRNA and protein expression. PDGF increased phosphorylation of FAK, MEK1/2 and ERK1/2 even without cell adhesion to fibronectin, and induced MCP-1 mRNA and protein expression. PDGF with integrin activation by fibronectin synergistically increased phosphorylation of FAK, MEK1/2 and ERK1/2, and expression of MCP-1 mRNA and protein. Dominant-negative FAK attenuated fibronectin enhancement of PDGF-induced ERK1/2 phosphorylation and MCP-1 expression, indicating involvement of FAK in this signalling. CONCLUSIONS Our results suggest the cooperative role of integrin and PDGF receptor in activation of the ERK pathway possibly via FAK in MCs. The synergistic activation of integrin and PDGF signalling may play an important role in the progression of glomerular diseases through the induction of MCP-1.
Collapse
Affiliation(s)
- Kaori Kanegae
- Kidney Center, University of Occupational and Environmental Health University Hospital, 1-1 Iseigaoka, Yahatanishi, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Eitel J, Heise T, Thiesen U, Dersch P. Cell invasion and IL-8 production pathways initiated by YadA of Yersinia pseudotuberculosis require common signalling molecules (FAK, c-Src, Ras) and distinct cell factors. Cell Microbiol 2005; 7:63-77. [PMID: 15617524 DOI: 10.1111/j.1462-5822.2004.00434.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The YadA protein of Yersinia pseudotuberculosis promotes tight adhesion and invasion into mammalian cells through beta(1)-integrins. In this work, we demonstrate that YadA also triggers the production of interleukin-8 (IL-8) in host cells and we identify intracellular signal transduction mechanisms involved in YadA-initiated cell invasion and/or IL-8 synthesis. Tyrosine protein kinases, including the focal adhesion kinase (FAK) and c-Src, as well as the small GTPase Ras, were shown to play a significant role in both YadA-promoted cell processes. YadA-mediated cell contact led to autophosphorylation of FAK at position Tyr397 and induced GTP-loading of Ras. Furthermore, IL-8 production and invasion induced by YadA were strongly reduced in FAK- and c-Src-deficient cells and in cells overexpressing dominant interfering forms of FAK, c-Src or Ras. We also demonstrate that YadA activates the Ras-dependent Raf-MEK1/2-ERK1/2 pathway and mitogen-activated protein kinases (MAPKs) p38 and JNK. Moreover, inhibition of ERK1/2 by pharmacological agents or overexpression of dominant negative FAK, c-Src or Ras abrogated IL-8 release, whereas invasion remained unaffected. In contrast, actin polymerization and phosphatidylinositol 3-kinase (PI3K) activity is essential for YadA-promoted cell entry, but not for cytokine secretion. We conclude that YadA triggers FAK-Src complex formation and subsequent Ras activation, which leads to the stimulation of MAPKs-dependent IL-8 production or to PI3K-dependent invasion.
Collapse
Affiliation(s)
- Julia Eitel
- Junior Research Group 6, Robert Koch Institut, Nordufer 20, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
37
|
Sheets SM, Potempa J, Travis J, Casiano CA, Fletcher HM. Gingipains from Porphyromonas gingivalis W83 induce cell adhesion molecule cleavage and apoptosis in endothelial cells. Infect Immun 2005; 73:1543-52. [PMID: 15731052 PMCID: PMC1064927 DOI: 10.1128/iai.73.3.1543-1552.2005] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of Porphyromonas gingivalis in the periodontal pocket and the high levels of gingipain activity detected in gingival crevicular fluid could implicate a role for gingipains in the destruction of the highly vascular periodontal tissue. To explore the effects of these proteases on endothelial cells, we exposed bovine coronary artery endothelial cells and human microvascular endothelial cells to gingipain-active extracellular protein preparations and/or purified gingipains from P. gingivalis. Treated cells exhibited a rapid loss of cell adhesion properties that was followed by apoptotic cell death. Cleavage of N- and VE-cadherin and integrin beta1 was observed in immunoblots of cell lysates. There was a direct correlation between the kinetics of cleavage of N- and VE-cadherin and loss of cell adhesion properties. Loss of cell adhesion, as well as N- and VE-cadherin and integrin beta1 cleavage, could be inhibited or significantly delayed by preincubation of P. gingivalis W83 gingipain-active extracellular extracts with the cysteine protease inhibitor Nalpha-p-tosyl-l-lysine chloromethylketone. Furthermore, purified gingipains also induced endothelial cell detachment and apoptosis. Apoptosis-associated events, including annexin V positivity, caspase-3 activation, and cleavage of the caspase substrates poly(ADP-ribose) polymerase and topoisomerase I (Topo I), were observed in endothelial cells after detachment. All of the effects observed were correlated with the different levels of cysteine-dependent proteolytic activity of the extracts tested. Taken together, these results indicate that gingipains from P. gingivalis can alter cell adhesion molecules and induce endothelial cell death, which could have implications for the pathogenicity of this organism.
Collapse
Affiliation(s)
- Shaun M Sheets
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | |
Collapse
|
38
|
Ding Q, Grammer JR, Nelson MA, Guan JL, Stewart JE, Gladson CL. p27Kip1 and cyclin D1 are necessary for focal adhesion kinase regulation of cell cycle progression in glioblastoma cells propagated in vitro and in vivo in the scid mouse brain. J Biol Chem 2004; 280:6802-15. [PMID: 15557280 DOI: 10.1074/jbc.m409180200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have reported previously that the expression of focal adhesion kinase (FAK) is elevated in glioblastomas and that expression of FAK promotes the proliferation of glioblastoma cells propagated in either soft agar or in the C.B.17 severe combined immunodeficiency (scid) mouse brain. We therefore determined the effect of FAK on cell cycle progression in these cells. We found that overexpression of wild-type FAK promoted exit from G(1) in monolayer cultures of glioblastoma cells, enhanced the expression of cyclins D1 and E while reducing the expression of p27(Kip1) and p21(Waf1), and enhanced the kinase activity of the cyclin D1-cyclin-dependent kinase-4 (cdk4) complex. Transfection of the monolayers with a FAK molecule in which the autophosphorylation site is mutated (FAK397F) inhibited exit from G(1) and reduced the expression of cyclins D1 and E while enhancing the expression of p27(Kip1) and p21(Waf1). Small interfering RNA (siRNA)-mediated down-regulation of cyclin D1 inhibited the enhancement of cell cycle progression observed on expression of wild-type FAK, whereas siRNA-mediated down-regulation of cyclin E had no effect. siRNA-mediated down-regulation of p27(Kip1) overcame the inhibition of cell cycle progression observed on expression of FAK397F, whereas down-regulation of p21(Waf1) had no effect. These results were confirmed in vivo in the scid mouse brain xenograft model in which propagation of glioblastoma cells expressing FAK397F resulted in a 50% inhibition of tumor growth and inhibited exit from G(1). Taken together, our results indicate that FAK promotes proliferation of glioblastoma cells by enhancing exit from G(1) through a mechanism that involves cyclin D1 and p27(Kip1).
Collapse
Affiliation(s)
- Qiang Ding
- Department of Pathology, the University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
39
|
Bill HM, Knudsen B, Moores SL, Muthuswamy SK, Rao VR, Brugge JS, Miranti CK. Epidermal growth factor receptor-dependent regulation of integrin-mediated signaling and cell cycle entry in epithelial cells. Mol Cell Biol 2004; 24:8586-99. [PMID: 15367678 PMCID: PMC516761 DOI: 10.1128/mcb.24.19.8586-8599.2004] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin-mediated adhesion of epithelial cells to extracellular matrix (ECM) proteins induces prolonged tyrosine phosphorylation and partial activation of epidermal growth factor receptor (EGFR) in an integrin-dependent and EGFR ligand-independent manner. Integrin-mediated activation of EGFR in epithelial cells is required for multiple signal transduction events previously shown to be induced by cell adhesion to matrix proteins, including tyrosine phosphorylation of Shc, Cbl, and phospholipase Cgamma, and activation of the Ras/Erk and phosphatidylinositol 3'-kinase/Akt signaling pathways. In contrast, activation of focal adhesion kinase, Src, and protein kinase C, adhesion to matrix proteins, cell spreading, migration, and actin cytoskeletal rearrangements are induced independently of EGFR kinase activity. The ability of integrins to induce the activation of EGFR and its subsequent regulation of Erk and Akt activation permitted adhesion-dependent induction of cyclin D1 and p21, Rb phosphorylation, and activation of cdk4 in epithelial cells in the absence of exogenous growth factors. Adhesion of epithelial cells to the ECM failed to efficiently induce degradation of p27, to induce cdk2 activity, or to induce Myc and cyclin A synthesis; subsequently, cells did not progress into S phase. Treatment of ECM-adherent cells with EGF, or overexpression of EGFR or Myc, resulted in restoration of late-G(1) cell cycle events and progression into S phase. These results indicate that partial activation of EGFR by integrin receptors plays an important role in mediating events triggered by epithelial cell attachment to ECM; EGFR is necessary for activation of multiple integrin-induced signaling enzymes and sufficient for early events in G(1) cell cycle progression. Furthermore, these findings suggest that EGFR or Myc overexpression may provoke ligand-independent proliferation in matrix-attached cells in vivo and could contribute to carcinoma development.
Collapse
Affiliation(s)
- Heather M Bill
- Van Andel Research Institute, 333 Bostwick Ave., SE, Grand Rapids, MI 49503, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Yang J, Price MA, Neudauer CL, Wilson C, Ferrone S, Xia H, Iida J, Simpson MA, McCarthy JB. Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. ACTA ACUST UNITED AC 2004; 165:881-91. [PMID: 15210734 PMCID: PMC2172406 DOI: 10.1083/jcb.200403174] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanoma chondroitin sulfate proteoglycan (MCSP) is an early cell surface melanoma progression marker implicated in stimulating tumor cell proliferation, migration, and invasion. Focal adhesion kinase (FAK) plays a pivotal role in integrating growth factor and adhesion-related signaling pathways, facilitating cell spreading and migration. Extracellular signal–regulated kinase (ERK) 1 and 2, implicated in tumor growth and survival, has also been linked to clinical melanoma progression. We have cloned the MCSP core protein and expressed it in the MCSP-negative melanoma cell line WM1552C. Expression of MCSP enhances integrin-mediated cell spreading, FAK phosphorylation, and activation of ERK1/2. MCSP transfectants exhibit extensive MCSP-rich microspikes on adherent cells, where it also colocalizes with α4 integrin. Enhanced activation of FAK and ERK1/2 by MCSP appears to involve independent mechanisms because inhibition of FAK activation had no effect on ERK1/2 phosphorylation. These results indicate that MCSP may facilitate primary melanoma progression by enhancing the activation of key signaling pathways important for tumor invasion and growth.
Collapse
Affiliation(s)
- Jianbo Yang
- University of Minnesota, Department of Laboratory Medicine and Pathology, 312 Church St. SE, Room 7-124 BSBE, Minneapolis, MN 55406, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Stawowy P, Kallisch H, Veinot JP, Kilimnik A, Prichett W, Goetze S, Seidah NG, Chrétien M, Fleck E, Graf K. Endoproteolytic activation of alpha(v) integrin by proprotein convertase PC5 is required for vascular smooth muscle cell adhesion to vitronectin and integrin-dependent signaling. Circulation 2004; 109:770-6. [PMID: 14970114 DOI: 10.1161/01.cir.0000112583.50762.de] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Integrins play an important role for vascular smooth muscle cell (VSMC) migration during the development of atherosclerosis and restenosis. Integrin alpha(v)-subunit consists of disulphide-bound 125-kDa heavy and 25-kDa light chains, which are generated by endoproteolytic cleavage. This type of activation requires the presence of suitable proprotein convertases (PCs). Based on ex vivo and in vitro data, the PC5 isozyme has been suggested to be the major integrin convertase. We have recently demonstrated that PC5 is upregulated during vascular remodeling in rodents, colocalizing with alpha(v) in VSMCs. The aim of this study was to investigate the activation of alpha(v) by PCs in VSMCs and its consequences for alpha(v)-dependent cell functions. METHODS AND RESULTS Immunoblotting demonstrated that inhibition of PC activity by the specific pharmacological inhibitor dec-CMK inhibits alpha(v) cleavage in VSMCs. These results were confirmed using PC5-specific antisense oligonucleotides. PC5-antisense oligonucleotides and dec-CMK inhibited VSMC adhesion to the alpha(v)beta3/beta5 ligand vitronectin (both P<0.05). Furthermore, PC5-asODNs inhibited VSMC migration on vitronectin-coated wells (P<0.05). Inhibition of PC activity and consequently alpha(v) cleavage inhibited the adhesion-dependent focal adhesion kinase(Y397)-autophosphorylation and subsequent Akt activation, whereas phosphorylation of extracellular signal-regulated kinase 1/2 was not affected. In human endarterectomy lesions, PC5 colocalized with alpha(v) integrin in VSMCs in the atherosclerotic plaques. CONCLUSIONS The present study demonstrates that alpha(v) endoproteolytic activation is necessary for integrin-mediated adhesion and migration as well as signaling and requires PC5 in VSMCs. The colocalization of PC5 and alpha(v) in human carotid plaques indicates that PC5 might play a key role for alpha(v) activation in vivo.
Collapse
Affiliation(s)
- Philipp Stawowy
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang H, Radjendirane V, Wary KK, Chakrabarty S. Transforming growth factor β regulates cell–cell adhesion through extracellular matrix remodeling and activation of focal adhesion kinase in human colon carcinoma Moser cells. Oncogene 2004; 23:5558-61. [PMID: 15133493 DOI: 10.1038/sj.onc.1207701] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transforming growth factor (TGF) beta is a potent regulator of cell-matrix and cell-cell adhesions (collectively termed cellular adhesions). Cellular adhesions play crucial roles in controlling the differentiation of epithelial cells and in maintaining the integrity of the epithelium. Loss of TGF beta-responsiveness is thought to be an important early initiating event in the malignant progression of epithelial cancer. In the TGFbeta-responsive human colon adenocarcinoma Moser cells, TGFbeta promotes cellular adhesions and suppresses their malignant phenotype. TGFbeta promotes cell-matrix adhesion by inducing the synthesis of extracellular matrix (ECM) adhesion molecules and the expression of integrin receptors for these molecules (termed ECM remodeling). TGFbeta promotes cell-cell adhesion through the induction of E-cadherin expression, an epithelial associated homotypic cell-cell adhesion molecule, which also functions as a tumor suppressor in colon cancer. How TGFbeta regulates E-cadherin expression is not known. In this study, we showed that the induction of E-cadherin by TGFbeta was mediated through the activation of focal adhesion kinase (FAK), a major signaling molecule in focal adhesion contacts and that the activation of FAK was due to ECM remodeling and increased cell-matrix interactions. Thus, TGFbeta regulates cell-cell adhesion through its ability to remodel the ECM and to activate FAK through ECM remodeling.
Collapse
Affiliation(s)
- Hongmei Wang
- Division of Pathology and Laboratory Medicine, Department of Molecular Pathology, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
43
|
Prutzman KC, Gao G, King ML, Iyer VV, Mueller GA, Schaller MD, Campbell SL. The Focal Adhesion Targeting Domain of Focal Adhesion Kinase Contains a Hinge Region that Modulates Tyrosine 926 Phosphorylation. Structure 2004; 12:881-91. [PMID: 15130480 DOI: 10.1016/j.str.2004.02.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 02/03/2004] [Accepted: 02/16/2004] [Indexed: 11/26/2022]
Abstract
The focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK) is critical for recruitment of FAK to focal adhesions and contains tyrosine 926, which, when phosphorylated, binds the SH2 domain of Grb2. Structural studies have shown that the FAT domain is a four-helix bundle that exists as a monomer and a dimer due to domain swapping of helix 1. Here, we report the NMR solution structure of the avian FAT domain, which is similar in overall structure to the X-ray crystal structures of monomeric forms of the FAT domain, except that loop 1 is longer and less structured in solution. Residues in this region undergo temperature-dependent exchange broadening and sample aberrant phi and psi angles, which suggests that this region samples multiple conformations. We have also identified a mutant that dimerizes approximately 8 fold more than WT FAT domain and exhibits increased phosphorylation of tyrosine 926 both in vitro and in vivo.
Collapse
Affiliation(s)
- Kirk C Prutzman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Sanders MA, Basson MD. Collagen IV regulates Caco-2 migration and ERK activation via alpha1beta1- and alpha2beta1-integrin-dependent Src kinase activation. Am J Physiol Gastrointest Liver Physiol 2004; 286:G547-G557. [PMID: 14604860 DOI: 10.1152/ajpgi.00262.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our previous work indicates intestinal epithelial cell ERK activation by collagen IV, a major component of the intestinal epithelial basement membrane, requires focal adhesion kinase (FAK) and suggests FAK and ERK may have important roles in regulating intestinal epithelial cell migration. We therefore sought to identify FAK downstream targets regulating intestinal epithelial cell spreading, migration, and ERK activation on collagen IV and the integrins involved. Both dominant-negative Src and Src inhibitor PP2 strongly inhibited collagen IV ERK activation in Caco-2 intestinal epithelial cells. Collagen IV stimulated Grb2 binding site FAK Y925 phosphorylation, which was inhibited by PP2 and required FAK Y397 autophosphorylation. Additionally, FAK Y925F expression blocked collagen IV ERK activation. alpha(1)beta(1)- Or alpha(2)beta(1)-integrin blockade with alpha(1)- or alpha(2)-integrin subunit antibodies indicated that either integrin can mediate adhesion, cell spreading, and FAK, Src, and ERK activation on collagen IV. Both dominant-negative Src and PP2 inhibited Caco-2 spreading on collagen IV. PP2 inhibited p130(Cas) tyrosine phosphorylation, but dominant-negative p130(Cas) did not inhibit cell spreading. PP2 inhibited Caco-2 migration on collagen IV much more strongly than the mitogen-activated protein kinase kinase inhibitor PD-98059, which completely inhibited collagen IV ERK activation. These results suggest a pathway for collagen IV ERK activation requiring Src phosphorylation of FAK Y925 not previously described for this matrix protein and suggest either alpha(1)beta(1)- or alpha(2)beta(1)-integrins can regulate Caco-2 spreading and ERK activation on collagen IV via Src. Additionally, these results suggest Src regulates Caco-2 migration on collagen IV primarily through ERK-independent pathways.
Collapse
Affiliation(s)
- Matthew A Sanders
- Department of Surgery, Wayne State University, Detroit, MI 48201-1932, USA
| | | |
Collapse
|
45
|
Abstract
The integrin family of cell membrane receptors plays an important role in signal transduction cascades. Ligation of integrins by extracellular matrix proteins can lead to direct activation of Rho-family GTPases and MAP kinase pathways. However, perhaps the most significant signaling function of integrins is to modulate signal transduction events initiated by receptor tyrosine kinases and G protein-coupled receptors. This probably plays a role in coordinating information about cell shape and position with information about the availability of soluble growth factors.
Collapse
Affiliation(s)
- Y Miyamoto
- Department of Pharmacology, University of North Carolina, CB 7365, Chapel Hill, NC, 27599-7365, USA
| | | | | |
Collapse
|
46
|
Berken A, Abel J, Unfried K. beta1-integrin mediates asbestos-induced phosphorylation of AKT and ERK1/2 in a rat pleural mesothelial cell line. Oncogene 2003; 22:8524-8. [PMID: 14627993 DOI: 10.1038/sj.onc.1207195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Integrin-mediated signalling has been implicated in asbestos-induced carcinogenesis. In studies here, we examined signal transduction events associated with integrin-directed cell reactions triggered by crocidolite asbestos in the pleural mesothelial cell line 4/4 RM-4. Crocidolite fibres induced a significant time- and dose-dependent activation of the extracellular-signal-regulated kinases ERK1 and ERK2. ERK activation was specifically inhibited by integrin-blocking agents, that are integrin-binding peptides containing the sequence arginine-glycine-aspartic acid (RGD), and monoclonal antibodies against the integrin beta1-chain. Integrin-dependent activation of ERK1/2 in response to asbestos appeared to be independent of focal adhesion kinase pp125FAK (FAK) since FAK autophosphorylation remained unaffected in crocidolite-exposed mesothelial cells. Instead, we observed striking similarities in the kinetics of asbestos-induced ERK1/2 responses and phosphorylation of protein kinase B (AKT) at serine 473, a possible target residue for integrin-linked kinase. As with ERK activation, asbestos-induced AKT stimulation was significantly blocked by both the RGD-peptide and the beta1-integrin antibodies. These studies are the first to establish that in mesothelial cells ERK1/2 and AKT are simultaneously phosphorylated upon asbestos exposure in a beta1-integrin-dependent manner.
Collapse
Affiliation(s)
- Antje Berken
- Department of Toxicology, Institut für umweltmedizinische Forschung at the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
47
|
Shima T, Nada S, Okada M. Transmembrane phosphoprotein Cbp senses cell adhesion signaling mediated by Src family kinase in lipid rafts. Proc Natl Acad Sci U S A 2003; 100:14897-902. [PMID: 14645715 PMCID: PMC299849 DOI: 10.1073/pnas.2432139100] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cbp, a C-terminal Src kinase (Csk)-binding protein, is a transmembrane phosphoprotein that has been implicated in the regulation of the Src family kinase (SFK) through recruiting Csk, a negative regulator of SFK, to a membrane microdomain of lipid rafts. To examine the contribution of Cbp to cell adhesion signaling mediated by SFK, we investigated the kinase responsible for phosphorylating Cbp and the mode of phosphorylation during the cell adhesion process. The results obtained by using mutant mice or cells that lack Csk and/or a member of SFK, Fyn, reveal that Cbp is phosphorylated predominantly by raft-localized Fyn in vivo. Upon cell adhesion onto fibronectin, Cbp becomes transiently phosphorylated (consistent with SFK activation) and recruits Csk to lipid rafts. These events are completed before the full activation of focal adhesion kinase, indicating that the transient activation and down-regulation of SFK in lipid rafts are earlier events in cell adhesion signaling. In Csk-deficient cells, continuous hyperactivation of SFK leads to continuous hyperphosphorylation of Cbp, accompanied by impaired cell spreading and migration. Silencing of Cbp by RNA interference also induced impaired cell spreading. These findings suggest that Cbp could serve as a sensor of SFK activity in early stages of cell adhesion signaling, and that Csk-mediated down-regulation of SFK is essential to allow dynamic cellular events involved in the regulation of cell spreading and migration.
Collapse
Affiliation(s)
- Takaki Shima
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
48
|
Hazlehurst LA, Landowski TH, Dalton WS. Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Oncogene 2003; 22:7396-402. [PMID: 14576847 DOI: 10.1038/sj.onc.1206943] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The emergence of clinical drug resistance continues to be an obstacle for the successful treatment of cancer. Our current understanding of mechanisms associated with drug resistance has been ascertained by investigating drug-resistant models created by exposing a parental population to increasing concentrations of a cytotoxic. These unicellular drug-resistant models have been critical in elucidating drug-resistant mechanism and in some cases have aided in the identification of drug targets. However, these models do not address resistance mechanisms that contribute to de novo drug resistance. We propose that specific niches within the tumor microenvironment may provide a sanctuary for subpopulations of tumors cells that affords a survival advantage following initial drug exposure and may facilitate the acquisition of acquired drug resistance. More specifically, we propose that the bone marrow microenvironment is a sanctuary for hema-topoietic cancers. This review will focus on the bone marrow microenvironment and its role in conferring resistance to cytotoxics and physiological mediators of cell death.
Collapse
Affiliation(s)
- Lori A Hazlehurst
- Clinical Investigations Program at H Lee Moffitt Cancer Center, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | |
Collapse
|
49
|
Chung CH, Wu WB, Huang TF. Aggretin, a snake venom-derived endothelial integrin alpha 2 beta 1 agonist, induces angiogenesis via expression of vascular endothelial growth factor. Blood 2003; 103:2105-13. [PMID: 14630793 DOI: 10.1182/blood-2003-07-2483] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggretin, a collagen-like alpha 2 beta 1 agonist purified from Calloselasma rhodostoma venom, was shown to increase human umbilical vein endothelial cell (HUVEC) proliferation and HUVEC migration toward immobilized aggretin was also increased. These effects were blocked by A2-IIE10, an antibody raised against integrin alpha 2. Aggretin bound to HUVECs in a dose-dependent and saturable manner, which was specifically inhibited by A2-IIE10, as examined by flow cytometry. Aggretin elicited significant angiogenic effects in both in vivo and in vitro angiogenesis assays, and incubation of HUVECs with aggretin activated phosphatidylinositol 3-kinase (PI3K), Akt, and extracellular-regulated kinase 1/2 (ERK1/2); these effects were blocked by A2-IIE10 or vascular endothelial growth factor (VEGF) monoclonal antibody (mAb). The angiogenic effect induced by aggretin may be via the production of VEGF because the VEGF level was elevated and VEGF mAb pretreatment inhibited Akt/ERK1/2 activation as well as the in vivo angiogenesis induced by aggretin. The VEGF production induced by aggretin can be blocked by A2-IIE10 mAb pretreatment. In conclusion, aggretin induces endothelial cell proliferation, migration, and angiogenesis by interacting with integrin alpha 2 beta 1 leading to activation of PI3K, Akt, and ERK1/2 pathways, and the increased expression of VEGF may be responsible for its angiogenic activity.
Collapse
Affiliation(s)
- Ching-Hu Chung
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
50
|
Balasubramanian S, Kuppuswamy D. RGD-containing peptides activate S6K1 through beta3 integrin in adult cardiac muscle cells. J Biol Chem 2003; 278:42214-24. [PMID: 12909616 DOI: 10.1074/jbc.m303428200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The enzyme p70S6 kinase (S6K1) is critical for cell growth, and we have reported its activation during cardiac hypertrophy. Because cardiac hypertrophy also involves integrin activation, we analyzed whether integrins could contribute to S6K1 activation. Using adult feline cardiomyocytes, here we report that integrin-interacting Arg-Gly-Asp (RGD) peptides activate S6K1 as observed by band shifting, kinase activity and phosphorylation at Thr-389 and Thr-421/Ser-424 of S6K1, and S6 protein phosphorylation. Perturbation of specific integrin function with blocking antibodies and by overexpressing the beta1A cytoplasmic tail revealed that beta3 but not beta1 integrin mediates the RGD-induced S6K1 activation. This activation is focal adhesion complex-independent and is accompanied by the activation of extracellular signal-regulated kinases 1/2 (ERK) and mammalian target of rapamycin (mTOR). Studies using specific inhibitors and dominant negative c-Raf expression in cardiomyocytes indicate that the S6K1 activation involves mTOR, MEK/ERK, and phosphatidylinositol 3-kinase pathways and is independent of protein kinase C and c-Raf. Finally, addition of fluorescent-labeled RGD peptide to cardiomyocytes exhibits its internalization and localization to the endocytic vesicles, and pretreatment of cardiomyocytes with endocytic inhibitors reduced the S6K1 activation. These data suggest that RGD interaction with beta3 integrin and its subsequent endocytosis trigger specific signaling pathway(s) for S6K1 activation in cardiomyocytes and that this process may contribute to hypertrophic growth and remodeling of myocardium.
Collapse
Affiliation(s)
- Sundaravadivel Balasubramanian
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, 114 Doughty Street, Charleston, SC 29425-2221, USA
| | | |
Collapse
|