1
|
Calindi A, Ehrlich LIR. Intrathymic Regulation of Dendritic Cell Subsets and Their Contributions to Central Tolerance. Immunol Rev 2025; 332:e70039. [PMID: 40433811 PMCID: PMC12117523 DOI: 10.1111/imr.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/27/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
Thymic dendritic cells (DCs) are critical mediators of central tolerance, cooperating with medullary thymic epithelial cells (mTECs) and B cells to establish T-cell self-tolerance to the proteome. The DC compartment is highly heterogeneous and is comprised of three major subsets, plasmacytoid dendritic cells (pDCs) and two conventional dendritic cell (cDC) subsets, cDC1 and cDC2. Thymic cDC1 and cDC2 arise from distinct progenitors and access the thymus at different stages of their differentiation, but both become activated by cellular and secreted cues received within the sterile thymus environment. Activated cDC1s and cDC2s have been implicated in presenting distinct types of self-antigens to induce central tolerance. Thus, understanding how the distinct cDC subsets are regulated within the thymus environment will provide important insights into mechanisms governing self-tolerance. Furthermore, the thymic DC compartment undergoes age-associated compositional and transcriptional changes that likely impact the efficiency and quality of central tolerance established over the lifespan. Here, we review recent findings from our lab and others on mechanisms regulating thymic DC activation, the distinct roles of thymic DC subsets in central tolerance, and age-associated changes in thymic DCs that could impact T-cell selection.
Collapse
Affiliation(s)
- Aparna Calindi
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTexasUSA
| | - Lauren I. R. Ehrlich
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTexasUSA
- LaMontagne Center for Infectious DiseaseThe University of Texas at AustinAustinTexasUSA
| |
Collapse
|
2
|
Huisman BD, Michelson DA, Rubin SA, Kohlsaat K, Gomarga W, Fang Y, Lee JM, Del Nido P, Nathan M, Benoist C, Zon L, Mathis D. Cross-species analyses of thymic mimetic cells reveal evolutionarily ancient origins and both conserved and species-specific elements. Immunity 2025; 58:108-123.e7. [PMID: 39731911 PMCID: PMC11735279 DOI: 10.1016/j.immuni.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 11/27/2024] [Indexed: 12/30/2024]
Abstract
Thymic mimetic cells are molecular hybrids between medullary-thymic-epithelial cells (mTECs) and diverse peripheral cell types. They are involved in eliminating autoreactive T cells and can perform supplementary functions reflective of their peripheral-cell counterparts. Current knowledge about mimetic cells derives largely from mouse models. To provide the high resolution that proved revelatory for mice, we performed single-cell RNA sequencing on purified mimetic-cell compartments from human pediatric donors. The single-cell profiles of individual donors were surprisingly similar, with diversification of neuroendocrine subtypes and expansion of the muscle subtype relative to mice. Informatic and imaging studies on the muscle-mTEC population highlighted a maturation trajectory suggestive of skeletal-muscle differentiation, some striated structures, and occasional cellular groupings reminiscent of neuromuscular junctions. We also profiled thymic mimetic cells from zebrafish. Integration of data from the three species identified species-specific adaptations but substantial interspecies conservation, highlighting the evolutionarily ancient nature of mimetic mTECs. Our findings provide a landscape view of human mimetic cells, with anticipated relevance in autoimmunity.
Collapse
Affiliation(s)
- Brooke D Huisman
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Daniel A Michelson
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, USA; PhD Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Sara A Rubin
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, USA; PhD Program in Immunology, Harvard Medical School, Boston, MA, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Katherine Kohlsaat
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wilson Gomarga
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Yuan Fang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Ji Myung Lee
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Meena Nathan
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | | | - Leonard Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute and Boston Children's Hospital, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Matsumoto M, Sobral F, Cardoso JS, Oya T, Tsuneyama K, Matsumoto M, Alves NL. The Ins and Outs of Thymic Epithelial Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:51-79. [PMID: 40067584 DOI: 10.1007/978-3-031-77921-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The thymus is an essential component of the immune system responsible for producing T cells. It is anatomically divided into two main regions: the outer cortex and the inner medulla. This chapter summarizes our current understanding of thymic stromal cell functions, with a particular focus on the interactions between these cells and T cells. This exploration aims to shed light on the pathogenesis of immune disorders, including autoimmunity.
Collapse
Affiliation(s)
- Minoru Matsumoto
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Francisco Sobral
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - João S Cardoso
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan.
| | - Nuno L Alves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Porto, Portugal.
| |
Collapse
|
4
|
Lo WL, Huseby ES. The partitioning of TCR repertoires by thymic selection. J Exp Med 2024; 221:e20230897. [PMID: 39167074 PMCID: PMC11338286 DOI: 10.1084/jem.20230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024] Open
Abstract
αβ T cells are critical components of the adaptive immune system; they maintain tissue and immune homeostasis during health, provide sterilizing immunity after pathogen infection, and are capable of eliminating transformed tumor cells. Fundamental to these distinct functions is the ligand specificity of the unique antigen receptor expressed on each mature T cell (TCR), which endows lymphocytes with the ability to behave in a cell-autonomous, disease context-specific manner. Clone-specific behavioral properties are initially established during T cell development when thymocytes use TCR recognition of major histocompatibility complex (MHC) and MHC-like ligands to instruct survival versus death and to differentiate into a plethora of inflammatory and regulatory T cell lineages. Here, we review the ligand specificity of the preselection thymocyte repertoire and argue that developmental stage-specific alterations in TCR signaling control cross-reactivity and foreign versus self-specificity of T cell sublineages.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
5
|
Anderson G, Cosway EJ, James KD, Ohigashi I, Takahama Y. Generation and repair of thymic epithelial cells. J Exp Med 2024; 221:e20230894. [PMID: 38980292 PMCID: PMC11232892 DOI: 10.1084/jem.20230894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
In the vertebrate immune system, thymus stromal microenvironments support the generation of αβT cells from immature thymocytes. Thymic epithelial cells are of particular importance, and the generation of cortical and medullary epithelial lineages from progenitor stages controls the initiation and maintenance of thymus function. Here, we discuss the developmental pathways that regulate thymic epithelial cell diversity during both the embryonic and postnatal periods. We also examine how thymus microenvironments respond to injury, with particular focus on mechanisms that ensure regeneration of thymic epithelial cells for the restoration of thymus function.
Collapse
Affiliation(s)
- Graham Anderson
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Emilie J. Cosway
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Kieran D. James
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Michelson DA, Mathis D. Thymic Mimetic Cells: Ontogeny as Immunology. Annu Rev Cell Dev Biol 2024; 40:283-300. [PMID: 38608315 PMCID: PMC11446667 DOI: 10.1146/annurev-cellbio-112122-023316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Medullary thymic epithelial cells (mTECs) generate immunological self-tolerance by ectopically expressing peripheral-tissue antigens (PTAs) within the thymus to preview the peripheral self to maturing T cells. Recent work, drawing inspiration from old histological observations, has shown that subtypes of mTECs, collectively termed mimetic cells, co-opt developmental programs from throughout the organism to express biologically coherent groups of PTAs. Here, we review key aspects of mimetic cells, especially as they relate to the larger contexts of molecular, cellular, developmental, and evolutionary biology. We highlight lineage-defining transcription factors as key regulators of mimetic cells and speculate as to what other factors, including Aire and the chromatin potential of mTECs, permit mimetic cell differentiation and function. Last, we consider what mimetic cells can teach us about not only the thymus but also other tissues.
Collapse
Affiliation(s)
- Daniel A Michelson
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
7
|
Miller CN, Waterfield MR, Gardner JM, Anderson MS. Aire in Autoimmunity. Annu Rev Immunol 2024; 42:427-53. [PMID: 38360547 PMCID: PMC11774315 DOI: 10.1146/annurev-immunol-090222-101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype-phenotype correlations and the spectrum of Aire-associated autoimmunity-including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.
Collapse
Affiliation(s)
- Corey N Miller
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| | - Michael R Waterfield
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - James M Gardner
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Surgery, University of California, San Francisco, California, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, California, USA; ,
- Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
8
|
James KD, Cowan JE. Insm1: orchestrating cellular mimicry in the thymus medulla. Cell Mol Immunol 2024; 21:416-418. [PMID: 38503886 PMCID: PMC11001603 DOI: 10.1038/s41423-024-01151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Affiliation(s)
- K D James
- UCL Institute of Immunity and Transplantation, The Pears Building, Rowland Hill Street, London, NW3 2PP, UK
| | - J E Cowan
- UCL Institute of Immunity and Transplantation, The Pears Building, Rowland Hill Street, London, NW3 2PP, UK.
| |
Collapse
|
9
|
James KD, Cosway EJ, Parnell SM, White AJ, Jenkinson WE, Anderson G. Assembling the thymus medulla: Development and function of epithelial cell heterogeneity. Bioessays 2024; 46:e2300165. [PMID: 38161233 PMCID: PMC11475500 DOI: 10.1002/bies.202300165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
The thymus is a unique primary lymphoid organ that supports the production of self-tolerant T-cells essential for adaptive immunity. Intrathymic microenvironments are microanatomically compartmentalised, forming defined cortical, and medullary regions each differentially supporting critical aspects of thymus-dependent T-cell maturation. Importantly, the specific functional properties of thymic cortical and medullary compartments are defined by highly specialised thymic epithelial cells (TEC). For example, in the medulla heterogenous medullary TEC (mTEC) contribute to the enforcement of central tolerance by supporting deletion of autoreactive T-cell clones, thereby counterbalancing the potential for random T-cell receptor generation to contribute to autoimmune disease. Recent advances have further shed light on the pathways and mechanisms that control heterogeneous mTEC development and how differential mTEC functionality contributes to control self-tolerant T-cell development. Here we discuss recent findings in relation to mTEC development and highlight examples of how mTEC diversity contribute to thymus medulla function.
Collapse
Affiliation(s)
- Kieran D. James
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Emilie J. Cosway
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Sonia M. Parnell
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Andrea J. White
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | | | - Graham Anderson
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| |
Collapse
|
10
|
Fujimori S, Ohigashi I. The role of thymic epithelium in thymus development and age-related thymic involution. THE JOURNAL OF MEDICAL INVESTIGATION 2024; 71:29-39. [PMID: 38735722 DOI: 10.2152/jmi.71.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The establishment of an adaptive immune system is critical for protecting our bodies from neoplastic cancers and invading pathogens such as viruses and bacteria. As a primary lymphoid organ, the thymus generates lymphoid T cells that play a major role in the adaptive immune system. T cell generation in the thymus is controlled by interactions between thymocytes and other thymic cells, primarily thymic epithelial cells. Thus, the normal development and function of thymic epithelial cells are important for the generation of immunocompetent and self-tolerant T cells. On the other hand, the degeneration of the thymic epithelium due to thymic aging causes thymic involution, which is associated with the decline of adaptive immune function. Herein we summarize basic and current knowledge of the development and function of thymic epithelial cells and the mechanism of thymic involution. J. Med. Invest. 71 : 29-39, February, 2024.
Collapse
Affiliation(s)
- Sayumi Fujimori
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
11
|
Matsumoto M, Yoshida H, Tsuneyama K, Oya T, Matsumoto M. Revisiting Aire and tissue-restricted antigens at single-cell resolution. Front Immunol 2023; 14:1176450. [PMID: 37207224 PMCID: PMC10191227 DOI: 10.3389/fimmu.2023.1176450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
The thymus is a highly specialized organ that plays an indispensable role in the establishment of self-tolerance, a process characterized by the "education" of developing T-cells. To provide competent T-cells tolerant to self-antigens, medullary thymic epithelial cells (mTECs) orchestrate negative selection by ectopically expressing a wide range of genes, including various tissue-restricted antigens (TRAs). Notably, recent advancements in the high-throughput single-cell analysis have revealed remarkable heterogeneity in mTECs, giving us important clues for dissecting the mechanisms underlying TRA expression. We overview how recent single-cell studies have furthered our understanding of mTECs, with a focus on the role of Aire in inducing mTEC heterogeneity to encompass TRAs.
Collapse
Affiliation(s)
- Minoru Matsumoto
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
- *Correspondence: Minoru Matsumoto,
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| |
Collapse
|
12
|
Michelson DA, Mathis D. Thymic mimetic cells: tolerogenic masqueraders. Trends Immunol 2022; 43:782-791. [PMID: 36008259 PMCID: PMC9509455 DOI: 10.1016/j.it.2022.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Medullary thymic epithelial cells (mTECs) clonally delete or divert autoreactive T cells by ectopically expressing a diverse array of peripheral-tissue antigens (PTAs) within the thymus. Although thymic stromal cells with histological features of extra-thymic cell types, like myocytes or neurons, have been observed by light microscopy since the mid-1800s, most modern work on PTA expression has focused on the transcription factor Aire. Here, we highlight recent work that has refocused attention on such 'misplaced' thymic cells, referred to collectively as thymic mimetic cells. We review the molecular underpinnings of mimetic cells and their roles in establishing T cell tolerance, and we propose that mimetic cells play important roles in autoimmunity. Finally, we suggest future directions for this emerging area.
Collapse
Affiliation(s)
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Michelson DA, Hase K, Kaisho T, Benoist C, Mathis D. Thymic epithelial cells co-opt lineage-defining transcription factors to eliminate autoreactive T cells. Cell 2022; 185:2542-2558.e18. [PMID: 35714609 PMCID: PMC9469465 DOI: 10.1016/j.cell.2022.05.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022]
Abstract
Medullary thymic epithelial cells (mTECs) ectopically express thousands of peripheral-tissue antigens (PTAs), which drive deletion or phenotypic diversion of self-reactive immature T cells during thymic differentiation. Failure of PTA expression causes multiorgan autoimmunity. By assaying chromatin accessibility in individual mTECs, we uncovered signatures of lineage-defining transcription factors (TFs) for skin, lung, liver, and intestinal cells-including Grhl, FoxA, FoxJ1, Hnf4, Sox8, and SpiB-in distinct mTEC subtypes. Transcriptomic and histologic analyses showed that these subtypes, which we collectively term mimetic cells, expressed PTAs in a biologically logical fashion, mirroring extra-thymic cell types while maintaining mTEC identity. Lineage-defining TFs bound to mimetic-cell open chromatin regions and were required for mimetic cell accumulation, whereas the tolerogenic factor Aire was partially and variably required. Expression of a model antigen in mimetic cells sufficed to induce cognate T cell tolerance. Thus, mTECs co-opt lineage-defining TFs to drive mimetic cell accumulation, PTA expression, and self-tolerance.
Collapse
Affiliation(s)
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Rode I, Rodewald HR. Transcription factor hijacking in the name of tolerance. Cell 2022; 185:2398-2400. [DOI: 10.1016/j.cell.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 10/17/2022]
|
15
|
Mino N, Muro R, Ota A, Nitta S, Lefebvre V, Nitta T, Fujio K, Takayanagi H. The transcription factor Sox4 is required for thymic tuft cell development. Int Immunol 2022; 34:45-52. [PMID: 34687536 PMCID: PMC11494500 DOI: 10.1093/intimm/dxab098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/22/2021] [Indexed: 01/15/2023] Open
Abstract
Medullary thymic epithelial cells (mTECs) help shape the thymic microenvironment for T-cell development by expressing a variety of peripheral tissue-restricted antigens (TRAs). The self-tolerance of T cells is established by negative selection of autoreactive T cells that bind to TRAs. To increase the diversity of TRAs, a fraction of mTECs terminally differentiates into distinct subsets resembling atypical types of epithelial cells in specific peripheral tissues. As such, thymic tuft cells that express peripheral tuft cell genes have recently emerged. Here, we show that the transcription factor SRY-box transcription factor 4 (Sox4) is highly expressed in mTECs and is essential for the development of thymic tuft cells. Mice lacking Sox4 specifically in TECs had a significantly reduced number of thymic tuft cells with no effect on the differentiation of other mTEC subsets, including autoimmune regulator (Aire)+ and Ccl21a+ mTECs. Furthermore, Sox4 expression was diminished in mice deficient in TEC-specific lymphotoxin β receptor (LTβR), indicating a role for the LTβR-Sox4 axis in the differentiation of thymic tuft cells. Given that Sox4 promotes differentiation of peripheral tuft cells, our findings suggest that mTECs employ the same transcriptional program as peripheral epithelial cells. This mechanism may explain how mTECs diversify peripheral antigen expression to project an immunological self within the thymic medulla.
Collapse
Affiliation(s)
- Nanami Mino
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Allergy and Rheumatology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayami Ota
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sachiko Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Veronique Lefebvre
- Leonard and Madlyn Abramson Pediatric Research Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Nitta T, Takayanagi H. Non-Epithelial Thymic Stromal Cells: Unsung Heroes in Thymus Organogenesis and T Cell Development. Front Immunol 2021; 11:620894. [PMID: 33519827 PMCID: PMC7840694 DOI: 10.3389/fimmu.2020.620894] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
The stromal microenvironment in the thymus is essential for generating a functional T cell repertoire. Thymic epithelial cells (TECs) are numerically and phenotypically one of the most prominent stromal cell types in the thymus, and have been recognized as one of most unusual cell types in the body by virtue of their unique functions in the course of the positive and negative selection of developing T cells. In addition to TECs, there are other stromal cell types of mesenchymal origin, such as fibroblasts and endothelial cells. These mesenchymal stromal cells are not only components of the parenchymal and vascular architecture, but also have a pivotal role in controlling TEC development, although their functions have been less extensively explored than TECs. Here, we review both the historical studies on and recent advances in our understanding of the contribution of such non-TEC stromal cells to thymic organogenesis and T cell development. In particular, we highlight the recently discovered functional effect of thymic fibroblasts on T cell repertoire selection.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
17
|
Kondo K, Ohigashi I, Takahama Y. Thymus machinery for T-cell selection. Int Immunol 2020; 31:119-125. [PMID: 30476234 DOI: 10.1093/intimm/dxy081] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
An immunocompetent and self-tolerant pool of naive T cells is formed in the thymus through the process of repertoire selection. T cells that are potentially capable of responding to foreign antigens are positively selected in the thymic cortex and are further selected in the thymic medulla to help prevent self-reactivity. The affinity between T-cell antigen receptors expressed by newly generated T cells and self-peptide-major histocompatibility complexes displayed in the thymic microenvironments plays a key role in determining the fate of developing T cells during thymic selection. Recent advances in our knowledge of the biology of thymic epithelial cells have revealed unique machinery that contributes to positive and negative selection in the thymus. In this article, we summarize recent findings on thymic T-cell selection, focusing on the machinery unique to thymic epithelial cells.
Collapse
Affiliation(s)
- Kenta Kondo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| |
Collapse
|
18
|
Abstract
The generation of a functional T cell repertoire in the thymus is mainly orchestrated by thymic epithelial cells (TECs), which provide developing T cells with cues for their navigation, proliferation, differentiation and survival. The TEC compartment has been segregated historically into two major populations of medullary TECs and cortical TECs, which differ in their anatomical localization, molecular characteristics and functional roles. However, recent studies have shown that TECs are highly heterogeneous and comprise multiple subpopulations with distinct molecular and functional characteristics, including tuft cell-like or corneocyte-like phenotypes. Here, we review the most recent advances in our understanding of TEC heterogeneity from a molecular, functional and developmental perspective. In particular, we highlight the key insights that were recently provided by single-cell genomic technologies and in vivo fate mapping and discuss them in the context of previously published data.
Collapse
|
19
|
Abstract
About two decades ago, cloning of the autoimmune regulator (AIRE) gene materialized one of the most important actors on the scene of self-tolerance. Thymic transcription of genes encoding tissue-specific antigens (ts-ags) is activated by AIRE protein and embodies the essence of thymic self-representation. Pathogenic AIRE variants cause the autoimmune polyglandular syndrome type 1, which is a rare and complex disease that is gaining attention in research on autoimmunity. The animal models of disease, although not identically reproducing the human picture, supply fundamental information on mechanisms and extent of AIRE action: thanks to its multidomain structure, AIRE localizes to chromatin enclosing the target genes, binds to histones, and offers an anchorage to multimolecular complexes involved in initiation and post-initiation events of gene transcription. In addition, AIRE enhances mRNA diversity by favoring alternative mRNA splicing. Once synthesized, ts-ags are presented to, and cause deletion of the self-reactive thymocyte clones. However, AIRE function is not restricted to the activation of gene transcription. AIRE would control presentation and transfer of self-antigens for thymic cellular interplay: such mechanism is aimed at increasing the likelihood of engagement of the thymocytes that carry the corresponding T-cell receptors. Another fundamental role of AIRE in promoting self-tolerance is related to the development of thymocyte anergy, as thymic self-representation shapes at the same time the repertoire of regulatory T cells. Finally, AIRE seems to replicate its action in the secondary lymphoid organs, albeit the cell lineage detaining such property has not been fully characterized. Delineation of AIRE functions adds interesting data to the knowledge of the mechanisms of self-tolerance and introduces exciting perspectives of therapeutic interventions against the related diseases.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics, Neonatal Intensive Care, Vito Fazzi Regional Hospital, Lecce, Italy
| |
Collapse
|
20
|
Abstract
Mutations in the transcriptional regulator, Aire, cause APECED, a polyglandular autoimmune disease with monogenic transmission. Animal models of APECED have revealed that Aire plays an important role in T cell tolerance induction in the thymus, mainly by promoting ectopic expression of a large repertoire of transcripts encoding proteins normally restricted to differentiated organs residing in the periphery. The absence of Aire results in impaired clonal deletion of self-reactive thymocytes, which escape into the periphery and attack a variety of organs. In addition, Aire is a proapoptotic factor, expressed at the final maturation stage of thymic medullary epithelial cells, a function that may promote cross-presentation of the antigens encoded by Aire-induced transcripts in these cells. Transcriptional regulation by Aire is unusual in being very broad, context-dependent, probabilistic, and noisy. Structure/function analyses and identification of its interaction partners suggest that Aire may impact transcription at several levels, including nucleosome displacement during elongation and transcript splicing or other aspects of maturation.
Collapse
Affiliation(s)
- Diane Mathis
- Section on Immunology and Immunogenetics, Joslin Diabetes Center; Department of Medicine, Brigham and Women's Hospital; Harvard Medical School; and the Harvard Stem Cell Institute, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
21
|
Abstract
Thymus is the site of generation and selection of T-lymphocytes. It also contains phenotypically and functionally distinct dendritic cell (DC) populations, including conventional DC (cDC) and plasmacytoid DC (pDC). Thymic cDC are heterogeneous and contain two subsets: a major subset derived from the precursors within thymus, and a minor subset presumably of extrathymic origin. Increasing evidence suggest that thymic cDC can cross-present self-antigens to developing thymocytes and play an important role in thymocyte negative selection and central tolerance induction. Thymic pDC can produce type-I interferon upon appropriate activation. However, their role in a steady state thymus is currently unclear.
Collapse
Affiliation(s)
- Li Wu
- The Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, Vic. 3050, Australia.
| | | |
Collapse
|
22
|
Ribatti D, Crivellato E, Vacca A. Miller's seminal studies on the role of thymus in immunity. Clin Exp Immunol 2006; 144:371-5. [PMID: 16734604 PMCID: PMC1941985 DOI: 10.1111/j.1365-2249.2006.03060.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2006] [Indexed: 12/01/2022] Open
Abstract
The thymus is one of the two primary lymphoid organs. It is responsible for the provision of T lymphocytes to the entire body, and provides a unique microenvironment in which T cell precursors (thymocytes) undergo development, differentiation and clonal expansion. This review article summarizes the seminal work of the Australian scientist Francis Albert Pierre Miller concerning the description for the first time of the crucial role of the thymus for normal development of the immune system.
Collapse
Affiliation(s)
- D Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| | | | | |
Collapse
|
23
|
Khan MA, Ma C, Knodler LA, Valdez Y, Rosenberger CM, Deng W, Finlay BB, Vallance BA. Toll-like receptor 4 contributes to colitis development but not to host defense during Citrobacter rodentium infection in mice. Infect Immun 2006; 74:2522-36. [PMID: 16622187 PMCID: PMC1459750 DOI: 10.1128/iai.74.5.2522-2536.2006] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are noninvasive bacterial pathogens that infect their hosts' intestinal epithelium, causing severe diarrheal disease. These infections also cause intestinal inflammation, although the mechanisms underlying the inflammatory response, as well as its potential role in host defense, are unclear. Since these bacteria are gram-negative, Toll-like receptor 4 (TLR4), the innate receptor for bacterial lipopolysaccharide may contribute to the host response; however, the role of TLR4 in the gastrointestinal tract is poorly understood, and its impact has yet to be tested against this family of enteric bacterial pathogens. Since EPEC and EHEC are human specific, we infected mice with Citrobacter rodentium, a mouse-adapted attaching and effacing (A/E) bacterium that infects colonic epithelial cells, causing colitis and epithelial hyperplasia, using a similar array of virulence proteins as EPEC and EHEC. We demonstrated that C. rodentium activates TLR4 and rapidly induced NF-kappaB nuclear translocation in host cells in a partially TLR4-dependent manner. Infection of TLR4-deficient mice revealed that TLR4-dependent responses mediate much of the inflammation and tissue pathology seen during infection, including the induction of the chemokines MIP-2 and MCP-1, as well as the recruitment of macrophages and neutrophils into the infected intestine. Surprisingly, spread of C. rodentium through the colon was delayed in TLR4-deficient mice, whereas the duration of the infection was unaffected, indicating that TLR4-mediated responses against this A/E pathogen are not host protective and are ultimately maladaptive to the host, contributing to both the morbidity and the pathology seen during infection.
Collapse
Affiliation(s)
- Mohammed A Khan
- Division of Gastroenterology, BC's Children's Hospital, Vancouver, British Columbia V6H 3V4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Dooley J, Erickson M, Farr AG. An Organized Medullary Epithelial Structure in the Normal Thymus Expresses Molecules of Respiratory Epithelium and Resembles the Epithelial Thymic Rudiment of Nude Mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:4331-7. [PMID: 16177073 DOI: 10.4049/jimmunol.175.7.4331] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The expression of tissue-specific Ags (TSA) within the thymic environment has emerged as an important contribution to the establishment of self-tolerance. The mechanistic basis for this property is poorly understood. One model has proposed stochastic derepression of gene expression by mature medullary epithelial cells, whereas another model has suggested that this property of thymic epithelial cells reflects transcriptional activity during their differentiation. Most of the analyses of thymic TSA expression have been done with populations of dissociated thymic epithelial cells; therefore, there is little information regarding the spatial pattern of TSA expression within the thymus. We have evaluated a subset of thymic epithelial cells in the murine thymus that display several unique features. First, within the normal thymus, they form cysts that express several TSA of respiratory epithelium and exhibit some morphological features consistent with respiratory epithelium. These cells also display a phenotypic profile that has been proposed for immature thymic epithelium. The cystic epithelia in the normal thymus and in the nude thymic rudiment are phenotypically very similar, suggesting that they may have a similar developmental program. The coordinated expression of respiratory TSA by an organized subset of thymic epithelial cells and the phenotypic resemblance of these cells to progenitor cells seem consistent with a developmental basis for TSA expression by thymic epithelial cells. Finally, epitopes that define thymic epithelial heterogeneity are reciprocally expressed by respiratory epithelium, which raises interesting questions regarding the developmental relationship of different endodermal derivatives.
Collapse
Affiliation(s)
- James Dooley
- Department of Biological Structure, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
25
|
Crivellato E, Nico B, Battistig M, Beltrami CA, Ribatti D. The thymus is a site of mast cell development in chicken embryos. ACTA ACUST UNITED AC 2004; 209:243-9. [PMID: 15712013 DOI: 10.1007/s00429-004-0439-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2004] [Indexed: 10/26/2022]
Abstract
Thymic mast cells were studied by light and transmission electron microscopy in chicken embryos during organogenesis. Mast cells made their first appearance at day 15. At days 16 and 17, there was a burst of mast cell development with a peak of 278 +/- 54 cells/mm(2) at day 16. Then, mast cell density decreased until hatching. During the whole embryonic period, about 80% of mast cells localized to the thymic medulla. In the cortex, they were less numerous, and some rare mast cells could be identified in the capsule and septa. Thymic mast cells could be recognized in association with hematopoietic foci, but frequently they grew independently from areas of hematopoiesis and appeared as single cells interspersed among thymocytes, thymic epithelial cells, and interdigitating cells. They were often recognized in close relationship with the scanty and delicate extracellular matrix of the developing gland. Viewed by electron microscopy, mast cells were relatively small cells, with a few secretory granules. Exocytosis was never seen, but, notably, granules emptied in a piecemeal degranulation fashion. This study demonstrates that the chicken thymus is a site of mast cell development during embryogenesis. The high mast cell density we found suggests a possible role for these cells during thymus organogenesis.
Collapse
Affiliation(s)
- E Crivellato
- Department of Medical and Morphological Researches, Anatomy Section, University of Udine Medical School, Piazzale Kolbe no. 3, 33100 Udine, Italy.
| | | | | | | | | |
Collapse
|
26
|
Abstract
The thymus has been viewed as the main site of tolerance induction to self-antigens that are specifically expressed by thymic cells and abundant blood-borne self-antigens, whereas tolerance to tissue-restricted self-antigens has been ascribed to extrathymic (peripheral) tolerance mechanisms. However, the phenomenon of promiscuous expression of tissue-restricted self-antigens by medullary thymic epithelial cells has led to a reassessment of the role of central T-cell tolerance in preventing organ-specific autoimmunity. Recent evidence indicates that both genetic and epigenetic mechanisms account for this unorthodox mode of gene expression. As we discuss here, these new insights have implications for our understanding of self-tolerance in humans, its breakdown in autoimmune diseases and the significance of this tolerance mode in vertebrate evolution.
Collapse
Affiliation(s)
- Bruno Kyewski
- Tumour Immunology Programme, Division of Developmental Immunology, German Cancer Research Centre, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| | | |
Collapse
|
27
|
Abstract
The gastrointestinal tract is the central organ for uptake of fluids and nutrients, and at the same time it forms the main protective barrier between the sterile environment of the body and the outside world. In mammals, the intestine has further evolved to harbor a vast load of commensal bacteria that have important functions for the host. Discrimination by the host defense system of nonself from self can prevent invasion of pathogens, but equivalent responses to dietary or colonizing bacteria can lead to devastating consequences for the organism. This dilemma imposed by the gut environment has probably contributed significantly to the evolutionary drive that has led to sophisticated mechanisms and diversification of the immune system to allow for protection while maintaining the integrity of the mucosal barrier. The immense expansion and specialization of the immune system is particularly mirrored in the phylogeny, ontogeny, organization, and regulation of the adaptive intraepithelial lymphocytes, or IEL, which are key players in the unique intestinal defense mechanisms that have evolved in mammals.
Collapse
Affiliation(s)
- Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.
| |
Collapse
|
28
|
Crivellato E, Vacca A, Ribatti D. Setting the stage: an anatomist's view of the immune system. Trends Immunol 2004; 25:210-7. [PMID: 15039048 DOI: 10.1016/j.it.2004.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Enrico Crivellato
- Department of Medical and Morphological Researches, Anatomy Section, University of Udine Medical School, Piazalle Kolbe n. 3, Udine, Italy.
| | | | | |
Collapse
|
29
|
Abstract
Tolerance of T lymphocytes to self-antigens is mainly achieved at the level of the primary lymphoid organ, the thymus, and probably to a lesser extent in the secondary lymphoid tissues. Whether self-reactive lymphocytes ignore their target autoantigen, or are tolerized by the various mechanisms discussed, depends on the circumstances.
Collapse
Affiliation(s)
- Jacques Miller
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| |
Collapse
|
30
|
Affiliation(s)
- C Clare Blackburn
- Institute for Stem Cell Research, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JQ, UK.
| | | |
Collapse
|
31
|
Abstract
There has been tremendous progress in our understanding of the mechanisms mediating allograft tolerance, which have been revealed to be far more complex and regulated than hitherto suspected. New results have enriched our understanding of the relative contributions of the direct and indirect pathways to immunity and tolerance over time. The role of central tolerance has been expanded with the surprising discovery of "ectopic" or "promiscuous" antigens expressed by medullary thymic epithelial cells, and the function of the thymus in generating naturally occurring CD4+ CD25+ regulatory T cells. In the periphery, it is increasingly appreciated that tolerance is a highly active process, with tolerogenic dendritic cells and regulatory T cells being the major players. However, the challenge of understanding the complex interactions regulating the dynamic balance between immunity and tolerance are formidable, and new tools from the more formal disciplines of nonlinear dynamics and systems engineering may help provide insight. Although many hurdles remain, the progress in elucidating the basic mechanisms of tolerance is rapidly being translated into clinical trials and provides grounds for optimism that clinical tolerance will eventually become a reality.
Collapse
Affiliation(s)
- C Chan
- Department of Immunology, Division of Medicine, Imperial College London, London, UK
| | | | | |
Collapse
|
32
|
Abstract
Aging involves morphological and functional alterations within the microenvironment of the thymus where heterogenous populations of thymic epithelial cells (TEC) play the main roles. The studies performed to date on thymic involution signalize a disturbed interaction between individual thymic compartments that disrupt thymocyte-TEC interactions and, as a sequele, disturb differentiation of both TEC and thymocytes. The process of aging affects the various subsets of TEC at different periods of life. Changes in different subsets of TEC are documented on the basis of their phenotypical characteristics, involving morphological analysis and immunocytochemistry. The character and kinetics of changes in TEC are typical for individual subsets and probably sex-dependent. In the course of life, the involutionary changes, expressed by disorganised thymic structure and function, are accompanied by changes in medullary TEC, manifested by alterations in the differentiation process of the cells. In parallel, at the same stage of individual life, the aging process induces increased proliferative and secretory activity of subseptal TEC, which seem to functionally replace medullary TEC. Structural and phenotypic modifications of TEC are locally controlled by complex sets of different factors and seem to represent a morphological adaptation of the gland to the process of aging. Microsc. Res. Tech. 62:488-500, 2003.
Collapse
Affiliation(s)
- Renata Brelińska
- Department of Histology and Embryology, University of Medical Sciences, Pl-60-781 Poznań, Poland.
| |
Collapse
|
33
|
Petrovic-Djergovic DM, Rakin AK, Zivkovic IP, Micic MV. Changes in the thymus of peripubertal rats induced by centrally applied somatostatin-28. ACTA ACUST UNITED AC 2003; 34:573-82. [PMID: 14626348 DOI: 10.1023/a:1026047600493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to investigate the effects of centrally applied somatostatin-28 on morphometric characteristics of the thymus, the thymocyte subpopulations, as well as, on apoptosis and phases of cell cycle in thymocytes. For this purpose, peripubertal male rats were cannulated intracerebroventriculary and treated with repeated, nanomolar concentrations of somatostatin-28 (experimental group) or saline (control group). Animals were sacrificed and their thymuses were used for the analysis of thymocyte subpopulations, cell cycle and apoptosis by flow cytometry and for the evaluation of morphometric parameters by stereological analysis. Our results showed that somatostatin-28 caused decrease of the thymic mass and volume, as well as total thymocytes number. Stereological analysis revealed volume decrease of thymic cortex and medulla accompanied with cellularity decrease. Somatostatin in the deeper cortex decreased the number of thymocytes, per volume unit, while in outer cortex raised their number. A significant increase in the percentage of double-negative and both single-positive thymocyte subpopulations, in parallel with a diminished percentage of double-positive cells was found. The cellularity of double-positive and single-positive thymocyte subpopulations was decreased. Somatostatin-28 treatment augmented the percentage of apoptotic cells, while the percentage of the cells represented in phases of cell cycle was reduced. These results suggest that somatostatin-28 induce thymus hypotrophy as result of decreasing cortex and medulla volume and cellularity. Changes in the percentage and cellularity of thymocyte subpopulations and numerical density of thymocytes in outer and deeper cortex, indicate that somatostatin-28 evoked disturbance in transition of double-negative to double-positive thymocytes.
Collapse
Affiliation(s)
- Danica M Petrovic-Djergovic
- Immunology Research Center Branislav Jankovic, Institute of Immunology and Virology Torlak, Belgrade, Yugoslavia
| | | | | | | |
Collapse
|
34
|
McPherson SW, Yang J, Chan CC, Dou C, Gregerson DS. Resting CD8 T cells recognize beta-galactosidase expressed in the immune-privileged retina and mediate autoimmune disease when activated. Immunology 2003; 110:386-96. [PMID: 14632667 PMCID: PMC1783053 DOI: 10.1046/j.1365-2567.2003.01750.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 08/15/2003] [Accepted: 09/02/2003] [Indexed: 11/20/2022] Open
Abstract
Although the expression of class II major histocompatibility complex (MHC) in retina is extremely low, it is an established fact that activated CD4 T cells, specific for retinal antigens (Ags), mediate experimental autoimmune uveoretinitis (EAU). Conversely, CD8 T cells have not been shown to recognize Ag in the retina. This study investigated whether retinal-specific Ags are detected by class I MHC-restricted CD8 T cells. Using a CD8 T-cell clone (beta3) specific for an immunodominant epitope of beta-galactosidase (beta-gal), local Ag recognition was shown by transfer of activated beta3 cells into beta-gal transgenic (Tg) mice expressing beta-gal in the retina (hi-arr-beta-gal mice), or in the brain and eye (GFAP-beta-gal mice). Beta-gal-positive photoreceptor cells were damaged in the retina of hi-arr-beta-gal mice, and anterior segment disease was found in the eyes of GFAP-beta-gal mice. Ag recognition by resting CD8 T cells was also evaluated. Recovery of 5(6)-carboxyfluorescein diacetate N-succinimidyl ester (CFSE)-labelled beta3 cells from hi-arr-beta-gal mice was slightly decreased compared to recovery from B10.A mice, while recovery from GFAP-beta-gal mice was transiently increased. Conversely, recovery of CFSE- cells increased in hi-arr-beta-gal mice, consistent with an Ag-dependent response. The CFSE content of the CFSE+ population was unchanged relative to beta3 cells recovered from controls. Intracellular cytokine responses of beta3 cells recovered from hi-arr-beta-gal and GFAP-beta-gal mice correlated with the number of cells recovered, regardless of CFSE content. Even though their production of interferon-gamma and tumour necrosis factor-alpha was affected little by transfer into hi-arr-beta-gal recipients, the ability of beta3 cells to mediate delayed-type hypersensitivity was inhibited in hi-arr-beta-gal mice. These results show that resting CD8 T cells are affected by the presence of Ag that originates in retina and, when activated prior to transfer, mediate pathogenic autoimmunity against retinal and other ocular targets.
Collapse
Affiliation(s)
- Scott W McPherson
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
The thymus is a complex epithelial organ in which thymocyte development is dependent upon the sequential contribution of morphologically and phenotypically distinct stromal cell compartments. It is these microenvironments that provide the unique combination of cellular interactions, cytokines, and chemokines to induce thymocyte precursors to undergo a differentiation program that leads to the generation of functional T cells. Despite the indispensable role of thymic epithelium in the generation of T cells, the mediators of this process and the differentiation pathway undertaken by the primordial thymic epithelial cells are not well defined. There is a lack of lineage-specific cell-surface-associated markers, which are needed to characterize putative thymic epithelial stem cell populations. This review explores the role of thymic stromal cells in T-cell development and thymic organogenesis, as well as the molecular signals that contribute to the growth and expansion of primordial thymic epithelial cells. It highlights recent advances in these areas, which have allowed for a lineage relationship amongst thymic epithelial cell subsets to be proposed. While many fundamental questions remain to be addressed, collectively these works have broadened our understanding of how the thymic epithelium becomes specialized in the ability to support thymocyte differentiation. They should also facilitate the development of novel, rationally based therapeutic strategies for the regeneration and manipulation of thymic function in the treatment of many clinical conditions in which defective T cells have an important etiological role.
Collapse
Affiliation(s)
- Jason Gill
- Department of Pathology and Immunology, Monash University, Faculty of Medicine, Nursing and Health Sciences, Alfred Medical Research and Education Precinct, Prahran, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Vanbervliet B, Bendriss-Vermare N, Massacrier C, Homey B, de Bouteiller O, Brière F, Trinchieri G, Caux C. The inducible CXCR3 ligands control plasmacytoid dendritic cell responsiveness to the constitutive chemokine stromal cell-derived factor 1 (SDF-1)/CXCL12. J Exp Med 2003; 198:823-30. [PMID: 12953097 PMCID: PMC2194187 DOI: 10.1084/jem.20020437] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The recruitment of selected dendritic cell (DC) subtypes conditions the class of the immune response. Here we show that the migration of human plasmacytoid DCs (pDCs), the blood natural interferon alpha-producing cells, is induced upon the collective action of inducible and constitutive chemokines. Despite expression of very high levels of CXCR3, pDCs do not respond efficiently to CXCR3 ligands. However, they migrate in response to the constitutive chemokine stromal cell-derived factor 1 (SDF-1)/CXCL12 and CXCR3 ligands synergize with SDF-1/CXCL12 to induce pDC migration. This synergy reflects a sensitizing effect of CXCR3 ligands, which, independently of a gradient and chemoattraction, decrease by 20-50-fold the threshold of sensitivity to SDF-1/CXCL12. Thus, the ability of the constitutive chemokine SDF-1/CXCL12 to induce pDC recruitment might be controlled by CXCR3 ligands released during inflammation such as in virus infection. SDF-1/CXCL12 and the CXCR3 ligands Mig/CXCL9 and ITAC/CXCL1 display adjacent expression both in secondary lymphoid organs and in inflamed epithelium from virus-induced pathologic lesions. Because pDCs express both the lymph node homing molecule l-selectin and the cutaneous homing molecule cutaneous lymphocyte antigen, the cooperation between inducible CXCR3 ligands and constitutive SDF-1/CXCL12 may regulate recruitment of pDCs either in lymph nodes or at peripheral sites of inflammation.
Collapse
Affiliation(s)
- Béatrice Vanbervliet
- Laboratory for Immunological Research, Schering-Plough, 27 chemin des Peupliers, BP 11, 69571 Dardilly, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Vallance BA, Deng W, Jacobson K, Finlay BB. Host susceptibility to the attaching and effacing bacterial pathogen Citrobacter rodentium. Infect Immun 2003; 71:3443-53. [PMID: 12761129 PMCID: PMC155702 DOI: 10.1128/iai.71.6.3443-3453.2003] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many studies have shown that genetic susceptibility plays a key role in determining whether bacterial pathogens successfully infect and cause disease in potential hosts. Surprisingly, whether host genetics influence the pathogenesis of attaching and effacing (A/E) bacteria such as enteropathogenic and enterohemorrhagic Escherichia coli has not been examined. To address this issue, we infected various mouse strains with Citrobacter rodentium, a member of the A/E pathogen family. Of the strains tested, the lipopolysaccharide (LPS) nonresponder C3H/HeJ mouse strain experienced more rapid and extensive bacterial colonization than did other strains. Moreover, the high bacterial load in these mice was associated with accelerated crypt hyperplasia, mucosal ulceration, and bleeding, together with very high mortality rates. Interestingly, the basis for the increased susceptibility was not due to LPS hyporesponsiveness, as the genetically related but LPS-responsive C3H/HeOuJ and C3H/HeN mouse strains were also susceptible to infection. Analysis of the intestinal pathology in these susceptible strains revealed significant crypt epithelial cell apoptosis (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end label staining) as well as bacterial translocation to the mesenteric lymph nodes. Further studies with infection of SCID (T- and B-lymphocyte-deficient) C3H/HeJ mice demonstrated that loss of lymphocytes had no effect on bacterial numbers but did reduce crypt cell apoptosis and delayed mortality. These studies thus identify the adaptive immune system, crypt cell apoptosis, and bacterial translocation but not LPS responsiveness as contributing to the tissue pathology and mortality seen during C. rodentium infection of highly susceptible mouse strains. Determining the basis for these strains' susceptibility to intestinal colonization by an A/E pathogen will be the focus of future studies.
Collapse
Affiliation(s)
- Bruce A Vallance
- Biotechnology Laboratory, University of British Columbia, Vancouver, Canada V6T 1Z3.
| | | | | | | |
Collapse
|
38
|
Geenen V, Brilot F. Role of the thymus in the development of tolerance and autoimmunity towards the neuroendocrine system. Ann N Y Acad Sci 2003; 992:186-95. [PMID: 12794058 DOI: 10.1111/j.1749-6632.2003.tb03149.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The thymus is the unique lymphoid organ inside which a confrontation occurs throughout life between neuroendocrine self-antigens and a recently evolved system with original recombination machinery driving random generation of immune response diversity. Through transcription of neuroendocrine genes in the thymus stromal network and expression of cognate receptors by immature T cells, the neuroendocrine system regulates early T cell differentiation. In addition and more specifically, intrathymic presentation of neuroendocrine self-antigens by, or in close association with, major histocompatibility complex (MHC) proteins is responsible for the establishment of central immune self-tolerance of neuroendocrine principles. All members of the insulin gene (INS) family are expressed in the thymus stroma according to a precise hierarchy and cell topography: IGF2 (thymic epithelial cells) > IGF1 (thymic macrophages) >> INS (thymic medullary epithelial cells and/or dendritic cells). Given this hierarchical pattern in gene expression, the protein IGF-2 is more tolerated than INS. Igf2 transcription is defective in the thymus of bio-breeding (BB) rat, one animal model of type 1 diabetes (T1DM). This thymus-specific defect in Igf2 expression may explain both the absence of central tolerance to INS-secreting beta cells and the lymphopenia (including lack of regulatory RT6(+) T cells) in diabetes-prone BB rats. INS B:9-23 and the homologous sequence of IGF-2 compete for binding to DQ8, an MHC class II allele conferring major susceptibility to T1DM. In young DQ8(+) T1DM patients, INS B:9-23 presentation by DQ8 elicits a dominant IFN-gamma secretion by isolated PBMCs, whereas presentation of the IGF-2 self-antigen promotes a dominant regulatory interleukin-10 secretion. These data demonstrate that opposite immune responses are driven by MHC presentation of a self-antigen (here, IGF-2) and an autoantigen (INS, as "altered" self). The important tolerogenic properties of thymic self-antigens deserve now to be exploited for prevention and/or cure of devastating autoimmune diseases such as T1DM.
Collapse
Affiliation(s)
- Vincent Geenen
- Liege University Center of Immunology, Institute of Pathology CHU-B23, B-4000 Liege-Sart Tilman, Belgium
| | | |
Collapse
|
39
|
Whalen BJ, Marounek J, Mordes JP, Rossini AA, Greiner DL. Type 1 cytokines polarize thymocytes during T cell development in adult thymus organ cultures. J Autoimmun 2003; 20:27-42. [PMID: 12604310 PMCID: PMC7125593 DOI: 10.1016/s0896-8411(02)00091-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peripheral T cells can be polarized towards type 1 or type 2 cytokine immune responses during TCR engagement. Because T cell selection by peptide plus self-MHC in the thymus requires TCR engagement, we hypothesized that type 1 cytokines may polarize developing T cells. We cultured thymi from BBDR rats in adult thymus organ cultures (ATOC) under type 1 cytokine conditions in the absence of exogenous antigen. Type 1 cytokine-conditioned ATOC generated cells that spontaneously secreted high levels of IFNgamma, but not IL-4. A second exposure to type 1 cytokines further increased IFNgamma secretion by these cells, most of which were blasts that expressed the activation markers CD25, CD71, CD86, and CD134. Studies using blocking antibodies and pharmacological inhibitors suggested that both IL-18 and cognate TCR-MHC/ligand interactions were important for activation. Blocking anti-MHC class I plus anti-MHC class II antibodies, neutralizing anti-IL-18 antibody, and the p38 MAP-kinase inhibitor SB203580 each reduced IFNgamma production by approximately 75-80%. Cyclosporin A, which prevents TCR signaling, inhibited IFNgamma production by approximately 50%. These data demonstrate that exposure to type 1 cytokines during intrathymic development can polarize differentiating T cells, and suggest a mechanism by which intrathymic exposure to type 1 cytokines may modulate T cell development.
Collapse
Affiliation(s)
- Barbara J Whalen
- Department of Medicine, University of Massachusetts Medical School, Biotech II, Suite 218, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
40
|
Farr AG, Dooley JL, Erickson M. Organization of thymic medullary epithelial heterogeneity: implications for mechanisms of epithelial differentiation. Immunol Rev 2002; 189:20-7. [PMID: 12445262 DOI: 10.1034/j.1600-065x.2002.18903.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There are accumulating data to show that thymic epithelium expresses a remarkable array of molecules previously considered to be tissue-specific antigens, such as parathyroid hormone, thyroglobulin, insulin, and C-reactive protein. From an immunological perspective, this property of thymic epithelium would provide an ideal mechanism to effect central tolerance of epithelial-restricted antigens. However, from a mechanistic perspective, this phenomenon remains mysterious. Two explanations have been proposed. One invokes promiscuous gene expression by medullary thymic epithelial cells that would allow transient derepression of selected gene expression. The other proposes that the expression of tissue-restricted genes by thymic epithelium reflects alternate pathways of epithelial development by small numbers of cells to form a mosaic of different epithelial types within the thymus. Here we show thymic expression of lung-associated gene products by an organized epithelial 'organoid' with ultrastructural features of respiratory epithelium and present data suggesting that the thymus also contains structures that ultrastructurally and phenotypically resemble solitary thyroid follicles. Based on these data, it is proposed that some thymic epithelial progenitor cells resemble pharyngeal endoderm in terms of their developmental potential and that alternative differentiation fates taken by these cells serve to maintain the spectrum of epithelial 'self' in the thymus.
Collapse
Affiliation(s)
- Andrew G Farr
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7429, USA.
| | | | | |
Collapse
|
41
|
Vallance BA, Deng W, De Grado M, Chan C, Jacobson K, Finlay BB. Modulation of inducible nitric oxide synthase expression by the attaching and effacing bacterial pathogen citrobacter rodentium in infected mice. Infect Immun 2002; 70:6424-35. [PMID: 12379723 PMCID: PMC130393 DOI: 10.1128/iai.70.11.6424-6435.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Citrobacter rodentium belongs to the attaching and effacing family of enteric bacterial pathogens that includes both enteropathogenic and enterohemorrhagic Escherichia coli. These bacteria infect their hosts by colonizing the intestinal mucosal surface and intimately attaching to underlying epithelial cells. The abilities of these pathogens to exploit the cytoskeleton and signaling pathways of host cells are well documented, but their interactions with the host's antimicrobial defenses, such as inducible nitric oxide synthase (iNOS), are poorly understood. To address this issue, we infected mice with C. rodentium and found that iNOS mRNA expression in the colon significantly increased during infection. Immunostaining identified epithelial cells as the major source for immunoreactive iNOS. Finding that nitric oxide (NO) donors were bacteriostatic for C. rodentium in vitro, we examined whether iNOS expression contributed to host defense by infecting iNOS-deficient mice. Loss of iNOS expression caused a small but significant delay in bacterial clearance without affecting tissue pathology. Finally, immunofluorescence staining was used to determine if iNOS expression was localized to infected cells by staining for the C. rodentium virulence factor, translocated intimin receptor (Tir), as well as iNOS. Interestingly, while more than 85% of uninfected epithelial cells expressed iNOS, fewer than 15% of infected (Tir-positive) cells expressed detectable iNOS. These results demonstrate that both iNOS and intestinal epithelial cells play an active role in host defense during C. rodentium infection. However, the selective expression of iNOS by uninfected but not infected cells suggests that this pathogen has developed mechanisms to locally limit its exposure to host-derived NO.
Collapse
Affiliation(s)
- Bruce A Vallance
- Biotechnology Laboratory, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | | | |
Collapse
|
42
|
Matsumura S, Kita H, He XS, Ansari AA, Lian ZX, Van De Water J, Yamamoto K, Tsuji T, Coppel RL, Kaplan M, Gershwin ME. Comprehensive mapping of HLA-A0201-restricted CD8 T-cell epitopes on PDC-E2 in primary biliary cirrhosis. Hepatology 2002; 36:1125-34. [PMID: 12395322 DOI: 10.1053/jhep.2002.36161] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Growing evidence has implicated the involvement of autoreactive T lymphocytes in the pathogenesis of primary biliary cirrhosis (PBC). We have recently taken advantage of motif prediction analysis of HLA-A*0201 and identified the first major histocompatibility complex (MHC) class I restricted epitope, amino acids 159 to 167 on E2 components of pyruvate dehydrogenase complexes (PDC-E2), the major mitochondrial antigens in PBC. The mechanisms involved in the selection of epitope peptide(s) that comprise the PDC-E2-specific autoreactive cytotoxic T lymphocytes (CTLs) are unknown and likely involve other epitopes on PDC-E2 restricted by MHC class I molecules. To address this issue, a comprehensive mapping of the CTL epitope repertoire on the PDC-E2 molecule that binds HLA-A*0201 was performed to provide further clues regarding the role of CTLs. We used the T2 cell line to screen 79 overlapping 15mer peptides, spanning the entire PDC-E2 molecule. Six of the 79 peptides exhibited significantly higher binding activity to HLA-A*0201 than the other 15mer peptides. Two of these 6 peptides induced CTL lines from patients with PBC. Fine mapping with N-terminus or C-terminus truncated peptides identified 10mer peptide, PDC-E2 amino acids 165 to 174, which is a novel CD8 epitope restricted by HLA-A*0201. In conclusion, using a combination of the 15mer peptide library screening with the T2 binding assay and also the induction of CTL lines with candidate peptides, we have defined a novel HLA-A*0201-restricted epitope PDC-E2 165 to 174 in patients with PBC. These data will become important in the development of altered peptide ligands to modulate disease activity.
Collapse
Affiliation(s)
- Shuji Matsumura
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, 95616, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kyewski B, Derbinski J, Gotter J, Klein L. Promiscuous gene expression and central T-cell tolerance: more than meets the eye. Trends Immunol 2002; 23:364-71. [PMID: 12103357 DOI: 10.1016/s1471-4906(02)02248-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Bruno Kyewski
- Tumor Immunology Program, Division of Cellular Immunology, German Cancer Research Center, INF 280, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
44
|
Garhart CA, Redline RW, Nedrud JG, Czinn SJ. Clearance of Helicobacter pylori Infection and Resolution of Postimmunization Gastritis in a Kinetic Study of Prophylactically Immunized Mice. Infect Immun 2002; 70:3529-38. [PMID: 12065492 PMCID: PMC128038 DOI: 10.1128/iai.70.7.3529-3538.2002] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Patients infected with Helicobacter pylori mount an immune response which fails to clear the infection and may contribute to disease. Mice can be protected by immunization. To further characterize the H. pylori-mouse model, stomachs of unimmunized or intranasally immunized C57BL/6 mice were quantitatively cultured 3 days and 1, 2, 4, 8, 16, 32, and 52 weeks after challenge with H. pylori. At 3 days and 1 week after challenge, colonization was the same in the immunized and unimmunized mice. By 2 weeks after challenge, the immunized mice had a >2-log decrease in bacterial load, and at all later time points, they either were culture negative or had at least a 2-log decrease in bacterial load. Gastritis in the immunized mice peaked at 1 to 2 weeks after challenge and was characterized by a mixed inflammatory infiltrate and epithelial proliferation centered at the transition between corpus and antrum. By 52 weeks postchallenge, the gastric histology in the immunized mice was not different from that in control unchallenged mice. The unimmunized group began to show a reduction in bacterial load as early as 16 weeks after challenge, and by 52 weeks seven of eight unimmunized mice had developed gastritis and reduced bacterial loads. These results indicate that prophylactic immunization does not prevent colonization by H. pylori but enables mice to clear the infection or significantly reduce the number of colonizing bacteria. The reduction in bacterial load is associated with gastric inflammation that subsides over time.
Collapse
Affiliation(s)
- Christine A Garhart
- Departments of Pathology. Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
45
|
Vallance BA, Deng W, Knodler LA, Finlay BB. Mice lacking T and B lymphocytes develop transient colitis and crypt hyperplasia yet suffer impaired bacterial clearance during Citrobacter rodentium infection. Infect Immun 2002; 70:2070-81. [PMID: 11895973 PMCID: PMC127821 DOI: 10.1128/iai.70.4.2070-2081.2002] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The bacterial pathogen Citrobacter rodentium belongs to a family of gastrointestinal pathogens that includes enteropathogenic and enterohemorrhagic Escherichia coli and is the causative agent of transmissible colonic hyperplasia in mice. The molecular mechanisms used by these pathogens to colonize host epithelial surfaces and form attaching and effacing (A/E) lesions have undergone intense study. In contrast, little is known about the host's immune response to these infections and its importance in tissue pathology and bacterial clearance. To address these issues, wild-type mice and mice lacking T and B lymphocytes (RAG1 knockout [KO]) were infected with C. rodentium. By day 10 postinfection (p.i.), both wild-type and RAG1 KO mice developed colitis and crypt hyperplasia, and these responses became more exaggerated in wild-type mice over the next 2 weeks, as they cleared the infection. By day 24 p.i., bacterial clearance was complete, and the colitis had subsided; however, crypt heights remained increased. In contrast, inflammatory and crypt hyperplastic responses in the RAG1 KO mice were transient, subsiding after 2 weeks. By day 24 p.i., RAG1 KO mice showed no signs of bacterial clearance and infection was often fatal. Surprisingly, despite remaining heavily infected, tissues from RAG1 KO mice surviving the acute colitis showed few signs of disease. These results thus emphasize the important contribution of the host immune response during infection by A/E bacterial pathogens. While T and/or B lymphocytes are essential for host defense against C. rodentium, they also mediate much of the tissue pathology and disease symptoms that occur during infection.
Collapse
Affiliation(s)
- Bruce A Vallance
- Biotechnology Laboratory, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | |
Collapse
|
46
|
Gregerson DS. Peripheral expression of ocular antigens in regulation and therapy of ocular autoimmunity. Int Rev Immunol 2002; 21:101-21. [PMID: 12424839 DOI: 10.1080/08830180212062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The retina is a well-known immune-privileged tissue in the eye. Gene therapy and transgenic strategies have been taken to explore the relationship between the immune system and retinal antigens. Retroviruses were used to express retina-specific antigens or fragments systemically, leading to an antigen-specific loss of susceptibility to autoimmune disease. Transgenic strategies used a neo self-antigen, beta-galactosidase, or a known retinal antigen, interphotoreceptor retinoid-binding protein, to show that immune recognition of antigen by mice, which express solely in the retina, is not detectably different than that of mice that don't express this antigen. Together, these studies show that antigens expressed solely in the retina do not appear to be seen by the immune system, demonstrating that sequestration contributes to the lack of antigen recognition and absence of tolerance. Provision of these antigens outside of the retina provides the opportunity for development of peripheral tolerance, protection from autoimmunity, and potential therapies.
Collapse
Affiliation(s)
- Dales S Gregerson
- Dept. of Ophthalmology, LRB Rm. 314, University of Minnesota, 2001 6th St. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
47
|
Kirchner J, Forbush KA, Bevan MJ. Identification and characterization of thymus LIM protein: targeted disruption reduces thymus cellularity. Mol Cell Biol 2001; 21:8592-604. [PMID: 11713292 PMCID: PMC100020 DOI: 10.1128/mcb.21.24.8592-8604.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have identified a novel LIM gene encoding the thymus LIM protein (TLP), expressed specifically in the thymus in a subset of cortical epithelial cells. TLP was identified as a gene product which is upregulated in a thymus in which selection of T cells is occurring (Rag(-/-) OT-1) compared to its expression in a thymus in which selection is blocked at the CD4+ CD8+ stage of T-cell development (Rag(-/-) Tap(-/-) OT-1). TLP has an apparent molecular mass of 23 kDa and exists as two isomers (TLP-A and TLP-B), which are generated by alternative splicing of the message. The sequences of TLP-A and TLP-B are identical except for the C-terminal 19 or 20 amino acids. Based on protein sequence alignment, TLP is most closely related to the cysteine-rich proteins, a subclass of the family of LIM-only proteins. In both medullary and cortical thymic epithelial cell lines transduced with TLP, the protein localizes to the cytoplasm but does not appear to be strongly associated with actin. In immunohistochemical studies, TLP seems to be localized in a subset of epithelial cells in the cortex and is most abundant near the corticomedullary junction. We generated mice with a targeted disruption of the Tlp locus. In the absence of TLP, thymocyte development and thymus architecture appear to be normal but thymocyte cellularity is reduced by approximately 30%, with a proportional reduction in each subpopulation.
Collapse
Affiliation(s)
- J Kirchner
- Howard Hughes Medical Institute and Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
48
|
Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001; 2:1032-9. [PMID: 11600886 DOI: 10.1038/ni723] [Citation(s) in RCA: 786] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Expression of peripheral antigens in the thymus has been implicated in T cell tolerance and autoimmunity. Here we identified medullary thymic epithelial cells as being a unique cell type that expresses a diverse range of tissue-specific antigens. We found that this promiscuous gene expression was a cell-autonomous property of medullary epithelial cells and was maintained during the entire period of thymic T cell output. It may facilitate tolerance induction to self-antigens that would otherwise be temporally or spatially secluded from the immune system. However, the array of promiscuously expressed self-antigens appeared random rather than selected and was not confined to secluded self-antigens.
Collapse
Affiliation(s)
- J Derbinski
- Tumor Immunology Program, Division of Cellular Immunology, German Cancer Research Center, INF 280, D-69120, Germany
| | | | | | | |
Collapse
|
49
|
Salama AD, Chaudhry AN, Ryan JJ, Eren E, Levy JB, Pusey CD, Lightstone L, Lechler RI. In Goodpasture's disease, CD4(+) T cells escape thymic deletion and are reactive with the autoantigen alpha3(IV)NC1. J Am Soc Nephrol 2001; 12:1908-1915. [PMID: 11518784 DOI: 10.1681/asn.v1291908] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Goodpasture's disease is characterized by rapidly progressive glomerulonephritis and pulmonary hemorrhage, in association with circulating and deposited anti-glomerular basement membrane antibodies that recognize the alpha3 chain of type IV collagen [alpha3(IV)NC1] (known as the Goodpasture antigen). Unlike many other autoimmune diseases, recurrences are rare. In experimental models and human studies, both humoral and cellular mechanisms have been demonstrated to be involved in disease pathogenesis. However, there are few data on the characteristics of the autoreactive T cells or the mechanisms of tolerance to the autoantigen in human patients. It was demonstrated, using immunohistochemical analyses and reverse transcription-PCR, that the Goodpasture antigen is expressed in normal human thymus. Using limiting dilution analyses, the frequencies of circulating autoreactive T cells in patients and control subjects were assessed. During acute disease, there were increased frequencies of CD4(+) T cells reactive with alpha3(IV)NC1 (ranging from 1:6300 to 1:65,000), which decreased with time. There was a significant difference between patients during their acute disease phase and control subjects with respect to the frequency index for alpha3(IV)NC1-specific CD4(+) T cells (P < 0.05, Mann Whitney U test). The decrease in autoreactive CD4(+) T-cell numbers during recovery may be the reason why recurrences are infrequent and may explain the loss of pathogenic autoantibodies with time, because of a lack of T-cell help.
Collapse
Affiliation(s)
- Alan D Salama
- Renal Section, Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Afzal N Chaudhry
- Renal Section, Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - James J Ryan
- Renal Section, Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Efram Eren
- Department of Immunology, Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Jeremy B Levy
- Renal Section, Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Charles D Pusey
- Renal Section, Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Liz Lightstone
- Renal Section, Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | - Robert I Lechler
- Department of Immunology, Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
50
|
Klein L, Roettinger B, Kyewski B. Sampling of complementing self-antigen pools by thymic stromal cells maximizes the scope of central T cell tolerance. Eur J Immunol 2001; 31:2476-86. [PMID: 11500832 DOI: 10.1002/1521-4141(200108)31:8<2476::aid-immu2476>3.0.co;2-t] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Expression of peripheral antigens in the thymus has been implicated in T cell tolerance and autoimmunity, yet the identity of cells involved remains elusive. Here we show that antigen expression in a minor fraction of medullary thymic epithelial cells leads to deletion of specific CD4 T cells. Strikingly, this deletion is not dependent on cross-presentation by hemopoietic antigen-presenting cells, which have been ascribed a predominant role in negative selection. By contrast, when the same antigen enters the thymus via the blood stream, negative selection is strictly dependent on antigen presentation by hemopoietic cells. These findings imply that the (re)-presentation of "self" by thymic stromal cells is non-redundant, and that different thymic antigen-presenting cells instead cover complementing sets of self-antigens, thus maximizing the scope of central tolerance
Collapse
Affiliation(s)
- L Klein
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|