1
|
Gober JG, Capietto AH, Hoshyar R, Darwish M, Vandlen R, Linehan JL, Delamarre L, ElSohly AM. MHC2-SCALE enhances identification of immunogenic neoantigens. iScience 2025; 28:112212. [PMID: 40235585 PMCID: PMC11999303 DOI: 10.1016/j.isci.2025.112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/13/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Recent studies suggest that CD4+ T cells can exert potent anti-tumor effects and improve immunotherapy efficacy by aiding CD8+ T cells. However, characterizing the mechanism of CD4+ T cells' anti-tumor activity has been challenging due to inaccurate major histocompatibility complex class II (MHC-II) peptide prediction algorithms and the lack of high-quality reagents for immune monitoring. To address this, we developed MHC2-substitution of CLIP and analytical LCMS evaluation (MHC2-SCALE), a streamlined approach combining affinity optimized class II-associated invariant chain peptide (CLIP) exchange technology, high throughput 2D-LCMS analysis, and rapid generation of peptide-bound MHC-II monomers for subsequent multimer assembly. We validated MHC-II peptide candidates predicted by the immune epitope database (IEDB) algorithm, as well as uncovered many true and immunogenic MHC-II binders that were not predicted by IEDB. Thus, MHC2-SCALE expands the opportunities for discovering, tracking, and phenotyping antigen-specific CD4+ T cells in preclinical and clinical settings, thereby improving therapies for cancer, autoimmunity, or infectious diseases.
Collapse
Affiliation(s)
- Joshua G. Gober
- Department of Protein Chemistry, Genentech Inc, South San Francisco, CA, USA
| | | | - Reyhane Hoshyar
- Cancer Immunology Department, Genentech Inc, South San Francisco, CA, USA
| | - Martine Darwish
- Department of Protein Chemistry, Genentech Inc, South San Francisco, CA, USA
| | - Richard Vandlen
- Department of Protein Chemistry, Genentech Inc, South San Francisco, CA, USA
| | | | - Lélia Delamarre
- Cancer Immunology Department, Genentech Inc, South San Francisco, CA, USA
| | - Adel M. ElSohly
- Department of Protein Chemistry, Genentech Inc, South San Francisco, CA, USA
- Department of Immunology Discovery, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
2
|
Lantz O, Teyton L. Identification of T cell antigens in the 21st century, as difficult as ever. Semin Immunol 2022; 60:101659. [PMID: 36183497 PMCID: PMC10332289 DOI: 10.1016/j.smim.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Identifying antigens recognized by T cells is still challenging, particularly for innate like T cells that do not recognize peptides but small metabolites or lipids in the context of MHC-like molecules or see non-MHC restricted antigens. The fundamental reason for this situation is the low affinity of T cell receptors for their ligands coupled with a level of degeneracy that makes them bind to similar surfaces on antigen presenting cells. Herein we will describe non-exhaustively some of the methods that were used to identify peptide antigens and briefly mention the high throughput methods more recently proposed for that purpose. We will then present how the molecules recognized by innate like T cells (NKT, MAIT and γδ T cells) were discovered. We will show that serendipity was instrumental in many cases.
Collapse
Affiliation(s)
- Olivier Lantz
- INSERM U932, PSL University, Institut Curie, 75005 Paris, France; Laboratoire d'Immunologie Clinique, Institut Curie, Paris 75005, France; Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428) Institut Curie, Paris 75005, France
| | - Luc Teyton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Willis RA, Ramachandiran V, Shires JC, Bai G, Jeter K, Bell DL, Han L, Kazarian T, Ugwu KC, Laur O, Contreras-Alcantara S, Long DL, Altman JD. Production of Class II MHC Proteins in Lentiviral Vector-Transduced HEK-293T Cells for Tetramer Staining Reagents. Curr Protoc 2021; 1:e36. [PMID: 33539685 PMCID: PMC7880703 DOI: 10.1002/cpz1.36] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Class II major histocompatibility complex peptide (MHC-IIp) multimers are precisely engineered reagents used to detect T cells specific for antigens from pathogens, tumors, and self-proteins. While the related Class I MHC/peptide (MHC-Ip) multimers are usually produced from subunits expressed in E. coli, most Class II MHC alleles cannot be produced in bacteria, and this has contributed to the perception that MHC-IIp reagents are harder to produce. Herein, we present a robust constitutive expression system for soluble biotinylated MHC-IIp proteins that uses stable lentiviral vector-transduced derivatives of HEK-293T cells. The expression design includes allele-specific peptide ligands tethered to the amino-terminus of the MHC-II β chain via a protease-cleavable linker. Following cleavage of the linker, HLA-DM is used to catalyze efficient peptide exchange, enabling high-throughput production of many distinct MHC-IIp complexes from a single production cell line. Peptide exchange is monitored using either of two label-free methods, native isoelectric focusing gel electrophoresis or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry of eluted peptides. Together, these methods produce MHC-IIp complexes that are highly homogeneous and that form the basis for excellent MHC-IIp multimer reagents. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Lentivirus production and expression line creation Support Protocol 1: Six-well assay for estimation of production cell line yield Support Protocol 2: Universal ELISA for quantifying proteins with fused leucine zippers and His-tags Basic Protocol 2: Cultures for production of Class II MHC proteins Basic Protocol 3: Purification of Class II MHC proteins by anti-leucine zipper affinity chromatography Alternate Protocol 1: IMAC purification of His-tagged Class II MHC Support Protocol 3: Protein concentration measurements and adjustments Support Protocol 4: Polishing purification by anion-exchange chromatography Support Protocol 5: Estimating biotinylation percentage by streptavidin precipitation Basic Protocol 4: Peptide exchange Basic Protocol 5: Analysis of peptide exchange by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry Alternate Protocol 2: Native isoelectric focusing to validate MHC-II peptide loading Basic Protocol 6: Multimerization Basic Protocol 7: Staining cells with Class II MHC tetramers.
Collapse
Affiliation(s)
- Richard A Willis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Vasanthi Ramachandiran
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - John C Shires
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Ge Bai
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kelly Jeter
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Donielle L Bell
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Lixia Han
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Tamara Kazarian
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Kyla C Ugwu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Oskar Laur
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Emory Custom Cloning Core Facility, Emory University School of Medicine, Atlanta, Georgia
| | - Susana Contreras-Alcantara
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - Dale L Long
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
| | - John D Altman
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
- Yerkes National Primate Research Center, Atlanta, Georgia
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Center for AIDS Research, Emory University, Atlanta, Georgia
| |
Collapse
|
4
|
Sharma S, Pettus J, Gottschalk M, Abe B, Gottlieb P, Teyton L. Single-Cell Analysis of CD4 T Cells in Type 1 Diabetes: From Mouse to Man, How to Perform Mechanistic Studies. Diabetes 2019; 68:1886-1891. [PMID: 31540941 PMCID: PMC6754240 DOI: 10.2337/dbi18-0064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 01/10/2023]
Abstract
Type 1 diabetes is the prototypical CD4 T cell-mediated autoimmune disease. Its genetic linkage to a single polymorphism at position 57 of the HLA class II DQβ chain makes it unique to study the molecular link between HLA and disease. However, investigating this relationship has been limited by a series of anatomical barriers, the small size and dispersion of the insulin-producing organ, and the scarcity of appropriate techniques and reagents to interrogate antigen-specific CD4 T cells both in man and rodent models. Over the past few years, single-cell technologies, paired with new biostatistical methods, have changed this landscape. Using these tools, we have identified the first molecular link between MHC class II and the onset of type 1 diabetes. The translation of these observations to man is within reach using similar approaches and the lessons learned from rodent models.
Collapse
Affiliation(s)
- Siddhartha Sharma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jeremy Pettus
- Division of Endocrinology and Metabolism, University of California, San Diego, San Diego, CA
| | | | - Brian Abe
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Peter Gottlieb
- Department of Pediatrics and Department of Immunology & Microbiology, University of Colorado School of Medicine, and Barbara Davis Center for Diabetes, Denver, CO
| | - Luc Teyton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
5
|
Gioia L, Holt M, Costanzo A, Sharma S, Abe B, Kain L, Nakayama M, Wan X, Su A, Mathews C, Chen YG, Unanue E, Teyton L. Position β57 of I-A g7 controls early anti-insulin responses in NOD mice, linking an MHC susceptibility allele to type 1 diabetes onset. Sci Immunol 2019; 4:eaaw6329. [PMID: 31471352 PMCID: PMC6816460 DOI: 10.1126/sciimmunol.aaw6329] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
The class II region of the major histocompatibility complex (MHC) locus is the main contributor to the genetic susceptibility to type 1 diabetes (T1D). The loss of an aspartic acid at position 57 of diabetogenic HLA-DQβ chains supports this association; this single amino acid change influences how TCRs recognize peptides in the context of HLA-DQ8 and I-Ag7 using a mechanism termed the P9 switch. Here, we built register-specific insulin peptide MHC tetramers to examine CD4+ T cell responses to Ins12-20 and Ins13-21 peptides during the early prediabetic phase of disease in nonobese diabetic (NOD) mice. A single-cell analysis of anti-insulin CD4+ T cells performed in 6- and 12-week-old NOD mice revealed tissue-specific gene expression signatures. TCR signaling and clonal expansion were found only in the islets of Langerhans and produced either classical TH1 differentiation or an unusual Treg phenotype, independent of TCR usage. The early phase of the anti-insulin response was dominated by T cells specific for Ins12-20, the register that supports a P9 switch mode of recognition. The presence of the P9 switch was demonstrated by TCR sequencing, reexpression, mutagenesis, and functional testing of TCRαβ pairs in vitro. Genetic correction of the I-Aβ57 mutation in NOD mice resulted in the disappearance of D/E residues in the CDR3β of anti-Ins12-20 T cells. These results provide a mechanistic molecular explanation that links the characteristic MHC class II polymorphism of T1D with the recognition of islet autoantigens and disease onset.
Collapse
Affiliation(s)
- Louis Gioia
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marie Holt
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anne Costanzo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Siddhartha Sharma
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brian Abe
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lisa Kain
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maki Nakayama
- Department of Pediatrics and Department of Immunology and Microbiology, Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Denver, CO 80045, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew Su
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clayton Mathews
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yi-Guang Chen
- University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Emil Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Abstract
The identification and analysis of allergen-specific CD4+ T cells is critical for understanding how these cells contribute to atopic disease and how to subvert their behavior through immune therapy. The advent of fluorescently labeled soluble tetramers of peptide:MHCII complexes (pMHCII tetramers) has provided investigators with an invaluable means to achieve this goal. Although pMHCII tetramers were first developed over two decades ago, their widespread use has been limited by the technical difficulty of generating these reagents. However, the adoption of various technical innovations from several labs over time has contributed greatly to the increased success in tetramer generation today. Here, we describe a comprehensive protocol for generating pMHCII tetramers using as an example a Derp1:I-Ab tetramer used to study allergen-specific CD4+ T cell responses in murine models of airway inflammation and allergic disease.
Collapse
|
7
|
Abstract
In the endoplasmic reticulum (ER), MHC class I molecules associate with several specialized proteins, forming a large macromolecular complex referred to as the "peptide-loading complex" (PLC). In the PLC, antigenic peptides undergo a stringent selection process that determines which antigen becomes part of the repertoire presented by MHC class I molecules. This ensures that the immune system elicits robust CD8+ T-cell responses to viruses and solid tumors. The ability to reconstitute in vitro MHC class I molecules in association with key proteins of the PLC provides a mean for studying at the molecular level how antigenic peptides are selected for presentation to CD8+ T-cells. Here, we describe practical procedures for generating a cell-free system made up of MHC class I molecules and tapasin that can be used for mechanistic studies of peptide loading and exchange.
Collapse
|
8
|
Lim EK, Bae P, Kim H, Jung J. A leucine zipper pair-based lipid vesicle for image-guided therapy in breast cancer. Chem Commun (Camb) 2016; 52:2687-90. [DOI: 10.1039/c5cc08659k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a controllable image-guided therapy system as a powerful tool for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Eun-Kyung Lim
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
| | - Panki Bae
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
| | - Haeran Kim
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon
- Republic of Korea
| | - Juyeon Jung
- BioNanotechnology Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon
- Republic of Korea
- Nanobiotechnology Major
| |
Collapse
|
9
|
Crites TJ, Maddox M, Padhan K, Muller J, Eigsti C, Varma R. Supported Lipid Bilayer Technology for the Study of Cellular Interfaces. CURRENT PROTOCOLS IN CELL BIOLOGY 2015; 68:24.5.1-24.5.31. [PMID: 26331983 PMCID: PMC4605915 DOI: 10.1002/0471143030.cb2405s68] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glass-supported lipid bilayers presenting freely diffusing proteins have served as a powerful tool for studying cell-cell interfaces, in particular, T cell-antigen presenting cell (APC) interactions, using optical microscopy. Here we expand upon existing protocols and describe the preparation of liposomes by an extrusion method, and describe how this system can be used to study immune synapse formation by Jurkat cells. We also present a method for forming such lipid bilayers on silica beads for the study of signaling responses by population methods, such as western blotting, flow cytometry, and gene-expression analysis. Finally, we describe how to design and prepare transmembrane-anchored protein-laden liposomes, following expression in suspension CHO (CHOs) cells, a mammalian expression system alternative to insect and bacterial cell lines, which do not produce mammalian glycosylation patterns. Such transmembrane-anchored proteins may have many novel applications in cell biology and immunology.
Collapse
Affiliation(s)
- Travis J Crites
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- These authors contributed equally to this work
| | - Michael Maddox
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- These authors contributed equally to this work
| | - Kartika Padhan
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - James Muller
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, New York
| | - Calvin Eigsti
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rajat Varma
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Deshpande NR, Parrish HL, Kuhns MS. Self-recognition drives the preferential accumulation of promiscuous CD4(+) T-cells in aged mice. eLife 2015; 4:e05949. [PMID: 26173205 PMCID: PMC4501121 DOI: 10.7554/elife.05949] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/24/2015] [Indexed: 02/07/2023] Open
Abstract
T-cell recognition of self and foreign peptide antigens presented in major histocompatibility complex molecules (pMHC) is essential for life-long immunity. How the ability of the CD4+ T-cell compartment to bind self- and foreign-pMHC changes over the lifespan remains a fundamental aspect of T-cell biology that is largely unexplored. We report that, while old mice (18–22 months) contain fewer CD4+ T-cells compared with adults (8–12 weeks), those that remain have a higher intrinsic affinity for self-pMHC, as measured by CD5 expression. Old mice also have more cells that bind individual or multiple distinct foreign-pMHCs, and the fold increase in pMHC-binding populations is directly related to their CD5 levels. These data demonstrate that the CD4+ T-cell compartment preferentially accumulates promiscuous constituents with age as a consequence of higher affinity T-cell receptor interactions with self-pMHC. DOI:http://dx.doi.org/10.7554/eLife.05949.001 The immune system's T cells help the body to recognize and destroy harmful pathogens, such as viruses and bacteria. T cells ‘remember’ immunity-inducing fragments, called antigens, from the pathogens they have encountered. This memory then allows the immune system to quickly fend off infections if those pathogens, or even related pathogens, invade again. Vaccines exploit the ability to form immunological memory by exposing the body to harmless forms of the pathogen, or even just particular antigens from it. This allows the T cells to learn how to identify the pathogen without any risk of illness. Vaccines have been extremely successful and have helped to virtually eliminate some diseases. However, for reasons that are unclear, the immune systems of older adults become less functional, so vaccines often lose their effectiveness. Paradoxically, as people age T cells become more likely to attack the body's cells, causing autoimmune diseases like arthritis. Understanding what happens to aging T cells to cause these immune changes may help scientists design vaccines that remain effective as people age. Little is known about what happens to a particular type of T cell—the CD4+ T cells—as people age, even though this population plays a critical role in providing other immune cells with detailed instructions on when and how to fight a pathogen. Now, Deshpande et al. show that CD4+ T cells undergo a remarkable set of changes in aging mice. Mice that are nearing the end of their natural lifespan have fewer CD4+ T cells than younger mice. However, those CD4+ T cells that remain are more likely than CD4+ T cells from younger mice to be able to recognize multiple antigens. This increase in the proportion of multitasking CD4+ T cells corresponds with an increased tendency of these cells to bind to the body's own cells. If similar changes occur in older people, this may help explain some age-related autoimmune diseases. Yet, the relationship between the increase in multitasking CD4+ T cells and the decrease in immune function with aging remains to be fully explored. The challenge for scientists now is to determine how these age-related changes in CD4+ T cells affect immune responses to vaccines or pathogens in older individuals. One implication of this work is that CD4+ T cell responses may be too robust and out of balance with other arms of the immune system. This could even lead to conditions such as autoimmunity. Alternatively, while there may be more CD4+ T cells that can multitask by recognizing multiple antigens, their ability to respond appropriately to infections or vaccinations may be diminished. What is clear from the work of Deshpande et al. is that the rules that have been defined for immunity in adults change with aging. The rules that govern immunity in the elderly must be more clearly defined to realize the goal of designing immunotherapies, such as vaccines, that provide protection throughout the lifespan. DOI:http://dx.doi.org/10.7554/eLife.05949.002
Collapse
Affiliation(s)
- Neha R Deshpande
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
| | - Heather L Parrish
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
| | - Michael S Kuhns
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, United States
| |
Collapse
|
11
|
Parrish HL, Glassman CR, Keenen MM, Deshpande NR, Bronnimann MP, Kuhns MS. A Transmembrane Domain GGxxG Motif in CD4 Contributes to Its Lck-Independent Function but Does Not Mediate CD4 Dimerization. PLoS One 2015; 10:e0132333. [PMID: 26147390 PMCID: PMC4493003 DOI: 10.1371/journal.pone.0132333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/14/2015] [Indexed: 12/24/2022] Open
Abstract
CD4 interactions with class II major histocompatibility complex (MHC) molecules are essential for CD4+ T cell development, activation, and effector functions. While its association with p56lck (Lck), a Src kinase, is important for these functions CD4 also has an Lck-independent role in TCR signaling that is incompletely understood. Here, we identify a conserved GGxxG motif in the CD4 transmembrane domain that is related to the previously described GxxxG motifs of other proteins and predicted to form a flat glycine patch in a transmembrane helix. In other proteins, these patches have been reported to mediate dimerization of transmembrane domains. Here we show that introducing bulky side-chains into this patch (GGxxG to GVxxL) impairs the Lck-independent role of CD4 in T cell activation upon TCR engagement of agonist and weak agonist stimulation. However, using Forster’s Resonance Energy Transfer (FRET), we saw no evidence that these mutations decreased CD4 dimerization either in the unliganded state or upon engagement of pMHC concomitantly with the TCR. This suggests that the CD4 transmembrane domain is either mediating interactions with an unidentified partner, or mediating some other function such as membrane domain localization that is important for its role in T cell activation.
Collapse
Affiliation(s)
- Heather L. Parrish
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Caleb R. Glassman
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Madeline M. Keenen
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Neha R. Deshpande
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Matthew P. Bronnimann
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Michael S. Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- The BIO-5 Institute, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
12
|
Evnouchidou I, Weimershaus M, Saveanu L, van Endert P. ERAP1-ERAP2 dimerization increases peptide-trimming efficiency. THE JOURNAL OF IMMUNOLOGY 2014; 193:901-8. [PMID: 24928998 DOI: 10.4049/jimmunol.1302855] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The endoplasmic reticulum aminopeptidases (ERAP)1 and ERAP2 play a critical role in the production of final epitopes presented by MHC class I molecules. Formation of heterodimers by ERAP1 and ERAP2 has been proposed to facilitate trimming of epitope precursor peptides, but the effects of dimerization on ERAP function remain unknown. In this study, we produced stabilized ERAP1-ERAP2 heterodimers and found that they produced several mature epitopes more efficiently than a mix of the two enzymes unable to dimerize. Physical interaction with ERAP2 changes basic enzymatic parameters of ERAP1 and improves its substrate-binding affinity. Thus, by bringing the two enzymes in proximity and by producing allosteric effects on ERAP1, dimerization of ERAP1/2 creates complexes with superior peptide-trimming efficacy. Such complexes are likely to enhance Ag presentation by cells displaying coordinated expression of the two enzymes.
Collapse
Affiliation(s)
- Irini Evnouchidou
- INSERM Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8253, 75015 Paris, France; and Faculté de Medicine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Mirjana Weimershaus
- INSERM Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8253, 75015 Paris, France; and Faculté de Medicine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Loredana Saveanu
- INSERM Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8253, 75015 Paris, France; and Faculté de Medicine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Peter van Endert
- INSERM Unité 1151, 75015 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8253, 75015 Paris, France; and Faculté de Medicine, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| |
Collapse
|
13
|
Studying MHC class I peptide loading and exchange in vitro. Methods Mol Biol 2013. [PMID: 23329480 DOI: 10.1007/978-1-62703-218-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In the endoplasmic reticulum (ER), MHC class I molecules associate with several specialized proteins, forming a large macromolecular complex referred to as the "peptide-loading complex" (PLC). In the PLC, antigenic peptides undergo a stringent selection process for binding onto MHC class I molecules. This ensures that the immune system elicits robust CD8+ T-cell responses to viruses and solid tumors. The ability to reconstitute in vitro MHC class I molecules in association with key proteins of the PLC provides a mean for studying at the molecular level how antigenic peptides are selected for presentation to CD8+ T-cells. Here, we describe practical procedures for generating a cell-free system involving MHC class I molecules and tapasin, a critical protein of the PLC, that can be used as a versatile tool for biochemical and mechanistic studies of peptide loading and exchange.
Collapse
|
14
|
Chen F, Pan L, Chao W, Dai Y, Yu W. Character of chicken polymorphic major histocompatibility complex class II alleles of 3 Chinese local breeds. Poult Sci 2012; 91:1097-104. [PMID: 22499866 DOI: 10.3382/ps.2011-02007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To better understand the major histocompatibility complex (MHC) genetic character of domestic birds, we sequenced and analyzed chicken MHC II (B-L) genes of 3 local chicken breeds, derived from 3 separate areas in China. We amplified cDNA sequences from 105 individuals, accounting for 35 alleles. Some of the same B-LB alleles with a high frequency were found in all samples. The putative B-L α-chain had few polymorphic sites, whereas the B-L β-chain had several polymorphic sites. Most of the mutation positions were located in the B-LB β1 domain encoded by exon 2, especially in the peptide-binding region. This indicated that the highly polymorphic peptide-binding region could potentiate binding diverse antigen epitopes. The comparison of 3-D molecule structures of chicken B-L and human HLA-DR1 revealed a distinctly structural similarity, but the chicken B-L molecule had more polymorphic sites than the human HLA-DR1 molecule, which presumably might be a mechanism to compensate for responding to a wider array of pathogens due to fewer loci for chicken. Moreover, some conserved sites in human and chicken MHC class II molecules reflected their common ancestry and similar functions. These results suggest that the chicken B-L gene showed more polymorphic sites and distinctly dominant trans-breed alleles, potentially to adapt to pathogens.
Collapse
Affiliation(s)
- F Chen
- Anhui Agricultural University, Hefei 230036, China
| | | | | | | | | |
Collapse
|
15
|
Komori HK, Witherden DA, Kelly R, Sendaydiego K, Jameson JM, Teyton L, Havran WL. Cutting edge: dendritic epidermal γδ T cell ligands are rapidly and locally expressed by keratinocytes following cutaneous wounding. THE JOURNAL OF IMMUNOLOGY 2012; 188:2972-6. [PMID: 22393149 DOI: 10.4049/jimmunol.1100887] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
TCR-specific activation is pivotal to dendritic epidermal T cell (DETC) function during cutaneous wound repair. However, DETC TCR ligands are uncharacterized, and little is known about their expression patterns and kinetics. Using soluble DETC TCR tetramers, we demonstrate that DETC TCR ligands are not constitutively expressed in healthy tissue but are rapidly upregulated following wounding on keratinocytes bordering wound edges. Ligand expression is tightly regulated, with downmodulation following DETC activation. Early inhibition of TCR-ligand interactions using DETC TCR tetramers delays wound repair in vivo, highlighting DETC as rapid responders to injury. To our knowledge, this is the first visualization of DETC TCR ligand expression, which provides novel information about how ligand expression impacts early stages of DETC activation and wound repair.
Collapse
Affiliation(s)
- H Kiyomi Komori
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Davis MM, Altman JD, Newell EW. Interrogating the repertoire: broadening the scope of peptide-MHC multimer analysis. Nat Rev Immunol 2011; 11:551-8. [PMID: 21760610 PMCID: PMC3699324 DOI: 10.1038/nri3020] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Labelling antigen-specific T cells with peptide-MHC multimers has provided an invaluable way to monitor T cell-mediated immune responses. A number of recent developments in this technology have made these multimers much easier to make and use in large numbers. Furthermore, enrichment techniques have provided a greatly increased sensitivity that allows the analysis of the naive T cell repertoire directly. Thus, we can expect a flood of new information to emerge in the coming years.
Collapse
Affiliation(s)
- Mark M Davis
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA.
| | | | | |
Collapse
|
17
|
Kerrigan JJ, Xie Q, Ames RS, Lu Q. Production of protein complexes via co-expression. Protein Expr Purif 2010; 75:1-14. [PMID: 20692346 DOI: 10.1016/j.pep.2010.07.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/22/2010] [Accepted: 07/31/2010] [Indexed: 12/21/2022]
Abstract
Multi-protein complexes are involved in essentially all cellular processes. A protein's function is defined by a combination of its own properties, its interacting partners, and the stoichiometry of each. Depending on binding partners, a transcription factor can function as an activator in one instance and a repressor in another. The study of protein function or malfunction is best performed in the relevant context. While many protein complexes can be reconstituted from individual component proteins after being produced individually, many others require co-expression of their native partners in the host cells for proper folding, stability, and activity. Protein co-expression has led to the production of a variety of biological active complexes in sufficient quantities for biochemical, biophysical, structural studies, and high throughput screens. This article summarizes examples of such cases and discusses critical considerations in selecting co-expression partners, and strategies to achieve successful production of protein complexes.
Collapse
Affiliation(s)
- John J Kerrigan
- Biological Reagents & Assay Development, Platform Technology & Science, GlaxoSmithKline R&D, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | | | | | | |
Collapse
|
18
|
Ayyoub M, Dojcinovic D, Pignon P, Raimbaud I, Schmidt J, Luescher I, Valmori D. Monitoring of NY-ESO-1 specific CD4+ T cells using molecularly defined MHC class II/His-tag-peptide tetramers. Proc Natl Acad Sci U S A 2010; 107:7437-42. [PMID: 20368442 PMCID: PMC2867704 DOI: 10.1073/pnas.1001322107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MHC-peptide tetramers have become essential tools for T-cell analysis, but few MHC class II tetramers incorporating peptides from human tumor and self-antigens have been developed. Among limiting factors are the high polymorphism of class II molecules and the low binding capacity of the peptides. Here, we report the generation of molecularly defined tetramers using His-tagged peptides and isolation of folded MHC/peptide monomers by affinity purification. Using this strategy we generated tetramers of DR52b (DRB3*0202), an allele expressed by approximately half of Caucasians, incorporating an epitope from the tumor antigen NY-ESO-1. Molecularly defined tetramers avidly and stably bound to specific CD4(+) T cells with negligible background on nonspecific cells. Using molecularly defined DR52b/NY-ESO-1 tetramers, we could demonstrate that in DR52b(+) cancer patients immunized with a recombinant NY-ESO-1 vaccine, vaccine-induced tetramer-positive cells represent ex vivo in average 1:5,000 circulating CD4(+) T cells, include central and transitional memory polyfunctional populations, and do not include CD4(+)CD25(+)CD127(-) regulatory T cells. This approach may significantly accelerate the development of reliable MHC class II tetramers to monitor immune responses to tumor and self-antigens.
Collapse
Affiliation(s)
- Maha Ayyoub
- Institut National de la Santé et de la Recherche Médicale, Unité 892, Centre de Lutte Contre le Cancer René Gauducheau, 44800 Saint Herblain, France
| | - Danijel Dojcinovic
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, CH-1066 Epalinges, Switzerland; and
| | - Pascale Pignon
- Institut National de la Santé et de la Recherche Médicale, Unité 892, Centre de Lutte Contre le Cancer René Gauducheau, 44800 Saint Herblain, France
| | - Isabelle Raimbaud
- Institut National de la Santé et de la Recherche Médicale, Unité 892, Centre de Lutte Contre le Cancer René Gauducheau, 44800 Saint Herblain, France
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, CH-1066 Epalinges, Switzerland; and
| | - Immanuel Luescher
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, CH-1066 Epalinges, Switzerland; and
| | - Danila Valmori
- Institut National de la Santé et de la Recherche Médicale, Unité 892, Centre de Lutte Contre le Cancer René Gauducheau, 44800 Saint Herblain, France
- Faculty of Medicine, University of Nantes, 44093 Nantes, France
| |
Collapse
|
19
|
Landais E, Romagnoli PA, Corper AL, Shires J, Altman JD, Wilson IA, Garcia KC, Teyton L. New design of MHC class II tetramers to accommodate fundamental principles of antigen presentation. THE JOURNAL OF IMMUNOLOGY 2010; 183:7949-57. [PMID: 19923463 DOI: 10.4049/jimmunol.0902493] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Direct identification and isolation of Ag-specific T cells became possible with the development of MHC tetramers, based on fluorescent avidins displaying biotinylated peptide-MHC complexes. This approach, extensively used for MHC class I-restricted T cells, has met very limited success with class II peptide-MHC complex tetramers (pMHCT-2) for the detection of CD4(+)-specific T cells. In addition, a very large number of these reagents, although capable of specifically activating T cells after being coated on solid support, is still unable to stain. To try to understand this puzzle and design usable tetramers, we examined each parameter critical for the production of pMHCT-2 using the I-A(d)-OVA system as a model. Through this process, the geometry of peptide-MHC display by avidin tetramers was examined, as well as the stability of rMHC molecules. However, we discovered that the most important factor limiting the reactivity of pMHCT-2 was the display of peptides. Indeed, long peptides, as presented by MHC class II molecules, can be bound to I-A/HLA-DQ molecules in more than one register, as suggested by structural studies. This mode of anchorless peptide binding allows the selection of a broader repertoire on single peptides and should favor anti-infectious immune responses. Thus, beyond the technical improvements that we propose, the redesign of pMHCT-2 will give us the tools to evaluate the real size of the CD4 T cell repertoire and help us in the production and testing of new vaccines.
Collapse
Affiliation(s)
- Elise Landais
- Department of Immunology and Microbial Sciences, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Batsalova T, Vestberg M, Holmdahl R, Dzhambazov B. MOG79–90 Peptide in Complex with Recombinant MHC Class II Molecules Ameliorates Experimental Autoimmune Encephalomyelitis. BIOTECHNOL BIOTEC EQ 2010. [DOI: 10.1080/13102818.2010.10817822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
21
|
Levin D, DiPaolo RJ, Brinster C, Revilleza MJR, Boyd LF, Teyton L, Natarajan K, Mage MG, Shevach EM, Margulies DH. Availability of autoantigenic epitopes controls phenotype, severity, and penetrance in TCR Tg autoimmune gastritis. Eur J Immunol 2008; 38:3339-53. [PMID: 19039784 PMCID: PMC2712832 DOI: 10.1002/eji.200838584] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We examined TCR:MHC/peptide interactions and in vivo epitope availability to explore the Th1- or Th2-like phenotype of autoimmune disease in two TCR Tg mouse models of autoimmune gastritis (AIG). The TCR of strains A23 and A51 recognize distinct IA(d)-restricted peptides from the gastric parietal cell H/K-ATPase. Both peptides form extremely stable MHC/peptide (MHC/p) complexes. All A23 animals develop a Th1-like aggressive, inflammatory AIG early in life, while A51 mice develop indolent Th2-like AIG at 6-8 wk with incomplete penetrance. A51 T cells were more sensitive than A23 to low doses of soluble antigen and to MHC/p complexes. Staining with IA(d)/peptide tetramers was only detectable on previously activated T cells from A51. Thus, despite inducing a milder AIG, the A51 TCR displays a higher avidity for its cognate IA(d)/peptide. Nonetheless, in vivo proliferation of adoptively transferred A51 CFSE-labeled T cells in the gastric lymph node was relatively poor compared with A23 T cells. Also, DC from WT gastric lymph node, presenting processed antigen available in vivo, stimulated proliferation of A23 T cells better than A51. Thus, the autoimmune potential of these TCR in their respective Tg lines is strongly influenced by the availability of the peptide epitope, rather than by differential avidity for their respective MHC/p complexes.
Collapse
Affiliation(s)
- Ditza Levin
- Department of Biotechnology Engineering, Ort Braude College, Karmiel, Israel
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard J. DiPaolo
- Cellular Immunology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carine Brinster
- Cellular Immunology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maria Jamela R. Revilleza
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luc Teyton
- Immunology Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael G. Mage
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ethan M. Shevach
- Cellular Immunology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Hovhannisyan Z, Weiss A, Martin A, Wiesner M, Tollefsen S, Yoshida K, Ciszewski C, Curran SA, Murray JA, David CS, Sollid LM, Koning F, Teyton L, Jabri B. The role of HLA-DQ8 beta57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature 2008. [PMID: 19037317 DOI: 10.1038/nature075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Major histocompatibility complex (MHC) class II alleles HLA-DQ8 and the mouse homologue I-A(g7) lacking a canonical aspartic acid residue at position beta57 are associated with coeliac disease and type I diabetes. However, the role of this single polymorphism in disease initiation and progression remains poorly understood. The lack of Asp 57 creates a positively charged P9 pocket, which confers a preference for negatively charged peptides. Gluten lacks such peptides, but tissue transglutaminase (TG2) introduces negatively charged residues at defined positions into gluten T-cell epitopes by deamidating specific glutamine residues on the basis of their spacing to proline residues. The commonly accepted model, proposing that HLA-DQ8 simply favours binding of negatively charged peptides, does not take into account the fact that TG2 requires inflammation for activation and that T-cell responses against native gluten peptides are found, particularly in children. Here we show that beta57 polymorphism promotes the recruitment of T-cell receptors bearing a negative signature charge in the complementary determining region 3beta (CDR3beta) during the response against native gluten peptides presented by HLA-DQ8 in coeliac disease. These T cells showed a crossreactive and heteroclitic (stronger) response to deamidated gluten peptides. Furthermore, gluten peptide deamidation extended the T-cell-receptor repertoire by relieving the requirement for a charged residue in CDR3beta. Thus, the lack of a negative charge at position beta57 in MHC class II was met by negatively charged residues in the T-cell receptor or in the peptide, the combination of which might explain the role of HLA-DQ8 in amplifying the T-cell response against dietary gluten.
Collapse
Affiliation(s)
- Zaruhi Hovhannisyan
- Department of Medicine, Pathology, Pediatrics and Committee of Immunology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hovhannisyan Z, Weiss A, Martin A, Wiesner M, Tollefsen S, Yoshida K, Ciszewski C, Curran SA, Murray JA, David CS, Sollid LM, Koning F, Teyton L, Jabri B. The role of HLA-DQ8 beta57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature 2008; 456:534-8. [PMID: 19037317 PMCID: PMC3784325 DOI: 10.1038/nature07524] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/06/2008] [Indexed: 12/20/2022]
Abstract
Major histocompatibility complex (MHC) class II alleles HLA-DQ8 and the mouse homologue I-A(g7) lacking a canonical aspartic acid residue at position beta57 are associated with coeliac disease and type I diabetes. However, the role of this single polymorphism in disease initiation and progression remains poorly understood. The lack of Asp 57 creates a positively charged P9 pocket, which confers a preference for negatively charged peptides. Gluten lacks such peptides, but tissue transglutaminase (TG2) introduces negatively charged residues at defined positions into gluten T-cell epitopes by deamidating specific glutamine residues on the basis of their spacing to proline residues. The commonly accepted model, proposing that HLA-DQ8 simply favours binding of negatively charged peptides, does not take into account the fact that TG2 requires inflammation for activation and that T-cell responses against native gluten peptides are found, particularly in children. Here we show that beta57 polymorphism promotes the recruitment of T-cell receptors bearing a negative signature charge in the complementary determining region 3beta (CDR3beta) during the response against native gluten peptides presented by HLA-DQ8 in coeliac disease. These T cells showed a crossreactive and heteroclitic (stronger) response to deamidated gluten peptides. Furthermore, gluten peptide deamidation extended the T-cell-receptor repertoire by relieving the requirement for a charged residue in CDR3beta. Thus, the lack of a negative charge at position beta57 in MHC class II was met by negatively charged residues in the T-cell receptor or in the peptide, the combination of which might explain the role of HLA-DQ8 in amplifying the T-cell response against dietary gluten.
Collapse
Affiliation(s)
- Zaruhi Hovhannisyan
- Department of Medicine, Pathology, Pediatrics and Committee of Immunology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hansen BE, Andersson EC, Madsen LS, Engberg J, Søndergaard L, Svejgaard A, Fugger L. Functional characterization of HLA-DRA11 0101/ DRB1* 0401 molecules expressed in Drosophila melanogaster cells. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1399-0039.1998.tb02957.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Vollers SS, Stern LJ. Class II major histocompatibility complex tetramer staining: progress, problems, and prospects. Immunology 2008; 123:305-13. [PMID: 18251991 DOI: 10.1111/j.1365-2567.2007.02801.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The use of major histocompatibility complex (MHC) tetramers in the detection and analysis of antigen-specific T cells has become more widespread since its introduction 11 years ago. Early challenges in the application of tetramer staining to CD4+ T cells centred around difficulties in the expression of various class II MHC allelic variants and the detection of low-frequency T cells in mixed populations. As many of the technical obstacles to class II MHC tetramer staining have been overcome, the focus has returned to uncertainties concerning how oligomer valency and T-cell receptor/MHC affinity affect tetramer binding. Such issues have become more important with an increase in the number of studies relying on direct ex vivo analysis of antigen-specific CD4+ T cells. In this review we discuss which problems in class II MHC tetramer staining have been solved to date, and which matters remain to be considered.
Collapse
Affiliation(s)
- Sabrina S Vollers
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
26
|
Henderson KN, Reid HH, Borg NA, Broughton SE, Huyton T, Anderson RP, McCluskey J, Rossjohn J. The production and crystallization of the human leukocyte antigen class II molecules HLA-DQ2 and HLA-DQ8 complexed with deamidated gliadin peptides implicated in coeliac disease. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:1021-5. [PMID: 18084083 PMCID: PMC2344093 DOI: 10.1107/s1744309107051408] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 10/17/2007] [Indexed: 12/30/2022]
Abstract
The major histocompatibility complex (MHC) class II molecules HLA-DQ2 and HLA-DQ8 are key risk factors in coeliac disease, as they bind deamidated gluten peptides that are subsequently recognized by CD4+ T cells. Here, the production and crystallization of both HLA-DQ2 and HLA-DQ8 in complex with the deamidated gliadin peptides DQ2 alpha-I (PQPELPYPQ) and DQ8 alpha-I (EGSFQPSQE), respectively, are reported.
Collapse
Affiliation(s)
- Kate N Henderson
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM, Jenkins MK. Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 2007; 27:203-13. [PMID: 17707129 PMCID: PMC2200089 DOI: 10.1016/j.immuni.2007.07.007] [Citation(s) in RCA: 789] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 06/21/2007] [Accepted: 07/02/2007] [Indexed: 01/21/2023]
Abstract
Cell-mediated immunity stems from the proliferation of naive T lymphocytes expressing T cell antigen receptors (TCRs) specific for foreign peptides bound to host major histocompatibility complex (MHC) molecules. Because of the tremendous diversity of the T cell repertoire, naive T cells specific for any one peptide:MHC complex (pMHC) are extremely rare. Thus, it is not known how many naive T cells of any given pMHC specificity exist in the body or how that number influences the immune response. By using soluble pMHC class II (pMHCII) tetramers and magnetic bead enrichment, we found that three different pMHCII-specific naive CD4(+) T cell populations vary in frequency from 20 to 200 cells per mouse. Moreover, naive population size predicted the size and TCR diversity of the primary CD4(+) T cell response after immunization with relevant peptide. Thus, variation in naive T cell frequencies can explain why some peptides are stronger immunogens than others.
Collapse
Affiliation(s)
- James J. Moon
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN, 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455
| | - H. Hamlet Chu
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN, 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455
| | - Marion Pepper
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN, 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455
| | - Stephen J. McSorley
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455
| | - Stephen C. Jameson
- Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455
| | - Ross M. Kedl
- Integrated Department of Immunology, University of Colorado Health Sciences Center, Denver, CO 80206
| | - Marc K. Jenkins
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN, 55455
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455
| |
Collapse
|
28
|
Homann D, Lewicki H, Brooks D, Eberlein J, Mallet-Designé V, Teyton L, Oldstone MBA. Mapping and restriction of a dominant viral CD4+ T cell core epitope by both MHC class I and MHC class II. Virology 2007; 363:113-23. [PMID: 17320138 PMCID: PMC1976554 DOI: 10.1016/j.virol.2006.12.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 11/12/2006] [Accepted: 12/08/2006] [Indexed: 11/25/2022]
Abstract
Virus-specific CD4(+) T cells contribute to effective virus control through a multiplicity of mechanisms including direct effector functions as well as "help" for B cell and CD8(+) T cell responses. Here, we have used the lymphocytic choriomeningitis virus (LCMV) system to assess the minimal constraints of a dominant antiviral CD4(+) T cell response. We report that the core epitope derived from the LCMV glycoprotein (GP) is 11 amino acids in length and provides optimal recognition by epitope-specific CD4(+) T cells. Surprisingly, this epitope is also recognized by LCMV-specific CD8(+) T cells and thus constitutes a unique viral determinant with dual MHC class I- and II-restriction.
Collapse
Affiliation(s)
- Dirk Homann
- Barbara Davis Center, University of Colorado at Denver and Health Sciences Center, 12801 East 17th Avenue, Aurora CO, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Xia J, Siegel M, Bergseng E, Sollid LM, Khosla C. Inhibition of HLA-DQ2-mediated antigen presentation by analogues of a high affinity 33-residue peptide from alpha2-gliadin. J Am Chem Soc 2006; 128:1859-67. [PMID: 16464085 PMCID: PMC2597451 DOI: 10.1021/ja056423o] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human leukocyte antigen DQ2 is a class II major histocompatibility complex protein that plays a critical role in the pathogenesis of Celiac Sprue by binding to epitopes derived from dietary gluten and triggering the inflammatory response of disease-specific T cells. Inhibition of DQ2-mediated antigen presentation in the small intestinal mucosa of Celiac Sprue patients therefore represents a potentially attractive mode of therapy for this widespread but unmet medical need. Starting from a pro-inflammatory, proteolytically resistant, 33-residue peptide, LQLQPFPQPELPYPQPELPYPQPELPYPQPQPF, we embarked upon a systematic effort to dissect the relationships between peptide structure and DQ2 affinity and to translate these insights into prototypical DQ2 blocking agents. Three structural determinants within the first 20 residues of this 33-mer peptide, including a PQPELPYPQ epitope, its N-terminal flanking sequence, and a downstream Glu residue, were found to be important for DQ2 binding. Guided by the X-ray crystal structure of DQ2, the L11 and L18 residues in the truncated 20-mer analogue were replaced with sterically bulky groups so as to retain high DQ2 affinity but abrogate T cell recognition. A dimeric ligand, synthesized by regiospecific coupling of the 20-mer peptide with a bifunctional linker, was identified as an especially potent DQ2 binding agent. Two such ligands were able to attenuate the proliferation of disease-specific T cell lines in response to gluten antigens and, therefore, represent prototypical examples of pharmacologically suitable DQ2 blocking agents for the potential treatment of Celiac Sprue.
Collapse
Affiliation(s)
- Jiang Xia
- Department of Chemistry, Stanford University, Stanford, USA
| | - Matthew Siegel
- Department of Chemical Engineering, Stanford University, Stanford, USA
| | - Elin Bergseng
- Institute of Immunology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway
| | - Ludvig M. Sollid
- Institute of Immunology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, USA
- Department of Chemical Engineering, Stanford University, Stanford, USA
- Department of Biochemistry, Stanford University, Stanford, USA
| |
Collapse
|
30
|
Dzhambazov B, Nandakumar KS, Kihlberg J, Fugger L, Holmdahl R, Vestberg M. Therapeutic vaccination of active arthritis with a glycosylated collagen type II peptide in complex with MHC class II molecules. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:1525-33. [PMID: 16424181 DOI: 10.4049/jimmunol.176.3.1525] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In both collagen-induced arthritis (CIA) and rheumatoid arthritis, T cells recognize a galactosylated peptide from type II collagen (CII). In this study, we demonstrate that the CII259-273 peptide, galactosylated at lysine 264, in complex with Aq molecules prevented development of CIA in mice and ameliorated chronic relapsing disease. In contrast, nonglycosylated CII259-273/Aq complexes had no such effect. CIA dependent on other MHC class II molecules (Ar/Er) was also down-regulated, indicating a bystander vaccination effect. T cells could transfer the amelioration of CIA, showing that the protection is an active process. Thus, a complex between MHC class II molecules and a posttranslationally modified peptide offers a new possibility for treatment of chronically active autoimmune inflammation such as rheumatoid arthritis.
Collapse
|
31
|
Bronke C, Palmer NM, Westerlaken GHA, Toebes M, van Schijndel GMW, Purwaha V, van Meijgaarden KE, Schumacher TNM, van Baarle D, Tesselaar K, Geluk A. Direct ex vivo detection of HLA-DR3-restricted cytomegalovirus- and Mycobacterium tuberculosis-specific CD4+ T cells. Hum Immunol 2005; 66:950-61. [PMID: 16360834 DOI: 10.1016/j.humimm.2005.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 06/22/2005] [Accepted: 06/27/2005] [Indexed: 11/18/2022]
Abstract
In order to detect epitope-specific CD4+ T cells in mycobacterial or viral infections in the context of human class II major histocompatibility complex protein human leukocyte antigen (HLA)-DR3, two HLA-DR3 tetrameric molecules were successfully produced. One contained an immunodominant HLA-DR3-restricted T-cell epitope derived from the 65-kDa heat-shock protein of Mycobacterium tuberculosis, peptide 1-13. For the other tetramer, we used an HLA-DR3-restricted T-cell epitope derived from cytomegalovirus (CMV) pp65 lower matrix protein, peptide 510-522, which induced high levels of interferon (IFN)-gamma-producing CD4+ T cells in three of four HLA-DR3-positive CMV-seropositive individuals up to 0.84% of CD4+ T cells by intracellular cytokine staining. In peripheral blood mononuclear cells from M. tuberculosis-exposed, Mycobacterium bovis bacille Calmette-Guérin (BCG)-vaccinated, or CMV-seropositive individuals, we were able to directly detect with both tetramers epitope-specific T cells up to 0.62% and 0.45% of the CD4+ T-cell population reactive to M. tuberculosis and CMV, respectively. After a 6-day culture with peptide p510-522, the frequency of CMV-specific tetramer-binding T cells was expanded up to 9.90% tetramer+ CFSElow (5,6-carboxyfluorescein diacetate succinimidyl ester) cells within the CD4+ T-cell population, further confirming the specificity of the tetrameric molecules. Thus, HLA-DR3/peptide tetrameric molecules can be used to investigate HLA-DR3-restricted antigen-specific CD4+ T cells in clinical disease or after vaccination.
Collapse
Affiliation(s)
- Corine Bronke
- Department of Clinical Viro-Immunology, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zajonc DM, Cantu C, Mattner J, Zhou D, Savage PB, Bendelac A, Wilson IA, Teyton L. Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat Immunol 2005; 6:810-818. [PMID: 16007091 PMCID: PMC2045075 DOI: 10.1038/ni1224] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 06/01/2005] [Indexed: 12/20/2022]
Abstract
Natural killer T cells express a conserved, semi-invariant alphabeta T cell receptor that has specificity for self glycosphingolipids and microbial cell wall alpha-glycuronosylceramide antigens presented by CD1d molecules. Here we report the crystal structure of CD1d in complex with a short-chain synthetic variant of alpha-galactosylceramide at a resolution of 2.2 A. This structure elucidates the basis for the high specificity of these microbial ligands and explains the restriction of the alpha-linkage as a unique pathogen-specific pattern-recognition motif. Comparison of the binding of altered lipid ligands to CD1d and T cell receptors suggested that the differential T helper type 1-like and T helper type 2-like properties of natural killer T cells may originate largely from differences in their 'loading' in different cell types and hence in their tissue distribution in vivo.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Antigens, CD1/biosynthesis
- Antigens, CD1d
- Cell Wall/metabolism
- Crystallography, X-Ray
- Dose-Response Relationship, Drug
- Flow Cytometry
- Galactosylceramides/chemistry
- Glycosphingolipids/chemistry
- Hot Temperature
- Humans
- Isoelectric Focusing
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/immunology
- Ligands
- Lipids/chemistry
- Lymphocyte Activation
- Mice
- Models, Chemical
- Models, Molecular
- Mutation
- Protein Conformation
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Recombinant Proteins/chemistry
- Structure-Activity Relationship
- Surface Plasmon Resonance
- Temperature
- Th1 Cells/metabolism
- Th2 Cells/metabolism
- Time Factors
- Tissue Distribution
Collapse
Affiliation(s)
- Dirk M. Zajonc
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, California 92037, USA
| | - Carlos Cantu
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, California 92037, USA
| | - Jochen Mattner
- University of Chicago, Committee on Immunology, 5841 S. Maryland Av., Chicago, IL 60637
| | - Dapeng Zhou
- University of Chicago, Committee on Immunology, 5841 S. Maryland Av., Chicago, IL 60637
| | - Paul B. Savage
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, California 92037, USA
| | - Albert Bendelac
- University of Chicago, Committee on Immunology, 5841 S. Maryland Av., Chicago, IL 60637
| | - Ian A. Wilson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, California 92037, USA
- Brigham Young University, C100 Benson Science Building, Provo, UT 84602-5700
| | - Luc Teyton
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, California 92037, USA
| |
Collapse
|
33
|
Zhang Y, Renkvist N, Sun Z, Schuler-Thurner B, Glaichenhaus N, Schuler G, Boon T, van der Bruggen P, Colau D. A polyclonal anti-vaccine CD4 T cell response detected with HLA-DP4 multimers in a melanoma patient vaccinated with MAGE-3.DP4-peptide-pulsed dendritic cells. Eur J Immunol 2005; 35:1066-75. [PMID: 15756643 DOI: 10.1002/eji.200425847] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the last few years, HLA class I tetramers have been successfully used to demonstrate anti-vaccine CD8 CTL proliferation in cancer patients vaccinated with tumor antigens. Frequencies of CTL as low as 10(-6) among CD8 cells were observed even in patients showing tumor regression. Little is known about the role of tumor-antigen-specific CD4 T cells in the context of these anti-vaccine responses. Therefore, we developed a very sensitive approach using fluorescent class-II-peptide multimers to detect antigen-specific CD4 T cells in vaccinated cancer patients. We produced HLA-DP4 multimers loaded with the MAGE-3(243-258) peptide and used them to stain ex vivo PBL from melanoma patients injected with dendritic cells pulsed with several class I and class II tumor antigenic peptides, including the MAGE-3(243-258) peptide. The multimer(+) CD4 T cells were sorted and amplified in clonal conditions; specificity was assessed by their ability to secrete IFN-gamma upon contact with the MAGE-3 antigen. We detected frequencies of about 1x10(-6) anti-MAGE-3.DP4 cells among CD4 cells. A detailed analysis of one patient showed an anti-MAGE-3.DP4 CD4 T cell amplification of at least 3000-fold upon immunization. TCR analysis of the clones from this patient demonstrated a polyclonal response against the MAGE-3 peptide.
Collapse
Affiliation(s)
- Yi Zhang
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xia J, Sollid LM, Khosla C. Equilibrium and kinetic analysis of the unusual binding behavior of a highly immunogenic gluten peptide to HLA-DQ2. Biochemistry 2005; 44:4442-9. [PMID: 15766274 DOI: 10.1021/bi047747c] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HLA-DQ2 predisposes an individual to celiac sprue by presenting peptides from dietary gluten to intestinal CD4(+) T cells. A selectively deamidated multivalent peptide from gluten (LQLQPFPQPELPYPQPELPYPQPELPYPQPQPF; underlined residues correspond to posttranslational Q --> E alterations) is a potent trigger of DQ2 restricted T cell proliferation. Here we report equilibrium and kinetic measurements of interactions between DQ2 and (i) this highly immunogenic multivalent peptide, (ii) its individual constituent epitopes, (iii) its nondeamidated precursor, and (iv) a reference high-affinity ligand of HLA-DQ2 that is not recognized by gluten-responsive T cells from celiac sprue patients. The deamidated 33-mer peptide efficiently exchanges with a preloaded peptide in the DQ2 ligand-binding groove at pH 5.5 as well as pH 7.3, suggesting that the peptide can be presented to T cells comparably well through the endocytic pathway or via direct loading onto extracellular HLA-DQ2. In contrast, the monovalent peptides, and the nondeamidated precursor, as well as the tight-binding reference peptide show a much poorer ability to exchange with a preloaded peptide in the DQ2 binding pocket, especially at pH 7.3, suggesting that endocytosis of these peptides is a prerequisite for T cell presentation. At pH 5.5 and 7.3, dissociation of the deamidated 33-mer peptide from DQ2 is much slower than dissociation of its constituent monovalent epitopes or the nondeamidated precursor but faster than dissociation of the reference high-affinity peptide. Oligomeric states involving multiple copies of the DQ2 heterodimer bound to a single copy of the multivalent 33-mer peptide are not observed. Together, these results suggest that the remarkable antigenicity of the 33-mer gluten peptide is primarily due to its unusually efficient ability to displace existing ligands in the HLA-DQ2 binding pocket, rather than an extremely low rate of dissociation.
Collapse
Affiliation(s)
- Jiang Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
35
|
Chaves FA, Hou P, Wu S, Sant AJ. Replacement of the membrane proximal region of I-Ad MHC class II molecule with I-E-derived sequences promotes production of an active and stable soluble heterodimer without altering peptide-binding specificity. J Immunol Methods 2005; 300:74-92. [PMID: 15896797 DOI: 10.1016/j.jim.2005.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 02/28/2005] [Accepted: 02/28/2005] [Indexed: 11/24/2022]
Abstract
The MHC class II molecule I-A is the murine homologue of HLA-DQ in humans. The I-A and DQ heterodimers display considerable heterodimer instability compared with their I-E and HLA-DR counterparts. This isotype-specific behavior makes the production of soluble I-A and DQ molecules very difficult. We have developed a strategy for production of soluble I-A(d) molecules involving expression of I-A(d) as a glycosil phosphatidyl inositol (PI) anchored chimera in Chinese Hamster Ovary (CHO) cells. The regions comprising the membrane proximal segments of I-A(d) alpha and beta chains were substituted for the corresponding regions of I-E, and the derived constructs were expressed in CHO cells. Procedures for purification of the soluble class II molecules were optimized and the WT and chimeric molecule were compared for structure, biochemical stability and functionality. Our analysis revealed that the substitutions in the membrane proximal domains improved cell surface expression and thermal stability of I-A(d) without altering the peptide binding specificity of the class II molecule. The results suggest that similar strategies could be used to increase the stability of other unstable class II molecules for in vitro studies.
Collapse
Affiliation(s)
- Francisco A Chaves
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
36
|
Malherbe L, Hausl C, Teyton L, McHeyzer-Williams MG. Clonal selection of helper T cells is determined by an affinity threshold with no further skewing of TCR binding properties. Immunity 2004; 21:669-79. [PMID: 15539153 DOI: 10.1016/j.immuni.2004.09.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 09/09/2004] [Accepted: 09/29/2004] [Indexed: 10/26/2022]
Abstract
Helper T cell responses that focus the TCR repertoire of responding clones provide experimental access to the mechanisms of clonal selection in vivo. Using TCRbeta chain animals, we directly evaluate the extent of TCRalpha CDR3 diversity and the pMHCII binding attributes of individual antigen-specific Th cells. Here, we demonstrate that dominant clonotypes, as defined by TCR junctional sequence similarities, are surprisingly diverse at the level of pMHCII binding properties, before and after antigen exposure. During an immune response, we can detect and quantify the selective loss of antigen-specific clonotypes that express lower-affinity TCR. This affinity threshold selection is followed by the unbiased propagation of preferred clonotypes regardless of TCR-pMHCII half-lives or affinity. Thus, an affinity threshold mechanism discriminates Th clones with TCR of best fit and propagates clonal diversity without promoting autoreactivity.
Collapse
Affiliation(s)
- Laurent Malherbe
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
37
|
Esteban O, Zhao H. Directed evolution of soluble single-chain human class II MHC molecules. J Mol Biol 2004; 340:81-95. [PMID: 15184024 DOI: 10.1016/j.jmb.2004.04.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 04/16/2004] [Accepted: 04/20/2004] [Indexed: 11/17/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are membrane-anchored heterodimers that present antigenic peptides to T cells. Expression of these molecules in soluble form has met limited success, presumably due to their large size, heterodimeric structure and the presence of multiple disulfide bonds. Here we have used directed evolution and yeast surface display to engineer soluble single-chain human lymphocyte antigen (HLA) class II MHC DR1 molecules without covalently attached peptides (scDR1alphabeta). Specifically, a library of mutant scDR1alphabeta molecules was generated by random mutagenesis and screened by fluorescence activated cell sorting (FACS) with DR-specific conformation-sensitive antibodies, yielding three well-expressed and properly folded scDR1alphabeta variants displayed on the yeast cell surface. Detailed analysis of these evolved variants and a few site-directed mutants generated de novo indicated three amino acid residues in the beta1 domain are important for the improved protein folding yield. Further, molecular modeling studies suggested these mutations might increase the protein folding efficiency by improving the packing of a hydrophobic core in the alpha1beta1 domain of DR1. The scDR1alphabeta mutants displayed on the yeast cell surface are remarkably stable and bind specifically to DR-specific peptide HA(306-318) with high sensitivity and rapid kinetics in flow cytometric assays. Moreover, since the expression, stability and peptide-binding properties of these mutants can be directly assayed on the yeast cell surface using immuno-fluorescence labeling and flow cytometry, time-consuming purification and refolding steps of recombinant DR1 molecules are eliminated. Therefore, these scDR1alphabeta molecules will provide a powerful technology platform for further design of DR1 molecules with improved peptide-binding specificity and affinity for therapeutic and diagnostic applications. The methods described here should be generally applicable to other class II MHC molecules and also class I MHC molecules for their functional expression, characterization and engineering.
Collapse
Affiliation(s)
- Olga Esteban
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | | |
Collapse
|
38
|
Yang J, Jaramillo A, Shi R, Kwok WW, Mohanakumar T. In vivo biotinylation of the major histocompatibility complex (MHC) class II/peptide complex by coexpression of BirA enzyme for the generation of MHC class II/tetramers. Hum Immunol 2004; 65:692-9. [PMID: 15301857 DOI: 10.1016/j.humimm.2004.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Success in generation of major histocompatibility complex (MHC) tetramer relies on application of a key technique, biotinylation of MHC molecule specifically on a single lysine residue using the BirA enzyme. However, in vitro biotinylation of MHC-BSP (BirA enzyme substrate peptide) fusion protein using BirA enzyme is laborious and is prone to losses of target proteins to unacceptable levels. To circumvent this problem, an in vivo biotinylation strategy was developed where the BirA enzyme was coexpressed with target protein, HLA-DR2BSP/MBP, in an insect cell expression system. Bacterial BirA enzyme expressed in Drosophila melanogaster 2 (D. Mel-2) cell lines was biologically functional and was able to biotinylate secretary target protein (on specific lysine residue present on the BSP tag). Biotinylation efficiency was maximized by providing exogenous d-biotin in the culture medium and optimization of the expression vector ratios for cotransfection. By limiting dilution cloning, a clone was identified where the expressed DR2BSP/MBP protein was completely biotinylated. DR2BSP/MBP protein expressed and purified from such a clone was ready to be tetramerized with streptavidin to be used for staining antigen-specific T cells.
Collapse
Affiliation(s)
- Junbao Yang
- Department of Surgery, Washington University School of Medicine, MO 63110-1093, USA
| | | | | | | | | |
Collapse
|
39
|
Fourneau JM, Cohen H, van Endert PM. A chaperone-assisted high yield system for the production of HLA-DR4 tetramers in insect cells. J Immunol Methods 2004; 285:253-64. [PMID: 14980439 DOI: 10.1016/j.jim.2003.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 11/06/2003] [Accepted: 11/20/2003] [Indexed: 01/13/2023]
Abstract
MHC tetramers have become essential tools for the analysis of antigen specific responses of CD8+ and CD4+ T cells. However, the use of MHC class II tetramers is hampered by the relatively low yields of most current expression systems. We have devised an insect cell/baculovirus expression system in which yields of 50-70 mg of recombinant HLA-DR4 molecules, with or without covalently linked peptide, per liter of insect cell supernatant, are routinely obtained. These yields are rendered possible by an optimized design and use of DRalpha and DRbeta expression cassettes and by co-expression of a housekeeping chaperone of the endoplasmic reticulum, calreticulin, which, due to its co-secretion, increases secretion of HLA-DR molecules two- to threefold. A tetramer produced in the system specifically was shown to stain an HLA-DR4 restricted T cell line obtained from a healthy donor by in vitro priming, but which recognizes a type I diabetes autoantigen. Co-expression of chaperones may represent a general strategy for enhancing yields of recombinant proteins expressed in insect cells and facilitate production of MHC class II tetramers in the future.
Collapse
Affiliation(s)
- Jean-Marie Fourneau
- Institut National de la Santé et de la Recherche Médicale Unité 580, Hôpital Necker, 161 rue de Sèvres, 75015 Paris, France
| | | | | |
Collapse
|
40
|
Carven GJ, Chitta S, Hilgert I, Rushe MM, Baggio RF, Palmer M, Arenas JE, Strominger JL, Horejsi V, Santambrogio L, Stern LJ. Monoclonal Antibodies Specific for the Empty Conformation of HLA-DR1 Reveal Aspects of the Conformational Change Associated with Peptide Binding. J Biol Chem 2004; 279:16561-70. [PMID: 14757758 DOI: 10.1074/jbc.m314315200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class II major histocompatibility complex (MHC) proteins bind peptides and present them at the cell surface for interaction with CD4+ T cells as part of the system by which the immune system surveys the body for signs of infection. Peptide binding is known to induce conformational changes in class II MHC proteins on the basis of a variety of hydrodynamic and spectroscopic approaches, but the changes have not been clearly localized within the overall class II MHC structure. To map the peptide-induced conformational change for HLA-DR1, a common human class II MHC variant, we generated a series of monoclonal antibodies recognizing the beta subunit that are specific for the empty conformation. Each antibody reacted with the empty but not the peptide-loaded form, for both soluble recombinant protein and native protein expressed at the cell surface. Antibody binding epitopes were characterized using overlapping peptides and alanine scanning substitutions and were localized to two distinct regions of the protein. The pattern of key residues within the epitopes suggested that the two epitope regions undergo substantial conformational alteration during peptide binding. These results illuminate aspects of the structure of the empty forms and the nature of the peptide-induced conformational change.
Collapse
Affiliation(s)
- Gregory J Carven
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci U S A 2004; 101:4175-9. [PMID: 15020763 PMCID: PMC384714 DOI: 10.1073/pnas.0306885101] [Citation(s) in RCA: 307] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Indexed: 01/05/2023] Open
Abstract
Celiac disease, also known as celiac sprue, is a gluten-induced autoimmune-like disorder of the small intestine, which is strongly associated with HLA-DQ2. The structure of DQ2 complexed with an immunogenic epitope from gluten, QLQPFPQPELPY, has been determined to 2.2-A resolution by x-ray crystallography. The glutamate at P6, which is formed by tissue transglutaminase-catalyzed deamidation, is an important anchor residue as it participates in an extensive hydrogen-bonding network involving Lys-beta71 of DQ2. The gluten peptide-DQ2 complex retains critical hydrogen bonds between the MHC and the peptide backbone despite the presence of many proline residues in the peptide that are unable to participate in amide-mediated hydrogen bonds. Positioning of proline residues such that they do not interfere with backbone hydrogen bonding results in a reduction in the number of registers available for gluten peptides to bind to MHC class II molecules and presumably impairs the likelihood of establishing favorable side-chain interactions. The HLA association in celiac disease can be explained by a superior ability of DQ2 to bind the biased repertoire of proline-rich gluten peptides that have survived gastrointestinal digestion and that have been deamidated by tissue transglutaminase. Finally, surface-exposed proline residues in the proteolytically resistant ligand were replaced with functionalized analogs, thereby providing a starting point for the design of orally active agents for blocking gluten-induced toxicity.
Collapse
Affiliation(s)
- Chu-Young Kim
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
42
|
Stratmann T, Martin-Orozco N, Mallet-Designe V, Poirot L, McGavern D, Losyev G, Dobbs CM, Oldstone MBA, Yoshida K, Kikutani H, Mathis D, Benoist C, Haskins K, Teyton L. Susceptible MHC alleles, not background genes, select an autoimmune T cell reactivity. J Clin Invest 2003; 112:902-14. [PMID: 12975475 PMCID: PMC193666 DOI: 10.1172/jci18337] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Accepted: 07/08/2003] [Indexed: 12/31/2022] Open
Abstract
To detect and characterize autoreactive T cells in diabetes-prone NOD mice, we have developed a multimeric MHC reagent with high affinity for the BDC-2.5 T cell receptor, which is reactive against a pancreatic autoantigen. A distinct population of T cells is detected in NOD mice that recognizes the same MHC/peptide target. These T cells are positively selected in the thymus at a surprisingly high frequency and exported to the periphery. They are activated specifically in the pancreatic LNs, demonstrating an autoimmune specificity that recapitulates that of the BDC-2.5 cell. These phenomena are also observed in mouse lines that share with NOD the H-2g7 MHC haplotype but carry diabetes-resistance background genes. Thus, a susceptible haplotype at the MHC seems to be the only element required for the selection and emergence of autoreactive T cells, without requiring other diabetogenic loci from the NOD genome.
Collapse
Affiliation(s)
- Thomas Stratmann
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
So CW, Lin M, Ayton PM, Chen EH, Cleary ML. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 2003; 4:99-110. [PMID: 12957285 DOI: 10.1016/s1535-6108(03)00188-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
MLL is a histone methyltransferase that can be converted into an oncoprotein by acquisition of transcriptional effector domains following heterologous protein fusions with a variety of nuclear transcription factors, cofactors, or chromatin remodeling proteins in acute leukemias. Here we demonstrate an alternative mechanism for activation of MLL following fusions with proteins (AF1p/Eps15 and GAS7) that normally reside in the cytoplasm. The coiled-coil oligomerization domains of these proteins are necessary and sufficient for leukemogenic transformation induced by the respective MLL fusion proteins. Furthermore, homodimerization of MLL by synthetic dimerization modules mimics bona fide MLL fusion proteins resulting in Hox gene activation and enhanced self-renewal of hematopoietic progenitors. Our studies support an oligomerization-dependent mechanism for oncogenic conversion of MLL, presumably in part by recruitment of accessory factors through the dimerized MLL moiety of the chimeric protein.
Collapse
Affiliation(s)
- Chi Wai So
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
44
|
Chen C, Lee WH, Yun P, Snow P, Liu CP. Induction of autoantigen-specific Th2 and Tr1 regulatory T cells and modulation of autoimmune diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:733-44. [PMID: 12847240 DOI: 10.4049/jimmunol.171.2.733] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoantigen-based immunotherapy can modulate autoimmune diabetes, perhaps due to the activation of Ag-specific regulatory T cells. Studies of these regulatory T cells should help us understand their roles in diabetes and aid in designing a more effective immunotherapy. We have used class II MHC tetramers to isolate Ag-specific T cells from nonobese diabetic (NOD) mice and BALB/c mice treated with glutamic acid decarboxylase 65 peptides (p206 and p221). Based on their cytokine secretion profiles, immunization of NOD mice with the same peptide induced different T cell subsets than in BALB/c mice. Treatment of NOD mice induced not only Th2 cells but also IFN-gamma/IL-10-secreting T regulatory type 1 (Tr1) cells. Adoptive transfer experiments showed that isolated tetramer(+) T cells specific for p206 or p221 could inhibit diabetes development. These cells were able to suppress the in vitro proliferation of other NOD mouse T cells without cell-cell contact. They performed their regulatory functions probably by secreting cytokines, and Abs against these cytokines could block their suppressive effect. Interestingly, the presence of both anti-IL-10 and anti-IFN-gamma could enhance the target cell proliferation, suggesting that Tr1 cells play an important role. Further in vivo experiments showed that the tetramer(+) T cells could block diabetogenic T cell migration into lymph nodes. Therefore, treatment of NOD mice with autoantigen could induce Th2 and Tr1 regulatory cells that can suppress the function and/or block the migration of other T cells, including diabetogenic T cells, and inhibit diabetes development.
Collapse
MESH Headings
- Adoptive Transfer
- Amino Acid Sequence
- Animals
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD
- Antigens, Differentiation/biosynthesis
- Autoantigens/biosynthesis
- Autoantigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CTLA-4 Antigen
- Cell Separation
- Cells, Cultured
- Coculture Techniques
- Cytokines/immunology
- Cytokines/metabolism
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/immunology
- Glutamate Decarboxylase/immunology
- Histocompatibility Antigens Class II/biosynthesis
- Isoenzymes/immunology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Molecular Sequence Data
- Peptide Fragments/biosynthesis
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
- Th2 Cells/immunology
- Th2 Cells/metabolism
Collapse
Affiliation(s)
- Cyndi Chen
- Division of Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
45
|
Cantu C, Benlagha K, Savage PB, Bendelac A, Teyton L. The paradox of immune molecular recognition of alpha-galactosylceramide: low affinity, low specificity for CD1d, high affinity for alpha beta TCRs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4673-82. [PMID: 12707346 DOI: 10.4049/jimmunol.170.9.4673] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD1 resembles both class I and class II MHC but differs by the important aspect of presenting lipid/glycolipids, instead of peptides, to T cells. Biophysical studies of lipid/CD1 interactions have been limited, and kinetics of binding are in contradiction with functional studies. We have revisited this issue by designing new assays to examine the loading of CD1 with lipids. As expected for hydrophobic interactions, binding affinity was not high and had limited specificity. Lipid critical micelle concentration set the limitation to these studies. Once loaded onto CD1d, the recognition of glycolipids by alphabeta T cell receptor was studied by surface plasmon resonance using soluble Valpha14-Vbeta8.2 T cell receptors. The Valpha14 Jalpha18 chain could be paired with NK1.1 cell-derived Vbeta chain, or any Vbeta8 chain, to achieve high affinity recognition of alpha-galactosylceramide. Biophysical analysis indicated little effect of temperature or ionic strength on the binding interaction, in contrast to what has been seen in peptide/MHC-TCR studies. This suggests that there is less accommodation made by this TCR in recognizing alpha-galactosylceramide, and it can be assumed that the most rigid part of the Ag, the sugar moiety, is critical in the interaction.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Antigens, CD1/immunology
- Antigens, CD1/metabolism
- Antigens, CD1d
- Binding Sites/immunology
- Calorimetry/methods
- Cell Line
- Dimerization
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Galactosylceramides/immunology
- Galactosylceramides/metabolism
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- Isoelectric Focusing/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Kinetics
- Lymphocyte Activation
- Mice
- Protein Binding/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thermodynamics
- Transfection
Collapse
Affiliation(s)
- Carlos Cantu
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
46
|
Zhu Y, Rudensky AY, Corper AL, Teyton L, Wilson IA. Crystal structure of MHC class II I-Ab in complex with a human CLIP peptide: prediction of an I-Ab peptide-binding motif. J Mol Biol 2003; 326:1157-74. [PMID: 12589760 DOI: 10.1016/s0022-2836(02)01437-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Association between the class II major histocompatibility complex (MHC) and the class II invariant chain-associated peptide (CLIP) occurs naturally as an intermediate step in the MHC class II processing pathway. Here, we report the crystal structure of the murine class II MHC molecule I-A(b) in complex with human CLIP at 2.15A resolution. The structure of I-A(b) accounts, via the peptide-binding groove's unique physicochemistry, for the distinct peptide repertoire bound by this allele. CLIP adopts a similar conformation to peptides bound by other I-A alleles, reinforcing the notion that CLIP is presented as a conventional peptide antigen. When compared to the related HLA-DR3/CLIP complex structure, the CLIP peptide displays a slightly different conformation and distinct interaction pattern with residues in I-A(b). In addition, after examining the published sequences of peptides presented by I-A(b), we discuss the possibility of predicting peptide alignment in the I-A(b) binding groove using a simple scoring matrix.
Collapse
Affiliation(s)
- Yuerong Zhu
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
47
|
Mallet-Designe VI, Stratmann T, Homann D, Carbone F, Oldstone MBA, Teyton L. Detection of low-avidity CD4+ T cells using recombinant artificial APC: following the antiovalbumin immune response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:123-31. [PMID: 12496391 DOI: 10.4049/jimmunol.170.1.123] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Subtle differences oppose CD4+ to CD8+ T cell physiologies that lead to different arrays of effector functions. Interestingly, this dichotomy has also unexpected practical consequences such as the inefficacy of many MHC class II tetramers in detecting specific CD4+ T cells. As a mean to study the CD4+ anti-OVA response in H-2(d) and H-2(b) genetic backgrounds, we developed I-A(d)- and I-A(b)-OVA recombinant MHC monomers and tetramers. We were able to show that in this particular system, despite normal biological activity, MHC class II tetramers failed to stain specific T cells. This failure was shown to be associated with a lack of cooperation between binding sites within the tetramer as measured by surface plasmon resonance. This limited cooperativeness translated into a low "functional avidity" and very transient binding of the tetramers to T cells. To overcome this biophysical barrier, recombinant artificial APC that display MHC molecules in a lipid bilayer were developed. The plasticity and size of the MHC-bearing fluorescent liposomes allowed binding to Ag-specific T cells and the detection of low numbers of anti-OVA T cells following immunization. The same liposomes were able, at 37 degrees C, to induce the full reorganization of the T cell signaling molecules and the formation of an immunological synapse. Artificial APC will allow T cell detection and the dissection of the molecular events of T cell activation and will help us understand the fundamental differences between CD4+ and CD8+ T cells.
Collapse
|
48
|
Abstract
The coiled-coil is a ubiquitous protein folding and assembly motif made of alpha-helices wrapping around each other forming a supercoil. The sequences of coiled-coils are made of seven-residue repeats, called heptads, and thus are polymer-like. Due to its simplicity and regularity, the coiled-coil is the most extensively studied protein motif. In this review, results on coiled-coil stability and specificity from structural and biophysical studies are summarized. It is pointed out that the primary sequences of coiled-coils over specify the secondary structure but under specify the tertiary/quaternary structure. This leads to two unique features of coiled-coil structure: linkage between stability and specificity and decoupling of secondary and tertiary/quaternary structural specificity. This is followed by a discussion of the potential of coiled-coils as drug delivery vehicles, particularly the prospect in two-staged pretargeted delivery. Such potentials are intimately related to the unique structural features of coiled-coils. The aim of this review is to illustrate how knowledge on protein stability and specificity can be used in the de novo design of peptide-based drug delivery vehicles with well-defined structure and interaction features.
Collapse
Affiliation(s)
- Y Bruce Yu
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
49
|
Litowski JR, Hodges RS. Designing heterodimeric two-stranded alpha-helical coiled-coils. Effects of hydrophobicity and alpha-helical propensity on protein folding, stability, and specificity. J Biol Chem 2002; 277:37272-9. [PMID: 12138097 DOI: 10.1074/jbc.m204257200] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E/K coil, a heterodimeric coiled-coil, has been designed as a universal peptide capture and delivery system for use in applications such as biosensors and as an expression and affinity purification tag. In this design, heterodimer formation is specified through the placement of charged residues at the e and g positions of the heptad repeat such that the E coil contains all glutamic acid residues at these positions, and the K coil contains all lysine residues at these positions. The affinity and stability of the E/K coil have been modified to allow a greater range of conditions for association and dissociation. Increasing the hydrophobicity of the coiled-coil core, by substituting isoleucine for valine, gave increases in stability of 2.81 and 3.73 kcal/mol (0.47 kcal/mol/substitution). Increasing the alpha-helical propensity of residues outside the core, by substituting alanine for serine, yielded increases in stability of 2.68 and 3.28 kcal/mol (0.41 and 0.45 kcal/mol/substitution). These sequence changes yielded a series of heterodimeric coiled-coils whose stabilities varied from 6.8 to 11.2 kcal/mol, greatly expanding their scope for use in protein engineering and biomedical applications.
Collapse
Affiliation(s)
- Jennifer R Litowski
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7 Canada
| | | |
Collapse
|
50
|
Hugues S, Malherbe L, Filippi C, Glaichenhaus N. Generation and use of alternative multimers of peptide/MHC complexes. J Immunol Methods 2002; 268:83-92. [PMID: 12213345 DOI: 10.1016/s0022-1759(02)00202-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For many years, the detection of antigen-specific T cells has relied on indirect in vitro assays such as cytokine secretion, proliferation or chromium release assays. Things have dramatically changed during the past few years, thanks to the imagination of several investigators who have developed very elegant strategies to produce multivalent peptide/MHC complexes. One of these strategies has been to produce peptide-loaded monomeric biotinylated MHC molecules, which could be obtained as tetramers upon incubation with tetravalent streptavidin. Although this latter approach has been by far the most popular, this review focuses on other strategies which have also been successful.
Collapse
Affiliation(s)
- Stéphanie Hugues
- Institut de Pharmacologie Moleculaire et Cellulaire UMR6097, Centre National de la Recherche Scientifique, 660 Route des Lucioles, 06560 Valbonne, France
| | | | | | | |
Collapse
|