1
|
Azario I, Pievani A, Del Priore F, Antolini L, Santi L, Corsi A, Cardinale L, Sawamoto K, Kubaski F, Gentner B, Bernardo ME, Valsecchi MG, Riminucci M, Tomatsu S, Aiuti A, Biondi A, Serafini M. Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I. Sci Rep 2017; 7:9473. [PMID: 28842642 PMCID: PMC5573317 DOI: 10.1038/s41598-017-09958-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/01/2017] [Indexed: 12/23/2022] Open
Abstract
Umbilical cord blood (UCB) is a promising source of stem cells to use in early haematopoietic stem cell transplantation (HSCT) approaches for several genetic diseases that can be diagnosed at birth. Mucopolysaccharidosis type I (MPS-I) is a progressive multi-system disorder caused by deficiency of lysosomal enzyme α-L-iduronidase, and patients treated with allogeneic HSCT at the onset have improved outcome, suggesting to administer such therapy as early as possible. Given that the best characterized MPS-I murine model is an immunocompetent mouse, we here developed a transplantation system based on murine UCB. With the final aim of testing the therapeutic efficacy of UCB in MPS-I mice transplanted at birth, we first defined the features of murine UCB cells and demonstrated that they are capable of multi-lineage haematopoietic repopulation of myeloablated adult mice similarly to bone marrow cells. We then assessed the effectiveness of murine UCB cells transplantation in busulfan-conditioned newborn MPS-I mice. Twenty weeks after treatment, iduronidase activity was increased in visceral organs of MPS-I animals, glycosaminoglycans storage was reduced, and skeletal phenotype was ameliorated. This study explores a potential therapy for MPS-I at a very early stage in life and represents a novel model to test UCB-based transplantation approaches for various diseases.
Collapse
Affiliation(s)
- Isabella Azario
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Alice Pievani
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Federica Del Priore
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Laura Antolini
- Centro di Biostatistica per l'epidemiologia clinica, Department of Health Sciences, University of Milano-Bicocca, Monza, 20900, Italy
| | - Ludovica Santi
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University, Rome, 00161, Italy
| | - Lucia Cardinale
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Kazuki Sawamoto
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA
| | - Francyne Kubaski
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maria Grazia Valsecchi
- Centro di Biostatistica per l'epidemiologia clinica, Department of Health Sciences, University of Milano-Bicocca, Monza, 20900, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University, Rome, 00161, Italy
| | - Shunji Tomatsu
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy.,Vita Salute San Raffaele University, Milan, 20132, Italy
| | - Andrea Biondi
- Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Marta Serafini
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy.
| |
Collapse
|
2
|
Zigova T, Song S, Willing AE, Hudson JE, Newman MB, Saporta S, Sanchez-Ramos J, Sanberg PR. Human Umbilical Cord Blood Cells Express Neural Antigens after Transplantation into the Developing Rat Brain. Cell Transplant 2017. [DOI: 10.3727/096020198389915] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recently, our laboratory began to characterize the mononuclear cells from human umbilical cord blood (HUCB) both in vitro and in vivo. These cryopreserved human cells are available in unlimited quantities and it is believed that they may represent a source of cells with possible therapeutic and practical value. Our previous molecular and immunocytochemical studies on cultured HUCB cells revealed their ability to respond to nerve growth factor (NGF) by increased expression of neural markers typical for nervous system-derived stem cells. In addition, the DNA microarray detected downregulation of several genes associated with development of blood cell lines. To further explore the survival and phenotypic properties of HUCB cells we transplanted them into the developing rat brain, which is known to provide a conducive environment for development of neural phenotypes. Prior to transplantation, HUCB cells were either cultured with DMEM and fetal bovine serum or were exposed to retinoic acid (RA) and nerve growth factor (NGF). Neonatal pups (1 day old) received unilateral injection of cell suspension into the anterior part of subventricular zone. One month after transplantation animals were perfused, their brains cryosectioned, and immunocytochemistry was performed for identification of neural phenotypes. Our results clearly demonstrated that approximately 20% of transplanted HUCB survived (without immunosuppression) within the neonatal brain. Additionally, double-labeling with cell-type-specific markers revealed that some HUCB-derived cells (recognized by anti-human nuclei labeling) were immunopositive for glial fibrillary acidic protein (GFAP) and few donor cells expressed the neuronal marker TuJ1 (class III β-tubulin). These findings suggest that at least some of the transplanted HUCB cells differentiated into cells with distinct glial or neuronal phenotypes after being exposed to instructive signals from the developing brain.
Collapse
Affiliation(s)
- Tanja Zigova
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurosurgery, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Anatomy, University of South Florida College of Medicine, Tampa, FL
| | - Shijie Song
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurology, University of South Florida College of Medicine, Tampa, FL
- James Haley VA Hospital, Tampa, FL
| | - Alison E. Willing
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurosurgery, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Anatomy, University of South Florida College of Medicine, Tampa, FL
| | - Jennifer E. Hudson
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurology, University of South Florida College of Medicine, Tampa, FL
| | - Mary B. Newman
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurosurgery, University of South Florida College of Medicine, Tampa, FL
| | - Samuel Saporta
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Anatomy, University of South Florida College of Medicine, Tampa, FL
| | - Juan Sanchez-Ramos
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurosurgery, University of South Florida College of Medicine, Tampa, FL
- James Haley VA Hospital, Tampa, FL
| | - Paul R. Sanberg
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurosurgery, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurology, University of South Florida College of Medicine, Tampa, FL
| |
Collapse
|
3
|
Freie BW, Dutt P, Clapp DW. Correction of Fanconi Anemia Type C Phenotypic Abnormalities Using a Clinically Suitable Retroviral Vector Infection Protocol. Cell Transplant 2017; 5:385-93. [PMID: 8727007 DOI: 10.1177/096368979600500305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fanconi anemia (FA) is a complex autosomal recessive disease with hematologic manifestations characterized by a progressive hypoplastic anemia, hypersensitivity to clastogenic agents, and an increased incidence of acute myelogenous leukemia. The cDNA that corrects one of four FA complementation subtypes, named Fanconi anemia Type C (FAC) has recently been identified. We constructed a simplified recombinant retrovirus (vMFGFAC) encoding only the FAC cDNA, and tested its ability to correct the FAC defect in a lymphocytic cell line and primary mobilized blood progenitor cells. In addition, the gene transfer efficiency using a clinically applicable gene transfer protocol into normal primitive hematopoietic progenitor cells, high proliferating potential colony forming cells (HPP-CFC), derived from CD34+ purified cord blood cells was examined. The gene transfer efficiency was significantly enhanced when cells were transduced with supernatant while adherent to a 30/35 KD fragment of fibronectin, FN30/35, and was similar to efficiency obtained by coculture with retrovirus packaging cells. Transduction of an FAC deficient lymphoid cell line with vMFGFAC supernatant resulted in an enhanced cell viability, and G-CSF mobilized peripheral blood cells from an FAC-deficient patient transduced with the vMFGFAC virus demonstrated enhanced progenitor cell colony formation. These data indicate that the vMFGFAC virus allows functional complementation of FAC in lymphoblasts and primary hematopoietic progenitors, and that primitive cord blood hematopoietic stem/progenitor cells can be transduced at an efficiency comparable to protocols using cocultivation if adherent to FN 30/35 fragment.
Collapse
Affiliation(s)
- B W Freie
- Herman B Wells Research Center, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | |
Collapse
|
4
|
Lu L, Ge Y, Li ZH, Freie B, Clapp DW, Broxmeyer HE. CD34+++ Stem/Progenitor Cells Purified from Cryopreserved Normal Cord Blood can be Transduced with High Efficiency by a Retroviral Vector and Expanded Ex Vivo with Stable Integration and Expression of Fanconi Anemia Complementation C Gene. Cell Transplant 2017; 4:493-503. [PMID: 8520833 DOI: 10.1177/096368979500400510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A future possibility for treatment of genetic diseases may be gene therapy using autologous cord blood (CB) stem/progenitor cells. This might require cryopreservation of CB stem/progenitor cells prior to purification, gene transduction, and ex vivo expansion of cells. To address this possibility, nonadherent low density T-lymphocyte depleted (NALT-) cells from fresh or cryopreserved cord blood were sorted for CD34+++ phenotype, transduced with a recombinant retroviral vector encoding Fanconi anemia complementation C (FACC) gene, and cells expanded ex vivo in suspension culture for 7 days with growth factors. The results demonstrate: 1) high recovery of viable cells after thawing; 2) high efficiency purification of CD34+++ cells from NALT- cells prior to and after cryopreservation; 3) high degree of expansion of nucleated cells and immature progenitors from CD34+++ cells before and after cryopreservation; 4) efficient transduction with stable integration and expression of newly introduced genes in cryopreserved and then sorted stem/progenitor cells, as detected prior to and after ex vivo expansion; and 5) high efficiency transduction of single isolated CD34+++ cells obtained from cryopreserved NALT- CB. This information should be of value for future studies evaluating the use of cryopreserved cord blood for gene transfer/gene therapy.
Collapse
Affiliation(s)
- L Lu
- Department of Medicine (Hematology/Oncology), Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | |
Collapse
|
5
|
Broxmeyer HE, Etienne-Julan M, Gotoh A, Braun SE, Lu L, Cooper S, Feng GS, Li XJ, Chan RJ. Hematopoietic colony formation from human growth factor-dependent TF1 cells and human cord blood myeloid progenitor cells depends on SHP2 phosphatase function. Stem Cells Dev 2012; 22:998-1006. [PMID: 23082805 DOI: 10.1089/scd.2012.0478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The protein tyrosine phosphatase, SHP2, is widely expressed; however, previous studies demonstrated that hematopoietic cell development more stringently requires Shp2 expression compared to other tissues. Furthermore, somatic gain-of-function SHP2 mutants are commonly found in human myeloid leukemias. Given that pharmacologic inhibitors to SHP2 phosphatase activity are currently in development as putative antileukemic agents, we conducted a series of experiments examining the necessity of SHP2 phosphatase activity for human hematopoiesis. Anti-sense oligonucleotides to human SHP2 coding sequences reduced human cord blood- and human cell line, TF1-derived colony formation. Expression of truncated SHP2 bearing its Src homology 2 (SH2) domains, but lacking the phosphatase domain similarly reduced human cord blood- and TF1-derived colony formation. Mechanistically, expression of truncated SHP2 reduced the interaction between endogenous, full-length SHP2 with the adapter protein, Grb2. To verify the role of SHP2 phosphatase function in human hematopoietic cell development, human cord blood CD34+ cells were transduced with a leukemia-associated phosphatase gain-of-function SHP2 mutant or with a phosphatase dead SHP2 mutant, which indicated that increased phosphatase function enhanced, while decreased SHP2 phosphatase function reduced, human cord blood-derived colonies. Collectively, these findings indicate that SHP2 phosphatase function regulates human hematopoietic cell development and imply that the phosphatase component of SHP2 may serve as a pharmacologic target in human leukemias bearing increased SHP2 phosphatase activity.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
During recent decades there have been major advances in the fields of thrombosis and haemostasis, in part through development of powerful molecular and genetic technologies. Nevertheless, genetic modification of megakaryocytes and generation of mutant platelets in vitro remains a highly specialized area of research. Developments are hampered by the low frequency of megakaryocytes and their progenitors, a poor efficiency of transfection and a lack of understanding with regard to the mechanism by which megakaryocytes release platelets. Current methods used in the generation of genetically modified megakaryocytes and platelets include mutant mouse models, cell line studies and use of viruses to transform primary megakaryocytes or haematopoietic precursor cells. This review summarizes the advantages, limitations and technical challenges of such methods, with a particular focus on recent successes and advances in this rapidly progressing field including the potential for use in gene therapy for treatment of patients with platelet disorders.
Collapse
Affiliation(s)
- Caroline Pendaries
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, Wolfson Drive, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | |
Collapse
|
7
|
Abstract
Dose-limiting toxicity of chemotherapeutic agents, i.e., myelosuppression, can limit their effectiveness. The transfer and expression of drug-resistance genes might decrease the risks associated with acute hematopoietic toxicity. Protection of hematopoietic stem/progenitor cells by transfer of drug-resistance genes provides the possibility of intensification or escalation of antitumor drug doses and consequently an improved therapeutic index. This chapter reviews drug-resistance gene transfer strategies for either myeloprotection or therapeutic gene selection. Selecting candidate drug-resistance gene(s), gene transfer methodology, evaluating the safety and the efficiency of the treatment strategy, relevant in vivo models, and oncoretroviral transduction of human hematopoietic stem/progenitor cells under clinically applicable conditions are described.
Collapse
Affiliation(s)
- Tulin Budak-Alpdogan
- Department of Medicine, The Cancer Institute of New Jersey, Robert Wood Johson Medical School, University of Medicine & Dentistry of New Jersey, New Brunswick, NJ, USA
| | | |
Collapse
|
8
|
Budak-Alpdogan T, Rivière I. Genetic modification of human hematopoietic cells: preclinical optimization of oncoretroviral-mediated gene transfer for clinical trials. Methods Mol Biol 2009; 506:33-58. [PMID: 19110618 PMCID: PMC4360985 DOI: 10.1007/978-1-59745-409-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This chapter provides information about the oncoretroviral transduction of human hematopoietic stem/ progenitor cells under clinically applicable conditions. We describe in detail a short -60 h transduction protocol which consistently yields transduction efficiencies in the range of 30-50% with five different oncoretroviral vectors. We discuss a number of parameters that affect transduction efficiency, including the oncoretroviral vector characteristics, the vector stock collection, the source of CD34+ cells and transduction conditions.
Collapse
Affiliation(s)
- Tulin Budak-Alpdogan
- Department of Medicine, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
| | | |
Collapse
|
9
|
Lee YS, Park KH, Kim TS, Kim JM, Sohn IS, Park JK, Chang WK, Kim DK. Interaction of glycopolymers with human hematopoietic cells from cord blood and peripheral blood. J Biomed Mater Res A 2008; 86:1069-76. [DOI: 10.1002/jbm.a.31743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Gupta R, Hong D, Iborra F, Sarno S, Enver T. NOV (CCN3) Functions as a Regulator of Human Hematopoietic Stem or Progenitor Cells. Science 2007; 316:590-3. [PMID: 17463287 DOI: 10.1126/science.1136031] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Clinically successful hematopoietic cell transplantation is dependent on hematopoietic stem and progenitor cells. Here we identify the matricellular protein Nephroblastoma Overexpressed (Nov, CCN3) as being essential for their functional integrity. Nov expression is restricted to the primitive (CD34) compartments of umbilical vein cord blood, and its knockdown in these cells by lentivirus-mediated RNA interference abrogates their function in vitro and in vivo. Conversely, forced expression of Nov and addition of recombinant Nov protein both enhance primitive stem and/or progenitor activity. Taken together, our results identify Nov (CCN3) as a regulator of human hematopoietic stem or progenitor cells.
Collapse
Affiliation(s)
- Rajeev Gupta
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, OX3 9DS, UK
| | | | | | | | | |
Collapse
|
11
|
Wijewardana V, Sugiura K, Shigeyama N, Moriguchi M, Tsunoda S, Ikehara S, Inaba T. Isolation and characterization of hematopoietic progenitor cells in canine bone marrow. Vet Immunol Immunopathol 2007; 115:230-8. [PMID: 17161466 DOI: 10.1016/j.vetimm.2006.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 10/18/2006] [Accepted: 11/03/2006] [Indexed: 11/18/2022]
Abstract
For ultimate diagnoses of canine leukemia or malignant lymphoma, we sought to isolate hematopoietic progenitor cells (HPCs) from canine bone marrow (BM) using physiological phenotypes. Canine BM cells were separated by equilibrium discontinued density centrifugation, and HPCs, detected by in vitro colony formation, were significantly enriched in the relatively low density (LD) fraction. In flow cytometry, many CD34 or MHC class II expressing cells were detected in the LD fraction, but these were not significantly enriched. When the LD cells were separated, using a cell-sorting method, into cells with high affinity of wheat germ agglutinin (WGAhigh) and cells with WGAlow, almost all multipotent HPCs (MHPCs) and HPCs committed to myeloid lineage were found in the WGAhigh population. When the WGAhigh population was further stained for rhodamin 123, almost all MHPCs were included in the dull population (Rhlow), but not in the bright one (Rhhigh). Morphologically, most Rhlow cells were round, blastic cells containing a large nucleus with nucleoli and narrow cytoplasm. Based on these results, we suggest that all of the MHPCs in canine BM show the Rhlow WGAhigh LD phenotype, and may contain hematopoietic stem cells, which are the primitive HPCs.
Collapse
Affiliation(s)
- Viskam Wijewardana
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai City, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
da Silva CL, Gonçalves R, Crapnell KB, Cabral JMS, Zanjani ED, Almeida-Porada G. A human stromal-based serum-free culture system supports the ex vivo expansion/maintenance of bone marrow and cord blood hematopoietic stem/progenitor cells. Exp Hematol 2005; 33:828-35. [PMID: 15963859 DOI: 10.1016/j.exphem.2005.03.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 03/16/2005] [Accepted: 03/31/2005] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We investigated the role of human stromal layers (hu-ST) on the ex vivo expansion/maintenance of human hematopoietic stem/progenitor cells (HSC) from adult bone marrow (BM) and umbilical cord blood (CB). MATERIALS AND METHODS BM and CB CD34(+)-enriched cells were cultured in serum-free medium supplemented with SCF, bFGF, LIF, and Flt-3, in the presence or absence of stroma, and analyzed for proliferation, phenotype, and clonogenic potential. RESULTS Significant expansion of BM and CB CD34(+) and CD34(+)CD38(-) cells were achieved in the presence of hu-ST. The differentiative potential of both BM and CB CD34(+)-enriched cells cocultured with hu-ST was primarily shifted toward the myeloid lineage, while maintaining/expanding a CD7(+) population. Clonogenic analysis of the expanded cells showed increases in progenitors of the myeloid lineage, including colony-forming unit-granulocyte, macrophage (CFU-GM) and colony-forming unit-granulocyte, erythroid, macrophage, megakaryocyte (CFU-Mix) for both BM (stroma and stroma-free conditions) and CB cells in the presence of stroma. CONCLUSIONS These results indicate that adult hu-ST in the presence of appropriate cytokines can be used to efficiently expand/maintain myeloid and lymphoid cell populations from human BM and CB HSC.
Collapse
|
13
|
Dimitrova DI, Yang X, Reichenbach NL, Karakasidis S, Sutton RE, Henderson EE, Rogers TJ, Suhadolnik RJ. Lentivirus-mediated transduction of PKR into CD34(+) hematopoietic stem cells inhibits HIV-1 replication in differentiated T cell progeny. J Interferon Cytokine Res 2005; 25:345-60. [PMID: 15957958 DOI: 10.1089/jir.2005.25.345] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies from this laboratory evaluated the role of p68 kinase (PKR) in the control of HIV-1 replication via retrovirus-mediated gene transfer. PKR was studied because it is a key component of the interferon (IFN)-associated innate antiviral defense pathway in mammalian cells. In this study, CD34(+) hematopoietic stem cells (HSC) were transduced with an HIV-1-based lentiviral vector encoding the PKR transgene (pHIV-PIB) and cultured under conditions that support in vitro differentiation. With high-titer pseudotyped vector stocks, the histogram suggests 100% transduction of the HSC because the cells were blasticidin resistant. Analysis of transduced cells by hybridization revealed an average proviral vector copy number of 1.8 and 2.1 copies of vector sequence per cell. Increased PKR expression and activity (phosphorylation of eukaryotic initiation factor 2alpha [eIF2alpha]) were demonstrated in PKR-transduced, differentiated HSC. There was minimal reduction in cell viability and no induction of apoptosis after transduction of PKR. HSC transduced with the pHIV-PIB lentiviral vector demonstrated normal differentiation into CD34-derived T cell progeny. Two days after HIV-1 infection, lentivirus-mediated transduction of PKR inhibited HIV-1 replication by 72% in T cell progeny compared with cells transduced with the empty vector control (pHIV-IB). By days 5 and 7 post-HIV-1 infection, the surviving PKR-transduced cells were protected from HIV-1 infection, as evidenced by a decrease in p24 antigen expression of at least two orders of magnitude. Our results demonstrate that PKR can be effectively delivered to HSC by a lentiviral vector and can protect CD34-derived T cell progeny from HIV-1 infection. These results provide support for application of the innate antiviral defense pathway in a gene therapy setting to the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Dessislava I Dimitrova
- Departments of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Breckpot K, Heirman C, Neyns B, Thielemans K. Exploiting dendritic cells for cancer immunotherapy: genetic modification of dendritic cells. J Gene Med 2004; 6:1175-88. [PMID: 15468193 DOI: 10.1002/jgm.615] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are pivotal regulators of immune reactivity and immune tolerance. The observation that DCs can recruit naive T cells has invigorated cancer immunology and led to the proposal of DCs as the basis for vaccines designed for the treatment of cancer. Designing effective strategies to load DCs with antigens is a challenging field of research. The successful realization of gene transfer to DCs will be highly dependent on the employed vector system. Here, we review various viral and non-viral gene transfer systems, and discuss their distinct characteristics and possible advantages and disadvantages in respect to their use in DC-based immunotherapy.
Collapse
Affiliation(s)
- Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | | | | | | |
Collapse
|
15
|
Abstract
Adoptive cellular therapy remains a potentially powerful method of eradicating established tumors. T-cells have been particularly potent effector cells, as demonstrated in animal models and clinical studies, and it is apparent that the stimulation of certain subpopulations of T-cells that are reactive to tumor antigens can lead to more therapeutic T-cells. The use of gene transfer techniques has resulted in more effective and specific methods to generate these tumor-specific T-cells. Another area of tremendous interest is in the adoptive transfer of DCs manipulated to present tumor antigen to resting, naive T-cells. Gene transfer techniques may offer more optimal ways to generate therapeutic DCs. Adoptive immunotherapy may ultimately [figure: see text] have its greatest use in patients undergoing cellular rescue after ablative chemotherapy; the infusion of immunocompetent T-cells, genetically modified stem cells, or programmed DCs may offer the opportunity to direct a patient's immune response to eliminate residual microscopic disease.
Collapse
Affiliation(s)
- Alicia Terando
- Division of Surgical Oncology, University of Michigan Medical Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
16
|
Wagner T, Fritsch G, Thalhammer R, Höcker P, Lanzer G, Lechner K, Geissler K. IL-10 increases the number of CFU-GM generated by ex vivo expansion of unmanipulated human MNCs and selected CD34+ cells. Transfusion 2001; 41:659-66. [PMID: 11346703 DOI: 10.1046/j.1537-2995.2001.41050659.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Ex vivo expansion strategies with different cytokine combinations are currently used by several groups as a means of increasing the number of HPCs for a variety of special clinical applications. Because there is little information on the potential role of IL-10 in such ex vivo expansion models, the effect of this cytokine on the generation of myeloid progenitor cells in suspension cultures was investigated. STUDY DESIGN AND METHODS On the basis of data from the literature and from new experiments, the combination of SCF and IL-3 at concentrations of 100 ng per mL and 100 U per mL, respectively, was chosen as the standard cocktail. The addition of IL-10 to such cultures resulted in a marked and dose-dependent potentiation of myeloid progenitor cell production. RESULTS Using unmanipulated leukapheresis components from 13 individuals (including lymphoma and cancer patients and normal donors), the expansion multiple of CFU-GM after 14 days as compared with pre-expansion values was 9.54 +/- 2.31 times by SCF/IL-3 and 46.38 +/- 7.37 times by the combination of SCF/IL-3 and 100 ng per mL of IL-10 (p<0.001). IL-10 also potentiated CFU-GM generation from selected CD34 PBMNCs (n = 9) with an expansion of 17.22 +/- 7.04 times versus 45.67 +/- 16.78 times using the SCF/IL-3 and SCF/IL-3/IL-10 combination, respectively (p<0.05). Moreover, expansion-promoting effects of IL-10 were observed in liquid cultures containing MNCs from bone marrow (n = 4) and cord blood (n = 3), but did not reach statistical significance because of the small number of samples. CONCLUSION These results suggest IL-10 as a useful cytokine to optimize progenitor cell-expansion strategies for clinical application.
Collapse
Affiliation(s)
- T Wagner
- Department of Blood Group Serology and Transfusion Medicine, University Clinics of Graz, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
17
|
Podestà M, Piaggio G, Pitto A, Zocchi E, Soracco M, Frassoni F, Luchetti S, Painelli E, Bacigalupo A. Modified in vitro conditions for cord blood-derived long-term culture-initiating cells. Exp Hematol 2001; 29:309-14. [PMID: 11274758 DOI: 10.1016/s0301-472x(00)00678-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of this study was to compare the in vitro growth of cord blood-derived progenitors with that of bone marrow and peripheral blood. MATERIALS AND METHODS We analyzed 192 umbilical cord blood (UCB), 35 normal bone marrow (NBM), and 35 granulocyte colony-stimulating factor (G-CSF)-primed normal peripheral blood (NPB) samples. Standard clonogenic assays (colony-forming unit granulocyte-macrophage [CFU-GM], burst-forming unit erythroid [BFU-E], CFU-granulocyte erythroid megakaryocyte macrophage [GEMM]) and standard long-term culture-initiating cell (LTC-IC) assay were performed. LTC-IC frequency also was tested under modified culture conditions. The variables tested were incubation temperature (37 degrees C and 33 degrees C) and supportive stromal cell lines (NIH3T3 and M210-B4). RESULTS The CFU-GM and CFU-GEMM frequencies of UCB samples were similar to NPB and higher compared to NBM samples (p < 10(-4) and p < 0.007 respectively). On the other hand, the BFU-E frequency was lower in cord blood samples (5.2 +/- 5.6/10(4) MNC) compared to bone marrow (7 +/- 3.8/10(4) MNC; p < 0.005) and peripheral blood (15.2 +/- 11.1/10(4) MNC; p < 10(-4)). All colony types (CFU-GM, BFU-E, CFU-GEMM) generated from cord blood progenitors were larger with respect to the other tissues. The LTC-IC frequency was markedly decreased (8.8 +/- 3.8/10(6) MNC) in cord blood with respect to bone marrow (40.7 +/- 7.4/10(6) MNC; p < 10(-4)) and peripheral blood (28.8 +/- 3.8/10(6) MNC; p < 0.04). However, when culture conditions (temperature, stromal layers) were modified, UCB-LTC-IC frequency significantly increased, while the growth of early progenitors derived from adult tissues (BM and PB) did not show any variation. Whatever culture conditions were used, the proliferative potential of UCB LTC-IC was significantly higher with respect to bone marrow and G-CSF-primed PB (10.6 +/- 7.7 colonies vs. 5.9 +/- 5 vs 3.2 +/- 2.2 colonies; p < 0.02 and p < 0.001 respectively). CONCLUSIONS Optimal conditions for estimation of the LTC-IC frequency in cord blood samples seem to be different from those usually applied to PB and BM progenitors. Although UCB hemopoietic progenitors have a higher proliferative potential than those from bone marrow and G-CSF-primed peripheral blood, their quantitation depends on the culture conditions, which makes it difficult to establish their exact number. This problem and the fact that a significant proportion of UCB samples grew poorly in culture make it necessary to develop suitable and standardized functional assays to test UCB progenitor content before the transplantation procedure.
Collapse
Affiliation(s)
- M Podestà
- Divisione di Ematologia 2, Ospedale S. Martino, Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Posada R, Pettoello-Mantovani M, Sieweke M, Graf T, Goldstein H. Suppression of HIV type 1 replication by a dominant-negative Ets-1 mutant. AIDS Res Hum Retroviruses 2000; 16:1981-9. [PMID: 11153081 DOI: 10.1089/088922200750054710] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Activity of the distal region of the human immunodeficiency virus (HIV-1) long terminal repeat (LTR), which contains binding sites for the Ets-1 and USF-1 proteins, is integral for HIV-1 replication. The Ets-1 and USF-1 proteins play a critical role in the activity of the HIV-1 LTR distal enhancer region, as indicated by the potent dominant negative effect of a mutant Ets-1 lacking trans-activation domains on the transcriptional activity of the LTR. To determine the biological relevance of the Ets-1 and USF-1 proteins in HIV-1 replication, we examined the effect of expression of the dominant-negative mutant of Ets-1 (dnEts-1) on HIV-1 infection of T cells. We demonstrated that expression of dnEts markedly suppressed HIV-1 infection of a T cell line. This finding indicates that formation of a transcriptionaly active USF-1/Ets-1 complex is important in the productive infection of cells by HIV-1, and suggests that inhibition of the interaction between USF-1 and Ets-1 with the HIV-1 LTR may provide a new target for anti-HIV-1 gene therapy.
Collapse
Affiliation(s)
- R Posada
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
19
|
Lu L, Dai MS, Ge Y, Wang LS, Braun SE, Wait CL, Griffith DJ, Heinrich MC, Broxmeyer HE. Co-transduction of cDNAs for c-kit and steel factor into single CD34+ cord blood cells further enhances the growth of erythroid and multipotential progenitors. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2000; 9:813-25. [PMID: 11177593 DOI: 10.1089/152581600750062246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous studies have demonstrated that the c-kit encoded tyrosine kinase receptor and its ligand, steel factor (SLF), are critical for normal blood cell development. We have reported that transduction of the c-kit gene into single hematopoietic progenitor cells (HPC), CD34(+++) cells, from cord blood (CB) enhances erythroid colony formation via a SLF-dependent mechanism. We therefore decided to evaluate the impact on cell proliferation of co-transducing c-kit and SLF cDNAs into these cells. CD34(+++) cells were sorted as a population or as 1 cell/well for cells expressing the highest levels of CD34 and different levels of c-kit. Cells were then prestimulated with granulocyte macrophage (GM)-colony stimulating factor (CSF), interleukin (IL)-3, IL-6, erythropoietin (Epo) in the presence and absence of various concentrations of SLF. Cells were then transduced with SLF and/or c-kit cDNAs, and then assayed for colony formation with the same cytokine combination. At a single cell level, co-transduction with c-kit and SLF genes significantly enhanced colony formation compared with individual gene transduction, especially by erythroid and multipotential progenitors that responded to stimulation by added cytokines. Little or no growth was seen with the c-kit- and/or SLF-transduced cells without addition of cytokines. The degree of enhancement effected by co-transduction inversely correlated with the degree of expression of c-kit protein before transduction. Optimal enhancing effects were noted in CD34(+++) kit(Lo/-) cells co-transduced with both c-kit and SLF cDNAs. Reverse transcriptase-polymerase chain (RT-PCR) analysis of SLF mRNA expression in CD34(+++) cells and enzyme-linked immunoadsorbent assay (ELISA) measurement of secreted SLF protein demonstrated that the transduced SLF cDNA was expressed and soluble SLF was released in medium cultured with SLF gene transduced MACS-separated CD34(+) cells in the presence, but not in the absence, of IL-3, GM-CSF, IL-6, and Epo. These results demonstrate the enhancement of the proliferation of growth factor responsive HPC that express transduced c-kit and SLF genes.
Collapse
Affiliation(s)
- L Lu
- Department of Microbiology and Immunology, Indiana University School of Medicine, 1044 West Walnut Street, Room 302, Indianapolis, IN 46202-5254, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lu L, Ge Y, Li ZH, Dai MS, Broxmeyer HE. Enhancement of proliferation and differentiation of erythroid progenitors by co-transduction of erythropoietin receptor and H-ras cDNAS into single CD34(3+) cord blood cells. Bone Marrow Transplant 2000; 26:817-22. [PMID: 11081379 DOI: 10.1038/sj.bmt.1702620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our previous studies have demonstrated that retrovirus-mediated gene transduction of either the human erythropoietin receptor (EpoR) or H-ras cDNA into single purified hematopoietic progenitor (HPC), CD34(3+), cells from cord blood (CB) resulted in increased numbers and sizes of erythroid cell containing colonies. We therefore evaluated if there were further effects when H-ras and EpoR genes were co-transduced into the same progenitor cells. Highly purified single sorted CD34(3+) CB cells were transduced with retroviral vectors encoding EpoR or H-ras cDNA. At the single cell level, and in response to stimulation by a combination of growth factors, including Epo, the number of colonies formed by BFU-E and CFU-GEMM was significantly increased in cells transduced with either single H-ras or EpoR cDNA compared to mock virus-transduced cells as previously described. Increased numbers of BFU-E, but not CFU-GEMM, colonies were produced from cells simultaneously co-transduced with both EpoR and Hras genes. Little or no growth was seen in transduced cells without exogenously added cytokines. The size of all types of colonies including CFU-GM was increased in cells transduced with H-ras and/or EpoR cDNAs, and the greatest increase was noticed in cells co-transduced with both genes. Integration and expression of either gene in individual colonies as assessed by PCR and RT-PCR analysis were 45-62% and 48-58%, respectively, with approximately 31% of the cells containing and expressing both genes. These results add to information suggesting an enhancing interacting role of H-ras and EpoR in erythroid proliferation/differentiation.
Collapse
Affiliation(s)
- L Lu
- Department of Microbiology/lmmunology, Indiana University School of Medicine, Indianapolis 46202-5254, USA
| | | | | | | | | |
Collapse
|
21
|
Sonntag KC, Nebhard N, Haller GW, Yasumoto A, Sachs DH, LeGuern C. Assessment of transduction rates of porcine bone marrow. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2000; 9:721-726. [PMID: 11091496 DOI: 10.1089/15258160050196768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although drug resistance is commonly used as an indicator of gene transfer in various cellular contexts, the assessment of drug resistance is often imprecise and over-estimated. To measure accurately transduction efficiencies of the retroviral-mediated transfer of genes encoding the neomycine phosphotransferase (Neo(r)) and porcine major histocompatibility (MHC) class II in pig bone marrow cells (BMC), the fraction of targeted progenitors was evaluated by both colony-forming unit granulocytes/macrophages assays (G418r CFU-GM) and by PCR analysis of the transgenes (Tg). Transduced and untransduced BMC were selected at different concentrations of G418 and revealed high individual variability of drug sensitivity. Comparison of the results obtained by estimating the CFU frequency and the PCR assays on drug-resistant colonies demonstrated a marked overestimation of BM transduction rates when determined by G418 resistance alone, because only approximately one-third of individual colonies were positive for both the Neo(r) and the class II Tg. Because this discrepancy is likely to affect the overall assessment of transduction rates using drug resistance markers, our data attest for the need of a combination of molecular assays to determine transduction efficiencies accurately.
Collapse
Affiliation(s)
- K C Sonntag
- Transplantation Biology Research Center, Massachusetts General Hospital, MGH-East, Boston 02129, USA
| | | | | | | | | | | |
Collapse
|
22
|
Smith FO, Thomson BG. Umbilical cord blood collection, banking, and transplantation: current status and issues relevant to perinatal caregivers. Birth 2000; 27:127-35. [PMID: 11251491 DOI: 10.1046/j.1523-536x.2000.00127.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As a result of recent media coverage of cord blood transplantation, expectant parents increasingly ask perinatal caregivers about the possibility of collecting and saving their newborn child's umbilical cord blood. Umbilical cord blood has been used as a source of hematopoeitic stem cells for the treatment of human disease since 1988. As a result of these initial successes, cord blood collection, banking, and transplantation has become increasingly used worldwide, giving rise to several controversies. We have reviewed the current status of the indications for cord blood collection, the methods of collection, and safety issues related to the cyropreservation of cord blood units. In addition, the clinical success of cord blood transplants from related and unrelated donors is detailed. We have examined the major issues concerning cord blood transplantation as it exists in the year 2000 to provide insight into this exciting area of clinical investigation.
Collapse
Affiliation(s)
- F O Smith
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | | |
Collapse
|
23
|
Dai MS, Heinrich MC, Broxmeyer HE, Lu L. Enhancing effects of co-transduction of both human erythropoietin receptor and c-kit cDNAs into hematopoietic stem/progenitor cells from cord blood on proliferation and differentiation of erythroid progenitors. CYTOKINES, CELLULAR & MOLECULAR THERAPY 2000; 6:1-8. [PMID: 10976533 DOI: 10.1080/13684730050515859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Steel factor (SLF) and erythropoietin (Epo) play critical roles in erythropoiesis. To evaluate interactive effects of Epo and SLF receptors (R) in erythropoiesis, CD34+ and CD34 cord blood cells were transduced with human EpoR and c-kit cDNAs by retroviral mediated gene transfer. Erythroid (BFU-E) colonies derived from CD34+ or CD34 cells transduced with either the EpoR or c-kit gene were significantly increased in the presence of interleukin (IL)-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), Epo, and different concentrations of SLF compared with that from mock transduced cells. This number was further enhanced by co-transduction of both genes. Enhancement was more apparent in the absence of SLF. Cell numbers in individual erythroid colonies were also significantly increased in cells transduced with both genes compared with cells transduced with a single gene. Short-term liquid culture showed that ex vivo expansion for five days and numbers of CD34+CD71+ cells in expanded cells from single CD34 cells co-transduced with both EpoR and c-kit genes were increased compared with those of EpoR or c-kit-transduced cells. These results demonstrate that co-transduction of both c-kit and EpoR enhances the proliferative capacity of erythroid progenitors under cytokine stimulation above that of single-gene transduced cells.
Collapse
Affiliation(s)
- M S Dai
- Department of Microbiology/Immunology and The Walther Oncology Center, Indiana University School of Medicine, Indianapolis 46202-5254, USA
| | | | | | | |
Collapse
|
24
|
Xiao M, Luo Z, Mantel C, Broxmeyer HE, Lu L. Transduction of human IL-9 receptor cDNA into TF1 cells induces IL-9 dependency and erythroid differentiation. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2000; 9:77-82. [PMID: 10738974 DOI: 10.1089/152581600319649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human growth factor-dependent cell line TF1, which lacks interleukin (IL)-9 receptors (R) and does not grow in IL-9, was transduced with a retroviral vector containing human IL-9R cDNA and a selection marker. An IL-9-dependent TF1 cell line, which could also grow in other cytokines, was established after selection in G418 and could produce mature RBC in response to cytokine stimulation. TF1 cells transduced with the same viral vector without the IL-9R insert cDNA (mock control) and then selected responded the same as nontransduced TF1 cells. They failed to grow in response to IL-9 and did not generate RBC. An increased number and size of burst-forming units-erythroid (BFU-E)-like colonies were detected from IL-9R-transduced TF1 cells, compared with mock-transduced cells, in response to erythropoietin (EPO) and IL-9. To evaluate self-renewal and differentiation capacity, colony-replating assays were performed in the presence of IL-3, GM-CSF, IL-9, and EPO. After four replatings, the cloning efficiency of IL-9R-transduced TF1 cells decreased from 98% to 38%, most likely due to terminal erythroid cell differentiation. In contrast, no change in replating efficiency was detected in mock-transduced cells. TF1 cells stably expressing IL-9R and responding to IL-9 can serve as a cell line model to study the intracellular signals mediating IL-9-induced erythroid cell proliferation and differentiation.
Collapse
Affiliation(s)
- M Xiao
- Department of Medicine (Hematology/Oncology), Indiana University School of Medicine, Indianapolis, IN 46202-5254, USA
| | | | | | | | | |
Collapse
|
25
|
Novelli EM, Cheng L, Yang Y, Leung W, Ramírez M, Tanavde V, Enger C, Civin CI. Ex vivo culture of cord blood CD34+ cells expands progenitor cell numbers, preserves engraftment capacity in nonobese diabetic/severe combined immunodeficient mice, and enhances retroviral transduction efficiency. Hum Gene Ther 1999; 10:2927-40. [PMID: 10609654 DOI: 10.1089/10430349950016348] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ex vivo culture of hematopoietic stem/progenitor cells could potentially improve the efficacy of human placental/umbilical cord blood (CB) in clinical hematopoietic stem cell (HSC) transplantation and allow gene transduction using conventional retroviral vectors. Therefore, we first examined the effects of a 7-day period of ex vivo culture on the hematopoietic capacity of CB CD34+ cells. Medium for the ex vivo cultures contained either serum and six recombinant human hematopoietic growth factors (GFs), including Flt-3 ligand (FL), Kit ligand (KL = stem cell factor), thrombopoietin (Tpo), interleukin 3 (IL-3), granulocyte colony-stimulating factor (G-CSF), and interleukin 6 (IL-6), or a serum-free medium containing only FL, KL, and Tpo. After culture under both ex vivo conditions, the total numbers of viable cells, CD34+ cells, colony-forming cells (CFCs), and long-term culture initiating cells (LTC-ICs) were increased. In contrast, the severe combined immunodeficiency (SCID) mouse engrafting potential (SEP) of cultured cells was slightly decreased, as compared with fresh cells. Nevertheless, cultured human CB CD34+ cells were able to generate engraftment, shown to persist for up to 20 weeks after transplantation. We next tested the efficacy of retroviral transduction of cultured cells. Transduced cultured human cells were able to engraft in NOD/SCID mice, as tested 4 weeks after transplantation, and EGFP+CD34+ cells and EGFP+ CFCs were isolated from the chimeras. Thus, although additional improvements in ex vivo culture are still needed to expand the numbers and function of human HSCs, the current conditions appear to allow gene transduction into hematopoietic SCID engrafting cells, while at least qualitatively preserving their in vivo engraftment potential.
Collapse
Affiliation(s)
- E M Novelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Retroviral-Mediated Gene Transduction of c-kit Into Single Hematopoietic Progenitor Cells From Cord Blood Enhances Erythroid Colony Formation and Decreases Sensitivity to Inhibition by Tumor Necrosis Factor- and Transforming Growth Factor-β1. Blood 1999. [DOI: 10.1182/blood.v94.7.2319.419k14_2319_2332] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The c-kit receptor and its ligand, steel factor (SLF), are critical for optimal hematopoiesis. We evaluated effects of transducing cord blood (CB) progenitor cells with a retrovirus encoding humanc-kit cDNA. CD34+ cells were sorted as a population or as 1 cell/well for cells expressing high levels of CD34+++ and different levels of c-kit (++, +, Lo/−), transduced and then cultured in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), IL-6, erythropoietin (Epo) +/− SLF in the absence of serum. At a single-cell level, transduction with c-kit, but not with control (neo only), virus significantly increased colony formation, especially by erythroid and multipotential progenitors. The enhancing effect of c-kit transduction was inversely correlated with expression of c-kit protein before transduction. The greatest enhancing effects were noted in CD34+++kitLo/− cells transduced with c-kit. The stimulating effect was apparent even in the absence of exogenously added SLF, but in the presence of GM-CSF, IL-3, IL-6, and Epo. Enzyme-linked immunosorbent assay (ELISA) of SLF protein, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of SLF mRNA expression in CD34+ cells, and use of neutralizing antibodies to SLF and/or c-kit suggested the presence of endogenous, although probably very low level, expression of SLF by these progenitor cells. Transduction of c-kit significantly decreased sensitivity of progenitor cells to the inhibitory effects of transforming growth factor-β1 and tumor necrosis factor-.c-kit–transduced cells had increased expression ofc-kit protein and decreased spontaneous or cytokine-induced apoptosis. Our results suggest that transduced c-kit into selected progenitor cells can enhance proliferation and decrease apoptosis and that endogenous SLF may mediate this effect.
Collapse
|
27
|
Gentry T, Smith C. Retroviral vector-mediated gene transfer into umbilical cord blood CD34brCD38-CD33- cells. Exp Hematol 1999; 27:1244-54. [PMID: 10428501 DOI: 10.1016/s0301-472x(99)00065-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we sought to optimize gene transfer into primitive human umbilical cord blood (UCB) cells. Initially, we found that fresh UCB isolated with the CD34brCD38 CD33 phenotype were highly enriched for hematopoietic progenitors detected in extended long-term cultures (8-week LTCs). In addition, following ex vivo gene transfer, this population possessed virtually all the 8-week LTC activity of the cultured cells. A multiparameter FACS assay was developed to efficiently screen the effects of alternative retroviral vector gene transfer procedures on the transduction efficiency and maintenance of CD34brCD38 CD33 cells. Proliferation of the CD34brCD38 CD33 cells was found to be a prerequisite for efficient transduction. However, in all conditions tested, proliferation of the CD34brCD38 CD33 cells was associated with a progressive loss of primitive cell properties including a reduction in CD34 expression, an increase in CD38/CD33 expression, and a decline in the ability to sustain 8-week LTCs. These observations indicate that it will be necessary to define conditions that more effectively support the self-renewal capacity of CD34brCD38 CD33 cells to optimize retroviral vector gene transfer in these cells. Evaluating these conditions and reagents will be facilitated by the multiparameter FACS assay described in this report.
Collapse
Affiliation(s)
- T Gentry
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
28
|
Sehgal A, Weeratunge N, Casimir C. Retroviral transduction of quiescent haematopoietic cells using a packaging cell line expressing the membrane-bound form of stem cell factor. Gene Ther 1999; 6:1084-91. [PMID: 10455411 DOI: 10.1038/sj.gt.3300932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene therapy vectors based on murine retroviruses are unable to transduce non-dividing cells. This has proven a particular problem in the haematopoietic system where the target cells of choice, the pluripotent stem cells are quiescent. In an attempt to circumvent this difficulty we have constructed a retroviral producer line that expresses the membrane bound form of human recombinant stem cell factor (SCF) on its cell surface. This should enable the retroviral producers to deliver a growth signal to the target cells simultaneous with their exposure to retrovirus. We tested the ability of these modified producers to transduce a growth factor-starved, SCF-dependent cell line (TF-1) and demon- strated that these cells, though quiescent, can still be successfully transduced. This approach was extended to targeting of umbilical cord blood CD34+ cells, a predominantly quiescent population that normally require the addition of cytokines for efficient transduction. Using the SCF-expressing producer line in the absence of exogenously added cytokines, we observed a marked stimulation in transduction efficiency over that achieved using the parent producer line alone. Colonies derived from these cells arising in semi-solid media were also shown to be positive for expression of a retrovirally encoded reporter gene.
Collapse
Affiliation(s)
- A Sehgal
- Department of Haematology, Imperial College School of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | | | | |
Collapse
|
29
|
Orlic D, Girard LJ, Anderson SM, Barrette S, Broxmeyer HE, Bodine DM. Amphotropic retrovirus transduction of hematopoietic stem cells. Ann N Y Acad Sci 1999; 872:115-23; discussion 123-4. [PMID: 10372116 DOI: 10.1111/j.1749-6632.1999.tb08458.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mice treated with cytokines for 5 days have large numbers of hematopoietic stem cells (HSCs) in their peripheral blood and bone marrow at 1 and 14 days after the last injection. We fractionated the HSCs from the bone marrow of these mice using elutriation at flow rates of 25, 30 and 35 ml/min. The subpopulations of HSCs from cytokine-treated mice show a 3- to 8-fold higher level of mRNA encoding the amphotropic retrovirus receptor (amphoR) compared with the corresponding HSC subpopulation from untreated mouse bone marrow. In an earlier study with mouse HSCs we showed a direct correlation between high levels of amphoR mRNA and efficient retrovirus transduction. We have now utilized our gene transfer protocol to assay amphotropic retrovirus transduction efficiency using HSCs from the bone marrow of mice treated with granulocyte-colony stimulating factor/stem cell factor (G-CSF/SCF). To extend these findings to a more clinically relevant protocol we analyzed the amphoR mRNA levels in HSCs from human cord blood and adult bone marrow. The amphoR mRNA level in HSCs from human bone marrow and fresh cord blood was detectable at an extremely low level compared with the HSC population in cryopreserved cord blood samples. The 12- to 22-fold increase in amphoR mRNA in HSCs from cryopreserved cord blood renders these HSCs likely candidates for high efficiency, gene transfer.
Collapse
Affiliation(s)
- D Orlic
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
30
|
Douglas J, Kelly P, Evans JT, Garcia JV. Efficient transduction of human lymphocytes and CD34+ cells via human immunodeficiency virus-based gene transfer vectors. Hum Gene Ther 1999; 10:935-45. [PMID: 10223727 DOI: 10.1089/10430349950018337] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of gene transfer systems for the efficient transduction of human primary cells including lymphocytes and CD34+ cells is a significant step in the advancement of gene therapy and cell marking protocols. Efficient gene transfer systems also represent useful tools for basic research. Here we show that human primary lymphocytes and CD34+ cells can be efficiently transduced using a VSV-G pseudotyped HIV-1-based gene transfer system. The enhanced green fluorescent protein (EGFP) was chosen as the marker transgene, because it can be easily visualized and quantitated using fluorescence microscopy and flow cytometry, thus eliminating the need for selection or PCR to score transduction. Vectors produced with this system did not generate replication-competent retroviruses (RCRs) and efficiently transduced human cell lines (40-90%), PBMCs (60%), mobilized CD34+ cells (39%), and CD34+ cells from umbilical cord blood (60%) as measured by flow cytometry. Cells treated with AZT prior to infection did not express EGFP, ruling out passive protein or plasmid DNA transfer. This was further confirmed in methylcellulose cultures, where expression in myeloid and erythroid colonies was maintained for at least 3 weeks. In addition, this HIV-based vector was able to efficiently transduce freshly isolated, not-prestimulated CD34+ cells (70% EGFP positive) in serum-free medium. Under these same conditions, a Moloney murine leukemia virus-based vector failed to transduce not-prestimulated CD34+ cells. These characteristics make this gene transfer system an excellent choice for both basic science and possible gene therapy applications.
Collapse
Affiliation(s)
- J Douglas
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
31
|
Gene Marking and the Biology of Hematopoietic Cell Transfer in Human Clinical Trials. BLOOD CELL BIOCHEMISTRY 1999. [DOI: 10.1007/978-1-4615-4889-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Licht T, Gottesman MM, Pastan I. Retroviral transfer of multidrug transporter to murine hematopoietic stem cells. Methods Enzymol 1998; 292:546-57. [PMID: 9711582 DOI: 10.1016/s0076-6879(98)92043-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- T Licht
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
33
|
Genetic Approaches To Adoptive Cellular Immunotheraphy. Surg Oncol Clin N Am 1998. [DOI: 10.1016/s1055-3207(18)30257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Marandin A, Dubart A, Pflumio F, Cosset FL, Cordette V, Chapel-Fernandes S, Coulombel L, Vainchenker W, Louache F. Retrovirus-mediated gene transfer into human CD34+38low primitive cells capable of reconstituting long-term cultures in vitro and nonobese diabetic-severe combined immunodeficiency mice in vivo. Hum Gene Ther 1998; 9:1497-511. [PMID: 9681421 DOI: 10.1089/hum.1998.9.10-1497] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Factors that may improve retroviral transduction of primitive human hematopoietic cells were studied using MFG-based vectors containing a LacZ gene and produced either by a murine (psi-Crip) or a human (Tasaf) cell line. Cord blood (CB) or bone marrow (BM) CD34+ cells were stimulated and transduced in the presence of three cytokines (interleukin 3 [IL-3], IL-6, and stem cell factor [SCF; c-Kit Ligand]). In the supernatant infection protocol, hematopoietic progenitor cells as measured by X-Gal staining of colony-forming unit cells (CFU-Cs) were transduced more effectively with Tasaf (20%) than with psi-Crip (8%). In contrast, there was no difference between these two cell lines in a coculture protocol. However, gene transfer into more primitive CD34+CD38- subsets and in LTC-IC-derived colonies was low. The use of a large number of cytokines including FLT3-L and PEG-rhMGDF increased the transduction efficiency into CD34+CD38(-)-derived CFU-Cs (35% by PCR) or LTC-ICs (10%). A virus pseudotyped with gibbon ape leukemia virus (GALV) envelope further improved gene transfer to 60 and 48% for LacZ+ CFU-C- and LTC-IC-derived colonies, respectively. These conditions of transduction allowed multilineage engraftment of primitive cord blood cells in NOD-SCID mice. Moreover, 10% (at least) of the human hematopoietic cells recovered from the marrow of these immunodeficient animals were transduced. These data suggest that the efficiency of transduction of human hematopoietic primitive cells can be significantly improved by judicious combinations of recombinant cytokines and high retroviral titers.
Collapse
Affiliation(s)
- A Marandin
- INSERM U 362, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bodine DM, Dunbar CE, Girard LJ, Seidel NE, Cline AP, Donahue RE, Orlic D. Improved amphotropic retrovirus-mediated gene transfer into hematopoietic stem cells. Ann N Y Acad Sci 1998; 850:139-50. [PMID: 9668536 DOI: 10.1111/j.1749-6632.1998.tb10471.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The efficiency of amphotropic retrovirus-mediated gene transfer into human Hematopoietic Stem Cells (HSC) is less than 1%. This has impeded gene therapy for hematopoietic diseases. In this study we demonstrate that populations of mouse and human HSC contain low to undetectable levels of the amphotropic virus receptor mRNA (ampho R mRNA), and are resistant to transduction with amphotropic retroviral vectors. In a subpopulation of mouse HSC expressing 7-fold higher levels of ampho R mRNA, transduction with amphotropic retrovirus vectors was 30-fold higher. We conclude that retrovirus transduction of HSC correlates with ampho R mRNA levels. Our results predict that alternative sources of HSC or retroviruses will be required for human gene therapy of hematopoietic diseases. One alternative source of stem cells is from individuals treated with cytokines. We have previously shown that mice treated with G-CSF and SCF have an immediate increase in peripheral blood HSC immediately after treatment, followed by a 10-fold increase in bone marrow HSC 14 days after treatment. In this report we show that when rhesus monkey bone marrow cells collected 14 days after G-CSF and SCF treatment were transduced with amphotropic retroviruses, gene transfer levels were approximately 10%, which was easily detected by Southern blot analysis. We conclude that the increased gene transfer may be the result of increased expression of the amphotropic retrovirus receptor, increased numbers of cycling HSC or both.
Collapse
Affiliation(s)
- D M Bodine
- Hematopoiesis Section, National Center for Human Genome Research, NIH, Bethesda, Maryland 20892-4442, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Mayani H, Lansdorp PM. Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells. Stem Cells 1998; 16:153-65. [PMID: 9617891 DOI: 10.1002/stem.160153] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reported in 1989, studies by Broxmeyer, Gluckman, and colleagues demonstrated that umbilical cord blood (UCB) is a rich source of hematopoietic stem/progenitor cells (HSPC) and that UCB could be used in clinical settings for hematopoietic cell transplantation. Since then, a great interest has been generated on the biological characterization of these cells. Over the last nine years, several groups have focused on the study of UCB HSPC, addressing different aspects, such as the frequency of these cells in UCB, the identification of different HSPC subsets based on their immunophenotype, their ability to respond to hematopoietic cytokines, the factors that control their proliferation and expansion potentials, and their capacity to reconstitute hematopoiesis in animal models. Most of these studies have shown that significant functional differences exist between HSPC from UCB and adult bone marrow (i.e., the former possess higher proliferation and expansion potential than the latter). It is also noteworthy that genetic manipulation of UCB HSPC has been achieved by several groups and that genetically modified UCB cells have already been used in the clinic. In spite of the significant advances in the characterization of these cells, we are still in the process of trying to fully understand their biology, both at the cellular and the molecular levels. In the present article, we describe and discuss what is currently known about the biology of UCB HSPC.
Collapse
Affiliation(s)
- H Mayani
- Oncological Research Unit, Oncology Hospital, National Medical Center, Mexico City, Mexico
| | | |
Collapse
|
37
|
Abstract
Cellular and cytokine adjuvants, often immune effector cells and soluble factors, respectively, are supplemental and/or follow-up treatments of human origin for cancer patients who have unsatisfactory clinical responses to conventional chemotherapy, radiotherapy, and surgery. Since many human studies with these reagents are in their infancy, extensive data collection is only now being performed to determine which strategy provides the greatest therapeutic benefit. Research published in the literature since the genesis of this approach to cancer treatment is summarized in this report. Methodologies attempting to generate anticancer responses by provoking or enhancing the patient's own immune system are new compared with the other standard types of cancer treatment. Although a few encouraging human studies can be discussed, many of the most promising techniques are only now being transferred from the laboratory to the clinic. The administration of immune effector cells in combination with immunomodulators, such as interferons or interleukins, often enhances clinical outcome. The literature cited in this report indicate that immune-cell- and cytokine-based therapies hold promise in our attempts to improve the quality and duration of life in those with cancer. With each report reaching the literature, more effective clinical trials are being designed and implemented.
Collapse
Affiliation(s)
- M L Salgaller
- Pacific Northwest Cancer Foundation and Immunotherapeutics Division, Northwest Biotherapeutics, L.L.C., Seattle, Washington 98125, USA.
| | | |
Collapse
|
38
|
Ge Y, Li ZH, Marshall MS, Broxmeyer HE, Lu L. Involvement of H-ras in erythroid differentiation of TF1 and human umbilical cord blood CD34 cells. Blood Cells Mol Dis 1998; 24:124-36; discussion 137. [PMID: 9628849 DOI: 10.1006/bcmd.1998.0179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the role of the ras gene in erythroid differentiation, a human erythroleukemic cell line, TF1, was transduced with a selectable retroviral vector carrying a mammalian wild type H-ras gene or a cytoplasmic dominant negative RAS1 gene. Transduction of TF1 cells with the wild type H-ras gene resulted in changes of cell types and up-regulation of erythroid-specific gene expression similar to that seen in differentiating erythroid cells. The number of red blood cell containing colonies derived from TF1 cells transduced with wild type H-ras cDNA was significantly increased and the cells in the colonies were more hemoglobinized as estimated by a deeper red color compared to those colony cells from mock or dominant negative RAS1 gene transduced TF1 cells, suggesting increased erythroid differentiation of TF1 cells after transduction of wild type H-ras in vitro. The mRNA levels of beta- and gamma-, but not alpha-, globin genes were significantly higher in H-ras transduced TF1 cells than those in TF1 cells transduced with mock or dominant negative RAS1 gene. Moreover, a 4kb pre-mRNA of the Erythropoietin receptor (EpoR) was highly expressed only in H-ras transduced TF1 cells. Additionally, human umbilical cord blood (CB) CD34 cells which are highly enriched for hematopoietic stem/progenitor cells were transduced with the same retroviral vectors to evaluate in normal primary cells the activities of H-ras in erythroid differentiation. Increased numbers of erythroid cell containing colonies (BFU-E and CFU-GEMM) were observed in CD34 cells transduced with the H-ras cDNA, compared to that from mock transduced cells. These data suggest a possible role for ras in erythroid differentiation.
Collapse
Affiliation(s)
- Y Ge
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | |
Collapse
|
39
|
Identification of Human and Mouse Hematopoietic Stem Cell Populations Expressing High Levels of mRNA Encoding Retrovirus Receptors. Blood 1998. [DOI: 10.1182/blood.v91.9.3247.3247_3247_3254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One obstacle to retrovirus-mediated gene therapy for human hematopoietic disorders is the low efficiency of gene transfer into pluripotent hematopoietic stem cells (HSC). We have previously shown a direct correlation between retrovirus receptor mRNA levels in mouse HSC and the efficiency with which they are transduced. In the present study, we assayed retrovirus receptor mRNA levels in a variety of mouse and human HSC populations to identify HSC which may be more competent for retrovirus transduction. The highest levels of amphotropic retrovirus receptor (amphoR) mRNA were found in cryopreserved human cord blood HSC. The level of amphoR mRNA in Lin−CD34+ CD38− cells isolated from frozen cord blood was 12-fold higher than the level in fresh cord blood Lin− CD34+ CD38− cells. In mice, the level of amphoR mRNA in HSC from the bone marrow (BM) of mice treated with stem cell factor and granulocyte-colony stimulating factor was 2.8- to 7.8-fold higher than in HSC from the BM of untreated mice. These findings suggest that HSC from frozen cord blood and cytokine-mobilized BM may be superior targets for amphotropic retrovirus transduction compared with HSC from untreated adult BM.
Collapse
|
40
|
Abstract
Recent studies have shown efficient gene transfer to primitive progenitors in human cord blood (CB) when the cells are incubated in retrovirus-containing supernatants on fibronectin-coated dishes. We have now used this approach to achieve efficient gene transfer to human CB cells with the capacity to regenerate lymphoid and myeloid progeny in nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. CD34+ cell-enriched populations were first cultured for 3 days in serum-free medium containing interleukin-3 (IL-3), IL-6, granulocyte colony-stimulating factor, Flt3-ligand, and Steel factor followed by two 24-hour incubations with a MSCV-NEO virus-containing medium obtained under either serum-free or serum-replete conditions. The presence of serum during the latter 2 days made no consistent difference to the total number of cells, colony-forming cells (CFC), or long-term culture-initiating cells (LTC-IC) recovered at the end of the 5-day culture period, and the cells infected under either condition regenerated similar numbers of human CD34+ (myeloid) CFC and human CD19+ (B lymphoid) cells for up to 20 weeks in NOD/SCID recipients. However, the presence of serum increased the viral titer in the producer cell-conditioned medium and this was correlated with a twofold to threefold higher efficiency of gene transfer to all progenitor types. With the higher titer viral supernatant, 17% ± 3% and 17% ± 8%, G418-resistant in vivo repopulating cells and LTC-IC were obtained. As expected, the proportion of NEO + repopulating cells determined by polymerase chain reaction analysis of in vivo generated CFC was even higher (32% ± 10%). There was no correlation between the frequency of gene transfer to LTC-IC and colony-forming unit–granulocyte-macrophage (CFU-GM), or to NOD/SCID repopulating cells and CFU-GM (r2 = 0.16 and 0.17, respectively), whereas values for LTC-IC and NOD/SCID repopulating cells were highly and significantly correlated (r2 = 0.85). These findings provide further evidence of a close relationship between human LTC-IC and NOD/SCID repopulating cells (assessed using a ≥ 6-week CFC output endpoint) and indicate the predictive value of gene transfer measurements to such LTC-IC for the design of clinical gene therapy protocols.
Collapse
|
41
|
Identification of Human and Mouse Hematopoietic Stem Cell Populations Expressing High Levels of mRNA Encoding Retrovirus Receptors. Blood 1998. [DOI: 10.1182/blood.v91.9.3247] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractOne obstacle to retrovirus-mediated gene therapy for human hematopoietic disorders is the low efficiency of gene transfer into pluripotent hematopoietic stem cells (HSC). We have previously shown a direct correlation between retrovirus receptor mRNA levels in mouse HSC and the efficiency with which they are transduced. In the present study, we assayed retrovirus receptor mRNA levels in a variety of mouse and human HSC populations to identify HSC which may be more competent for retrovirus transduction. The highest levels of amphotropic retrovirus receptor (amphoR) mRNA were found in cryopreserved human cord blood HSC. The level of amphoR mRNA in Lin−CD34+ CD38− cells isolated from frozen cord blood was 12-fold higher than the level in fresh cord blood Lin− CD34+ CD38− cells. In mice, the level of amphoR mRNA in HSC from the bone marrow (BM) of mice treated with stem cell factor and granulocyte-colony stimulating factor was 2.8- to 7.8-fold higher than in HSC from the BM of untreated mice. These findings suggest that HSC from frozen cord blood and cytokine-mobilized BM may be superior targets for amphotropic retrovirus transduction compared with HSC from untreated adult BM.
Collapse
|
42
|
Efficient Retroviral-Mediated Gene Transfer to Human Cord Blood Stem Cells With In Vivo Repopulating Potential. Blood 1998. [DOI: 10.1182/blood.v91.9.3487] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Recent studies have shown efficient gene transfer to primitive progenitors in human cord blood (CB) when the cells are incubated in retrovirus-containing supernatants on fibronectin-coated dishes. We have now used this approach to achieve efficient gene transfer to human CB cells with the capacity to regenerate lymphoid and myeloid progeny in nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. CD34+ cell-enriched populations were first cultured for 3 days in serum-free medium containing interleukin-3 (IL-3), IL-6, granulocyte colony-stimulating factor, Flt3-ligand, and Steel factor followed by two 24-hour incubations with a MSCV-NEO virus-containing medium obtained under either serum-free or serum-replete conditions. The presence of serum during the latter 2 days made no consistent difference to the total number of cells, colony-forming cells (CFC), or long-term culture-initiating cells (LTC-IC) recovered at the end of the 5-day culture period, and the cells infected under either condition regenerated similar numbers of human CD34+ (myeloid) CFC and human CD19+ (B lymphoid) cells for up to 20 weeks in NOD/SCID recipients. However, the presence of serum increased the viral titer in the producer cell-conditioned medium and this was correlated with a twofold to threefold higher efficiency of gene transfer to all progenitor types. With the higher titer viral supernatant, 17% ± 3% and 17% ± 8%, G418-resistant in vivo repopulating cells and LTC-IC were obtained. As expected, the proportion of NEO + repopulating cells determined by polymerase chain reaction analysis of in vivo generated CFC was even higher (32% ± 10%). There was no correlation between the frequency of gene transfer to LTC-IC and colony-forming unit–granulocyte-macrophage (CFU-GM), or to NOD/SCID repopulating cells and CFU-GM (r2 = 0.16 and 0.17, respectively), whereas values for LTC-IC and NOD/SCID repopulating cells were highly and significantly correlated (r2 = 0.85). These findings provide further evidence of a close relationship between human LTC-IC and NOD/SCID repopulating cells (assessed using a ≥ 6-week CFC output endpoint) and indicate the predictive value of gene transfer measurements to such LTC-IC for the design of clinical gene therapy protocols.
Collapse
|
43
|
Cohen-Haguenauer O, Restrepo LM, Masset M, Bayer J, Dal Cortivo L, Marolleau JP, Benbunan M, Boiron M, Marty M. Efficient transduction of hemopoietic CD34+ progenitors of human origin using an original retroviral vector derived from Fr-MuLV-FB29: in vitro assessment. Hum Gene Ther 1998; 9:207-16. [PMID: 9472780 DOI: 10.1089/hum.1998.9.2-207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A novel retroviral vector has been designed based on a Friend-murine leukemia virus (Fr-MuLV) FB29 strain. The latter has been selected according to characteristics of pathogenicity in mice where it induces a disease of the haemopoietic system affecting all lineages. Higher infectivity has also been demonstrated as compared to other strains. In accordance with these findings, the amphotropic producer clone used in this study carrying along the neomycine resistance gene (FOCH-Neo), harbors viral titers over 10(7) cfu/ml. To investigate the potential of genetically engineering hematopoietic precursors, CD34+ progenitors were selected from cord blood, bone marrow, and peripheral blood mobilized stem cells (patients + solid tumors) and transduced with FOCH-Neo. High transduction rates were achieved using virus supernatant and minimal doses of hematopoietic growth factors during pretransduction and transduction steps. A polymerase chain reaction (PCR) assay investigating the presence of both neomycin-encoding and viral vector sequences tested positive in 45-90% of granulocyte-macrophage colony-forming units (CFU-GM) generating cells (bone marrow and peripheral blood derived cells) following transduction. An average of 35% colonies showed resistance to G418. Such levels of transduction proved reproducible using only supernatants harboring over 10(7) cfu/ml. In those experiments where long-term in vitro cultures could be maintained over 5 weeks (all cord blood and 5 among 23 PBSC), efficient transduction of long-term culture initiating cell (LTC-IC) hematopoietic progenitors was demonstrated on the basis of both resistance to G418 and virus integration. In the latter case, the PCR assay tested positive in as much as 35-60% of late unselected CFU-colonies. This novel retroviral vector harbors interesting features toward genetic modification of hematopoietic progenitors.
Collapse
Affiliation(s)
- O Cohen-Haguenauer
- Département d'Oncologie Médicale, Hôpital Saint-Louis, Institut d'Hématologie, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Movassagh M, Desmyter C, Baillou C, Chapel-Fernandes S, Guigon M, Klatzmann D, Lemoine FM. High-level gene transfer to cord blood progenitors using gibbon ape leukemia virus pseudotype retroviral vectors and an improved clinically applicable protocol. Hum Gene Ther 1998; 9:225-34. [PMID: 9472782 DOI: 10.1089/hum.1998.9.2-225] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The best methods for transducing hematopoietic progenitor cells usually involve either direct co-cultivation with virus-producing cells or human stromal supportive cells. However, these methods cannot be safely or easily applied to clinical use. Therefore, we aimed at improving retrovirus-mediated gene transfer into hematopoietic progenitors derived from cord blood CD34+ cells using viral supernatant to levels achieved at least with direct co-cultivation and under conditions that are suitable for clinical applications. In a first set of experiments, CD34+ cells were infected with supernatant containing amphotropic retroviral particles carrying the nls-lacZ reporter gene and the effects of centrifugation, cell adhesion to fibronectin, and Polybrene on the transduction of both clonogenic progenitors (CFC) and long-term culture initiating cells (LTC-IC) were studied. Transduction efficiency was evaluated on the percentage and total number of progenitors expressing the beta-galactosidase activity. Results show that a 48-hr infection of CD34+ cells with viral supernatant combining centrifugation at 1000 x g for 3 hr followed by adhesion to fibronectin allows transduction levels for both CFC and LTC-IC to be reached that are as good as using direct co-cultivation. In a second set of experiments, CD34+ cells were infected using this optimized protocol with pseudotyped retroviral particles carrying the gibbon ape leukemia virus (GALV) envelope protein. Under these conditions, between 50 and 100% of CFC and LTC-IC were transduced. Thus, we have developed a protocol capable of highly transducing cord blood progenitors under conditions suitable for a therapeutical use.
Collapse
Affiliation(s)
- M Movassagh
- Biologie et Thérapie des Pathologies Immunitaires, ERS CNRS 107 C.E.R.V.I., CHU Pitié Salpétrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Flasshove M, Banerjee D, Leonard JP, Mineishi S, Li MX, Bertino JR, Moore MA. Retroviral transduction of human CD34+ umbilical cord blood progenitor cells with a mutated dihydrofolate reductase cDNA. Hum Gene Ther 1998; 9:63-71. [PMID: 9458243 DOI: 10.1089/hum.1998.9.1-63] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Umbilical cord blood cells (UCB) have become a major target population for experimental and clinical studies using transfer of genes involved in inborn enzymatic diseases. Cord blood contains hematopoietic progenitor cells at a high frequency, and expanding these cells ex vivo generates sufficient numbers of hematopoietic precursors for transplantation into adults, e.g., as supportive treatment. As clinical reports about retroviral transduction into UCB cells have not been as encouraging as the first preclinical data, we have established a retroviral transduction system that allows expansion and selection of hematopoietic progenitor cells from UCB. CD34-enriched UCB cells were transduced with a retroviral vector encoding a mutated dihydrofolate reductase cDNA that confers MTX resistance. We observed increased resistance to MTX in transduced granulocyte macrophage-colony forming units (CFU-GM) after co-culture of CD34+ UCB cells with the virus-producing cell line, or after incubation with virus-containing supernatant. The supernatant-based transduction protocol included a prestimulation with recombinant interleukin-1 (rhIL-1), rhkit-ligand, and rhIL-3 to increase the percentage of cells in S phase to greater than 50%. Using this protocol we measured a 72-fold expansion of CFU-GM and a 2.5-fold selective advantage of transduced versus nontransduced progenitor cells after exposure to low-dose methotrexate in liquid culture. Polymerase chain reaction analysis revealed integration of proviral DNA into the majority of transduced colonies before and after ex vivo expansion. The retroviral vector and transduction protocol reported here provides an experimental system for selection and expansion of retrovirally transduced progenitor/stem cells from UCB that may help improve the efficiency of current clinical gene therapy strategies.
Collapse
Affiliation(s)
- M Flasshove
- James Ewing Laboratory of Developmental Hematopoiesis of the Cell Biology and Genetics Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Asch J, Weinberg RS, Mueller L, Galperin Y, Kiang L, Jolly D, Isola LM. Retroviral gene transfer into cord blood stem/progenitor cells using purified vector stocks. Am J Hematol 1998; 57:16-23. [PMID: 9423811 DOI: 10.1002/(sici)1096-8652(199801)57:1<16::aid-ajh3>3.0.co;2-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cord blood (CB) progenitor/stem cells (P/SC) are ideal targets for early gene therapy in individuals prenatally diagnosed with genetic disorders. Most retroviral transduction protocols were developed using adult peripheral blood stem cells (PBSC) and bone marrow (BM). Less is known about retroviral transduction of CB P/SC. We examined how timing, multiplicity of infection (MOI), and polycations in the transduction media affect transduction efficiency. Rates of transduction were determined in recently isolated CD34+ enriched CB cells and in colonies derived after various times in liquid cultures (LC). CB mononuclear cells (MNC) were separated by ficoll-hypaque centrifugation and enriched for CD34+ cells. Purity was assessed by flow cytometry. Transduction were performed with clinical-grade retroviral stocks at MOIs of 1-20. Transduction was performed with fetal bovine serum (FBS) or autologous plasma, IL-3, GM-CSF, IL-6, and SCF. The retroviral vector contained LacZ and neomycin resistance (neo) reporter genes. Transduction was determined by X-gal stain and by PCR amplification of the reporter genes. No drug selection was used. Twenty-five experiments were done. CB volumes ranged from 35-150 ml. MNC and CD34+ cell counts ranges were: 0.14-840 x 10(6) and 0.1-4.2 x 10(6), respectively. Transduction efficiency in liquid cultures ranged from 4-63%. Higher rates were seen using MOI > or = 10, 2 microg/ml polybrene, and 10% autologous CB plasma. In colonies, transduction rates were 63 to 72% by PCR and 32% by X-gal staining. In LTC-IC derived colonies, transduction was 7% by PCR. Short incubations of CD34+ CB cells with purified retroviral stocks, polybrene, and autologous sera result in high transduction rates of committed progenitors and moderately low efficiencies of transduction of LTC-IC in the absence of drug selection.
Collapse
Affiliation(s)
- J Asch
- Department of Pediatrics, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Neff T, Shotkoski F, Stamatoyannopoulos G. Stem cell gene therapy, position effects and chromatin insulators. Stem Cells 1997; 15 Suppl 1:265-71. [PMID: 9368350 DOI: 10.1002/stem.5530150834] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Low efficiency of gene transfer is the main obstacle for a clinically effective gene therapy at the level of the pluripotent hematopoietic stem cell. Another important aspect of stem cell gene therapy, the actual expression of the transduced genes, has only been investigated adequately in very few studies, mainly for globin genes. Transcriptional silencing and position effects due to negative effects of surrounding chromatin on the expression of randomly integrated vector sequences may seriously jeopardize the success of current gene therapy strategies, even if transduction efficiency can be significantly improved. We propose the incorporation of chromatin insulators in the design of gene therapy vectors to overcome the problem of position effects. Chromatin insulators are protein-binding DNA elements that lack intrinsic promoter/enhancer activity but shelter genes from transcriptional influence of surrounding chromatin. The best characterized insulators are from Drosophila. We hypothesize that the important cellular function of chromatin organization is evolutionarily conserved and that human homologs to Drosophila insulator binding proteins such as the suppressor of Hairy-wing exist and can be cloned. Using these putative proteins, it should be possible to identify corresponding minimal binding sites with insulator activity. The design and incorporation of effective chromatin insulator sequences in the next generation of gene therapy vectors should lead to improved and more predictable expression of therapeutic transgenes and constitute an important step toward clinically effective gene therapy.
Collapse
Affiliation(s)
- T Neff
- Department of Medicine, University of Washington, Seattle, USA
| | | | | |
Collapse
|
48
|
Qin L, Ding Y, Pahud DR, Chang E, Imperiale MJ, Bromberg JS. Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther 1997; 8:2019-29. [PMID: 9414251 DOI: 10.1089/hum.1997.8.17-2019] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the major limitations to current gene therapy is the low-level and transient vector gene expression due to poorly defined mechanisms, possibly including promoter attenuation or extinction. Because the application of gene therapy vectors in vivo induces cytokine production through specific or nonspecific immune responses, we hypothesized that cytokine-mediated signals may alter vector gene expression. Our data indicate that the cytokines interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) inhibit transgene expression from certain widely used viral promoters/enhancers (cytomegalovirus, Rous sarcoma virus, simian virus 40, Moloney murine leukemia virus long terminal repeat) delivered by adenoviral, retroviral or plasmid vectors in vitro. A constitutive cellular promoter (beta-actin) is less sensitive to these cytokine effects. Inhibition is at the mRNA level and cytokines do not cause vector DNA degradation, inhibit total cellular protein synthesis, or kill infected/transfected cells. Administration of neutralizing anti-IFN-gamma monoclonal antibody results in enhanced transgene expression in vivo. Thus, standard gene therapy vectors in current use may be improved by altering cytokine-responsive regulatory elements. Determination of the mechanisms involved in cytokine-regulated vector gene expression may improve the understanding of the cellular disposition of vectors for gene transfer and gene therapy.
Collapse
Affiliation(s)
- L Qin
- Department of Surgery, University of Michigan, Ann Arbor 48109-0331, USA
| | | | | | | | | | | |
Collapse
|
49
|
Kim HJ, Okamoto Y, Ito M, Takaue Y, Kawano Y, Watanabe T, Yamaue T, Tohda Y, Ogose T, Shimada T, Shimosaka A, Kuroda Y. Evaluation of a cytokine combination including thrombopoietin for improved transduction of a retroviral gene into G-CSF-mobilized CD34+ human blood cells. Stem Cells 1997; 15:347-52. [PMID: 9323796 DOI: 10.1002/stem.150347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We examined cell culture conditions with various combinations of cytokines including thrombopoietin (TPO) to obtain the most efficient transduction of recombinant retrovirus vectors into G-CSF-mobilized blood CD34+ cells which were obtained from children and purified with an Isolex 50 system (Baxter; Deerfield, IL). Three different 4-day culture conditions for the stimulation of CD34+ cells were compared in terms of a cell-cycle analysis by fluorometry and gene transduction efficiency as determined by resistance to G418 and NeoR polymerase chain reaction (PCR) for individual colony-forming unit-granulocyte/macrophage (CFU-GM) grown in a methylcellulose culture system. The cytokines tested were: A) interleukin (IL)-6 + stem cell factor (SCF); B) IL-3 + IL-6 + SCF, and C) IL-3 + IL-6 + SCF + TPO. Without a cell culture, the percentage of CD34+ cells in the cell cycle (the percentage of cells in phases S and G2/M) was 4.6%. After a four-day culture (n = 5), this value increased with the addition of IL-3 (22%) or IL-3 + TPO (27%, p < 0.05) as compared to that with the baseline cocktail of IL-6 + SCF (15%). The cell number uniformly increased approximately 10-fold in each culture condition. The average efficiency of gene transfer into incubated CD34+ cells with the corresponding combinations of cytokines was, respectively, 57%, 47%, and 30% for G418-screened CFU-GM and 72%, 68%, and 51% for polymerase chain reaction-positive CFU-GM. A statistically significant difference (p < 0.01) was found for G418/CFU-GM with IL-3 + IL-6 + SCF (57%) versus IL-3 + IL-6 + SCF + TPO (30%). Hence, it is likely that the increased cell proliferation produced by the addition of TPO was not necessarily translated into an increased rate of retroviral-mediated gene transduction, possibly because TPO preferentially induced the differentiation of stem cells into mature progenitors in these culture systems.
Collapse
Affiliation(s)
- H J Kim
- Department of Pediatrics, University of Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Toren A, Einat M, Fabian I, Nagler A. Human umbilical cord blood myeloid progenitor cells are relatively chemoresistant: a potential model for autologous transplantations in HIV-infected newborns. Am J Hematol 1997; 56:161-7. [PMID: 9371528 DOI: 10.1002/(sici)1096-8652(199711)56:3<161::aid-ajh5>3.0.co;2-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vertical transmission from mother to child occurs in 15-39% of women infected with the human immunodeficiency virus (HIV). Stem cell transplantation has recently been suggested as a potential therapy for patients with HIV infection. We have examined the possible advantages of human cord blood (HUCB) stem cells over bone marrow (BM) stem cells in the treatment of HIV-infected newborns. HUCB myeloid progenitors were found to be statistically more resistant to interferon-alpha (IFN-alpha), cytarabine (ARA-C), and eilatin than BM myeloid progenitor cells grown with IL-3 (P < 0.05). HUCB treated with IFN-alpha, ARA-C, and eilatin demonstrated a significantly higher capacity for self-renewal manifested by delta assay following 7 days in liquid culture. We, therefore, suggest that HUCB purged by anti-HIV drugs may be a source for autologous transplantation in HIV-infected newborns.
Collapse
Affiliation(s)
- A Toren
- Department of Bone Marrow Transplantation, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | |
Collapse
|