1
|
Kaneshige A, Yang Y, Bai L, Wang M, Xu R, Mallik L, Chinnaswamy K, Metwally H, Wang Y, McEachern D, Tošović J, Yang CY, Kirchhoff PD, Meagher JL, Stuckey JA, Wang S. Discovery of AK-1690: A Potent and Highly Selective STAT6 PROTAC Degrader. J Med Chem 2025; 68:5125-5151. [PMID: 39311434 DOI: 10.1021/acs.jmedchem.4c01009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
STAT6 is an attractive therapeutic target for human cancers and other human diseases. Starting from a STAT6 ligand with Ki = 3.5 μM binding affinity, we obtained AK-068 with Ki = 6 nM to STAT6 and at least >85-fold binding selectivity over STAT5. Using AK-068 and cereblon ligands, we discovered AK-1690 as the first, potent and selective PROTAC STAT6 degrader. AK-1690 effectively induces degradation of STAT6 protein in cells with DC50 values of as low as 1 nM while showing minimal effect on other STAT members up to 10 μM. A single dose of AK-1690 effectively depletes STAT6 in mouse tissues. Determination of the first cocrystal structure of STAT6 in complex with AK-1690 provides a structural basis for their interactions. AK-1690 is a powerful tool with which to investigate the roles of STAT6 in human diseases and biological processes and a promising lead compound for further optimization.
Collapse
Affiliation(s)
- Atsunori Kaneshige
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yiqing Yang
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mi Wang
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Renqi Xu
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Leena Mallik
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Hoda Metwally
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jelena Tošović
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chao-Yie Yang
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul D Kirchhoff
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer L Meagher
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Messing M, Theret M, Hughes MR, Wu J, Syed OH, Li FF, Li Y, Rossi FMV, McNagny KM. Type-2 innate signals are dispensable for skeletal muscle regeneration and pathology linked to Duchenne muscular dystrophy. EMBO Rep 2025; 26:1406-1421. [PMID: 39900735 PMCID: PMC11894123 DOI: 10.1038/s44319-025-00383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Immune responses play an integral role in skeletal muscle regeneration. In the genetically inherited muscle disease Duchenne muscular dystrophy (DMD), muscle regeneration is disrupted, leading to chronic inflammation, fibrosis, and early mortality. Previously, it has been suggested that type-2 innate immune cells, particularly eosinophils and their production of IL-4, play an essential role in effective muscle regeneration after acute injury. We here re-investigate the role of eosinophils in skeletal muscle repair using mice deficient in eosinophils (ΔdblGATA), or deficient in IL-4R/IL-13R signaling through STAT6 (Stat6-/-). We show that neither deficiency has an impact on skeletal muscle regeneration in response to acute injury as quantified by fiber size, immune cell infiltration, or muscle-resident stem cell proliferation. We also investigate the role of STAT6 signaling in mdx:Stat6-/- mice, a model of DMD and, again, find that ablation of STAT6 signaling has no effect on the rate or severity of fibrotic scar formation or disease progression. In contrast to previous models, our data suggest a negligible role for eosinophils and STAT6 signaling in skeletal muscle regeneration after acute or chronic injury.
Collapse
MESH Headings
- Animals
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/immunology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- Muscle, Skeletal/metabolism
- Regeneration
- STAT6 Transcription Factor/genetics
- STAT6 Transcription Factor/metabolism
- Mice
- Signal Transduction
- Eosinophils/metabolism
- Eosinophils/immunology
- Mice, Inbred mdx
- Immunity, Innate
- Disease Models, Animal
- Mice, Knockout
Collapse
Affiliation(s)
- Melina Messing
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Marine Theret
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Hughes
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jiaqi Wu
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Omar Husain Syed
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Fang Fang Li
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Yicong Li
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - Kelly M McNagny
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Sharma M, Suratannon N, Leung D, Baris S, Takeuchi I, Samra S, Yanagi K, Rosa Duque JS, Benamar M, Del Bel KL, Momenilandi M, Béziat V, Casanova JL, van Hagen PM, Arai K, Nomura I, Kaname T, Chatchatee P, Morita H, Chatila TA, Lau YL, Turvey SE. Human germline gain-of-function in STAT6: from severe allergic disease to lymphoma and beyond. Trends Immunol 2024; 45:138-153. [PMID: 38238227 DOI: 10.1016/j.it.2023.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 02/12/2024]
Abstract
Signal transducer and activator of transcription (STAT)-6 is a transcription factor central to pro-allergic immune responses, although the function of human STAT6 at the whole-organism level has long remained unknown. Germline heterozygous gain-of-function (GOF) rare variants in STAT6 have been recently recognized to cause a broad and severe clinical phenotype of early-onset, multi-system allergic disease. Here, we provide an overview of the clinical presentation of STAT6-GOF disease, discussing how dysregulation of the STAT6 pathway causes severe allergic disease, and identifying possible targeted treatment approaches. Finally, we explore the mechanistic overlap between STAT6-GOF disease and other monogenic atopic disorders, and how this group of inborn errors of immunity (IEIs) powerfully inform our fundamental understanding of common human allergic disease.
Collapse
|
4
|
Berin C. Jak out of the box: Targeting Bruton's tyrosine kinase, sialic acid-binding immunoglobulin-like lectin-8, and Janus kinase 1 in food allergy. Ann Allergy Asthma Immunol 2023; 131:23-28. [PMID: 36738782 PMCID: PMC10330066 DOI: 10.1016/j.anai.2023.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
There has been rapid growth in the field of immunoglobulin E-mediated food allergy therapeutics, with 1 US Food and Drug Administration-approved therapy in 2020 and several others in various stages of investigation. Oral immunotherapy is the approach with the longest track record of study and provides desensitization for most individuals undertaking the therapy. However, the therapy must be maintained for continued clinical protection, and adverse effects of the therapy are frequent. There is a need to improve allergen immunotherapy safety and durability and to provide a treatment that can target multiple food allergies. In this review, we discuss novel adjunct therapies that may improve safety, such as omalizumab, Bruton's tyrosine kinase inhibitors, and agonists of sialic acid-binding immunoglobulin-like lectin-8, which suppress hypersensitivity responses. We also discuss approaches that may improve magnitude or durability of the treatment response, such as dupilumab and Janus kinase 1 inhibitors.
Collapse
Affiliation(s)
- Cecilia Berin
- Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
5
|
Ihrie MD, Duke KS, Shipkowski KA, You DJ, Lee HY, Taylor-Just AJ, Bonner JC. STAT6-Dependent Exacerbation of House Dust Mite-Induced Allergic Airway Disease in Mice by Multi-Walled Carbon Nanotubes. NANOIMPACT 2021; 22:S2452-0748(21)00018-5. [PMID: 33860111 PMCID: PMC8043620 DOI: 10.1016/j.impact.2021.100309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is increasing evidence that inhaled multi-walled carbon nanotubes (MWCNTs) can have harmful effects on the respiratory system. Rodent studies suggest that individuals with asthma may be susceptible to the adverse pulmonary effects of MWCNTs. Asthma is an allergic lung disease characterized by a TH2 immune response that results in chronic airway disease characterized by eosinophilic lung inflammation, airway mucous cell metaplasia, and airway fibrosis. Signal transducer and activator of transcription 6 (STAT6) is a transcription factor with multiple roles in TH2 type inflammation. Herein we sought to examine the role of STAT6 in the exacerbation of house dust mite (HDM) allergen-induced allergic airway disease by MWCNTs. Male wild type (WT) and STAT6 knockout (Stat6 KO) mice were dosed via intranasal aspiration on days 0, 2, 4, 14, 16 and 18 with either vehicle, HDM extract, MWCNTs, or a combination of HDM and MWCNTs. Necropsy was performed on day 21 to collect bronchoalveolar lavage fluid (BALF), serum and lung tissue. MWCNTs exacerbated HDM-induced allergic endpoints, including eosinophilic lung inflammation, mucous cell metaplasia, and serum IgE levels. HDM-induced eosinophilic lung inflammation, mucous cell metaplasia, and serum IgE and exacerbation of these endpoints by MWCNTs were ablated in Stat6 KO mice. In addition, airway fibrosis was significantly increased by the combination of HDM and MWCNTs in WT mice but not in Stat6 KO mice. These findings provide new mechanistic insight by demonstrating a requirement for STAT6 in MWCNT-induced exacerbation of allergic respiratory disease.
Collapse
Affiliation(s)
- Mark D. Ihrie
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 U.S.A
| | - Katherine S. Duke
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 U.S.A
| | - Kelly A. Shipkowski
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 U.S.A
| | - Dorothy J. You
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 U.S.A
| | - Ho Young Lee
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 U.S.A
| | - Alexia J. Taylor-Just
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 U.S.A
| | - James C. Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 U.S.A
| |
Collapse
|
6
|
Ray A, Camiolo M, Fitzpatrick A, Gauthier M, Wenzel SE. Are We Meeting the Promise of Endotypes and Precision Medicine in Asthma? Physiol Rev 2020; 100:983-1017. [PMID: 31917651 PMCID: PMC7474260 DOI: 10.1152/physrev.00023.2019] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023] Open
Abstract
While the term asthma has long been known to describe heterogeneous groupings of patients, only recently have data evolved which enable a molecular understanding of the clinical differences. The evolution of transcriptomics (and other 'omics platforms) and improved statistical analyses in combination with large clinical cohorts opened the door for molecular characterization of pathobiologic processes associated with a range of asthma patients. When linked with data from animal models and clinical trials of targeted biologic therapies, emerging distinctions arose between patients with and without elevations in type 2 immune and inflammatory pathways, leading to the confirmation of a broad categorization of type 2-Hi asthma. Differences in the ratios, sources, and location of type 2 cytokines and their relation to additional immune pathway activation appear to distinguish several different (sub)molecular phenotypes, and perhaps endotypes of type 2-Hi asthma, which respond differently to broad and targeted anti-inflammatory therapies. Asthma in the absence of type 2 inflammation is much less well defined, without clear biomarkers, but is generally linked with poor responses to corticosteroids. Integration of "big data" from large cohorts, over time, using machine learning approaches, combined with validation and iterative learning in animal (and human) model systems is needed to identify the biomarkers and tightly defined molecular phenotypes/endotypes required to fulfill the promise of precision medicine.
Collapse
Affiliation(s)
- Anuradha Ray
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Matthew Camiolo
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Anne Fitzpatrick
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Marc Gauthier
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
7
|
Dupilumab: Basic aspects and applications to allergic diseases. Allergol Int 2020; 69:187-196. [PMID: 32007360 DOI: 10.1016/j.alit.2020.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/23/2022] Open
Abstract
Interleukin (IL)-4 and IL-13, signature type 2 cytokines, exert their actions by binding to two types of receptors sharing the IL-4R α chain (IL-4Rα). Since IL-4 and IL-13 play important and redundant roles in the pathogenesis of allergic diseases, blocking both the IL-4 and IL-13 signals would be a powerful and effective strategy for treating allergic diseases. Dupilumab (Dupixent®) is a fully human monoclonal antibody recognizing IL-4Rα and blocking both the IL-4 and IL-13 signals. Dupilumab was first prescribed for atopic dermatitis (AD) patients and has been widely approved for adult patients with moderate to severe AD since 2018. Dupilumab has since been used for asthma, receiving approval for uncontrolled asthma in 2019. A phase 3 study using dupilumab for chronic rhinosinusitis with nasal polyps (CRSwNP) has been just completed, with positive results. Several clinical trials of dupilumab for other diseases in which type 2 inflammation is dominant are now underway. It is hoped that dupilumab will open the door to a new era for treating allergic patients with AD, asthma, and CRSwNP, and for more patients with type 2 inflammations.
Collapse
|
8
|
Cardoso C, Provinciatto P, Godoi D, Fonseca M, Ferreira B, Teixeira G, Cunha F, Pinzan C, da Silva J. The signal transducer and activator of transcription 6 (STAT-6) mediates Th2 inflammation and tissue damage in a murine model of peanut-induced food allergy. Allergol Immunopathol (Madr) 2019; 47:535-543. [PMID: 31196774 DOI: 10.1016/j.aller.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Food allergies are inflammatory conditions mediated by Th2 and probably STAT-6 dependent immune responses. OBJECTIVE AND DESIGN Here we investigated the role of Signal Transducer and Activator of Transcription 6 (STAT-6) in development of inflammation in peanut allergy. METHODS To induce food allergy, wild-type (WT) and mice deficient for STAT-6 (Stat6-/-) were sensitized with peanut proteins and challenged with peanut seeds. RESULTS WT animals lost weight and refused the peanut diet, in contrast to Stat6-/- mice, which had a better maintenance of body weight and more regular seeds' consumption. The augmented peanut-specific IgG, IgG1 and IgE in the allergic WT was abolished in Stat6-/- animals that also presented increased IgG2a. There was an overall reduction in the gut mediators in the absence of STAT-6, including those related to inflammatory and Th2 responses, in contrast to a rising counter regulatory and Th1 reaction in Stat-6-/- mice. These animals had IFN-γ and IL-10 similar to WT after the four-week challenge. Most interestingly, Stat-6-/- mice had no intestinal damage, in contrast to WT animals, which had inflammatory infiltrate, tissue destruction, epithelial exulceration, edema, congestion and loss of villous architecture in the small gut segments. CONCLUSIONS STAT-6 plays an important role in the establishment of the Th2 inflammatory responses and intestinal damage in peanut allergy.
Collapse
|
9
|
Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 2019; 27:1984-2009. [PMID: 30267440 DOI: 10.1002/pro.3519] [Citation(s) in RCA: 558] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
More than 50 cytokines signal via the JAK/STAT pathway to orchestrate hematopoiesis, induce inflammation and control the immune response. Cytokines are secreted glycoproteins that act as intercellular messengers, inducing proliferation, differentiation, growth, or apoptosis of their target cells. They act by binding to specific receptors on the surface of target cells and switching on a phosphotyrosine-based intracellular signaling cascade initiated by kinases then propagated and effected by SH2 domain-containing transcription factors. As cytokine signaling is proliferative and often inflammatory, it is tightly regulated in terms of both amplitude and duration. Here we review molecular details of the cytokine-induced signaling cascade and describe the architectures of the proteins involved, including the receptors, kinases, and transcription factors that initiate and propagate signaling and the regulatory proteins that control it.
Collapse
Affiliation(s)
- Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| |
Collapse
|
10
|
Gu F, Wang C, Wei F, Wang Y, Zhu Q, Ding L, Xu W, Zhu C, Cai C, Qian Z, Yuan Z, Robertson E, Cai Q. STAT6 degradation and ubiquitylated TRIML2 are essential for activation of human oncogenic herpesvirus. PLoS Pathog 2018; 14:e1007416. [PMID: 30532138 PMCID: PMC6287816 DOI: 10.1371/journal.ppat.1007416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/17/2018] [Indexed: 01/01/2023] Open
Abstract
Aberrations in STAT6-mediated signaling are linked to the development of multiple cancer types. Increasing evidence has shown that activation of human oncogenic herpesvirus lytic replication is crucial for viral tumorigenesis. However, the role of STAT6 in herpesvirus lytic replication remains elusive. Here, by using Kaposi’s sarcoma-associated herpesvirus (KSHV) as a model, we revealed that RTA, the master regulator of lytic replication, interacts with STAT6 and promotes lysine 48 (K48) and K63-linked ubiquitylation of STAT6 for degradation via the proteasome and lysosome systems. Moreover, degradation of STAT6 is dramatically associated with the increased ubiquitylated form of tripartite motif family like 2 (TRIML2, a tumor suppressor) for prolonged cell survival and virion production, which is also commonly observed in lytic activation of Epstein-Barr virus, herpes simplex virus 1 and cytomegalovirus. These results suggest that degradation of STAT6 is important for the lytic activation of KSHV and as such, may be an attractive therapeutic target. STAT6 is a transcriptional factor that plays an important role in the extracellular cytokine and virus-mediated immune response. Extensive studies have revealed that the dysregulation of STAT6 is linked to the pathological features of virus-associated cancers. However, the molecular mechanism of STAT6 regulation by tumor viruses is still unknown. Here, we report that the degradation of STAT6 is induced and required for the lytic activation of human herpesviruses including oncogenic γ-herpesviruses (KSHV and EBV) and α/β-herpesviruses (HSV1 and HCMV). Importantly, this effect is highly dependent on the expression of viral lytic antigens (i.e., RTA in KSHV). This study reveals the central role of STAT6 in controlling the switch from latency to lytic replication of herpesviruses.
Collapse
Affiliation(s)
- Feng Gu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Chong Wang
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yuyan Wang
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Qing Zhu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Ling Ding
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Wenjia Xu
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology &Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
| | - Caixia Zhu
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Cankun Cai
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology &Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhenghong Yuan
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Erle Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Department of Microbiology, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Qiliang Cai
- MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
11
|
Machelart A, Potemberg G, Van Maele L, Demars A, Lagneaux M, De Trez C, Sabatel C, Bureau F, De Prins S, Percier P, Denis O, Jurion F, Romano M, Vanderwinden JM, Letesson JJ, Muraille E. Allergic Asthma Favors Brucella Growth in the Lungs of Infected Mice. Front Immunol 2018; 9:1856. [PMID: 30147700 PMCID: PMC6095999 DOI: 10.3389/fimmu.2018.01856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
Allergic asthma is a chronic Th2 inflammatory disease of the lower airways affecting a growing number of people worldwide. The impact of infections and microbiota composition on allergic asthma has been investigated frequently. Until now, however, there have been few attempts to investigate the impact of asthma on the control of infectious microorganisms and the underlying mechanisms. In this work, we characterize the consequences of allergic asthma on intranasal (i.n.) infection by Brucella bacteria in mice. We observed that i.n. sensitization with extracts of the house dust mite Dermatophagoides farinae or the mold Alternaria alternata (Alt) significantly increased the number of Brucella melitensis, Brucella suis, and Brucella abortus in the lungs of infected mice. Microscopic analysis showed dense aggregates of infected cells composed mainly of alveolar macrophages (CD11c+ F4/80+ MHCII+) surrounded by neutrophils (Ly-6G+). Asthma-induced Brucella susceptibility appears to be dependent on CD4+ T cells, the IL-4/STAT6 signaling pathway and IL-10, and is maintained in IL-12- and IFN-γR-deficient mice. The effects of the Alt sensitization protocol were also tested on Streptococcus pneumoniae and Mycobacterium tuberculosis pulmonary infections. Surprisingly, we observed that Alt sensitization strongly increases the survival of S. pneumoniae infected mice by a T cell and STAT6 independent signaling pathway. In contrast, the course of M. tuberculosis infection is not affected in the lungs of sensitized mice. Our work demonstrates that the impact of the same allergic sensitization protocol can be neutral, negative, or positive with regard to the resistance of mice to bacterial infection, depending on the bacterial species.
Collapse
Affiliation(s)
- Arnaud Machelart
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Georges Potemberg
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Laurye Van Maele
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Aurore Demars
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Maxime Lagneaux
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Carl De Trez
- Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Catherine Sabatel
- Laboratory of Cellular and Molecular Immunology, GIGA- Research & WELBIO, University of Liège, Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA- Research & WELBIO, University of Liège, Liège, Belgium
| | - Sofie De Prins
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Pauline Percier
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Olivier Denis
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Fabienne Jurion
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | - Marta Romano
- Immunology Unit, Scientific Institute for Public Health (WIV-ISP), Brussels, Belgium
| | | | - Jean-Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d’Immunologie et de Microbiologie, NAmur Research Institute for Life Sciences (NARILIS), Université de Namur, Namur, Belgium
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
12
|
Nam SY, Kim HY, Han NR, Moon PD, Cho JS, Kim HM, Jeong HJ. Src-type tyrosine kinase p56lck is critical for thymic stromal lymphopoietin-induced allergic rhinitis. Clin Exp Allergy 2018; 48:875-889. [DOI: 10.1111/cea.13167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/16/2018] [Accepted: 05/01/2018] [Indexed: 11/29/2022]
Affiliation(s)
- S.-Y. Nam
- The Department of Food Science & Technology and Inflammatory Disease Research Center; Hoseo University; Asan Republic of Korea
| | - H.-Y. Kim
- The Department of Pharmacology; College of Korean Medicine; Kyung Hee University; Seoul Republic of Korea
| | - N.-R. Han
- The Department of Pharmacology; College of Korean Medicine; Kyung Hee University; Seoul Republic of Korea
| | - P.-D. Moon
- The Department of Pharmacology; College of Korean Medicine; Kyung Hee University; Seoul Republic of Korea
| | - J.-S. Cho
- The Department of Otolaryngology; College of Medicine; Kyung Hee University; Seoul Republic of Korea
| | - H.-M. Kim
- The Department of Pharmacology; College of Korean Medicine; Kyung Hee University; Seoul Republic of Korea
| | - H.-J. Jeong
- The Department of Food Science & Technology and Inflammatory Disease Research Center; Hoseo University; Asan Republic of Korea
| |
Collapse
|
13
|
Tumes DJ, Papadopoulos M, Endo Y, Onodera A, Hirahara K, Nakayama T. Epigenetic regulation of T-helper cell differentiation, memory, and plasticity in allergic asthma. Immunol Rev 2018; 278:8-19. [PMID: 28658556 DOI: 10.1111/imr.12560] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An estimated 300 million people currently suffer from asthma, which causes approximately 250 000 deaths a year. Allergen-specific T-helper (Th) cells produce cytokines that induce many of the hallmark features of asthma including airways hyperreactivity, eosinophilic and neutrophilic inflammation, mucus hypersecretion, and airway remodeling. Cytokine-producing Th subsets including Th1 (IFN-γ), Th2 (IL-4, IL-5, IL-13), Th9 (IL-9), Th17 (IL-17), Th22 (IL-22), and T regulatory (IL-10) cells have all been suggested to play a role in the development of asthma. Th differentiation involves genetic regulation of gene expression through the concerted action of cytokines, transcription factors, and epigenetic regulators. We describe how Th differentiation and plasticity is regulated by epigenetic histone and DNA modifications, with a focus on the regulation of histone methylation by members of the polycomb and trithorax complexes. In addition, we outline environmental influences that could influence epigenetic regulation of Th cells and discuss the potential to regulate Th plasticity and function through drugs targeting the epigenetic machinery. It is also becoming apparent that epigenetic regulation of allergen-specific memory Th cells may be important in the development and persistence of chronic allergies. Finally, we describe how epigenetic modifiers regulate cytokine memory in Th cells and describe recently identified hybrid, plastic, and pathogenic memory Th subsets the context of allergic asthma.
Collapse
Affiliation(s)
- Damon J Tumes
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | | | - Yusuke Endo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
14
|
Miyake T, Miyake T, Sakaguchi M, Nankai H, Nakazawa T, Morishita R. Prevention of Asthma Exacerbation in a Mouse Model by Simultaneous Inhibition of NF-κB and STAT6 Activation Using a Chimeric Decoy Strategy. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:159-169. [PMID: 29499930 PMCID: PMC5751966 DOI: 10.1016/j.omtn.2017.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 11/24/2022]
Abstract
Transactivation of inflammatory and immune mediators in asthma is tightly regulated by nuclear factor κB (NF-κB) and signal transducer and activator of transcription 6 (STAT6). Therefore, we investigated the efficacy of simultaneous inhibition of NF-κB and STAT6 using a chimeric decoy strategy to prevent asthma exacerbation. The effects of decoy oligodeoxynucleotides were evaluated using an ovalbumin-induced mouse asthma model. Ovalbumin-sensitized mice received intratracheal administration of decoy oligodeoxynucleotides 3 days before ovalbumin challenge. Fluorescent-dye-labeled decoy oligodeoxynucleotides could be detected in lymphocytes and macrophages in the lung, and activation of NF-κB and STAT6 was inhibited by chimeric decoy oligodeoxynucleotide transfer. Consequently, treatment with chimeric or NF-κB decoy oligodeoxynucleotides protected against methacholine-induced airway hyperresponsiveness, whereas the effect of chimeric decoy oligodeoxynucleotides was significantly greater than that of NF-κB decoy oligodeoxynucleotides. Treatment with chimeric decoy oligodeoxynucleotides suppressed airway inflammation through inhibition of overexpression of interleukin-4 (IL-4), IL-5, and IL-13 and inflammatory infiltrates. Histamine levels in the lung were reduced via suppression of mast cell accumulation. A significant reduction in mucin secretion was observed due to suppression of MUC5AC gene expression. Interestingly, the inhibitory effects on IL-5, IL-13, and histamine secretion were achieved by transfer of chimeric decoy oligodeoxynucleotides only. This novel therapeutic approach could be useful to treat patients with various types of asthma.
Collapse
Affiliation(s)
- Tetsuo Miyake
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Takashi Miyake
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | | | | | | | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
15
|
Mineev VN, Lalaeva TM. [Characteristics of the expression of the transcription factor pSTAT3 in asthma]. TERAPEVT ARKH 2017; 89:48-53. [PMID: 28378730 DOI: 10.17116/terarkh201789348-53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To investigate the transcription factor pSTAT3 in overweight asthmatics on a model of peripheral blood mononuclear cells at baseline and during recombinant leptin modulation. MATERIAL AND METHODS A flow fluorometric assay was used according to the standard Bio-Plex protocol on a Bio-Plex immunoanalyzer (a flow fluorimeter) (Bio-Rad, USA) using xMAP technology at baseline and during modulation with recombinant leptin (Leptin, human, recombinant, expressed in a E. coli, Sigma, USA). RESULTS There was an obvious reduction in the level of the transcription factor pSTAT3 in patients with non-allergic asthma and an increase in that in patients with allergic asthma (AA). Recombinant leptin modulation of pSTAT3 levels caused their paradoxical decrease in both overweight women younger than 45 years of age with AA and in those with non-allergic asthma. CONCLUSION The elevated level of the transcription factor pSTAT3 in AA is probably due to the overexpression of pSTAT3 in this group of patients. The paradoxical decrease in pSTAT3 levels in overweight women under 45 years of age with AA, which is similar in the non-allergic asthma group, can be explained by the enhanced expression of negative SOCS3 regulators and by leptin resistance.
Collapse
Affiliation(s)
- V N Mineev
- I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| | - T M Lalaeva
- I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| |
Collapse
|
16
|
Dai YJ, Hui KM, Zhang YH, Liu Y, Wang YQ, Zhao LJ, Lin L, Chai LQ, Wei S, Lan JF. Three STATs are involved in the regulation of the expression of antimicrobial peptides in the triangle sail mussel, Hyriopsis cumingii. FISH & SHELLFISH IMMUNOLOGY 2017; 63:181-188. [PMID: 28214598 DOI: 10.1016/j.fsi.2017.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 05/25/2023]
Abstract
Janus kinase (Jak) and signal transducers and activators of transcription (STAT) signaling pathway is associated in antiviral and antibacterial immune response. Previous studies primarily investigated the function of STATs in mammals. For most invertebrates, only one STAT was found in each species, such as STAT92E was found in Drosophila melanogaster. The studies, which focus on the functional difference between various STATs in the same species of invertebrate, are limited. In the present study, three STATs (HcSTAT1, HcSTAT2 and HcSTAT3) were identified in triangle shell pearl mussel, Hyriopsis cumingii. Phylogenetic analysis showed that HcSTAT1 and HcSTAT3 were clustered with Homo sapiens STAT5, and HcSTAT2 was clustered with Pinctada fucata STAT and Crassostea gigas STAT6. All three STATs could be detected in all tested tissues (hemocytes, hepatopancreas, gill, mantle and foot), and were induced expression when challenged with Staphylococcus aureus or Aeromonas hydrophilia in hemocytes and hepatopancreas. HcSTAT1 regulated the expression of HcDef, HcWAP, HcThe and HcTNF. The expression of HcWAP and HcTNF was down-regulated in HcSTAT2-RNAi mussel. And HcSTAT3 affected the expression of HcTNF. The study is the first report of different functions in antibacterial immune responses between STATs in mollusks.
Collapse
Affiliation(s)
- Yun-Jia Dai
- State Key Laboratory of Cotton Biology, School of Life Sciences Henan University, Kaifeng 475004, China; Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Min Hui
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Ying-Hao Zhang
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Liu
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Qing Wang
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Juan Zhao
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Li Lin
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Lian-Qin Chai
- State Key Laboratory of Cotton Biology, School of Life Sciences Henan University, Kaifeng 475004, China.
| | - Shun Wei
- Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiang-Feng Lan
- State Key Laboratory of Cotton Biology, School of Life Sciences Henan University, Kaifeng 475004, China; Department of Aquatic Animal Medicine, Research Center for Marine Biology, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China.
| |
Collapse
|
17
|
Valladao AC, Frevert CW, Koch LK, Campbell DJ, Ziegler SF. STAT6 Regulates the Development of Eosinophilic versus Neutrophilic Asthma in Response to Alternaria alternata. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4541-4551. [PMID: 27815425 PMCID: PMC5136320 DOI: 10.4049/jimmunol.1600007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 10/11/2016] [Indexed: 11/19/2022]
Abstract
Human asthma is a heterogeneous disease characterized by the expression of both Th2 and Th17 cytokines. In vitro and in vivo studies have shown a reciprocal regulation between Th2 and Th17 pathways, suggesting a potential induction of neutrophil-promoting Th17 inflammation in the absence of a Th2 response. Alternaria alternata is a clinically relevant allergen that is associated with severe and fatal asthma exacerbations. Exposure to A. alternata is characterized by a predominant Th2 response, but can also induce the production of factors associated with Th17 responses (e.g., CXCL8) from epithelial cells. Using a mouse model, we found that wild-type mice develop an eosinophilic Th2 airway disease in response to A. alternata exposure, whereas IL-4-, IL-13-, and STAT6-deficient mice exhibit a primarily neutrophilic response. Neutrophilic asthma in STAT6-/- mice was accompanied by elevated lung levels of TNF-α, CXCL1, CXCL2, and CXCL5, and was steroid resistant. Neutralization of Th17 signaling only partially reduced neutrophil numbers and total airway inflammation. Airway neutrophilia developed in RAG-deficient and CD4-depleted BALB/c mice, suggesting that the suppression of neutrophil responses is dependent on Th2 cytokine production by T cells and that airway neutrophilia is primarily an innate response to allergen. These results highlight the importance of combination therapies for treatment of asthma and establish a role for factors other than IL-17 as targets for neutrophilic asthma.
Collapse
Affiliation(s)
- Andrea C Valladao
- Department of Immunology, University of Washington, Seattle, WA 98101
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA 98101
| | - Lisa K Koch
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
| | - Daniel J Campbell
- Department of Immunology, University of Washington, Seattle, WA 98101
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
| | - Steven F Ziegler
- Department of Immunology, University of Washington, Seattle, WA 98101;
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101; and
| |
Collapse
|
18
|
Nakayama T, Hirahara K, Onodera A, Endo Y, Hosokawa H, Shinoda K, Tumes DJ, Okamoto Y. Th2 Cells in Health and Disease. Annu Rev Immunol 2016; 35:53-84. [PMID: 27912316 DOI: 10.1146/annurev-immunol-051116-052350] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Helper T (Th) cell subsets direct immune responses by producing signature cytokines. Th2 cells produce IL-4, IL-5, and IL-13, which are important in humoral immunity and protection from helminth infection and are central to the pathogenesis of many allergic inflammatory diseases. Molecular analysis of Th2 cell differentiation and maintenance of function has led to recent discoveries that have refined our understanding of Th2 cell biology. Epigenetic regulation of Gata3 expression by chromatin remodeling complexes such as Polycomb and Trithorax is crucial for maintaining Th2 cell identity. In the context of allergic diseases, memory-type pathogenic Th2 cells have been identified in both mice and humans. To better understand these disease-driving cell populations, we have developed a model called the pathogenic Th population disease induction model. The concept of defined subsets of pathogenic Th cells may spur new, effective strategies for treating intractable chronic inflammatory disorders.
Collapse
Affiliation(s)
- Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; , , , , , , , .,AMED-CREST, AMED, Chiba 260-8670, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; , , , , , , ,
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; , , , , , , , .,Institute for Global Prominent Research, Chiba University, Chiba 260-8670, Japan
| | - Yusuke Endo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; , , , , , , ,
| | - Hiroyuki Hosokawa
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; , , , , , , ,
| | - Kenta Shinoda
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; , , , , , , ,
| | - Damon J Tumes
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; , , , , , , , .,South Australian Health and Medical Research Institute, North Terrace, Adelaide SA 5000, Australia
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
19
|
Singh J, Shah R, Singh D. Inundation of asthma target research: Untangling asthma riddles. Pulm Pharmacol Ther 2016; 41:60-85. [PMID: 27667568 DOI: 10.1016/j.pupt.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022]
Abstract
Asthma is an inveterate inflammatory disorder, delineated by the airway inflammation, bronchial hyperresponsiveness (BHR) and airway wall remodeling. Although, asthma is a vague term, and is recognized as heterogenous entity encompassing different phenotypes. Targeting single mediator or receptor did not prove much clinical significant, as asthma is complex disease involving myriad inflammatory mediators. Asthma may probably involve a large number of different types of molecular and cellular components interacting through complex pathophysiological pathways. This review covers the past, present, and future therapeutic approaches and pathophysiological mechanisms of asthma. Furthermore, review describe importance of targeting several mediators/modulators and receptor antagonists involved in the physiopathology of asthma. Novel targets for asthma research include Galectins, Immunological targets, K + Channels, Kinases and Transcription Factors, Toll-like receptors, Selectins and Transient receptor potential channels. But recent developments in asthma research are very promising, these include Bitter taste receptors (TAS2R) abated airway obstruction in mouse model of asthma and Calcium-sensing receptor obliterate inflammation and in bronchial hyperresponsiveness allergic asthma. All these progresses in asthma targets, and asthma phenotypes exploration are auspicious in untangling of asthma riddles.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
20
|
Krishnamurthy P, Kaplan MH. STAT6 and PARP Family Members in the Development of T Cell-dependent Allergic Inflammation. Immune Netw 2016; 16:201-10. [PMID: 27574499 PMCID: PMC5002446 DOI: 10.4110/in.2016.16.4.201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
Allergic inflammation requires the orchestration of altered gene expression in the target tissue and in the infiltrating immune cells. The transcription factor STAT6 is critical in activating cytokine gene expression and cytokine signaling both in the immune cells and in target tissue cells including airway epithelia, keratinocytes and esophageal epithelial cells. STAT6 is activated by the cytokines IL-4 and IL-13 to mediate the pathogenesis of allergic disorders such as asthma, atopic dermatitis, food allergy and eosinophilic esophagitis (EoE). In this review, we summarize the role of STAT6 in allergic diseases, its interaction with the co-factor PARP14 and the molecular mechanisms by which STAT6 and PARP14 regulate gene transcription.
Collapse
Affiliation(s)
- Purna Krishnamurthy
- Department of Pediatrics, Wells Center for Pediatric Research, Indianapolis, IN 46202, USA.; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H Kaplan
- Department of Pediatrics, Wells Center for Pediatric Research, Indianapolis, IN 46202, USA.; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Manni ML, Mandalapu S, McHugh KJ, Elloso MM, Dudas PL, Alcorn JF. Molecular Mechanisms of Airway Hyperresponsiveness in a Murine Model of Steroid-Resistant Airway Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 196:963-77. [PMID: 26729801 DOI: 10.4049/jimmunol.1501531] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022]
Abstract
IL-13 and IL-17A, produced mainly by Th2 and Th17 cells, respectively, have an influential role in asthma pathogenesis. We examined the role of IL-13 and IL-17A in mediating airway hyperresponsiveness (AHR), lung inflammation, and mucus metaplasia in a dual Th2/Th17 model of asthma. IL-13 and/or IL-17A were neutralized using mAbs. Th2/Th17 adoptive transfer induced a mixed asthma phenotype characterized by elevated eosinophilia and neutrophilia, tissue inflammation, mucus metaplasia, and AHR that were partially reversible with steroid treatment. Pulmonary inflammation and quasi-static lung compliance were largely unaffected by neutralization of IL-13 and/or IL-17A. However, neutralization of IL-13 alone or in combination with IL-17A significantly attenuated AHR and mucus metaplasia. Further, STAT6 activation was attenuated following IL-13 and IL-13/IL-17A Ab treatment. We next assessed the role of STAT6 in Th2/Th17-mediated allergic airway disease using STAT6(-/-) mice. STAT6(-/-) mice adoptively transferred with Th2/Th17 cells had decreased AHR compared with controls. These data suggest that IL-13 drives AHR and mucus metaplasia in a STAT6-dependent manner, without directly contributing to airway or tissue inflammation. IL-17A independently contributes to AHR, but it only partially mediates inflammation and mucus metaplasia in a mixed Th2/Th17 model of steroid-resistant asthma.
Collapse
Affiliation(s)
- Michelle L Manni
- Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224; and
| | - Sivanarayana Mandalapu
- Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224; and
| | - Kevin J McHugh
- Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224; and
| | - M Merle Elloso
- Janssen Research & Development, LLC, Spring House, PA 19477
| | - Paul L Dudas
- Janssen Research & Development, LLC, Spring House, PA 19477
| | - John F Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224; and
| |
Collapse
|
22
|
Knight JM, Mak G, Shaw J, Porter P, McDermott C, Roberts L, You R, Yuan X, Millien VO, Qian Y, Song LZ, Frazier V, Kim C, Kim JJ, Bond RA, Milner JD, Zhang Y, Mandal PK, Luong A, Kheradmand F, McMurray JS, Corry DB. Long-Acting Beta Agonists Enhance Allergic Airway Disease. PLoS One 2015; 10:e0142212. [PMID: 26605551 PMCID: PMC4659681 DOI: 10.1371/journal.pone.0142212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023] Open
Abstract
Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.
Collapse
MESH Headings
- Adrenergic beta-2 Receptor Agonists/adverse effects
- Albuterol/therapeutic use
- Animals
- Anti-Asthmatic Agents/adverse effects
- Arrestins/deficiency
- Arrestins/genetics
- Aspergillosis, Allergic Bronchopulmonary/drug therapy
- Aspergillosis, Allergic Bronchopulmonary/genetics
- Aspergillosis, Allergic Bronchopulmonary/metabolism
- Aspergillosis, Allergic Bronchopulmonary/pathology
- Aspergillus niger/physiology
- Asthma/chemically induced
- Asthma/drug therapy
- Asthma/genetics
- Asthma/metabolism
- Bronchoconstriction/drug effects
- Carbazoles/adverse effects
- Carvedilol
- Disease Models, Animal
- Female
- Formoterol Fumarate/adverse effects
- Gene Expression
- Humans
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Knockout
- Peptidomimetics/pharmacology
- Propanolamines/adverse effects
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/genetics
- STAT6 Transcription Factor/agonists
- STAT6 Transcription Factor/antagonists & inhibitors
- STAT6 Transcription Factor/genetics
- STAT6 Transcription Factor/metabolism
- Salmeterol Xinafoate/adverse effects
- beta-Arrestins
Collapse
Affiliation(s)
- John M Knight
- Departments of Pathology & Immunology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Garbo Mak
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joanne Shaw
- Department of Otorhinolaryngolgy - Head and Neck Surgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Paul Porter
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Catherine McDermott
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Luz Roberts
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ran You
- Departments of Pathology & Immunology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiaoyi Yuan
- Departments of Pathology & Immunology and Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Valentine O Millien
- Department of Medicine and the Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yuping Qian
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Li-Zhen Song
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vincent Frazier
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Choel Kim
- Departments of Pharmacology, and Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeong Joo Kim
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, United States of America
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institutes of Allergic and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yuan Zhang
- Laboratory of Allergic Diseases, National Institutes of Allergic and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pijus K Mandal
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Amber Luong
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center and the Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Farrah Kheradmand
- Departments of Medicine and Pathology & Immunology, Translational Biology and Molecular Medicine Program, and the Biology of Inflammation Center, Baylor College of Medicine and the Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, Texas, United States of America
| | - John S McMurray
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David B Corry
- Departments of Medicine and Pathology & Immunology, Translational Biology and Molecular Medicine Program, and the Biology of Inflammation Center, Baylor College of Medicine and the Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, Texas, United States of America
| |
Collapse
|
23
|
Li CP, Yang BH. A hypothesis-effect of T cell epitope fusion peptide specific immunotherapy on signal transduction. Int J Clin Exp Med 2015; 8:19632-19634. [PMID: 26770626 PMCID: PMC4694526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Asthma is a chronic nonspecific inflammatory disease of the airway primarily mediated by different inflammatory cells, including mast cells, eosinophils and T cells. We hereby specially focused on a signal pathway for Janus kinase-signal transducer and activators of transduction (JAK-STATs), which has been the interest of study in asthma since it more likely regulates cellular proliferation and differentiation, and consequently modulates immune system. In our consideration, knowledge on this signal pathway may provide an avenue for rational options in treatment of asthma on control of immune response basis.
Collapse
Affiliation(s)
- Chao-Pin Li
- Department of Medical Parasitology, Wannan Medical College Wuhu 241002, Anhui, P. R. China
| | - Bang-He Yang
- Department of Medical Parasitology, Wannan Medical College Wuhu 241002, Anhui, P. R. China
| |
Collapse
|
24
|
Stokes K, LaMarche NM, Islam N, Wood A, Huang W, August A. Cutting edge: STAT6 signaling in eosinophils is necessary for development of allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:2477-81. [PMID: 25681342 DOI: 10.4049/jimmunol.1402096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Eosinophils are critical cellular mediators in allergic asthma and inflammation; however, the signals that regulate their functions are unclear. The transcription factor STAT6 regulates Th2 cytokine responses, acting downstream of IL-4 and IL-13. We showed previously that eosinophil-derived IL-13 plays an important role in the recruitment of T cells to the lung and the subsequent development of allergic asthma. However, whether eosinophils respond to Th2 signals to control allergic airway inflammation is unclear. In this report, we show that STAT6(-/-) eosinophils are unable to induce the development of allergic lung inflammation, including recruitment of CD4(+) T cells, mucus production, and development of airways hyperresponsiveness. This is likely due to the reduced migration of STAT6(-/-) eosinophils to the lung and in response to eotaxin. These data indicate that, like Th cells, eosinophils need to respond to Th2 cytokines via STAT6 during the development of allergic airway inflammation.
Collapse
Affiliation(s)
- Kindra Stokes
- Pathobiology Graduate Program, Center for Molecular Immunology and Infectious Diseases, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802; and Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Nelson M LaMarche
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Nasif Islam
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Amie Wood
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Weishan Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
25
|
Glosson NL, Bruns HA, Kaplan MH. Wheezing and itching: The requirement for STAT proteins in allergic inflammation. JAKSTAT 2014; 1:3-12. [PMID: 24058746 PMCID: PMC3670132 DOI: 10.4161/jkst.19086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/16/2011] [Indexed: 12/16/2022] Open
Abstract
The development of allergic inflammation requires the orchestration of gene expression from the inflamed tissue and from the infiltrating immune cells. Since many of the cytokines that promote allergic inflammation signal through hematopoietin family receptors, the Signal Transducer and Activator of Transcription (STAT) family have obligate roles in pro-allergic cytokine-induced gene regulation in multiple cell types. In this review, we summarize work defining the contribution of each of the STAT family members to the development of allergic inflammation, using data from mouse models of allergic inflammation, studies on patient samples and correlations with single nucleotide polymorphisms in STAT genes.
Collapse
Affiliation(s)
- Nicole L Glosson
- Department of Pediatrics; Herman B. Wells Center for Pediatric Research; Department of Microbiology and Immunology; Indiana University School of Medicine; Indianapolis, IN USA
| | | | | |
Collapse
|
26
|
Silva VR, Marcondes P, Silva M, Villaverde AB, Castro-Faria-Neto HC, Vieira RP, Aimbire F, de Oliveira APL. Low-level laser therapy inhibits bronchoconstriction, Th2 inflammation and airway remodeling in allergic asthma. Respir Physiol Neurobiol 2014; 194:37-48. [PMID: 24486607 DOI: 10.1016/j.resp.2014.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 11/23/2022]
Abstract
Low-level laser therapy (LLLT) controls bronchial hyperresponsiveness (BHR) associated with increased RhoA expression as well as pro-inflammatory mediators associated with NF-kB in acute lung inflammation. Herein, we explore if LLLT can reduce both BHR and Th2 cytokines in allergic asthma. Mice were studied for bronchial reactivity and lung inflammation after antigen challenge. BHR was measured through dose-response curves to acetylcholine. Some animals were pretreated with a RhoA inhibitor before the antigen. LLLT (660 nm, 30 mW and 5.4 J) was applied on the skin over the right upper bronchus and two irradiation protocols were used. Reduction of BHR post LLLT coincided with lower RhoA expression in bronchial muscle as well as reduction in eosinophils and eotaxin. LLLT also diminished ICAM expression and Th2 cytokines as well as signal transducer and activator of transduction 6 (STAT6) levels in lungs from challenged mice. Our results demonstrated that LLLT reduced BHR via RhoA and lessened allergic lung inflammation via STAT6.
Collapse
Affiliation(s)
- Vanessa R Silva
- Nove de Julho University - UNINOVE, Laboratory of Pulmonary and Exercise Immunology - LABPEI, Rua Vergueiro 239/245, PO Box 01504-001, São Paulo, SP, Brazil
| | - P Marcondes
- Department of Science and Technology, Federal University of São Paulo, PO Box 12231-280, São José dos Campos, SP, Brazil
| | - M Silva
- Nove de Julho University - UNINOVE, Laboratory of Pulmonary and Exercise Immunology - LABPEI, Rua Vergueiro 239/245, PO Box 01504-001, São Paulo, SP, Brazil
| | - Antonio B Villaverde
- Institute of Biomedical Engineering, Unicastelo, PO Box 12247-016, São José dos Campos, SP, Brazil
| | | | - Rodolfo P Vieira
- Nove de Julho University - UNINOVE, Laboratory of Pulmonary and Exercise Immunology - LABPEI, Rua Vergueiro 239/245, PO Box 01504-001, São Paulo, SP, Brazil
| | - Flavio Aimbire
- Department of Science and Technology, Federal University of São Paulo, PO Box 12231-280, São José dos Campos, SP, Brazil.
| | - Ana Paula L de Oliveira
- Nove de Julho University - UNINOVE, Laboratory of Pulmonary and Exercise Immunology - LABPEI, Rua Vergueiro 239/245, PO Box 01504-001, São Paulo, SP, Brazil
| |
Collapse
|
27
|
Development of pre-clinical models for evaluating the therapeutic potential of candidate siRNA targeting STAT6. PLoS One 2014; 9:e90338. [PMID: 24587331 PMCID: PMC3937390 DOI: 10.1371/journal.pone.0090338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/31/2014] [Indexed: 01/01/2023] Open
Abstract
Developing siRNA therapeutics poses technical challenges including appropriate molecular design and testing in suitable pre-clinical models. We previously detailed sequence-selection and modification strategies for siRNA candidates targeting STAT6. Here, we describe methodology that evaluates the suitability of candidate siRNA for respiratory administration. Chemically-modified siRNA exhibited similar inhibitory activity (IC50) against STAT6 in vitro compared to unmodified siRNA and apical exposure testing with Caco-2 cell monolayers showed modification was not associated with cellular toxicity. Use of a modified RNA extraction protocol improved the sensitivity of a PCR-based bio-analytical assay (lower limit of siRNA strand quantification = 0.01 pg/µl) which was used to demonstrate that lung distribution profiles for both siRNAs were similar following intra-tracheal administration. However, after 6 hours, modified siRNA was detected in lung tissue at concentrations >1000-fold higher than unmodified siRNA. Evaluation in a rat model of allergic inflammation confirmed the persistence of modified siRNA in vivo, which was detectable in broncho-alveolar lavage (BAL) fluid, BAL cells and lung tissue samples, 72 hours after dosing. Based upon the concept of respiratory allergy as a single airway disease, we considered nasal delivery as a route for respiratory targeting, evaluating an intra-nasal exposure model that involved simple dosing followed by fine dissection of the nasal cavity. Notably, endogenous STAT6 expression was invariant throughout the nasal cavities and modified siRNA persisted for at least 3 days after administration. Coupled with our previous findings showing upregulated expression of inflammatory markers in nasal samples from asthmatics, these findings support the potential of intranasal siRNA delivery. In summary, we demonstrate the successful chemical modification of STAT6 targeting siRNA, which enhanced bio-availability without cellular toxicity or reduced efficacy. We have established a robust, sensitive method for determining siRNA bio-distribution in vivo, and developed a nasal model to aid evaluation. Further work is warranted.
Collapse
|
28
|
Riley JP, Kulkarni A, Mehrotra P, Koh B, Perumal NB, Kaplan MH, Goenka S. PARP-14 binds specific DNA sequences to promote Th2 cell gene expression. PLoS One 2013; 8:e83127. [PMID: 24376650 PMCID: PMC3869773 DOI: 10.1371/journal.pone.0083127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/31/2013] [Indexed: 12/24/2022] Open
Abstract
PARP-14, a member of the poly ADP-ribose polymerase super family, promotes T helper cell 2 (Th2) differentiation by regulating interleukin-4 (IL-4) and STAT6-dependent transcription. Yet, whether PARP-14 globally impacts gene regulation has not been determined. In this report, using an RNA pol II ChIP-seq approach, we identify genes in Th2 cells that are regulated by PARP-14, and either dependent or independent of ADP-ribosyltransferase catalytic activity. Our data demonstrate that PARP-14 enhances the expression of Th2 genes as it represses the expression of Th1-associated genes. Among the relevant targets are Signal Transducer and Activator of Transcription genes required for polarizing Th1 and Th2 cells. To define a mechanism for PARP-14 function, we use an informatics approach to identify putative PARP-14 DNA binding sites. Two putative PARP-14 binding motifs are identified in multiple Th2 cytokine genes, and we demonstrate that PARP-14 interacts with each motif using in vitro binding assays. Taken together our results indicate that PARP-14 is an important factor for T helper cell differentiation and it binds to specific DNA sequences to mediate its function.
Collapse
Affiliation(s)
- Jonathan P. Riley
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Aishwarya Kulkarni
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- School of Informatics, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana, United States of America
| | - Purvi Mehrotra
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Byunghee Koh
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Narayanan B. Perumal
- School of Informatics, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana, United States of America
| | - Mark H. Kaplan
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| | - Shreevrat Goenka
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
29
|
Gusareva ES, Kurey I, Grekov I, Lipoldová M. Genetic regulation of immunoglobulin E level in different pathological states: integration of mouse and human genetics. Biol Rev Camb Philos Soc 2013; 89:375-405. [DOI: 10.1111/brv.12059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 06/14/2013] [Accepted: 07/31/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Elena S. Gusareva
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| | - Iryna Kurey
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| | - Igor Grekov
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| | - Marie Lipoldová
- Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague 4 Czech Republic
| |
Collapse
|
30
|
Jeon JO, Kim S, Choi E, Shin K, Cha K, So IS, Kim SJ, Jun E, Kim D, Ahn HJ, Lee BH, Lee SH, Kim IS. Designed nanocage displaying ligand-specific Peptide bunches for high affinity and biological activity. ACS NANO 2013; 7:7462-71. [PMID: 23927443 DOI: 10.1021/nn403184u] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Protein-cage nanoparticles are promising multifunctional platforms for targeted delivery of imaging and therapeutic agents owing to their biocompatibility, biodegradability, and low toxicity. The major advantage of protein-cage nanoparticles is the ability to decorate their surfaces with multiple functionalities through genetic and chemical modification to achieve desired properties for therapeutic and/or diagnostic purposes. Specific peptides identified by phage display can be genetically fused onto the surface of cage proteins to promote the association of nanoparticles with a particular cell type or tissue. Upon symmetrical assembly of the cage, peptides are clustered on the surface of the cage protein in bunches. The resulting PBNC (peptide bunches on nanocage) offers the potential of synergistically increasing the avidity of the peptide ligands, thereby enhancing their blocking ability for therapeutic purposes. Here, we demonstrated a proof-of-principle of PBNCs, fusing the interleukin-4 receptor (IL-4R)-targeting peptide, AP-1, identified previously by phage display, with ferritin-L-chain (FTL), which undergoes 24-subunit assembly to form highly stable AP-1-containing nanocage proteins (AP1-PBNCs). AP1-PBNCs bound specifically to the IL-4R-expressing cell line, A549, and their binding and internalization were specifically blocked by anti-IL-4R antibody. AP1-PBNCs exhibited dramatically enhanced binding avidity to IL-4R compared with AP-1 peptide, measured by surface plasmon resonance spectroscopy. Furthermore, treatment with AP1-PBNCs in a murine model of experimental asthma diminished airway hyper-responsiveness and eosinophilic airway inflammation along with decreased mucus hyperproduction. These findings hold great promise for the application of various PBNCs with ligand-specific peptides in therapeutics for different diseases, such as cancer.
Collapse
Affiliation(s)
- Jae Og Jeon
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University , Daegu 700-422, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Eckle T, Brodsky K, Bonney M, Packard T, Han J, Borchers CH, Mariani TJ, Kominsky DJ, Mittelbronn M, Eltzschig HK. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium. PLoS Biol 2013; 11:e1001665. [PMID: 24086109 DOI: 10.1371/journal.pbio.1001665] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND While acute lung injury (ALI) contributes significantly to critical illness, it resolves spontaneously in many instances. The majority of patients experiencing ALI require mechanical ventilation. Therefore, we hypothesized that mechanical ventilation and concomitant stretch-exposure of pulmonary epithelia could activate endogenous pathways important in lung protection. METHODS AND FINDINGS To examine transcriptional responses during ALI, we exposed pulmonary epithelia to cyclic mechanical stretch conditions--an in vitro model resembling mechanical ventilation. A genome-wide screen revealed a transcriptional response similar to hypoxia signaling. Surprisingly, we found that stabilization of hypoxia-inducible factor 1A (HIF1A) during stretch conditions in vitro or during ventilator-induced ALI in vivo occurs under normoxic conditions. Extension of these findings identified a functional role for stretch-induced inhibition of succinate dehydrogenase (SDH) in mediating normoxic HIF1A stabilization, concomitant increases in glycolytic capacity, and improved tricarboxylic acid (TCA) cycle function. Pharmacologic studies with HIF activator or inhibitor treatment implicated HIF1A-stabilization in attenuating pulmonary edema and lung inflammation during ALI in vivo. Systematic deletion of HIF1A in the lungs, endothelia, myeloid cells, or pulmonary epithelia linked these findings to alveolar-epithelial HIF1A. In vivo analysis of ¹³C-glucose metabolites utilizing liquid-chromatography tandem mass-spectrometry demonstrated that increases in glycolytic capacity, improvement of mitochondrial respiration, and concomitant attenuation of lung inflammation during ALI were specific for alveolar-epithelial expressed HIF1A. CONCLUSIONS These studies reveal a surprising role for HIF1A in lung protection during ALI, where normoxic HIF1A stabilization and HIF-dependent control of alveolar-epithelial glucose metabolism function as an endogenous feedback loop to dampen lung inflammation.
Collapse
Affiliation(s)
- Tobias Eckle
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Denver, Colorado, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li B, Nie W, Li Q, Liu H, Liu S. Signal transducer and activator of transcription 6 polymorphism and asthma risk: a meta-analysis. Int J Clin Exp Med 2013; 6:621-631. [PMID: 24040469 PMCID: PMC3762616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND The polymorphism in the signal transducer and activators of transduction 6 (STAT6) gene has been implicated in susceptibility to asthma and aetiology of asthma, but a number of studies have reported inconclusive and ambiguous results of the association between polymorphism in STAT6 gene and asthma risk in different populations. The aim of this study is to further investigate the association between the STAT6 gene polymorphism and asthma susceptibility. METHODS Pubmed, EMBASE, China National Knowledge Infrastructure (CNKI) Weipu Database and Wanfang Database were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. RESULTS Included in this meta analysis were 14 studies involving 2875 cases and 3227 controls for STAT6 2964G/A polymorphism and six studies involving 1431 cases and 2027 controls for 2892C/T polymorphism. Overall, there was no significant association between 2964G/A polymorphism of STAT6 and asthma susceptibility for GA+AA vs. GG (OR = 0.96, 95% CI 0.85-1.07, P = 0.39). Except TT vs. CT+CC and TT vs. CC, no significant association was observed between 2892C/T polymorphism and asthma risk under other different contrast models. However, the result was instable. CONCLUSIONS This meta-analysis suggests that the 2964G/A polymorphism of STAT6 gene is not a risk factor of asthma. For 2892C/T, it contributes to the aetiology of or susceptibility to asthma. More studies are needed to validate this result.
Collapse
Affiliation(s)
- Bin Li
- Department of Radiology, Shanghai Changzheng Hospital, Second Military Medical University415 Fengyang Road, Shanghai 200003, China
| | - Wei Nie
- Department of Respiratory Disease, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| | - Qiong Li
- Department of Radiology, Shanghai Changzheng Hospital, Second Military Medical University415 Fengyang Road, Shanghai 200003, China
| | - Hongchao Liu
- Department of Radiology, Shanghai Changzheng Hospital, Second Military Medical University415 Fengyang Road, Shanghai 200003, China
| | - Shiyuan Liu
- Department of Radiology, Shanghai Changzheng Hospital, Second Military Medical University415 Fengyang Road, Shanghai 200003, China
| |
Collapse
|
33
|
Walford HH, Doherty TA. STAT6 and lung inflammation. JAKSTAT 2013; 2:e25301. [PMID: 24416647 PMCID: PMC3876430 DOI: 10.4161/jkst.25301] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 12/18/2022] Open
Abstract
Lung inflammation has many etiologies, including diseases of Th2-type immunity, such as asthma and anti-parasitic responses. Inflammatory diseases of the lung involve complex interactions among structural cells (airway epithelium, smooth muscle, and fibroblasts) and immune cells (B and T cells, macrophages, dendritic cells, and innate lymphoid cells). Signal transducer and activator of transcription 6 (STAT6) has been demonstrated to regulate many pathologic features of lung inflammatory responses in animal models including airway eosinophilia, epithelial mucus production, smooth muscle changes, Th2 cell differentiation, and IgE production from B cells. Cytokines IL-4 and IL-13 that are upstream of STAT6 are found elevated in human asthma and clinical trials are underway to therapeutically target the IL-4/IL-13/STAT6 pathway. Additionally, recent work suggests that STAT6 may also regulate lung anti-viral responses and contribute to pulmonary fibrosis. This review will focus on the role of STAT6 in lung diseases and mechanisms by which STAT6 controls immune and structural lung cell function.
Collapse
Affiliation(s)
- Hannah H Walford
- Department of Medicine; University of California, San Diego; La Jolla, CA USA ; Department of Pediatrics; University of California, San Diego; La Jolla, CA USA
| | - Taylor A Doherty
- Department of Medicine; University of California, San Diego; La Jolla, CA USA
| |
Collapse
|
34
|
Asosingh K, Cheng G, Xu W, Savasky BM, Aronica MA, Li X, Erzurum SC. Nascent endothelium initiates Th2 polarization of asthma. THE JOURNAL OF IMMUNOLOGY 2013; 190:3458-65. [PMID: 23427249 DOI: 10.4049/jimmunol.1202095] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Asthma airway remodeling is linked to Th2 inflammation. Angiogenesis is a consistent feature of airway remodeling, but its contribution to pathophysiology remains unclear. We hypothesized that nascent endothelial cells in newly forming vessels are sufficient to initiate Th2-inflammation. Vascular endothelial (VE)-cadherin is a constitutively expressed endothelial cell adhesion molecule that is exposed in its monomer form on endothelial tip cells prior to adherens junction formation. Abs targeted to VE-cadherin monomers inhibit angiogenesis by blocking this adherens junction formation. In this study, VE-cadherin monomer Ab reduced angiogenesis in the lungs of the allergen-induced murine asthma model. Strikingly, Th2 responses including, IgE production, eosinophil infiltration of the airway, subepithelial fibrosis, mucus metaplasia, and airway-hyperreactivity were also attenuated by VE-cadherin blockade, via mechanisms that blunted endothelial IL-25 and proangiogenic progenitor cell thymic stromal lymphopoietin production. The results identify angiogenic responses in the origins of atopic inflammation.
Collapse
Affiliation(s)
- Kewal Asosingh
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Kim SH, Hong JH, Lee YC. Ursolic acid, a potential PPARγ agonist, suppresses ovalbumin-induced airway inflammation and Penh by down-regulating IL-5, IL-13, and IL-17 in a mouse model of allergic asthma. Eur J Pharmacol 2013; 701:131-43. [PMID: 23201068 DOI: 10.1016/j.ejphar.2012.11.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 01/08/2023]
Abstract
Allergic asthma is a chronic airway disorder characterized by airway hyperresponsiveness to allergens, chronic airway inflammation, airway edema, increased mucus secretion, excess production of Th2 cytokines, and eosinophil accumulation in the lungs. Ursolic acid is known for its pharmacological effects, such as its anti-tumor, anti-inflammatory and antimicrobial activities. To investigate the anti-asthmatic effects and mechanism of ursolic acid, we studied the development of pulmonary eosinophilic inflammation and enhanced pause (Penh) in a mouse model of allergic asthma. In this study, BALB/c mice were systemically sensitized to ovalbumin followed by intratracheal, intraperitoneal, and aerosol allergen challenges. We investigated the effect of ursolic acid and Cyclosporin A (CsA) on Penh, pulmonary eosinophilic infiltration, various immune cell phenotypes, Th2 cytokines, IL-17 production, and ovalbumin specific IgE production in a mouse model of asthma. In BALB/c mice, ursolic acid had suppressed eosinophil infiltration, allergic airway inflammation, and Penh, which occurred by suppressing the production of IL-5, IL-13, IL-17, and ovalbumin-specific IgE by blocking the GATA-3 and STAT6 pathways. Our data suggest the therapeutic mechanism of ursolic acid in asthma is based on reductions of Th2 cytokines (IL-5 and IL-13), ovalbumin-specific IgE production, and eosinophil infiltration via the Th2-GATA-3, STAT6, and IL-17-NF-κB pathways.
Collapse
Affiliation(s)
- Seung-Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon, Republic of Korea
| | | | | |
Collapse
|
36
|
Healey GD, Evans N, Hopkin JM, Davies G, Walker W. Evaluation of nasal epithelium sampling as a tool in the preclinical development of siRNA-based therapeutics for asthma. J Cell Mol Med 2013; 17:356-64. [PMID: 23402658 PMCID: PMC3823017 DOI: 10.1111/jcmm.12014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/28/2012] [Indexed: 01/14/2023] Open
Abstract
The development of siRNA-based asthma therapeutics is currently hampered by a paucity of relevant biomarkers and the need to ascertain tissue-specific gene targeting in the context of active disease. Epithelial STAT6 expression is fundamental to asthma pathogenesis in which inflammatory changes are found throughout the respiratory tract. Therefore, to improve preclinical evaluation, we tested the efficacy of STAT6-targeting siRNA within nasal epithelial cells (NEC's) obtained from asthmatic and non-asthmatic donors. STAT6 expression was invariant in both donor groups and amenable to suppression by siRNA treatment. In addition, STAT6 mRNA was also suppressible by apically delivered siRNA treatment in comparative differentiated nasal epithelial cell-line monolayer cultures. Analysis of donor NEC's showed consistent elevation in CCL26 (eotaxin-3) mRNA within the asthmatic group suggesting potential as a relevant biomarker. Furthermore, targeting of STAT6 with siRNA attenuated IL-13-driven CCL26 expression in these cells, pointing to the utility of this approach in preclinical testing. Finally, siRNA-mediated suppression of STAT6 was independent of donor disease phenotype or epithelial cell differentiation status, signifying therapeutic potential.
Collapse
Affiliation(s)
- Gareth D Healey
- College of Medicine, Institute of Life Science, Swansea University, Swansea, UK.
| | | | | | | | | |
Collapse
|
37
|
Gibeon D, Menzies-Gow AN. Targeting interleukins to treat severe asthma. Expert Rev Respir Med 2013; 6:423-39. [PMID: 22971067 DOI: 10.1586/ers.12.38] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Severe asthma is thought to be a heterogeneous disease with different phenotypes predicated primarily on the nature of the inflammatory cell infiltrate and response to corticosteroid therapy. This group of patients often has refractory disease with an associated increase in morbidity and mortality, and there remains a need for better therapies for severe asthmatics. Inflammatory changes in asthma are driven by immune mechanisms, within which interleukins play an integral role. Interleukins are cell-signaling cytokines that are produced by a variety of cells, predominantly T cells. Knowledge about their actions has improved the understanding of the pathogenesis of asthma and provided potential targets for novel therapies. To date, this has not translated into clinical use. However, there are ongoing clinical trials that use monoclonal antibodies for various interleukins, some of which have shown to be promising in Phase II studies.
Collapse
|
38
|
Chiba Y, Goto K, Misawa M. Interleukin-13-induced activation of signal transducer and activator of transcription 6 is mediated by an activation of Janus kinase 1 in cultured human bronchial smooth muscle cells. Pharmacol Rep 2012; 64:454-8. [PMID: 22661199 DOI: 10.1016/s1734-1140(12)70788-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/05/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND The current study was carried out to identify the JAK molecule(s) that is involved in the IL-13-induced activation of STAT6 in cultured human bronchial smooth muscle cells (hBSMCs). METHODS Cultured hBSMCs were stimulated with IL-13 in the absence and presence of JAK inhibitor-I (a nonspecific JAKs inhibitor), tyrphostin-AG490 (a specific JAK2 inhibitor), WHI-P131 (a specific JAK3 inhibitor), or tyrphostin-AG9 (a specific Tyk2 inhibitor), and levels of phosphorylated STAT6 were measured by immunoblot analyses. RESULTS The IL-13-induced phosphorylation of STAT6 was abolished by JAK inhibitor-I, whereas the other inhibitors had no significant effect. CONCLUSION These findings indicate that the STAT6 phosphorylation/activation induced by IL-13 is mediated by an activation of JAK1 in cultured hBSMCs.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Biology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | |
Collapse
|
39
|
Hansbro PM, Scott GV, Essilfie AT, Kim RY, Starkey MR, Nguyen DH, Allen PD, Kaiko GE, Yang M, Horvat JC, Foster PS. Th2 cytokine antagonists: potential treatments for severe asthma. Expert Opin Investig Drugs 2012; 22:49-69. [PMID: 23126660 DOI: 10.1517/13543784.2013.732997] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Asthma is a major disease burden worldwide. Treatment with steroids and long acting β-agonists effectively manage symptoms in many patients but do not treat the underlying cause of disease and have serious side effects when used long term and in children. Therapies targeting the underlying causes of asthma are urgently needed. T helper type 2 (Th2) cells and the cytokines they release are clinically linked to the presentation of all forms of asthma. They are the primary drivers of mild to moderate and allergic asthma. They also play a pathogenetic role in exacerbations and more severe asthma though other factors are also involved. Much effort using animal models and human studies has been dedicated to the identification of the pathogenetic roles of these cells and cytokines and whether inhibition of their activity has therapeutic benefit in asthma. AREAS COVERED We discuss the current status of Th2 cytokine antagonists for the treatment of asthma. We also discuss the potential for targeting Th2-inducing cytokines, Th2 cell receptors and signaling as well as the use of Th2 cell antagonists, small interfering oligonucleotides, microRNAs, and combination therapies. EXPERT OPINION Th2 antagonists may be most effective in particular asthma subtypes/endotypes where specific cytokines are known to be active through the analysis of biomarkers. Targeting common receptors and pathways used by these cytokines may have additional benefit. Animal models have been valuable in identifying therapeutic targets in asthma, however the results from such studies need to be carefully interpreted and applied to appropriately stratified patient cohorts in well-designed clinical studies and trials.
Collapse
Affiliation(s)
- Philip M Hansbro
- The University of Newcastle, Priority Research Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, Level 2, Kookaburra Circuit, New Lambton Heights, Newcastle, New South Wales, 2305, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Maier E, Duschl A, Horejs-Hoeck J. STAT6-dependent and -independent mechanisms in Th2 polarization. Eur J Immunol 2012; 42:2827-33. [PMID: 23041833 PMCID: PMC3557721 DOI: 10.1002/eji.201242433] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/18/2012] [Accepted: 07/25/2012] [Indexed: 01/06/2023]
Abstract
Th2 cells play a key role in directing immune responses against helminths. Additionally, Th2 cells are crucial for many types of allergic reactions. Whereas the molecular mechanisms underlying the differentiation of other types of Th cells are well understood, Th2 differentiation is still a controversial topic. IL-4 and its downstream transcription factor signal transducer and activator of transcription (STAT)6 are well-known key mediators in Th2 differentiation. The fact that Th2 cells themselves are the most potent source of IL-4 suggests that additional mechanisms promoting the initiation of Th2 differentiation exist. This article gives an overview on STAT6-dependent and -independent mechanisms involved in the process of Th2 polarization, including Notch, mTORC2, IL-2/STAT5, and Wnt. Furthermore, we emphasize the role of STAT6 not only as a transcriptional activator promoting Th2 development, but also in fine-tuning alternative signaling pathways which are involved in the initiation of Th2 polarization.
Collapse
Affiliation(s)
- Elisabeth Maier
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | |
Collapse
|
41
|
Bousquet J, Yssel H, Demoly P. Prospects for a vaccine in allergic diseases and asthma. BioDrugs 2012; 13:61-75. [PMID: 18034513 DOI: 10.2165/00063030-200013010-00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Allergen-specific immunotherapy is widely used to treat allergic diseases, and current research is now focusing on the development of therapeutic vaccines acting on the IgE immune response following allergen challenge. The IgE immune response is dependent on genetic and environmental factors; production of IgE results from complex interactions among B cells, T cells, mast cells, basophils,surface and adhesion molecules and various cytokines. New vaccination methods under investigation involve allergen-specific or nonspecific methodology. Allergen-specific methods currently being developed include allergoids, passive saturation of effector cells, plasmid DNA immunisation and antigen-antibody complexes. The mechanisms of immunotherapy using allergen-specific methods differ with the allergens and the route of immunisation used (parenteral, intranasal, sublingual, oral or bronchial). Many vaccines being developed at present comprise synthetic, recombinant or highly purified subunit antigens, which although they have increased safety may also be less immunogenic.It is hoped that the addition of adjuvants will overcome this drawback. Methods of increasing the dose of allergen while reducing the possibility of an anaphylactic reaction include the use of non-anaphylactic isoforms of the allergens, alteration of the tertiary structure of the allergens and construction of minimal allergen-derived T cell peptides. Nonspecific approaches include humanised anti-IgE antibodies,moderation of the T(H)2 cytokine network and antisense oligodeoxynucleotide therapy.
Collapse
Affiliation(s)
- J Bousquet
- Hôpital Arnaud de Villeneuve, INSERM V454, Montpellier, France.
| | | | | |
Collapse
|
42
|
Ingram JL, Kraft M. IL-13 in asthma and allergic disease: asthma phenotypes and targeted therapies. J Allergy Clin Immunol 2012; 130:829-42; quiz 843-4. [PMID: 22951057 DOI: 10.1016/j.jaci.2012.06.034] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/25/2012] [Accepted: 06/29/2012] [Indexed: 02/07/2023]
Abstract
Decades of research in animal models have provided abundant evidence to show that IL-13 is a key T(H)2 cytokine that directs many of the important features of airway inflammation and remodeling in patients with allergic asthma. Several promising focused therapies for asthma that target the IL-13/IL-4/signal transducer and activator of transcription 6 pathway are in development, including anti-IL-13 mAbs and IL-4 receptor antagonists. The efficacy of these new potential asthma therapies depends on the responsiveness of patients. However, an understanding of how IL-13-directed therapies might benefit asthmatic patients is confounded by the complex heterogeneity of the disease. Recent efforts to classify subphenotypes of asthma have focused on sputum cellular inflammation profiles, as well as cluster analyses of clinical variables and molecular and genetic signatures. Researchers and clinicians can now evaluate biomarkers of T(H)2-driven airway inflammation in asthmatic patients, such as serum IgE levels, sputum eosinophil counts, fraction of exhaled nitric oxide levels, and serum periostin levels, to aid decision making in clinical trials and drug development and to identify subsets of patients who might benefit from therapies. Although it is unlikely that these therapies will benefit all asthmatic patients with this heterogeneous disease, advances in understanding asthma subphenotypes in relation to clinical variables and T(H)2 cytokine responses offer the opportunity to improve the efficacy and safety of proposed therapies for asthma.
Collapse
Affiliation(s)
- Jennifer L Ingram
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
43
|
Mehrotra P, Hollenbeck A, Riley JP, Li F, Patel RJ, Akhtar N, Goenka S. Poly (ADP-ribose) polymerase 14 and its enzyme activity regulates T(H)2 differentiation and allergic airway disease. J Allergy Clin Immunol 2012; 131:521-31.e1-12. [PMID: 22841009 DOI: 10.1016/j.jaci.2012.06.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/07/2012] [Accepted: 06/07/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND IL-4 and signal transducer and activator of transcription 6 (STAT6) play an important role in the progression of allergic airway disease (AAD) or asthma. IL-4 and STAT6 mediate T(H)2 responses in T cells and immunoglobulin class-switching to IgE in B cells. Both T(H)2 responses and IgE promote the asthmatic condition. We have previously demonstrated that poly (ADP-ribose) polymerase (PARP) 14, a member of the PARP family of proteins, regulates the transcription function of STAT6. However, the role of PARP-14 in AAD is not known. OBJECTIVE Here we investigate the role of PARP-14 and the enzyme activity associated with it in a model of AAD dependent on airway hyperresponsiveness and lung inflammation. We also elucidate the mechanism by which PARP-14 regulates AAD. METHODS The role of PARP-14 and its enzyme activity in AAD and T(H)2 differentiation were examined by using a murine model of AAD and in vitro T(H) cell differentiation. RESULTS PARP-14-deficient animals show reduced lung pathology and IgE levels when compared with control animals. Treating mice with a pharmacologic inhibitor for PARP activity reduced the severity of airway hyperresponsiveness and lung inflammation. Mechanistically, our data indicate that PARP-14 and its enzyme activity aid in the differentiation of T cells toward a T(H)2 phenotype by regulating the binding of STAT6 to the Gata3 promoter. CONCLUSION PARP-14 and the catalytic activity associated with it promote T(H)2 differentiation and AAD in a murine model, and targeting PARP-14 might be a potential new therapy for allergic asthma.
Collapse
Affiliation(s)
- Purvi Mehrotra
- HB Wells Center for Pediatric Research and the Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Ford AQ, Dasgupta P, Mikhailenko I, Smith EMP, Noben-Trauth N, Keegan AD. Adoptive transfer of IL-4Rα+ macrophages is sufficient to enhance eosinophilic inflammation in a mouse model of allergic lung inflammation. BMC Immunol 2012; 13:6. [PMID: 22292924 PMCID: PMC3283450 DOI: 10.1186/1471-2172-13-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/31/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The IL-4 receptor α (IL-4Rα) chain has a broad expression pattern and participates in IL-4 and IL-13 signaling, allowing it to influence several pathological components of allergic lung inflammation. We previously reported that IL-4Rα expression on both bone marrow-derived and non-bone marrow-derived cells contributed to the severity of allergic lung inflammation. There was a correlation between the number of macrophages expressing the IL-4Rα, CD11b, and IA(d), and the degree of eosinophilia in ovalbumin challenged mice. The engagement of the IL-4Rα by IL-4 or IL-13 is able to stimulate the alternative activation of macrophages (AAM). The presence of AAM has been correlated with inflammatory responses to parasites and allergens. Therefore, we hypothesized that IL-4Rα⁺ AAM play an active role in allergic lung inflammation. To directly determine the role of AAM in allergic lung inflammation, M-CSF-dependent macrophages (BMM) were prepared from the bone-marrow of IL-4Rα positive and negative mice and transferred to IL-4RαxRAG2(-/-) mice. Wild type TH2 cells were provided exogenously. RESULTS Mice receiving IL-4Rα(+/+) BMM showed a marked increase in the recruitment of eosinophils to the lung after challenge with ovalbumin as compared to mice receiving IL-4Rα(-/-) BMM. As expected, the eosinophilic inflammation was dependent on the presence of TH2 cells. Furthermore, we observed an increase in cells expressing F4/80 and Mac3, and the AAM marker YM1/2 in the lungs of mice receiving IL-4Rα(+/+) BMM. The BAL fluid from these mice contained elevated levels of eotaxin-1, RANTES, and CCL2. CONCLUSIONS These results demonstrate that transfer of IL-4Rα + macrophages is sufficient to enhance TH2-driven, allergic inflammation. They further show that stimulation of macrophages through IL-4Rα leads to their alternative activation and positive contribution to the TH2-driven allergic inflammatory response in the lung. Since an increase in AAM and their products has been observed in patients with asthma exacerbations, these results suggest that AAM may be targeted to alleviate exacerbations.
Collapse
Affiliation(s)
- Andrew Q Ford
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, 800 W. Baltimore St., Baltimore MD 21201, USA
| | - Preeta Dasgupta
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, 800 W. Baltimore St., Baltimore MD 21201, USA
| | - Irina Mikhailenko
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, 800 W. Baltimore St., Baltimore MD 21201, USA
| | - Elizabeth MP Smith
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, 800 W. Baltimore St., Baltimore MD 21201, USA
| | - Nancy Noben-Trauth
- Department of Biological Sciences, University of Maryland College Park, Rockville MD 20892, USA
| | - Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, 800 W. Baltimore St., Baltimore MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center and Dept of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| |
Collapse
|
45
|
STAT6 phosphorylation inhibitors block eotaxin-3 secretion in bronchial epithelial cells. Bioorg Med Chem 2011; 20:750-8. [PMID: 22217933 DOI: 10.1016/j.bmc.2011.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/28/2011] [Accepted: 12/03/2011] [Indexed: 11/20/2022]
Abstract
The STAT6 (signal transducer and activator of transcription 6) protein facilitates T-helper cell 2 (Th2) mediated responses that control IgE-mediated atopic diseases such as asthma. We have identified compounds that bind to STAT6 and inhibit STAT6 tyrosine phosphorylation induced by IL-4. In the bronchial epithelial cell line BEAS-2B, compound (R)-84 inhibits the secretion of eotaxin-3, a chemokine eliciting eosinophil infiltration. (R)-84 appears to prevent STAT6 from assuming the active dimer configuration by directly binding the protein and inhibiting tyrosine phosphorylation.
Collapse
|
46
|
Chen H, Sun H, You F, Sun W, Zhou X, Chen L, Yang J, Wang Y, Tang H, Guan Y, Xia W, Gu J, Ishikawa H, Gutman D, Barber G, Qin Z, Jiang Z. Activation of STAT6 by STING is critical for antiviral innate immunity. Cell 2011; 147:436-46. [PMID: 22000020 DOI: 10.1016/j.cell.2011.09.022] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/08/2011] [Accepted: 09/19/2011] [Indexed: 01/02/2023]
Abstract
STAT6 plays a prominent role in adaptive immunity by transducing signals from extracellular cytokines. We now show that STAT6 is required for innate immune signaling in response to virus infection. Viruses or cytoplasmic nucleic acids trigger STING (also named MITA/ERIS) to recruit STAT6 to the endoplasmic reticulum, leading to STAT6 phosphorylation on Ser(407) by TBK1 and Tyr(641), independent of JAKs. Phosphorylated STAT6 then dimerizes and translocates to the nucleus to induce specific target genes responsible for immune cell homing. Virus-induced STAT6 activation is detected in all cell-types tested, in contrast to the cell-type specific role of STAT6 in cytokine signaling, and Stat6(-/-) mice are susceptible to virus infection. Thus, STAT6 mediates immune signaling in response to both cytokines at the plasma membrane, and virus infection at the endoplasmic reticulum.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Small interfering RNA against transcription factor STAT6 leads to increased cholesterol synthesis in lung cancer cell lines. PLoS One 2011; 6:e28509. [PMID: 22162773 PMCID: PMC3230611 DOI: 10.1371/journal.pone.0028509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 11/09/2011] [Indexed: 01/31/2023] Open
Abstract
STAT6 transcription factor has become a potential molecule for therapeutic intervention because it regulates broad range of cellular processes in a large variety of cell types. Although some target genes and interacting partners of STAT6 have been identified, its exact mechanism of action needs to be elucidated. In this study, we sought to further characterize the molecular interactions, networks, and functions of STAT6 by profiling the mRNA expression of STAT6 silenced human lung cells (NCI-H460) using microarrays. Our analysis revealed 273 differentially expressed genes after STAT6 silencing. Analysis of the gene expression data with Ingenuity Pathway Analysis (IPA) software revealed Gene expression, Cell death, Lipid metabolism as the functions associated with highest rated network. Cholesterol biosynthesis was among the most enriched pathways in IPA as well as in PANTHER analysis. These results have been validated by real-time PCR and cholesterol assay using scrambled siRNA as a negative control. Similar findings were also observed with human type II pulmonary alveolar epithelial cells, A549. In the present study we have, for the first time, shown the inverse relationship of STAT6 with the cholesterol biosynthesis in lung cancer cells. The present findings are potentially significant to advance the understanding and design of therapeutics for the pathological conditions where both STAT6 and cholesterol biosynthesis are implicated viz. asthma, atherosclerosis etc.
Collapse
|
48
|
Summers SA, Phoon RKS, Odobasic D, Dewage L, Kitching AR, Holdsworth SR. Signal transducer and activation of transcription 6 (STAT6) regulates T helper type 1 (Th1) and Th17 nephritogenic immunity in experimental crescentic glomerulonephritis. Clin Exp Immunol 2011; 166:227-34. [PMID: 21985369 DOI: 10.1111/j.1365-2249.2011.04437.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Experimental crescentic glomerulonephritis is driven by systemic cellular immune responses. A pathogenic role for T helper type 1 (Th1) and Th17 cells is well established. T-bet, a key transcription factor required for Th1 lineage commitment, and retinoic acid-related orphan receptor-γt (Rorγt), a key Th17 transcription factor, are required for full expression of disease. Similarly, several Th1- and Th17-associated cytokines have been implicated in disease augmentation. The role of Th2 cells in the disease is less clear, although Th2-associated cytokines, interleukin (IL)-4 and IL-10, are protective. We sought to determine the role of signal transducer and activation of transcription 6 (STAT6), a key regulator of Th2 responses, in experimental crescentic glomerulonephritis. Compared to wild-type mice, histological and functional renal injury was enhanced significantly in STAT6(-/-) mice 21 days after administration of sheep anti-mouse glomerular basement membrane globulin. Consistent with the enhanced renal injury, both Th1 and Th17 nephritogenic immune responses were increased in STAT6(-/-) mice. Conversely, production of IL-5, a key Th2-associated cytokine, was decreased significantly in STAT6(-/-) mice. Early in the disease process systemic mRNA expression of T-bet and Rorγ was increased in STAT6(-/-) mice. We conclude that STAT6 is required for attenuation of Th1 and Th17 nephritogenic immune responses and protection from crescentic glomerulonephritis.
Collapse
Affiliation(s)
- S A Summers
- Centre for Inflammatory Diseases, Monash University Department of Medicine, VIC, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Kavalar MS, Balantic M, Silar M, Kosnik M, Korosec P, Rijavec M. Association of ORMDL3, STAT6 and TBXA2R gene polymorphisms with asthma. Int J Immunogenet 2011; 39:20-5. [PMID: 22017802 DOI: 10.1111/j.1744-313x.2011.01051.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Asthma is one of the most common chronic diseases in childhood. It is well known that genetic variability contributes to asthma risk. One of the most replicated asthma candidate genes is ORM1-like 3 (Saccharomyces cerevisiae) (ORMDL3), which has been associated with childhood asthma susceptibility. Another asthma candidate gene is signal transducer and activator of transcription 6 (STAT6), a regulator of IgE class switching. Gene coding thromboxane A2 receptor (TBXA2R), involved in chronic airway inflammation, has been associated with asthma in several genetic studies. We have studied the association of polymorphism rs4795405 in ORMDL3, rs324011 in STAT6 as well as rs8113232 and rs3786989 in TBXA2R with asthma risk, various asthma phenotypes and asthma-related symptoms. The study group consisted of 154 children with asthma, in whom clinical parameters were measured and whose asthma control and atopic status were determined. A control group comprised 71 healthy children. Genotyping was performed using an allelic discrimination assay. The ORMDL3 polymorphism rs4795405 was suggestively associated with asthma risk. Furthermore, it was significantly associated with nonatopic asthma and asthma without rhinitis. No association was detected between the STAT6 polymorphism rs324011 or the TBXA2R polymorphisms rs8113232 and rs3786989 and asthma susceptibility. However, an association between rs324011 in STAT6 with recurrent wheezing in early childhood and a suggestive association between rs8113232 in TBXA2R with rhinitis in children with asthma were observed. Our results confirmed ORMDL3 as a candidate gene for childhood asthma susceptibility. STAT6 and TBXA2R polymorphisms were not associated with asthma risk, but they were associated with asthma-related symptoms.
Collapse
Affiliation(s)
- M S Kavalar
- University Clinical Centre Maribor, Maribor, Slovenia
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Signal transducer and activator of transcription (STAT) proteins are critical mediators of cytokine signaling. Among the seven STAT proteins, STAT6 is activated by IL-4 and IL-13 and plays a predominant role in the immune system. However, there is increasing evidence that STAT6 may function in other tissues and organ systems. IL-4, IL-13, and STAT6 promote humoral immunity, clearance of helminthic parasites as well as the pathogenesis of allergic disorders like asthma, food allergies, and atopic dermatitis. In this review, we will describe our current understanding of the biological functions of STAT6 and summarize recent advances in understanding the molecular mechanisms by which STAT6 regulates transcription.
Collapse
Affiliation(s)
- Shreevrat Goenka
- HB Wells Center of Pediatric Research, Department of Pediatrics, Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, 46202, USA.
| | | |
Collapse
|