1
|
Pollenus E, Possemiers H, Knoops S, Prenen F, Vandermosten L, Thienpont C, Abdurahiman S, Demeyer S, Cools J, Matteoli G, Vanoirbeek JAJ, Vande Velde G, Van den Steen PE. Single cell RNA sequencing reveals endothelial cell killing and resolution pathways in experimental malaria-associated acute respiratory distress syndrome. PLoS Pathog 2024; 20:e1011929. [PMID: 38236930 PMCID: PMC10826972 DOI: 10.1371/journal.ppat.1011929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/30/2024] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Plasmodium parasites cause malaria, a global health disease that is responsible for more than 200 million clinical cases and 600 000 deaths each year. Most deaths are caused by various complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Despite the very rapid and efficient killing of parasites with antimalarial drugs, 15% of patients with complicated malaria succumb. This stresses the importance of investigating resolution mechanisms that are involved in the recovery from these complications once the parasite is killed. To study the resolution of MA-ARDS, P. berghei NK65-infected C57BL/6 mice were treated with antimalarial drugs after onset of symptoms, resulting in 80% survival. Micro-computed tomography revealed alterations of the lungs upon infection, with an increase in total and non-aerated lung volume due to edema. Whole body plethysmography confirmed a drastically altered lung ventilation, which was restored during resolution. Single-cell RNA sequencing indicated an increased inflammatory state in the lungs upon infection, which was accompanied by a drastic decrease in endothelial cells, consistent with CD8+ T cell-mediated killing. During resolution, anti-inflammatory pathways were upregulated and proliferation of endothelial cells was observed. MultiNicheNet interactome analysis identified important changes in the ligand-receptor interactions during disease resolution that warrant further exploration in order to develop new therapeutic strategies. In conclusion, our study provides insights in pro-resolving pathways that limit inflammation and promote endothelial cell proliferation in experimental MA-ARDS. This information may be useful for the design of adjunctive treatments to enhance resolution after Plasmodium parasite killing by antimalarial drugs.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Chloë Thienpont
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Saeed Abdurahiman
- Laboratory of Mucosal Immunology, Translational Research in Gastro-Intestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Laboratory of Molecular Biology of Leukemia, Department of Human Genetics, VIB—KU Leuven, Leuven, Belgium
| | - Jan Cools
- Laboratory of Molecular Biology of Leukemia, Department of Human Genetics, VIB—KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Laboratory of Mucosal Immunology, Translational Research in Gastro-Intestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jeroen A. J. Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Anmol K, Akanksha H, Zhengguo X. Are CD45RO+ and CD45RA- genuine markers for bovine memory T cells? ANIMAL DISEASES 2022. [DOI: 10.1186/s44149-022-00057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractEffective vaccination induces memory T cells, which protect the host against pathogen re-infections. Therefore, detection of memory T cells is essential for evaluating vaccine efficacy, which was originally dependent on cytokine induction assays. Currently, two isoforms of CD45 tyrosine phosphatase, CD45RO expression and CD45RA exclusion (CD45RO+/ CD45RA-) are used extensively for detecting memory T cells in cattle. The CD45RO+/CD45RA- markers were first established in humans around three decades ago, and were adopted in cattle soon after. However, in the last two decades, some published data in humans have challenged the initial paradigm, and required multiple markers for identifying memory T cells. On the contrary, memory T cell detection in cattle still mostly relies on CD45RO+/CD45RA- despite some controversial evidence. In this review, we summarized the current literature to examine if CD45RO+/CD45RA- are valid markers for detecting memory T cells in cattle. It seems CD45RA and CD45RO (CD45RA/RO) as markers for identifying bovine memory T cells are questionable.
Collapse
|
3
|
Jonsson NN, Cox DK, Piper EK, Valdivieso EFM, Constantinoiu C, Jackson LA, Stear MJ, Ross EM, Tabor AE. Allelic Variation in Protein Tyrosine Phosphatase Receptor Type-C in Cattle Influences Erythrocyte, Leukocyte and Humoral Responses to Infestation With the Cattle Tick Rhipicephalus australis. Front Immunol 2021; 12:675979. [PMID: 34305905 PMCID: PMC8300432 DOI: 10.3389/fimmu.2021.675979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
The protein tyrosine phosphatase receptor type-C (PTPRC) gene encodes the common leukocyte antigen (CD45) receptor. CD45 affects cell adhesion, migration, cytokine signalling, cell development, and activation state. Four families of the gene have been identified in cattle: a taurine group (Family 1), two indicine groups (Families 2 and 4) and an African “taurindicine” group (Family 3). Host resistance in cattle to infestation with ticks is moderately heritable and primarily manifests as prevention of attachment and feeding by larvae. This study was conducted to describe the effects of PTPRC genotype on immune-response phenotypes in cattle that display a variable immune responsiveness to ticks. Thirty tick-naïve Santa-Gertrudis cattle (a stabilized composite of 5/8 taurine and 3/8 indicine) were artificially infested with ticks weekly for 13 weeks and ranked according to their tick counts. Blood samples were taken from control and tick-challenged cattle immediately before, then at 21 d after infestation and each subsequent week for 9 weeks. Assays included erythrocyte profiles, white blood cell counts, the percentage of cellular subsets comprising the peripheral blood mononuclear cell (PBMC) population, and the ability of PBMC to recognize and proliferate in response to stimulation with tick antigens in vitro. The cattle were PTPRC genotyped using a RFLP assay that differentiated Family 1 and 3 together (220 bp), from Family 2 (462 bp), and from Family 4 (486 bp). The PTPRC allele frequencies were Family 1/3 = 0.34; Family 2 = 0.47; Family 4 = 0.19. There was no significant association between PTPRC genotype and tick count. Each copy of the Family 1/3 allele significantly decreased total leucocyte count (WCC) and CD8+ cells. Increasing dosage of Family 2 alleles significantly increased red blood cell count (RCC), haematocrit (PCV), and haemoglobin (Hb) concentration in blood. Increasing dosage of the Family 4 allele was associated with increased WCC, reduced RCC, reduced PCV and reduced Hb. Homozygote Family 1/3 animals had consistently lower IgG1 in response to tick Ag than homozygote Family 2 animals. The PTPRC genotype influences the bovine immune response to ticks but was not associated with the observed variation in resistance to tick infestation in this study.
Collapse
Affiliation(s)
- Nicholas N Jonsson
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - David K Cox
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Emily K Piper
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| | - Emily F Mantilla Valdivieso
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Constantin Constantinoiu
- College of Public Health, Biomedical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Louise A Jackson
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Michael J Stear
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Elizabeth M Ross
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Ala E Tabor
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Raiter A, Zlotnik O, Lipovetsky J, Mugami S, Dar S, Lubin I, Sharon E, Cohen CJ, Yerushalmi R. A novel role for an old target: CD45 for breast cancer immunotherapy. Oncoimmunology 2021; 10:1929725. [PMID: 34104545 PMCID: PMC8158046 DOI: 10.1080/2162402x.2021.1929725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer subtypes have not shown significant response to current immunomodulatory therapies. Although most subtypes are treatable, triple negative breast cancer (TNBC), an aggressive highly metastatic cancer, comprising 10-20% of breast cancers, remains an unmet medical need. New strategies are needed in order to overcome flaws in the responsiveness to current TNBC therapies. Our aims were: first, to determine the efficacy of a novel immunomodulatory peptide, C24D, on TNBC and second, to elucidate the molecular mechanism by which C24D induces immune-modulating tumor killing. Using mass spectrometry analysis, we identified CD45 as the C24D binding receptor. In vitro and in vivo TNBC models were used to assess the efficacy of C24D in reversing TNBC-induced immunosuppression and in triggering immune-modulated tumor cell killing. The CD45 signal transduction pathway was evaluated by western blot and FACS analyses. We revealed that addition of PBMCs from healthy female donors to TNBC cells results in a cascade of suppressive CD45 intracellular signals. On binding to CD45's extra-cellular domain on TNBC-suppressed leukocytes, the C24D peptide re-activates the Src family of tyrosine kinases, resulting in specific tumor immune response. In vitro, immune reactivation by C24D results in an increase of CD69+ T and CD69+ NK cells, triggering specific killing of TNBC cells. In vivo, C24D induced CD8+ and activated CD56+ tumor infiltrated cells, resulting in tumor apoptosis. Our results should renew interest in molecules targeting CD45, such as the C24D peptide, as a novel strategy for TNBC immunotherapy.
Collapse
Affiliation(s)
- Annat Raiter
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Oran Zlotnik
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
- Surgery Department, Breast Cancer Unit, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Julia Lipovetsky
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Shany Mugami
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Shira Dar
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Ido Lubin
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Eran Sharon
- Surgery Department, Breast Cancer Unit, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Cyrille J. Cohen
- Laboratory of Tumor Immunotherapy, the Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Rinat Yerushalmi
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
- Breast Cancer Unit, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
5
|
Castella M, Caballero-Baños M, Ortiz-Maldonado V, González-Navarro EA, Suñé G, Antoñana-Vidósola A, Boronat A, Marzal B, Millán L, Martín-Antonio B, Cid J, Lozano M, García E, Tabera J, Trias E, Perpiña U, Canals JM, Baumann T, Benítez-Ribas D, Campo E, Yagüe J, Urbano-Ispizua Á, Rives S, Delgado J, Juan M. Point-Of-Care CAR T-Cell Production (ARI-0001) Using a Closed Semi-automatic Bioreactor: Experience From an Academic Phase I Clinical Trial. Front Immunol 2020; 11:482. [PMID: 32528460 PMCID: PMC7259426 DOI: 10.3389/fimmu.2020.00482] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Development of semi-automated devices that can reduce the hands-on time and standardize the production of clinical-grade CAR T-cells, such as CliniMACS Prodigy from Miltenyi, is key to facilitate the development of CAR T-cell therapies, especially in academic institutions. However, the feasibility of manufacturing CAR T-cell products from heavily pre-treated patients with this system has not been demonstrated yet. Here we report and characterize the production of 28 CAR T-cell products in the context of a phase I clinical trial for CD19+ B-cell malignancies (NCT03144583). The system includes CD4-CD8 cell selection, lentiviral transduction and T-cell expansion using IL-7/IL-15. Twenty-seven out of 28 CAR T-cell products manufactured met the full list of specifications and were considered valid products. Ex vivo cell expansion lasted an average of 8.5 days and had a mean transduction rate of 30.6 ± 13.44%. All products obtained presented cytotoxic activity against CD19+ cells and were proficient in the secretion of pro-inflammatory cytokines. Expansion kinetics was slower in patient's cells compared to healthy donor's cells. However, product potency was comparable. CAR T-cell subset phenotype was highly variable among patients and largely determined by the initial product. TCM and TEM were the predominant T-cell phenotypes obtained. 38.7% of CAR T-cells obtained presented a TN or TCM phenotype, in average, which are the subsets capable of establishing a long-lasting T-cell memory in patients. An in-depth analysis to identify individual factors contributing to the optimal T-cell phenotype revealed that ex vivo cell expansion leads to reduced numbers of TN, TSCM, and TEFF cells, while TCM cells increase, both due to cell expansion and CAR-expression. Overall, our results show for the first time that clinical-grade production of CAR T-cells for heavily pre-treated patients using CliniMACS Prodigy system is feasible, and that the obtained products meet the current quality standards of the field. Reduced ex vivo expansion may yield CAR T-cell products with increased persistence in vivo.
Collapse
Affiliation(s)
- Maria Castella
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Blood and Tissue Bank (BST), Barcelona, Spain
| | - Miguel Caballero-Baños
- Department of Immunology, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain.,Hospital Sant Joan de Déu, Barcelona, Spain
| | - Valentín Ortiz-Maldonado
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Guillermo Suñé
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Asier Antoñana-Vidósola
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna Boronat
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Immunology, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Berta Marzal
- Department of Immunology, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Lucía Millán
- Department of Immunology, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Beatriz Martín-Antonio
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Cid
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Hemotherapy and Hemostasis, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Miquel Lozano
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Hemotherapy and Hemostasis, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Enric García
- Blood and Tissue Bank (BST), Barcelona, Spain.,Apheresis Unit, Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
| | - Jaime Tabera
- Blood and Tissue Bank (BST), Barcelona, Spain.,Unit of Advanced Therapies, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Esteve Trias
- Unit of Advanced Therapies, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Unai Perpiña
- Stem Cells and Regenerative Medicine Laboratory, Department of Biomedical Sciences, Production and Validation Center of Advanced Therapies (Creatio), Universitat de Barcelona, Barcelona, Spain
| | - Josep Ma Canals
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Stem Cells and Regenerative Medicine Laboratory, Department of Biomedical Sciences, Production and Validation Center of Advanced Therapies (Creatio), Universitat de Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Tycho Baumann
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Daniel Benítez-Ribas
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Immunology, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Elías Campo
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain.,Department of Pathology, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomedical en Red de Cancer, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avancats, Barcelona, Spain
| | - Jordi Yagüe
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Immunology, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Álvaro Urbano-Ispizua
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain.,Department of Biomedicine, School of Medicine, Josep Carreras Leukemia Research Institute, Universitat de Barcelona, Barcelona, Spain.,Immunotherapy Unit Blood and Tissue Bank-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Susana Rives
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Julio Delgado
- Department of Hematology, Institut Clínic de Malalties Hematològiques i Oncològiques, Hospital Clínic de Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomedical en Red de Cancer, Barcelona, Spain
| | - Manel Juan
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Blood and Tissue Bank (BST), Barcelona, Spain.,Department of Immunology, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain.,Hospital Sant Joan de Déu, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain.,Immunotherapy Unit Blood and Tissue Bank-Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
CD45 in human physiology and clinical medicine. Immunol Lett 2018; 196:22-32. [PMID: 29366662 DOI: 10.1016/j.imlet.2018.01.009] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/20/2023]
Abstract
CD45 is an evolutionary highly conserved receptor protein tyrosine phosphatase exclusively expressed on all nucleated cells of the hematopoietic system. It is characterized by the expression of several isoforms, specific to a certain cell type and the developmental or activation status of the cell. CD45 is one of the key players in the initiation of T cell receptor signaling by controlling the activation of the Src family protein-tyrosine kinases Lck and Fyn. CD45 deficiency results in T- and B-lymphocyte dysfunction in the form of severe combined immune deficiency. It also plays a significant role in autoimmune diseases and cancer as well as in infectious diseases including fungal infections. The knowledge collected on CD45 biology is rather vast, but it remains unclear whether all findings in rodent immune cells also apply to human CD45. This review focuses on human CD45 expression and function and provides an overview on its ligands and role in human pathology.
Collapse
|
7
|
Devi M, Vijayalakshmi D, Dhivya K, Janane M. Memory T Cells (CD45RO) Role and Evaluation in Pathogenesis of Lichen Planus and Lichenoid Mucositis. J Clin Diagn Res 2017; 11:ZC84-ZC86. [PMID: 28658915 DOI: 10.7860/jcdr/2017/26866.9930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/17/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Memory T cells have the ability to survive in a quiescent state for longer periods and are responsible for the rapid responses on subsequent exposure to antigen. Analyzing memory T cells in Oral Lichen planus (OLP) and Lichenoid Mucositis (LM) suggest that these cells may play a role in the immunopathogenic mechanisms. AIM To identify and evaluate Memory T cells in Lichen Planus (LP), Lichenoid Mucositis (LM) and Normal Mucosa (NM) using CD45RO monoclonal antibody immunohistochemically. MATERIALS AND METHODS A total of 30 cases (15 cases of OLP and 15 cases of LM) clinically and histopathologically diagnosed, and 10 cases of NM were stained for CD45RO monoclonal antibody, immunohistochemically using Biotin Streptavidin method. Staining intensity of CD45RO expression was statistically analysed using Chi-square Test. RESULTS The present study demonstrated a higher expression of CD45RO in connective tissue layer of OLP (53.3% intense staining) when compared to LM (20% intense staining) and no intense staining in NM. The difference in staining intensity pattern between the study groups was statistically significant (p=0.014). CONCLUSION This study demonstrates a statistically significant rise in memory T cells in LP than in LM, indicating the possible different immunopathogenic mechanisms.
Collapse
Affiliation(s)
- Mani Devi
- Professor and Head, Department of Oral Pathology, Adhiparasakthi Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Dhanaraj Vijayalakshmi
- Professor, Department of Oral Pathology, Adhiparasakthi Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Kumar Dhivya
- Reader, Department of Oral Pathology, Adhiparasakthi Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Murali Janane
- Postgraduate Student, Department of Oral Pathology, Adhiparasakthi Dental College and Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Zikherman J, Parameswaran R, Hermiston M, Weiss A. The structural wedge domain of the receptor-like tyrosine phosphatase CD45 enforces B cell tolerance by regulating substrate specificity. THE JOURNAL OF IMMUNOLOGY 2013; 190:2527-35. [PMID: 23396948 DOI: 10.4049/jimmunol.1202928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CD45 is a receptor-like tyrosine phosphatase that positively regulates BCR signaling by dephosphorylating the inhibitory tyrosine of the Src family kinases. We showed previously that a single point mutation, E613R, introduced into the cytoplasmic membrane-proximal "wedge" domain of CD45 is sufficient to drive a lupus-like autoimmune disease on a susceptible genetic background. To clarify the molecular mechanism of this disease, we took advantage of a unique allelic series of mice in which the expression of CD45 is varied across a broad range. Although both E613R B cells and those with supraphysiologic CD45 expression exhibited hyperresponsive BCR signaling, they did so by opposite regulation of the Src family kinase Lyn. We demonstrated that the E613R allele of CD45 does not function as a hyper- or hypomorphic allele but rather alters the substrate specificity of CD45 for Lyn. Despite similarly enhancing BCR signaling, only B cells with supraphysiologic CD45 expression became anergic, whereas only mice harboring the E613R mutation developed frank autoimmunity on a susceptible genetic background. We showed that selective impairment of a Lyn-dependent negative-regulatory circuit in E613R B cells drove autoimmunity in E613R mice. This demonstrates that relaxing negative regulation of BCR signaling, rather than enhancing positive regulation, is critical for driving autoimmunity in this system.
Collapse
Affiliation(s)
- Julie Zikherman
- Division of Rheumatology, Department of Medicine, Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
9
|
Marozzi C, Bertoni F, Randelli E, Buonocore F, Timperio AM, Scapigliati G. A monoclonal antibody for the CD45 receptor in the teleost fish Dicentrarchus labrax. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:342-353. [PMID: 22504161 DOI: 10.1016/j.dci.2012.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 05/31/2023]
Abstract
The CD45 tyrosine phosphatase plays an important role in regulating T lymphocyte activation in vertebrate species. In this study we describe some molecular and functional features of the CD45 receptor molecule from the European sea bass Dicentrarchus labrax. Following immunization with fixed sea bass thymocytes, we obtained a murine monoclonal antibody (mAb) able to stain fish leucocytes both alive, by immunofluorescence of thymus and mucosal tissues, and fixed, by in situ immunohistochemistry of tissue sections. The selected IgG(2) mAb (DLT22) was able to recognise by western blots polypeptides mainly at 180 kDa and 130 kDa in thymus, spleen, intestine and gill leucocyte. Accordingly, a 130 kDa polypeptide immunoprecipitated with DLT22 from thymocytes and analysed by nano-RP-HPLC-ESI-MS/MS, gave peptide sequences homologous to Fugu CD45, that were employed for the homology cloning of a partial sea bass CD45 cDNA sequence. This cDNA sequence was employed to measure by quantitative PCR the transcription of the CD45 gene both in unstimulated and in in vitro stimulated leucocytes, showing that the gene transcription was specifically modulated by LPS, ConA, PHA, IL-1, and poly I:C. When splenocytes were stimulated in vitro with ConA and PHA, a cell proliferation paralleled by an increase of DLT22-positive leucocytes was also observed. These data indicate that the DLT22 mAb recognizes a putative CD45 molecule in sea bass, documenting the presence of CD45-like developing lymphocytes in thymus and CD45-associated functional stages of lymphocytes in this species, thus dating back to teleost fish the functional activities of these cell populations in vertebrates.
Collapse
Affiliation(s)
- Catia Marozzi
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Beemiller P, Krummel MF. Mediation of T-cell activation by actin meshworks. Cold Spring Harb Perspect Biol 2010; 2:a002444. [PMID: 20702599 DOI: 10.1101/cshperspect.a002444] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although the actin cytoskeleton and T-cell receptor (TCR) signaling complexes are seemingly distinct molecular structures, they are tightly integrated in T cells. The signaling pathways initiated by TCRs binding to peptide MHC complexes are extensively influenced by the actin cytoskeletal activities of the motile phase before TCR signaling, the signalosome scaffolding function of the cytoskeleton, and the translocation of signaling clusters that precedes the termination of signaling at these complexes. As these three successive phases constitute essentially all the steps consequent to immune synapse formation, it has become clear that the substantial physical forces and signaling interactions generated by the actin cytoskeleton dominate the signaling life cycle of TCR signalosomes. We discuss the contributions of the actin cytoskeleton to TCR signaling phases and model some remaining questions about how specific cytoskeletal factors regulate TCR signaling outcomes.
Collapse
Affiliation(s)
- Peter Beemiller
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143-0511, USA
| | | |
Collapse
|
11
|
Wu Z, Yates AL, Hoyne GF, Goodnow CC. Consequences of increased CD45RA and RC isoforms for TCR signaling and peripheral T cell deficiency resulting from heterogeneous nuclear ribonucleoprotein L-like mutation. THE JOURNAL OF IMMUNOLOGY 2010; 185:231-8. [PMID: 20505149 DOI: 10.4049/jimmunol.0903625] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD45 is the most abundant protein tyrosine phosphatase in the plasma membrane of T cells and serves a critical role in TCR signaling. Different CD45 isoforms are made by alternative mRNA splicing depending on the stage of T cell development and activation, yet their role remains unclear. Expression of CD45RA and RC isoforms is increased 20- to 200-fold on T cells from thunder mice with a loss-of-function mutation in the RNA-binding protein, heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL), although total CD45 expression is unaltered. In this study, we test the hypothesis that this shift in CD45 isoform expression alters TCR signaling, thymic selection, and accumulation of peripheral T cells. There was no discernable effect of the change in CD45 isoform expression upon Lck phosphorylation or T cell positive and negative selection, whereas these indices were strongly affected by a decrease in the overall amount of CD45 in Ptprc mutant animals. The one exception to this conclusion was in thymocytes from Ptprc(loc/loc) animals with 4% of normal CD45 protein levels, where Lck505 phosphorylation was increased 25% in Hnrpll mutant cells, suggesting that high m.w. CD45 isoforms had lower Lck505 phosphatase activity in this context. In T cells with no CD45 protein, hnRNPLL mutation still diminished peripheral T cell accumulation, demonstrating that hnRNPLL regulates T cell longevity independently from its effects on CD45 splicing.
Collapse
Affiliation(s)
- Zuopeng Wu
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
12
|
Zikherman J, Jenne C, Watson S, Doan K, Raschke W, Goodnow CC, Weiss A. CD45-Csk phosphatase-kinase titration uncouples basal and inducible T cell receptor signaling during thymic development. Immunity 2010; 32:342-54. [PMID: 20346773 PMCID: PMC2865198 DOI: 10.1016/j.immuni.2010.03.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 11/23/2009] [Accepted: 12/29/2009] [Indexed: 12/18/2022]
Abstract
The kinase-phosphatase pair Csk and CD45 reciprocally regulate phosphorylation of the inhibitory tyrosine of the Src family kinases Lck and Fyn. T cell receptor (TCR) signaling and thymic development require CD45 expression but proceed constitutively in the absence of Csk. Here, we show that relative titration of CD45 and Csk expression reveals distinct regulation of basal and inducible TCR signaling during thymic development. Low CD45 expression is sufficient to rescue inducible TCR signaling and positive selection, whereas high expression is required to reconstitute basal TCR signaling and beta selection. CD45 has a dual positive and negative regulatory role during inducible but not basal TCR signaling. By contrast, Csk titration regulates basal but not inducible signaling. High physiologic expression of CD45 is thus required for two reasons-to downmodulate inducible TCR signaling during positive selection and to counteract Csk during basal TCR signaling.
Collapse
Affiliation(s)
- Julie Zikherman
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, UCSF, San Francisco, CA, Department of Medicine, UCSF, San Francisco, CA
| | - Craig Jenne
- Department of Microbiology & Immunology, UCSF, San Francisco, CA
| | - Susan Watson
- Department of Microbiology & Immunology, UCSF, San Francisco, CA
| | - Kristin Doan
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, UCSF, San Francisco, CA, Department of Medicine, UCSF, San Francisco, CA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA
| | - William Raschke
- Department of Microbiology & Immunology, UCSF, San Francisco, CA, Sidney Kimmel Cancer Center, San Diego, CA, Virogenics Inc., San Diego, CA
| | - Christopher C. Goodnow
- John Curtin School of Medical Research, Australian Phenomics Facility, The Australian National University, Canberra, Australia
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, UCSF, San Francisco, CA, Department of Medicine, UCSF, San Francisco, CA
- Howard Hughes Medical Institute, UCSF, San Francisco, CA
| |
Collapse
|
13
|
Dupéré-Minier G, Desharnais P, Bernier J. Involvement of tyrosine phosphatase CD45 in apoptosis. Apoptosis 2010; 15:1-13. [PMID: 19856105 DOI: 10.1007/s10495-009-0413-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CD45 is a transmembrane molecule with phosphatase activity expressed in all nucleated haematopoietic cells and plays a major role in immune cells. It is a protein tyrosine phosphatase that is essential for antigen-receptor-mediated signal transduction by regulating Src family members that initiate TCR signaling. CD45 is being attributed a new emerging role as an apoptosis regulator. Cross-linking of the extracellular portion of the CD45 by monoclonal antibodies and by galectin-1, can induce apoptosis in T and B cells. Interestingly, this phosphatase has also been involved in nuclear apoptosis induced by mitochondrial perturbing agents. Furthermore, it is involved in apoptosis induced by HIV-1. CD45 defect is implicated in various diseases such as severe-combined immunodeficiency disease (SCID), acquired immunodeficiency syndrome (AIDS), lymphoma and multiple myelomas. The understanding of the mechanisms by which CD45 regulates apoptosis would be very useful in disease treatment.
Collapse
|
14
|
Beveridge NER, Price DA, Casazza JP, Pathan AA, Sander CR, Asher TE, Ambrozak DR, Precopio ML, Scheinberg P, Alder NC, Roederer M, Koup RA, Douek DC, Hill AVS, McShane H. Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+ memory T lymphocyte populations. Eur J Immunol 2007; 37:3089-100. [PMID: 17948267 PMCID: PMC2365909 DOI: 10.1002/eji.200737504] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the search for effective vaccines against intracellular pathogens such as HIV, tuberculosis and malaria, recombinant viral vectors are increasingly being used to boost previously primed T cell responses. Published data have shown prime-boost vaccination with BCG-MVA85A (modified vaccinia virus Ankara expressing antigen 85A) to be highly immunogenic in humans as measured by ex vivo IFN-gamma ELISPOT. Here, we used polychromatic flow cytometry to investigate the phenotypic and functional profile of these vaccine-induced Mycobacterium tuberculosis (M.tb) antigen 85A-specific responses in greater detail. Promisingly, antigen 85A-specific CD4(+) T cells were found to be highly polyfunctional, producing IFN-gamma, TNF-alpha, IL-2 and MIP-1beta. Surface staining showed the responding CD4(+) T cells to be relatively immature (CD45RO(+) CD27(int)CD57(-)); this observation was supported by the robust proliferative responses observed following antigenic stimulation. Furthermore, these phenotypic and functional properties were independent of clonotypic composition and epitope specificity, which was maintained through the different phases of the vaccine-induced immune response. Overall, these data strongly support the use of MVA85A in humans as a boosting agent to expand polyfunctional M.tb-specific CD4(+) T cells capable of significant secondary responses.
Collapse
Affiliation(s)
- Natalie E R Beveridge
- Centre for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
McNeill L, Salmond RJ, Cooper JC, Carret CK, Cassady-Cain RL, Roche-Molina M, Tandon P, Holmes N, Alexander DR. The differential regulation of Lck kinase phosphorylation sites by CD45 is critical for T cell receptor signaling responses. Immunity 2007; 27:425-37. [PMID: 17719247 DOI: 10.1016/j.immuni.2007.07.015] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 05/20/2007] [Accepted: 07/03/2007] [Indexed: 01/27/2023]
Abstract
The molecular mechanisms whereby the CD45 tyrosine phosphatase (PTPase) regulates T cell receptor (TCR) signaling responses remain to be elucidated. To investigate this question, we have reconstituted CD45 (encoded by Ptprc)-deficient mice, which display severe defects in thymic development, with five different expression levels of transgenic CD45RO, or with mutant PTPase null or PTPase-low CD45R0. Whereas CD45 PTPase activity was absolutely required for the reconstitution of thymic development, only 3% of wild-type CD45 activity restored T cell numbers and normal cytotoxic T cell responses. Lowering the CD45 expression increased CD4 lineage commitment. Peripheral T cells with very low activity of CD45 phosphatase displayed reduced TCR signaling, whereas intermediate activity caused hyperactivation of CD4+ and CD8+ T cells. These results are explained by a rheostat mechanism whereby CD45 differentially regulates the negatively acting pTyr-505 and positively acting pTyr-394 p56(lck) tyrosine kinase phosphorylation sites. We propose that high wild-type CD45 expression is necessary to dephosphorylate p56(lck) pTyr-394, suppressing CD4 T+ cell lineage commitment and hyperactivity.
Collapse
Affiliation(s)
- Louise McNeill
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tu Z, Bozorgzadeh A, Crispe IN, Orloff MS. The activation state of human intrahepatic lymphocytes. Clin Exp Immunol 2007; 149:186-93. [PMID: 17511774 PMCID: PMC1942038 DOI: 10.1111/j.1365-2249.2007.03415.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The immune tolerance induced by the liver as an allograft is difficult to reconcile with the evidence that the liver selectively accumulates activated T cells from the circulation. However, much of this information is based on murine liver lymphocytes that were isolated using enzymatic digestion. In the present study we made use of a novel resource, the lymphocytes isolated during the perfusion of living donor liver lobe prior to transplantation. These healthy human liver lymphocytes displayed surface markers indicating a high degree of activation of natural killer cells, CD56(+) T cells, CD4(+) T cells and CD8(+) T cells. These properties were independent of enzymatic treatment or the details of cell isolation. We conclude that the healthy human liver is a site of intense immunological activity.
Collapse
Affiliation(s)
- Z Tu
- The Division of Solid Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
17
|
Leitenberg D, Falahati R, Lu DD, Takeda A. CD45-associated protein promotes the response of primary CD4 T cells to low-potency T-cell receptor (TCR) stimulation and facilitates CD45 association with CD3/TCR and lck. Immunology 2007; 121:545-54. [PMID: 17428310 PMCID: PMC2265975 DOI: 10.1111/j.1365-2567.2007.02602.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although it is clear that the CD45 tyrosine phosphatase is required for efficient T-cell activation and T-cell development, the factors that regulate CD45 function remain uncertain. Previous data have indicated that there is an association of CD45 with CD4 and the T-cell receptor (TCR) complex controlled by the variable ectodomain of CD45 and, following activation, by high- and low-potency peptides. This suggests that controlling substrate access to CD45 may be an important regulatory mechanism during T-cell activation. In the present study we have examined the role of the transmembrane adapter-like molecule CD45-associated protein (CD45-AP) in regulating the association of CD45 with CD3/TCR and lck, and in regulating primary CD4(+) T-lymphocyte activation. In CD4(+) T cells from CD45-AP-deficient mice, coimmunoprecipitation of CD45 with the CD3/TCR complex, in addition to lck, is significantly reduced compared with wild-type T cells. Functionally, this correlates with a decreased proliferative response, a decrease in interleukin (IL)-2 production, and a decrease in calcium flux upon stimulation with a low-potency altered peptide ligand. However, the response of CD45-AP-deficient T cells to stimulation with a high-avidity agonist peptide was largely intact, except for a modest decrease in IL-2 production. These data suggest that CD45-AP promotes or stabilizes the association of CD45 with substrates and regulates the threshold of T-cell activation.
Collapse
Affiliation(s)
- David Leitenberg
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | | | |
Collapse
|
18
|
Kapp K, Siemens J, Weyrich P, Schulz JB, Häring HU, Lammers R. Extracellular domain splice variants of a transforming protein tyrosine phosphatase alpha mutant differentially activate Src-kinase dependent focus formation. Genes Cells 2007; 12:63-73. [PMID: 17212655 DOI: 10.1111/j.1365-2443.2006.01034.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extracellular domains of receptor-type protein-tyrosine phosphatases (PTPs) contain a diverse range of protein modules like fibronectin- or immunoglobulin-like structures. These are frequently expressed in a tissue- and development specific manner as splice variants. The extracellular domain of PTPalpha is rather short and heavily glycosylated. Two splice variants are known, which it differs by an exon encoding nine amino acids within the extracellular domain. We have analyzed the expression pattern of both variants and found that the smaller form is ubiquitously expressed while the larger form was found at an increased level only in brain, some skeletal muscle and differentiating cells like granule neurons, adipocytes and myotubes. The phosphatase activity of both forms was similar when tested in vitro using para-nitrophenylphosphate as a substrate and in a transient expression system with the substrates c-Fyn or c-Src. In a quantitative focus formation assay the capability of the larger form to activate Src-dependent focus formation in intact cells was increased more than twofold whereas the capability to dephosphorylate the insulin receptor in a BHK cell system was similar. We conclude that the two splice variants of PTPalpha are expressed differentially and regulate c-Src activity in different ways.
Collapse
Affiliation(s)
- Katja Kapp
- Medical Clinic IV, Otfried-Müller Str.10, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Falahati R, Leitenberg D. Changes in the Role of the CD45 Protein Tyrosine Phosphatase in Regulating Lck Tyrosine Phosphorylation during Thymic Development. THE JOURNAL OF IMMUNOLOGY 2007; 178:2056-64. [PMID: 17277109 DOI: 10.4049/jimmunol.178.4.2056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CD45-dependent dephosphorylation of the negative regulatory C-terminal tyrosine of the Src family kinase Lck, promotes efficient TCR signal transduction. However, despite the role of CD45 in positively regulating Lck activity, the distinct phenotypes of CD45 and Lck/Fyn-deficient mice suggest that the role of CD45 in promoting Lck activity may be differentially regulated during thymocyte development. In this study, we have found that the C-terminal tyrosine of Lck (Y505) is markedly hyperphosphorylated in total thymocytes from CD45-deficient mice compared with control animals. In contrast, regulation of the Lck Y505 phosphorylation in purified, double-negative thymocytes is relatively unaffected in CD45-deficient cells. These changes in the role of CD45 in regulating Lck phosphorylation during thymocyte development correlate with changes in coreceptor expression and the presence of coreceptor-associated Lck. Biochemical analysis of coreceptor-associated and nonassociated Lck in thymocytes, and in cell lines varying in CD4 and CD45 expression, indicate that CD45-dependent regulation of Lck Y505 phosphorylation is most evident within the fraction of Lck that is coreceptor associated. In contrast, Lck Y505 phosphorylation that is not coreceptor associated is less affected by the absence of CD45. These data define distinct pools of Lck that are differentially regulated by CD45 during T cell development.
Collapse
Affiliation(s)
- Rustom Falahati
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037
| | | |
Collapse
|
20
|
González PA, Carreño LJ, Figueroa CA, Kalergis AM. Modulation of immunological synapse by membrane-bound and soluble ligands. Cytokine Growth Factor Rev 2007; 18:19-31. [PMID: 17344089 DOI: 10.1016/j.cytogfr.2007.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient adaptive immune response should prevent pathogen infections and tumor growth without causing significant damage to host constituents. A crucial event determining the balance between tolerance and immunity is antigen recognition by T cells on the surface of antigen presenting cells (APC). Several molecular contacts at the interface between T cells and APCs contribute to define the nature of the adaptive immune response against a particular antigen. Upon TCR engagement by a peptide-MHC complex (pMHC) on the surface of an APC, a specialized supra-molecular structure known as immunological synapse (IS) assembles at the interface between these two cells. This structure involves massive re-distribution of membrane proteins, including TCR and pMHC complexes, as well as co-stimulatory and adhesion molecules. Furthermore, IS assembly leads to several important intracellular events necessary for T cell activation, such as recruitment of signaling molecules and cytoskeleton rearrangements. Because IS assembly leads to major consequences on the function of T cells, several studies have attempted to identify both soluble and membrane-bound molecules that could contribute to modulate the IS function. Here we describe recent literature on the regulation of IS assembly and modulation by TCR/pMHC binding kinetics, chemokines and cytokines focusing on their role at controlling the balance between adaptive immunity and tolerance.
Collapse
Affiliation(s)
- Pablo A González
- Millenniun Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | | | | | | |
Collapse
|
21
|
Ishikawa H, Tsuyama N, Obata M, M Kawano M. Mitogenic signals initiated via interleukin-6 receptor complexes in cooperation with other transmembrane molecules in myelomas. ACTA ACUST UNITED AC 2007; 46:55-66. [PMID: 17142955 DOI: 10.3960/jslrt.46.55] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytokines exert multiple biological functions through binding to their specific receptors that triggers activation of intracellular signaling cascades. The cytokine-mediated signals may produce variable and even opposing effects on different cell types, depending on cellular context that is also dictated by the differentiation stage of the cell. Multiple myeloma (MM) is a monoclonal proliferative disorder of human plasma cells. Myeloma cells appear to include mixed subpopulations in accordance with the expression of their surface antigens, such as CD45. Although interleukin-6 (IL-6) is widely accepted as the most relevant growth factor for myeloma cells, only a few subpopulations of tumor cells, such as CD45(+) immature cells, proliferate in response to IL-6. The activation of both signal transducer and activator of transcription (STAT) 3 and extracellular signal-regulated kinase (ERK) 1/2 is not sufficient for IL-6-induced proliferation of myeloma cells that requires the src family kinase activation associated with a rapid translocation of CD45 to lipid rafts. The CD45 expression renders myeloma cells competent for not only mitogenic but also apoptotic stimuli, resulting in either proliferation or apoptosis of CD45(+) myeloma cells dependently upon the circumstantial stimuli. In contrast, in CD45(-) myeloma cells highly expressing IL-6 receptor alpha chain (IL-6Ralpha), IL-6Ralpha and insulin-like growth factor (IGF)-I receptors exist on plasma membrane in close proximity, facilitating efficient assembly of two receptors in response to IL-6. The synergistic effects of IL-6Ralpha on IGF-I receptor-mediated signals provide a novel insight into a Jak-independent IL-6 signaling mechanism of receptor cross talk in human myeloma cells. Furthermore, the signaling cross talk between the cytokine receptor, IL-6Ralpha/gp130 and the growth factor receptor tyrosine kinase, fibroblast growth factor receptor (FGFR) 3 appears in myeloma cells carrying t(4;14)(p16.3;q32). In this review we propose several mechanisms of the IL-6-induced cell proliferation that is strictly dependent upon the cellular context in myelomas.
Collapse
Affiliation(s)
- Hideaki Ishikawa
- Department of Bio-Signal Analysis, Applied Medical Engineering Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | | | | | | |
Collapse
|
22
|
Watson AR, Lee WT. Defective T cell receptor-mediated signal transduction in memory CD4 T lymphocytes exposed to superantigen or anti-T cell receptor antibodies. Cell Immunol 2006; 242:80-90. [PMID: 17083922 PMCID: PMC1829409 DOI: 10.1016/j.cellimm.2006.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/22/2006] [Accepted: 09/25/2006] [Indexed: 11/28/2022]
Abstract
Lymphocytes must promote protective immune responses while still maintaining self-tolerance. Stimulation through the T cell receptor (TCR) can lead to distinct responses in naive and memory CD4 T cells. Whereas peptide antigen stimulates both naive and memory T cells, soluble anti-CD3 antibodies and bacterial superantigens stimulate only naive T cells to proliferate and secrete cytokines. Further, superantigens, like staphylococcal enterotoxin B (SEB), cause memory T cells to become anergic while soluble anti-CD3 does not. In the present report, we show that signal transduction through the TCR is impaired in memory cells exposed to either anti-CD3 or SEB. A block in signaling leads to impaired activation of the kinase ZAP-70 so that downstream signals and cell proliferation do not occur. We further show that the signaling defect is unique to each agent. In anti-CD3-treated memory T cells, the src kinase Lck is only transiently activated and does not phosphorylate and activate ZAP-70. In SEB-treated memory T cells, ZAP-70 does not interact with the TCR/CD3 complex to become accessible to Lck. Finally, we provide evidence that alternative signaling pathways are initiated in SEB-treated memory cells. Altered signaling, indicated by an elevation in activity of the src kinase Fyn, may be responsible for memory cell anergy caused by SEB. Thus, differentiation of naive T cells into memory cells is accompanied by alterations in TCR-mediated signaling that can promote heightened recall immunity or specific tolerance.
Collapse
Affiliation(s)
- Andrew R.O. Watson
- The Department of Biomedical Sciences, The School of Public Health, The University at Albany, Albany, New York 12201-0509
| | - William T. Lee
- The Department of Biomedical Sciences, The School of Public Health, The University at Albany, Albany, New York 12201-0509
- The Laboratory of Clinical and Experimental Immunology and Endocrinology, The Wadsworth Center, Albany, New York 12201-2002
- * Corresponding author. Fax: 1-518-474-8366, Email Address: (W.T. Lee)
| |
Collapse
|
23
|
Granum S, Sundvold-Gjerstad V, Dai KZ, Kolltveit KM, Hildebrand K, Huitfeldt HS, Lea T, Spurkland A. Structure function analysis of SH2D2A isoforms expressed in T cells reveals a crucial role for the proline rich region encoded by SH2D2A exon 7. BMC Immunol 2006; 7:15. [PMID: 16839418 PMCID: PMC1553471 DOI: 10.1186/1471-2172-7-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 07/13/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The activation induced T cell specific adapter protein (TSAd), encoded by SH2D2A, interacts with and modulates Lck activity. Several transcript variants of TSAd mRNA exist, but their biological significance remains unknown. Here we examined expression of SH2D2A transcripts in activated CD4+ T cells and used the SH2D2A variants as tools to identify functionally important regions of TSAd. RESULTS TSAd was found to interact with Lck in human CD4+ T cells ex vivo. Three interaction modes of TSAd with Lck were identified. TSAd aa239-256 conferred binding to the Lck-SH3 domain, whereas one or more of the four tyrosines within aa239-334 encoded by SH2D2A exon 7 was found to confer interaction with the Lck-SH2-domain. Finally the TSAd-SH2 domain was found to interact with Lck. The SH2D2A exon 7 encoding TSAd aa 239-334 was found to harbour information essential not only for TSAd interaction with Lck, but also for TSAd modulation of Lck activity and translocation of TSAd to the nucleus. All five SH2D2A transcripts were found to be expressed in CD3 stimulated CD4+ T cells. CONCLUSION These data show that TSAd and Lck may interact through several different domains and that Lck TSAd interaction occurs in CD4+ T cells ex vivo. Alternative splicing of exon 7 encoding aa239-334 results in loss of the majority of protein interaction motives of TSAd and yields truncated TSAd molecules with altered ability to modulate Lck activity. Whether TSAd is regulated through differential alternative splicing of the SH2D2A transcript remains to be determined.
Collapse
Affiliation(s)
- Stine Granum
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| | - Vibeke Sundvold-Gjerstad
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| | - Ke-Zheng Dai
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| | | | - Kjersti Hildebrand
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| | - Henrik S Huitfeldt
- Institute of Pathology, Rikshospitalet University Hospital, N-0027, Norway
| | - Tor Lea
- Institute of Immunology, Rikshospitalet University Hospital, N-0027, Norway
| | - Anne Spurkland
- Department of Anatomy, Institute of Basic Medical Sciences, Box 1105, Blindern, N-0317 Oslo, Norway
| |
Collapse
|
24
|
Abstract
CD45 has been recognized as an important player in regulating signalling in lymphocytes. However, compared with tyrosine kinases, phosphatases are still poorly understood in terms of the details of their specificity and regulation. Here, the recent progress in understanding the biology of the first recognized receptor tyrosine phosphatase, CD45, is reviewed.
Collapse
Affiliation(s)
- Nick Holmes
- Division of Immunology, Department of Pathology, Cambridge University, UK.
| |
Collapse
|
25
|
Dawes R, Petrova S, Liu Z, Wraith D, Beverley PCL, Tchilian EZ. Combinations of CD45 isoforms are crucial for immune function and disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:3417-25. [PMID: 16517710 PMCID: PMC2619577 DOI: 10.4049/jimmunol.176.6.3417] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Expression of the CD45 Ag in hemopoietic cells is essential for normal development and function of lymphocytes, and both mice and humans lacking expression exhibit SCID. Human genetic variants of CD45, the exon 4 C77G and exon 6 A138G alleles, which alter the pattern of CD45 isoform expression, are associated with autoimmune and infectious diseases. We constructed transgenic mice expressing either an altered level or combination of CD45 isoforms. We show that the total level of CD45 expressed is crucial for normal TCR signaling, lymphocyte proliferation, and cytokine production. Most importantly, transgenic lines with a normal level, but altered combinations of CD45 isoforms, CD45(RABC/+) and CD45(RO/+) mice, which mimic variant CD45 expression in C77G and A138G humans, show more rapid onset and increased severity of experimental autoimmune encephalomyelitis. CD45(RO/+) cells produce more TNF-alpha and IFN-gamma. Thus, for the first time, we have shown experimentally that it is the combination of CD45 isoforms that affects immune function and disease.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cells, Cultured
- Cytokines/biosynthesis
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Leukocyte Common Antigens/genetics
- Leukocyte Common Antigens/immunology
- Leukocyte Common Antigens/metabolism
- Lymphocyte Activation/immunology
- Mice
- Mice, Transgenic
- Myelin Proteins
- Myelin-Associated Glycoprotein/pharmacology
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/pharmacology
- Protein Isoforms/deficiency
- Protein Isoforms/genetics
- Protein Isoforms/immunology
- Protein Isoforms/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Ritu Dawes
- The Edward Jenner Institute for Vaccine Research, Compton, United Kingdom
| | - Svetla Petrova
- The Edward Jenner Institute for Vaccine Research, Compton, United Kingdom
| | - Zhe Liu
- The Edward Jenner Institute for Vaccine Research, Compton, United Kingdom
| | - David Wraith
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Elma Z. Tchilian
- The Edward Jenner Institute for Vaccine Research, Compton, United Kingdom
| |
Collapse
|
26
|
Tardif MR, Tremblay MJ. LFA-1 is a key determinant for preferential infection of memory CD4+ T cells by human immunodeficiency virus type 1. J Virol 2005; 79:13714-24. [PMID: 16227291 PMCID: PMC1262559 DOI: 10.1128/jvi.79.21.13714-13724.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Memory CD4+ T cells are considered a stable latent reservoir for human immunodeficiency virus type 1 (HIV-1) and a barrier to eradication of this retroviral infection in patients under therapy. It has been shown that memory CD4+ T cells are preferentially infected with HIV-1, but the exact mechanism(s) responsible for this higher susceptibility remains obscure. Previous findings indicate that incorporation of host-derived intercellular adhesion molecule 1 (ICAM-1) in HIV-1 increases virus infectivity. To measure the putative involvement of virus-anchored ICAM-1 in the preferential infection of memory cells by HIV-1, quiescent and activated naive and memory T-cell subsets were exposed to isogenic virions either lacking or bearing ICAM-1. Memory CD4+ T cells were found to be more susceptible than naive CD4+ T cells to infection with ICAM-1-bearing virions, as exemplified by a more important virus replication, an increase in integrated viral DNA copies, and a more efficient entry process. Interactions between virus-associated host ICAM-1 and cell surface LFA-1 under a cluster formation seem to be responsible for the preferential HIV-1 infection of the memory cell subset. Altogether, these data shed light on a potential mechanism by which HIV-1 preferentially targets long-lived memory CD4+ T cells.
Collapse
Affiliation(s)
- Mélanie R Tardif
- Research Center in Infectious Diseases, CHUL Research Center, and Faculty of Medicine, Laval University, Quebec, Canada
| | | |
Collapse
|
27
|
Abstract
Memory T cells exhibit low activation thresholds and mediate rapid effector responses when recalled by antigen; contrasting the higher activation threshold, slower responses and predominant IL-2 production by naive T cells. While the sequence of intracellular events coupling the T cell-receptor (TCR) to naive T cell activation is well characterized, biochemical control of memory T cell differentiation and function remains undefined. In this review, we will discuss recent developments in T cell-receptor signal transduction as they pertain to memory T cells, and will discuss how signal dampening may drive memory generation, and more efficient spatial organization of signaling molecules may promote rapid recall responses.
Collapse
Affiliation(s)
- Meena R Chandok
- Division of Transplantation, Department of Surgery, University of Maryland School of Medicine, MSTF Building, Room 400, 685 W. Baltimore St., Baltimore, MD 21201, USA
| | | |
Collapse
|
28
|
Li FJ, Tsuyama N, Ishikawa H, Obata M, Abroun S, Liu S, Otsuyama KI, Zheng X, Ma Z, Maki Y, Kawano MM. A rapid translocation of CD45RO but not CD45RA to lipid rafts in IL-6-induced proliferation in myeloma. Blood 2005; 105:3295-302. [PMID: 15626731 DOI: 10.1182/blood-2004-10-4083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractCD45, a receptor-type tyrosine phosphatase, is required for interleukin-6 (IL-6)-induced proliferation in human myeloma cells, which express the shortest isoform, CD45RO, but not the longest isoform, CD45RA. Here, we showed that IL-6 induced the translocation of CD45 to lipid rafts in an isoform-dependent manner. In myeloma cells, CD45RO was translocated to lipid rafts more rapidly than CD45RB, but exogenously expressed CD45RA was not translocated. When an IL-6Rα-transfected B-cell line was stimulated with IL-6, CD45RA was not translocated, although CD45RB was. We further confirmed that the translocated CD45 bound to IL-6Rα, Lyn, and flotillin-2, and this was followed by the dephosphorylation of the negative regulatory Tyr507 of Lyn. CD45 also bound to phosphoprotein associated with glycosphingolipid-enriched microdomains (PAGs), which were subsequently dephosphorylated, resulting in the release of C-terminal src kinase (Csk) from lipid rafts. Therefore, these results indicate that a rapid translocation of CD45RO to lipid rafts may be responsible for IL-6-induced proliferation, and that the change from CD45RA to CD45RO confers the ability to respond to IL-6 in human myeloma cells. (Blood. 2005;105:3295-3302)
Collapse
Affiliation(s)
- Fu-Jun Li
- Department of Bio-Signal Analysis, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang Y, Johnson P. Expression of CD45 Lacking the Catalytic Protein Tyrosine Phosphatase Domain Modulates Lck Phosphorylation and T Cell Activation. J Biol Chem 2005; 280:14318-24. [PMID: 15687496 DOI: 10.1074/jbc.m413265200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the second protein tyrosine phosphatase domain (D2) in two-domain protein tyrosine phosphatases (PTP) is not well understood. In CD45, D2 can interact with the catalytic domain (D1) and stabilize its activity. Although D2 itself has no detectable catalytic activity, it can bind substrate and may influence the substrate specificity of CD45. To further explore the function of D2 in T cells, a full-length construct of CD45 lacking the D1 catalytic domain (CD45RABC-D2) was expressed in CD45+ and CD45- Jurkat T cells. In CD45- Jurkat T cells, CD45RABC-D2 associated with Lck but, unlike its active counterpart CD45RABC, did not restore the induction of tyrosine phosphorylation or CD69 expression upon T cell receptor (TCR) stimulation. Expression of CD45RABC-D2 in CD45+ Jurkat T cells resulted in its association with Lck, increased the phosphorylation state of Lck, and reduced T cell activation. TCR-induced tyrosine phosphorylation was delayed, and although MAPK phosphorylation and CD69 expression were not significantly affected, the calcium signal and IL2 production were severely reduced. This indicates that the non-catalytic domains of CD45 can interact with Lck in T cells. CD45RABC-D2 acts as a dominant negative resulting in an increase in Lck phosphorylation and a preferential loss of the calcium signaling pathway, but not the MAPK pathway, upon TCR signaling. This finding suggests that, in addition to their established roles in the initiation of TCR signaling, CD45 and Lck may also influence the type of TCR signal generated.
Collapse
Affiliation(s)
- Yanni Wang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
30
|
McNeill L, Cassady RL, Sarkardei S, Cooper JC, Morgan G, Alexander DR. CD45 isoforms in T cell signalling and development. Immunol Lett 2004; 92:125-34. [PMID: 15081536 DOI: 10.1016/j.imlet.2003.10.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 10/24/2003] [Indexed: 12/31/2022]
Abstract
The CD45 phosphotyrosine phosphatase is expressed on T cells as multiple isoforms due to alternative splicing. The panoply of isoforms expressed is tightly regulated during T cell development and on mature peripheral T cell subsets following activation. We describe the analysis of comparative CD45 isoform expression levels on thymic and T cell subsets from the C57BL/6 mouse. Only four isoforms were expressed at significant protein levels: CD45R0, CD45RB, CD45RBC and CD45RABC, although trace amounts of others may be present. The expression of CD45RBC was about nine-fold higher on CD8(+) than on CD4(+) peripheral T cells, whereas CD45R0 expression was higher on CD4(+) T cells. We provide a general overview of the current models that have been proposed to explain the molecular actions of the different CD45 isoforms. Achieving a thorough understanding of the biological reasons for the existence and tight regulation of CD45 isoform expression in immune cells remains one of the outstanding challenges in the CD45 research field.
Collapse
Affiliation(s)
- Louise McNeill
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK
| | | | | | | | | | | |
Collapse
|
31
|
Malmberg KJ. Effective immunotherapy against cancer: a question of overcoming immune suppression and immune escape? Cancer Immunol Immunother 2004; 53:879-92. [PMID: 15338206 PMCID: PMC11042482 DOI: 10.1007/s00262-004-0577-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 10/09/2003] [Indexed: 10/26/2022]
Abstract
During the last decade, the breakthroughs in understanding of the molecular mechanisms responsible for immune activation and the advent of recombinant DNA technologies have changed the view on immunotherapy from "a dream scenario" to becoming a clinical reality. It is now clear that both cellular immunity comprising T and NK cells, as well as strategies based on antibodies, can provide strong antitumoral effects, and evidence is emerging that these strategies may also cure patients with previously incurable cancers. However, there are still a number of issues that remain unresolved. Progress in immunotherapy against cancer requires a combination of new, improved clinical protocols and strategies for overcoming mechanisms of immune escape and tumor-induced immune suppression. This review discusses some of the salient issues that still need to be resolved, focusing on the role of oxidative stress and the use of antioxidants to alleviate the immune hyporesponsiveness induced by reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Karl-Johan Malmberg
- Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
32
|
Mycko MP, Waldner H, Anderson DE, Bourcier KD, Wucherpfennig KW, Kuchroo VK, Hafler DA. Cross-Reactive TCR Responses to Self Antigens Presented by Different MHC Class II Molecules. THE JOURNAL OF IMMUNOLOGY 2004; 173:1689-98. [PMID: 15265898 DOI: 10.4049/jimmunol.173.3.1689] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoreactive T cells represent a natural repertoire of T cells in both diseased patients and healthy individuals. The mechanisms regulating the function of these autoreactive T cells are still unknown. Ob1A12 is a myelin basic protein (MBP)-reactive Th cell clone derived from a patient with relapsing-remitting multiple sclerosis. Mice transgenic for this human TCR and DRA and DRB1*1501 chains develop spontaneous experimental autoimmune encephalomyelitis. The reactivity of Ob1A12 is reported to be restricted to recognition of MBP peptide 85-99 in the context of DRB1*1501. DRA/DRB1*1501 and the patient's other restriction element, DRA/DRB1*0401, differ significantly in their amino acid sequences. In this study we describe an altered peptide ligand derived from MBP(85-99) with a single amino acid substitution at position 88 (Val to Lys; 88V-->K), that could stimulate the Ob1A12.TCR in the context of both DRA/DRB1*1501 and DRA/DRB1*0401. Analysis of a panel of transfected T cell hybridomas expressing Ob1A12.TCR and CD4 indicated that Ob1A12.TCR cross-reactivity in the context of DRA/DRB1*0401 is critically dependent on the presence of the CD4 coreceptor. Furthermore, we found that activation of Ob1A12.TCR with MBP altered peptide ligand 85-99 88V-->K presented by DRB1*1501 or DRB1*0401 resulted in significant differences in TCR zeta phosphorylation. Our data indicate that injection of altered peptide ligand into patients heterozygous for MHC class II molecules may result in unexpected cross-reactivities, leading to activation of autoreactive T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Antigen Presentation
- Autoantigens/immunology
- CD4 Antigens/immunology
- Cross Reactions
- Encephalomyelitis, Autoimmune, Experimental/immunology
- HLA-DR Antigens/immunology
- HLA-DR alpha-Chains
- HLA-DRB1 Chains
- Humans
- Hybridomas/immunology
- L Cells
- Lymphocyte Activation
- Membrane Proteins/metabolism
- Mice
- Molecular Sequence Data
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Myelin Basic Protein/immunology
- Peptide Fragments/immunology
- Phosphorylation
- Protein Processing, Post-Translational
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocyte Subsets/immunology
- Transfection
Collapse
Affiliation(s)
- Marcin P Mycko
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Bernhard OK, Sheil MM, Cunningham AL. Lateral Membrane Protein Associations of CD4 in Lymphoid Cells Detected by Cross-Linking and Mass Spectrometry. Biochemistry 2003; 43:256-64. [PMID: 14705953 DOI: 10.1021/bi034847u] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interactions of membrane proteins are important in various aspects of cell function. However, weak membrane protein-protein interactions are difficult to study using techniques such as co-immunoprecipitations. CD4 is a cell surface protein involved in T cell activation and the binding of the human immunodeficiency virus to HIV target cells. Here we report the use of cross-linking followed by affinity purification of CD4 in combination with mass spectrometry for identification of proteins that are in the proximity of CD4. Besides the components of the CD4 receptor complex, CD4 and lck, we have identified by tandem mass spectrometry 17 tryptic peptides from transferrin receptor CD71, three peptides from protein phosphatase CD45, and one peptide from 4F2 lymphocyte activation antigen CD98. The efficiency of the cross-linking did not correlate with the level of cell surface expression of the detected molecules, excluding a possible bias of the cross-linking toward the most abundant cell surface molecules. Whereas the association of CD4 with CD45 has been reported, the associations with CD71 and CD98 have not been previously described. We used small-scale immunoprecipitation after cross-linking in combination with fluorescence resonance energy transfer (FRET) measurements to investigate the association between CD4 and CD71. Our data show that CD71 self-associates on the cell surface, that a small fraction of CD4 can be detected by copurifying it with CD71 after cross-linking, and that the level of association between CD4 and CD71 significantly increases after phorbol 12-myristate 13-acetate-induced endocytosis of CD4. This suggests that a small fraction of CD4 associates with clusters of CD71. As both molecules undergo endocytic recycling, the association and cross-linking result from their clustering in the same pit and/or vesicle. The CD4-CD98 association probably results from nonspecific cross-linking.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/isolation & purification
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/isolation & purification
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Blotting, Western
- CD4 Antigens/biosynthesis
- CD4 Antigens/chemistry
- CD4 Antigens/isolation & purification
- CD4 Antigens/metabolism
- Cell Line, Transformed
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Chromatography, Affinity
- Cross-Linking Reagents/chemistry
- Endocytosis/drug effects
- Fluorescence Resonance Energy Transfer
- Fusion Regulatory Protein-1/biosynthesis
- Humans
- Leukocyte Common Antigens/biosynthesis
- Lymphocytes/chemistry
- Lymphocytes/drug effects
- Lymphocytes/metabolism
- Membrane Proteins/biosynthesis
- Membrane Proteins/chemistry
- Membrane Proteins/isolation & purification
- Membrane Proteins/metabolism
- Precipitin Tests
- Receptors, Transferrin
- Spectrometry, Mass, Electrospray Ionization/methods
- Succinimides/chemistry
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
Affiliation(s)
- Oliver K Bernhard
- Centre for Virus Research, Westmead Millennium Institute, National Centre for HIV Virology Research, Westmead Hospital and The University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | | | | |
Collapse
|
34
|
Abstract
Regulation of tyrosine phosphorylation is a critical control point for integration of environmental signals into cellular responses. This regulation is mediated by the reciprocal actions of protein tyrosine kinases and phosphatases. CD45, the first and prototypic receptor-like protein tyrosine phosphatase, is expressed on all nucleated hematopoietic cells and plays a central role in this process. Studies of CD45 mutant cell lines, CD45-deficient mice, and CD45-deficient humans initially demonstrated the essential role of CD45 in antigen receptor signal transduction and lymphocyte development. It is now known that CD45 also modulates signals emanating from integrin and cytokine receptors. Recent work has focused on regulation of CD45 expression and alternative splicing, isoform-specific differences in signal transduction, and regulation of phosphatase activity. From these studies, a model is emerging in which CD45 affects cellular responses by controlling the relative threshold of sensitivity to external stimuli. Perturbation of this function may contribute to autoimmunity, immunodeficiency, and malignancy. Moreover, recent advances suggest that modulation of CD45 function can have therapeutic benefit in many disease states.
Collapse
|
35
|
Ogilvy S, Louis-Dit-Sully C, Cooper J, Cassady RL, Alexander DR, Holmes N. Either of the CD45RB and CD45RO isoforms are effective in restoring T cell, but not B cell, development and function in CD45-null mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1792-800. [PMID: 12902479 DOI: 10.4049/jimmunol.171.4.1792] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The protein tyrosine phosphatase CD45 is expressed as a series of isoforms whose tissue and differentiation stage specificity is broadly conserved in evolution. CD45 has been shown to be an important regulator of a variety of functions in many different hemopoietic lineages. We have chosen an in vivo genetic complementation strategy to investigate the differential functions between isoforms. In this study, we report the characterization of transgenic mice which express the isoforms CD45RO or CD45RB as their only CD45 molecules, at a variety of expression levels and in the majority of hemopoietic lineages. Both CD45RO and CD45RB isoforms reconstitute thymocyte development in a CD45-null mouse background when expressed above a threshold level. The resulting mature T cells populate the peripheral lymphoid organs where they are found at normal frequency. Both CD45RO and CD45RB isoforms also permit T cell function in the periphery, although the threshold for normal function here appears to be set higher than in the thymus. In contrast, neither isoform is capable of fully restoring peripheral B cell maturation, even at levels approaching those in heterozygous CD45(+/-) mice in which maturation is normal. In vitro activation of B cells by Ag-receptor stimulation is only minimally complemented by these CD45RO and CD45RB transgenes. Our results suggest that CD45 isoforms play unique roles which differ between the T and B lineages.
Collapse
Affiliation(s)
- Sarah Ogilvy
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Babraham, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Salgado FJ, Lojo J, Alonso-Lebrero JL, Lluis C, Franco R, Cordero OJ, Nogueira M. A role for interleukin-12 in the regulation of T cell plasma membrane compartmentation. J Biol Chem 2003; 278:24849-57. [PMID: 12676959 DOI: 10.1074/jbc.m212978200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The immunological synapse initiates the clustering and stabilization of the T cell receptor by the formation of a large lipid microdomain that accumulates (e.g. CD4/CD8) and segregates (e.g. CD45 and LFA-1) some proteins of the T cell plasma membrane. This work shows that a fraction of transmembrane glycoproteins CD26 and CD45 (the R0 isoform in particular) is present in the rafts of fresh and activated human T lymphocytes. CD26 is proposed as the costimulator of TCR-dependent activation, and CD45 is essential to the T cell activation process because it dephosphorylates at least the inhibitory site of Src kinases. These findings support a more complex model of compartmentation, depending on the stage of T cell maturation and post-transcriptional and post-translational regulation. In addition, interleukin 12 (IL-12; inducer of TH1 responses) drives CD26 and CD45R0 to particular microdomains, thereby involving interleukins in the rules governing raft inclusion or exclusion. The physical association of CD26 and CD45R0 has long been reported. The results presented in this work fit a model in which IL-12 up-regulates a certain type of CD26 expression that interacts on the cell surface with CD45R0, near but outside of the raft core. The use of antisense oligonucleotides for the CD26 mRNAs demonstrated that both events (enhanced by IL-12), CD26-CD45R0 association and membrane compartment redistribution, are related. Thus, CD26 could be part of a shuttling mechanism for CD45 that regulates membrane tyrosine-phosphatase activities, e.g. to control IL-12 receptor-dependent signal transduction.
Collapse
Affiliation(s)
- Francisco J Salgado
- Department of Biochemistry and Molecular Biology, Universidade de Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Lukashev DE, Caldwell CC, Chen P, Apasov SG, Margulies DH, Sitkovsky MV. A serine/threonine phosphorylation site in the ectodomain of a T cell receptor beta chain is required for activation by superantigen. J Recept Signal Transduct Res 2003; 23:33-52. [PMID: 12680588 DOI: 10.1081/rrs-120018759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The presence of consensus phosphorylation sites in the ectodomains of cell surface proteins suggests that such post-translational modification may be important in regulation of surface receptor activity. To date, the only cell surface receptor for which such ectodomain phosphorylation has been conclusively demonstrated is the clonally expressed T cell antigen receptor (TCR). Attempts to conclusively identify individual phosphorylated residues in TCR alpha and beta chains and determine their functional significance by biochemical approaches failed due to insufficient quantities of purified molecules. Here we present the results of an alternative approach where survey of phosphorylation sites in the TCR alpha and beta chains was accomplished using site-directed mutagenesis and retroviral vector expression, as well as in vitro phosphorylation of synthetic peptide substrates. All mutants studied directed the cell surface expression of normal amounts of TCR, and all transfectants could be stimulated to produce IL-2 in response to substrate-immobilized antibody to TCR. However, mutation of serine-88 in the protein kinase A phosphorylation site of the TCR beta chain resulted in a complete lack of response to the superantigen staphylococcal enterotoxin B (SEB). In addition, this mutation abolished TCR-associated tyrosine phosphorylation, consistent with the impairment of cell signaling. Reversion of the serine-88/alanine mutation with phosphorylatable threonine completely restored the SEB recognition by TCR. These results, interpreted in the context of the known three-dimensional structure of the complex of SEB and TCR, are consistent with the view that serine-88 is important for the contact of the TCR beta chain with SEB.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Base Sequence
- Binding Sites/genetics
- CD3 Complex/chemistry
- CD3 Complex/metabolism
- Cell Line
- DNA, Complementary/genetics
- Enterotoxins/pharmacology
- Hybridomas
- In Vitro Techniques
- Interleukin-2/biosynthesis
- Mice
- Models, Molecular
- Mutagenesis, Site-Directed
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Serine/chemistry
- Superantigens/pharmacology
- T-Lymphocytes/immunology
- Threonine/chemistry
Collapse
Affiliation(s)
- Dmitriy E Lukashev
- Biochemistry and Immunopharmacology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The ultimate goal in clinical transplantation is achievement of graft tolerance. Despite long-term immunosuppression, alloantigens on transplants elicit alloresponses that can initiate organ rejection. Acute rejection is mediated by CD8(+) cytotoxic T cells, whereas chronic rejection is a result of many factors including non-immunological events. The aim of this study was to examine the molecular requirements of T cell anergy, a cellular state that is an integral component of tolerance in vivo. In vitro, the tolerant state is usually best represented by T cell anergy, which is defined by loss of the ability of T cells to produce and secrete interleukin-2 upon restimulation. In the literature, molecular changes in anergic CD4(+) T cells have been studied in great detail, but only little is known about functional and biochemical characteristics of anergic CD8(+) T lymphocytes. In this study, we demonstrate, that CD8(+) T cells are rendered anergic by TCR stimulation without costimulation. They exhibit impaired interleukin-2 production and tyrosine-phosphorylation, but markedly upregulated p59(fyn) expression, which could be shown to be an early event during anergization. Anergic CD8(+) T lymphocytes show elevated surface expression of early activation markers as well as costimulatory molecules, especially that of CTLA4. These results, are an important component for the discovery of potential molecular targets, which contribute to the development and maintenance of tolerance.
Collapse
Affiliation(s)
- Judith Welke
- Department of Internal Medicine, C51-F, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | |
Collapse
|
39
|
Xu Z, Weiss A. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat Immunol 2002; 3:764-71. [PMID: 12134145 DOI: 10.1038/ni822] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The regulation of receptor-like protein tyrosine phosphatases (RPTPs) is not well understood. Although CD45 can be negatively regulated by dimerization, how dimerization is modulated is unclear. Here we show that various isoforms of CD45 differentially homodimerize in T cells. The dimerization is modulated by the sialylation and O-glycosylation of alternatively spliced CD45 exons in the extracellular domain. Thus, the smallest isoform, CD45RO--which undergoes the least extracellular sialylation and O-glycosylation--homodimerizes with the highest efficiency, resulting in decreased signaling via the T cell receptor. Because CD45 is required for T cell activation, our findings may reveal a mechanism that contributes to the termination of the primary T cell response. Our results not only demonstrate the biological significance of alternative splicing in the immune system, but also suggest a model for regulating RPTP dimerization and function.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Medicine and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0795, USA
| | | |
Collapse
|
40
|
Harding S, Lipp P, Alexander DR. A therapeutic CD4 monoclonal antibody inhibits TCR-zeta chain phosphorylation, zeta-associated protein of 70-kDa Tyr319 phosphorylation, and TCR internalization in primary human T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:230-8. [PMID: 12077249 DOI: 10.4049/jimmunol.169.1.230] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The molecular mechanisms mediating the inhibitory effects of a humanized CD4 mAb YHB.46 on primary human CD4(+) T cells were investigated. Preincubation of T cells with soluble YHB.46 caused a general inhibition of TCR-stimulated protein tyrosine phosphorylation events, including a reduction in phosphorylation of p95(vav), linker for activation of T cells, and Src homology 2 domain-containing leukocyte protein of 76-kDa signaling molecules. A marked reduction in activation of the Ras/mitogen-activated protein kinase pathway was also observed. Examination of the earliest initiation events of TCR signal transduction showed that YHB.46 inhibited TCR-zeta chain phosphorylation together with recruitment and tyrosine phosphorylation of the zeta-associated protein of 70-kDa tyrosine kinase, particularly at Tyr(319), as well as reduced recruitment of p56(lck) to the TCR-zeta and zeta-associated protein of 70-kDa complex. These inhibitory events were associated with inhibition of TCR endocytosis. Our results show that the YHB.46 mAb is a powerful inhibitor of the early initiating events of TCR signal transduction.
Collapse
Affiliation(s)
- Susanne Harding
- Laboratories of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | | | | |
Collapse
|
41
|
Robichaud GA, Barbeau B, Fortin JF, Rothstein DM, Tremblay MJ. Nuclear factor of activated T cells is a driving force for preferential productive HIV-1 infection of CD45RO-expressing CD4+ T cells. J Biol Chem 2002; 277:23733-41. [PMID: 11956207 DOI: 10.1074/jbc.m201563200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) preferentially replicates in CD4-expressing T cells bearing a "memory" (CD45RO+) rather than a "naive" (CD45RA+/CD62L+) phenotype. Yet the basis for the higher susceptibility of these cells to HIV-1 infection remains unclear. Because the nature of the CD45 isoform itself can affect biochemical events in T cells, we set out to determine whether these isoforms could differently modulate HIV-1 long terminal repeat (LTR) activity and thereby replication. Through the use of CD4+ Jurkat T cells specifically expressing distinct CD45 isoforms (i.e. CD45RABC or CD45RO), we demonstrated that a difference in CD45 isoform expression conferred preferential replication of HIV-1 to CD45RO-expressing T cell clones following a physiological CD3/CD28 stimulation. Closer analysis indicated that higher HIV-1 LTR activation levels were consistently observed in CD45RO-positive cells, which was paralleled by more pronounced nuclear factor of activated T cells (NFAT) activation in these same cells. Specific involvement of NFAT1 was revealed in studied Jurkat clones by mobility shift analyses. In addition, preferential activation of the LTR and viral replication in CD45RO T cells was FK506- and cyclosporin A-sensitive. These results underscore the importance of NFAT in HIV-1 regulation and for the first time identify the role of the CD45 isoform in limiting productive HIV-1 replication to the human CD4 memory T cell subset.
Collapse
Affiliation(s)
- Gilles A Robichaud
- Centre de Recherche en Infectiologie, Hôpital du Centre Hospitalier de L'Université Laual, Centre Hospitalier Universitaire de Québec, and Département de Biologie médicale, Faculté de Médecine, Université Laval, Ste-Foy, Québec G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
42
|
Fortin M, Steff AM, Felberg J, Ding I, Schraven B, Johnson P, Hugo P. Apoptosis mediated through CD45 is independent of its phosphatase activity and association with leukocyte phosphatase-associated phosphoprotein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6084-9. [PMID: 12055218 DOI: 10.4049/jimmunol.168.12.6084] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Besides the well-recognized role of CD45 as a major player in TCR signaling, we and others have demonstrated that cross-linking of CD45 with mAbs can induce cell death in T lymphocytes. To investigate the role of CD45 phosphatase activity in apoptosis induction, we expressed either wild-type or phosphatase-dead CD45 molecules in a CD45-deficient BW5147 T cell line. We show here that the phosphatase activity of CD45 was not required for apoptosis triggering after cross-linking of the molecule. It is noteworthy that a revertant of the CD45-negative BW5147 cell line, expressing a truncated form of CD45 lacking most of the cytoplasmic domain, was also susceptible to CD45-mediated death. Moreover, we also demonstrate that leukocyte phosphatase-associated phosphoprotein expression is totally dispensable for CD45-mediated apoptosis to occur. Taken together, these results strongly suggest a role for the extracellular and/or the transmembrane portion of CD45 in apoptosis signaling, which contrasts with the previously reported functions for CD45 in T lymphocytes.
Collapse
Affiliation(s)
- Marylène Fortin
- Division of Research and Development, PROCREA BioSciences, Inc., Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Berard M, Tough DF. Qualitative differences between naïve and memory T cells. Immunology 2002; 106:127-38. [PMID: 12047742 PMCID: PMC1782715 DOI: 10.1046/j.1365-2567.2002.01447.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Accepted: 04/17/2002] [Indexed: 11/20/2022] Open
Affiliation(s)
- Marion Berard
- The Edward Jenner Institute for Vaccine Research, Compton, Newbury, Berkshire RG20 7NN, UK
| | | |
Collapse
|
44
|
Brawley JV, Concannon P. Complementarity-determining region 1 sequence requirements drive limited V alpha usage in response to influenza hemagglutinin 307-319 peptide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3894-901. [PMID: 11937544 DOI: 10.4049/jimmunol.168.8.3894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have developed a T cell activation-based system that allows for the selection of TCRs with defined peptide/MHC specificities from libraries in which complementarity-determining region (CDR) sequences have been randomized by in vitro mutagenesis. Using this system, we have explored the sequence requirements for CDR1 and CDR2 of the TCR alpha-chain in a human T cell response characterized by restricted Valpha and Vbeta usage. Libraries of T cells expressing receptors built on the framework of a TCR specific for the influenza virus peptide hemagglutinin 307-319 presented by HLA-DR4, but with random sequences inserted at CDR1alpha or CDR2alpha, were selected for response to the same peptide/MHC ligand. A wide variety of CDR2alpha sequences were found to be permissive for recognition. Indeed, >25% of T cell clones chosen at random displayed a significant response. In contrast, a similar challenge of a randomized CDR1alpha library yielded only the parental sequence, and then only after multiple rounds of selection. T cell clones cross-reactive on closely related HLA alleles (subtypes of DR4) could be isolated from randomized libraries, but not clones restricted by more distantly related alleles such as HLA-DR1. These results indicate that, in the context of this T cell response, the structural requirements for recognition at CDR1alpha are significantly more restricted than at CDR2alpha. This system for mutation and selection of TCRs in vitro may be of use in engineering T cells with defined specificities for therapeutic applications.
Collapse
MESH Headings
- Antigen Presentation/genetics
- Cell Line
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Separation
- Clone Cells
- Complementarity Determining Regions/analysis
- Complementarity Determining Regions/biosynthesis
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Gene Expression Regulation/immunology
- Gene Library
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Genes, Reporter/immunology
- Genes, T-Cell Receptor alpha
- H-2 Antigens/biosynthesis
- H-2 Antigens/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Hemagglutinin Glycoproteins, Influenza Virus/physiology
- Hemagglutinins, Viral/metabolism
- Hemagglutinins, Viral/physiology
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Humans
- Jurkat Cells
- Mutagenesis, Insertional
- Peptide Fragments/metabolism
- Peptide Fragments/physiology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Sensitivity and Specificity
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- James V Brawley
- Molecular Genetics Program, Virginia Mason Research Center, Seattle, WA 98101, USA
| | | |
Collapse
|
45
|
Hussain SF, Anderson CF, Farber DL. Differential SLP-76 expression and TCR-mediated signaling in effector and memory CD4 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1557-65. [PMID: 11823482 DOI: 10.4049/jimmunol.168.4.1557] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We present in this study novel findings on TCR-mediated signaling in naive, effector, and memory CD4 T cells that identify critical biochemical markers to distinguish these subsets. We demonstrate that relative to naive CD4 T cells, memory CD4 T cells exhibit a profound decrease in expression of the linker/adapter molecule SLP-76, while effector T cells express normal to elevated levels of SLP-76. The reduced level of SLP-76 is memory CD4 T cells is coincident with reduced phosphorylation overall, yet the residual SLP-76 couples to a subset of TCR-associated linker molecules, leading to downstream mitogen-activated protein (MAP) kinase activation. By contrast, effector CD4 T cells strongly phosphorylate SLP-76, linker for activation of T cells, and additional Grb2-coupled proteins, exhibit increased associations of SLP-76 to phosphorylated linkers, and hyperphosphorylate downstream Erk1/2 MAP kinases. Our results suggest distinct coupling of signaling intermediates to the TCR in naive, effector, and memory CD4 T cells. Whereas effector CD4 T cells amplify existing TCR signaling events accounting for rapid effector responses, memory T cells engage fewer signaling intermediates to efficiently link TCR triggering directly to downstream MAP kinase activation.
Collapse
Affiliation(s)
- S Farzana Hussain
- Department of Surgery, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
46
|
Dornan S, Sebestyen Z, Gamble J, Nagy P, Bodnar A, Alldridge L, Doe S, Holmes N, Goff LK, Beverley P, Szollosi J, Alexander DR. Differential association of CD45 isoforms with CD4 and CD8 regulates the actions of specific pools of p56lck tyrosine kinase in T cell antigen receptor signal transduction. J Biol Chem 2002; 277:1912-8. [PMID: 11694532 DOI: 10.1074/jbc.m108386200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An investigation into the role of CD45 isoforms in T cell antigen receptor signal transduction was carried out by transfecting CD45-negative CD4(+)CD8(+) HPB-ALL T cells with the CD45R0, CD45RBC, and CD45RABC isoforms. Fluorescence resonance energy transfer analysis showed that the CD45R0 isoform, but not the CD45RBC or CD45RABC isoforms, was found as homodimers and also preferentially associated with CD4 and CD8 at the cell-surface. A comparison was therefore made of T cell antigen receptor signaling between sub-clones expressing either CD45R0 or CD45RBC. Under basal conditions CD4-associated p56(lck) tyrosine kinase activity and cellular protein tyrosine phosphorylation levels were higher in the CD45R0(+) than in the CD45RBC(+) sub-clones. Upon CD3-CD4 ligation, TCR-zeta phosphorylation, ZAP-70 recruitment to the p21/p23 TCR-zeta phosphoisomers, ZAP-70 phosphorylation, as well as p56(lck), c-Cbl and Slp-76 phosphorylation, were all markedly increased in CD45R0(+) compared with CD45RBC(+) cells. T cell antigen receptor (TCR) stimulation alone also promoted c-Cbl phosphorylation in CD45R0(+) but not in CD45RBC(+) cells. Our results are consistent with a model in which association of CD45R0 with CD4 generates a more active pool of CD4-associated p56(lck) kinase molecules. Upon CD3-CD4 co-ligation, the active p56(lck) increases the intensity of T cell antigen receptor signal transduction coupling by promoting TCR-zeta chain phosphorylation and ZAP-70 recruitment.
Collapse
Affiliation(s)
- Saffron Dornan
- Laboratory of Lymphocyte Signalling and Development, Programme of Molecular Immunology, The Babraham Institute, Cambridge, CB2 4AT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nguyen JT, Evans DP, Galvan M, Pace KE, Leitenberg D, Bui TN, Baum LG. CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5697-707. [PMID: 11698442 DOI: 10.4049/jimmunol.167.10.5697] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Galectin-1 induces death of immature thymocytes and activated T cells. Galectin-1 binds to T cell-surface glycoproteins CD45, CD43, and CD7, although the precise roles of each receptor in cell death are unknown. We have determined that CD45 can positively and negatively regulate galectin-1-induced T cell death, depending on the glycosylation status of the cells. CD45(+) BW5147 T cells lacking the core 2 beta-1,6-N-acetylglucosaminyltransferase (C2GnT) were resistant to galectin-1 death. The inhibitory effect of CD45 in C2GnT(-) cells appeared to require the CD45 cytoplasmic domain, because Rev1.1 cells expressing only CD45 transmembrane and extracellular domains were susceptible to galectin-1 death. Moreover, treatment with the phosphotyrosine-phosphatase inhibitor potassium bisperoxo(1,10-phenanthroline)oxovanadate(V) enhanced galectin-1 susceptibility of CD45(+) T cell lines, but had no effect on the death of CD45(-) T cells, indicating that the CD45 inhibitory effect involved the phosphatase domain. Expression of the C2GnT in CD45(+) T cell lines rendered the cells susceptible to galectin-1, while expression of the C2GnT in CD45(-) cells had no effect on galectin-1 susceptibility. When CD45(+) T cells bound to galectin-1 on murine thymic stromal cells, only C2GnT(+) T cells underwent death. On C2GnT(+) cells, CD45 and galectin-1 co-localized in patches on membrane blebs while no segregation of CD45 was seen on C2GnT(-) T cells, suggesting that oligosaccharide-mediated clustering of CD45 facilitated galectin-1-induced cell death.
Collapse
Affiliation(s)
- J T Nguyen
- Department of Pathology and Laboratory Medicine and The Jonsson Comprehensive Cancer Center, University of California, School of Medicine, Los Angeles 90095, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Balamuth F, Leitenberg D, Unternaehrer J, Mellman I, Bottomly K. Distinct patterns of membrane microdomain partitioning in Th1 and th2 cells. Immunity 2001; 15:729-38. [PMID: 11728335 DOI: 10.1016/s1074-7613(01)00223-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Here we show that activated Th1 and Th2 cells have distinct patterns of membrane compartmentalization into lipid rafts. TCR complex members are recruited efficiently to rafts and aggregate with rafts at the site of MHC/peptide contact in Th1 cells but not Th2 cells. TCR/raft association in Th1 cells is deficient in the absence of CD4, suggesting that CD4 aids recruitment of the TCR to rafts. We show differential utilization of rafts in Th1 and Th2 cells by cholesterol depletion studies, which alters calcium signaling in Th1 but not Th2 cells. Furthermore, Th2 cells have a decreased ability to respond to low-affinity peptide stimulation. These studies indicate that components of membrane microdomains are differentially regulated in functionally distinct CD4 T cells.
Collapse
Affiliation(s)
- F Balamuth
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
49
|
Brooks WP, Lynes MA. Effects of hemizygous CD45 expression in the autoimmune Fasl(gld/gld) syndrome. Cell Immunol 2001; 212:24-34. [PMID: 11716526 DOI: 10.1006/cimm.2001.1845] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice homozygous for the Fasl(gld/gld) mutation cannot initiate apoptosis via the Fas/Fasl pathway and develop an autoimmune disease characterized by the accumulation of CD4(-)/CD8(-) (DN) T cells and a progressive T cell anergy. These DN T cells express a high-molecular-weight isoform of the membrane PTPase CD45 (B220). We have produced a Fasl(gld/gld) mouse strain with only one functional CD45 allele (CD45(+/-), Fasl(gld/gld)) in order to explore the role that CD45 plays in the lymphoaccumulation and proliferative capacity of the DN T cells. In contrast to CD45(+/+), Fasl(gld/gld) mice, CD45(+/-), Fasl(gld/gld) mice display a 10-fold reduction in the DN T cell population and have decreased levels of anti-DNA antibodies and total serum Ig. However, enriched DN T cell populations remain unresponsive to mitogenic stimulation, but do display altered patterns of tyrosine phosphorylation. These data indicate that CD45 is essential to the accumulation of DN T cells in Fasl(gld/gld) mice and implicate CD45 as a component of the process of deletion that normally governs the composition of the T cell population.
Collapse
Affiliation(s)
- W P Brooks
- Department of Molecular and Cell Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3125, USA
| | | |
Collapse
|
50
|
Virts EL, Raschke WC. The role of intron sequences in high level expression from CD45 cDNA constructs. J Biol Chem 2001; 276:19913-20. [PMID: 11389149 DOI: 10.1074/jbc.m100448200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Consistent expression from CD45 cDNA constructs has proven difficult to achieve. Through the use of new CD45 cDNA constructs and reporter genes, the role 5', 3', and intron sequences play in CD45 expression was determined. The CD45 polyadenylation signal sequence was fully functional in a beta-galactosidase reporter construct. Furthermore, the CD45 3'-untranslated region and downstream sequences were shown to contain no negative regulatory elements. Several new CD45 cDNA constructs were designed that contain either the cytomegalovirus promoter, the leukocyte function-associated antigen (LFA-1; CD11a) promoter, or various CD45 5' regions. Neither the cytomegalovirus nor the LFA-1 promoter was capable of generating detectable levels of expression in constructs with CD45 cDNA. However, when CD45 intron sequences between exons 3 and 9 were inserted in the cDNA construct to generate a CD45 minigene, the LFA-1 promoter was able to drive reproducible, significant expression of CD45. CD45 minigenes using the CD45 5' sequences up to 19 kilobases upstream of the transcriptional start produced very little protein. The LFA-1 CD45 minigene construct produced correct cell type-specific isoforms when expressed in T and B lymphocyte lines. Therefore, we conclude that the regulation of CD45 expression and cell type-specific splicing requires elements within the intron sequences.
Collapse
Affiliation(s)
- E L Virts
- Sidney Kimmel Cancer Center, San Diego, California 92121, USA
| | | |
Collapse
|