1
|
Gabriel AAG, Racle J, Falquet M, Jandus C, Gfeller D. Robust estimation of cancer and immune cell-type proportions from bulk tumor ATAC-Seq data. eLife 2024; 13:RP94833. [PMID: 39383060 PMCID: PMC11464006 DOI: 10.7554/elife.94833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Assay for Transposase-Accessible Chromatin sequencing (ATAC-Seq) is a widely used technique to explore gene regulatory mechanisms. For most ATAC-Seq data from healthy and diseased tissues such as tumors, chromatin accessibility measurement represents a mixed signal from multiple cell types. In this work, we derive reliable chromatin accessibility marker peaks and reference profiles for most non-malignant cell types frequently observed in the microenvironment of human tumors. We then integrate these data into the EPIC deconvolution framework (Racle et al., 2017) to quantify cell-type heterogeneity in bulk ATAC-Seq data. Our EPIC-ATAC tool accurately predicts non-malignant and malignant cell fractions in tumor samples. When applied to a human breast cancer cohort, EPIC-ATAC accurately infers the immune contexture of the main breast cancer subtypes.
Collapse
Affiliation(s)
- Aurélie Anne-Gaëlle Gabriel
- Department of Oncology, Ludwig Institute for Cancer Research, University of LausanneLausanneSwitzerland
- Agora Cancer Research CenterLausanneSwitzerland
- Swiss Cancer Center Leman (SCCL)GenevaSwitzerland
- Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland
| | - Julien Racle
- Department of Oncology, Ludwig Institute for Cancer Research, University of LausanneLausanneSwitzerland
- Agora Cancer Research CenterLausanneSwitzerland
- Swiss Cancer Center Leman (SCCL)GenevaSwitzerland
- Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland
| | - Maryline Falquet
- Swiss Cancer Center Leman (SCCL)GenevaSwitzerland
- Ludwig Institute for Cancer Research, Lausanne BranchLausanneSwitzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of GenevaGenevaSwitzerland
- Geneva Center for Inflammation ResearchGenevaSwitzerland
| | - Camilla Jandus
- Swiss Cancer Center Leman (SCCL)GenevaSwitzerland
- Ludwig Institute for Cancer Research, Lausanne BranchLausanneSwitzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of GenevaGenevaSwitzerland
- Geneva Center for Inflammation ResearchGenevaSwitzerland
| | - David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research, University of LausanneLausanneSwitzerland
- Agora Cancer Research CenterLausanneSwitzerland
- Swiss Cancer Center Leman (SCCL)GenevaSwitzerland
- Swiss Institute of Bioinformatics (SIB)LausanneSwitzerland
| |
Collapse
|
2
|
Keri D, Walker M, Singh I, Nishikawa K, Garces F. Next generation of multispecific antibody engineering. Antib Ther 2024; 7:37-52. [PMID: 38235376 PMCID: PMC10791046 DOI: 10.1093/abt/tbad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Multispecific antibodies recognize two or more epitopes located on the same or distinct targets. This added capability through protein design allows these man-made molecules to address unmet medical needs that are no longer possible with single targeting such as with monoclonal antibodies or cytokines alone. However, the approach to the development of these multispecific molecules has been met with numerous road bumps, which suggests that a new workflow for multispecific molecules is required. The investigation of the molecular basis that mediates the successful assembly of the building blocks into non-native quaternary structures will lead to the writing of a playbook for multispecifics. This is a must do if we are to design workflows that we can control and in turn predict success. Here, we reflect on the current state-of-the-art of therapeutic biologics and look at the building blocks, in terms of proteins, and tools that can be used to build the foundations of such a next-generation workflow.
Collapse
Affiliation(s)
- Daniel Keri
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Matt Walker
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Isha Singh
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Kyle Nishikawa
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| | - Fernando Garces
- Department of Protein Therapeutics, Research, Gilead Research, 324 Lakeside Dr, Foster City, CA 94404, USA
| |
Collapse
|
3
|
Aydin E, Faehling S, Saleh M, Llaó Cid L, Seiffert M, Roessner PM. Phosphoinositide 3-Kinase Signaling in the Tumor Microenvironment: What Do We Need to Consider When Treating Chronic Lymphocytic Leukemia With PI3K Inhibitors? Front Immunol 2021; 11:595818. [PMID: 33552053 PMCID: PMC7857022 DOI: 10.3389/fimmu.2020.595818] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) and their downstream proteins constitute a signaling pathway that is involved in both normal cell growth and malignant transformation of cells. Under physiological conditions, PI3K signaling regulates various cellular functions such as apoptosis, survival, proliferation, and growth, depending on the extracellular signals. A deterioration of these extracellular signals caused by mutational damage in oncogenes or growth factor receptors may result in hyperactivation of this signaling cascade, which is recognized as a hallmark of cancer. Although higher activation of PI3K pathway is common in many types of cancer, it has been therapeutically targeted for the first time in chronic lymphocytic leukemia (CLL), demonstrating its significance in B-cell receptor (BCR) signaling and malignant B-cell expansion. The biological activity of the PI3K pathway is not only limited to cancer cells but is also crucial for many components of the tumor microenvironment, as PI3K signaling regulates cytokine responses, and ensures the development and function of immune cells. Therefore, the success or failure of the PI3K inhibition is strongly related to microenvironmental stimuli. In this review, we outline the impacts of PI3K inhibition on the tumor microenvironment with a specific focus on CLL. Acknowledging the effects of PI3K inhibitor-based therapies on the tumor microenvironment in CLL can serve as a rationale for improved drug development, explain treatment-associated adverse events, and suggest novel combinatory treatment strategies in CLL.
Collapse
Affiliation(s)
- Ebru Aydin
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Faehling
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Mariam Saleh
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Molecular Medicine, Ulm University, Ulm, Germany
| | - Laura Llaó Cid
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, University of Heidelberg, Heidelberg, Germany
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Romeo V, Gierke S, Edgar KA, Liu SD. Effects of PI3K Inhibition on Afucosylated Antibody-Driven FcγRIIIa Events and Phospho-S6 Activity in NK Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:137-147. [PMID: 31092639 DOI: 10.4049/jimmunol.1801418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/20/2019] [Indexed: 11/19/2022]
Abstract
PI3K is one of the most frequently mutated genes in cancers and has been the target of numerous anticancer therapies. With the additional development of therapeutics that mobilize the immune system, such as Abs with effector functions, bispecific Abs, and checkpoint inhibitors, many small molecule inhibitors that target PI3K are being combined with these immunomodulatory treatments. However, the PI3K pathway is also essential for lymphocyte function, and the presence of the PI3K inhibitor may render the immunomodulatory therapeutic ineffective in these combinatorial treatments. Therefore, therapeutics with enhanced activity, such as afucosylated Abs, which promote signaling and function, may be ideal in these types of treatments to offset the negative effect of PI3K inhibitors on immune cell function. Indeed, we show that afucosylated Abs can counterbalance these inhibitory effects on FcγRIIIa-driven signaling in human NK cells to produce signals similar to cells treated only with fucosylated Ab. Furthermore, NK cell activation, degranulation, chemokine/cytokine production, and Ab-dependent cellular cytotoxicity were similar between inhibitor-treated, afucosylated Ab-stimulated NK cells and cells activated only with its fucosylated counterpart. To our knowledge, these studies also identified a previously undefined role for phospho-S6 in human NK cells. In this study, a kinetic delay in PI3K-driven phosphorylation of S6 was observed to control transcription of the temporally regulated production of IFN-γ and TNF-α but not MIP-1α, MIP-1β, and RANTES. Together, these studies demonstrate the importance of the PI3K pathway for S6 phosphorylation in human NK cells and the need to combine PI3K inhibitors with therapeutic molecules that enhance immunomodulatory function for anticancer therapies.
Collapse
Affiliation(s)
- Valentina Romeo
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080
| | - Sarah Gierke
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080; and
| | - Kyle A Edgar
- Department of Translation Oncology, Genentech, Inc., South San Francisco, CA 94080
| | - Scot D Liu
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080; and
| |
Collapse
|
5
|
Ruiz-García R, Vargas-Hernández A, Chinn IK, Angelo LS, Cao TN, Coban-Akdemir Z, Jhangiani SN, Meng Q, Forbes LR, Muzny DM, Allende LM, Ehlayel MS, Gibbs RA, Lupski JR, Uzel G, Orange JS, Mace EM. Mutations in PI3K110δ cause impaired natural killer cell function partially rescued by rapamycin treatment. J Allergy Clin Immunol 2018; 142:605-617.e7. [PMID: 29330011 PMCID: PMC6109967 DOI: 10.1016/j.jaci.2017.11.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/20/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Heterozygous gain-of-function mutations in PI3K110δ lead to lymphadenopathy, lymphoid hyperplasia, EBV and cytomegalovirus viremia, and sinopulmonary infections. OBJECTIVE The known role of natural killer (NK) cell function in the control of EBV and cytomegalovirus prompted us to investigate the functional and phenotypic effects of PI3K110δ mutations on NK cell subsets and cytotoxic function. METHODS Mutations in patients were identified by using whole-exome or targeted sequencing. We performed NK cell phenotyping and functional analysis of patients' cells using flow cytometry, standard Cr51 cytotoxicity assays, and quantitative confocal microscopy. RESULTS PI3K110δ mutations led to an altered NK cell developmental phenotype and cytotoxic dysfunction. Impaired NK cell cytotoxicity was due to decreased conjugate formation with susceptible target cells and abrogated activation of cell machinery required for target cell killing. These defects were restored partially after initiation of treatment with rapamycin in 3 patients. CONCLUSION We describe novel NK cell functional deficiency caused by PI3K110δ mutation, which is a likely contributor to the severe viremia observed in these patients. Rapamycin treatment partially restores NK cell function, providing a further rationale for its use in patients with this disease.
Collapse
Affiliation(s)
- Raquel Ruiz-García
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Servicio de Immunología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alexander Vargas-Hernández
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Ivan K Chinn
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Laura S Angelo
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Tram N Cao
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Qingchang Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Lisa R Forbes
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Luis M Allende
- Servicio de Immunología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Mohammed S Ehlayel
- Department of Pediatrics, Section of Pediatric Allergy and Immunology, Hamad Medical Corporation, Doha, and Department of Pediatrics, Weill Cornell Medical College, Ar-Rayyan, Qatar
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jordan S Orange
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Emily M Mace
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
6
|
Pahl JHW, Koch J, Götz JJ, Arnold A, Reusch U, Gantke T, Rajkovic E, Treder M, Cerwenka A. CD16A Activation of NK Cells Promotes NK Cell Proliferation and Memory-Like Cytotoxicity against Cancer Cells. Cancer Immunol Res 2018. [PMID: 29514797 DOI: 10.1158/2326-6066.cir-17-0550] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD16A is a potent cytotoxicity receptor on human natural killer (NK) cells, which can be exploited by therapeutic bispecific antibodies. So far, the effects of CD16A-mediated activation on NK cell effector functions beyond classical antibody-dependent cytotoxicity have remained poorly elucidated. Here, we investigated NK cell responses after exposure to therapeutic antibodies such as the tetravalent bispecific antibody AFM13 (CD30/CD16A), designed for the treatment of Hodgkin lymphoma and other CD30+ lymphomas. Our results reveal that CD16A engagement enhanced subsequent IL2- and IL15-driven NK cell proliferation and expansion. This effect involved the upregulation of CD25 (IL2Rα) and CD132 (γc) on NK cells, resulting in increased sensitivity to low-dose IL2 or to IL15. CD16A engagement initially induced NK cell cytotoxicity. The lower NK cell reactivity observed 1 day after CD16A engagement could be recovered by reculture in IL2 or IL15. After reculture in IL2 or IL15, these CD16A-experienced NK cells exerted more vigorous IFNγ production upon restimulation with tumor cells or cytokines. Importantly, after reculture, CD16A-experienced NK cells also exerted increased cytotoxicity toward different tumor targets, mainly through the activating NK cell receptor NKG2D. Our findings uncover a role for CD16A engagement in priming NK cell responses to restimulation by cytokines and tumor cells, indicative of a memory-like functionality. Our study suggests that combination of AFM13 with IL2 or IL15 may boost NK cell antitumor activity in patients by expanding tumor-reactive NK cells and enhancing NK cell reactivity, even upon repeated tumor encounters. Cancer Immunol Res; 6(5); 517-27. ©2018 AACR.
Collapse
Affiliation(s)
- Jens H W Pahl
- Innate Immunity, German Cancer Research Center, Heidelberg, Germany.,Department for Immunobiochemistry, Medical Faculty Mannheim, Heidelberg University, Germany
| | | | - Jana-Julia Götz
- Innate Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Annette Arnold
- Innate Immunity, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | - Adelheid Cerwenka
- Innate Immunity, German Cancer Research Center, Heidelberg, Germany. .,Department for Immunobiochemistry, Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
7
|
Rouce RH, Shaim H, Sekine T, Weber G, Ballard B, Ku S, Barese C, Murali V, Wu MF, Liu H, Shpall EJ, Bollard CM, Rabin KR, Rezvani K. The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia 2016; 30:800-11. [PMID: 26621337 PMCID: PMC4823160 DOI: 10.1038/leu.2015.327] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/28/2015] [Accepted: 10/15/2015] [Indexed: 01/05/2023]
Abstract
Natural killer (NK) cells are key components of the innate immune system, providing potent antitumor immunity. Here, we show that the tumor growth factor-β (TGF-β)/SMAD signaling pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia (ALL). We characterized NK cells in 50 consecutive children with B-ALL at diagnosis, end induction and during maintenance therapy compared with age-matched controls. ALL-NK cells at diagnosis had an inhibitory phenotype associated with impaired function, most notably interferon-γ production and cytotoxicity. By maintenance therapy, these phenotypic and functional abnormalities partially normalized; however, cytotoxicity against autologous blasts remained impaired. We identified ALL-derived TGF-β1 to be an important mediator of leukemia-induced NK cell dysfunction. The TGF-β/SMAD signaling pathway was constitutively activated in ALL-NK cells at diagnosis and end induction when compared with healthy controls and patients during maintenance therapy. Culture of ALL blasts with healthy NK cells induced NK dysfunction and an inhibitory phenotype, mediated by activation of the TGF-β/SMAD signaling pathway, and abrogated by blocking TGF-β. These data indicate that by regulating the TGF-β/SMAD pathway, ALL blasts induce changes in NK cells to evade innate immune surveillance, thus highlighting the importance of developing novel therapies to target this inhibitory pathway and restore antileukemic cytotoxicity.
Collapse
Affiliation(s)
- Rayne H. Rouce
- Texas Children’s Cancer and Hematology Centers/Baylor College of Medicine, Houston
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston
| | - Hila Shaim
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston
| | - Takuya Sekine
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston
| | - Gerrit Weber
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston
| | - Brandon Ballard
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston
| | - Stephanie Ku
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston
| | - Cecilia Barese
- Program for Cell Enhancement and Technologies for Immunotherapy, and Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC
| | - Vineeth Murali
- Texas Children’s Cancer and Hematology Centers/Baylor College of Medicine, Houston
| | - Meng-Fen Wu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston
| | - Hao Liu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston
| | - Elizabeth J. Shpall
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston
| | - Catherine M. Bollard
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston
- Program for Cell Enhancement and Technologies for Immunotherapy, and Center for Cancer and Immunology Research, Children’s National Health System, Washington, DC
| | - Karen R. Rabin
- Texas Children’s Cancer and Hematology Centers/Baylor College of Medicine, Houston
| | - Katayoun Rezvani
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston
| |
Collapse
|
8
|
NK cell function triggered by multiple activating receptors is negatively regulated by glycogen synthase kinase-3β. Cell Signal 2015; 27:1731-41. [PMID: 26022178 DOI: 10.1016/j.cellsig.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
Abstract
Activation of NK cells is triggered by combined signals from multiple activating receptors that belong to different families. Several NK cell activating receptors have been identified, but their role in the regulation of effector functions is primarily understood in the context of their individual engagement. Therefore, little is known about the signaling pathways broadly implicated by the multiple NK cell activation cues. Here we provide evidence pointing to glycogen synthase kinase (GSK)-3β as a negative regulator of multiple NK cell activating signals. Using an activation model that combines NKG2D and 2B4 and tests different signaling molecules, we found that GSK-3 undergoes inhibitory phosphorylation at regulatory serine residues by the engagement of NKG2D and 2B4, either individually or in combination. The extent of such phosphorylation was closely correlated with the degree of NK cell activation. NK cell functions, such as cytokine production and cytotoxicity, were consistently enhanced by the knockdown of GSK-3β or its inhibition with different pharmacological inhibitors, whereas inhibition of the GSK-3α isoform had no effect. In addition, NK cell function was augmented by the overexpression of a catalytically inactive form of GSK-3β. Importantly, the regulation of NK cell function by GSK-3β was common to diverse activating receptors that signal through both ITAM and non-ITAM pathways. Thus, our results suggest that GSK-3β negatively regulates NK cell activation and that modulation of GSK-3β function could be used to enhance NK cell activation.
Collapse
|
9
|
Liu SD, Chalouni C, Young JC, Junttila TT, Sliwkowski MX, Lowe JB. Afucosylated antibodies increase activation of FcγRIIIa-dependent signaling components to intensify processes promoting ADCC. Cancer Immunol Res 2014; 3:173-83. [PMID: 25387893 DOI: 10.1158/2326-6066.cir-14-0125] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is a key mechanism by which therapeutic antibodies mediate their antitumor effects. The absence of fucose on the heavy chain of the antibody increases the affinity between the antibody and FcγRIIIa, which results in increased in vitro and in vivo ADCC compared with the fucosylated form. However, the cellular and molecular mechanisms responsible for increased ADCC are unknown. Through a series of biochemical and cellular studies, we find that human natural killer (NK) cells stimulated with afucosylated antibody exhibit enhanced activation of proximal FcγRIIIa signaling and downstream pathways, as well as enhanced cytoskeletal rearrangement and degranulation, relative to stimulation with fucosylated antibody. Furthermore, analysis of the interaction between human NK cells and targets using a high-throughput microscope-based antibody-dependent cytotoxicity assay shows that afucosylated antibodies increase the number of NK cells capable of killing multiple targets and the rate with which targets are killed. We conclude that the increase in affinity between afucosylated antibodies and FcγRIIIa enhances activation of signaling molecules, promoting cytoskeletal rearrangement and degranulation, which, in turn, potentiates the cytotoxic characteristics of NK cells to increase efficiency of ADCC.
Collapse
Affiliation(s)
- Scot D Liu
- Department of Pathology, Genentech, Inc., South San Francisco, California.
| | - Cecile Chalouni
- Department of Pathology, Genentech, Inc., South San Francisco, California
| | - Judy C Young
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California
| | - Teemu T Junttila
- Department of Cancer Immunotherapy and Hematology, Genentech, Inc., South San Francisco, California
| | - Mark X Sliwkowski
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, California
| | - John B Lowe
- Department of Pathology, Genentech, Inc., South San Francisco, California
| |
Collapse
|
10
|
Hazeldine J, Lord JM. Innate immunesenescence: underlying mechanisms and clinical relevance. Biogerontology 2014; 16:187-201. [PMID: 25009085 DOI: 10.1007/s10522-014-9514-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 06/25/2014] [Indexed: 12/27/2022]
Abstract
A well-established feature of physiological ageing is altered immune function, a phenomenon termed immunesenescence. Thought to be responsible in part for the increased incidence and severity of infection reported by older adults, as well as the age-related decline in vaccine efficacy and autoimmunity, immunesenescence affects both the innate and adaptive arms of the immune system. Whilst much is known regarding the impact of age on adaptive immunity, innate immunity has received far less attention from immune gerontologists. However, over the last decade it has become increasingly apparent that this non-specific arm of the immune response undergoes considerable functional and phenotypical alterations with age. Here, we provide a detailed overview of innate immunesenescence and its underlying molecular mechanisms, and highlight those studies whose results indicate that changes in innate immunity with age have a significant impact upon the health and well-being of older adults.
Collapse
Affiliation(s)
- Jon Hazeldine
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, UK,
| | | |
Collapse
|
11
|
Effects of novel isoform-selective phosphoinositide 3-kinase inhibitors on natural killer cell function. PLoS One 2014; 9:e99486. [PMID: 24915189 PMCID: PMC4051752 DOI: 10.1371/journal.pone.0099486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/15/2014] [Indexed: 01/23/2023] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are promising targets for therapeutic development in cancer. The class I PI3K isoform p110α has received considerable attention in oncology because the gene encoding p110α (PIK3CA) is frequently mutated in human cancer. However, little is known about the function of p110α in lymphocyte populations that modulate tumorigenesis. We used recently developed investigational inhibitors to compare the function of p110α and other isoforms in natural killer (NK) cells, a key cell type for immunosurveillance and tumor immunotherapy. Inhibitors of all class I isoforms (pan-PI3K) significantly impaired NK cell-mediated cytotoxicity and antibody-dependent cellular cytotoxicity against tumor cells, whereas p110α-selective inhibitors had no effect. In NK cells stimulated through NKG2D, p110α inhibition modestly reduced PI3K signaling output as measured by AKT phosphorylation. Production of IFN-γ and NK cell-derived chemokines was blocked by a pan-PI3K inhibitor and partially reduced by a p110δinhibitor, with lesser effects of p110α inhibitors. Oral administration of mice with MLN1117, a p110α inhibitor in oncology clinical trials, had negligible effects on NK subset maturation or terminal subset commitment. Collectively, these results support the targeting of PIK3CA mutant tumors with selective p110α inhibitors to preserve NK cell function.
Collapse
|
12
|
Stringaris K, Sekine T, Khoder A, Alsuliman A, Razzaghi B, Sargeant R, Pavlu J, Brisley G, de Lavallade H, Sarvaria A, Marin D, Mielke S, Apperley JF, Shpall EJ, Barrett AJ, Rezvani K. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica 2014; 99:836-47. [PMID: 24488563 DOI: 10.3324/haematol.2013.087536] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The majority of patients with acute myeloid leukemia will relapse, and older patients often fail to achieve remission with induction chemotherapy. We explored the possibility that leukemic suppression of innate immunity might contribute to treatment failure. Natural killer cell phenotype and function was measured in 32 consecutive acute myeloid leukemia patients at presentation, including 12 achieving complete remission. Compared to 15 healthy age-matched controls, natural killer cells from acute myeloid leukemia patients were abnormal at presentation, with downregulation of the activating receptor NKp46 (P=0.007) and upregulation of the inhibitory receptor NKG2A (P=0.04). Natural killer cells from acute myeloid leukemia patients had impaired effector function against autologous blasts and K562 targets, with significantly reduced CD107a degranulation, TNF-α and IFN-γ production. Failure to achieve remission was associated with NKG2A overexpression and reduced TNF-α production. These phenotypic and functional abnormalities were partially restored in the 12 patients achieving remission. In vitro co-incubation of acute myeloid leukemia blasts with natural killer cells from healthy donors induced significant impairment in natural killer cell TNF-α and IFN-γ production (P=0.02 and P=0.01, respectively) against K562 targets and a trend to reduced CD107a degranulation (P=0.07). Under transwell conditions, the inhibitory effect of AML blasts on NK cytotoxicity and effector function was still present, and this inhibitory effect was primarily mediated by IL-10. These results suggest that acute myeloid leukemia blasts induce long-lasting changes in natural killer cells, impairing their effector function and reducing the competence of the innate immune system, favoring leukemia survival.
Collapse
|
13
|
Gumbleton M, Kerr WG. Role of inositol phospholipid signaling in natural killer cell biology. Front Immunol 2013; 4:47. [PMID: 23508471 PMCID: PMC3589743 DOI: 10.3389/fimmu.2013.00047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/08/2013] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are important for host defense against malignancy and infection. At a cellular level NK cells are activated when signals from activating receptors exceed signaling from inhibitory receptors. At a molecular level NK cells undergo an education process to both prevent autoimmunity and acquire lytic capacity. Mouse models have shown important roles for inositol phospholipid signaling in lymphocytes. NK cells from mice with deletion in different members of the inositol phospholipid signaling pathway exhibit defects in development, NK cell repertoire expression and effector function. Here we review the current state of knowledge concerning the function of inositol phospholipid signaling components in NK cell biology.
Collapse
Affiliation(s)
- Matthew Gumbleton
- Department of Microbiology and Immunology, State University of New York Upstate Medical University Syracuse, NY, USA
| | | |
Collapse
|
14
|
Li X, Baskin JG, Mangan EK, Su K, Gibson AW, Ji C, Edberg JC, Kimberly RP. The unique cytoplasmic domain of human FcγRIIIA regulates receptor-mediated function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4284-94. [PMID: 23024279 PMCID: PMC3478424 DOI: 10.4049/jimmunol.1200704] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ligand specificity characterizes receptors for Abs and many other immune receptors, but the common use of the FcR γ-chain as their signaling subunit challenges the concept that these receptors are functionally distinct. We hypothesized that elements for specificity might be determined by the unique cytoplasmic domain (CY) sequences of the ligand-binding α-chains of γ-chain-associated receptors. Among Fcγ receptors, a protein kinase C (PKC) phosphorylation consensus motif [RSSTR], identified within the FcγRIIIa (CD16A) CY by in silico analysis, is specifically phosphorylated by PKCs, unlike other FcRs. Phosphorylated CD16A mediates a more robust calcium flux, tyrosine phosphorylation of Syk, and proinflammatory cytokine production, whereas nonphosphorylatable CD16A is more effective at activation of the Gab2/PI3K pathway, leading to enhanced degranulation. S100A4, a specific protein-binding partner for CD16A-CY newly identified by yeast two-hybrid analysis, inhibits phosphorylation of CD16A-CY by PKC in vitro, and reduction of S100A4 levels in vivo enhances receptor phosphorylation upon cross-linking. Taken together, PKC-mediated phosphorylation of CD16A modulates distinct signaling pathways engaged by the receptor. Calcium-activated binding of S100A4 to CD16A, promoted by the initial calcium flux, attenuates the phosphorylation of CY, and, acting as a molecular switch, may both serve as a negative feedback on cytokine production pathways during sustained receptor engagement and favor a shift to degranulation, consistent with the importance of granule release following conjugate formation between CD16A(+) effector cells and target cells. This switch mechanism points to new therapeutic targets and provides a framework for understanding novel receptor polymorphisms.
Collapse
Affiliation(s)
- Xiaoli Li
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Anel A, Aguiló JI, Catalán E, Garaude J, Rathore MG, Pardo J, Villalba M. Protein Kinase C-θ (PKC-θ) in Natural Killer Cell Function and Anti-Tumor Immunity. Front Immunol 2012; 3:187. [PMID: 22783260 PMCID: PMC3389606 DOI: 10.3389/fimmu.2012.00187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/15/2012] [Indexed: 12/24/2022] Open
Abstract
The protein kinase C-θ (PKCθ), which is essential for T cell function and survival, is also required for efficient anti-tumor immune surveillance. Natural killer (NK) cells, which express PKCθ, play a prominent role in this process, mainly by elimination of tumor cells with reduced or absent major histocompatibility complex class-I (MHC-I) expression. This justifies the increased interest of the use of activated NK cells in anti-tumor immunotherapy in the clinic. The in vivo development of MHC-I-deficient tumors is much favored in PKCθ−/− mice compared with wild-type mice. Recent data offer some clues on the mechanism that could explain the important role of PKCθ in NK cell-mediated anti-tumor immune surveillance: some studies show that PKCθ is implicated in signal transduction and anti-tumoral activity of NK cells elicited by interleukin (IL)-12 or IL-15, while others show that it is implicated in NK cell functional activation mediated by certain killer-activating receptors. Alternatively, the possibility that PKCθ is involved in NK cell degranulation is discussed, since recent data indicate that it is implicated in microtubule-organizing center polarization to the immune synapse in CD4+ T cells. The implication of PKC isoforms in degranulation has been more extensively studied in cytotoxic T lymphocyte, and these studies will be also summarized.
Collapse
Affiliation(s)
- Alberto Anel
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Miller M, Dreisbach A, Otto A, Becher D, Bernhardt J, Hecker M, Peppelenbosch MP, van Dijl JM. Mapping of interactions between human macrophages and Staphylococcus aureus reveals an involvement of MAP kinase signaling in the host defense. J Proteome Res 2011; 10:4018-32. [PMID: 21736355 DOI: 10.1021/pr200224x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus is a dangerous opportunistic human pathogen that causes serious invasive diseases when it reaches the bloodstream. Recent studies have shown that S. aureus is highly resistant to killing by professional phagocytes and that such cells even provide a favorable environment for intracellular survival of S. aureus. Importantly, the reciprocal interactions between phagocytes and S. aureus have remained largely elusive. Here we have employed kinase profiling to define the nature and time resolution of the human THP-1 macrophage response toward S. aureus and proteomics to identify the response of S. aureus toward macrophages. The results of these studies reveal major macrophage signaling pathways triggered by S. aureus and proteomic signatures of the responses of S. aureus to macrophages. We also identify human proteins bound to S. aureus that have potential roles in bacterial killing and internalization. Most noticeably, our observations challenge the classical concept that macrophage responses are mainly mediated through Toll-like receptor 2 and NF-κB signaling and highlight the important role of the stress-activated MAP kinase signaling in orchestrating the host defense.
Collapse
Affiliation(s)
- Malgorzata Miller
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen , Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kerr WG, Colucci F. Inositol phospholipid signaling and the biology of natural killer cells. J Innate Immun 2011; 3:249-57. [PMID: 21422750 PMCID: PMC3219442 DOI: 10.1159/000323920] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/07/2010] [Indexed: 12/30/2022] Open
Abstract
A family of phosphoinositide-3 kinase (PI3K) isoenzymes catalyzes the production of second messengers that recruit critical regulators of cell growth, survival, proliferation and motility. Conversely, 3'-(phosphatase and tensin homolog) and 5'-inositol polyphosphatases (SH2-containing inositol phosphatases 1/2, SHIP1/2) are recruited to sites of PI3K signaling at the plasma membrane to oppose or, in some cases, to modify and enhance PI3K signaling. A substantial and growing body of literature demonstrates that these enzymes which mediate interchange of phosphates on inositol phospholipid species at the plasma membrane have prominent roles in natural killer cell biology, including development, effector functions and trafficking. Here, we review the salient points of these recent papers with a special emphasis on the role of p110δ and SHIP1 in natural killer cells.
Collapse
Affiliation(s)
- William G Kerr
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
18
|
Ogbomo H, Biru T, Michaelis M, Loeschmann N, Doerr HW, Cinatl J. The anti-tumoral drug enzastaurin inhibits natural killer cell cytotoxicity via activation of glycogen synthase kinase-3β. Biochem Pharmacol 2011; 81:251-8. [DOI: 10.1016/j.bcp.2010.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/06/2010] [Accepted: 09/28/2010] [Indexed: 01/18/2023]
|
19
|
Gill RG. NK cells: elusive participants in transplantation immunity and tolerance. Curr Opin Immunol 2010; 22:649-54. [PMID: 20952173 PMCID: PMC2967580 DOI: 10.1016/j.coi.2010.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 10/18/2022]
Abstract
NK cells constitute an innate MHC class I-reactive lymphoid population that rapidly responds to infection, injury, or cell distress. In the transplant field, NK cells have most often been associated with pro-inflammatory immunity resulting in the exacerbation of allograft injury. Despite this general view of NK cell reactivity, it has been challenging to assign unambiguous obligate roles for NK cells in the allograft response. While recent reports continue to provide evidence supporting a role for NK cells in promoting both acute and chronic rejection, there are also a growing number of studies that illustrate an alternative role for NK cells in promoting allograft survival and tolerance. This review addresses the plasticity of NK responses in transplantation by suggesting specific 'checkpoints' whereby NK cells can either enhance or inhibit the allograft response in vivo.
Collapse
|
20
|
Lichtfuss GF, Meehan AC, Cheng WJ, Cameron PU, Lewin SR, Crowe SM, Jaworowski A. HIV inhibits early signal transduction events triggered by CD16 cross-linking on NK cells, which are important for antibody-dependent cellular cytotoxicity. J Leukoc Biol 2010; 89:149-58. [DOI: 10.1189/jlb.0610371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Kim HS, Das A, Gross CC, Bryceson YT, Long EO. Synergistic signals for natural cytotoxicity are required to overcome inhibition by c-Cbl ubiquitin ligase. Immunity 2010; 32:175-86. [PMID: 20189481 PMCID: PMC2843589 DOI: 10.1016/j.immuni.2010.02.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 11/12/2009] [Accepted: 12/08/2009] [Indexed: 11/22/2022]
Abstract
Natural killer (NK) cell cytotoxicity toward target cells depends on synergistic coactivation by NK cell receptors such as NKG2D and 2B4. How synergy occurs is not known. Synergistic phosphorylation of phospholipase PLC-gamma2, Ca(2+) mobilization, and degranulation triggered by NKG2D and 2B4 coengagement were blocked by Vav1 siRNA knockdown, but enhanced by knockdown of c-Cbl. c-Cbl inhibited Vav1-dependent signals, given that c-Cbl knockdown did not rescue the Vav1 defect. Moreover, c-Cbl knockdown and Vav1 overexpression each circumvented the necessity for synergy because NKG2D or 2B4 alone became sufficient for activation. Thus, synergy requires not strict complementation but, rather, strong Vav1 signals to overcome inhibition by c-Cbl. Inhibition of NK cell cytotoxicity by CD94-NKG2A binding to HLA-E on target cells was dominant over synergistic activation, even after c-Cbl knockdown. Therefore, NK cell activation by synergizing receptors is regulated at the level of Vav1 by a hierarchy of inhibitory mechanisms.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Calcium/metabolism
- Cell Degranulation/genetics
- Cell Degranulation/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/immunology
- HLA Antigens/genetics
- HLA Antigens/immunology
- HLA Antigens/metabolism
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Mice
- NK Cell Lectin-Like Receptor Subfamily D/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/genetics
- NK Cell Lectin-Like Receptor Subfamily K/immunology
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Phospholipase C gamma/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-cbl/genetics
- Proto-Oncogene Proteins c-vav/genetics
- RNA, Small Interfering/genetics
- Receptor Cross-Talk/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Signal Transduction/immunology
- Signaling Lymphocytic Activation Molecule Family
- Transfection
- HLA-E Antigens
Collapse
Affiliation(s)
- Hun Sik Kim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Asmita Das
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Catharina C. Gross
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| | - Yenan T. Bryceson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
| |
Collapse
|
22
|
Zafirova B, Mandarić S, Antulov R, Krmpotić A, Jonsson H, Yokoyama WM, Jonjić S, Polić B. Altered NK cell development and enhanced NK cell-mediated resistance to mouse cytomegalovirus in NKG2D-deficient mice. Immunity 2009; 31:270-82. [PMID: 19631564 PMCID: PMC2782462 DOI: 10.1016/j.immuni.2009.06.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 03/17/2009] [Accepted: 06/01/2009] [Indexed: 11/17/2022]
Abstract
NKG2D is a potent activating receptor on natural killer (NK) cells and acts as a molecular sensor for stressed cells expressing NKG2D ligands such as infected or tumor-transformed cells. Although NKG2D is expressed on NK cell precursors, its role in NK cell development is not known. We have generated NKG2D-deficient mice by targeting the Klrk1 locus. Here we provide evidence for an important regulatory role of NKG2D in the development of NK cells. The absence of NKG2D caused faster division of NK cells, perturbation in size of some NK cell subpopulations, and their augmented sensitivity to apoptosis. As expected, Klrk1(-/-) NK cells are less responsive to tumor targets expressing NKG2D ligands. Klrk1(-/-) mice, however, showed an enhanced NK cell-mediated resistance to mouse cytomegalovirus infection as a consequence of NK cell dysregulation. Altogether, these findings provide evidence for regulatory function of NKG2D in NK cell physiology.
Collapse
Affiliation(s)
- Biljana Zafirova
- Department of Histology and Embryology, University of Rijeka School of Medicine, B. Branchetta 20, HR-51000 Rijeka, Croatia
| | - Sanja Mandarić
- Department of Histology and Embryology, University of Rijeka School of Medicine, B. Branchetta 20, HR-51000 Rijeka, Croatia
| | - Ronald Antulov
- Department of Histology and Embryology, University of Rijeka School of Medicine, B. Branchetta 20, HR-51000 Rijeka, Croatia
| | - Astrid Krmpotić
- Department of Histology and Embryology, University of Rijeka School of Medicine, B. Branchetta 20, HR-51000 Rijeka, Croatia
| | - Helena Jonsson
- Howard Hughes Medical Institute, Rheumatology Division, Washington University Medical Centre, 660 S. Euclid Ave, Box 8045, St. Louis, MO 63110 U.S.A
| | - Wayne M. Yokoyama
- Howard Hughes Medical Institute, Rheumatology Division, Washington University Medical Centre, 660 S. Euclid Ave, Box 8045, St. Louis, MO 63110 U.S.A
| | - Stipan Jonjić
- Department of Histology and Embryology, University of Rijeka School of Medicine, B. Branchetta 20, HR-51000 Rijeka, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, University of Rijeka School of Medicine, B. Branchetta 20, HR-51000 Rijeka, Croatia
| |
Collapse
|
23
|
Cryptococcus neoformans directly stimulates perforin production and rearms NK cells for enhanced anticryptococcal microbicidal activity. Infect Immun 2009; 77:2436-46. [PMID: 19307209 DOI: 10.1128/iai.01232-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NK cells, in addition to possessing antitumor and antiviral activity, exhibit perforin-dependent microbicidal activity against the opportunistic pathogen Cryptococcus neoformans. However, the factors controlling this response, particularly whether the pathogen itself provides an activation or rearming signal, are largely unknown. The current studies were performed to determine whether exposure to this fungus alters subsequent NK cell anticryptococcal activity. NK cells lost perforin and mobilized lysosome-associated membrane protein 1 to the cell surface following incubation with the fungus, indicating that degranulation had occurred. Despite a reduced perforin content during killing, NK cells acquired an enhanced ability to kill C. neoformans, as demonstrated using auxotrophs that allowed independent assessment of the killing of two strains. De novo protein synthesis was required for optimal killing; however, there was no evidence that a soluble factor contributed to the enhanced anticryptococcal activity. Exposure of NK cells to C. neoformans caused the cells to rearm, as demonstrated by increased perforin mRNA levels and enhanced loss of perforin when transcription was blocked. Degranulation alone was insufficient to provide the activation signal as NK cells lost anticryptococcal activity following treatment with strontium chloride. However, NK cells regained the activity upon prolonged exposure to C. neoformans, which is consistent with activation by the microbe. The enhanced cytotoxicity did not extend to tumor killing since NK cells exposed to C. neoformans failed to kill NK-sensitive tumor targets (K562 cells). These studies demonstrate that there is contact-mediated microbe-specific rearming and activation of microbicidal activity that are necessary for optimal killing of C. neoformans.
Collapse
|
24
|
Kumar D, Hosse J, von Toerne C, Noessner E, Nelson PJ. JNK MAPK Pathway Regulates Constitutive Transcription of CCL5 by Human NK Cells through SP1. THE JOURNAL OF IMMUNOLOGY 2009; 182:1011-20. [DOI: 10.4049/jimmunol.182.2.1011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
NK cell-activating receptors require PKC-theta for sustained signaling, transcriptional activation, and IFN-gamma secretion. Blood 2008; 112:4109-16. [PMID: 18784374 DOI: 10.1182/blood-2008-02-139527] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural killer (NK) cell sense virally infected cells and tumor cells through multiple cell surface receptors. Many NK cell-activating receptors signal through immunoreceptor tyrosine-based activation motif (ITAM)-containing adapters, which trigger both cytotoxicy and secretion of interferon-gamma (IFN-gamma). Within the ITAM pathway, distinct signaling intermediates are variably involved in cytotoxicity and/or IFN-gamma secretion. In this study, we have evaluated the role of protein kinase C- (PKC-) in NK-cell secretion of lytic mediators and IFN-gamma. We found that engagement of NK-cell receptors that signal through ITAMs results in prompt activation of PKC-. Analyses of NK cells from PKC--deficient mice indicated that PKC- is absolutely required for ITAM-mediated IFN-gamma secretion, whereas it has no marked influence on the release of cytolytic mediators. Moreover, we found that PKC- deficiency preferentially impairs sustained extracellular-regulated kinase signaling as well as activation of c-Jun N-terminal kinase and the transcription factors AP-1 and NFAT but does not affect activation of NF-kappaB. These results indicate that NK cell-activating receptors require PKC- to generate sustained intracellular signals that reach the nucleus and promote transcriptional activation, ultimately inducing IFN-gamma production.
Collapse
|
26
|
Chini CC, Leibson PJ. Signal transduction during natural killer cell activation. CURRENT PROTOCOLS IN CYTOMETRY 2008; Chapter 9:Unit 9.16. [PMID: 18770753 DOI: 10.1002/0471142956.cy0916s14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Understanding of transmembrane signaling during NK-cell activation has greatly expanded during the past few years. The discovery and characterization of novel triggering and inhibitory receptors have revealed the complexity of these processes. This unit focuses on receptor-initiated signaling pathways that modulate NK functions. Establishing the roles of different signaling pathways in NK cells is a crucial step in the design of therapeutic approaches for selective enhancement or suppression of NK-cell activation.
Collapse
Affiliation(s)
- C C Chini
- Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | | |
Collapse
|
27
|
Hara H, Ishihara C, Takeuchi A, Xue L, Morris SW, Penninger JM, Yoshida H, Saito T. Cell type-specific regulation of ITAM-mediated NF-kappaB activation by the adaptors, CARMA1 and CARD9. THE JOURNAL OF IMMUNOLOGY 2008; 181:918-30. [PMID: 18606643 DOI: 10.4049/jimmunol.181.2.918] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activating NK cell receptors transduce signals through ITAM-containing adaptors, including FcRgamma and DAP12. Although the caspase recruitment domain (CARD)9-Bcl10 complex is essential for FcRgamma/DAP12-mediated NF-kappaB activation in myeloid cells, its involvement in NK cell receptor signaling is unknown. Herein we show that the deficiency of CARMA1 or Bcl10, but not CARD9, resulted in severe impairment of cytokine/chemokine production mediated by activating NK cell receptors due to a selective defect in NF-kappaB activation, whereas cytotoxicity mediated by the same receptors did not require CARMA1-Bcl10-mediated signaling. IkappaB kinase (IKK) activation by direct protein kinase C (PKC) stimulation with PMA plus ionomycin (P/I) was abrogated in CARMA1-deficient NK cells, similar to T and B lymphocytes, whereas CARD9-deficient dendritic cells (DCs) exhibited normal P/I-induced IKK activation. Surprisingly, CARMA1 deficiency also abrogated P/I-induced IKK activation in DCs, indicating that CARMA1 is essential for PKC-mediated NF-kappaB activation in all cell types, although the PKC-CARMA1 axis is not used downstream of myeloid ITAM receptors. Consistently, PKC inhibition abrogated ITAM receptor-mediated activation only in NK cells but not in DCs, suggesting PKC-CARMA1-independent, CARD9-dependent ITAM receptor signaling in myeloid cells. Conversely, the overexpression of CARD9 in CARMA1-deficient cells failed to restore the PKC-mediated NF-kappaB activation. Thus, NF-kappaB activation signaling through ITAM receptors is regulated by a cell type-specific mechanism depending on the usage of adaptors CARMA1 and CARD9, which determines the PKC dependence of the signaling.
Collapse
Affiliation(s)
- Hiromitsu Hara
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama City, Kanagawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jewett A, Teruel A, Romero M, Head C, Cacalano N. Rapid and potent induction of cell death and loss of NK cell cytotoxicity against oral tumors by F(ab')2 fragment of anti-CD16 antibody. Cancer Immunol Immunother 2008; 57:1053-66. [PMID: 18188563 PMCID: PMC11030859 DOI: 10.1007/s00262-007-0437-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
Freshly isolated untreated NK cells undergo rapid apoptosis and lose their cytotoxic function upon the addition of F(ab')2 fragment of anti-CD16 antibodies. Loss of NK cell cytotoxic function after treatment with F(ab')2 fragment of anti-CD16 antibody can be seen against K562 and UCLA-2 oral tumor cells when either added immediately in the co-cultures of NK cells with the tumor cells or after pre-treatment of NK cells with the antibody before their addition to the tumor cells. Addition of Interleukin-2 (IL-2) in combination with anti-CD16 antibody to NK cells delayed the induction of DNA fragmentation in NK cells, and even though decreased cytotoxicity could still be observed against K562 and UCLA-2 oral tumors when compared to IL-2 alone treated NK cells, the cytotoxicity levels remained relatively higher and approached those obtained by untreated NK cells in the absence of antibody treatment. No increases in IFN-gamma, Granzymes A and B, Perforin and TRAIL genes could be seen in NK cells treated with anti-CD16 antibody. Neither secretion of IFN-gamma nor increased expression of CD69 activation antigen could be observed after the treatment of NK cells with anti-CD16 antibody. Furthermore, IL-2 mediated increase in CD69 surface antigens was down-modulated by anti-CD16 antibody. Finally, the addition of anti-CD16 antibody to co-cultures of NK cells with tumor target cells was not inhibitory for the secretion of VEGF by oral tumor cells, unlike those co-cultured with untreated or IL-2 treated NK cells. Thus, binding and triggering of CD16 receptor on NK cells may enhance oral tumor survival and growth by decreased ability of NK cells to suppress VEGF secretion or induce tumor cell death during the interaction of NK cells with oral tumor cells.
Collapse
MESH Headings
- Antibodies/chemistry
- Antibodies/immunology
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Cell Death
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- DNA Fragmentation
- GPI-Linked Proteins
- Humans
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/pharmacology
- Interferon-gamma/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lectins, C-Type
- Receptors, IgG/immunology
- Tongue Neoplasms/immunology
- Tongue Neoplasms/pathology
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Dental Research Institute, UCLA School of Dentistry, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
29
|
Saborit-Villarroya I, Martinez-Barriocanal A, Oliver-Vila I, Engel P, Sayos J, Martin M. The adaptor 3BP2 activates CD244-mediated cytotoxicity in PKC- and SAP-dependent mechanisms. Mol Immunol 2008; 45:3446-53. [PMID: 18479751 DOI: 10.1016/j.molimm.2008.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/25/2008] [Accepted: 03/31/2008] [Indexed: 11/27/2022]
Abstract
Natural killer (NK) cell cytotoxicity requires triggering of activation receptors over inhibitory receptors. CD244, a member of CD150 receptor family, positively regulates NK-mediated lyses by activating an intracellular multiproteic signaling network that involves the adaptors X-linked lymphoproliferative gene product SAP and 3BP2. However, the exact mechanisms used by 3BP2 to enhance CD244-mediated cytotoxicity are still not fully understood. Here using the human NK cell line YT-overexpressing 3BP2, we found that the adaptor increases CD244, PI3K, and Vav phosphorylation upon CD244 engagement. The use of enzymatic inhibitors revealed that 3BP2-dependent cytolysis enhancement was PKC-dependent and PI3K-ERK independent. Furthermore, 3BP2 overexpression enhanced PKC delta phosphorylation. SAP knockdown expression inhibited PKC delta activation, indicating that the activating role played by 3BP2 depends upon the presence of SAP. In conclusion, our data show that 3BP2 acts downstream of SAP, increases CD244 phosphorylation and links the receptor with PI3K, Vav, PLC gamma, and PKC downstream events in order to achieve maximum NK killing function.
Collapse
Affiliation(s)
- Ifigenia Saborit-Villarroya
- Immunoreceptors group, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Immunology Unit, Department of Cellular Biology and Pathology, Medical School, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Chini CC, Leibson PJ. Signal transduction during natural killer cell activation. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 11:Unit 11.9B. [PMID: 18432709 DOI: 10.1002/0471142735.im1109bs35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Natural killer (NK) cells are a subpopulation of lymphocytes that can mediate cytotoxicity of certain tumor cells, virus-infected cells, and normal cells. In addition to their cytotoxic potential, NK cells secrete a variety of cytokines and chemokines that can modulate the function, growth, and differentiation of other immune cells. These different responses are initiated by the interaction of specific NK surface receptors with defined soluble or cell-associated ligands. There are several different types of receptors on the NK cell surface including "triggering" receptors, adhesion molecules, cytokine receptors, and MHC-recognizing killer-cell inhibitory receptors. The functional response of an NK cell is the result of the integration of signals transduced by these different types of receptors. Some of these signaling pathways are similar to other lymphoid cells, but there are also unique features employed by NK cells. This overview focuses on receptor-initiated signaling pathways that modulate NK functions.
Collapse
Affiliation(s)
- C C Chini
- Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | | |
Collapse
|
31
|
Abstract
AbstractAlthough membrane phospholipid phosphatidylinositol-4,5bisphosphate (PIP2) plays a key role as signaling intermediate and coordinator of actin dynamics and vesicle trafficking, it remains completely unknown its involvement in the activation of cytolytic machinery. By live confocal imaging of primary human natural killer (NK) cells expressing the chimeric protein GFP-PH, we observed, during effector-target cell interaction, the consumption of a preexisting PIP2 pool, which is critically required for the activation of cytolytic machinery. We identified type I phosphatidylinositol-4-phosphate-5-kinase (PI5KI) α and γ isoforms as the enzymes responsible for PIP2 synthesis in NK cells. By hRNA-driven gene silencing, we observed that both enzymes are required for the proper activation of NK cytotoxicity and for inositol-1,4,5-trisphosphate (IP3) generation on receptor stimulation. In an attempt to elucidate the specific step controlled by PI5KIs, we found that lytic granule secretion but not polarization resulted in impaired PI5KIα- and PI5KIγ-silenced cells. Our findings delineate a novel mechanism implicating PI5KIα and PI5KIγ isoforms in the synthesis of PIP2 pools critically required for IP3-dependent Ca2+ response and lytic granule release.
Collapse
|
32
|
Abstract
In B lymphocytes, the B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) facilitates signaling from the antigen receptor. Mice lacking BCAP have a predominantly immature pool of B cells with impaired immune function and increased susceptibility to apoptosis. Unexpectedly, we have found that natural killer (NK) cells from BCAP-deficient mice are more mature, more long-lived, more resistant to apoptosis, and exhibit enhanced functional activity compared with NK cells from wild-type mice. Surprisingly, these effects are evident despite a severe impairment of the immunoreceptor tyrosine-based activation motif-mediated Akt signaling pathway. The seemingly paradoxical phenotype reveals inherent differences in the signals controlling the final maturation of B cells and NK cells, which depend on positive and negative signals, respectively. Both enhanced interferon-gamma responses and augmented maturation of NK cells in BCAP-deficient mice are independent of available MHC class I ligands. Our data support a model in which blunting of BCAP-mediated activation signaling in developing NK cells promotes functionality, terminal maturation, and long-term survival.
Collapse
|
33
|
Tassi I, Cella M, Gilfillan S, Turnbull I, Diacovo TG, Penninger JM, Colonna M. p110gamma and p110delta phosphoinositide 3-kinase signaling pathways synergize to control development and functions of murine NK cells. Immunity 2007; 27:214-27. [PMID: 17723215 DOI: 10.1016/j.immuni.2007.07.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 05/30/2007] [Accepted: 07/05/2007] [Indexed: 11/19/2022]
Abstract
Phosphoinositide 3-kinases (PI-3Ks) are key enzymes for cell development, activation, and survival. Here we showed that PI-3K class IB and class IA catalytic subunits, p110gamma and p110delta, played a crucial role in the development and functions of murine NK cells. p110gamma deficiency and impairment of G protein-coupled receptor (GPRC) signaling prevented full NK cell maturation. Concomitant loss of p110gamma and p110delta exacerbated this defect, resulting in a very small population of NK cells with a highly immature phenotype in the bone marrow and periphery. Moreover, combined p110gamma and p110delta signals were required for cytotoxicity and activation of the kinase ERK during NK cell-target cell interaction. p110gamma played a major role in receptor-induced interferon-gamma (IFN-gamma) production through a pathway that involved the kinase ERK and 5-Lipoxigenase, which most likely generates lipid mediators activating GPRCs. Conversely, PI3Ks negatively regulated interleukin-12 (IL-12) and IL-18-induced IFN-gamma by modulating p38 kinase activation. Our data shed light on the multiple intersecting pathways through which PI3Ks control NK cell-mediated innate responses.
Collapse
Affiliation(s)
- Ilaria Tassi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Kim N, Saudemont A, Webb L, Camps M, Ruckle T, Hirsch E, Turner M, Colucci F. The p110delta catalytic isoform of PI3K is a key player in NK-cell development and cytokine secretion. Blood 2007; 110:3202-8. [PMID: 17644738 DOI: 10.1182/blood-2007-02-075366] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The signal transduction pathways that lead activated natural killer (NK) cells to produce cytokines, releases cytotoxic granules, or do both, are not clearly dissected. For example, phosphoinositide 3-kinases (PI3Ks) are key players in the execution of both functions, but the relative contribution of each isoform is unknown. We show here that the catalytic isoform p110delta, not p110gamma, was required for interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and granulocyte macrophage colony-stimulating factor (GM-CSF) secretion, whereas neither was necessary for cytotoxicity. Yet, when both p110delta and p110gamma isoforms were inactivated by a combination of genetic and biochemical approaches, cytotoxicity was decreased. NK-cell numbers were also affected by the lack of p110delta but not p110gamma and more severely so in mice lacking both subunits. These results provide genetic evidence that p110delta is the dominant PI3K isoform for cytokine secretion by NK cells and suggest that PI3Ks cooperate during NK-cell development and cytotoxicity.
Collapse
Affiliation(s)
- Nayoung Kim
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wiseman JCD, Ma LL, Marr KJ, Jones GJ, Mody CH. Perforin-dependent cryptococcal microbicidal activity in NK cells requires PI3K-dependent ERK1/2 signaling. THE JOURNAL OF IMMUNOLOGY 2007; 178:6456-64. [PMID: 17475875 DOI: 10.4049/jimmunol.178.10.6456] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, NK cells have been reported to kill the opportunistic fungal pathogen Cryptococcus neoformans through a perforin-dependent mechanism; however, the receptor and signaling involved are unknown. In this report we sought to identify the signaling pathways activated and required for direct perforin-mediated killing of microbes. In this study, using the NK-like cell line YT and primary peripheral blood NK cells, it is demonstrated that YT cells kill C. neoformans and that the killing is accompanied by the activation of PI3K. We demonstrate that inhibition of either the catalytic subunit (using a pharmacological inhibitor) or the alpha-regulatory subunit (using small interfering RNA knockdown) of PI3K significantly inhibited the killing of C. neoformans. Downstream of PI3K, ERK1/2 was activated in a PI3K-dependent fashion and was required for cryptococcal killing. Furthermore, we demonstrate that perforin release from YT cells can be detected by 4 h after contact of the YT cells with C. neoformans and that the release of perforin is blocked by pharmacological inhibition of either PI3K or ERK1/2. Defective degranulation is rooted in the inability to polarize perforin-containing granules toward the target. Finally, we demonstrate that PI3K-ERK1/2-dependent signaling is activated and required for the killing of C. neoformans by primary NK cells. Taken together, these data identify a conserved PI3K-ERK1/2 pathway that is used by NK cells during the direct killing of C. neoformans and demonstrate that the pathway is essential in the formation and activation of the microbicidal mechanism.
Collapse
|
36
|
Saudemont A, Okkenhaug K, Colucci F. p110delta is required for innate immunity to transplantable lymphomas. Biochem Soc Trans 2007; 35:183-5. [PMID: 17371233 DOI: 10.1042/bst0350183] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NK cell (natural killer cells) are lymphocytes of innate immunity that kill tumour cells and respond to infections, without prior stimulation. A balance of activating and inhibitory signals regulates NK cell cytotoxicity, but the molecular mechanisms are not fully understood. General inhibitors of PI3K (phosphoinositide 3-kinase) suppress cytotoxicity in human and mouse NK cells. However, which isoforms and how they regulate NK cell activation is unknown, and no data have been published on mice carrying PI3K mutations. p110delta expression is restricted to leucocytes, where it plays central roles in lymphocyte development and signalling. We have used mice carrying a catalytically inactive mutant form of p110delta in order to determine its role in NK cell biology. We show here that p110delta is not required to kill tumour cells, but unexpectedly p110delta mutant mice failed to fully reject transplanted lymphomas. Our results show for the first time a critical role for p110delta in NK cell biology in vivo.
Collapse
Affiliation(s)
- A Saudemont
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | | | | |
Collapse
|
37
|
Tassi I, Klesney-Tait J, Colonna M. Dissecting natural killer cell activation pathways through analysis of genetic mutations in human and mouse. Immunol Rev 2007; 214:92-105. [PMID: 17100878 DOI: 10.1111/j.1600-065x.2006.00463.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural killer (NK) cell cytotoxicity is mediated by multiple germ line-encoded activating receptors that recognize specific ligands expressed by tumor cells and virally infected cells. These activating receptors are opposed by NK inhibitory receptors, which recognize major histocompatibility complex class I molecules on potential targets, raising the threshold for NK cell activation. Once an abnormal cell has been detected, NK cells are the sentinel source of cytolytic mediators, such as granzymes and perforins, as well as interferon-gamma, which can polarize the immune response to a T-helper 1 cell type. Activation signals are transmitted by adhesion-dependent pathways, immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathways, DAP10 ITAM-independent pathways, and by signaling through immunoreceptor tyrosine-based switch motifs. These pathways activate downstream signaling partners to trigger NK cell cytotoxicity. Some of these downstream molecules are unique to the various pathways, and some of these molecules are shared. Because of the complexity of signals involved in NK cell-target cell interaction, the generation of mice with targeted mutations in signaling molecules involved in adhesion, activation, or inhibition is essential for a precise dissection of the mechanisms regulating NK cell effector functions. Here we review recent advances in the genetic analysis of the signaling pathways that mediate NK cell killing.
Collapse
Affiliation(s)
- Ilaria Tassi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
38
|
Abstract
Tolerance of natural killer (NK) cells toward normal cells is mediated through their expression of inhibitory receptors that detect the normal expression of self in the form of class I major histocompatibility complex (MHC-I) molecules on target cells. These MHC-I-binding inhibitory receptors recruit tyrosine phosphatases, which are believed to counteract activating receptor-stimulated tyrosine kinases. The perpetual balance between signals derived from inhibitory and activating receptors controls NK cell responsiveness and provides an interesting paradigm of signaling cross talk. This review summarizes our knowledge of the intracellular mechanisms by which cell surface receptors influence biological responses by NK cells. Special emphasis focuses on the dynamic signaling events at the NK immune synapse and the unique signaling characteristics of specific receptors, such as NKG2D, 2B4, and KIR2DL4.
Collapse
Affiliation(s)
- A W MacFarlane
- Fox Chase Cancer Center, Division of Basic Science, Institute for Cancer Research, 333 Cottman Ave., Philadelphia, PA 19111, USA
| | | |
Collapse
|
39
|
Poggi A, Prevosto C, Massaro AM, Negrini S, Urbani S, Pierri I, Saccardi R, Gobbi M, Zocchi MR. Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering: role of NKp30 and NKG2D receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 175:6352-6360. [PMID: 16272287 DOI: 10.4049/jimmunol.175.10.6352] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study we have analyzed the interaction between in vitro cultured bone marrow stromal cells (BMSC) and NK cells. Ex vivo-isolated NK cells neoexpressed the activation Ag CD69 and released IFN-gamma and TNF-alpha upon binding with BMSC. Production of these proinflammatory cytokines was dependent on ligation of ICAM1 expressed on BMSC and its receptor LFA1 on NK cells. Furthermore, the NKp30, among natural cytotoxicity receptors, appeared to be primarily involved in triggering NK cells upon interaction with BMSC. Unexpectedly, autologous IL-2-activated NK cells killed BMSC. Again, LFA1/ICAM1 interaction plays a key role in NK/BMSC interaction; this interaction is followed by a strong intracellular calcium increase in NK cells. More importantly, NKG2D/MHC-I-related stress-inducible molecule A and/or NKG2D/UL-16 binding protein 3 engagement is responsible for the delivery of a lethal hit. It appears that HLA-I molecules do not protect BMSC from NK cell-mediated injury. Thus, NK cells, activated upon binding with BMSC, may regulate BMSC survival.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Base Sequence
- Bone Marrow Cells/immunology
- Calcium Signaling
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Communication
- Cytotoxicity, Immunologic
- GPI-Linked Proteins
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- In Vitro Techniques
- Intercellular Adhesion Molecule-1/metabolism
- Intercellular Signaling Peptides and Proteins
- Interferon-gamma/biosynthesis
- Interleukin-2/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Lymphocyte Function-Associated Antigen-1/metabolism
- Membrane Glycoproteins/metabolism
- NK Cell Lectin-Like Receptor Subfamily K
- Natural Cytotoxicity Triggering Receptor 3
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- Stromal Cells/immunology
- Transforming Growth Factor beta/biosynthesis
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Alessandro Poggi
- Laboratory of Experimental Oncology D, National Cancer Research Institute, Genoa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bryceson YT, March ME, Ljunggren HG, Long EO. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 2005; 107:159-66. [PMID: 16150947 PMCID: PMC1895346 DOI: 10.1182/blood-2005-04-1351] [Citation(s) in RCA: 635] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Freshly isolated, resting natural killer (NK) cells are generally less lytic against target cells than in vitro interleukin 2 (IL-2)-activated NK cells. To investigate the basis for this difference, the contribution of several receptors to activation of human NK cells was examined. Target-cell lysis by IL-2-activated NK cells in a redirected, antibody-dependent cytotoxicity assay was triggered by a number of receptors. In contrast, cytotoxicity by resting NK cells was induced only by CD16, and not by NKp46, NKG2D, 2B4 (CD244), DNAM-1 (CD226), or CD2. Calcium flux in resting NK cells was induced with antibodies to CD16 and, to a weaker extent, antibodies to NKp46 and 2B4. Although NKp46 did not enhance CD16-mediated calcium flux, it synergized with all other receptors. 2B4 synergized with 3 other receptors, NKG2D and DNAM-1 each synergized with 2 other receptors, and CD2 synergized with NKp46 only. Resting NK cells were induced to secrete tumor necrosis factor alpha (TNF-alpha) and interferon gamma (IFN-gamma), and to kill target cells by engagement of specific, pair-wise combinations of receptors. Therefore, natural cytotoxicity by resting NK cells is induced only by mutual costimulation of nonactivating receptors. These results reveal distinct and specific patterns of synergy among receptors on resting NK cells.
Collapse
Affiliation(s)
- Yenan T Bryceson
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, 12441 Parklawn Dr, Rockville, MD 20852, USA
| | | | | | | |
Collapse
|
41
|
Zompi S, Colucci F. Anatomy of a murder—signal transduction pathways leading to activation of natural killer cells. Immunol Lett 2005; 97:31-9. [PMID: 15626473 DOI: 10.1016/j.imlet.2004.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 09/15/2004] [Accepted: 10/08/2004] [Indexed: 01/08/2023]
Abstract
Natural killer (NK) cells control the early phases of viral infections, modulate antigen-specific immune responses, and participate in the rejection of tumours and bone marrow grafts. A fine balance between inhibitory and activating receptors tightly regulates NK cell activation. Biochemical studies in human cell lines and primary cells have revealed some of the activating NK cell signalling pathways, however animal models are instrumental to understand the physiological implications of these findings for immune responses in vivo. Gene targeting in mice and biochemical studies in cells are helping to dissect out the various signal transduction pathways that control NK cell activation. A clearer view of these pathways may eventually help designing more effective immune therapies based on the use of NK cells.
Collapse
Affiliation(s)
- S Zompi
- Cytokines and Lymphoid Development Unit, Institut Pasteur, 25-28 rue Dr Roux, 75015 Paris, France
| | | |
Collapse
|
42
|
Zompi S, Gu H, Colucci F. The absence of Grb2-associated binder 2 (Gab2) does not disrupt NK cell development and functions. J Leukoc Biol 2004; 76:896-903. [PMID: 15240750 DOI: 10.1189/jlb.0304179] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Scaffolding molecules bind simultaneously and link together various components of signal-transduction pathways. Grb2-associated binder 2 (Gab2) is a scaffolding protein required for FcgammaR-initiated allergic responses in mast cells and FcgammaR-mediated phagocytosis in macrophages, where it links IgE and IgG receptors to the phosphatidylinositol-3 kinase (PI-3K) pathway. The FcgammaR expressed by natural killer (NK) cells triggers antibody-dependent cellular cytotoxicity (ADCC). We show here that mouse NK cells express Gab2 and that although PI-3K was required for ADCC, this FcgammaR-mediated function was normal in Gab2-/- NK cells. Moreover, NK cell development, spontaneous cytotoxicity, and responses to and production of cytokines were not perturbed in Gab2-/- mice. Considering the striking differences between the signaling requirements of FcgammaR in macrophages and NK cells, our findings suggest that the organization of signal transduction downstream of the same FcR can be cell type-specific. Conversely, Gab family members Gab1, Gab2, and Gab3 may play specific roles in different leukocytes. As pharmacological targeting of Gab2 in mast cells is a potential strategy to treat allergy, our results suggest prudence, as NK cells may participate in IgE-mediated anaphylaxis in a Gab2-independent manner.
Collapse
Affiliation(s)
- Simona Zompi
- Cytokines and Lymphoid Development Unit, Department of Immunology, The Pasteur Institute, Paris, France
| | | | | |
Collapse
|
43
|
Chuang SS, Lee JK, Mathew PA. Protein kinase C is involved in 2B4 (CD244)-mediated cytotoxicity and AP-1 activation in natural killer cells. Immunology 2003; 109:432-9. [PMID: 12807490 PMCID: PMC1782976 DOI: 10.1046/j.1365-2567.2003.01662.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
2B4 (CD244) is a member of the CD2 subset of the immunoglobulin superfamily and functions as a triggering molecule on natural killer (NK) cells. Previously, we have found that 2B4-mediated activation of NK cells involves complex interactions involving LAT, Ras, Raf, ERK and p38 and that cytolytic function and cytokine production may be regulated by distinct pathways. Here we assessed the role of protein kinase C (PKC) in 2B4-mediated cytotoxicity of YT cells, a human NK cell line. Our data indicate that PKC-delta is activated upon stimulation with monoclonal antibody against 2B4. Treatment with the PKC inhibitor, bisindolylmaleimide I (Gö6850), of YT cells or YT cells depleted of Ca2+-dependent isoforms of PKC prior to 2B4 stimulation, resulted in inhibition of natural cytotoxicity and redirected antibody-dependent cellular cytotoxicity. However, inhibition of PKC failed to block 2B4 stimulation of interferon-gamma secretion as opposed to pretreatment with LY294002, a phosphoinositide 3-kinase inhibitor. We also examined the effect of phorbol 12-myristate 13-acetate (PMA) induction on 2B4 gene transcription. PMA induction resulted in a more than two-fold increase of 2B4 transcription. However, when we introduced a three-base substitution mutation to disrupt the activator protein-1 binding site at (-106 to -100) in the 2B4 promoter, we found complete loss of transcriptional activity, including the two-fold increase due to PMA induction of PKC. The present study indicated that PKC may play an important role in 2B4 signalling and activator protein-1 activation.
Collapse
Affiliation(s)
- Samuel S Chuang
- Department of Molecular Biology and Immunology and Institute for Cancer Research, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107-2699, USA
| | | | | |
Collapse
|
44
|
Miranda D, Puente J, Blanco L, Jara P, Wolf ME, Mosnaim AD. Lysis of salmonella typhi intracellularly infected U937 cells by human natural killer cells: effect of protein kinase inhibitors. Am J Ther 2003; 10:32-9. [PMID: 12522518 DOI: 10.1097/00045391-200301000-00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We examined the effect of Salmonella typhi (wild-type Ty2 and mutant strain TYT1231)-infected U937 cells on natural killer cell (NKC) cytotoxicity of peripheral blood mononuclear cells (PBMCs) and highly purified NKC (HPNKCs; CD16(+)/CD56(+) > 95%; the rest corresponding to CD3(+) T cells). We also analyzed the possible role of various protein kinases involved in natural cytotoxicity on these processes. PBMC cytotoxicity against S typhi-infected U937 cells was significantly higher (paired Student t test; P < 0.05) than its lytic effect against noninfected cells (control) at the various effector-to-target cell ratios used (30:1 [24.4 +/- 9.7, 25.1 +/- 11.8, and 17.5 +/- 8.6]; 50:1 [26.6 +/- 9.7, 26.7 +/- 12.8, and 21.2 +/- 7.5] and 70:1 [32.4 +/- 14.4, 30.1 +/- 12.4, and 23.1 +/- 7.2], respectively). PBMC NKC activity seemed to be dependent on such ratios and was similar against both Salmonella strains studied. Approximately half of the individual samples tested (n = 12; 8 male and 4 female subjects of comparable age) showed at least a 20% specific lysis increase against their own control; essentially no changes or smaller increases in NKC activity were observed in all other samples. Similar results were obtained using HPNKCs as effector cells (5:1 ratio [38.9 +/- 12.3, 43.3 +/- 11.2, and 27.5 +/- 4.9] and 10:1 ratio [51.3 +/- 9.1, 46.1 +/- 9.8, and 37.7 +/- 15.5, respectively]). In general, specimens significantly lysed after incubation with PBMCs responded in a similar manner to a challenge with HPNKCs. PBMC and HPNKC cytotoxicity against S typhi wild-type-infected U937 cells was significantly decreased in a dose-dependent manner by the addition of genistein (50-200 micromol) or GFX (0.5-2.0 micromol) to the cytotoxicity assay mixture. NKC activity was almost completely inhibited at the highest genistein and GFX concentrations. In similar experiments, wortmannin (100-500 nmol) failed to inhibit PBMC cytotoxicity and significantly decreased HPNKC activity only at the highest concentration tested. These results show that in the process of NKC recognition and lysis of S typhi-infected U937 cells, there is not a requisite for full bacterial intracellular survival capacity and that S typhi-infected U937 cells are a significantly better target than noninfected U937 cells. NKC signaling pathways activated during the S typhi-infected U937 cell recognition and lysis process are mainly protein tyrosine kinase and protein kinase-C, and they can be blocked by the same protein kinase inhibitors known to inhibit natural cytotoxicity.
Collapse
Affiliation(s)
- Dante Miranda
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
45
|
Galandrini R, Tassi I, Mattia G, Lenti L, Piccoli M, Frati L, Santoni A. SH2-containing inositol phosphatase (SHIP-1) transiently translocates to raft domains and modulates CD16-mediated cytotoxicity in human NK cells. Blood 2002; 100:4581-9. [PMID: 12393695 DOI: 10.1182/blood-2002-04-1058] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane recruitment of the SH2-containing 5' inositol phosphatase 1 (SHIP-1) is responsible for the inhibitory signals that modulate phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways. Here we have investigated the molecular mechanisms underlying SHIP-1 activation and its role in CD16-mediated cytotoxicity. We initially demonstrated that a substantial fraction of SHIP-1-mediated 5' inositol phosphatase activity associates with CD16 zeta chain after receptor cross-linking. Moreover, CD16 stimulation on human primary natural killer (NK) cells induces the rapid and transient translocation of SHIP-1 in the lipid-enriched plasma membrane microdomains, termed rafts, where it associates with tyrosine-phosphorylated zeta chain and shc adaptor protein. As evaluated by confocal microscopy, CD16 engagement by reverse antibody-dependent cellular cytotoxicity (ADCC) rapidly induces SHIP-1 redistribution toward the area of NK cell contact with target cells and its codistribution with aggregated rafts where CD16 receptor also colocalizes. The functional role of SHIP-1 in the modulation of CD16-induced cytotoxicity was explored in NK cells infected with recombinant vaccinia viruses encoding wild-type or catalytic domain-deleted mutant SHIP-1. We found a significant SHIP-1-mediated decrease of CD16-induced cytotoxicity that is strictly dependent on its catalytic activity. These data demonstrate that CD16 engagement on NK cells induces membrane targeting and activation of SHIP-1, which acts as negative regulator of ADCC function.
Collapse
Affiliation(s)
- Ricciarda Galandrini
- Department of Experimental Medicine and Pathology, Istituto Pasteur-Fondazione Cenci Bolognetti, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Colucci F, Di Santo JP, Leibson PJ. Natural killer cell activation in mice and men: different triggers for similar weapons? Nat Immunol 2002; 3:807-13. [PMID: 12205470 DOI: 10.1038/ni0902-807] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The signaling pathways that regulate B and T lymphocytes are remarkably conserved between humans and mice. However, recent evidence suggests that the pathways regulating natural killer (NK) cell activation may actually differ between these two species. We discuss the controversies in the field and propose that this divergence could be deceptive: despite some clear differences between human and mouse NK cell receptors, the many ways of activating NK cells and their functions may well be conserved.
Collapse
Affiliation(s)
- Francesco Colucci
- Unit of Cytokines and Lymphoid Development, The Pasteur Institute, Paris, France.
| | | | | |
Collapse
|
47
|
Martí F, Bertran E, Llucià M, Villén E, Peiró M, Garcia J, Rueda F. Platelet factor 4 induces human natural killer cells to synthesize and release interleukin‐8. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.3.590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Francesc Martí
- Laboratory of Cancer Immunology, Department of Cryobiology and Cell Therapy, Cancer Research Institute, Barcelona, Spain
| | - Esther Bertran
- Laboratory of Cancer Immunology, Department of Cryobiology and Cell Therapy, Cancer Research Institute, Barcelona, Spain
| | - Montserrat Llucià
- Laboratory of Cancer Immunology, Department of Cryobiology and Cell Therapy, Cancer Research Institute, Barcelona, Spain
| | - Esther Villén
- Laboratory of Cancer Immunology, Department of Cryobiology and Cell Therapy, Cancer Research Institute, Barcelona, Spain
| | - Matilde Peiró
- Laboratory of Cancer Immunology, Department of Cryobiology and Cell Therapy, Cancer Research Institute, Barcelona, Spain
| | - Joan Garcia
- Laboratory of Cancer Immunology, Department of Cryobiology and Cell Therapy, Cancer Research Institute, Barcelona, Spain
| | - Fèlix Rueda
- Laboratory of Cancer Immunology, Department of Cryobiology and Cell Therapy, Cancer Research Institute, Barcelona, Spain
| |
Collapse
|
48
|
Aoukaty A, Tan R. Association of the X-linked lymphoproliferative disease gene product SAP/SH2D1A with 2B4, a natural killer cell-activating molecule, is dependent on phosphoinositide 3-kinase. J Biol Chem 2002; 277:13331-7. [PMID: 11815622 DOI: 10.1074/jbc.m112029200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Natural killer (NK) cells express an activating receptor, 2B4, that enhances cellular cytotoxicity. Upon NK cell activation by ligation of 2B4, the intracellular domain of 2B4 associates with the X-linked lymphoproliferative disease (XLP) gene product, signaling lymphocytic activation molecule-associated protein/SH2D1A (SAP/SH2D1A). Defective intracellular association of 2B4 with mutated SAP/SH2D1A is likely to underlie the defects in cytotoxicity observed in NK cells from patients with XLP. We report here a role for phosphoinositide 3-kinase (PI3K) in the recruitment and association of SAP/SH2D1A to 2B4 in human NK cells. The activation of normal NK cells by ligation of 2B4 leads to the phosphorylation of 2B4, recruitment of SAP/SH2D1A, and association of the p85 regulatory subunit of PI3K. The inhibition of PI3K enzymatic activity with either wortmannin or LY294002 prior to 2B4 ligation does not alter the association of 2B4 with the p85 subunit but prevents the recruitment of SAP/SH2D1A to 2B4. In addition, PI3K inhibitors significantly diminish the cytotoxic function of primary NK cells. This observed inhibition of cytotoxicity, present in normal NK cells, was less apparent or absent in NK cells derived from a patient with XLP. These data indicate that the cytotoxicity of activated NK cells is mediated by the association of 2B4 and SAP/SH2D1A, and that this association is dependent upon the activity of PI3K.
Collapse
Affiliation(s)
- Ala Aoukaty
- Department of Pathology and Laboratory Medicine, British Columbia's Children's Hospital, University of British Columbia, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | | |
Collapse
|
49
|
Colucci F, Schweighoffer E, Tomasello E, Turner M, Ortaldo JR, Vivier E, Tybulewicz VLJ, Di Santo JP. Natural cytotoxicity uncoupled from the Syk and ZAP-70 intracellular kinases. Nat Immunol 2002; 3:288-94. [PMID: 11836527 DOI: 10.1038/ni764] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intracellular signals that trigger natural cytotoxicity have not been clearly determined. The Syk and ZAP-70 tyrosine kinases are essential for cellular activation initiated by B and T cell antigen receptors and may drive natural killer (NK) cell cytotoxicity via receptors bearing immunoreceptor tyrosine-based activation motifs (ITAMs). However, we found that, unlike B and T cells, NK cells developed in Syk-/-ZAP-70-/- mice and, despite their nonfunctional ITAMs, lysed various tumor targets in vitro and eliminated tumor cells in vivo, including those without NKG2D ligands. The simultaneous inhibition of phosphatidyl inositol 3 kinase and Src kinases abrogated the cytolytic activity of Syk-/-ZAP-70-/- NK cells and strongly reduced that of wild-type NK cells. This suggests that distinct and redundant signaling pathways act synergistically to trigger natural cytotoxicity.
Collapse
Affiliation(s)
- Francesco Colucci
- Laboratory for Cytokines and Lymphoid Development, The Pasteur Institute, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Carayannopoulos L, Naidenko O, Kinder J, Ho E, Fremont D, Yokoyama W. Ligands for murine NKG2D display heterogeneous binding behavior. Eur J Immunol 2002. [DOI: 10.1002/1521-4141(200203)32:3<597::aid-immu597>3.0.co;2-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|