1
|
Zhu W, Wang S, Guan C, Liu S, Zhang H. Type III interferon, age and IFNL gene single nucleotide polymorphisms determine the characteristics of H1N1 influenza infection. Front Immunol 2025; 16:1592841. [PMID: 40438107 PMCID: PMC12116514 DOI: 10.3389/fimmu.2025.1592841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/22/2025] [Indexed: 06/01/2025] Open
Abstract
Background Host factors, such as innate immune response, genetic polymorphisms, age, and body weight are important determinants of susceptibility, severity, and responsiveness to treatment of influenza disease. However, the molecular mechanisms underlying these clinical associations remain poorly characterized, particularly regarding IFN-λ-mediated antiviral responses. Methods Wild-type mice and IL-28B-/- mice were used to systematically investigate the antiviral and anti-inflammatory functions of IL-29 or IL-28, respectively. Plaque assay and DNA genotyping were conducted to determine the correlations between IFN-λ polymorphisms and H1N1 infection outcomes. ELISA, Real-time PCR and luciferase reporter assays were carried out to explore the mechanism. Results IFN-λ plays an important antiviral and immunoprotective role in H1N1 infection. Specifically, IL-29 and IL-28 exhibit important dual antiviral and anti-inflammaroty roles. Age factor also affects H1N1 clearance and therapeutic responsiveness. Human alveolar epithelial cells (AECs) from young donors support higher H1N1 replication and weak response to antiviral treatment with IL-29. Rs12979860 (IL-28 C/T), rs8099917 (IL-28 T/G) and rs30461 (IL-29 A/G), the three identified single nucleotide polymorphisms (SNPs) in IFNL genes, are also associated with H1N1 outcomes. AECs from rs12979860TT and rs8099917GG donors exhibit higher H1N1 replication and nonresponsiveness to IL-29 antiviral therapy. AECs from rs12979860 TT donors also produce lower levels of IFN and exhibit inhibited promoter activity of IL-29 in response to H1N1 infection. In addition, increased allele frequencies of rs12979860 T and rs8099917 G were associated with higher BMI, another important factor influencing H1N1 susceptibility. Conclusions This is the first study to comprehensively explore the impact of host factors, especially IFN-λ polymorphisms, on H1N1 virus infection. Further elucidation of the underlying mechanisms may help to develop novel prevention and treatment strategies for influenza virus infection.
Collapse
Affiliation(s)
- Wenbo Zhu
- The First Affiliated Hospital, Clinical Medical Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Science, Fuzhou, China
| | - Chenchen Guan
- The First Affiliated Hospital, Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuangquan Liu
- The First Affiliated Hospital, Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hongbo Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Luo Q, Song Q, Li Y, Zong K, Liu T, He J, Mei G, Du H, Xia Z, Liu M, Song J, Gao C, Xia D, Xue G, Tian W, Qu Y, Kou Z, Dong Z, Han J. Reduced immune response to SARS-CoV-2 infection in the elderly after 6 months. Front Immunol 2025; 16:1596065. [PMID: 40416973 PMCID: PMC12098630 DOI: 10.3389/fimmu.2025.1596065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 05/27/2025] Open
Abstract
Objectives To evaluate the immune persistence and cross-immune response of elderly individuals after Omicron BA.5 infections. Method The neutralizing antibodies against WT, BA.5, XBB.1 and EG.5 strains were analyzed. The T/B-cell subsets' responses were tested through intracellular cytokine staining and flow cytometry. Results The neutralizing antibodies titers against WT and BA.5 strain, remaining high level for at least 6 months, were higher than that of both XBB.1 and EG.5 variants. The neutralizing antibodies of WT, BA.5, XBB.1, and EG.5 strains in the elderly were slightly lower than those in middle-age. The memory B cells decreased rapidly in the elderly, and Tfh, Th17 cells of the elderly continued to increase for only 3 months, while Tfh and Th17 cells increased in the middle-aged for over 6 months. For the elderly, after peptide stimulation, unswitched/switched memory B cells decreased, while double negative B cells displayed higher proliferation. The proportions of both naïve and Temra cells in CD4+ and CD8+ T cells declined, whereas those of Tcm and Tem cells elevated. In the meantime, both CD69+ and CD38+ T cells decreased, but the frequencies of PD-1+ and CTLA-4+ of CD4+ and CD8+ T cells showed an increasing trend. The proportions of PD-1+ and CTLA-4+ cells also increased in older people with long COVID symptoms at 3m post-infection. Conclusions Omicron BA.5 infection induced lower neutralizing antibodies against XBB.1 and EG.5 variant. The decrease of memory B cells, CD69+ and CD38+T cells, as well as the increase of PD-1+, CTLA-4+ of CD4+/CD8+T cells and double negative B cells, indicate that sustained immune responses against BA.5 infection may wane more rapidly in elderly populations.
Collapse
Affiliation(s)
- Qin Luo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qinqin Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Li
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Intelligent Monitoring, Early Warning, and Prevention and Control of Infectious Diseases, Shandong Institute of Preventive Medicine, Jinan, China
| | - Kexin Zong
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ti Liu
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Intelligent Monitoring, Early Warning, and Prevention and Control of Infectious Diseases, Shandong Institute of Preventive Medicine, Jinan, China
| | - Junming He
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Guoyong Mei
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haijun Du
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiqiang Xia
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mi Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dong Xia
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guangyu Xue
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenyan Tian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yinli Qu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zengqiang Kou
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Intelligent Monitoring, Early Warning, and Prevention and Control of Infectious Diseases, Shandong Institute of Preventive Medicine, Jinan, China
| | - Zhongjun Dong
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Jun Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Liu S, Lin M, Zhou X. T4 Phage Displaying Dual Antigen Clusters Against H3N2 Influenza Virus Infection. Vaccines (Basel) 2025; 13:70. [PMID: 39852849 PMCID: PMC11769387 DOI: 10.3390/vaccines13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND The current H3N2 influenza subunit vaccine exhibits weak immunogenicity, which limits its effectiveness in preventing and controlling influenza virus infections. METHODS In this study, we aimed to develop a T4 phage-based nanovaccine designed to enhance the immunogenicity of two antigens by displaying the HA1 and M2e antigens of the H3N2 influenza virus on each phage nanoparticle. Specifically, we fused the Soc protein with the HA1 antigen and the Hoc protein with the M2e antigen, assembling them onto a T4 phage that lacks Soc and Hoc proteins (Soc-Hoc-T4), thereby constructing a nanovaccine that concurrently presents both HA1 and M2e antigens. RESULTS The analysis of the optical density of the target protein bands indicated that each particle could display approximately 179 HA1 and 68 M2e antigen molecules. Additionally, animal experiments demonstrated that this nanoparticle vaccine displaying dual antigen clusters induced a stronger specific immune response, higher antibody titers, a more balanced Th1/Th2 immune response, and enhanced CD4+ and CD8+ T cell effects compared to immunization with HA1 and M2e antigen molecules alone. Importantly, mice immunized with the T4 phage displaying dual antigen clusters achieved full protection (100% protection) against the H3N2 influenza virus, highlighting its robust protective efficacy. CONCLUSIONS In summary, our findings indicate that particles based on a T4 phage displaying antigen clusters exhibit ideal immunogenicity and protective effects, providing a promising strategy for the development of subunit vaccines against various viruses beyond influenza.
Collapse
Affiliation(s)
- Shenglong Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
| | - Mengzhou Lin
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| |
Collapse
|
4
|
Finn CM, McKinstry KK. Ex Pluribus Unum: The CD4 T Cell Response against Influenza A Virus. Cells 2024; 13:639. [PMID: 38607077 PMCID: PMC11012043 DOI: 10.3390/cells13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Current Influenza A virus (IAV) vaccines, which primarily aim to generate neutralizing antibodies against the major surface proteins of specific IAV strains predicted to circulate during the annual 'flu' season, are suboptimal and are characterized by relatively low annual vaccine efficacy. One approach to improve protection is for vaccines to also target the priming of virus-specific T cells that can protect against IAV even in the absence of preexisting neutralizing antibodies. CD4 T cells represent a particularly attractive target as they help to promote responses by other innate and adaptive lymphocyte populations and can also directly mediate potent effector functions. Studies in murine models of IAV infection have been instrumental in moving this goal forward. Here, we will review these findings, focusing on distinct subsets of CD4 T cell effectors that have been shown to impact outcomes. This body of work suggests that a major challenge for next-generation vaccines will be to prime a CD4 T cell population with the same spectrum of functional diversity generated by IAV infection. This goal is encapsulated well by the motto 'ex pluribus unum': that an optimal CD4 T cell response comprises many individual specialized subsets responding together.
Collapse
Affiliation(s)
| | - K. Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
5
|
Guo K, Yombo DJK, Wang Z, Navaeiseddighi Z, Xu J, Schmit T, Ahamad N, Tripathi J, De Kumar B, Mathur R, Hur J, Sun J, Olszewski MA, Khan N. The chemokine receptor CXCR3 promotes CD8 + T cell-dependent lung pathology during influenza pathogenesis. SCIENCE ADVANCES 2024; 10:eadj1120. [PMID: 38170765 PMCID: PMC10776024 DOI: 10.1126/sciadv.adj1120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The dual role of CD8+ T cells in influenza control and lung pathology is increasingly appreciated. To explore whether protective and pathological functions can be linked to specific subsets, we dissected CD8+ T responses in influenza-infected murine lungs. Our single-cell RNA-sequencing (scRNA-seq) analysis revealed notable diversity in CD8+ T subpopulations during peak viral load and infection-resolved state. While enrichment of a Cxcr3hi CD8+ T effector subset was associated with a more robust cytotoxic response, both CD8+ T effector and central memory exhibited equally potent effector potential. The scRNA-seq analysis identified unique regulons regulating the cytotoxic response in CD8+ T cells. The late-stage CD8+ T blockade in influenza-cleared lungs or continuous CXCR3 blockade mitigated lung injury without affecting viral clearance. Furthermore, adoptive transfer of wild-type CD8+ T cells exacerbated influenza lung pathology in Cxcr3-/- mice. Collectively, our data imply that CXCR3 interception could have a therapeutic effect in preventing influenza-linked lung injury.
Collapse
Affiliation(s)
- Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan J. K. Yombo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | | | - Jintao Xu
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Taylor Schmit
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Nassem Ahamad
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Jitendra Tripathi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Bony De Kumar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA
| | - Michal A. Olszewski
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Hilligan KL, Namasivayam S, Clancy CS, Baker PJ, Old SI, Peluf V, Amaral EP, Oland SD, O'Mard D, Laux J, Cohen M, Garza NL, Lafont BAP, Johnson RF, Feng CG, Jankovic D, Lamiable O, Mayer-Barber KD, Sher A. Bacterial-induced or passively administered interferon gamma conditions the lung for early control of SARS-CoV-2. Nat Commun 2023; 14:8229. [PMID: 38086794 PMCID: PMC10716133 DOI: 10.1038/s41467-023-43447-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Type-1 and type-3 interferons (IFNs) are important for control of viral replication; however, less is known about the role of Type-2 IFN (IFNγ) in anti-viral immunity. We previously observed that lung infection with Mycobacterium bovis BCG achieved though intravenous (iv) administration provides strong protection against SARS-CoV-2 in mice yet drives low levels of type-1 IFNs but robust IFNγ. Here we examine the role of ongoing IFNγ responses to pre-established bacterial infection on SARS-CoV-2 disease outcomes in two murine models. We report that IFNγ is required for iv BCG induced reduction in pulmonary viral loads, an outcome dependent on IFNγ receptor expression by non-hematopoietic cells. Importantly, we show that BCG infection prompts pulmonary epithelial cells to upregulate IFN-stimulated genes with reported anti-viral activity in an IFNγ-dependent manner, suggesting a possible mechanism for the observed protection. Finally, we confirm the anti-viral properties of IFNγ by demonstrating that the recombinant cytokine itself provides strong protection against SARS-CoV-2 challenge when administered intranasally. Together, our data show that a pre-established IFNγ response within the lung is protective against SARS-CoV-2 infection, suggesting that concurrent or recent infections that drive IFNγ may limit the pathogenesis of SARS-CoV-2 and supporting possible prophylactic uses of IFNγ in COVID-19 management.
Collapse
Affiliation(s)
- Kerry L Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chad S Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Paul J Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel I Old
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand
| | - Victoria Peluf
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sandra D Oland
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Danielle O'Mard
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julie Laux
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Melanie Cohen
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicole L Garza
- SARS-CoV2- Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernard A P Lafont
- SARS-CoV2- Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reed F Johnson
- SARS-CoV2- Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carl G Feng
- Immunology and Host Defense Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Olivier Lamiable
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Tandel N, Negi S, Dalai SK, Tyagi RK. Role of natural killer and B cell interaction in inducing pathogen specific immune responses. Int Rev Immunol 2023; 42:304-322. [PMID: 36731424 DOI: 10.1080/08830185.2023.2172406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
The innate lymphoid cell (ILC) system comprising of the circulating and tissue-resident cells is known to clear infectious pathogens, establish immune homeostasis as well as confer antitumor immunity. Human natural killer cells (hNKs) and other ILCs carry out mopping of the infectious pathogens and perform cytolytic activity regulated by the non-adaptive immune system. The NK cells generate immunological memory and rapid recall response tightly regulated by the adaptive immunity. The interaction of NK and B cell, and its role to induce the pathogen specific immunity is not fully understood. Hence, present article sheds light on the interaction between NK and B cells and resulting immune responses in the infectious diseases. The immune responses elicited by the NK-B cell interaction is of particular importance for developing therapeutic vaccines against the infectious pathogens. Further, experimental evidences suggest the immune-response driven by NK cell population elicits the host-specific antibodies and memory B cells. Also, recently developed humanized immune system (HIS) mice and their importance in to understanding the NK-B cell interaction and resulting pathogen specific immunity has been discussed.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| |
Collapse
|
8
|
Cootes TA, Bhattacharyya ND, Huang SS, Daniel L, Bell-Anderson KS, Stifter SA, Chew T, Solon-Biet SM, Saraiva LR, Cai Y, Chen X, Simpson SJ, Feng CG. The quality of energy- and macronutrient-balanced diets regulates host susceptibility to influenza in mice. Cell Rep 2022; 41:111638. [DOI: 10.1016/j.celrep.2022.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/28/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
|
9
|
Wang YH, Noyer L, Kahlfuss S, Raphael D, Tao AY, Kaufmann U, Zhu J, Mitchell-Flack M, Sidhu I, Zhou F, Vaeth M, Thomas PG, Saunders SP, Stauderman K, Curotto de Lafaille MA, Feske S. Distinct roles of ORAI1 in T cell-mediated allergic airway inflammation and immunity to influenza A virus infection. SCIENCE ADVANCES 2022; 8:eabn6552. [PMID: 36206339 PMCID: PMC9544339 DOI: 10.1126/sciadv.abn6552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
T cell activation and function depend on Ca2+ signals mediated by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI1 proteins. We here investigated how SOCE controls T cell function in pulmonary inflammation during a T helper 1 (TH1) cell-mediated response to influenza A virus (IAV) infection and TH2 cell-mediated allergic airway inflammation. T cell-specific deletion of Orai1 did not exacerbate pulmonary inflammation and viral burdens following IAV infection but protected mice from house dust mite-induced allergic airway inflammation. ORAI1 controlled the expression of genes including p53 and E2F transcription factors that regulate the cell cycle in TH2 cells in response to allergen stimulation and the expression of transcription factors and cytokines that regulate TH2 cell function. Systemic application of a CRAC channel blocker suppressed allergic airway inflammation without compromising immunity to IAV infection, suggesting that inhibition of SOCE is a potential treatment for allergic airway disease.
Collapse
Affiliation(s)
- Yin-Hu Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lucile Noyer
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sascha Kahlfuss
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitrius Raphael
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony Y. Tao
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ulrike Kaufmann
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jingjie Zhu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marisa Mitchell-Flack
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ikjot Sidhu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Fang Zhou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Martin Vaeth
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paul G. Thomas
- St. Jude’s Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sean P. Saunders
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University Grossman School of Medicine, NY 10016, USA
| | | | - Maria A. Curotto de Lafaille
- Division of Pulmonary, Critical Care and Sleep Medicine, Departments of Medicine and Cell Biology, New York University Grossman School of Medicine, NY 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
10
|
Downey J, Randolph HE, Pernet E, Tran KA, Khader SA, King IL, Barreiro LB, Divangahi M. Mitochondrial cyclophilin D promotes disease tolerance by licensing NK cell development and IL-22 production against influenza virus. Cell Rep 2022; 39:110974. [PMID: 35732121 DOI: 10.1016/j.celrep.2022.110974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/25/2022] [Accepted: 05/26/2022] [Indexed: 11/03/2022] Open
Abstract
Severity of pulmonary viral infections, including influenza A virus (IAV), is linked to excessive immunopathology, which impairs lung function. Thus, the same immune responses that limit viral replication can concomitantly cause lung damage that must be countered by largely uncharacterized disease tolerance mechanisms. Here, we show that mitochondrial cyclophilin D (CypD) protects against IAV via disease tolerance. CypD-/- mice are significantly more susceptible to IAV infection despite comparable antiviral immunity. This susceptibility results from damage to the lung epithelial barrier caused by a reduction in interleukin-22 (IL-22)-producing natural killer (NK) cells. Transcriptomic and functional data reveal that CypD-/- NK cells are immature and have altered cellular metabolism and impaired IL-22 production, correlating with dysregulated bone marrow lymphopoiesis. Administration of recombinant IL-22 or transfer of wild-type (WT) NK cells abrogates pulmonary damage and protects CypD-/- mice after IAV infection. Collectively, these results demonstrate a key role for CypD in NK cell-mediated disease tolerance.
Collapse
Affiliation(s)
- Jeffrey Downey
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Haley E Randolph
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Erwan Pernet
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Kim A Tran
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Shabaana A Khader
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Irah L King
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Luis B Barreiro
- Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Maziar Divangahi
- Department of Medicine, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
11
|
Abstract
CD4+ T cells are key to controlling cytomegalovirus infections. Salivary gland infection by murine cytomegalovirus (MCMV) provides a way to identify mechanisms. CD11c+ dendritic cells (DC) disseminate MCMV to the salivary glands, where they transfer infection to acinar cells. Antiviral CD4+ T cells are often considered to be directly cytotoxic for cells expressing major histocompatibility complex class II (MHCII). However, persistently infected salivary gland acinar cells are MHCII- and are presumably inaccessible to direct CD4 T cell recognition. Here, we show that CD4+ T cell depletion amplified infection of MHCII- acinar cells but not MHCII+ cells. MCMV-infected mice with disrupted MHCII on CD11c+ cells showed increased MHCII- acinar infection; antiviral CD4+ T cells were still primed, but their recruitment to the salivary glands was reduced, suggesting that engagement with local MHCII+ DC is important for antiviral protection. As MCMV downregulates MHCII on infected DC, the DC participating in CD4 protection may thus be uninfected. NK cells and gamma interferon (IFN-γ) may also contribute to CD4+ T cell-dependent virus control: CD4 T cell depletion reduced NK cell recruitment to the salivary glands, and both NK cell and IFN-γ depletion equalized infection between MHCII-disrupted and control mice. Taken together, these results suggest that CD4+ T cells protect indirectly against infected acinar cells in the salivary gland via DC engagement, requiring the recruitment of NK cells and the action of IFN-γ. Congruence of these results with an established CD4+ T cell/NK cell axis of gammaherpesvirus infection control suggests a common mode of defense against evasive viruses. IMPORTANCE Cytomegalovirus infections commonly cause problems in immunocompromised patients and in pregnancy. We lack effective vaccines. CD4+ T cells play an important role in normal infection control, yet how they act has been unknown. Using murine cytomegalovirus as an accessible model, we show that CD4+ T cells are unlikely to recognize infected cells directly. We propose that CD4+ T cells interact with uninfected cells that present viral antigens and recruit other immune cells to attack infected targets. These data present a new outlook on understanding how CD4+ T cell-directed control protects against persistent cytomegalovirus infection.
Collapse
|
12
|
Schmit T, Guo K, Tripathi JK, Wang Z, McGregor B, Klomp M, Ambigapathy G, Mathur R, Hur J, Pichichero M, Kolls J, Khan MN. Interferon-γ promotes monocyte-mediated lung injury during influenza infection. Cell Rep 2022; 38:110456. [PMID: 35235782 DOI: 10.1016/j.celrep.2022.110456] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
Influenza A virus (IAV) infection triggers an exuberant host response that promotes acute lung injury. However, the host response factors that promote the development of a pathologic inflammatory response to IAV remain incompletely understood. In this study, we identify an interferon-γ (IFN-γ)-regulated subset of monocytes, CCR2+ monocytes, as a driver of lung damage during IAV infection. IFN-γ regulates the recruitment and inflammatory phenotype of CCR2+ monocytes, and mice deficient in CCR2 (CCR2-/-) or IFN-γ (IFN-γ-/-) exhibit reduced lung inflammation, pathology, and disease severity. Adoptive transfer of wild-type (WT) (IFN-γR1+/+) but not IFN-γR1-/- CCR2+ monocytes restore the WT-like pathological phenotype of lung damage in IAV-infected CCR2-/- mice. CD8+ T cells are the main source of IFN-γ in IAV-infected lungs. Collectively, our data highlight the requirement of IFN-γ signaling in the regulation of CCR2+ monocyte-mediated lung pathology during IAV infection.
Collapse
Affiliation(s)
- Taylor Schmit
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jitendra Kumar Tripathi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Zhihan Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Brett McGregor
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Mitch Klomp
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Ganesh Ambigapathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Michael Pichichero
- Rochester General Hospital Research Institute, 1425 Portland Avenue, Rochester, NY 14621, USA
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - M Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA.
| |
Collapse
|
13
|
Viral PB1-F2 and host IFN-γ guide ILC2 and T cell activity during influenza virus infection. Proc Natl Acad Sci U S A 2022; 119:2118535119. [PMID: 35169077 PMCID: PMC8872759 DOI: 10.1073/pnas.2118535119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 12/28/2022] Open
Abstract
The regulation of functional immune cell plasticity is poorly understood. Host environmental cues are critical, but the possible influence of pathogen-derived virulence factors has not been described. We have used reverse-engineered influenza A viruses that differ in PB1-F2 activity to analyze influenza in mice in the presence or absence of host interferon (IFN)-γ. In the absence of functional PB1-F2 and IFN-γ, lung ILC2s initiated robust IL-5 responses following viral challenge, which led to improved tissue integrity and survival. Conversely, functional PB1-F2 suppressed IL-5+ ILC2 responses and induced a dominant IL-13+ CD8 T cell response regardless of host IFN-γ. These findings demonstrate the critical interplay between the viral virulence factors and host cytokines in regulating protective pulmonary immunity during influenza virus infection. Functional plasticity of innate lymphoid cells (ILCs) and T cells is regulated by host environmental cues, but the influence of pathogen-derived virulence factors has not been described. We now report the interplay between host interferon (IFN)-γ and viral PB1-F2 virulence protein in regulating the functions of ILC2s and T cells that lead to recovery from influenza virus infection of mice. In the absence of IFN-γ, lung ILC2s from mice challenged with the A/California/04/2009 (CA04) H1N1 virus, containing nonfunctional viral PB1-F2, initiated a robust IL-5 response, which also led to improved tissue integrity and increased survival. Conversely, challenge with Puerto Rico/8/1934 (PR8) H1N1 virus expressing fully functional PB1-F2, suppressed IL-5+ ILC2 responses, and induced a dominant IL-13+ CD8 T cell response, regardless of host IFN-γ expression. IFN-γ–deficient mice had increased survival and improved tissue integrity following challenge with lethal doses of CA04, but not PR8 virus, and increased resistance was dependent on the presence of IFN-γR+ ILC2s. Reverse-engineered influenza viruses differing in functional PB1-F2 activity induced ILC2 and T cell phenotypes similar to the PB1-F2 donor strains, demonstrating the potent role of viral PB1-F2 in host resistance. These results show the ability of a pathogen virulence factor together with host IFN-γ to regulate protective pulmonary immunity during influenza infection.
Collapse
|
14
|
Li Z, Roy S, Ranasinghe C. IL-13Rα2 Regulates the IL-13/IFN-γ Balance during Innate Lymphoid Cell and Dendritic Cell Responses to Pox Viral Vector-Based Vaccination. Vaccines (Basel) 2021; 9:440. [PMID: 34062727 PMCID: PMC8147251 DOI: 10.3390/vaccines9050440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/08/2021] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
We have shown that manipulation of IL-13 and STAT6 signaling at the vaccination site can lead to different innate lymphoid cell (ILC)/dendritic cell (DC) recruitment, resulting in high avidity/poly-functional T cells and effective antibody differentiation. Here we show that permanent versus transient blockage of IL-13 and STAT6 at the vaccination site can lead to unique ILC-derived IL-13 and IFN-γ profiles, and differential IL-13Rα2, type I and II IL-4 receptor regulation on ILC. Specifically, STAT6-/- BALB/c mice given fowl pox virus (FPV) expressing HIV antigens induced elevated ST2/IL-33R+ ILC2-derived IL-13 and reduced NKp46+/- ILC1/ILC3-derived IFN-γ expression, whilst the opposite (reduced IL-13 and elevated IFN-γ expression) was observed during transient inhibition of STAT6 signaling in wild type BALB/c mice given FPV-HIV-IL-4R antagonist vaccination. Interestingly, disruption/inhibition of STAT6 signaling considerably impacted IL-13Rα2 expression by ST2/IL-33R+ ILC2 and NKp46- ILC1/ILC3, unlike direct IL-13 inhibition. Consistently with our previous findings, this further indicated that inhibition of STAT6 most likely promoted IL-13 regulation via IL-13Rα2. Moreover, the elevated ST2/IL-33R+ IL-13Rα2+ lung ILC2, 24 h post FPV-HIV-IL-4R antagonist vaccination was also suggestive of an autocrine regulation of ILC2-derived IL-13 and IL-13Rα2, under certain conditions. Knowing that IL-13 can modulate IFN-γ expression, the elevated expression of IFN-γR on lung ST2/IL-33R+ ILC2 provoked the notion that there could also be inter-regulation of lung ILC2-derived IL-13 and NKp46- ILC1/ILC3-derived IFN-γ via their respective receptors (IFN-γR and IL-13Rα2) at the lung mucosae early stages of vaccination. Intriguingly, under different IL-13 conditions differential regulation of IL-13/IL-13Rα2 on lung DC was also observed. Collectively these findings further substantiated that IL-13 is the master regulator of, not only DC, but also different ILC subsets at early stages of viral vector vaccination, and responsible for shaping the downstream adaptive immune outcomes. Thus, thoughtful selection of vaccine strategies/adjuvants that can manipulate IL-13Rα2, and STAT6 signaling at the ILC/DC level may prove useful in designing more efficacious vaccines against different/chronic pathogens.
Collapse
Affiliation(s)
- Zheyi Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; (Z.L.); (S.R.)
| | - Sreeja Roy
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; (Z.L.); (S.R.)
- Department of Immunology & Microbial Disease, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208-3479, USA
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; (Z.L.); (S.R.)
| |
Collapse
|
15
|
Barman TK, Racine R, Bonin JL, Califano D, Salmon SL, Metzger DW. Sequential targeting of interferon pathways for increased host resistance to bacterial superinfection during influenza. PLoS Pathog 2021; 17:e1009405. [PMID: 33690728 PMCID: PMC7978370 DOI: 10.1371/journal.ppat.1009405] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/19/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial co-infections represent a major clinical complication of influenza. Host-derived interferon (IFN) increases susceptibility to bacterial infections following influenza, but the relative roles of type-I versus type-II IFN remain poorly understood. We have used novel mouse models of co-infection in which colonizing pneumococci were inoculated into the upper respiratory tract; subsequent sublethal influenza virus infection caused the bacteria to enter the lungs and mediate lethal disease. Compared to wild-type mice or mice deficient in only one pathway, mice lacking both IFN pathways demonstrated the least amount of lung tissue damage and mortality following pneumococcal-influenza virus superinfection. Therapeutic neutralization of both type-I and type-II IFN pathways similarly provided optimal protection to co-infected wild-type mice. The most effective treatment regimen was staggered neutralization of the type-I IFN pathway early during co-infection combined with later neutralization of type-II IFN, which was consistent with the expression and reported activities of these IFNs during superinfection. These results are the first to directly compare the activities of type-I and type-II IFN during superinfection and provide new insights into potential host-directed targets for treatment of secondary bacterial infections during influenza. Bacterial co-infections represent a common and challenging clinical complication of influenza. Type-I and type-II interferon (IFN) pathways enhance susceptibility to influenza-pneumococcal co-infection, leading to increased lung pathology and mortality. However, the comparative importance of type-I versus type-II IFN remains unclear. We have used two novel mouse models of co-infection in which pneumococci were inoculated into the upper respiratory tract followed two days later by influenza virus infection. Virus co-infection caused IFN-dependent inflammation that facilitated spreading of the colonizing bacteria into the lungs, followed by tissue damage and death. In this pneumococcal-influenza virus superinfection model, mice lacking both type-I and type-II IFN pathways demonstrated minimal lung pathology and increased survival compared to wild-type mice and mice deficient in only one pathway. Therapeutic neutralization of both type-I and type-II IFN pathways similarly provided optimal protection to superinfected wild-type mice. The most effective treatment regimen involved neutralization of the type-I IFN pathway early during co-infection combined with later neutralization of the type-II IFN pathway. These results provide new insights into potential host-directed therapy for management of bacterial-viral superinfections.
Collapse
Affiliation(s)
- Tarani Kanta Barman
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Rachael Racine
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Jesse L. Bonin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Danielle Califano
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Sharon L. Salmon
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Dennis W. Metzger
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Prigge AD, Ma R, Coates BM, Singer BD, Ridge KM. Age-Dependent Differences in T-Cell Responses to Influenza A Virus. Am J Respir Cell Mol Biol 2020; 63:415-423. [PMID: 32609537 DOI: 10.1165/rcmb.2020-0169tr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Respiratory infections from influenza A virus (IAV) cause substantial morbidity and mortality in children relative to adults. T cells play a critical role in the host response to IAV by supporting the innate and humoral responses, mediating cytotoxic activity, and promoting recovery. There are age-dependent differences in the number, subsets, and localization of T cells, which impact the host response to pathogens. In this article, we first review how T cells recognize IAV and examine differences in the resting T-cell populations between juveniles and adults. Next, we describe how the juvenile CD4+, CD8+, and regulatory T-cell responses compare with those in adults and discuss the potential physiologic and clinical consequences of the differences. Finally, we explore the roles of two unconventional T-cell types in the juvenile response to influenza, natural-killer T cells and γδ T cells. A clear understanding of age-dependent differences in the T-cell response is essential to developing therapies to prevent or reverse the deleterious effects of IAV in children.
Collapse
Affiliation(s)
- Andrew D Prigge
- Division of Critical Care Medicine, Department of Pediatrics.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Ruihua Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Bria M Coates
- Division of Critical Care Medicine, Department of Pediatrics.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Biochemistry and Molecular Genetics.,Simpson Querrey Center for Epigenetics, and
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine.,Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| |
Collapse
|
17
|
Walter MR. The Role of Structure in the Biology of Interferon Signaling. Front Immunol 2020; 11:606489. [PMID: 33281831 PMCID: PMC7689341 DOI: 10.3389/fimmu.2020.606489] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Interferons (IFNs) are a family of cytokines with the unique ability to induce cell intrinsic programs that enhance resistance to viral infection. Induction of an antiviral state at the cell, tissue, organ, and organismal level is performed by three distinct IFN families, designated as Type-I, Type-II, and Type-III IFNs. Overall, there are 21 human IFNs, (16 type-I, 12 IFNαs, IFNβ, IFNϵ, IFNκ, and IFNω; 1 type-II, IFNγ; and 4 type-III, IFNλ1, IFNλ2, IFNλ3, and IFNλ4), that induce pleotropic cellular activities essential for innate and adaptive immune responses against virus and other pathogens. IFN signaling is initiated by binding to distinct heterodimeric receptor complexes. The three-dimensional structures of the type-I (IFNα/IFNAR1/IFNAR2), type-II (IFNγ/IFNGR1/IFNGR2), and type-III (IFNλ3/IFNλR1/IL10R2) signaling complexes have been determined. Here, we highlight similar and unique features of the IFNs, their cell surface complexes and discuss their role in inducing downstream IFN signaling responses.
Collapse
Affiliation(s)
- Mark R Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Frank K, Paust S. Dynamic Natural Killer Cell and T Cell Responses to Influenza Infection. Front Cell Infect Microbiol 2020; 10:425. [PMID: 32974217 PMCID: PMC7461885 DOI: 10.3389/fcimb.2020.00425] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza viruses have perplexed scientists for over a hundred years. Yearly vaccines limit their spread, but they do not prevent all infections. Therapeutic treatments for those experiencing severe infection are limited; further advances are held back by insufficient understanding of the fundamental immune mechanisms responsible for immunopathology. NK cells and T cells are essential in host responses to influenza infection. They produce immunomodulatory cytokines and mediate the cytotoxic response to infection. An imbalance in NK and T cell responses can lead to two outcomes: excessive inflammation and tissue damage or insufficient anti-viral functions and uncontrolled infection. The main cause of death in influenza patients is the former, mediated by hyperinflammatory responses termed “cytokine storm.” NK cells and T cells contribute to cytokine storm, but they are also required for viral clearance. Many studies have attempted to distinguish protective and pathogenic components of the NK cell and T cell influenza response, but it has become clear that they are dynamic and integrated processes. This review will analyze how NK cell and T cell effector functions during influenza infection affect the host response and correlate with morbidity and mortality outcomes.
Collapse
Affiliation(s)
- Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
19
|
Tarasov SA, Gorbunov EA, Don ES, Emelyanova AG, Kovalchuk AL, Yanamala N, Schleker ASS, Klein-Seetharaman J, Groenestein R, Tafani JP, van der Meide P, Epstein OI. Insights into the Mechanism of Action of Highly Diluted Biologics. THE JOURNAL OF IMMUNOLOGY 2020; 205:1345-1354. [PMID: 32727888 DOI: 10.4049/jimmunol.2000098] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
The therapeutic use of Abs in cancer, autoimmunity, transplantation, and other fields is among the major biopharmaceutical advances of the 20th century. Broader use of Ab-based drugs is constrained because of their high production costs and frequent side effects. One promising approach to overcome these limitations is the use of highly diluted Abs, which are produced by gradual reduction of an Ab concentration to an extremely low level. This technology was used to create a group of drugs for the treatment of various diseases, depending on the specificity of the used Abs. Highly diluted Abs to IFN-γ (hd-anti-IFN-γ) have been demonstrated to be efficacious against influenza and other respiratory infections in a variety of preclinical and clinical studies. In the current study, we provide evidence for a possible mechanism of action of hd-anti-IFN-γ. Using high-resolution solution nuclear magnetic resonance spectroscopy, we show that the drug induced conformational changes in the IFN-γ molecule. Chemical shift changes occurred in the amino acids located primarily at the dimer interface and at the C-terminal region of IFN-γ. These molecular changes could be crucial for the function of the protein, as evidenced by an observed hd-anti-IFN-γ-induced increase in the specific binding of IFN-γ to its receptor in U937 cells, enhanced induced production of IFN-γ in human PBMC culture, and increased survival of influenza A-infected mice.
Collapse
Affiliation(s)
- Sergey A Tarasov
- OOO "NPF "Materia Medica Holding," 127473 Moscow, Russian Federation.,The Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | | | - Elena S Don
- OOO "NPF "Materia Medica Holding," 127473 Moscow, Russian Federation.,The Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Alexandra G Emelyanova
- OOO "NPF "Materia Medica Holding," 127473 Moscow, Russian Federation.,The Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | | | - Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - A Sylvia S Schleker
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Judith Klein-Seetharaman
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | | | | | | | - Oleg I Epstein
- OOO "NPF "Materia Medica Holding," 127473 Moscow, Russian Federation.,The Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| |
Collapse
|
20
|
Liu B, Bao L, Wang L, Li F, Wen M, Li H, Deng W, Zhang X, Cao B. Anti-IFN-γ therapy alleviates acute lung injury induced by severe influenza A (H1N1) pdm09 infection in mice. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 54:396-403. [PMID: 31780358 DOI: 10.1016/j.jmii.2019.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 06/10/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND/PURPOSE Severe infection with influenza A (H1N1)pdm09 virus is characterized by acute lung injury. The limited efficacy of anti-viral drugs indicates an urgent need for additional therapies. We have previously reported that neutralization of gamma interferon (IFN-γ) could significantly rescue the thymic atrophy induced by severe influenza A (H1N1)pdm09 infection in BALB/c mice. A deeper investigation was conducted into the influence of neutralizing IFN-γ to the BALB/c mice weight, survival rate, and lung injury. METHODS The BALB/c mice was infected with severe influenza A (H1N1)pdm09. Monoclonal antibodies against IFN-γ were injected into the abdominal cavities of the mice. After neutralization of IFN-γ occurred in mice infected by severe ∖ influenza A (H1N1)pdm09, observing the influence of neutralizing IFN-γ to the BALB/c mice weight, survival rate, lung injury. RESULT Our results here showed that anti-IFN-γ therapy alleviated the acute lung injury in this mouse model. Neutralization of IFN-γ led to a significant reduction in the lung microvascular leak and the cellular infiltrate in the lung tissue, and also improved the outcome in mice mortality. Several pro-inflammatory cytokines, including interleukin (IL)-1α, tumor necrosis factor (TNF)-α and granulocyte-colony stimulating factor (G-CSF) in the bronchoalveolar lavage fluid (BALF), and the chemokines including G-CSF, monocyte chemoattractant protein-1 (MCP-1) in serum samples were found to be significantly reduced after anti-IFN-γ treatment. CONCLUSION These results suggested that IFN-γ plays an important role in acute lung injury induced by severe influenza A (H1N1)pdm09 infection, and monoclonal antibodies against IFN-γ could be useful as a potential therapeutic remedy for future influenza pandemics.
Collapse
Affiliation(s)
- Bo Liu
- Department of Pulmonary and Critical Care Medicine, Linzi District People's Hospital, Huangong Road, Zibo City, Shandong Province, China; Department of Clinical Microbiology, Linzi District People's Hospital, Huangong Road, Zibo City, Shandong Province, China; Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Huangong Road, Zibo City, Shandong Province, China; Linzi District People's Hospital Affiliated to Binzhou Medical University, Huangong Road, Zibo City, Shandong Province, China
| | - LinLin Bao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC), Beijing, China; Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, China
| | - Li Wang
- Department of Clinical Microbiology, Linzi District People's Hospital, Huangong Road, Zibo City, Shandong Province, China; Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Huangong Road, Zibo City, Shandong Province, China; Linzi District People's Hospital Affiliated to Binzhou Medical University, Huangong Road, Zibo City, Shandong Province, China
| | - Fengdi Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC), Beijing, China; Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, China
| | - Mingjie Wen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Clinical Research Center of Respiratory Diseases, Beijing, China; Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Wei Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical Collage (PUMC), Beijing, China; Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious, Beijing, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Clinical Research Center of Respiratory Diseases, Beijing, China; Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
21
|
T-bet optimizes CD4 T-cell responses against influenza through CXCR3-dependent lung trafficking but not functional programming. Mucosal Immunol 2019; 12:1220-1230. [PMID: 31278374 PMCID: PMC6717559 DOI: 10.1038/s41385-019-0183-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/09/2019] [Accepted: 06/04/2019] [Indexed: 02/04/2023]
Abstract
Although clearance of many intracellular pathogens requires T-bet-dependent CD4 T cell programming, the extent to which T-bet is needed to direct protective CD4 responses against influenza is not known. Here, we characterize wild-type and T-bet-deficient CD4 cells during murine influenza infection. Surprisingly, although T-bet expression has broad impacts on cytokine production by virus-specific CD4 cells, the protective efficacy of T-bet-deficient effector cells is only marginally reduced. This reduction is due to lower CXCR3 expression, leading to suboptimal accumulation of activated T-bet-deficient cells in the infected lung. However, T-bet-deficient cells outcompete wild-type cells to form lung-resident and circulating memory populations following viral clearance, and primed T-bet-deficient mice efficiently clear supralethal heterosubtypic influenza challenges even when depleted of CD8 T cells. These results are relevant to the identification of more incisive correlates of protective T cells and for vaccines that aim to induce durable cellular immunity against influenza.
Collapse
|
22
|
Er JZ, Koean RAG, Ding JL. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J 2019; 38:e99176. [PMID: 30322895 PMCID: PMC6315292 DOI: 10.15252/embj.201899176] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 01/15/2023] Open
Abstract
The transcription factor, T-bet, regulates type 1 inflammatory responses against a range of infections. Here, we demonstrate a previously unaddressed role of T-bet, to influenza virus and bacterial superinfection. Interestingly, we found that T-bet deficiency did not adversely affect the efficacy of viral clearance or recovery compared to wild-type hosts. Instead, increased infiltration of neutrophils and production of Th17 cytokines (IL-17 and IL-22), in lungs of influenza virus-infected T-bet-/- mice, were correlated with survival advantage against subsequent infection by Streptococcus pneumoniae Neutralization of IL-17, but not IL-22, in T-bet-/- mice increased pulmonary bacterial load, concomitant with decreased neutrophil infiltration and reduced survival of T-bet-/- mice. IL-17 production by CD8+, CD4+ and γδ T cell types was identified to contribute to this protection against bacterial superinfection. We further showed that neutrophil depletion in T-bet-/- lungs increased pulmonary bacterial burden. These results thus indicate that despite the loss of T-bet, immune defences required for influenza viral clearance are fully functional, which in turn enhances protective type 17 immune responses against lethal bacterial superinfections.
Collapse
Affiliation(s)
- Jun Zhi Er
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore City, Singapore
| | - Ricky Abdi Gunawan Koean
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore City, Singapore
| | - Jeak Ling Ding
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore City, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
23
|
Nicol MQ, Campbell GM, Shaw DJ, Dransfield I, Ligertwood Y, Beard PM, Nash AA, Dutia BM. Lack of IFNγ signaling attenuates spread of influenza A virus in vivo and leads to reduced pathogenesis. Virology 2019; 526:155-164. [PMID: 30390564 PMCID: PMC6286381 DOI: 10.1016/j.virol.2018.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
IFNγ is a key regulator of inflammatory responses but its role in influenza A virus (IAV) pathogenesis is unclear. Our studies show that infection of mice lacking the IFNγ receptor (IFNγR-/-) at a dose which caused severe disease in wild type 129 Sv/Ev (WT) mice resulted in milder clinical symptoms and significantly lower lung virus titers by 6 days post-infection (dpi). Viral spread was reduced in IFNγR-/- lungs at 2 and 4 dpi. Levels of inflammatory cytokines and chemokines were lower in IFNγR-/- mice at 2 dpi and there was less infiltration of monocyte/macrophage lineage cells than in WT mice. There was no difference in CD4+ and CD8+ T cells and alveolar macrophages in the bronchoalveolar lavage fluid (BALF) at 2 and 4 dpi but by 4 dpi IFNγR-/- mice had significantly higher percentages of neutrophils. Our data strongly suggest that IAV can use the inflammatory response to promote viral spread.
Collapse
Affiliation(s)
- Marlynne Q Nicol
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom
| | - Gillian M Campbell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom
| | - Darren J Shaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom
| | - Ian Dransfield
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TL, United Kingdom
| | - Yvonne Ligertwood
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom
| | - Philippa M Beard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom; The Pirbright Institute, Ash Road, Woking GU24 0NF, United Kingdom
| | - Anthony A Nash
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom
| | - Bernadette M Dutia
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom.
| |
Collapse
|
24
|
Morgan DJ, Casulli J, Chew C, Connolly E, Lui S, Brand OJ, Rahman R, Jagger C, Hussell T. Innate Immune Cell Suppression and the Link With Secondary Lung Bacterial Pneumonia. Front Immunol 2018; 9:2943. [PMID: 30619303 PMCID: PMC6302086 DOI: 10.3389/fimmu.2018.02943] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Secondary infections arise as a consequence of previous or concurrent conditions and occur in the community or in the hospital setting. The events allowing secondary infections to gain a foothold have been studied for many years and include poor nutrition, anxiety, mental health issues, underlying chronic diseases, resolution of acute inflammation, primary immune deficiencies, and immune suppression by infection or medication. Children, the elderly and the ill are particularly susceptible. This review is concerned with secondary bacterial infections of the lung that occur following viral infection. Using influenza virus infection as an example, with comparisons to rhinovirus and respiratory syncytial virus infection, we will update and review defective bacterial innate immunity and also highlight areas for potential new investigation. It is currently estimated that one in 16 National Health Service (NHS) hospital patients develop an infection, the most common being pneumonia, lower respiratory tract infections, urinary tract infections and infection of surgical sites. The continued drive to understand the mechanisms of why secondary infections arise is therefore of key importance.
Collapse
Affiliation(s)
- David J Morgan
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christine Chew
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Emma Connolly
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Sylvia Lui
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Rizwana Rahman
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
25
|
IFN-γ increases susceptibility to influenza A infection through suppression of group II innate lymphoid cells. Mucosal Immunol 2018; 11:209-219. [PMID: 28513592 PMCID: PMC5693789 DOI: 10.1038/mi.2017.41] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/02/2017] [Indexed: 02/04/2023]
Abstract
Increased levels of interferon-γ (IFN-γ) are routinely observed in the respiratory tract following influenza virus infection, yet its potential role remains unclear. We now demonstrate that influenza-induced IFN-γ restricts protective innate lymphoid cell group II (ILC2) function in the lung following challenge with the pandemic H1N1 A/CA/04/2009 (CA04) influenza virus. Specifically, IFN-γ deficiency resulted in enhanced ILC2 activity, characterized by increased production of interleukin (IL)-5 and amphiregulin, and improved tissue integrity, yet no change in ILC2 numbers, viral load or clearance. We further found that IFN-γ-deficient mice, as well as wild-type animals treated with neutralizing anti-IFN-γ antibody, exhibited decreased susceptibility to lethal infection with H1N1 CA04 influenza virus, and moreover that survival was dependent on the presence of IL-5. The beneficial effects of IFN-γ neutralization were not observed in ILC2-deficient animals. These data support the novel concept that IFN-γ can have a detrimental role in the pathogenesis of influenza through a restriction in ILC2 activity. Thus, regulation of ILC2 activity is a potential target for post-infection therapy of influenza.
Collapse
|
26
|
Zens KD, Chen JK, Guyer RS, Wu FL, Cvetkovski F, Miron M, Farber DL. Reduced generation of lung tissue-resident memory T cells during infancy. J Exp Med 2017; 214:2915-2932. [PMID: 28855242 PMCID: PMC5626403 DOI: 10.1084/jem.20170521] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/15/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022] Open
Abstract
Zens et al. demonstrate a deficiency in the establishment of protective lung tissue-resident memory T cells following respiratory infection during infancy that is T cell intrinsic and can be ameliorated by reduced expression of T-bet during infection. These findings reveal a potential mechanism for increased susceptibility to infection in infancy and identify T-bet as a mediator of TRM generation in early life. Infants suffer disproportionately from respiratory infections and generate reduced vaccine responses compared with adults, although the underlying mechanisms remain unclear. In adult mice, lung-localized, tissue-resident memory T cells (TRMs) mediate optimal protection to respiratory pathogens, and we hypothesized that reduced protection in infancy could be due to impaired establishment of lung TRM. Using an infant mouse model, we demonstrate generation of lung-homing, virus-specific T effectors after influenza infection or live-attenuated vaccination, similar to adults. However, infection during infancy generated markedly fewer lung TRMs, and heterosubtypic protection was reduced compared with adults. Impaired TRM establishment was infant–T cell intrinsic, and infant effectors displayed distinct transcriptional profiles enriched for T-bet–regulated genes. Notably, mouse and human infant T cells exhibited increased T-bet expression after activation, and reduction of T-bet levels in infant mice enhanced lung TRM establishment. Our findings reveal that infant T cells are intrinsically programmed for short-term responses, and targeting key regulators could promote long-term, tissue-targeted protection at this critical life stage.
Collapse
Affiliation(s)
- Kyra D Zens
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY
| | - Jun Kui Chen
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Rebecca S Guyer
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Felix L Wu
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Filip Cvetkovski
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY
| | - Michelle Miron
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY .,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY.,Department of Surgery, Columbia University Medical Center, New York, NY
| |
Collapse
|
27
|
Guo XZJ, Thomas PG. New fronts emerge in the influenza cytokine storm. Semin Immunopathol 2017; 39:541-550. [PMID: 28555383 PMCID: PMC5580809 DOI: 10.1007/s00281-017-0636-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/23/2017] [Indexed: 12/17/2022]
Abstract
Influenza virus is a significant pathogen in humans and animals with the ability to cause extensive morbidity and mortality. Exuberant immune responses induced following infection have been described as a "cytokine storm," associated with excessive levels of proinflammatory cytokines and widespread tissue damage. Recent studies have painted a more complex picture of cytokine networks and their contributions to clinical outcomes. While many cytokines clearly inflict immunopathology, others have non-pathological delimited roles in sending alarm signals, facilitating viral clearance, and promoting tissue repair, such as the IL-33-amphiregulin axis, which plays a key role in resolving some types of lung damage. Recent literature suggests that type 2 cytokines, traditionally thought of as not involved in anti-influenza immunity, may play an important regulatory role. Here, we discuss the diverse roles played by cytokines after influenza infection and highlight new, serene features of the cytokine storm, while highlighting the specific functions of relevant cytokines that perform unique immune functions and may have applications for influenza therapy.
Collapse
Affiliation(s)
- Xi-Zhi J Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Integrated Biomedical Sciences Program, Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
28
|
Cronk JC, Herz J, Kim TS, Louveau A, Moser EK, Sharma AK, Smirnov I, Tung KS, Braciale TJ, Kipnis J. Influenza A induces dysfunctional immunity and death in MeCP2-overexpressing mice. JCI Insight 2017; 2:e88257. [PMID: 28138553 PMCID: PMC5256138 DOI: 10.1172/jci.insight.88257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023] Open
Abstract
Loss of function or overexpression of methyl-CpG-binding protein 2 (MeCP2) results in the severe neurodevelopmental disorders Rett syndrome and MeCP2 duplication syndrome, respectively. MeCP2 plays a critical role in neuronal function and the function of cells throughout the body. It has been previously demonstrated that MeCP2 regulates T cell function and macrophage response to multiple stimuli, and that immune-mediated rescue imparts significant benefit in Mecp2-null mice. Unlike Rett syndrome, MeCP2 duplication syndrome results in chronic, severe respiratory infections, which represent a significant cause of patient morbidity and mortality. Here, we demonstrate that MeCP2Tg3 mice, which overexpress MeCP2 at levels 3- to 5-fold higher than normal, are hypersensitive to influenza A/PR/8/34 infection. Prior to death, MeCP2Tg3 mice experienced a host of complications during infection, including neutrophilia, increased cytokine production, excessive corticosterone levels, defective adaptive immunity, and vascular pathology characterized by impaired perfusion and pulmonary hemorrhage. Importantly, we found that radioresistant cells are essential to infection-related death after bone marrow transplantation. In all, these results demonstrate that influenza A infection in MeCP2Tg3 mice results in pathology affecting both immune and nonhematopoietic cells, suggesting that failure to effectively respond and clear viral respiratory infection has a complex, multicompartment etiology in the context of MeCP2 overexpression.
Collapse
Affiliation(s)
- James C. Cronk
- Center for Brain Immunology and Glia
- Department of Neuroscience
- Graduate Program in Neuroscience
- Medical Scientist Training Program
| | - Jasmin Herz
- Center for Brain Immunology and Glia
- Department of Neuroscience
| | - Taeg S. Kim
- Beirne B. Carter Center for Immunology Research
- Department of Pathology
| | - Antoine Louveau
- Center for Brain Immunology and Glia
- Department of Neuroscience
| | - Emily K. Moser
- Beirne B. Carter Center for Immunology Research
- Department of Pharmacology
| | | | - Igor Smirnov
- Center for Brain Immunology and Glia
- Department of Neuroscience
| | - Kenneth S. Tung
- Department of Pathology
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas J. Braciale
- Medical Scientist Training Program
- Beirne B. Carter Center for Immunology Research
- Department of Pathology
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia
- Department of Neuroscience
- Graduate Program in Neuroscience
- Medical Scientist Training Program
| |
Collapse
|
29
|
Hosking MP, Flynn CT, Whitton JL. TCR independent suppression of CD8(+) T cell cytokine production mediated by IFNγ in vivo. Virology 2016; 498:69-81. [PMID: 27564543 PMCID: PMC5045820 DOI: 10.1016/j.virol.2016.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/02/2016] [Indexed: 01/12/2023]
Abstract
CD8(+) memory T cells produce IFNγ within hours of secondary infection, but this is quickly terminated in vivo despite the presence of stimulatory viral antigen, suggesting that active suppression occurs. Herein, we investigated the in vivo effector function of CD8(+) memory T cells during successive encounters with viral antigen. CD8(+) T cells in immune mice receiving prior viral or peptide challenge failed to reproduce IFNγ during LCMV rechallenge. Surprisingly, this refractory state was induced even in memory cells that had not encountered their cognate antigen, indicating that the silencing of CD8(+) T cell responses is TCR-independent. Direct injection of IFNγ also suppressed the ability of virus-specific memory cells to respond to subsequent viral challenge. We propose the existence of a negative feedback loop whereby IFNγ, produced by memory CD8(+) T cells to combat viral challenge, acts - directly or indirectly - to limit its further production.
Collapse
Affiliation(s)
- Martin P Hosking
- Dept. of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Claudia T Flynn
- Dept. of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - J Lindsay Whitton
- Dept. of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Uchtenhagen H, Rims C, Blahnik G, Chow IT, Kwok WW, Buckner JH, James EA. Efficient ex vivo analysis of CD4+ T-cell responses using combinatorial HLA class II tetramer staining. Nat Commun 2016; 7:12614. [PMID: 27571776 PMCID: PMC5013714 DOI: 10.1038/ncomms12614] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023] Open
Abstract
MHC tetramers are an essential tool for characterizing antigen-specific CD4+ T cells. However, their ex vivo analysis is limited by the large sample requirements. Here we demonstrate a combinatorial staining approach that allows simultaneous characterization of multiple specificities to address this challenge. As proof of principle, we analyse CD4+ T-cell responses to the seasonal influenza vaccine, establishing a frequency hierarchy and examining differences in memory and activation status, lineage commitment and cytokine expression. We also observe cross-reactivity between an established epitope and recent variant and provide a means for probing T-cell receptor cross-reactivity. Using cord blood samples, we correlate the adult frequency hierarchy with the naive precursor frequencies. Last, we use our combinatorial staining approach to demonstrate that rheumatoid arthritis patients on therapy can mount effective responses to influenza vaccination. Together, these results demonstrate the utility of combinatorial tetramer staining and suggest that this approach may have broad applicability in human health and disease.
Collapse
Affiliation(s)
- Hannes Uchtenhagen
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, Washington 98101, USA
- Neuroimmunology Unit, Department of Neuroscience, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Cliff Rims
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, Washington 98101, USA
| | - Gabriele Blahnik
- Benaroya Research Institute at Virginia Mason, Diabetes Program, Seattle, Washington 98101, USA
| | - I-Ting Chow
- Benaroya Research Institute at Virginia Mason, Diabetes Program, Seattle, Washington 98101, USA
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Diabetes Program, Seattle, Washington 98101, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Jane H. Buckner
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, Washington 98101, USA
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Diabetes Program and Tetramer Core Laboratory, Seattle, Washington 98101, USA
| |
Collapse
|
31
|
Chandler JD, Hu X, Ko EJ, Park S, Lee YT, Orr M, Fernandes J, Uppal K, Kang SM, Jones DP, Go YM. Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice. Am J Physiol Regul Integr Comp Physiol 2016; 311:R906-R916. [PMID: 27558316 DOI: 10.1152/ajpregu.00298.2016] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022]
Abstract
Influenza is a significant health concern worldwide. Viral infection induces local and systemic activation of the immune system causing attendant changes in metabolism. High-resolution metabolomics (HRM) uses advanced mass spectrometry and computational methods to measure thousands of metabolites inclusive of most metabolic pathways. We used HRM to identify metabolic pathways and clusters of association related to inflammatory cytokines in lungs of mice with H1N1 influenza virus infection. Infected mice showed progressive weight loss, decreased lung function, and severe lung inflammation with elevated cytokines [interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ] and increased oxidative stress via cysteine oxidation. HRM showed prominent effects of influenza virus infection on tryptophan and other amino acids, and widespread effects on pathways including purines, pyrimidines, fatty acids, and glycerophospholipids. A metabolome-wide association study (MWAS) of the aforementioned inflammatory cytokines was used to determine the relationship of metabolic responses to inflammation during infection. This cytokine-MWAS (cMWAS) showed that metabolic associations consisted of distinct and shared clusters of 396 metabolites highly correlated with inflammatory cytokines. Strong negative associations of selected glycosphingolipid, linoleate, and tryptophan metabolites with IFN-γ contrasted strong positive associations of glycosphingolipid and bile acid metabolites with IL-1β, TNF-α, and IL-10. Anti-inflammatory cytokine IL-10 had strong positive associations with vitamin D, purine, and vitamin E metabolism. The detailed metabolic interactions with cytokines indicate that targeted metabolic interventions may be useful during life-threatening crises related to severe acute infection and inflammation.
Collapse
Affiliation(s)
- Joshua D Chandler
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Xin Hu
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Eun-Ju Ko
- Georgia State University, Atlanta, Georgia
| | | | | | - Michael Orr
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Jolyn Fernandes
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Karan Uppal
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | | | - Dean P Jones
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| | - Young-Mi Go
- Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia; and
| |
Collapse
|
32
|
Haghani A, Mehrbod P, Safi N, Aminuddin NA, Bahadoran A, Omar AR, Ideris A. In vitro and in vivo mechanism of immunomodulatory and antiviral activity of Edible Bird's Nest (EBN) against influenza A virus (IAV) infection. JOURNAL OF ETHNOPHARMACOLOGY 2016; 185:327-340. [PMID: 26976767 DOI: 10.1016/j.jep.2016.03.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/20/2015] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For centuries, Edible Bird Nest (EBN) has been used in treatment of variety of respiratory diseases such as flu and cough as a Chinese natural medicine. AIM OF THE STUDY This natural remedy showed the potential to inhibit influenza A virus (IAV). However, little is known about the mechanism of this process and also the evaluation of this product in an animal model. Hence, the current study was designed to elucidate the antiviral and immunomodulatory effects of EBN against IAV strain A/Puerto Rico/8/1934 (H1N1). MATERIALS AND METHODS First, influenza infected MDCK cells treated with EBNs from two locations of Malaysia (Teluk Intan and Gua Madai) that prepared with different enzymatic preparations were analyzed by RT-qPCR and ELISA for detection of viral and cytokines genes. The sialic acid composition of these EBNs was evaluated by H-NMR. Subsequently, after toxicity evaluation of EBN from Teluk Intan, antiviral and immunomodulatory effects of this natural product was evaluated in BALB/c mice by analysis of the viral NA gene and cytokine expressions in the first week of the infection. RESULTS EBN showed high neuraminidase inhibitory properties in both in vitro and in vivo, which was as effective as Oseltamivir phosphate. In addition, EBN decreased NS1 copy number (p<0.05) of the virus along with high immunomodulatory effects against IAV. Some of the immune changes during treatment of IAV with EBN included significant increase in IFNγ, TNFα, NFκB, IL2, some proinflammatory cytokines like IL1β, IL6, and cytokines with regulatory properties like IL10, IL27, IL12, CCL2 and IL4 depends on the stage of the infection. EBNs from two locations contained different composition of sialic acid and thymol derivatives, which gave them different antiviral properties. EBN from Gua Madai that contained more acetylated sialic acid (Neu2,4,7,8,9 Ac6) showed higher antiviral activity. CONCLUSION The findings of this study support the antiviral activity of EBN against influenza virus and validate the traditional usage of this natural remedy by elucidation of toxicity and the molecular mechanism of action.
Collapse
Affiliation(s)
- Amin Haghani
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Parvaneh Mehrbod
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Nikoo Safi
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Nur Ain Aminuddin
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Azadeh Bahadoran
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | - Aini Ideris
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
33
|
Stifter SA, Bhattacharyya N, Pillay R, Flórido M, Triccas JA, Britton WJ, Feng CG. Functional Interplay between Type I and II Interferons Is Essential to Limit Influenza A Virus-Induced Tissue Inflammation. PLoS Pathog 2016; 12:e1005378. [PMID: 26731100 PMCID: PMC4701664 DOI: 10.1371/journal.ppat.1005378] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/09/2015] [Indexed: 01/28/2023] Open
Abstract
Host control of influenza A virus (IAV) is associated with exuberant pulmonary inflammation characterized by the influx of myeloid cells and production of proinflammatory cytokines including interferons (IFNs). It is unclear, however, how the immune system clears the virus without causing lethal immunopathology. Here, we demonstrate that in addition to its known anti-viral activity, STAT1 signaling coordinates host inflammation during IAV infection in mice. This regulatory mechanism is dependent on both type I IFN and IFN-γ receptor signaling and, importantly, requires the functional interplay between the two pathways. The protective function of type I IFNs is associated with not only the recruitment of classical inflammatory Ly6Chi monocytes into IAV-infected lungs, but also the prevention of excessive monocyte activation by IFN-γ. Unexpectedly, type I IFNs preferentially regulate IFN-γ signaling in Ly6Clo rather than inflammatory Ly6Chi mononuclear cell populations. In the absence of type I IFN signaling, Ly6Clo monocytes/macrophages, become phenotypically and functionally more proinflammatory than Ly6Chi cells, revealing an unanticipated function of the Ly6Clo mononuclear cell subset in tissue inflammation. In addition, we show that type I IFNs employ distinct mechanisms to regulate monocyte and neutrophil trafficking. Type I IFN signaling is necessary, but not sufficient, for preventing neutrophil recruitment into the lungs of IAV-infected mice. Instead, the cooperation of type I IFNs and lymphocyte-produced IFN-γ is required to regulate the tissue neutrophilic response to IAV. Our study demonstrates that IFN interplay links innate and adaptive anti-viral immunity to orchestrate tissue inflammation and reveals an additional level of complexity for IFN-dependent regulatory mechanisms that function to prevent excessive immunopathology while preserving anti-microbial functions. Influenza A virus (IAV) is a leading cause of respiratory infection and induces a strong acute inflammation manifested by the recruitment of monocytes and neutrophils as well as the production of proinflammatory cytokines in infected lungs. The interferons (IFNs) are strongly induced by IAV and are known to mediate host resistance to the infection. However, in contrast to their well-studied inhibitory effect on viral replication, the effects of IFNs on host inflammatory responses are less well understood. In this manuscript, we demonstrate that anti-viral IFN signaling is also required for the orchestration of a tissue response associated with the protection against IAV infection in mice. Importantly, we identify that type I IFNs cross-regulate and cooperate with IFN-γ to inhibit monocyte activation and neutrophil infiltration, respectively. This study also demonstrates that Ly6Clo monocytes/macrophages can potentially mediate influenza virus-induced inflammation, suggesting that IFNs dictate the homeostasis versus inflammatory function of mononuclear phagocytes in viral infection. Our study reveals a novel IFN-dependent regulatory mechanism designed to prevent the excessive immunopathology while preserving its anti-microbial functions. Moreover, these observations have particular relevance for understanding the mechanisms underlying the strong inflammatory response associated with lethal IAV strains and have implications for the development of new immunotherapies to treat influenza.
Collapse
Affiliation(s)
- Sebastian A. Stifter
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
| | - Nayan Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Roman Pillay
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Manuela Flórido
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
| | - James A. Triccas
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Warwick J. Britton
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Department of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Carl G. Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Mycobacterial Research Program, The Centenary Institute, Camperdown, New South Wales, Australia
- * E-mail:
| |
Collapse
|
34
|
Abstract
The T cell response is an integral and essential part of the host immune response to acute virus infection. Each viral pathogen has unique, frequently nuanced, aspects to its replication, which affects the host response and as a consequence the capacity of the virus to produce disease. There are, however, common features to the T cell response to viruses, which produce acute limited infection. This is true whether virus replication is restricted to a single site, for example, the respiratory tract (RT), CNS etc., or replication is in multiple sites throughout the body. In describing below the acute T cell response to virus infection, we employ acute virus infection of the RT as a convenient model to explore this process of virus infection and the host response. We divide the process into three phases: the induction (initiation) of the response, the expression of antiviral effector activity resulting in virus elimination, and the resolution of inflammation with restoration of tissue homeostasis.
Collapse
|
35
|
McMaster SR, Wilson JJ, Wang H, Kohlmeier JE. Airway-Resident Memory CD8 T Cells Provide Antigen-Specific Protection against Respiratory Virus Challenge through Rapid IFN-γ Production. THE JOURNAL OF IMMUNOLOGY 2015; 195:203-9. [PMID: 26026054 DOI: 10.4049/jimmunol.1402975] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/04/2015] [Indexed: 12/11/2022]
Abstract
CD8 airway resident memory T (TRM) cells are a distinctive TRM population with a high turnover rate and a unique phenotype influenced by their localization within the airways. Their role in mediating protective immunity to respiratory pathogens, although suggested by many studies, has not been directly proven. This study provides definitive evidence that airway CD8 TRM cells are sufficient to mediate protection against respiratory virus challenge. Despite being poorly cytolytic in vivo and failing to expand after encountering Ag, airway CD8 TRM cells rapidly express effector cytokines, with IFN-γ being produced most robustly. Notably, established airway CD8 TRM cells possess the ability to produce IFN-γ faster than systemic effector memory CD8 T cells. Furthermore, naive mice receiving intratracheal transfer of airway CD8 TRM cells lacking the ability to produce IFN-γ were less effective at controlling pathogen load upon heterologous challenge. This direct evidence of airway CD8 TRM cell-mediated protection demonstrates the importance of these cells as a first line of defense for optimal immunity against respiratory pathogens and suggests they should be considered in the development of future cell-mediated vaccines.
Collapse
Affiliation(s)
- Sean R McMaster
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jarad J Wilson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Hong Wang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
36
|
Ramana CV, DeBerge MP, Kumar A, Alia CS, Durbin JE, Enelow RI. Inflammatory impact of IFN-γ in CD8+ T cell-mediated lung injury is mediated by both Stat1-dependent and -independent pathways. Am J Physiol Lung Cell Mol Physiol 2015; 308:L650-7. [PMID: 25617378 DOI: 10.1152/ajplung.00360.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/29/2014] [Indexed: 01/24/2023] Open
Abstract
Influenza infection results in considerable pulmonary pathology, a significant component of which is mediated by CD8(+) T cell effector functions. To isolate the specific contribution of CD8(+) T cells to lung immunopathology, we utilized a nonviral murine model in which alveolar epithelial cells express an influenza antigen and injury is initiated by adoptive transfer of influenza-specific CD8(+) T cells. We report that IFN-γ production by adoptively transferred influenza-specific CD8(+) T cells is a significant contributor to acute lung injury following influenza antigen recognition, in isolation from its impact on viral clearance. CD8(+) T cell production of IFN-γ enhanced lung epithelial cell expression of chemokines and the subsequent recruitment of inflammatory cells into the airways. Surprisingly, Stat1 deficiency in the adoptive-transfer recipients exacerbated the lung injury that was mediated by the transferred influenza-specific CD8(+) T cells but was still dependent on IFN-γ production by these cells. Loss of Stat1 resulted in sustained activation of Stat3 signaling, dysregulated chemokine expression, and increased infiltration of the airways by inflammatory cells. Taken together, these data identify important roles for IFN-γ signaling and Stat1-independent IFN-γ signaling in regulating CD8(+) T cell-mediated acute lung injury. This is the first study to demonstrate an anti-inflammatory effect of Stat1 on CD8(+) T cell-mediated lung immunopathology without the complication of differences in viral load.
Collapse
Affiliation(s)
- Chilakamarti V Ramana
- Department of Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire
| | - Matthew P DeBerge
- Department of Pathology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Aseem Kumar
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Christopher S Alia
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Joan E Durbin
- Department of Pathology, Rutgers-New Jersey Medical School of Medicine, Newark, New Jersey; and
| | - Richard I Enelow
- Department of Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire
| |
Collapse
|
37
|
Qiangzhi decoction protects mice from influenza A pneumonia through inhibition of inflammatory cytokine storm. Chin J Integr Med 2014; 21:376-83. [PMID: 25519444 PMCID: PMC7088648 DOI: 10.1007/s11655-014-2020-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Indexed: 12/24/2022]
Abstract
Objective To investigate the preventive effects of Qiangzhi Decoction (羌跖汤, QZD) on influenza A pneumonia through inhibition of inflammatory cytokine storm in vivo and in vitro. Methods One hundred ICR mice were randomly divided into the virus control, the Tamiflu control and the QZD high-, medium-, and low-dose groups. Mice were infected intranasally with influenza virus (H1N1) at 10 median lethal dose (LD50). QZD and Tamiflu were administered intragastrically twice daily from day 0 to day 7 after infection. The virus control group was treated with distilled water alone under the same condition. The number of surviving mice was recorded daily for 14 days after viral infection. The histological damage and viral replication and the expression of inflammatory cytokines were monitored. Additionally, the suppression capacity on the secretion of regulated on activation normal T cells expressed and secreted (RANTES) and tumor necrosis factor-α (TNF-α) in epithelial and macrophage cell-lines were evaluated. Results Compared with the virus control group, the survival rate of the QZD groups signifificantly improved in a dose-dependent manner (P<0.05), the viral titers in lung tissue was inhibited (P<0.05), and the production of inflammatory cytokines interferon-γ (IFN-γ), interleukin-6 (IL-6), TNF-α, and intercellular adhesion molecule-1 (ICAM-1) were suppressed (P<0.05). Meanwhile, the secretion of RANTETS and TNF-α by epithelial and macrophage cell-lines was inhibited with the treatment of QZD respectively in vitro (p<0.05) Conclusions The preventive effects of QZD on influenza virus infection might be due to its unique cytokine inhibition mechanism. QZD may have significant therapeutic potential in combination with antiviral drugs.
Collapse
|
38
|
Glineur SF, Bowen AB, Percopo CM, Garcia-Crespo KE, Dyer KD, Ochkur SI, Lee NA, Lee JJ, Domachowske JB, Rosenberg HF. Sustained inflammation and differential expression of interferons type I and III in PVM-infected interferon-gamma (IFNγ) gene-deleted mice. Virology 2014; 468-470:140-149. [PMID: 25173090 DOI: 10.1016/j.virol.2014.07.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 05/30/2014] [Accepted: 07/21/2014] [Indexed: 12/24/2022]
Abstract
Interferon gamma (IFNγ) has complex immunomodulatory and antiviral properties. While IFNγ is detected in the airways in response to infection with the pneumovirus pathogen, pneumonia virus of mice (PVM; Family Paramyxoviridae), its role in promoting disease has not been fully explored. Here, we evaluate PVM infection in IFNγ(-/-) mice. Although the IFNγ gene-deletion has no impact on weight loss, survival or virus kinetics, expression of IFNβ, IFNλ2/3 and IFN-stimulated 2-5' oligoadenylate synthetases was significantly diminished compared to wild-type counterparts. Furthermore, PVM infection in IFNγ(-/-) mice promoted prominent inflammation, including eosinophil and neutrophil infiltration into the airways and lung parenchyma, observed several days after peak virus titer. Potential mechanisms include over-production of chemoattractant and eosinophil-active cytokines (CXCL1, CCL11, CCL3 and IL5) in PVM-infected IFNγ(-/-) mice; likewise, IFNγ actively antagonized IL5-dependent eosinophil survival ex vivo. Our results may have clinical implications for pneumovirus infection in individuals with IFNγ signaling defects.
Collapse
Affiliation(s)
- Stephanie F Glineur
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aaron B Bowen
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline M Percopo
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katia E Garcia-Crespo
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kimberly D Dyer
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergei I Ochkur
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Nancy A Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - James J Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Joseph B Domachowske
- Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Topham DJ, Chapman TJ, Richter M. Lymphoid and extralymphoid CD4 T cells that orchestrate the antiviral immune response. Expert Rev Clin Immunol 2014; 2:267-76. [DOI: 10.1586/1744666x.2.2.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Abstract
Influenza A virus is a significant cause of morbidity and mortality worldwide, particularly among young children and the elderly. Current vaccines induce neutralizing antibody responses directed toward highly variable viral surface proteins, resulting in limited heterosubtypic protection to new viral serotypes. By contrast, memory CD4 T cells recognize conserved viral proteins and are cross-reactive to multiple influenza strains. In humans, virus-specific memory CD4 T cells were found to be the protective correlate in human influenza challenge studies, suggesting their key role in protective immunity. In mouse models, memory CD4 T cells can mediate protective responses to secondary influenza infection independent of B cells or CD8 T cells, and can influence innate immune responses. Importantly, a newly defined, tissue-resident CD4 memory population has been demonstrated to be retained in lung tissue and promote optimal protective responses to an influenza infection. Here, we review the current state of results regarding the generation of memory CD4 T cells following primary influenza infection, mechanisms for their enhanced efficacy in protection from secondary challenge including their phenotype, localization, and function in the context of both mouse models and human infection. We also discuss the generation of memory CD4 T cells in response to influenza vaccines and its future implications for vaccinology.
Collapse
|
41
|
Macdonald DC, Singh H, Whelan MA, Escors D, Arce F, Bottoms SE, Barclay WS, Maini M, Collins MK, Rosenberg WMC. Harnessing alveolar macrophages for sustained mucosal T-cell recall confers long-term protection to mice against lethal influenza challenge without clinical disease. Mucosal Immunol 2014; 7:89-100. [PMID: 23715172 DOI: 10.1038/mi.2013.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/01/2013] [Indexed: 02/04/2023]
Abstract
Vaccines that induce T cells, which recognize conserved viral proteins, could confer universal protection against seasonal and pandemic influenza strains. An effective vaccine should generate sufficient mucosal T cells to ensure rapid viral control before clinical disease. However, T cells may also cause lung injury in influenza, so this approach carries inherent risks. Here we describe intranasal immunization of mice with a lentiviral vector expressing influenza nucleoprotein (NP), together with an NFκB activator, which transduces over 75% of alveolar macrophages (AM). This strategy recalls and expands NP-specific CD8+ T cells in the lung and airway of mice that have been immunized subcutaneously, or previously exposed to influenza. Granzyme B-high, lung-resident T-cell populations persist for at least 4 months and can control a lethal influenza challenge without harmful cytokine responses, weight loss, or lung injury. These data demonstrate that AM can be harnessed as effective antigen-presenting cells for influenza vaccination.
Collapse
Affiliation(s)
- D C Macdonald
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - H Singh
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - M A Whelan
- Division of Medicine, University College London, London, UK
| | - D Escors
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - F Arce
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - S E Bottoms
- Division of Medicine, University College London, London, UK
| | - W S Barclay
- Division of Virology, Imperial College London, St Mary's Campus, London, UK
| | - M Maini
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - M K Collins
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | | |
Collapse
|
42
|
Abstract
Influenza virus infection induces a potent initial innate immune response, which serves to limit the extent of viral replication and virus spread. However, efficient (and eventual) viral clearance within the respiratory tract requires the subsequent activation, rapid proliferation, recruitment, and expression of effector activities by the adaptive immune system, consisting of antibody producing B cells and influenza-specific T lymphocytes with diverse functions. The ensuing effector activities of these T lymphocytes ultimately determine (along with antibodies) the capacity of the host to eliminate the viruses and the extent of tissue damage. In this review, we describe this effector T cell response to influenza virus infection. Based on information largely obtained in experimental settings (i.e., murine models), we will illustrate the factors regulating the induction of adaptive immune T cell responses to influenza, the effector activities displayed by these activated T cells, the mechanisms underlying the expression of these effector mechanisms, and the control of the activation/differentiation of these T cells, in situ, in the infected lungs.
Collapse
|
43
|
Lee EY, Schultz KLW, Griffin DE. Mice deficient in interferon-gamma or interferon-gamma receptor 1 have distinct inflammatory responses to acute viral encephalomyelitis. PLoS One 2013; 8:e76412. [PMID: 24204622 PMCID: PMC3811984 DOI: 10.1371/journal.pone.0076412] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/23/2013] [Indexed: 11/25/2022] Open
Abstract
Interferon (IFN)-gamma is an important component of the immune response to viral infections that can have a role both in controlling virus replication and inducing inflammatory damage. To determine the role of IFN-gamma in fatal alphavirus encephalitis, we have compared the responses of wild type C57BL/6 (WTB6) mice with mice deficient in either IFN-gamma (GKO) or the alpha-chain of the IFN-gamma receptor (GRKO) after intranasal infection with a neuroadapted strain of sindbis virus. Mortalities of GKO and GRKO mice were similar to WTB6 mice. Both GKO and GRKO mice had delayed virus clearance from the brain and spinal cord, more infiltrating perforin(+) cells and lower levels of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 mRNAs than WTB6 mice. However, inflammation was more intense in GRKO mice than WTB6 or GKO mice with more infiltrating CD3(+) T cells, greater expression of major histocompatibility complex-II and higher levels of interleukin-17A mRNA. Fibroblasts from GRKO embryos did not develop an antiviral response after treatment with IFN-gamma, but showed increases in TNF-alpha, IL-6, CXCL9 and CXCL10 mRNAs although these increases developed more slowly and were less intense than those of WTB6 fibroblasts. These data indicate that both GKO and GRKO mice fail to develop an IFN-gamma-mediated antiviral response, but differ in regulation of the inflammatory response to infection. Therefore, GKO and GRKO cannot be considered equivalent when assessing the role of IFN-gamma in CNS viral infections.
Collapse
Affiliation(s)
- Eun-Young Lee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kimberly L. W. Schultz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
44
|
Yang J, James E, Gates TJ, DeLong JH, LaFond RE, Malhotra U, Kwok WW. CD4+ T cells recognize unique and conserved 2009 H1N1 influenza hemagglutinin epitopes after natural infection and vaccination. Int Immunol 2013; 25:447-57. [PMID: 23524391 DOI: 10.1093/intimm/dxt005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Influenza A/California/4/2009 (H1N1/09) is a recently emerged influenza virus capable of causing serious illness or death in otherwise healthy individuals. Serious outcomes were most common in young adults and children, suggesting that pre-existing heterologous immunity may influence the severity of infection. Using tetramers, we identified CD4(+) T-cell epitopes within H1N1/09 hemagglutinin (HA) that share extensive homology with seasonal influenza and epitopes that are unique to H1N1/09 HA. Ex vivo tetramer staining revealed that T cells specific for conserved epitopes were detectable within the memory compartment, whereas T cells specific for unique epitopes were naive and infrequent prior to infection or vaccination. Following infection, the frequencies of T cells specific for unique epitopes were 11-fold higher, reaching levels comparable to those of T cells specific for immunodominant epitopes. In contrast, the frequencies of T cells specific for conserved epitopes were only 2- to 3-fold higher following infection. In general, H1HA-reactive T cells exhibited a memory phenotype, expressed CXCR3 and secreted IFN-γ, indicating a predominantly Th1-polarized response. A similar Th1 response was seen in vaccinated subjects, but the expansion of T cells specific for HA epitopes was comparatively modest after vaccination. Our findings indicate that CD4(+) T cells recognize both strain-specific and conserved epitopes within the influenza HA protein and suggest that naive T cells specific for HA epitopes undergo significant expansion, whereas memory T cells specific for the conserved epitopes undergo more restrained expansion.
Collapse
Affiliation(s)
- Junbao Yang
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave, Seattle, WA 98101, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Hufford MM, Richardson G, Zhou H, Manicassamy B, García-Sastre A, Enelow RI, Braciale TJ. Influenza-infected neutrophils within the infected lungs act as antigen presenting cells for anti-viral CD8(+) T cells. PLoS One 2012; 7:e46581. [PMID: 23056353 PMCID: PMC3466305 DOI: 10.1371/journal.pone.0046581] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/31/2012] [Indexed: 12/31/2022] Open
Abstract
Influenza A virus (IAV) is a leading cause of respiratory tract disease worldwide. Anti-viral CD8+ T lymphocytes responding to IAV infection are believed to eliminate virally infected cells by direct cytolysis but may also contribute to pulmonary inflammation and tissue damage via the release of pro-inflammatory mediators following recognition of viral antigen displaying cells. We have previously demonstrated that IAV antigen expressing inflammatory cells of hematopoietic origin within the infected lung interstitium serve as antigen presenting cells (APC) for infiltrating effector CD8+ T lymphocytes; however, the spectrum of inflammatory cell types capable of serving as APC was not determined. Here, we demonstrate that viral antigen displaying neutrophils infiltrating the IAV infected lungs are an important cell type capable of acting as APC for effector CD8+ T lymphocytes in the infected lungs and that neutrophils expressing viral antigen as a result of direct infection by IAV exhibit the most potent APC activity. Our findings suggest that in addition to their suggested role in induction of the innate immune responses to IAV, virus clearance, and the development of pulmonary injury, neutrophils can serve as APCs to anti-viral effector CD8+ T cells within the infected lung interstitium.
Collapse
Affiliation(s)
- Matthew M. Hufford
- The Beirne B. Carter Center for Immunology Research, The University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, The University of Virginia, Charlottesville, Virginia, United States of America
| | - Graham Richardson
- Department of Microbiology, The University of Virginia, Charlottesville, Virginia, United States of America
- Center for Cell Signaling, The University of Virginia, Charlottesville, Virginia, United States of America
| | - Haixia Zhou
- The Beirne B. Carter Center for Immunology Research, The University of Virginia, Charlottesville, Virginia, United States of America
| | - Balaji Manicassamy
- Department of Microbiology, Mount Sinai School of Medicine, New York City, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York City, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York City, New York, United States of America
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York City, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York City, New York, United States of America
| | - Richard I. Enelow
- Departments of Medicine and Microbiology/Immunology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Thomas J. Braciale
- The Beirne B. Carter Center for Immunology Research, The University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, The University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, The University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
46
|
Srivastava V, Khanna M, Sharma S, Kumar B. Resolution of immune response by recombinant transforming growth factor-beta (rTGF-β) during influenza A virus infection. Indian J Med Res 2012; 136:641-8. [PMID: 23168705 PMCID: PMC3516032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND & OBJECTIVES Replication of influenza A virus in the respiratory tract leads to cell damage and liberation of cytokines and chemokines. The in vivo cytokine induction and modulation by recombinant transforming growth factor- β1 (rTGF-β1) has not been studied. Therefore, in the present study the effect of rTGF-β1, a potent immunomodulatory cytokine which has anti-inflammatory properties and downregulates the release of inflammatory molecules, against influenza-virus infection in the airway of mice was investigated. METHODS rTGF-β1 was administered intravenously to mice with concomitant intranasal infection of influenza A/Udorn/317/72 (H3N2) virus, and the survival rate, virus titre, histopathological changes and levels of factors regulating inflammation in the airway fluid were analysed. RESULT The immune response to influenza A virus was characterized by an influx of both macrophages and lymphocytes into the lungs of the infected host. rTGF-β1 significantly suppressed virus multiplication and improved the survival rate of mice. rTGF-β1 downregulated infiltration of neutrophils and the release of inflammatory molecules, such as interferon-gamma (IFN-γ), interleukin-1 β (IL-1β) and stimulated release of IL-10 that potentiates anti-inflammatory response into airway. INTERPRETATION & CONCLUSIONS A generalized pulmonary inflammation does not contribute to viral clearance but represents an immunological background within which antiviral immunity operates. Treatment with rTGF-β1 reduced macrophage count and neutrophils influx in lungs of infected mice.
Collapse
Affiliation(s)
- Vikram Srivastava
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Madhu Khanna
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India,Reprint requests: Dr Madhu Khanna, Associate Professor, Department of Respiratory Virology, V.P. Chest Institute, University of Delhi, Delhi 110 007, India e-mail:
| | - Sonal Sharma
- Department of Pathology, University College of Medical Sciences, University of Delhi, Delhi, India
| | - Binod Kumar
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
47
|
Ge MQ, Ho AWS, Tang Y, Wong KHS, Chua BYL, Gasser S, Kemeny DM. NK cells regulate CD8+ T cell priming and dendritic cell migration during influenza A infection by IFN-γ and perforin-dependent mechanisms. THE JOURNAL OF IMMUNOLOGY 2012; 189:2099-109. [PMID: 22869906 DOI: 10.4049/jimmunol.1103474] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An effective immune response against influenza A infection depends on the generation of virus-specific T cells. NK cells are one of the first-line defenses against influenza A infection. We set out to delineate the role of NK cells in T cell immunity using a murine model of influenza A infection with A/PR/8/34. We show that early T cell recruitment mainly occurs in the posterior mediastinal lymph node (pMLN). Depletion of NK cells significantly impaired both dendritic cell (DC) and T cell recruitment into the pMLN. A similar reduction of T cell recruitment was observed when migration was blocked by pertussis toxin, suggesting that migration of pulmonary NK cells and DCs regulates cell recruitment to the pMLN. T cell recruitment was dependent on IFN-γ, and transfer of IFN-γ-competent naive NK cells into IFN-γ-/- mice restored T cell recruitment, whereas IFN-γ-deficient NK cells failed to do so. In addition, NK cell depletion reduced the uptake and transport of influenza A virus by DCs, and significantly impaired the virus-specific T cell response. Both IFN-γ-/- and perforin-/- mice showed reduced viral Ag transport by DCs, suggesting that the ability of NK cells to influence virus transport depends on IFN-γ and perforin. In summary, our data suggest that NK cells play a critical role in the initiation and shaping of the T cell response after influenza A infection.
Collapse
Affiliation(s)
- Moyar Qing Ge
- Immunology Program, Centre for Life Sciences, National University of Singapore, Singapore 117456
| | | | | | | | | | | | | |
Collapse
|
48
|
McKinstry KK, Strutt TM, Kuang Y, Brown DM, Sell S, Dutton RW, Swain SL. Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms. J Clin Invest 2012; 122:2847-56. [PMID: 22820287 DOI: 10.1172/jci63689] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/07/2012] [Indexed: 01/25/2023] Open
Abstract
Memory CD4+ T cells combat viral infection and contribute to protective immune responses through multiple mechanisms, but how these pathways interact is unclear. We found that several pathways involving memory CD4+ T cells act together to effectively clear influenza A virus (IAV) in otherwise unprimed mice. Memory CD4+ T cell protection was enhanced through synergy with naive B cells or CD8+ T cells and maximized when both were present. However, memory CD4+ T cells protected against lower viral doses independently of other lymphocytes through production of IFN-γ. Moreover, memory CD4+ T cells selected for epitope-specific viral escape mutants via a perforin-dependent pathway. By deconstructing protective immunity mediated by memory CD4+ T cells, we demonstrated that this population simultaneously acts through multiple pathways to provide a high level of protection that ensures eradication of rapidly mutating pathogens such as IAV. This redundancy indicates the need for reductionist approaches for delineating the individual mechanisms of protection mediated by memory CD4+ T cells responding to pathogens.
Collapse
Affiliation(s)
- K Kai McKinstry
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Pena L, Vincent AL, Loving CL, Henningson JN, Lager KM, Li W, Perez DR. Strain-dependent effects of PB1-F2 of triple-reassortant H3N2 influenza viruses in swine. J Gen Virol 2012; 93:2204-2214. [PMID: 22815274 DOI: 10.1099/vir.0.045005-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The PB1-F2 protein of the influenza A viruses (IAVs) can act as a virulence factor in mice. Its contribution to the virulence of IAV in swine, however, remains largely unexplored. In this study, we chose two genetically related H3N2 triple-reassortant IAVs to assess the impact of PB1-F2 in virus replication and virulence in pigs. Using reverse genetics, we disrupted the PB1-F2 ORF of A/swine/Wisconsin/14094/99 (H3N2) (Sw/99) and A/turkey/Ohio/313053/04 (H3N2) (Ty/04). Removing the PB1-F2 ORF led to increased expression of PB1-N40 in a strain-dependent manner. Ablation of the PB1-F2 ORF (or incorporation of the N66S mutation in the PB1-F2 ORF, Sw/99 N66S) affected the replication in porcine alveolar macrophages of only the Sw/99 KO (PB1-F2 knockout) and Sw/99 N66S variants. The Ty/04 KO strain showed decreased virus replication in swine respiratory explants, whereas no such effect was observed in Sw/99 KO, compared with the wild-type (WT) counterparts. In pigs, PB1-F2 did not affect virus shedding or viral load in the lungs for any of these strains. Upon necropsy, PB1-F2 had no effect on the lung pathology caused by Sw/99 variants. Interestingly, the Ty/04 KO-infected pigs showed significantly increased lung pathology at 3 days post-infection compared with pigs infected with the Ty/04 WT strain. In addition, the pulmonary levels of interleukin (IL)-6, IL-8 and gamma interferon were regulated differentially by the expression of PB1-F2. Taken together, these results indicate that PB1-F2 modulates virus replication, virulence and innate immune responses in pigs in a strain-dependent fashion.
Collapse
Affiliation(s)
- Lindomar Pena
- Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD, USA.,Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Amy L Vincent
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Crystal L Loving
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Jamie N Henningson
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Kelly M Lager
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Weizhong Li
- Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD, USA.,Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Daniel R Perez
- Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD, USA.,Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| |
Collapse
|
50
|
Multifunctional CD4 cells expressing gamma interferon and perforin mediate protection against lethal influenza virus infection. J Virol 2012; 86:6792-803. [PMID: 22491469 DOI: 10.1128/jvi.07172-11] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CD4 effectors generated in vitro can promote survival against a highly pathogenic influenza virus via an antibody-independent mechanism involving class II-restricted, perforin-mediated cytotoxicity. However, it is not known whether CD4 cells activated during influenza virus infection can acquire cytolytic activity that contributes to protection against lethal challenge. CD4 cells isolated from the lungs of infected mice were able to confer protection against a lethal dose of H1N1 influenza virus A/Puerto Rico 8/34 (PR8). Infection of BALB/c mice with PR8 induced a multifunctional CD4 population with proliferative capacity and ability to secrete interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α) in the draining lymph node (DLN) and gamma interferon (IFN-γ) and IL-10 in the lung. IFN-γ-deficient CD4 cells produced larger amounts of IL-17 and similar levels of TNF-α, IL-10, and IL-2 compared to wild-type (WT) CD4 cells. Both WT and IFN-γ(-/-) CD4 cells exhibit influenza virus-specific cytotoxicity; however, IFN-γ-deficient CD4 cells did not promote recovery after lethal infection as effectively as WT CD4 cells. PR8 infection induced a population of cytolytic CD4 effectors that resided in the lung but not the DLN. These cells expressed granzyme B (GrB) and required perforin to lyse peptide-pulsed targets. Lethally infected mice given influenza virus-specific CD4 cells deficient in perforin showed greater weight loss and a slower time to recovery than mice given WT influenza virus-specific CD4 cells. Taken together, these data strengthen the concept that CD4 T cell effectors are broadly multifunctional with direct roles in promoting protection against lethal influenza virus infection.
Collapse
|