1
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
2
|
Peng Z, Zhang H, Hu H. The Function of Ubiquitination in T-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:135-159. [PMID: 39546141 DOI: 10.1007/978-981-97-7288-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Thymus is an important primary lymphoid organ for T cell development. After T-lineage commitment, the early thymic progenitors (ETPs) develop into CD4-CD8- (DN), CD4+CD8+ (DP) and further CD4+ SP or CD8+ SP T cells. Under the help of thymic epithelial cells (TEC), dendritic cell (DC), macrophage, and B cells, ETPs undergo proliferation, T cell receptor (TCR) rearrangement, β-selection, positive selection, and negative selection, and thus leading to the generation of T cells that are diverse repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg under the help of TEC and DC. The regulation of T cell development is complicated. As a post-translational modification, ubiquitination regulates signal transduction in diverse biological processes. Ubiquitination functions in T cell development through regulating key signal pathway or maturation and function of related cells. In this review, the regulation of T cell development by ubiquitination is summarized and discussed.
Collapse
Affiliation(s)
- Zhengcan Peng
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
3
|
Michaels YS, Durland LJ, Zandstra PW. Engineering T Cell Development for the Next Generation of Stem Cell-Derived Immunotherapies. GEN BIOTECHNOLOGY 2023; 2:106-119. [PMID: 37928777 PMCID: PMC10624212 DOI: 10.1089/genbio.2023.0008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/31/2023] [Indexed: 11/07/2023]
Abstract
Engineered T cells are at the leading edge of clinical cell therapy. T cell therapies have had a remarkable impact on patient care for a subset of hematological malignancies. This foundation has motivated the development of off-the-shelf engineered cell therapies for a broad range of devastating indications. Achieving this vision will require cost-effective manufacturing of precision cell products capable of addressing multiple process and clinical-design challenges. Pluripotent stem cell (PSC)-derived engineered T cells are emerging as a solution of choice. To unleash the full potential of PSC-derived T cell therapies, the field will require technologies capable of robustly orchestrating the complex series of time- and dose-dependent signaling events needed to recreate functional T cell development in the laboratory. In this article, we review the current state of allogenic T cell therapies, focusing on strategies to generate engineered lymphoid cells from PSCs. We highlight exciting recent progress in this field and outline timely opportunities for advancement with an emphasis on niche engineering and synthetic biology.
Collapse
Affiliation(s)
- Yale S. Michaels
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; University of British Columbia, Vancouver, Canada
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, Canada; and University of British Columbia, Vancouver, Canada
| | - Lauren J. Durland
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; University of British Columbia, Vancouver, Canada
| | - Peter W. Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Early expression of mature αβ TCR in CD4 -CD8 - T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations. Proc Natl Acad Sci U S A 2022; 119:e2118529119. [PMID: 35767640 PMCID: PMC9271211 DOI: 10.1073/pnas.2118529119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
T cell development and immune responses are directed by major histocompatibility complex:T cell antigen receptor (MHC:TCR) signaling, but aberrant signals can cause T cell tumors to form. We show that in mice and humans, a low-frequency progenitor cell population expresses early αβ TCR while coreceptor double-negative (EADN), and these EADN cells can transform to thymic leukemia. Mouse models showed that EADN cells did not require MHC to develop but when presented with MHC they could respond with high sensitivity. Transformation to leukemia occurred and required MHC, although with extended tumor growth this requirement could be lost. Thus, MHC:TCR signaling can initiate a leukemia phenotype from an understudied developmental state that appears to be represented in the mouse and human disease spectrum. During normal T cell development in mouse and human, a low-frequency population of immature CD4−CD8− double-negative (DN) thymocytes expresses early, mature αβ T cell antigen receptor (TCR). We report that these early αβ TCR+ DN (EADN) cells are DN3b-DN4 stage and require CD3δ but not major histocompatibility complex (MHC) for their generation/detection. When MHC - is present, however, EADN cells can respond to it, displaying a degree of coreceptor-independent MHC reactivity not typical of mature, conventional αβ T cells. We found these data to be connected with observations that EADN cells were susceptible to T cell acute lymphoblastic leukemia (T-ALL) transformation in both humans and mice. Using the OT-1 TCR transgenic system to model EADN-stage αβ TCR expression, we found that EADN leukemogenesis required MHC to induce development of T-ALL bearing NOTCH1 mutations. This leukemia-driving MHC requirement could be lost, however, upon passaging the tumors in vivo, even when matching MHC was continuously present in recipient animals and on the tumor cells themselves. These data demonstrate that MHC:TCR signaling can be required to initiate a cancer phenotype from an understudied developmental state that appears to be represented in the mouse and human disease spectrum.
Collapse
|
5
|
García-Peydró M, Fuentes P, Mosquera M, García-León MJ, Alcain J, Rodríguez A, García de Miguel P, Menéndez P, Weijer K, Spits H, Scadden DT, Cuesta-Mateos C, Muñoz-Calleja C, Sánchez-Madrid F, Toribio ML. The NOTCH1/CD44 axis drives pathogenesis in a T cell acute lymphoblastic leukemia model. J Clin Invest 2018; 128:2802-2818. [PMID: 29781813 DOI: 10.1172/jci92981] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
NOTCH1 is a prevalent signaling pathway in T cell acute lymphoblastic leukemia (T-ALL), but crucial NOTCH1 downstream signals and target genes contributing to T-ALL pathogenesis cannot be retrospectively analyzed in patients and thus remain ill defined. This information is clinically relevant, as initiating lesions that lead to cell transformation and leukemia-initiating cell (LIC) activity are promising therapeutic targets against the major hurdle of T-ALL relapse. Here, we describe the generation in vivo of a human T cell leukemia that recapitulates T-ALL in patients, which arises de novo in immunodeficient mice reconstituted with human hematopoietic progenitors ectopically expressing active NOTCH1. This T-ALL model allowed us to identify CD44 as a direct NOTCH1 transcriptional target and to recognize CD44 overexpression as an early hallmark of preleukemic cells that engraft the BM and finally develop a clonal transplantable T-ALL that infiltrates lymphoid organs and brain. Notably, CD44 is shown to support crucial BM niche interactions necessary for LIC activity of human T-ALL xenografts and disease progression, highlighting the importance of the NOTCH1/CD44 axis in T-ALL pathogenesis. The observed therapeutic benefit of anti-CD44 antibody administration in xenotransplanted mice holds great promise for therapeutic purposes against T-ALL relapse.
Collapse
Affiliation(s)
- Marina García-Peydró
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - Patricia Fuentes
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - Marta Mosquera
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - María J García-León
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - Juan Alcain
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| | - Antonio Rodríguez
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), Barcelona, ISCIII, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Kees Weijer
- Department of Cell Biology and Histology, Academic Medical Center, and
| | - Hergen Spits
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute and Harvard University Department of Stem Cell and Regenerative Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Cuesta-Mateos
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, Madrid, Spain.,Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| | - María L Toribio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, and
| |
Collapse
|
6
|
Modeling altered human T-cell development. Blood 2016; 128:743-5. [PMID: 27516425 DOI: 10.1182/blood-2016-06-723908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Rodriguez RM, Suarez-Alvarez B, Mosén-Ansorena D, García-Peydró M, Fuentes P, García-León MJ, Gonzalez-Lahera A, Macias-Camara N, Toribio ML, Aransay AM, Lopez-Larrea C. Regulation of the transcriptional program by DNA methylation during human αβ T-cell development. Nucleic Acids Res 2014; 43:760-74. [PMID: 25539926 PMCID: PMC4333391 DOI: 10.1093/nar/gku1340] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Thymocyte differentiation is a complex process involving well-defined sequential developmental stages that ultimately result in the generation of mature T-cells. In this study, we analyzed DNA methylation and gene expression profiles at successive human thymus developmental stages. Gain and loss of methylation occurred during thymocyte differentiation, but DNA demethylation was much more frequent than de novo methylation and more strongly correlated with gene expression. These changes took place in CpG-poor regions and were closely associated with T-cell differentiation and TCR function. Up to 88 genes that encode transcriptional regulators, some of whose functions in T-cell development are as yet unknown, were differentially methylated during differentiation. Interestingly, no reversion of accumulated DNA methylation changes was observed as differentiation progressed, except in a very small subset of key genes (RAG1, RAG2, CD8A, PTCRA, etc.), indicating that methylation changes are mostly unique and irreversible events. Our study explores the contribution of DNA methylation to T-cell lymphopoiesis and provides a fine-scale map of differentially methylated regions associated with gene expression changes. These can lay the molecular foundations for a better interpretation of the regulatory networks driving human thymopoiesis.
Collapse
Affiliation(s)
- Ramon M Rodriguez
- Department of Immunology, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
| | - Beatriz Suarez-Alvarez
- Cellular Biology in Renal Diseases Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David Mosén-Ansorena
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Technological Park of Bizkaia - Building 801A, 48160 Derio, Spain
| | - Marina García-Peydró
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Patricia Fuentes
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María J García-León
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aintzane Gonzalez-Lahera
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Technological Park of Bizkaia - Building 801A, 48160 Derio, Spain
| | - Nuria Macias-Camara
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Technological Park of Bizkaia - Building 801A, 48160 Derio, Spain
| | - María L Toribio
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana M Aransay
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Technological Park of Bizkaia - Building 801A, 48160 Derio, Spain
| | - Carlos Lopez-Larrea
- Department of Immunology, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain Fundación Renal 'Íñigo Álvarez de Toledo', 28003 Madrid, Spain
| |
Collapse
|
8
|
Galetto R, Lebuhotel C, Poirot L, Gouble A, Toribio ML, Smith J, Scharenberg A. Pre-TCRα supports CD3-dependent reactivation and expansion of TCRα-deficient primary human T-cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14021. [PMID: 26015965 PMCID: PMC4362381 DOI: 10.1038/mtm.2014.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/16/2014] [Accepted: 04/28/2014] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor technology offers a highly effective means for increasing the anti-tumor effects of autologous adoptive T-cell immunotherapy, and could be made widely available if adapted to the use of allogeneic T-cells. Although gene-editing technology can be used to remove the alloreactive potential of third party T-cells through destruction of either the α or β T-cell receptor (TCR) subunit genes, this approach results in the associated loss of surface expression of the CD3 complex. This is nonetheless problematic as it results in the lack of an important trophic signal normally mediated by the CD3 complex at the cell surface, potentially compromising T-cell survival in vivo, and eliminating the potential to expand TCR-knockout cells using stimulatory anti-CD3 antibodies. Here, we show that pre-TCRα, a TCRα surrogate that pairs with TCRβ chains to signal proper TCRβ folding during T-cell development, can be expressed in TCRα knockout mature T-cells to support CD3 expression at the cell surface. Cells expressing pre-TCR/CD3 complexes can be activated and expanded using standard CD3/CD28 T-cell activation protocols. Thus, heterologous expression of pre-TCRα represents a promising technology for use in the manufacturing of TCR-deficient T-cells for adoptive immunotherapy applications.
Collapse
Affiliation(s)
| | | | | | | | - Maria L Toribio
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid , Madrid, Spain
| | | | | |
Collapse
|
9
|
González-García S, García-Peydró M, Alcain J, Toribio ML. Notch1 and IL-7 receptor signalling in early T-cell development and leukaemia. Curr Top Microbiol Immunol 2012; 360:47-73. [PMID: 22695916 DOI: 10.1007/82_2012_231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Notch receptors are master regulators of many aspects of development and tissue renewal in metazoans. Notch1 activation is essential for T-cell specification of bone marrow-derived multipotent progenitors that seed the thymus, and for proliferation and further progression of early thymocytes along the T-cell lineage. Deregulated activation of Notch1 significantly contributes to the generation of T-cell acute lymphoblastic leukaemia (T-ALL). In addition to Notch1 signals, survival and proliferation signals provided by the IL-7 receptor (IL-7R) are also required during thymopoiesis. Our understanding of the molecular mechanisms controlling stage-specific survival and proliferation signals provided by Notch1 and IL-7R has recently been improved by the discovery that the IL-7R is a transcriptional target of Notch1. Thus, Notch1 controls T-cell development, in part by regulating the stage- and lineage-specific expression of IL-7R. The finding that induction of IL-7R expression downstream of Notch1 also occurs in T-ALL highlights the important contribution that deregulated IL-7R expression and function may have in this pathology. Confirming this notion, oncogenic IL7R gain-of-function mutations have recently been identified in childhood T-ALL. Here we discuss the fundamental role of Notch1 and IL-7R signalling pathways in physiological and pathological T-cell development in mice and men, highlighting their close molecular underpinnings.
Collapse
Affiliation(s)
- Sara González-García
- Centro de Biología Molecular, Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Abstract
Abstract
The generation of natural regulatory T cells (nTregs) is crucial for the establishment of immunologic self-tolerance and the prevention of autoimmunity. Still, the origin of nTregs and the mechanisms governing their differentiation within the thymus are poorly understood, particularly in humans. It was recently shown that conventional dendritic cells (cDCs) in human thymus were capable of inducing nTreg differentiation. However, the function of plasmacytoid DCs (pDCs), the other major subset of thymic DCs, remains unknown. Here we report that pDCs resident in the human thymus, when activated with CD40 ligand (CD40L) plus interleukin-3, efficiently promoted the generation of CD4+CD25+Foxp3+ nTregs from autologous thymocytes. The progenitors of these nTregs were selectively found within CD4+CD8+ thymocytes that had accomplished positive selection, as judged by their CD69hiTCRhi phenotype. Supporting the involvement of the CD40-CD40L pathway in pDC-induced nTreg generation, we show that positively selected CD4+CD8+ progenitors specifically transcribed CD40L in vivo and up-regulated CD40L expression on T-cell receptor engagement, thereby promoting the activation of pDCs. Finally, evidence is provided that nTregs primed by pDCs displayed reciprocal interleukin-10/transforming growth factor-β cytokine expression profiles compared with nTregs primed by cDCs. This functional diversity further supports a nonredundant tolerogenic role for thymic pDCs in the human thymus.
Collapse
|
11
|
Tuovinen H, Kekäläinen E, Rossi LH, Puntila J, Arstila TP. Cutting edge: human CD4-CD8- thymocytes express FOXP3 in the absence of a TCR. THE JOURNAL OF IMMUNOLOGY 2008; 180:3651-4. [PMID: 18322169 DOI: 10.4049/jimmunol.180.6.3651] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The best candidate for regulatory T (Treg) cell lineage-determining factor is currently the Forkhead box transcription factor FOXP3. FOXP3 up-regulation has been linked to TCR-mediated signals, and in mice the abrogation of TCR expression or signals also prevents FoxP3 expression. In contrast, the TCR dependence of human FOXP3 is assumed but not established. In this study we show on a single cell level that 1.4% (range 0.1-3.8%) of CD4(-)CD8(-) thymocytes in healthy humans express FOXP3, two thirds of them without any detectable alphabeta TCR. These TCR(-)FOXP3(+) cells were mostly CD25(-) and did not express gammadelta TCR or B cell, NK cell, or monocyte-associated markers. Like mature Treg cells, they were mostly CD2(+)CD127(low) and expressed cytoplasmic CTLA-4. Our results suggest that in immature human thymocytes the expression of FOXP3 precedes surface TCR, in which case TCR-mediated signals cannot be responsible for the thymic up-regulation of FOXP3.
Collapse
Affiliation(s)
- Heli Tuovinen
- Haartman Institute, Department of Immunology, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
12
|
Navarro MN, Nusspaumer G, Fuentes P, González-García S, Alcain J, Toribio ML. Identification of CMS as a cytosolic adaptor of the human pTalpha chain involved in pre-TCR function. Blood 2007; 110:4331-40. [PMID: 17823309 DOI: 10.1182/blood-2007-06-094938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The T-cell receptor beta (TCRbeta)/pre-TCRalpha (pTalpha) pre-TCR complex (pre-TCR) signals the expansion and differentiation of de-veloping thymocytes. Functional pro-perties of the pre-TCR rely on its unique pTalpha chain, which suggests the participation of specific intracellular adaptors. However, pTalpha-interacting molecules remain unknown. Here, we identified a polyproline-arginine sequence in the human pTalpha cytoplasmic tail that interacted in vitro with SH3 domains of the CIN85/CMS family of adaptors, and mediated the recruitment of multiprotein complexes involving all (CMS, CIN85, and CD2BP3) members. Supporting the physiologic relevance of this interaction, we found that 1 such adaptor, CMS, interacted in vivo with human pTalpha, and its expression was selectively up-regulated during human thymopoiesis in pre-TCR-activated thymocytes. Upon activation, pre-TCR clustering was induced, and CMS and polymerized actin were simultaneously recruited to the pre-TCR activation site. CMS also associated via its C-terminal region to the actin cytoskeleton in the endocytic compartment, where it colocalized with internalized pTalpha in traffic to lysosomal degradation. Notably, deletion of the pTalpha CIN85/CMS-binding motif impaired pre-TCR-mediated Ca(2+) mobilization and NFAT transcriptional activity, and precluded activation induced by overexpression of a CMS-SH3 N-terminal mutant. These results provide the first molecular evidence for a pTalpha intracellular adaptor involved in pre-TCR function.
Collapse
Affiliation(s)
- María N Navarro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
The lymphocytes, T, B, and NK cells, and a proportion of dendritic cells (DCs) have a common developmental origin. Lymphocytes develop from hematopoietic stem cells via common lymphocyte and various lineage-restricted precursors. This review discusses the current knowledge of human lymphocyte development and the phenotypes and functions of the rare intermediate populations that together form the pathways of development into T, B, and NK cells and DCs. Clearly, development of hematopoietic cells is supported by cytokines. The studies of patients with genetic deficiencies in cytokine receptors that are discussed here have illuminated the importance of cytokines in lymphoid development. Lineage decisions are under control of transcription factors, and studies performed in the past decade have provided insight into transcriptional control of human lymphoid development, the results of which are summarized and discussed in this review.
Collapse
Affiliation(s)
- Bianca Blom
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | | |
Collapse
|
14
|
Lonchay C, van der Bruggen P, Connerotte T, Hanagiri T, Coulie P, Colau D, Lucas S, Van Pel A, Thielemans K, van Baren N, Boon T. Correlation between tumor regression and T cell responses in melanoma patients vaccinated with a MAGE antigen. Proc Natl Acad Sci U S A 2004; 101 Suppl 2:14631-8. [PMID: 15452345 PMCID: PMC521999 DOI: 10.1073/pnas.0405743101] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cancer-germline gene MAGE-3 codes for tumor-specific antigens recognized on many tumors by T lymphocytes. A MAGE-3 antigen presented by HLA-A1 has been used in several vaccination trials on metastatic melanoma patients. Only a small minority of patients have shown evidence of tumor regression. Attempts to correlate the tumor rejections with the cytotoxic T lymphocyte (CTL) response against the vaccine have been hampered by the low level of these responses. In noncancerous individuals, the frequency of the T cell precursors against antigen MAGE-3.A1 is approximately 4 x 10(-7) CD8 T cells. The diversity of the T cell receptor repertoire of these anti-MAGE-3.A1 precursors was analyzed in one individual. The results indicate that it is very likely that the repertoire comprises >100 clonotypes. On this basis, it is possible to use not only the frequency of CTL precursors in the blood but also the presence of dominant clonotypes to ascertain in patients the existence of anti-MAGE-3.A1 responses as low as 10(-6) of CD8. With this approach, we observed a correlation between tumor regression and anti-MAGE-3.A1 CTL responses in patients vaccinated with a recombinant virus encoding the antigen and also in patients vaccinated with peptide-pulsed dendritic cells. In contrast, for patients showing tumor regression after vaccination with peptide alone, CTL responses were almost never observed. It is possible that even those CTL responses that are below our present detection level can trigger a sequence of events that leads to tumor regression.
Collapse
Affiliation(s)
- Christophe Lonchay
- Ludwig Institute for Cancer Research, Brussels Branch of Human Cell Genetics, Université de Louvain, 74 Avenue Hippocrate, UCL 7459, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The thymus is a complex epithelial organ in which thymocyte development is dependent upon the sequential contribution of morphologically and phenotypically distinct stromal cell compartments. It is these microenvironments that provide the unique combination of cellular interactions, cytokines, and chemokines to induce thymocyte precursors to undergo a differentiation program that leads to the generation of functional T cells. Despite the indispensable role of thymic epithelium in the generation of T cells, the mediators of this process and the differentiation pathway undertaken by the primordial thymic epithelial cells are not well defined. There is a lack of lineage-specific cell-surface-associated markers, which are needed to characterize putative thymic epithelial stem cell populations. This review explores the role of thymic stromal cells in T-cell development and thymic organogenesis, as well as the molecular signals that contribute to the growth and expansion of primordial thymic epithelial cells. It highlights recent advances in these areas, which have allowed for a lineage relationship amongst thymic epithelial cell subsets to be proposed. While many fundamental questions remain to be addressed, collectively these works have broadened our understanding of how the thymic epithelium becomes specialized in the ability to support thymocyte differentiation. They should also facilitate the development of novel, rationally based therapeutic strategies for the regeneration and manipulation of thymic function in the treatment of many clinical conditions in which defective T cells have an important etiological role.
Collapse
Affiliation(s)
- Jason Gill
- Department of Pathology and Immunology, Monash University, Faculty of Medicine, Nursing and Health Sciences, Alfred Medical Research and Education Precinct, Prahran, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Carrasco YR, Navarro MN, Toribio ML. A role for the cytoplasmic tail of the pre-T cell receptor (TCR) alpha chain in promoting constitutive internalization and degradation of the pre-TCR. J Biol Chem 2003; 278:14507-13. [PMID: 12473666 DOI: 10.1074/jbc.m204944200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Engagement of the alpha beta T cell receptor (TCR) by its ligand results in the down-modulation of TCR cell surface expression, which is thought to be a central event in T cell activation. On the other hand, pre-TCR signaling is a key process in alpha beta T cell development, which appears to proceed in a constitutive and ligand-independent manner. Here, comparative analyses on the dynamics of pre-TCR and TCR cell surface expression show that unligated pre-TCR complexes expressed on human pre-T cells behave as engaged TCR complexes, i.e. they are rapidly internalized and degraded in lysosomes and proteasomes but do not recycle back to the cell surface. Thus, pre-TCR down-regulation takes place constitutively without the need for extracellular ligation. By using TCR alpha/p Tau alpha chain chimeras, we demonstrate that prevention of recycling and induction of degradation are unique pre-TCR properties conferred by the cytoplasmic domain of the pT alpha chain. Finally, we show that pre-TCR internalization is a protein kinase C-independent process that involves the combination of src kinase-dependent and -independent pathways. These data suggest that constitutive pre-TCR down-modulation regulates pre-TCR surface expression levels and hence the extent of ligand-independent signaling through the pre-TCR.
Collapse
Affiliation(s)
- Yolanda R Carrasco
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Facultad de Biologia, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | |
Collapse
|
17
|
Abstract
The thymus is the primary site of T-cell production early in life, and has now been shown to continue to function in both healthy and immunocompromised individuals late into life. Positive and negative selection occurring in the thymus are two of the most important processes that govern the development and specificity of peripheral T cells, including their restriction to self HLA and their ability to respond in an alloreactive manner. In the chimeric state that follows successful allogeneic stem-cell transplants, the specificity of alloreactive cells may be governed by either host- or recipient-derived cellular elements, as well as maturing lymphoid cells, which are, in turn, derived from donor stem cells or host cells surviving transplant conditioning. The ability to measure recent thymic emigrants via the detection of T-cell receptor excision circles has facilitated studies of thymic function in immunodeficient individuals, including HIV-1 infected subjects and recipients of autologous or allogeneic stem-cell transplant (SCT). These studies have now demonstrated that thymic function is likely to play a beneficial role in immune reconstitution in these settings, but have yet to clearly demonstrate what clinical variables are the most important determinants of thymic persistence. It is also not yet clear how much the degree of thymic function following allogeneic SCT influences the alloreactive T-cell repertoire, although studies in animal models and early clinical studies suggest that GvHD results in thymic injury and dysfunction. Future studies will further clarify how thymic function shapes the repertoire of T cells that mediate alloreactivity, as well as protective pathogen-specific immune responses, following SCT. Finally, these studies will also demonstrate whether endogenous mediators of thymic function could be selectively applied to regulate post-SCT thymic function and alloreactivity.
Collapse
Affiliation(s)
- K V Komanduri
- Department of Blood and Marrow Transplantation, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Burrows PD, Stephan RP, Wang YH, Lassoued K, Zhang Z, Cooper MD. The transient expression of pre-B cell receptors governs B cell development. Semin Immunol 2002; 14:343-9. [PMID: 12220935 DOI: 10.1016/s1044-5323(02)00067-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Only a subpopulation of relatively large pre-B cells express pre-B cell receptors (preBCR) that can be seen with very sensitive immunofluorescence methods. Inefficient assembly of the multicomponent preBCR coupled with their ligand-induced endocytosis may account for the remarkably low in vivo levels of preBCR expression. Signaling initiated via the preBCR promotes cellular proliferation and RAG-1 and RAG-2 downregulation to interrupt the immunoglobulin V(D)J gene rearrangement process. Silencing of the surrogate light chain genes, VpreB and lambda5, then terminates preBCR expression to permit cell cycle exit, recombinase gene upregulation, and VJ(L) rearrangement by small pre-B cells destined to become B cells.
Collapse
Affiliation(s)
- Peter D Burrows
- Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, WTI 378, 1824 6th Avenue South, Birmingham, AL 35294-3300, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The thymus is the main producer of alphabeta T cells and is, therefore, crucial for a normal immune system. The intrathymic developmental pathway of human alphabeta T cells has now been delineated. The production of new T cells by the thymus decreases with age, and the thymus was thought to be redundant in adults once the peripheral T-cell pool has been formed early in life. However, recent work has shown that the thymus can function even at an advanced age. Research into the production of T cells in clinical settings that are associated with loss of T cells in the periphery has sparked renewed interest in the function of the human thymus.
Collapse
Affiliation(s)
- Hergen Spits
- Department of Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Carrasco YR, Navarro MN, de Yébenes VG, Ramiro AR, Toribio ML. Regulation of surface expression of the human pre-T cell receptor complex. Semin Immunol 2002; 14:325-34. [PMID: 12220933 DOI: 10.1016/s1044-5323(02)00065-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Considerable progress has recently been made in defining the role that pre-antigen receptor complexes, namely the pre-T and pre-B cell receptors, play in lymphocyte development. It is now established that these receptors direct, in a similar way, the survival, expansion, clonality and further differentiation of pre-T and pre-B lymphocytes, respectively. However, less is known about the mechanisms which ensure that only minute amounts of pre-TCR and pre-BCR reach the plasma membrane of developing lymphocytes. In this review, we discuss the implications of recent experimental approaches which address the developmental regulation of human pre-TCR expression and the molecular mechanisms that control surface pre-TCR expression levels.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Cell Membrane/metabolism
- Gene Expression Regulation, Developmental/immunology
- Humans
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Protein Processing, Post-Translational
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Yolanda R Carrasco
- Centro de Biología Molecular Severo Ochoa, CSIC, Facultad de Biología, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Cabaniols JP, Fazilleau N, Casrouge A, Kourilsky P, Kanellopoulos JM. Most alpha/beta T cell receptor diversity is due to terminal deoxynucleotidyl transferase. J Exp Med 2001; 194:1385-90. [PMID: 11696602 PMCID: PMC2195970 DOI: 10.1084/jem.194.9.1385] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The contribution of template-independent nucleotide addition to antigen receptor diversity is unknown. We therefore determined the size of the T cell receptor (TCR)alpha/beta repertoire in mice bearing a null mutation on both alleles of the terminal deoxynucleotidyl transferase (Tdt) gene. We used a method based upon polymerase chain reaction amplification and exhaustive sequencing of various AV-AJ and BV-BJ combinations. In both wild-type and Tdt degrees / degrees mice, TCRAV diversity is one order of magnitude lower than the TCRBV diversity. In Tdt degrees / degrees animals, TCRBV chain diversity is reduced 10-fold compared with wild-type mice. In addition, in Tdt degrees / degrees mice, one BV chain can associate with three to four AV chains as in wild-type mice. The alpha/beta repertoire size in Tdt degrees / degrees mice is estimated to be 10(5) distinct receptors, approximately 5-10% of that calculated for wild-type mice. Thus, while Tdt activity is not involved in the combinatorial diversity resulting from alpha/beta pairing, it contributes to at least 90% of TCRalpha/beta diversity.
Collapse
Affiliation(s)
- J P Cabaniols
- Unité de Biologie Moléculaire du Gène, Institut National de la Sante et de la Recherche Medicale U277, Institut Pasteur, 75 724 Paris, France
| | | | | | | | | |
Collapse
|
22
|
Ramiro AR, Navarro MN, Carreira A, Carrasco YR, de Yébenes VG, Carrillo G, San Millán JL, Rubin B, Toribio ML. Differential developmental regulation and functional effects on pre-TCR surface expression of human pTalpha(a) and pTalpha(b) spliced isoforms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5106-14. [PMID: 11673521 DOI: 10.4049/jimmunol.167.9.5106] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Functional rearrangement at the TCRbeta locus leads to surface expression on developing pre-T cells of a pre-TCR complex composed of the TCRbeta-chain paired with the invariant pre-TCRalpha (pTalpha) chain and associated with CD3 components. Pre-TCR signaling triggers the expansion and further differentiation of pre-T cells into TCRalphabeta mature T cells, a process known as beta selection. Besides the conventional pTalpha transcript (termed pTalpha(a)), a second, alternative spliced, isoform of the pTalpha gene (pTalpha(b)) has been described, whose developmental relevance remains unknown. In this study, phenotypic, biochemical, and functional evidence is provided that only pTalpha(a) is capable of inducing surface expression of a CD3-associated pre-TCR complex, which seems spontaneously recruited into lipid rafts, while pTalpha(b) pairs with and retains TCRbeta intracellularly. In addition, by using real-time quantitative RT-PCR approaches, we show that expression of pTalpha(a) and pTalpha(b) mRNA spliced products is differentially regulated along human intrathymic development, so that pTalpha(b) transcriptional onset is developmentally delayed, but beta selection results in simultaneous shutdown of both isoforms, with a relative increase of pTalpha(b) transcripts in beta-selected vs nonselected pre-T cells in vivo. Relative increase of pTalpha(b) is also shown to occur upon pre-T cell activation in vitro. Taken together, our data illustrate that transcriptional regulation of pTalpha limits developmental expression of human pre-TCR to intrathymic stages surrounding beta selection, and are compatible with a role for pTalpha(b) in forming an intracellular TCRbeta-pTalpha(b) complex that may be responsible for limiting surface expression of a pTalpha(a)-containing pre-TCR and/or may be competent to signal from a subcellular compartment.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- CD3 Complex/biosynthesis
- Cell Line
- Gene Expression Regulation, Developmental
- Genes, T-Cell Receptor alpha
- Genes, T-Cell Receptor beta
- Humans
- Lectins, C-Type
- Protein Isoforms
- Protein Precursors/biosynthesis
- RNA Splicing
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- A R Ramiro
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Carrasco YR, Ramiro AR, Trigueros C, de Yébenes VG, García-Peydró M, Toribio ML. An endoplasmic reticulum retention function for the cytoplasmic tail of the human pre-T cell receptor (TCR) alpha chain: potential role in the regulation of cell surface pre-TCR expression levels. J Exp Med 2001; 193:1045-58. [PMID: 11342589 PMCID: PMC2193431 DOI: 10.1084/jem.193.9.1045] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pre-T cell receptor (TCR), which consists of a TCR-beta chain paired with pre-TCR-alpha (pTalpha) and associated with CD3/zeta components, is a critical regulator of T cell development. For unknown reasons, extremely low pre-TCR levels reach the plasma membrane of pre-T cells. By transfecting chimeric TCR-alpha-pTalpha proteins into pre-T and mature T cell lines, we show here that the low surface expression of the human pre-TCR is pTalpha chain dependent. Particularly, the cytoplasmic domain of pTalpha is sufficient to reduce surface expression of a conventional TCR-alpha/beta to pre-TCR expression levels. Such reduced expression cannot be attributed to qualitative differences in the biochemical composition of the CD3/zeta modules associated with pre-TCR and TCR surface complexes. Rather, evidence is provided that the pTalpha cytoplasmic tail also causes a reduced surface expression of individual membrane molecules such as CD25 and CD4, which are shown to be retained in the endoplasmic reticulum (ER). Native pTalpha is also observed to be predominantly ER localized. Finally, sequential truncations along the pTalpha cytoplasmic domain revealed that removal of the COOH-terminal 48 residues is sufficient to release a CD4-pTalpha chimera from ER retention, and to restore native CD4 surface expression levels. As such a truncation in pTalpha also correlates with enhanced pre-TCR expression, the observed pTalpha ER retention function may contribute to the regulation of surface pre-TCR expression on pre-T cells.
Collapse
Affiliation(s)
- Yolanda R. Carrasco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Almudena R. Ramiro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - César Trigueros
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Virginia G. de Yébenes
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Marina García-Peydró
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - María L. Toribio
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
24
|
β-Selection Is Associated With the Onset of CD8β Chain Expression on CD4+CD8+ Pre-T Cells During Human Intrathymic Development. Blood 1999. [DOI: 10.1182/blood.v94.10.3491.422k30_3491_3498] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-cell precursors that undergo productive rearrangements at the T-cell receptor (TCR) β locus are selected for proliferation and further maturation, before TCR expression, by signaling through a pre–TCR composed of the TCRβ chain paired with a pre–TCR (pT) chain. Such a critical developmental checkpoint, known as β-selection, results in progression from CD4−CD8− double negative (DN) to CD4+CD8+ double positive (DP) TCRβ−thymocytes. In contrast to mice, progression to the DP compartment occurs in humans via a CD4+ CD8−intermediate stage. Here we show that the CD4+CD8− to CD4+ CD8+ transition involves the sequential acquisition of the and β chains of CD8 at distinct maturation stages. Our results indicate that CD8, but not CD8β, is expressed in vivo in a minor subset of DP TCRβ− thymocytes, referred to as CD4+CD8+ pre-T cells, mostly composed of resting cells lacking cytoplasmic TCRβ chain (TCRβic). In contrast, expression of CD8β heterodimers was selectively found on DP TCRβ− thymocytes that express TCRβicand are enriched for cycling cells. Interestingly, CD4+CD8+ pre-T cells are shown to be functional intermediates between CD4+ CD8−TCRβic− and CD4+CD8β+ TCRβic+thymocytes. More importantly, evidence is provided that onset of CD8β and TCRβic expression are coincident developmental events associated with acquisition of CD3 and pT chain on the cell surface. Therefore, we propose that the CD4+CD8+ to CD4+CD8β+ transition marks the key control point of pre-TCR–mediated β-selection in human T-cell development.
Collapse
|
25
|
Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. A direct estimate of the human alphabeta T cell receptor diversity. Science 1999; 286:958-61. [PMID: 10542151 DOI: 10.1126/science.286.5441.958] [Citation(s) in RCA: 681] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Generation and maintenance of an effective repertoire of T cell antigen receptors are essential to the immune system, yet the number of distinct T cell receptors (TCRs) expressed by the estimated 10(12) T cells in the human body is not known. In this study, TCR gene amplification and sequencing showed that there are about 10(6) different beta chains in the blood, each pairing, on the average, with at least 25 different alpha chains. In the memory subset, the diversity decreased to 1 x 10(5) to 2 x 10(5) different beta chains, each pairing with only a single alpha chain. Thus, the naïve repertoire is highly diverse, whereas the memory compartment, here one-third of the T cell population, contributes less than 1 percent of the total diversity.
Collapse
Affiliation(s)
- T P Arstila
- Unité de Biologie Moléculaire du Gène, INSERM U277, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | | | |
Collapse
|
26
|
Marx A, Müller-Hermelink HK. From basic immunobiology to the upcoming WHO-classification of tumors of the thymus. The Second Conference on Biological and Clinical Aspects of Thymic Epithelial Tumors and related recent developments. Pathol Res Pract 1999; 195:515-33. [PMID: 10483582 DOI: 10.1016/s0344-0338(99)80001-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Second Conference on Biological and Clinical Aspects of Thymic Epithelial Tumors in Leiden, The Netherlands, 1998, set the stage for an interdisciplinary meeting of immunologists, pathologists and members of various clinical disciplines to exchange their recent findings in the field of thymus-related biology, pathology, and medicine. The contributions covered such diverse subjects as the role of transcription factors and cytokines in the development of the thymic microenvironment, thymic T, B and NK cell development, the pathogenesis of myasthenia gravis and other thymoma-associated autoimmunities, the pathology of thymic epithelial tumors and germ cell neoplasms, and new approaches to their diagnosis and treatment. This editorial will briefly sum up the data presented at the Conference and will comment on related novel findings that have been reported since then. Because it was also at the Leiden Conference, that the proposal of the WHO committee for the classification of thymic tumors was discussed for the first time, a description of the upcoming WHO Classification of Tumors of the Thymus is given with emphasis on the diagnostic criteria of thymic epithelial tumors, that should now be termed as type A, AB, B1-3 and type C thymomas, to make pathological and clinical studies comparable in the future.
Collapse
|
27
|
Abstract
Recent studies have identified several populations of progenitor cells in the human thymus. The hematopoietic precursor activity of these populations has been determined. The most primitive human thymocytes express high levels of CD34 and lack CD1a. These cells acquire CD1a and differentiate into CD4+CD8+ through CD3−CD4+CD8− and CD3−CD4+CD8+β− intermediate populations. The status of gene rearrangements in the various TCR loci, in particular of TCRδ and TCRγ, has not been analyzed in detail. In the present study we have determined the status of TCR gene rearrangements of early human postnatal thymocyte subpopulations by Southern blot analysis. Our results indicate that TCRδ rearrangements initiate in CD34+CD1a− cells preceding those in the TCRγ and TCRβ loci that commence in CD34+CD1a+ cells. Furthermore, we have examined at which cellular stage TCRβ selection occurs in humans. We analyzed expression of cytoplasmic TCRβ and cell-surface CD3 on thymocytes that lack a mature TCRβ. In addition, we overexpressed a constitutive-active mutant of p56lckF505 by retrovirus-mediated gene transfer in sequential stages of T-cell development and analyzed the effect in a fetal thymic organ culture system. Evidence is presented that TCRβ selection in humans is initiated at the transition of the CD3−CD4+CD8− into the CD4+CD8+β− stage.
Collapse
|
28
|
TCR Gene Rearrangements and Expression of the Pre-T Cell Receptor Complex During Human T-Cell Differentiation. Blood 1999. [DOI: 10.1182/blood.v93.9.3033] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Recent studies have identified several populations of progenitor cells in the human thymus. The hematopoietic precursor activity of these populations has been determined. The most primitive human thymocytes express high levels of CD34 and lack CD1a. These cells acquire CD1a and differentiate into CD4+CD8+ through CD3−CD4+CD8− and CD3−CD4+CD8+β− intermediate populations. The status of gene rearrangements in the various TCR loci, in particular of TCRδ and TCRγ, has not been analyzed in detail. In the present study we have determined the status of TCR gene rearrangements of early human postnatal thymocyte subpopulations by Southern blot analysis. Our results indicate that TCRδ rearrangements initiate in CD34+CD1a− cells preceding those in the TCRγ and TCRβ loci that commence in CD34+CD1a+ cells. Furthermore, we have examined at which cellular stage TCRβ selection occurs in humans. We analyzed expression of cytoplasmic TCRβ and cell-surface CD3 on thymocytes that lack a mature TCRβ. In addition, we overexpressed a constitutive-active mutant of p56lckF505 by retrovirus-mediated gene transfer in sequential stages of T-cell development and analyzed the effect in a fetal thymic organ culture system. Evidence is presented that TCRβ selection in humans is initiated at the transition of the CD3−CD4+CD8− into the CD4+CD8+β− stage.
Collapse
|
29
|
von Boehmer H, Aifantis I, Feinberg J, Lechner O, Saint-Ruf C, Walter U, Buer J, Azogui O. Pleiotropic changes controlled by the pre-T-cell receptor. Curr Opin Immunol 1999; 11:135-42. [PMID: 10322152 DOI: 10.1016/s0952-7915(99)80024-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The construction of various gene-deficient mice has facilitated the understanding of the role of various receptors and signaling pathways that control the generation of alphabeta lineage cells. A predominant role is occupied by the pre-TCR, which not only generates large numbers of alphabeta lineage cells but also controls TCRbeta allelic exclusion as well as commitment to the gammadelta lineage versus the alphabeta lineage.
Collapse
MESH Headings
- Alleles
- Animals
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Humans
- Mice
- Protein Precursors/physiology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Antigen, T-Cell, gamma-delta/physiology
Collapse
Affiliation(s)
- H von Boehmer
- Institut Necker, INSERM U373, Faculté de Médecine Necker - Enfants Malades, 156 Rue de Vaugirard, F75730, Paris Cedex 15, France.
| | | | | | | | | | | | | | | |
Collapse
|