1
|
Han J, Lee C, Jung Y. Current Evidence and Perspectives of Cluster of Differentiation 44 in the Liver's Physiology and Pathology. Int J Mol Sci 2024; 25:4749. [PMID: 38731968 PMCID: PMC11084344 DOI: 10.3390/ijms25094749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Cluster of differentiation 44 (CD44), a multi-functional cell surface receptor, has several variants and is ubiquitously expressed in various cells and tissues. CD44 is well known for its function in cell adhesion and is also involved in diverse cellular responses, such as proliferation, migration, differentiation, and activation. To date, CD44 has been extensively studied in the field of cancer biology and has been proposed as a marker for cancer stem cells. Recently, growing evidence suggests that CD44 is also relevant in non-cancer diseases. In liver disease, it has been shown that CD44 expression is significantly elevated and associated with pathogenesis by impacting cellular responses, such as metabolism, proliferation, differentiation, and activation, in different cells. However, the mechanisms underlying CD44's function in liver diseases other than liver cancer are still poorly understood. Hence, to help to expand our knowledge of the role of CD44 in liver disease and highlight the need for further research, this review provides evidence of CD44's effects on liver physiology and its involvement in the pathogenesis of liver disease, excluding cancer. In addition, we discuss the potential role of CD44 as a key regulator of cell physiology.
Collapse
Affiliation(s)
- Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea;
| | - Chanbin Lee
- Institute of Systems Biology, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea;
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| |
Collapse
|
2
|
Intrathymic dendritic cell-biased precursors promote human T cell lineage specification through IRF8-driven transmembrane TNF. Nat Immunol 2023; 24:474-486. [PMID: 36703005 DOI: 10.1038/s41590-022-01417-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
The cross-talk between thymocytes and thymic stromal cells is fundamental for T cell development. In humans, intrathymic development of dendritic cells (DCs) is evident but its physiological significance is unknown. Here we showed that DC-biased precursors depended on the expression of the transcription factor IRF8 to express the membrane-bound precursor form of the cytokine TNF (tmTNF) to promote differentiation of thymus seeding hematopoietic progenitors into T-lineage specified precursors through activation of the TNF receptor (TNFR)-2 instead of TNFR1. In vitro recapitulation of TNFR2 signaling by providing low-density tmTNF or a selective TNFR2 agonist enhanced the generation of human T cell precursors. Our study shows that, in addition to mediating thymocyte selection and maturation, DCs function as hematopoietic stromal support for the early stages of human T cell development and provide proof of concept that selective targeting of TNFR2 can enhance the in vitro generation of T cell precursors for clinical application.
Collapse
|
3
|
Boehme L, Roels J, Taghon T. Development of γδ T cells in the thymus - A human perspective. Semin Immunol 2022; 61-64:101662. [PMID: 36374779 DOI: 10.1016/j.smim.2022.101662] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
γδ T cells are increasingly emerging as crucial immune regulators that can take on innate and adaptive roles in the defence against pathogens. Although they arise within the thymus from the same hematopoietic precursors as conventional αβ T cells, the development of γδ T cells is less well understood. In this review, we focus on summarising the current state of knowledge about the cellular and molecular processes involved in the generation of γδ T cells in human.
Collapse
Affiliation(s)
- Lena Boehme
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
4
|
Chen D, Tang TX, Deng H, Yang XP, Tang ZH. Interleukin-7 Biology and Its Effects on Immune Cells: Mediator of Generation, Differentiation, Survival, and Homeostasis. Front Immunol 2021; 12:747324. [PMID: 34925323 PMCID: PMC8674869 DOI: 10.3389/fimmu.2021.747324] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Interleukin-7 (IL-7), a molecule known for its growth-promoting effects on progenitors of B cells, remains one of the most extensively studied cytokines. It plays a vital role in health maintenance and disease prevention, and the congenital deficiency of IL-7 signaling leads to profound immunodeficiency. IL-7 contributes to host defense by regulating the development and homeostasis of immune cells, including T lymphocytes, B lymphocytes, and natural killer (NK) cells. Clinical trials of recombinant IL-7 have demonstrated safety and potent immune reconstitution effects. In this article, we discuss IL-7 and its functions in immune cell development, drawing on a substantial body of knowledge regarding the biology of IL-7. We aim to answer some remaining questions about IL-7, providing insights essential for designing new strategies of immune intervention.
Collapse
Affiliation(s)
- Deng Chen
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Xuan Tang
- Class 1901, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Hai Deng
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Ping Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Tang
- Division of Trauma and Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Facts and Challenges in Immunotherapy for T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21207685. [PMID: 33081391 PMCID: PMC7589289 DOI: 10.3390/ijms21207685] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), a T-cell malignant disease that mainly affects children, is still a medical challenge, especially for refractory patients for whom therapeutic options are scarce. Recent advances in immunotherapy for B-cell malignancies based on increasingly efficacious monoclonal antibodies (mAbs) and chimeric antigen receptors (CARs) have been encouraging for non-responding or relapsing patients suffering from other aggressive cancers like T-ALL. However, secondary life-threatening T-cell immunodeficiency due to shared expression of targeted antigens by healthy and malignant T cells is a main drawback of mAb—or CAR-based immunotherapies for T-ALL and other T-cell malignancies. This review provides a comprehensive update on the different immunotherapeutic strategies that are being currently applied to T-ALL. We highlight recent progress on the identification of new potential targets showing promising preclinical results and discuss current challenges and opportunities for developing novel safe and efficacious immunotherapies for T-ALL.
Collapse
|
6
|
Lavaert M, Liang KL, Vandamme N, Park JE, Roels J, Kowalczyk MS, Li B, Ashenberg O, Tabaka M, Dionne D, Tickle TL, Slyper M, Rozenblatt-Rosen O, Vandekerckhove B, Leclercq G, Regev A, Van Vlierberghe P, Guilliams M, Teichmann SA, Saeys Y, Taghon T. Integrated scRNA-Seq Identifies Human Postnatal Thymus Seeding Progenitors and Regulatory Dynamics of Differentiating Immature Thymocytes. Immunity 2020; 52:1088-1104.e6. [PMID: 32304633 DOI: 10.1016/j.immuni.2020.03.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/04/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
Abstract
During postnatal life, thymopoiesis depends on the continuous colonization of the thymus by bone-marrow-derived hematopoietic progenitors that migrate through the bloodstream. The current understanding of the nature of thymic immigrants is largely based on data from pre-clinical models. Here, we employed single-cell RNA sequencing (scRNA-seq) to examine the immature postnatal thymocyte population in humans. Integration of bone marrow and peripheral blood precursor datasets identified two putative thymus seeding progenitors that varied in expression of CD7; CD10; and the homing receptors CCR7, CCR9, and ITGB7. Whereas both precursors supported T cell development, only one contributed to intrathymic dendritic cell (DC) differentiation, predominantly of plasmacytoid dendritic cells. Trajectory inference delineated the transcriptional dynamics underlying early human T lineage development, enabling prediction of transcription factor (TF) modules that drive stage-specific steps of human T cell development. This comprehensive dataset defines the expression signature of immature human thymocytes and provides a resource for the further study of human thymopoiesis.
Collapse
Affiliation(s)
- Marieke Lavaert
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium
| | - Kai Ling Liang
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Juliette Roels
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Monica S Kowalczyk
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Bo Li
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Data Sciences Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Marcin Tabaka
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Timothy L Tickle
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Haematology Department, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Bart Vandekerckhove
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Martin Guilliams
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB Center for Inflammation Research, Ghent, Belgium; Faculty of Sciences, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Martín-Gayo E, González-García S, García-León MJ, Murcia-Ceballos A, Alcain J, García-Peydró M, Allende L, de Andrés B, Gaspar ML, Toribio ML. Spatially restricted JAG1-Notch signaling in human thymus provides suitable DC developmental niches. J Exp Med 2017; 214:3361-3379. [PMID: 28947612 PMCID: PMC5679173 DOI: 10.1084/jem.20161564] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 06/18/2017] [Accepted: 08/08/2017] [Indexed: 01/06/2023] Open
Abstract
Martín-Gayo et al. report that human early thymic progenitors can undergo a GATA2-dependent myeloid developmental program leading to resident dendritic cells (DCs) upon JAG1-Notch activation. The identification of JAG1+ DC-permissive intrathymic niches validates the human thymus as a DC-poietic organ. A key unsolved question regarding the developmental origin of conventional and plasmacytoid dendritic cells (cDCs and pDCs, respectively) resident in the steady-state thymus is whether early thymic progenitors (ETPs) could escape T cell fate constraints imposed normally by a Notch-inductive microenvironment and undergo DC development. By modeling DC generation in bulk and clonal cultures, we show here that Jagged1 (JAG1)-mediated Notch signaling allows human ETPs to undertake a myeloid transcriptional program, resulting in GATA2-dependent generation of CD34+ CD123+ progenitors with restricted pDC, cDC, and monocyte potential, whereas Delta-like1 signaling down-regulates GATA2 and impairs myeloid development. Progressive commitment to the DC lineage also occurs intrathymically, as myeloid-primed CD123+ monocyte/DC and common DC progenitors, equivalent to those previously identified in the bone marrow, are resident in the normal human thymus. The identification of a discrete JAG1+ thymic medullary niche enriched for DC-lineage cells expressing Notch receptors further validates the human thymus as a DC-poietic organ, which provides selective microenvironments permissive for DC development.
Collapse
Affiliation(s)
- Enrique Martín-Gayo
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara González-García
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - María J García-León
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alba Murcia-Ceballos
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Alcain
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marina García-Peydró
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Allende
- Immunology Department, i+12 Research Institute, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Belén de Andrés
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María L Gaspar
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María L Toribio
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Han F, Hu R, Su M, Yu Y, Yang H, Lai L. A human recombinant IL-7/HGFβ hybrid cytokine enhances antitumor immunity in mice. Am J Cancer Res 2017; 7:1714-1723. [PMID: 28861327 PMCID: PMC5574943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023] Open
Abstract
We purified a hybrid cytokine that contains interleukin-7 (IL-7) and the beta-chain of hepatocyte growth factor (HGFβ) from a unique long-term murine bone marrow culture system. We have cloned and expressed the human form of IL-7/HGFβ in which the IL-7 and HGFβ genes are connected by a flexible linker to produce a single-chain recombinant human IL-7/HGFβ protein (hrIL-7/HGFβ). To determine whether hrIL-7/HGFβ has antitumor activity, we injected this hybrid cytokine into melanoma and colon cancer animal models, and then assessed the local tumor growth and tumor metastasis. We show here that in vivo administration of hrIL-7/HGFβ significantly inhibited the growth and metastasis of malignant melanoma and colon cancer in mice. The antitumor activity was involved in a marked increase in the number of tumor-infiltrating CD4+ and CD8+ T cells and activated dendritic cells. The immunological mechanism by which hrIL-7/HGFβ inhibits tumor growth was confirmed by its inability to inhibit tumor growth in vitro and in immunodeficient mice. Furthermore, immune cells from hrIL-7/HGFβ-treated cancer-bearing mice can be adoptively transferred into naïve mice to resist same tumor cell challenge. Therefore, hrIL-7/HGFβ has potential applications in the treatment of cancer patients.
Collapse
Affiliation(s)
- Feng Han
- The Affiliated Hospital of Guizhou Medical University, University of ConnecticutStorrs, CT, USA
| | - Rong Hu
- Department of Allied Health Sciences, University of ConnecticutStorrs, CT, USA
| | - Min Su
- Department of Allied Health Sciences, University of ConnecticutStorrs, CT, USA
| | - Yanni Yu
- The Affiliated Hospital of Guizhou Medical University, University of ConnecticutStorrs, CT, USA
| | - Hua Yang
- The Affiliated Hospital of Guizhou Medical University, University of ConnecticutStorrs, CT, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of ConnecticutStorrs, CT, USA
- University of Connecticut Stem Cell Institute, University of ConnecticutStorrs, CT, USA
| |
Collapse
|
9
|
Kim YS, Kaidina AM, Chiang JH, Yarygin KN, Lupatov AY. Cancer stem cell molecular markers verified in vivo. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817010036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Kim YS, Kaidina AM, Chiang JH, Yarygin KN, Lupatov AY. [Molecular markers of cancer stem cells verified in vivo]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:228-38. [PMID: 27420613 DOI: 10.18097/pbmc20166203228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This systematic review aims to analyze molecular markers of cancer stem cells. Only studies that confirmed tumor-initiating capacity of this population by in vivo assay in immunodeficient mice were included. Final sample of papers that fully correspond with initial aim consists of 97 original studies. The results of their analysis reveal that markers commonly used for cancer stem cells deriving were as follows: CD133, СD44, ALDH, CD34, CD24 and EpCAM. The review also contains description of molecular features of some cancer stem cell markers, modern approaches to cancer treatment by targeting this population and brief assessment of cancer stem cell theory development.
Collapse
Affiliation(s)
- Y S Kim
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A M Kaidina
- Institute of Biomedical Chemistry, Moscow, Russia
| | - J H Chiang
- National Cheng Kung University, Tainan City, Taiwan
| | - K N Yarygin
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A Yu Lupatov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
11
|
Canté-Barrett K, Mendes RD, Li Y, Vroegindeweij E, Pike-Overzet K, Wabeke T, Langerak AW, Pieters R, Staal FJT, Meijerink JPP. Loss of CD44 dim Expression from Early Progenitor Cells Marks T-Cell Lineage Commitment in the Human Thymus. Front Immunol 2017; 8:32. [PMID: 28163708 PMCID: PMC5247458 DOI: 10.3389/fimmu.2017.00032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Human T-cell development is less well studied than its murine counterpart due to the lack of genetic tools and the difficulty of obtaining cells and tissues. Here, we report the transcriptional landscape of 11 immature, consecutive human T-cell developmental stages. The changes in gene expression of cultured stem cells on OP9-DL1 match those of ex vivo isolated murine and human thymocytes. These analyses led us to define evolutionary conserved gene signatures that represent pre- and post-αβ T-cell commitment stages. We found that loss of dim expression of CD44 marks human T-cell commitment in early CD7+CD5+CD45dim cells, before the acquisition of CD1a surface expression. The CD44−CD1a− post-committed thymocytes have initiated in frame T-cell receptor rearrangements that are accompanied by loss of capacity to differentiate toward myeloid, B- and NK-lineages, unlike uncommitted CD44dimCD1a− thymocytes. Therefore, loss of CD44 represents a previously unrecognized human thymocyte stage that defines the earliest committed T-cell population in the thymus.
Collapse
Affiliation(s)
- Kirsten Canté-Barrett
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Pediatric Oncology/Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Rui D Mendes
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , Netherlands
| | - Yunlei Li
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center-Sophia Children's Hospital , Rotterdam , Netherlands
| | - Eric Vroegindeweij
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Pediatric Oncology/Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden , Netherlands
| | - Tamara Wabeke
- Department of Immunology, Erasmus Medical Center , Rotterdam , Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus Medical Center , Rotterdam , Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Pediatric Oncology/Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center , Leiden , Netherlands
| | - Jules P P Meijerink
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Pediatric Oncology/Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
12
|
Simpson RML, Hong X, Wong MM, Karamariti E, Bhaloo SI, Warren D, Kong W, Hu Y, Xu Q. Hyaluronan Is Crucial for Stem Cell Differentiation into Smooth Muscle Lineage. Stem Cells 2016; 34:1225-38. [PMID: 26867148 PMCID: PMC4864761 DOI: 10.1002/stem.2328] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/09/2015] [Accepted: 12/09/2015] [Indexed: 01/16/2023]
Abstract
Deciphering the extracellular signals that regulate SMC differentiation from stem cells is vital to further our understanding of the pathogenesis of vascular disease and for development of cell-based therapies and tissue engineering. Hyaluronan (HA) has emerged as an important component of the stem cell niche, however its role during stem cell differentiation is a complicated and inadequately defined process. This study aimed to investigate the role of HA in embryonic stem cell (ESC) differentiation toward a SMC lineage. ESCs were seeded on collagen-IV in differentiation medium to generate ESC-derived SMCs (esSMCs). Differentiation coincided with increased HA synthase (HAS) 2 expression, accumulation of extracellular HA and its assembly into pericellular matrices. Inhibition of HA synthesis by 4-methylumbelliferone (4MU), removal of the HA coat by hyaluronidase (HYAL) or HAS2 knockdown led to abrogation of SMC gene expression. HA activates ERK1/2 and suppresses EGFR signaling pathways via its principle receptor, CD44. EGFR inactivation coincided with increased binding to CD44, which was further augmented by addition of high molecular weight (HMW)-HA either exogenously or via HAS2 overexpression through adenoviral gene transfer. HMW-HA-stimulated esSMCs displayed a functional role in vascular tissue engineering ex vivo, vasculogenesis in a matrigel plug model and SMC accumulation in neointimal lesions of vein grafts in mice. These findings demonstrate that HAS2-induced HA synthesis and organization drives ESC-SMC differentiation. Thus, remodeling of the HA microenvironment is a critical step in directing stem cell differentiation toward a vascular lineage, highlighting HA as a potential target for treatment of vascular diseases. Stem Cells 2016;34:1225-1238.
Collapse
Affiliation(s)
- Russell M L Simpson
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Xuechong Hong
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Mei Mei Wong
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Eirini Karamariti
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Shirin Issa Bhaloo
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Derek Warren
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Yanhua Hu
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Qingbo Xu
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Rodriguez RM, Suarez-Alvarez B, Mosén-Ansorena D, García-Peydró M, Fuentes P, García-León MJ, Gonzalez-Lahera A, Macias-Camara N, Toribio ML, Aransay AM, Lopez-Larrea C. Regulation of the transcriptional program by DNA methylation during human αβ T-cell development. Nucleic Acids Res 2014; 43:760-74. [PMID: 25539926 PMCID: PMC4333391 DOI: 10.1093/nar/gku1340] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Thymocyte differentiation is a complex process involving well-defined sequential developmental stages that ultimately result in the generation of mature T-cells. In this study, we analyzed DNA methylation and gene expression profiles at successive human thymus developmental stages. Gain and loss of methylation occurred during thymocyte differentiation, but DNA demethylation was much more frequent than de novo methylation and more strongly correlated with gene expression. These changes took place in CpG-poor regions and were closely associated with T-cell differentiation and TCR function. Up to 88 genes that encode transcriptional regulators, some of whose functions in T-cell development are as yet unknown, were differentially methylated during differentiation. Interestingly, no reversion of accumulated DNA methylation changes was observed as differentiation progressed, except in a very small subset of key genes (RAG1, RAG2, CD8A, PTCRA, etc.), indicating that methylation changes are mostly unique and irreversible events. Our study explores the contribution of DNA methylation to T-cell lymphopoiesis and provides a fine-scale map of differentially methylated regions associated with gene expression changes. These can lay the molecular foundations for a better interpretation of the regulatory networks driving human thymopoiesis.
Collapse
Affiliation(s)
- Ramon M Rodriguez
- Department of Immunology, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
| | - Beatriz Suarez-Alvarez
- Cellular Biology in Renal Diseases Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David Mosén-Ansorena
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Technological Park of Bizkaia - Building 801A, 48160 Derio, Spain
| | - Marina García-Peydró
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Patricia Fuentes
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María J García-León
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aintzane Gonzalez-Lahera
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Technological Park of Bizkaia - Building 801A, 48160 Derio, Spain
| | - Nuria Macias-Camara
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Technological Park of Bizkaia - Building 801A, 48160 Derio, Spain
| | - María L Toribio
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana M Aransay
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Technological Park of Bizkaia - Building 801A, 48160 Derio, Spain
| | - Carlos Lopez-Larrea
- Department of Immunology, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain Fundación Renal 'Íñigo Álvarez de Toledo', 28003 Madrid, Spain
| |
Collapse
|
14
|
Williams K, Motiani K, Giridhar PV, Kasper S. CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Exp Biol Med (Maywood) 2013; 238:324-38. [PMID: 23598979 PMCID: PMC11037417 DOI: 10.1177/1535370213480714] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The stem cell niche provides a regulatory microenvironment for cells as diverse as totipotent embryonic stem cells to cancer stem cells (CSCs) which exhibit stem cell-like characteristics and have the capability of regenerating the bulk of tumor cells while maintaining self-renewal potential. The transmembrane glycoprotein CD44 is a common component of the stem cell niche and exists as a standard isoform (CD44s) and a range of variant isoforms (CD44v) generated though alternative splicing. CD44 modulates signal transduction through post-translational modifications as well as interactions with hyaluronan, extracellular matrix molecules and growth factors and their cognate receptor tyrosine kinases. While the function of CD44 in hematopoietic stem cells has been studied in considerable detail, our knowledge of CD44 function in tissue-derived stem cell niches remains limited. Here we review CD44s and CD44v in both hematopoietic and tissue-derived stem cell niches, focusing on their roles in regulating stem cell behavior including self-renewal and differentiation in addition to cell-matrix interactions and signal transduction during cell migration and tumor progression. Determining the role of CD44 and CD44v in normal stem cell, CSC and (pre)metastatic niches and elucidating their unique functions could provide tools and therapeutic strategies for treating diseases as diverse as fibrosis during injury repair to cancer progression.
Collapse
Affiliation(s)
- Karin Williams
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| | - Karan Motiani
- Division of Urology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| | | | - Susan Kasper
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267
| |
Collapse
|
15
|
Scheiter M, Lau U, van Ham M, Bulitta B, Gröbe L, Garritsen H, Klawonn F, König S, Jänsch L. Proteome analysis of distinct developmental stages of human natural killer (NK) cells. Mol Cell Proteomics 2013; 12:1099-114. [PMID: 23315794 DOI: 10.1074/mcp.m112.024596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recent Natural Killer (NK) cell maturation model postulates that CD34(+) hematopoietic stem cells (HSC) first develop into CD56(bright) NK cells, then into CD56(dim)CD57(-) and finally into terminally maturated CD56(dim)CD57(+). The molecular mechanisms of human NK cell differentiation and maturation however are incompletely characterized. Here we present a proteome analysis of distinct developmental stages of human primary NK cells, isolated from healthy human blood donors. Peptide sequencing was used to comparatively analyze CD56(bright) NK cells versus CD56(dim) NK cells and CD56(dim)CD57(-) NK cells versus CD56(dim)CD57(+) NK cells and revealed distinct protein signatures for all of these subsets. Quantitative data for about 3400 proteins were obtained and support the current differentiation model. Furthermore, 11 donor-independently, but developmental stage specifically regulated proteins so far undescribed in NK cells were revealed, which may contribute to NK cell development and may elucidate a molecular source for NK cell effector functions. Among those proteins, S100A4 (Calvasculin) and S100A6 (Calcyclin) were selected to study their dynamic subcellular localization. Upon activation of human primary NK cells, both proteins are recruited into the immune synapse (NKIS), where they colocalize with myosin IIa.
Collapse
Affiliation(s)
- Maxi Scheiter
- Research Group Cellular Proteomics, Helmholtz Centre for Infection Research, HZI, Inhoffenstraβe 7, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
González-García S, García-Peydró M, Alcain J, Toribio ML. Notch1 and IL-7 receptor signalling in early T-cell development and leukaemia. Curr Top Microbiol Immunol 2012; 360:47-73. [PMID: 22695916 DOI: 10.1007/82_2012_231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Notch receptors are master regulators of many aspects of development and tissue renewal in metazoans. Notch1 activation is essential for T-cell specification of bone marrow-derived multipotent progenitors that seed the thymus, and for proliferation and further progression of early thymocytes along the T-cell lineage. Deregulated activation of Notch1 significantly contributes to the generation of T-cell acute lymphoblastic leukaemia (T-ALL). In addition to Notch1 signals, survival and proliferation signals provided by the IL-7 receptor (IL-7R) are also required during thymopoiesis. Our understanding of the molecular mechanisms controlling stage-specific survival and proliferation signals provided by Notch1 and IL-7R has recently been improved by the discovery that the IL-7R is a transcriptional target of Notch1. Thus, Notch1 controls T-cell development, in part by regulating the stage- and lineage-specific expression of IL-7R. The finding that induction of IL-7R expression downstream of Notch1 also occurs in T-ALL highlights the important contribution that deregulated IL-7R expression and function may have in this pathology. Confirming this notion, oncogenic IL7R gain-of-function mutations have recently been identified in childhood T-ALL. Here we discuss the fundamental role of Notch1 and IL-7R signalling pathways in physiological and pathological T-cell development in mice and men, highlighting their close molecular underpinnings.
Collapse
Affiliation(s)
- Sara González-García
- Centro de Biología Molecular, Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
17
|
Lai L, Jin J, Goldschneider I. In vivo antitumor activity of a recombinant IL-7/HGFbeta hybrid cytokine in mice. Cancer Res 2010; 71:61-7. [PMID: 21084268 DOI: 10.1158/0008-5472.can-10-3198] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The immune cytokine interleukin (IL)-7 and the β-chain of hepatocyte growth factor (HGF) aggregate to form a naturally occurring heterodimer that stimulates the growth of common lymphoid progenitors and immature B and T lymphoid cells. We have cloned and expressed the heterodimer as a single-chain hybrid cytokine [recombinant (r) IL-7/HGFβ], which stimulates short-term hematopoietic stem cells as well as lymphoid precursors. Inasmuch as IL-7 and HGF are known to have antitumor and protumor activities, respectively, we determined here whether either of these activities is exhibited by rIL-7/HGFβ. We show that the in vivo administration of rIL-7/HGFβ markedly inhibits the growth of newly initiated and established tumors and the formation of pulmonary metastases in murine models of colon cancer and melanoma. The antitumor effect of rIL-7/HGFβ correlated with a marked increase in the number of tumor-infiltrating CD4(+) and CD8(+) T cells and activated dendritic cells. A major role for these immune cells in tumor suppression was indicated by the inability of rIL-7/HGFβ to inhibit the growth of tumor cells in vitro and in congenitally athymic mice. Analysis of interferon-γ-secreting T cells showed that the immune response was tumor specific. Our findings justify further evaluation of rIL-7/HGFβ as a novel experimental cancer therapy.
Collapse
Affiliation(s)
- Laijun Lai
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | |
Collapse
|
18
|
Ponchel F, Cuthbert RJ, Goëb V. IL-7 and lymphopenia. Clin Chim Acta 2010; 412:7-16. [PMID: 20850425 DOI: 10.1016/j.cca.2010.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 01/10/2023]
Abstract
Interleukin-7 (IL-7) is a growth and anti-apoptotic factor for T-lymphocytes, with potential for clinical use in the treatment of immunodeficiencies due to loss of T-cells. Lymphopenia induced by disease (HIV infection, hemodialysis or Idiopathic CD4+ lymphopenia) or by treatment (high dose chemotherapy or depleting antibodies) for cancer or auto-immune diseases results in increased circulating levels of IL-7 which decline with T-cell recovery, however, the mechanism of such response remains to be elucidated. Furthermore, IL-7 is a major player in the regulation of peripheral T-cell homeostasis and as such is an important candidate cytokine for therapy aimed at improving T-cell reconstitution following lymphopenia. Anti- IL-7 is on the other hand proposed to treat conditions where IL-7 may play a more direct role in pathogenesis such as autoimmune disease like Rheumatoid Arthritis, Multiple Sclerosis or Inflammatory Bowel disease.
Collapse
Affiliation(s)
- Frederique Ponchel
- Leeds Institute of Molecular Medicine, Section of Musculoskeletal disease, the University of Leeds, Leeds, UK.
| | | | | |
Collapse
|
19
|
Rajasagi M, Marhaba R, Vitacolonna M, Zöller M. Thymocyte expansion and maturation: crosstalk of CD44v6 on thymocytes and panCD44 on stroma cells. Immunol Cell Biol 2009; 88:136-47. [PMID: 19786978 DOI: 10.1038/icb.2009.70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Re-acquisition of immunocompetence after allogeneic bone marrow cell (BMC) transplantation depends on intrathymic maturation of the allogeneic T progenitor cells. We recently reported that CD44 promotes progenitor homing into the thymus and T-cell maturation and now elucidate the molecular mechanisms of CD44-supported thymocyte maturation. Lethally irradiated, tumor-bearing mice, allogeneically reconstituted with T-cell-depleted BMC and a small number of common lymphoid progenitor 2 cells (CLP2) from transgenic (TG) mice, that express ratCD44v4-v7 under the Thy1 promoter, showed accelerated immunocompetent T-cell recovery compared with mice reconstituted with non-transgenic (NTG) CLP2. In addition, graft-versus-host disease was strongly reduced after tumor vaccination. TG, but not NTG double-negative (DN) thymocytes showed high proliferative potential, accompanied by constitutive association of lck with CD44. Importantly, when thymocyte adhesion was strengthened by anti-CD44, co-cultures of DN thymocytes with thymic stroma supported DN thymocyte maturation. The close contact between DN thymocytes and thymic stroma promoted persisting activation of lck and ERK1/2, particularly in CD44v6(+) DN thymocytes. Thus, intrathymic T-cell maturation in allogeneically reconstituted, leukemia-bearing hosts can be considerably accelerated by high CD44v6 expression in early thymocytes, in which proliferation-supporting signals are initiated by a crosstalk between CD44v6 on thymocytes and panCD44 on the thymic stroma.
Collapse
Affiliation(s)
- Mohini Rajasagi
- Department of Tumor Cell Biology, University Hospital of Surgery and German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
20
|
Terry VH, Johnston ICD, Spina CA. CD44 microbeads accelerate HIV-1 infection in T cells. Virology 2009; 388:294-304. [PMID: 19394995 PMCID: PMC2699902 DOI: 10.1016/j.virol.2009.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/02/2009] [Accepted: 03/19/2009] [Indexed: 12/12/2022]
Abstract
Super-paramagnetic CD44 MicroBeads (Miltenyi) designed for the isolation of infectious HIV-1 from dilute or difficult biological samples dramatically enhance the infectivity of bound HIV virions, even if the original viral suspension is merely incubated with beads. Infection of the CEM T cell line with the NL4-3 virus clone or primary human CD4 T cells with X4- and R5-tropic clones and a clade C primary virus isolate all showed accelerated p24 production and larger fractions of infected target cells. Effects could be detected very early; incubation of virus with the CD44 MicroBeads promoted higher levels of viral integration within the first infection cycle. In summary, CD44 MicroBeads provide the means not only to concentrate dilute viral samples, but also to directly facilitate within days rather than weeks the in vitro expansion of patient isolates independent of coreceptor usage and the performance of HIV replication assays that require a large fraction of infected primary T cells.
Collapse
Affiliation(s)
| | | | - Celsa A. Spina
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Abstract
Interleukin-7 (IL-7) is crucial for the development of T and B lymphocytes from common lymphoid progenitors (CLPs) and for the maintenance of mature T lymphocytes. Its in vivo role for dendritic cells (DCs) has been poorly defined. Here, we investigated whether IL-7 is important for the development or maintenance of different DC types. Bone marrow-derived DCs expressed the IL-7 receptor (IL-7R) and survived significantly longer in the presence of IL-7. Migratory DCs (migDCs) isolated from lymph nodes also expressed IL-7R. Surprisingly, IL-7R was not required for their maintenance but indirectly for their development. Conventional DCs (cDCs) and plasmacytoid DCs (pDCs) resident in lymph nodes and spleen were IL-7R(-). Using mixed bone marrow chimeras, we observed an intrinsic requirement for IL-7R signals in their development. As the number of CLPs but not myeloid progenitors was reduced in the absence of IL-7 signals, we propose that a large fraction of cDCs and pDCs derives from CLPs and shares not only the lymphoid origin but also the IL-7 requirement with lymphocyte precursors.
Collapse
|
22
|
An early decrease in Notch activation is required for human TCR-alphabeta lineage differentiation at the expense of TCR-gammadelta T cells. Blood 2008; 113:2988-98. [PMID: 19056690 DOI: 10.1182/blood-2008-06-164871] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although well characterized in the mouse, the role of Notch signaling in the human T-cell receptor alphabeta (TCR-alphabeta) versus TCR-gammadelta lineage decision is still unclear. Although it is clear in the mouse that TCR-gammadelta development is less Notch dependent compared with TCR-alphabeta differentiation, retroviral overexpression studies in human have suggested an opposing role for Notch during human T-cell development. Using the OP9-coculture system, we demonstrate that changes in Notch activation are differentially required during human T-cell development. High Notch activation promotes the generation of T-lineage precursors and gammadelta T cells but inhibits differentiation toward the alphabeta lineage. Reducing the amount of Notch activation rescues alphabeta-lineage differentiation, also at the single-cell level. Gene expression analysis suggests that this is mediated by differential sensitivities of Notch target genes in response to changes in Notch activation. High Notch activity increases DTX1, NRARP, and RUNX3 expression, genes that are down-regulated during alphabeta-lineage differentiation. Furthermore, increased interleukin-7 levels cannot compensate for the Notch dependent TCR-gammadelta development. Our results reveal stage-dependent molecular changes in Notch signaling that are critical for normal human T-cell development and reveal fundamental molecular differences between mouse and human.
Collapse
|
23
|
Johnson SE, Shah N, Bajer AA, LeBien TW. IL-7 activates the phosphatidylinositol 3-kinase/AKT pathway in normal human thymocytes but not normal human B cell precursors. THE JOURNAL OF IMMUNOLOGY 2008; 180:8109-17. [PMID: 18523275 DOI: 10.4049/jimmunol.180.12.8109] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IL-7 signaling culminates in different biological outcomes in distinct lymphoid populations, but knowledge of the biochemical signaling pathways in normal lymphoid populations is incomplete. We analyzed CD127/IL-7Ralpha expression and function in normal (nontransformed) human thymocytes, and human CD19(+) B-lineage cells purified from xenogeneic cord blood stem cell/MS-5 murine stromal cell cultures, to further clarify the role of IL-7 in human B cell development. IL-7 stimulation of CD34(+) immature thymocytes led to phosphorylation (p-) of STAT5, ERK1/2, AKT, and glycogen synthase kinase-3 beta, and increased AKT enzymatic activity. In contrast, IL-7 stimulation of CD34(-) thymocytes (that included CD4(+)/CD8(+) double-positive, and CD4(+) and CD8(+) single-positive cells) only induced p-STAT5. IL-7 stimulation of CD19(+) cells led to robust induction of p-STAT5, but minimal induction of p-ERK1/2 and p-glycogen synthase kinase-3 beta. However, CD19(+) cells expressed endogenous p-ERK1/2, and when rested for several hours following removal from MS-5 underwent de-phosphorylation of ERK1/2. IL-7 stimulation of rested CD19(+) cells resulted in robust induction of p-ERK1/2, but no induction of AKT enzymatic activity. The use of a specific JAK3 antagonist demonstrated that all IL-7 signaling pathways in CD34(+) thymocytes and CD19(+) B-lineage cells were JAK3-dependent. We conclude that human CD34(+) thymocytes and CD19(+) B-lineage cells exhibit similarities in activation of STAT5 and ERK1/2, but differences in activation of the PI3K/AKT pathway. The different induction of PI3K/AKT may at least partially explain the different requirements for IL-7 during human T and B cell development.
Collapse
Affiliation(s)
- Sonja E Johnson
- The Masonic Cancer Center and Department of Laboratory Medicine/Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
24
|
Human intrathymic lineage commitment is marked by differential CD7 expression: identification of CD7- lympho-myeloid thymic progenitors. Blood 2007; 111:1318-26. [PMID: 17959857 DOI: 10.1182/blood-2007-08-106294] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The identity and lineage potential of the cells that initiate thymopoiesis remain controversial. The goal of these studies was to determine, at a clonal level, the immunophenotype and differentiation pathways of the earliest progenitors in human thymus. Although the majority of human CD34(+)lin(-) thymocytes express high levels of CD7, closer analysis reveals that a continuum of CD7 expression exists, and 1% to 2% of progenitors are CD7(-). CD34(+)lin(-) thymocytes were fractionated by CD7 expression and tested for lineage potential in B-lymphoid, T-lymphoid, and myeloid-erythroid conditions. Progressive restriction in lineage potential correlated with CD7 expression, that is, the CD7(hi) fraction produced T and NK cells but lacked B and myelo-erythroid potential, the CD7(int) (CD10(+)) fraction produced B, T, and NK cells, but lacked myelo-erythroid potential. The CD7(-) fraction produced all lymphoid and myelo-erythroid lineages and expressed HSC-associated genes. However, CD34(+)lin(-)CD7(-) thymocytes also expressed early T lymphoid genes Tdt, pTalpha, and IL-7Ralpha and lacked engraftment capacity, suggesting the signals that direct lymphoid commitment and corresponding loss of HSC function are rapidly initiated on arrival of HSC in the human thymus. Thus, differential levels of CD7 identify the progressive stages of lineage commitment in human thymus, initiated from a primitive CD7(-) lympho-myeloid thymic progenitor.
Collapse
|
25
|
García-Peydró M, de Yébenes VG, Toribio ML. Notch1 and IL-7 Receptor Interplay Maintains Proliferation of Human Thymic Progenitors while Suppressing Non-T Cell Fates. THE JOURNAL OF IMMUNOLOGY 2006; 177:3711-20. [PMID: 16951331 DOI: 10.4049/jimmunol.177.6.3711] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Notch signaling is critical for T cell development of multipotent hemopoietic progenitors. Yet, how Notch regulates T cell fate specification during early thymopoiesis remains unclear. In this study, we have identified an early subset of CD34high c-kit+ flt3+ IL-7Ralpha+ cells in the human postnatal thymus, which includes primitive progenitors with combined lymphomyeloid potential. To assess the impact of Notch signaling in early T cell development, we expressed constitutively active Notch1 in such thymic lymphomyeloid precursors (TLMPs), or triggered their endogenous Notch pathway in the OP9-Delta-like1 stroma coculture. Our results show that proliferation vs differentiation is a critical decision influenced by Notch at the TLMP stage. We found that Notch signaling plays a prominent role in inhibiting non-T cell differentiation (i.e., macrophages, dendritic cells, and NK cells) of TLMPs, while sustaining the proliferation of undifferentiated thymocytes with T cell potential in response to unique IL-7 signals. However, Notch activation is not sufficient for inducing T-lineage progression of proliferating progenitors. Rather, stroma-derived signals are concurrently required. Moreover, while ectopic IL-7R expression cannot replace Notch for the maintenance and expansion of undifferentiated thymocytes, Notch signals sustain IL-7R expression in proliferating thymocytes and induce IL-7R up-regulation in a T cell line. Thus, IL-7R and Notch pathways cooperate to synchronize cell proliferation and suppression of non-T lineage choices in primitive intrathymic progenitors, which will be allowed to progress along the T cell pathway only upon interaction with an inductive stromal microenvironment. These data provide insight into a mechanism of Notch-regulated amplification of the intrathymic pool of early human T cell progenitors.
Collapse
Affiliation(s)
- Marina García-Peydró
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | |
Collapse
|
26
|
León F, Roldán E, Sanchez L, Camarero C, Bootello A, Roy G. Human small-intestinal epithelium contains functional natural killer lymphocytes. Gastroenterology 2003; 125:345-56. [PMID: 12891535 DOI: 10.1016/s0016-5085(03)00886-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS CD3(-) non-T lymphocytes constitute the second most abundant lymphoid subset in the human small-bowel epithelium, and these CD3(-) intraepithelial lymphocytes are virtually absent in active celiac disease. Phenotypically, they resemble natural killer cells and have been termed natural killer-like intraepithelial lymphocytes. Because of the limited availability of appropriate human samples, functional studies have not yet been reported, and it is not yet clear whether these are true natural killer cells. METHODS We used magnetic bead-based purification and flow cytometry to study several aspects of normal human small-bowel natural killer-like intraepithelial lymphocytes: intracellular cytokine content (basally and after activation); ability to lyse natural killer-sensitive K562 target cells; and expression of perforins, Fas ligand, and other functional markers. RESULTS CD3(-) intraepithelial lymphocytes cultured in interleukin-2 showed a higher lymphokine-activated killer activity than CD3(+) intraepithelial lymphocytes (48%-83% lysis exerted by CD3(-) intraepithelial lymphocytes at an effector-target cell ratio of 2:1 vs. 8%-18% by CD3(+) intraepithelial lymphocytes). Perforin content correlated with this lytic potential (75% +/- 4% in CD3(-) vs. 5% +/- 4% in CD3(+) intraepithelial lymphocytes). Both CD3(-) and CD3(+) cells displayed a type I cytokine profile (interferon-gamma > tumor necrosis factor-alpha > interleukin-2; undetectable interleukin-4 and interleukin-10). In addition to their activated phenotype, subsets of natural killer-like intraepithelial lymphocytes expressed CD8alphaalpha and intracellular CD3epsilon chain, showing the existence of heterogeneity within this cell lineage. CONCLUSIONS This is the first demonstration of functional natural killer cells within the human gut epithelium. These cells might play an important role in innate mucosal immunity (host defense and tumor surveillance) and tolerance.
Collapse
Affiliation(s)
- Francisco León
- Department of Immunology, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Okamoto Y, Douek DC, McFarland RD, Koup RA. IL-7, the thymus, and naïve T cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 512:81-90. [PMID: 12405190 DOI: 10.1007/978-1-4615-0757-4_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yukari Okamoto
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
28
|
Abstract
It is generally accepted that dendritic cells can be generated from either myeloid or lymphoid derived progenitors. Ample information has been collected on the development and nature of myeloid DC type 1 (DC1). In contrast, our current understanding on the origin and function of the lymphoid derived DC type 2 (DC2) is still limited but is increasing rapidly. Here we will summarize recent findings on the developmental origin of the precursor of DC2 (pre-DC2). The presence of pre-DC2 has been revealed in bone marrow, fetal liver, and cord blood, where they develop from hematopoietic stem cells (HSC) most likely via an intermediate pro-DC2 stage. Both in human and mouse, development of pre-DC2 depends on the cytokine FLT3-ligand (FLT3-L). In addition, transcription factors such as Spi-B and members of the basic helix-loop helix (bHLH) family have been shown to be involved in the proper differentiation of HSC into pre-DC2. The human thymus contains a population of cells that closely resembles the peripheral pre-DC2, including interferon (INF)-a production after viral stimulation. Some phenotypic differences have been observed however. Furthermore, we have shown that the thymic microenvironment is able to support development of pre-DC2 from HSC in vivo. A thymus independent pathway of pre-DC2 development exists as well, although at present it is not clear where these extrathymic pre-DC2 are generated. In regard of the absence of a phenotypic defined pro-DC2 population in the thymus, we speculate that development of thymic pre-DC2 may differ from peripheral pre-DC2. The challenge of the near future will be to determine the role of pre-DC2 during thymic T cell development.
Collapse
Affiliation(s)
- Bianca Blom
- Division of Immunology, Plesmanlaan 121, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Carrasco YR, Navarro MN, de Yébenes VG, Ramiro AR, Toribio ML. Regulation of surface expression of the human pre-T cell receptor complex. Semin Immunol 2002; 14:325-34. [PMID: 12220933 DOI: 10.1016/s1044-5323(02)00065-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Considerable progress has recently been made in defining the role that pre-antigen receptor complexes, namely the pre-T and pre-B cell receptors, play in lymphocyte development. It is now established that these receptors direct, in a similar way, the survival, expansion, clonality and further differentiation of pre-T and pre-B lymphocytes, respectively. However, less is known about the mechanisms which ensure that only minute amounts of pre-TCR and pre-BCR reach the plasma membrane of developing lymphocytes. In this review, we discuss the implications of recent experimental approaches which address the developmental regulation of human pre-TCR expression and the molecular mechanisms that control surface pre-TCR expression levels.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Cell Membrane/metabolism
- Gene Expression Regulation, Developmental/immunology
- Humans
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Protein Processing, Post-Translational
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Yolanda R Carrasco
- Centro de Biología Molecular Severo Ochoa, CSIC, Facultad de Biología, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Terry J Fry
- Immunology Section, Pediatric Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1928, USA.
| | | |
Collapse
|
31
|
Okamoto Y, Douek DC, McFarland RD, Koup RA. Effects of exogenous interleukin-7 on human thymus function. Blood 2002; 99:2851-8. [PMID: 11929775 DOI: 10.1182/blood.v99.8.2851] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immune reconstitution is a critical component of recovery after treatment of human immunodeficiency virus (HIV) infection, cancer chemotherapy, and hematopoietic stem cell transplantation. The ability to enhance T-cell production would benefit such treatment. We examined the effects of exogenous interleukin-7 (IL-7) on apoptosis, proliferation, and the generation of T-cell receptor rearrangement excision circles (TRECs) in human thymus. Quantitative polymerase chain reaction demonstrated that the highest level of TRECs (14 692 copies/10 000 cells) was present in the CD1a(+)CD3(-)CD4(+)CD8(+) stage in native thymus, suggesting that TREC generation occurred following the cellular division in this subpopulation. In a thymic organ culture system, exogenous IL-7 increased the TREC frequency in fetal as well as infant thymus, indicating increased T-cell receptor (TCR) rearrangement. Although this increase could be due to the effect of IL-7 to increase thymocyte proliferation and decrease apoptosis of immature CD3(-) cells, the in vivo experiments using NOD/LtSz-scid mice given transplants of human fetal thymus and liver suggested that IL-7 can also directly enhance TREC generation. Our results provide compelling evidence that IL-7 has a direct effect on increasing TCR-alphabeta rearrangement and indicate the potential use of IL-7 for enhancing de novo naïve T-cell generation in immunocompromised patients.
Collapse
Affiliation(s)
- Yukari Okamoto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases and Department of Experimental Transplantation and Immunology, Medicine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
32
|
de Yébenes VG, Carrasco YR, Ramiro AR, Toribio ML. Identification of a myeloid intrathymic pathway of dendritic cell development marked by expression of the granulocyte macrophage-colony-stimulating factor receptor. Blood 2002; 99:2948-56. [PMID: 11929786 DOI: 10.1182/blood.v99.8.2948] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the finding that a significant proportion of all dendritic cells (DCs) resident in vivo in the human postnatal thymus displayed a myeloid-related phenotype prompted us to re-examine the developmental origin of thymic DCs, a cell type hitherto considered to represent a homogeneous lymphoid-derived population. We show here that these novel intrathymic DCs are truly myeloid, as they arise from CD34(+) early thymic progenitors through CD34(lo) intermediates which have lost the capacity to generate T cells, but display myelomonocytic differentiation potential. We also demonstrate that phenotypically and functionally equivalent myeloid precursors devoid of T-cell potential do exist in vivo in the postnatal thymus. Moreover, although interleukin 7 (IL-7) supports the generation of such myeloid intermediates, we show that their developmental branching from the main intrathymic T-cell pathway is linked to the up-regulation of the myelomonocytic granulocyte macrophage-colony-stimulating factor (GM-CSF) receptor, to the down-regulation of the IL-7 receptor and to the lack of pre-T-cell receptor alpha (pTalpha) gene transcriptional activation. Taken together, these data challenge the current view that the thymus is colonized by a lymphoid-restricted progenitor and provide evidence that a more immature precursor population with lymphoid and myelomonocytic potential is actually seeding the human postnatal thymus.
Collapse
Affiliation(s)
- Virginia G de Yébenes
- Centro de Biología Molecular "Severo Ochoa," CSIC, Facultad de Biología, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Ardavín C, Martínez del Hoyo G, Martín P, Anjuère F, Arias CF, Marín AR, Ruiz S, Parrillas V, Hernández H. Origin and differentiation of dendritic cells. Trends Immunol 2001; 22:691-700. [PMID: 11739000 DOI: 10.1016/s1471-4906(01)02059-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite extensive, recent research on the development of dendritic cells (DCs), their origin is a controversial issue in immunology, with important implications regarding their use in cancer immunotherapy. Although, under defined experimental conditions, DCs can be generated from myeloid or lymphoid precursors, the differentiation pathways that generate DCs in vivo remain unknown largely. Indeed, experimental results suggest that the in vivo differentiation of a particular DC subpopulation could be unrelated to its possible experimental generation. Nevertheless, the analysis of DC differentiation by in vivo and in vitro experimental systems could provide important insights into the control of the physiological development of DCs and constitutes the basis of a model of common DC differentiation that we propose.
Collapse
Affiliation(s)
- C Ardavín
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Muench MO, Bárcena A. Broad distribution of colony-forming cells with erythroid, myeloid, dendritic cell, and NK cell potential among CD34(++) fetal liver cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4902-9. [PMID: 11673495 DOI: 10.4049/jimmunol.167.9.4902] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The generation of erythroid, myeloid, and lymphoid cells from human fetal liver progenitors was studied in colony-forming cell (CFC) assays. CD38(-) and CD38(+) progenitors that expressed high levels of CD34 were grown in serum-deprived medium supplemented with kit ligand, flk2/flt3 ligand, GM-CSF, c-mpl ligand, erythropoietin, and IL-15. The resulting colonies were individually analyzed by flow cytometry. CD56(+) NK cells were detected in 21.9 and 9.9% of colonies grown from CD38(-) and CD38(+) progenitors, respectively. NK cells were detected in mostly large CD14(+)/CD15(+) myeloid colonies that also, in some cases, contained red cells. NK cells were rarely detected in erythroid colonies, suggesting an early split between the erythroid and the NK cell lineages. CD1a(+) dendritic cells were also present in three-quarters of the colonies grown from CD38(-) and CD38(+) progenitors. Multilineage colonies containing erythrocytes, myeloid cells, and NK cells were present in 13.7 and 2.7% of colonies grown from CD38(-) and CD38(+) progenitors, respectively. High proliferative-potential CFCs that generated multilineage colonies were also detected among both populations of progenitors. The total number of high proliferative-potential CFCs with erythroid, myeloid, and NK cell potential was estimated to be 2-fold higher in the CD38(+) fraction compared with the CD38(-) fraction because of the higher frequency of CD38(+) cells among CD34(++) cells. The broad distribution of multipotent CFCs among CD38(-) and CD38(+) progenitors suggests that the segregation of the erythroid, myeloid, and lymphoid lineages may not always be an early event in hemopoiesis. Alternatively, some stem cells may be present among CD38(+) cells.
Collapse
Affiliation(s)
- M O Muench
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
35
|
Abstract
The earliest T cells homing to the thymus (CD3-CD4loCD8-) express CD117 (c-kit), CD43 (leukosialin), and the integrins CD11a (alphaL), CD11b (alphaM), CD29 (beta1), CD49f (alpha6), and CD44. Using reagents specific for CD44 variant isoforms (CD44v), we demonstrated that CD44v were expressed on virtually all early thymocytes,whereas cells carrying only the standard molecule (CD44s, not containing any variant domains), which is ubiquitously found on mature lymphocytes later, are very sparse. The expression of CD44v was closely correlated with CD43 and CD117 and was restricted to the CD3-CD4loCD8- stage. CD44v were detected on lymphocyte progenitor populations in the fetal blood, liver, thymus and spleen, as well as in the adult bone marrow. Functional studies demonstrated that only cells expressing CD44v from fetal liver and adult bone marrow could efficiently populate fetal thymic stroma and develop into mature T cells. In fetal thymic organ cultures anti-CD44v antibodies specifically blocked thymocyte development. We also present evidence that CD44v were required for the initial interaction of hematopoietic progenitor cells with the thymic stroma. Our data imply that CD44v are not only a useful marker for hematopoietic progenitors, but also play a functional role in the initiation of thymocyte development.
Collapse
Affiliation(s)
- C Schwärzler
- Basel Institute for Immunology, Basel, Switzerland
| | | | | |
Collapse
|
36
|
Christ O, Kronenwett R, Haas R, Zöller M. Combining G-CSF with a blockade of adhesion strongly improves the reconstitutive capacity of mobilized hematopoietic progenitor cells. Exp Hematol 2001; 29:380-90. [PMID: 11274767 DOI: 10.1016/s0301-472x(00)00674-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mobilization of hematopoietic progenitor cells is achieved mainly by application of growth factors and, more recently, by blockade of adhesion. In this report, we describe the advantages of a combined treatment with granulocyte colony-stimulating factor (G-CSF) and anti-VLA4 (CD49d)/anti-CD44 as compared to treatment with the individual components. MATERIALS AND METHODS Mobilization by intravenous injection of anti-CD44, anti-VLA4, or G-CSF was controlled in spleen and bone marrow with regard to frequencies of multipotential colony-forming unit (C-CFU), marrow repopulating ability, long-term reconstitution, recovery of myelopoiesis, and regain of immunocompetence. RESULTS Mobilization by anti-CD44 had a strong effect on expansion of early progenitor cells in the bone marrow, while the recovery in the spleen was poor. In anti-CD49d-mobilized noncommitted and committed progenitors, progenitor expansion was less pronounced, but settlement in the spleen was quite efficient. Thus, anti-CD44 and anti-CD49d differently influenced mobilization. Accordingly, mobilization and recovery after transfer were improved by combining anti-CD44 with anti-CD49d treatment. Mobilization by G-CSF was most efficient with respect to recovery of progenitor cells in the spleen. However, when transferring G-CSF-mobilized cells, regain of immunocompetence was strongly delayed. This disadvantage could be overridden when progenitor cells were mobilized via blockade of adhesion and when expansion of these mobilized progenitor cells was supported by low-dose G-CSF only during the last 24 hours before transfer. CONCLUSION Mobilization of pluripotent progenitor cells via antibody blockade of CD44 or CD49d or via G-CSF relies on distinct mechanisms. Therefore, the reconstitutive capacity of a transplant can be significantly improved by mobilization regimens combining antibody with low-dose G-CSF treatment.
Collapse
Affiliation(s)
- O Christ
- Department of Tumor Progression and Immune Defense, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
37
|
Spits H, Couwenberg F, Bakker AQ, Weijer K, Uittenbogaart CH. Id2 and Id3 inhibit development of CD34(+) stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2. J Exp Med 2000; 192:1775-84. [PMID: 11120774 PMCID: PMC2213506 DOI: 10.1084/jem.192.12.1775] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We found previously that Id3, which inhibits transcriptional activities of many basic helix-loop-helix transcription factors, blocked T and B cell development but stimulated natural killer (NK) cell development. Here we report that ectopic expression of Id3 and another Id protein, Id2, strongly inhibited the development of primitive CD34(+)CD38(-) progenitor cells into CD123(high) dendritic cell (DC)2 precursors. In contrast, development of CD34(+)CD38(-) cells into CD4(+)CD14(+) DC1 precursors and mature DC1 was not affected by ectopic Id2 or Id3 expression. These observations support the notion of a common origin of DC2 precursors, T and B cells. As Id proteins did not block development of NK cells, a model presents itself in which these proteins drive common lymphoid precursors to develop into NK cells by inhibiting their options to develop into T cells, B cells, and pre-DC2.
Collapse
Affiliation(s)
- Hergen Spits
- Division of Immunology, Netherlands Cancer Institute, 10066 CX Amsterdam, The Netherlands
| | - Franka Couwenberg
- Division of Immunology, Netherlands Cancer Institute, 10066 CX Amsterdam, The Netherlands
| | - Arjen Q. Bakker
- Division of Immunology, Netherlands Cancer Institute, 10066 CX Amsterdam, The Netherlands
| | - Kees Weijer
- Division of Immunology, Netherlands Cancer Institute, 10066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
38
|
Characterization of dendritic cell differentiation pathways from cord blood CD34+CD7+CD45RA+hematopoietic progenitor cells. Blood 2000. [DOI: 10.1182/blood.v96.12.3748] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
To better characterize human dendritic cells (DCs) that originate from lymphoid progenitors, the authors examined the DC differentiation pathways from a novel CD7+CD45RA+ progenitor population found among cord blood CD34+ cells. Unlike CD7−CD45RA+ and CD7+CD45RA− progenitors, this population displayed high natural killer (NK) cell differentiation capacity when cultured with stem cell factor (SCF), interleukin (IL)-2, IL-7, and IL-15, attesting to its lymphoid potential. In cultures with SCF, Flt3 ligand (FL), granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor (TNF)-α (standard condition), CD7+CD45RA+ progenitors expanded less (37- vs 155-fold) but yielded 2-fold higher CD1a+ DC percentages than CD7−CD45RA+ or CD7+CD45RA− progenitors. As reported for CD34+CD1a− thymocytes, cloning experiments demonstrated that CD7+CD45RA+ cells comprised bipotent NK/DC progenitors. DCs differentiated from CD7−CD45RA+ and CD7+CD45RA+ progenitors differed as to E-cadherin CD123, CD116, and CD127 expression, but none of these was really discriminant. Only CD7+CD45RA+ or thymic progenitors differentiated into Lag+S100+Langerhans cells in the absence of exogenous transforming growth factor (TGF)-β1. Analysis of the DC differentiation pathways showed that CD7+CD45RA+ progenitors generated CD1a+CD14− precursors that were macrophage-colony stimulating factor (M-CSF) resistant and CD1a−CD14+ precursors that readily differentiated into DCs under the standard condition. Accordingly, CD7+CD45RA+ progenitor-derived mature DCs produced 2- to 4-fold more IL-6, IL-12, and TNF-α on CD40 ligation and elicited 3- to 6-fold higher allogeneic T-lymphocyte reactivity than CD7−CD45RA+ progenitor-derived DCs. Altogether, these findings provide evidence that the DCs that differentiate from cord blood CD34+CD7+CD45RA+ progenitors represent an original population for their developmental pathways and function.
Collapse
|
39
|
Characterization of dendritic cell differentiation pathways from cord blood CD34+CD7+CD45RA+hematopoietic progenitor cells. Blood 2000. [DOI: 10.1182/blood.v96.12.3748.h8003748_3748_3756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better characterize human dendritic cells (DCs) that originate from lymphoid progenitors, the authors examined the DC differentiation pathways from a novel CD7+CD45RA+ progenitor population found among cord blood CD34+ cells. Unlike CD7−CD45RA+ and CD7+CD45RA− progenitors, this population displayed high natural killer (NK) cell differentiation capacity when cultured with stem cell factor (SCF), interleukin (IL)-2, IL-7, and IL-15, attesting to its lymphoid potential. In cultures with SCF, Flt3 ligand (FL), granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor (TNF)-α (standard condition), CD7+CD45RA+ progenitors expanded less (37- vs 155-fold) but yielded 2-fold higher CD1a+ DC percentages than CD7−CD45RA+ or CD7+CD45RA− progenitors. As reported for CD34+CD1a− thymocytes, cloning experiments demonstrated that CD7+CD45RA+ cells comprised bipotent NK/DC progenitors. DCs differentiated from CD7−CD45RA+ and CD7+CD45RA+ progenitors differed as to E-cadherin CD123, CD116, and CD127 expression, but none of these was really discriminant. Only CD7+CD45RA+ or thymic progenitors differentiated into Lag+S100+Langerhans cells in the absence of exogenous transforming growth factor (TGF)-β1. Analysis of the DC differentiation pathways showed that CD7+CD45RA+ progenitors generated CD1a+CD14− precursors that were macrophage-colony stimulating factor (M-CSF) resistant and CD1a−CD14+ precursors that readily differentiated into DCs under the standard condition. Accordingly, CD7+CD45RA+ progenitor-derived mature DCs produced 2- to 4-fold more IL-6, IL-12, and TNF-α on CD40 ligation and elicited 3- to 6-fold higher allogeneic T-lymphocyte reactivity than CD7−CD45RA+ progenitor-derived DCs. Altogether, these findings provide evidence that the DCs that differentiate from cord blood CD34+CD7+CD45RA+ progenitors represent an original population for their developmental pathways and function.
Collapse
|
40
|
Takenaka K, Harada M, Fujisaki T, Nagafuji K, Mizuno S, Miyamoto T, Otsuka T, Gondo H, Okamura T, Niho Y. Human thymic epithelial cells maintain long-term survival of clonogenic myeloid and erythroid progenitor cells in vitro. Br J Haematol 2000; 111:363-70. [PMID: 11091226 DOI: 10.1046/j.1365-2141.2000.02337.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Precursor cells that migrate into the thymus are still multipotent. Therefore, thymic epithelial cells (TECs) may provide microenvironments not only for T-cell development, but also for maintenance of multipotent precursor cells until they undergo T-cell commitment. In the present study, we performed long-term cultures of CD34+ bone-marrow (BM) cells on TEC lines that were derived from cortical epithelial cells of post-natal thymus, to investigate whether human TECs could maintain long-term nonlymphoid haematopoiesis. Haematopoietic cells maintained in direct contact with established TEC lines were able to generate clonogenic progeny to both myeloid and erythroid cells for periods in excess of 5 weeks. Their abilities to support colony-forming units of granulocytes-macrophages (CFU-GM) and burst-forming units of erythroids (BFU-E) were almost equal to those of BM stromal cells. We observed similar results by using cloned TEC lines derived by limiting dilution, as well as those by using parental TEC lines. Colony-forming activities were maintained even when haematopoietic progenitor cells were physically separated from TEC lines and cultured on microporous membrane. These observations indicate that haematopoiesis maintained in TEC-contact long-term cultures may depend on soluble factors produced by TEC lines. Our results suggest that thymic cortical epithelial cells have the ability to support not only the differentiation of haematopoietic cells, but also long-term survival of clonogenic myeloid/erythroid progenitor cells.
Collapse
Affiliation(s)
- K Takenaka
- First Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Takenaka K, Harada M, Fujisaki T, Nagafuji K, Mizuno S, Miyamoto T, Otsuka T, Gondo H, Okamura T, Niho Y. Human thymic epithelial cells maintain long-term survival of clonogenic myeloid and erythroid progenitor cells in vitro. Br J Haematol 2000. [DOI: 10.1111/j.1365-2141.2000.02337.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Abstract
Abstract
Langerhans cells (LCs) are specialized dendritic cells (DCs) strategically located in stratified epithelia, such as those of the skin, oral cavity, pharynx, esophagus, upper airways, urethra, and female reproductive tract, which are exposed to a wide variety of microbial pathogens. LCs play an essential role in the induction of T-lymphocyte responses against viruses, bacteria, and parasites that gain access to those epithelial surfaces, due to their high antigen capture and processing potential and their capacity to present antigen peptides to T cells on migration to the lymph nodes.1Although LCs have been classically considered of myeloid origin, recent reports, which demonstrate the existence of lymphoid DCs derived from multipotent lymphoid precursors devoid of myeloid differentiation potential,2–5 raise the question of the lymphoid or myeloid origin of LCs. The present study shows that mouse lymphoid-committed CD4low precursors, with the capacity to generate T cells, B cells, CD8+ lymphoid DCs, and natural killer cells,26 also generate epidermal LCs on intravenous transfer, supporting the view that LCs belong to the lymphoid lineage.
Collapse
|
43
|
Abstract
Langerhans cells (LCs) are specialized dendritic cells (DCs) strategically located in stratified epithelia, such as those of the skin, oral cavity, pharynx, esophagus, upper airways, urethra, and female reproductive tract, which are exposed to a wide variety of microbial pathogens. LCs play an essential role in the induction of T-lymphocyte responses against viruses, bacteria, and parasites that gain access to those epithelial surfaces, due to their high antigen capture and processing potential and their capacity to present antigen peptides to T cells on migration to the lymph nodes.1Although LCs have been classically considered of myeloid origin, recent reports, which demonstrate the existence of lymphoid DCs derived from multipotent lymphoid precursors devoid of myeloid differentiation potential,2–5 raise the question of the lymphoid or myeloid origin of LCs. The present study shows that mouse lymphoid-committed CD4low precursors, with the capacity to generate T cells, B cells, CD8+ lymphoid DCs, and natural killer cells,26 also generate epidermal LCs on intravenous transfer, supporting the view that LCs belong to the lymphoid lineage.
Collapse
|
44
|
Abstract
Transplantation of hematopoietic progenitor cells provides in many instances of malignant tumors an ultimate chance of curative therapy, whereby the transfer of peripheral blood stem cells (PBSC) may even be advantageous as compared to bone marrow cells. Yet, the transfer of PBSC requires mobilization of stem cells into the periphery, which is mostly achieved via hematopoietic growth factors like G-CSF. Although G-CSF has been found to efficiently mobilize stem cells in most instances, some patients do not or insufficiently respond to G-CSF treatment In addition, G-CSF treatment may by accompanied by maturation of the most primitive progenitors and this may have an impact on stem cell homing and recovery of hemopoiesis. Therefore, additional approaches for stem cell mobilization have been searched for, in particular mobilization via a blockade of an adhesion molecule expressed by CD34-positive cells, like VLA-4 (CD49d) and the hematopoietic isoform of CD44 (CD44s). We recently described that in the mouse one of the CD44 variant isoforms, CD44v10, is expressed on a subpopulation of bone marrow cells, whereas a CD44v10 receptor-globulin only binds to stromal elements. These features appeared promising for anti-CD44v10 as a means of stem cell mobilization. Indeed, treatment with anti-CD44v10 revealed promising results concerning the recovery of multilineage colony forming units in the spleen and the peripheral blood. We here summarize features of expression and function of CD44 in hematopoiesis an provide further evidence for anti-CD44v10 as a means to mobilize hematopoietic progenitor cells.
Collapse
Affiliation(s)
- M Zoeller
- Department of Tumor Progression and Immune Defense, German Cancer Research Center, Heidelberg.
| |
Collapse
|
45
|
Abstract
We have characterized dendritic cell precursors (pre-DC) in the human thymus. These CD1a−CD3−CD4+CD8−cells express high levels of interleukin-3R (IL-3R) on the membrane and are able to develop into mature DC upon culture with IL-3 and CD40 ligation. The DC precursors are predominantly located in the thymic medulla. Interestingly, the pre-DC express pT mRNA, which is also present in CD1a+CD3−CD4+ CD8−pre-T cells. Yet, the pre-DC lack expression of recombination activating gene-1 mRNA and fail to develop into T cells in appropriate assays. The thymic pre-DC are very similar to the recently characterized pre-DC found in the T cell areas of the tonsil, and it is suggested that these pre-DC populations are of lymphoid origin.
Collapse
|
46
|
Chêne L, Nugeyre MT, Guillemard E, Moulian N, Barré-Sinoussi F, Israël N. Thymocyte-thymic epithelial cell interaction leads to high-level replication of human immunodeficiency virus exclusively in mature CD4(+) CD8(-) CD3(+) thymocytes: a critical role for tumor necrosis factor and interleukin-7. J Virol 1999; 73:7533-42. [PMID: 10438843 PMCID: PMC104280 DOI: 10.1128/jvi.73.9.7533-7542.1999] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work aims at identifying the thymocyte subpopulation able to support human immunodeficiency virus (HIV) replication under the biological stimuli of the thymic microenvironment. In this report we demonstrate that interaction with thymic epithelial cells (TEC) induces a high-level replication of the T-tropic primary isolate HIV-1(B-LAIp) exclusively in the mature CD4(+) CD8(-) CD3(+) thymocytes. Tumor necrosis factor (TNF) and interleukin-7 (IL-7), secreted during this interaction, are critical cytokines for HIV long terminal repeat transactivation through NF-kappaB-dependent activation. TNF is the major inducer of NF-kappaB and particularly of the p50-p65 complex, whereas IL-7 acts as a cofactor by sustaining the expression of the p75 TNF receptor. The requirement for TNF is further confirmed by the observation that the inability of the intermediate CD4(+) CD8(-) CD3(-) thymocytes to replicate the virus is associated with a defect in TNF production during their interaction with TEC and correlates with the absence of nuclear NF-kappaB activity in these freshly isolated thymocytes. Addition of exogenous TNF to the intermediate thymocyte cultures induces NF-kappaB activity and is sufficient to promote HIV replication in the cocultures with TEC. The other major subpopulation expressing the CD4 receptor, namely, the double-positive (DP) CD4(+) CD8(+) CD3(+/-) thymocytes, despite the entry of the virus, do not produce a significant level of virus, presumably because they are unresponsive to TNF and IL-7. Together, these data suggest that in vivo, despite an efficient entry of the virus in all the CD4(+) subpopulations, a high viral load may be generated exclusively within the mature CD4(+) CD8(-) CD3(+) subset of thymocytes. However, under conditions of inflammatory response after infection, TNF might also be present in the intermediate thymocyte compartment, leading to efficient HIV replication in these cells.
Collapse
Affiliation(s)
- L Chêne
- Unité de Biologie des Rétrovirus, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
47
|
Blom B, Heemskerk MH, Verschuren MC, van Dongen JJ, Stegmann AP, Bakker AQ, Couwenberg F, Res PC, Spits H. Disruption of alpha beta but not of gamma delta T cell development by overexpression of the helix-loop-helix protein Id3 in committed T cell progenitors. EMBO J 1999; 18:2793-802. [PMID: 10329625 PMCID: PMC1171360 DOI: 10.1093/emboj/18.10.2793] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Enforced expression of Id3, which has the capacity to inhibit many basic helix-loop-helix (bHLH) transcription factors, in human CD34(+) hematopoietic progenitor cells that have not undergone T cell receptor (TCR) gene rearrangements inhibits development of the transduced cells into TCRalpha beta and gamma delta cells in a fetal thymic organ culture (FTOC). Here we document that overexpression of Id3, in progenitors that have initiated TCR gene rearrangements (pre-T cells), inhibits development into TCRalpha beta but not into TCRgamma delta T cells. Furthermore, Id3 impedes expression of recombination activating genes and downregulates pre-Talpha mRNA. These observations suggest possible mechanisms by which Id3 overexpression can differentially affect development of pre-T cells into TCRalpha beta and gamma delta cells. We also observed that cell surface CD4(-)CD8(-)CD3(-) cells with rearranged TCR genes developed from Id3-transduced but not from control-transduced pre-T cells in an FTOC. These cells had properties of both natural killer (NK) and pre-T cells. These findings suggest that bHLH factors are required to control T cell development after the T/NK developmental checkpoint.
Collapse
MESH Headings
- Antigens, CD/immunology
- Cell Differentiation
- Cells, Cultured
- Gene Expression Regulation
- Gene Rearrangement, T-Lymphocyte/genetics
- Helix-Loop-Helix Motifs
- Hematopoietic Stem Cells/metabolism
- Humans
- Inhibitor of Differentiation Proteins
- Neoplasm Proteins
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/metabolism
- Thymus Gland
- Transcription Factors/genetics
- Transduction, Genetic
Collapse
Affiliation(s)
- B Blom
- Division of Immunology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Huis, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dalloul AH, Patry C, Salamero J, Canque B, Grassi F, Schmitt C. Functional and Phenotypic Analysis of Thymic CD34+CD1a− Progenitor-Derived Dendritic Cells: Predominance of CD1a+ Differentiation Pathway. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.10.5821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Whether thymic dendritic cells (DC) are phenotypically and functionally distinct from the monocyte lineage DC is an important question. Human thymic progenitors differentiate into T, NK, and DC. The latter induce clonal deletion of autoreactive thymocytes and therefore might be different from their monocyte-derived counterparts. The cytokines needed for the differentiation of DC from thymic progenitors were also questioned, particularly the need for GM-CSF. We show that various cytokine combinations with or without GM-CSF generated DC from CD34+CD1a− but not from CD34+CD1a+ thymocytes. CD34+ thymic cells generated far fewer DC than their counterparts from the cord blood. The requirement for IL-7 was strict whereas GM-CSF was dispensable but nonetheless improved the yield of DC. CD14+ monocytic intermediates were not detected in these cultures unless macrophage-CSF (M-CSF) was added. Cultures in M-CSF generated CD14−CD1a+ DC precursors but also CD14+CD1a− cells. When sorted and recultured in GM-CSF, CD14+ cells down-regulated CD14 and up-regulated CD1a. TNF-α accelerated the differentiation of progenitors into DC and augmented MHC class II transport to the membrane, resulting in improved capacity to induce MLR. The trafficking of MHC class II molecules was studied by metabolic labeling and immunoprecipitation. MHC class II molecules were transported to the membrane in association with invariant chain isoforms in CD14+ (monocyte)-derived and in CD1a+ thymic-derived DC but not in monocytes. Thus, thymic progenitors can differentiate into DC along a preferential CD1a+ pathway but have conserved a CD14+ maturation capacity under M-CSF. Finally, CD1a+-derived thymic DC and monocyte-derived DC share very close Ag-processing machinery.
Collapse
Affiliation(s)
- Ali H. Dalloul
- *Laboratoire d’Immunologie Cellulaire, Unité Mixte de Recherche 7627, Centre National de la Recherche Scientifique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Claire Patry
- †Unité Mixte de Recherche, Centre National de la Recherche Scientifique 144, Institut Curie, Paris, France; and
| | - Jean Salamero
- †Unité Mixte de Recherche, Centre National de la Recherche Scientifique 144, Institut Curie, Paris, France; and
| | - Bruno Canque
- ‡Laboratoire d’Immunologie Cellulaire de l’École Pratique des Hautes Études, Hôpital Pitié-Salpêtrière, Paris, France
| | - Fernanda Grassi
- *Laboratoire d’Immunologie Cellulaire, Unité Mixte de Recherche 7627, Centre National de la Recherche Scientifique, Hôpital Pitié-Salpêtrière, Paris, France
| | - Christian Schmitt
- *Laboratoire d’Immunologie Cellulaire, Unité Mixte de Recherche 7627, Centre National de la Recherche Scientifique, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
49
|
Abstract
Recent studies have identified several populations of progenitor cells in the human thymus. The hematopoietic precursor activity of these populations has been determined. The most primitive human thymocytes express high levels of CD34 and lack CD1a. These cells acquire CD1a and differentiate into CD4+CD8+ through CD3−CD4+CD8− and CD3−CD4+CD8+β− intermediate populations. The status of gene rearrangements in the various TCR loci, in particular of TCRδ and TCRγ, has not been analyzed in detail. In the present study we have determined the status of TCR gene rearrangements of early human postnatal thymocyte subpopulations by Southern blot analysis. Our results indicate that TCRδ rearrangements initiate in CD34+CD1a− cells preceding those in the TCRγ and TCRβ loci that commence in CD34+CD1a+ cells. Furthermore, we have examined at which cellular stage TCRβ selection occurs in humans. We analyzed expression of cytoplasmic TCRβ and cell-surface CD3 on thymocytes that lack a mature TCRβ. In addition, we overexpressed a constitutive-active mutant of p56lckF505 by retrovirus-mediated gene transfer in sequential stages of T-cell development and analyzed the effect in a fetal thymic organ culture system. Evidence is presented that TCRβ selection in humans is initiated at the transition of the CD3−CD4+CD8− into the CD4+CD8+β− stage.
Collapse
|
50
|
TCR Gene Rearrangements and Expression of the Pre-T Cell Receptor Complex During Human T-Cell Differentiation. Blood 1999. [DOI: 10.1182/blood.v93.9.3033] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Recent studies have identified several populations of progenitor cells in the human thymus. The hematopoietic precursor activity of these populations has been determined. The most primitive human thymocytes express high levels of CD34 and lack CD1a. These cells acquire CD1a and differentiate into CD4+CD8+ through CD3−CD4+CD8− and CD3−CD4+CD8+β− intermediate populations. The status of gene rearrangements in the various TCR loci, in particular of TCRδ and TCRγ, has not been analyzed in detail. In the present study we have determined the status of TCR gene rearrangements of early human postnatal thymocyte subpopulations by Southern blot analysis. Our results indicate that TCRδ rearrangements initiate in CD34+CD1a− cells preceding those in the TCRγ and TCRβ loci that commence in CD34+CD1a+ cells. Furthermore, we have examined at which cellular stage TCRβ selection occurs in humans. We analyzed expression of cytoplasmic TCRβ and cell-surface CD3 on thymocytes that lack a mature TCRβ. In addition, we overexpressed a constitutive-active mutant of p56lckF505 by retrovirus-mediated gene transfer in sequential stages of T-cell development and analyzed the effect in a fetal thymic organ culture system. Evidence is presented that TCRβ selection in humans is initiated at the transition of the CD3−CD4+CD8− into the CD4+CD8+β− stage.
Collapse
|