1
|
Piersma SJ, Li S, Wong P, Bern MD, Poursine-Laurent J, Yang L, Beckman DL, Parikh BA, Yokoyama WM. Expression of a single inhibitory member of the Ly49 receptor family is sufficient to license NK cells for effector functions. eLife 2025; 13:RP100218. [PMID: 40085489 PMCID: PMC11908779 DOI: 10.7554/elife.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Natural killer (NK) cells recognize target cells through germline-encoded activation and inhibitory receptors enabling effective immunity against viruses and cancer. The Ly49 receptor family in the mouse and killer immunoglobin-like receptor family in humans play a central role in NK cell immunity through recognition of major histocompatibility complex class I (MHC-I) and related molecules. Functionally, these receptor families are involved in the licensing and rejection of MHC-I-deficient cells through missing-self. The Ly49 family is highly polymorphic, making it challenging to detail the contributions of individual Ly49 receptors to NK cell function. Herein, we showed mice lacking expression of all Ly49s were unable to reject missing-self target cells in vivo, were defective in NK cell licensing, and displayed lower KLRG1 on the surface of NK cells. Expression of Ly49A alone on an H-2Dd background restored missing-self target cell rejection, NK cell licensing, and NK cell KLRG1 expression. Thus, a single inhibitory Ly49 receptor is sufficient to license NK cells and mediate missing-self in vivo.
Collapse
Affiliation(s)
- Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
- Siteman Cancer Center, Washington University School of MedicineSt LouisUnited States
| | - Shasha Li
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Pamela Wong
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Michael D Bern
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
- Division of Oncology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Jennifer Poursine-Laurent
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Diana L Beckman
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
2
|
Piersma SJ, Li S, Wong P, Bern MD, Poursine-Laurent J, Yang L, Beckman DL, Parikh BA, Yokoyama WM. Expression of a single inhibitory member of the Ly49 receptor family is sufficient to license NK cells for effector functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597367. [PMID: 38895234 PMCID: PMC11185686 DOI: 10.1101/2024.06.04.597367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Natural killer (NK) cells recognize target cells through germline-encoded activation and inhibitory receptors enabling effective immunity against viruses and cancer. The Ly49 receptor family in the mouse and killer immunoglobin-like receptor family in humans play a central role in NK cell immunity through recognition of MHC class I and related molecules. Functionally, these receptor families are involved in licensing and rejection of MHC-I-deficient cells through missing-self. The Ly49 family is highly polymorphic, making it challenging to detail the contributions of individual Ly49 receptors to NK cell function. Herein, we showed mice lacking expression of all Ly49s were unable to reject missing-self target cells in vivo, were defective in NK cell licensing, and displayed lower KLRG1 on the surface of NK cells. Expression of Ly49A alone on a H-2Dd background restored missing-self target cell rejection, NK cell licensing, and NK cell KLRG1 expression. Thus, a single inhibitory Ly49 receptor is sufficient to license NK cells and mediate missing-self in vivo.
Collapse
Affiliation(s)
- Sytse J. Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shasha Li
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pamela Wong
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael D. Bern
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Poursine-Laurent
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Diana L. Beckman
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bijal A. Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Harding J, Vintersten-Nagy K, Yang H, Tang JK, Shutova M, Jong ED, Lee JH, Massumi M, Oussenko T, Izadifar Z, Zhang P, Rogers IM, Wheeler MB, Lye SJ, Sung HK, Li C, Izadifar M, Nagy A. Immune-privileged tissues formed from immunologically cloaked mouse embryonic stem cells survive long term in allogeneic hosts. Nat Biomed Eng 2024; 8:427-442. [PMID: 37996616 PMCID: PMC11087263 DOI: 10.1038/s41551-023-01133-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/30/2023] [Indexed: 11/25/2023]
Abstract
The immunogenicity of transplanted allogeneic cells and tissues is a major hurdle to the advancement of cell therapies. Here we show that the overexpression of eight immunomodulatory transgenes (Pdl1, Cd200, Cd47, H2-M3, Fasl, Serpinb9, Ccl21 and Mfge8) in mouse embryonic stem cells (mESCs) is sufficient to immunologically 'cloak' the cells as well as tissues derived from them, allowing their survival for months in outbred and allogeneic inbred recipients. Overexpression of the human orthologues of these genes in human ESCs abolished the activation of allogeneic human peripheral blood mononuclear cells and their inflammatory responses. Moreover, by using the previously reported FailSafe transgene system, which transcriptionally links a gene essential for cell division with an inducible and cell-proliferation-dependent kill switch, we generated cloaked tissues from mESCs that served as immune-privileged subcutaneous sites that protected uncloaked allogeneic and xenogeneic cells from rejection in immune-competent hosts. The combination of cloaking and FailSafe technologies may allow for the generation of safe and allogeneically accepted cell lines and off-the-shelf cell products.
Collapse
Affiliation(s)
- Jeffrey Harding
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kristina Vintersten-Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Huijuan Yang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jean Kit Tang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Maria Shutova
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Eric D Jong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad Massumi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Tatiana Oussenko
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Zohreh Izadifar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Puzheng Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - ChengJin Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Mohammad Izadifar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Goodall KJ, Nguyen A, Sullivan LC, Andrews DM. The expanding role of murine class Ib MHC in the development and activation of Natural Killer cells. Mol Immunol 2018; 115:31-38. [PMID: 29789149 DOI: 10.1016/j.molimm.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/21/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
Abstract
Major Histocompatibility Complex-I (MHC-I) molecules can be divided into class Ia and class Ib, with three distinct class Ib families found in the mouse. These families are designated as Q, T and M and are largely unexplored in terms of their immunological function. Among the class Ib MHC, H2-T23 (Qa-1b) has been a significant target for Natural Killer (NK) cell research, owing to its homology with the human class Ib human leukocyte antigen (HLA)-E. However, recent data has indicated that members of the Q and M family of class Ib MHC also play a critical role in the development and regulation NK cells. Here we discuss the recent advances in the control of NK cells by murine class Ib MHC as a means to stimulate further exploration of these molecules.
Collapse
Affiliation(s)
- Katharine J Goodall
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Angela Nguyen
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Lucy C Sullivan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Daniel M Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
5
|
Viennois E, Pujada A, Zen J, Merlin D. Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease. Compr Physiol 2018; 8:731-760. [PMID: 29687900 DOI: 10.1002/cphy.c170032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs and couple substrate translocation to the movement of H+ , with the transmembrane electrochemical proton gradient providing the driving force. Peptide transporters are responsible for the (re)absorption of dietary and/or bacterial di- and tripeptides in the intestine and kidney and maintaining homeostasis of neuropeptides in the brain. These proteins additionally contribute to absorption of a number of pharmacologically important compounds. In this overview article, we have provided updated information on the structure, function, expression, localization, and activities of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4), and PhT2 (SLC15A3). Peptide transporters, in particular, PepT1 are discussed as drug-delivery systems in addition to their implications in health and disease. Particular emphasis has been placed on the involvement of PepT1 in the physiopathology of the gastrointestinal tract, specifically, its role in inflammatory bowel diseases. © 2018 American Physiological Society. Compr Physiol 8:731-760, 2018.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Adani Pujada
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jane Zen
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.,Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
6
|
How MR1 Presents a Pathogen Metabolic Signature to Mucosal-Associated Invariant T (MAIT) Cells. Trends Immunol 2017; 38:679-689. [DOI: 10.1016/j.it.2017.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/16/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022]
|
7
|
Anderson CK, Brossay L. The role of MHC class Ib-restricted T cells during infection. Immunogenetics 2016; 68:677-91. [PMID: 27368413 DOI: 10.1007/s00251-016-0932-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/22/2016] [Indexed: 01/02/2023]
Abstract
Even though major histocompatibility complex (MHC) class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Box G-B618, Providence, RI, 02912, USA.
| |
Collapse
|
8
|
Tetruashvily MM, Melson JW, Park JJ, Peng X, Boulanger LM. Expression and alternative splicing of classical and nonclassical MHCI genes in the hippocampus and neuromuscular junction. Mol Cell Neurosci 2016; 72:34-45. [PMID: 26802536 DOI: 10.1016/j.mcn.2016.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/01/2015] [Accepted: 01/15/2016] [Indexed: 01/25/2023] Open
Abstract
The major histocompatibility complex class I (MHCI) is a large gene family, with over 20 members in mouse. Some MHCIs are well-known for their critical roles in the immune response. Studies in mice which lack stable cell-surface expression of many MHCI proteins suggest that one or more MHCIs also play unexpected, essential roles in the establishment, function, and modification of neuronal synapses. However, there is little information about which genes mediate MHCI's effects in neurons. In this study, RT-PCR was used to simultaneously assess transcription of many MHCI genes in regions of the central and peripheral nervous system where MHCI has a known or suspected role. In the hippocampus, a part of the CNS where MHCI regulates synapse density, synaptic transmission, and plasticity, we found that more than a dozen MHCI genes are transcribed. Single-cell RT-PCR revealed that individual hippocampal neurons can express more than one MHCI gene, and that the MHCI gene expression profile of CA1 pyramidal neurons differs significantly from that of CA3 pyramidal neurons or granule cells of the dentate gyrus. MHCI gene expression was also assessed at the neuromuscular junction (NMJ), a part of the peripheral nervous system (PNS) where MHCI plays a role in developmental synapse elimination, aging-related synapse loss, and neuronal regeneration. Four MHCI genes are expressed at the NMJ at an age when synapse elimination is occurring in three different muscles. Several MHCI mRNA splice variants were detected in hippocampus, but not at the NMJ. Together, these results establish the first profile of MHCI gene expression at the developing NMJ, and demonstrate that MHCI gene expression is under tight spatial and temporal regulation in the nervous system. They also identify more than a dozen MHCIs that could play important roles in regulating synaptic transmission and plasticity in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Mazell M Tetruashvily
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States; Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08901, United States
| | - John W Melson
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States
| | - Joseph J Park
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States
| | - Xiaoyu Peng
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States; Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08544, United States
| | - Lisa M Boulanger
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States; Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08544, United States.
| |
Collapse
|
9
|
Chen L, Reyes-Vargas E, Dai H, Escobar H, Rudd B, Fairbanks J, Ho A, Cusick MF, Kumánovics A, Delgado J, He X, Jensen PE. Expression of the mouse MHC class Ib H2-T11 gene product, a paralog of H2-T23 (Qa-1) with shared peptide-binding specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:1427-39. [PMID: 24958902 PMCID: PMC4211609 DOI: 10.4049/jimmunol.1302048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mouse MHC class Ib gene H2-T11 is 95% identical at the DNA level to H2-T23, which encodes Qa-1, one of the most studied MHC class Ib molecules. H2-T11 mRNA was observed to be expressed widely in tissues of C57BL/6 mice, with the highest levels in thymus. To circumvent the availability of a specific mAb, cells were transduced with cDNA encoding T11 with a substituted α3 domain. Hybrid T11D3 protein was expressed at high levels similar to control T23D3 molecules on the surface of both TAP(+) and TAP(-) cells. Soluble T11D3 was generated by folding in vitro with Qa-1 determinant modifier, the dominant peptide presented by Qa-1. The circular dichroism spectrum of this protein was similar to that of other MHC class I molecules, and it was observed to bind labeled Qa-1 determinant modifier peptide with rapid kinetics. By contrast to the Qa-1 control, T11 tetramers did not react with cells expressing CD94/NKG2A, supporting the conclusion that T11 cannot replace Qa-1 as a ligand for NK cell inhibitory receptors. T11 also failed to substitute for Qa-1 in the presentation of insulin to a Qa-1-restricted T cell hybridoma. Despite divergent function, T11 was observed to share peptide-loading specificity with Qa-1. Direct analysis by tandem mass spectrometry of peptides eluted from T11D3 and T23D3 isolated from Hela cells demonstrated a diversity of peptides with a clear motif that was shared between the two molecules. Thus, T11 is a paralog of T23 encoding an MHC class Ib molecule that shares peptide-binding specificity with Qa-1 but differs in function.
Collapse
Affiliation(s)
- Lili Chen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | | | - Hu Dai
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | | | - Brant Rudd
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Jared Fairbanks
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Alexander Ho
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Mathew F Cusick
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Attila Kumánovics
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and ARUP Laboratories, Salt Lake City, UT 84112
| | - Julio Delgado
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and ARUP Laboratories, Salt Lake City, UT 84112
| | - Xiao He
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and
| | - Peter E Jensen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112; and ARUP Laboratories, Salt Lake City, UT 84112
| |
Collapse
|
10
|
Mir SA, Sharma S. Role of MHC class Ib molecule, H2-M3 in host immunity against tuberculosis. Vaccine 2013; 31:3818-25. [PMID: 23628242 DOI: 10.1016/j.vaccine.2013.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/22/2013] [Accepted: 04/01/2013] [Indexed: 01/21/2023]
Abstract
The MHC class I family comprises both classical (class Ia) and non-classical (class Ib) members. While the prime function of classical MHC class I molecules (MHC class Ia) is to present peptide antigens to pathogen-specific cytotoxic T cells, non-classical MHC-I (MHC class Ib) antigens perform diverse array of functions in both innate and adaptive immunity. Vaccines against intracellular pathogens such as Mycobacterium tuberculosis need to induce strong cellular immune responses. Recent studies have shown that MHC class I molecules play an important role in the protective immune response to M. tuberculosis infection. Both MHC Ia-restricted and MHC class Ib-restricted M. tuberculosis -reactive CD8(+) T cells have been identified in humans and mice, but their relative contributions to immunity is still uncertain. Unlike MHC class Ia-restricted CD8(+) T cells, MHC class Ib-restricted CD8(+) T cells are constitutively activated in naive animals and respond rapidly to infection challenge, hence filling the temporal gap between innate and adaptive immunity. The present review article summarizes the general host immunity against M. tuberculosis infection highlighting the possible role of MHC class Ib molecule, H2-M3 and their ligands (N-formylated peptides) in protection against tuberculosis.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India
| | | |
Collapse
|
11
|
PepT1 expressed in immune cells has an important role in promoting the immune response during experimentally induced colitis. J Transl Med 2013; 93:888-99. [PMID: 23797361 DOI: 10.1038/labinvest.2013.77] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/02/2013] [Accepted: 05/13/2013] [Indexed: 11/08/2022] Open
Abstract
We and others have shown that the dipeptide cotransporter PepT1 is expressed in immune cells, including macrophages that are in close contact with the lamina propria of the small and large intestines. In the present study, we used PepT1-knockout (KO) mice to explore the role played by PepT1 in immune cells during dextran sodium sulfate (DSS)-induced colitis. DSS treatment caused less severe body weight loss, diminished rectal bleeding, and less diarrhea in PepT1-KO mice than in wild-type (WT) animals. A histological examination of colonic sections revealed that the colonic architecture was less disrupted and the extent of immune cell infiltration into the mucosa and submucosa following DSS treatment was reduced in PepT1-KO mice compared with WT animals. Consistent with these results, the DSS-induced colitis increase in colonic myeloperoxidase activity was significantly less in PepT1-KO mice than in WT littermates. The colonic levels of mRNAs encoding the inflammatory cytokines CXCL1, interleukin (IL)-6, monocyte chemotactic protein-1, IL-12, and interferon-γ were significantly lower in DSS-treated PepT1-KO mice than in DSS-treated WT animals. Colonic immune cells from WT had significantly higher level of proinflammatory cytokines then PepT1 KO. In addition, we observed that knocking down the PepT1 expression decreases chemotaxis of immune cells recruited during intestinal inflammation. Antibiotic treatment before DSS-induced colitis eliminated the differential expression of inflammatory cytokines between WT and PepT1-KO mice. In conclusion, PepT1 in immune cells regulates the secretion of proinflammatory cytokines triggered by bacteria and/or bacterial products, and thus has an important role in the induction of colitis. PepT1 may transport small bacterial products, such as muramyl dipeptide and the tripeptide L-Ala-gamma-D-Glu-meso-DAP, into macrophages. These materials may be sensed by members of the nucleotide-binding site-leucine-rich repeat family of intracellular receptors, ultimately resulting in altered homeostasis of the intestinal microbiota.
Collapse
|
12
|
Lion J, Debuysscher V, Wlodarczyk A, Hodroge A, Serriari NE, Choteau L, Ouled-haddou H, Plistat M, Lassoued K, Lantz O, Treiner E. MR1B, a natural spliced isoform of the MHC-related 1 protein, is expressed as homodimers at the cell surface and activates MAIT cells. Eur J Immunol 2013; 43:1363-73. [DOI: 10.1002/eji.201242461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 01/15/2013] [Accepted: 02/26/2013] [Indexed: 01/08/2023]
|
13
|
|
14
|
Recognition of the nonclassical MHC class I molecule H2-M3 by the receptor Ly49A regulates the licensing and activation of NK cells. Nat Immunol 2012; 13:1171-7. [PMID: 23142773 DOI: 10.1038/ni.2468] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/05/2012] [Indexed: 12/26/2022]
Abstract
The development and function of natural killer (NK) cells is regulated by the interaction of inhibitory receptors of the Ly49 family with distinct peptide-laden major histocompatibility complex (MHC) class I molecules, although whether the Ly49 family is able bind to other MHC class I-like molecules is unclear. Here we found that the prototypic inhibitory receptor Ly49A bound the highly conserved nonclassical MHC class I molecule H2-M3 with an affinity similar to its affinity for H-2D(d). The specific recognition of H2-M3 by Ly49A regulated the 'licensing' of NK cells and mediated 'missing-self' recognition of H2-M3-deficient bone marrow. Host peptide-H2-M3 was required for optimal NK cell activity against experimental metastases and carcinogenesis. Thus, nonclassical MHC class I molecules can act as cognate ligands for Ly49 molecules. Our results provide insight into the various mechanisms that lead to NK cell tolerance.
Collapse
|
15
|
Ingersoll SA, Ayyadurai S, Charania MA, Laroui H, Yan Y, Merlin D. The role and pathophysiological relevance of membrane transporter PepT1 in intestinal inflammation and inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2012; 302:G484-92. [PMID: 22194420 PMCID: PMC3311434 DOI: 10.1152/ajpgi.00477.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/21/2011] [Indexed: 01/31/2023]
Abstract
Intestinal inflammation is characterized by epithelial disruption, leading to loss of barrier function and the recruitment of immune cells, including neutrophils. Although the mechanisms are not yet completely understood, interactions between environmental and immunological factors are thought to be critical in the initiation and progression of intestinal inflammation. In recent years, it has become apparent that the di/tripeptide transporter PepT1 may play an important role in the pathogenesis of such inflammation. In healthy individuals, PepT1 is primarily expressed in the small intestine and transports di/tripeptides for metabolic purposes. However, during chronic inflammation such as that associated with inflammatory bowel disease, PepT1 expression is upregulated in the colon, wherein the protein is normally expressed either minimally or not at all. Several recent studies have shown that PepT1 binds to and transports various bacterial di/tripeptides into colon cells, leading to activation of downstream proinflammatory responses via peptide interactions with innate immune receptors. In the present review, we examine the relationship between colonic PepT1-mediated peptide transport in the colon and activation of innate immune responses during disease. It is important to understand the mechanisms of PepT1 action during chronic intestinal inflammation to develop future therapies addressing inappropriate immune activation in the colon.
Collapse
Affiliation(s)
- Sarah A Ingersoll
- Center for Diagnostics & Therapeutics, Department of Biology, Georgia State University, Atlanta, 30302-5090, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Dalmasso G, Nguyen HTT, Ingersoll SA, Ayyadurai S, Laroui H, Charania MA, Yan Y, Sitaraman SV, Merlin D. The PepT1-NOD2 signaling pathway aggravates induced colitis in mice. Gastroenterology 2011; 141:1334-45. [PMID: 21762661 PMCID: PMC3186842 DOI: 10.1053/j.gastro.2011.06.080] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/02/2011] [Accepted: 06/29/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS The human di/tripeptide transporter human intestinal H-coupled oligonucleotide transporter (hPepT1) is abnormally expressed in colons of patients with inflammatory bowel disease, although its exact role in pathogenesis is unclear. We investigated the contribution of PepT1 to intestinal inflammation in mouse models of colitis and the involvement of the nucleotide-binding oligomerization domain 2 (NOD2) signaling pathway in the pathogenic activity of colonic epithelial hPepT1. METHODS Transgenic mice were generated in which hPepT1 expression was regulated by the β-actin or villin promoters; colitis was induced using 2,4,6-trinitrobenzene sulfonic acid (TNBS) or dextran sodium sulfate (DSS) and the inflammatory responses were assessed. The effects of NOD2 deletion in the hPepT1 transgenic mice also was studied to determine the involvement of the PepT1-NOD2 signaling pathway. RESULTS TNBS and DSS induced more severe levels of inflammation in β-actin-hPepT1 transgenic mice than wild-type littermates. Intestinal epithelial cell-specific hPepT1 overexpression in villin-hPepT1 transgenic mice increased the severity of inflammation induced by DSS, but not TNBS. Bone marrow transplantation studies showed that hPepT1 expression in intestinal epithelial cells and immune cells has an important role in the proinflammatory response. Antibiotics abolished the effect of hPepT1 overexpression on the inflammatory response in DSS-induced colitis in β-actin-hPepT1 and villin-hPepT1 transgenic mice, indicating that commensal bacteria are required to aggravate intestinal inflammation. Nod2-/-, β-actin-hPepT1 transgenic/Nod2-/-, and villin-hPepT1 transgenic/Nod2-/- littermates had similar levels of susceptibility to DSS-induced colitis, indicating that hPepT1 overexpression increased intestinal inflammation in a NOD2-dependent manner. CONCLUSIONS The PepT1-NOD2 signaling pathway is involved in aggravation of DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Guillaume Dalmasso
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chua WJ, Kim S, Myers N, Huang S, Yu L, Fremont DH, Diamond MS, Hansen TH. Endogenous MHC-related protein 1 is transiently expressed on the plasma membrane in a conformation that activates mucosal-associated invariant T cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:4744-50. [PMID: 21402896 DOI: 10.4049/jimmunol.1003254] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of mucosal-associated invariant T (MAIT) cells is dependent upon the class Ib molecule MHC-related protein 1 (MR1), commensal bacteria, and a thymus. Furthermore, recent studies have implicated MR1 presentation to MAIT cells in bacteria recognition, although the mechanism remains undefined. Surprisingly, however, surface expression of MR1 has been difficult to detect serologically, despite ubiquitous detection of MR1 transcripts and intracellular protein. In this article, we define a unique mAb capable of stabilizing endogenous mouse MR1 at the cell surface, resulting in enhanced mouse MAIT cell activation. Our results demonstrated that under basal conditions, endogenous MR1 transiently visits the cell surface, thus reconciling the aforementioned serologic and functional studies. Furthermore, using this approach, double-positive thymocytes, macrophages, and dendritic cells were identified as potential APCs for MAIT cell development and activation. Based on this pattern of MR1 expression, it is intriguing to speculate that constitutive expression of MR1 may be detrimental for maintenance of immune homeostasis in the gut and/or detection of pathogenic bacteria in mucosal tissues.
Collapse
Affiliation(s)
- Wei-Jen Chua
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cho H, Choi HJ, Xu H, Felio K, Wang CR. Nonconventional CD8+ T cell responses to Listeria infection in mice lacking MHC class Ia and H2-M3. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:489-98. [PMID: 21098224 PMCID: PMC3068915 DOI: 10.4049/jimmunol.1002639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells restricted to MHC class Ib molecules other than H2-M3 have been shown to recognize bacterial Ags. However, the contribution of these T cells to immune responses against bacterial infection is not well defined. To investigate the immune potential of MHC class Ib-restricted CD8(+) T cells, we have generated mice that lack both MHC class Ia and H2-M3 molecules (K(b-/-)D (b-/-)M3(-/-)). The CD8(+) T cells present in K(b-/-)D (b-/-)M3(-/-) mice display an activated surface phenotype and are able to secrete IFN-γ rapidly upon anti-CD3 and anti-CD28 stimulation. Although the CD8(+) T cell population is reduced in K(b-/-)D (b-/-)M3(-/-) mice compared with that in K(b-/-)D (b-/-) mice, this population retains the capacity to expand significantly in response to primary infection with the bacteria Listeria monocytogenes. However, K(b-/-)D (b-/-)M3(-/-) CD8(+) T cells do not expand upon secondary infection, similar to what has been observed for H2-M3-restricted T cells. CD8(+) T cells isolated from Listeria-infected K(b-/-)D (b-/-)M3(-/-) mice exhibit cytotoxicity and secrete proinflammatory cytokines in response to Listeria-infected APCs. These T cells are protective against primary Listeria infection, as Listeria-infected K(b-/-)D (b-/-)M3(-/-) mice exhibit reduced bacterial burden compared with that of infected β(2)-microglobulin-deficient mice that lack MHC class Ib-restricted CD8(+) T cells altogether. In addition, adoptive transfer of Listeria-experienced K(b-/-)D (b-/-)M3(-/-) splenocytes protects recipient mice against subsequent Listeria infection in a CD8(+) T cell-dependent manner. These data demonstrate that other MHC class Ib-restricted CD8(+) T cells, in addition to H2-M3-restricted T cells, contribute to antilisterial immunity and may contribute to immune responses against other intracellular bacteria.
Collapse
Affiliation(s)
| | | | | | - Kyrie Felio
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL 60611
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL 60611
| |
Collapse
|
19
|
Georgel P, Radosavljevic M, Macquin C, Bahram S. The non-conventional MHC class I MR1 molecule controls infection by Klebsiella pneumoniae in mice. Mol Immunol 2010; 48:769-75. [PMID: 21190736 DOI: 10.1016/j.molimm.2010.12.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/04/2010] [Accepted: 12/06/2010] [Indexed: 01/10/2023]
Abstract
As opposed to the well established role of MHC-linked, polymorphic, class I (MHC-I) genes in adaptive immunity, a universal role for non-conventional MHC-I is unknown, thus requiring a case-by-case study. The MHC unlinked, monomorphic, but β₂microglobulin (β₂m)-associated "MHC class I related" MR1 molecule interacts with a semi-invariant TCR. The pathophysiology of this interaction or more importantly of this peculiar MHC-I remains mostly unknown. Recently it was shown that β₂m deficient mice were more susceptible to infection by Klebsiella pneumoniae, a widely spread Gram-negative bacteria that causes diverse and often severe ailments in man. Here we demonstrate, using both an in vivo imaging system and survival tests, the increased susceptibility to K. pneumoniae (but not to several other Gram negative bacteria) of MR1 deficient mice. This is accompanied by a consequent change in body temperature and systemic cytokine profile. Hence MR1 controls K. pneumoniae infection in vivo.
Collapse
Affiliation(s)
- Philippe Georgel
- Laboratoire d'Immunogénétique Moléculaire Humaine, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Université de Strasbourg, 4 rue Kirschleger, 67085 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
20
|
Rosner C, Kruse PH, Lübke T, Walter L. Erratum to: rhesus macaque MHC class I molecules show differential subcellular localizations. Immunogenetics 2010; 62:409-18. [PMID: 20445972 PMCID: PMC3128699 DOI: 10.1007/s00251-010-0447-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The MHC class I gene family of rhesus macaques is characterised by considerable gene duplications. While a HLA-C-orthologous gene is absent, the Mamu-A and in particular the Mamu-B genes have expanded, giving rise to plastic haplotypes with differential gene content. Although some of the rhesus macaque MHC class I genes are known to be associated with susceptibility/resistance to infectious diseases, the functional significance of duplicated Mamu-A and Mamu-B genes and the expression pattern of their encoded proteins are largely unknown. Here, we present data of the subcellular localization of AcGFP-tagged Mamu-A and Mamu-B molecules. We found strong cell surface and low intracellular expression for Mamu-A1, Mamu-A2 and Mamu-A3-encoded molecules as well as for Mamu-B*01704, Mamu-B*02101, Mamu-B*04801, Mamu-B*06002 and Mamu-B*13401. In contrast, weak cell surface and strong intracellular expression was seen for Mamu-A4*1403, Mamu-B*01202, Mamu-B*02804, Mamu-B*03002, Mamu-B*05704, Mamu-I*010201 and Mamu-I*0121. The different expression patterns were assigned to the antigen-binding alpha1 and alpha2 domains, suggesting failure of peptide binding is responsible for retaining 'intracellular' Mamu class I molecules in the endoplasmic reticulum. These findings indicate a diverse functional role of the duplicated rhesus macaque MHC class I genes.
Collapse
Affiliation(s)
- Cornelia Rosner
- Abteilung Primatengenetik, Deutsches Primatenzentrum-Leibniz, Institut für Primatenforschung, Kellnerweg 4, 37077, Göttingen, Germany
| | | | | | | |
Collapse
|
21
|
Rosner C, Kruse PH, Lübke T, Walter L. Rhesus macaque MHC class I molecules show differential subcellular localizations. Immunogenetics 2010; 62:149-58. [PMID: 20151120 PMCID: PMC2827799 DOI: 10.1007/s00251-010-0424-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 01/18/2010] [Indexed: 11/16/2022]
Abstract
The MHC class I gene family of rhesus macaques is characterised by considerable gene duplications. While a HLA-C-orthologous gene is absent, the Mamu-A and in particular the Mamu-B genes have expanded, giving rise to plastic haplotypes with differential gene content. Although some of the rhesus macaque MHC class I genes are known to be associated with susceptibility/resistance to infectious diseases, the functional significance of duplicated Mamu-A and Mamu-B genes and the expression pattern of their encoded proteins are largely unknown. Here, we present data of the subcellular localization of AcGFP-tagged Mamu-A and Mamu-B molecules. We found strong cell surface and low intracellular expression for Mamu-A1, Mamu-A2 and Mamu-A3-encoded molecules as well as for Mamu-B*01704, Mamu-B*02101, Mamu-B*04801, Mamu-B*06002 and Mamu-B*13401. In contrast, weak cell surface and strong intracellular expression was seen for Mamu-A4*1403, Mamu-B*01202, Mamu-B*02804, Mamu-B*03002, Mamu-B*05704, Mamu-I*010201 and Mamu-I*0121. The different expression patterns were assigned to the antigen-binding α1 and α2 domains, suggesting failure of peptide binding is responsible for retaining ‘intracellular’ Mamu class I molecules in the endoplasmic reticulum. These findings indicate a diverse functional role of the duplicated rhesus macaque MHC class I genes.
Collapse
Affiliation(s)
- Cornelia Rosner
- Abteilung Primatengenetik, Deutsches Primatenzentrum--Leibniz Institut für Primatenforschung, Kellnerweg 4, 37077, Göttingen, Germany
| | | | | | | |
Collapse
|
22
|
Itsumi M, Yoshikai Y, Yamada H. IL-15 is critical for the maintenance and innate functions of self-specific CD8(+) T cells. Eur J Immunol 2009; 39:1784-93. [PMID: 19544306 DOI: 10.1002/eji.200839106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
IL-15 is a pleiotropic cytokine involved in host defense as well as autoimmunity. IL-15-deficient mice show a decrease of memory phenotype (MP) CD8(+) T cells, which develop naturally in naïve mice and whose origin is unclear. It has been shown that self-specific CD8(+) T cells developed in male H-Y antigen-specific TCR transgenic mice share many similarities with naturally occurring MP CD8(+) T cells in normal mice. In this study, we found that H-Y antigen-specific CD8(+) T cells in male but not female mice decreased when they were crossed with IL-15-deficient mice, mainly due to impaired peripheral maintenance. The self-specific TCR transgenic CD8(+) T cells developed in IL-15-deficient mice showed altered surface phenotypes and reduced effector functions ex vivo. Bystander activation of the self-specific CD8(+) T cells was induced in vivo during infection with Listeria monocytogenes, in which proliferation but not IFN-gamma production was IL-15-dependent. These results indicated important roles for IL-15 in the maintenance and functions of self-specific CD8(+) T cells, which may be included in the naturally occurring MP CD8(+) T-cell population in naïve normal mice and participate in innate host defense responses.
Collapse
Affiliation(s)
- Momoe Itsumi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
23
|
MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 2009; 9:503-13. [PMID: 19498380 DOI: 10.1038/nri2575] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus-host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.
Collapse
|
24
|
Hansen T, Myers N. Peptide induction of surface expression of class I MHC. ACTA ACUST UNITED AC 2008; Chapter 18:Unit 18.11. [PMID: 18432904 DOI: 10.1002/0471142735.im1811s57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This unit describes a method for comparing the relative binding of different peptides to the same MHC class I (MHC-I) molecule using live cells. Live cells expressing suboptimally loaded MHC-I proteins are incubated with medium containing diluted amounts of synthetic peptides to be tested for binding to class I. After overnight incubation with peptide, surface class I expression is monitored by flow cytometry using an allele-specific MAb. Relative binding affinity of peptide reliably correlates with the amount of surface induction of the class I molecule to which it specifically binds. The mechanistic basis of this assay is that surface MHC-I molecules become conformationally unstable shortly after peptide dissociation. However, the binding of an exogenous peptide can stabilize the surface class I molecule, prevent conformational instability, and thus increase class I surface expression in an allele-specific manner.
Collapse
Affiliation(s)
- Ted Hansen
- Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
25
|
Genetic and proteomic analysis of the MHC class I repertoire from four ovine haplotypes. Immunogenetics 2008; 60:177-84. [PMID: 18270697 DOI: 10.1007/s00251-008-0276-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
Abstract
Immunity to livestock diseases can be studied directly in the target animal, but its elucidation is often constrained by the lack of major histocompatibility complex (MHC)-defined animals. To address this issue, we have established an MHC-defined sheep resource flock generated around four diverse MHC haplotypes. Initial characterisation of the repertoire of transcribed MHC class I genes identified three class I transcripts associated with each haplotype. Nucleotide sequence, transcript abundance and phylogenetic analysis indicated that they represent alleles at up to four polymorphic loci that vary in number between the different haplotypes. The functional significance of each of these genes is evaluated here using complementary molecular genetic and proteomic approaches. We determine which genes give rise to proteins that localise to the surface of transfected cells. In addition, we provide data to support the generation of expressed products, based on immunoprecipitation of class I products from animals homozygous for each of the four MHC haplotypes followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This provides a clearer picture of the number of MHC class I loci in sheep and allows more rational prediction of their classical (class Ia) or non-classical (class Ib) nature. On the basis of the cellular localisation, phylogenetic and transcriptional analyses, we propose that the ovine MHC comprises a minimum of eight class I loci, with considerable variation between haplotypes.
Collapse
|
26
|
Aldemir H. Novel MHC class I-related molecule MR1 affects MHC class I expression in 293T cells. Biochem Biophys Res Commun 2008; 366:328-34. [DOI: 10.1016/j.bbrc.2007.11.156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 11/14/2007] [Indexed: 11/25/2022]
|
27
|
Tvinnereim A, Wizel B. CD8+ T cell protective immunity against Chlamydia pneumoniae includes an H2-M3-restricted response that is largely CD4+ T cell-independent. THE JOURNAL OF IMMUNOLOGY 2007; 179:3947-57. [PMID: 17785832 DOI: 10.4049/jimmunol.179.6.3947] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8+ T cells are important for immunity to the intracellular bacterial pathogen Chlamydia pneumoniae (Cpn). Recently, we reported that type 1 CD8+ (Tc1) from Cpn-infected B6 mice recognize peptides from multiple Cpn Ags in a classical MHC class Ia-restricted fashion. In this study, we show that Cpn infection also induces nonclassical MHC class Ib-(H2-M3)-restricted CD8+ T cell responses. H2-M3-binding peptides representing the N-terminal formylated sequences from five Cpn Ags sensitized target cells for lysis by cytolytic effectors from the spleens of infected B6 mice. Of these, only peptides fMFFAPL (P1) and fMLYWFL (P4) stimulated IFN-gamma production by infection-primed splenic and pulmonary CD8+ T cells. Studies with Cpn-infected Kb-/-/Db-/- mice confirmed the Tc1 cytokine profile of P1- and P4-specific CD8+ T cells and revealed the capacity of these effectors to exert in vitro H2-M3-restricted lysis of Cpn-infected macrophages and in vivo pulmonary killing of P1- and P4-coated splenocytes. Furthermore, adoptive transfer of P1- and P4-specific CD8+ T cells into naive Kb-/-/Db-/- mice reduced lung Cpn loads following challenge. Finally, we show that in the absence of MHC class Ia-restricted CD8+ T cell responses, CD4+ T cells are largely expendable for the control of Cpn growth, and for the generation, memory maintenance, and secondary expansion of P1- and P4-specific CD8+ T cells. These results suggest that H2-M3-restricted CD8+ T cells contribute to protective immunity against Cpn, and that chlamydial Ags presented by MHC class Ib molecules may represent novel targets for inclusion in anti-Cpn vaccines.
Collapse
Affiliation(s)
- Amy Tvinnereim
- Department of Microbiology and Immunology, University of Texas Health Center, Tyler, TX 75708, USA
| | | |
Collapse
|
28
|
Hansen TH, Huang S, Arnold PL, Fremont DH. Patterns of nonclassical MHC antigen presentation. Nat Immunol 2007; 8:563-8. [PMID: 17514210 DOI: 10.1038/ni1475] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The identification of pattern-recognition receptors that selectively respond to evolutionarily conserved chemical (often pathogen-derived) moieties has provided key insight into how innate immune cells facilitate rapid and relatively specific antimicrobial immune activity. In contrast, relatively slower adaptive immune responses rely on T cell clonal expansion that develops in response to variable peptides bound to the groove of classical major histocompatibility complex (MHC) proteins. For certain nonclassical 'MHC-like' class Ib proteins, such as H2-M3 and CD1d, their respective binding grooves seem to have been adapted to present to T cells unique molecular patterns analogous to those involved in innate signaling. Here we propose that another MHC class Ib protein, MR1, which is required for the gut flora-dependent development of mucosa-associated invariant T cells, presents either a microbe-produced or a microbe-induced pattern.
Collapse
Affiliation(s)
- Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
29
|
Doi T, Yamada H, Yajima T, Wajjwalku W, Hara T, Yoshikai Y. H2-M3-restricted CD8+ T cells induced by peptide-pulsed dendritic cells confer protection against Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2007; 178:3806-13. [PMID: 17339479 DOI: 10.4049/jimmunol.178.6.3806] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One of the oligopolymorphic MHC class Ib molecules, H2-M3, presents N-formylated peptides derived from bacteria. In this study, we tested the ability of an H2-M3-binding peptide, TB2, to induce protection in C57BL/6 mice against Mycobacterium tuberculosis. Immunization with bone marrow-derived dendritic cell (BMDC) pulsed with TB2 or a MHC class Ia-binding peptide, MPT64(190-198) elicited an expansion of Ag-specific CD8+ T cells in the spleen and the lung. The number of TB2-specific CD8+ T cells reached a peak on day 6, contracted with kinetics similar to MPT64(190-198)-specific CD8+ T cells and was maintained at an appreciable level for at least 60 days. The TB2-specific CD8+ T cells produced less effector cytokines but have stronger cytotoxic activity than MPT64(190-198)-specific CD8+ T cells. Mice immunized with TB2-pulsed BMDC as well as those with MPT64(190-198)-pulsed BMDC showed significant protection against an intratracheal challenge with M. tuberculosis H37Rv. However, histopathology of the lung in mice immunized with TB2-pulsed BMDC was different from mice immunized with MPT64(190-198)-pulsed BMDC. Our results suggest that immunization with BMDC pulsed with MHC class Ib-restricted peptides would be a useful vaccination strategy against M. tuberculosis.
Collapse
Affiliation(s)
- Takehiko Doi
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Colmone A, Wang CR. H2-M3-restricted T cell response to infection. Microbes Infect 2006; 8:2277-83. [PMID: 16824777 DOI: 10.1016/j.micinf.2006.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 03/01/2006] [Indexed: 12/13/2022]
Abstract
H2-M3 is a major histocompatibility complex class Ib molecule that presents N-formylated peptides to specific CD8+ T cells. Prokaryotic, but not eukaryotic, translation begins with the addition of N-formyl methionine, suggesting a role for these H2-M3-restricted T cells in response to bacterial infection. Indeed, these cells constitute a non-redundant "early" component of anti-microbial response.
Collapse
Affiliation(s)
- Angela Colmone
- Department of Pathology, University of Chicago, JFK R422 924 E 57th St., Chicago, IL 60637, USA
| | | |
Collapse
|
31
|
Charrier L, Merlin D. The oligopeptide transporter hPepT1: gateway to the innate immune response. J Transl Med 2006; 86:538-46. [PMID: 16652110 DOI: 10.1038/labinvest.3700423] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bacterial products that are normally present in the lumen of the colon, such as N-formylated peptides and muramyl-dipeptide, are important for inducing the development of mucosal inflammation. The intestinal dipeptide transporter, hPepT1, which is expressed in inflamed but not in noninflamed colonic epithelial cells, mediates the transport of these bacterial products into the cytosol of colonic epithelial cells. The small bacterial peptides subsequently induce an inflammatory response, including the induction of MHC class I molecules expression and cytokines secretion, via the activation of nucleotide-binding site and leucine-rich repeat (NBS-LRR) proteins, for example NOD2, and activation of NF-kappaB. Subsequent secretion of chemoattractants by colonic epithelial cells induces the movement of neutrophils through the underlying matrix, as well as across the epithelium. These bacterial products can also reach the lamina propria through the paracellular pathway and across the basolateral membrane of epithelial cells. As a consequence, small formylated peptides can interact directly with immune cells through specific membrane receptors. Since immune cells, including macrophages, also express hPepT1, they can transport small bacterial peptides into the cytosol where these may interact with the NBS-LRR family of intracellular receptors. As in intestinal epithelial cells, the presence of these small bacterial peptides in immune cells may trigger immune response activation.
Collapse
Affiliation(s)
- Laetitia Charrier
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | |
Collapse
|
32
|
Xu H, Chun T, Choi HJ, Wang B, Wang CR. Impaired response to Listeria in H2-M3-deficient mice reveals a nonredundant role of MHC class Ib-specific T cells in host defense. J Exp Med 2006; 203:449-59. [PMID: 16476767 PMCID: PMC2118219 DOI: 10.1084/jem.20051866] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 01/19/2006] [Indexed: 11/04/2022] Open
Abstract
The major histocompatibility complex (MHC) class Ib molecule H2-M3 primes the rapid expansion of CD8+ T cells by presenting N-formylated bacterial peptides. However, the significance of H2-M3-restricted T cells in host defense against bacteria is unclear. We generated H2-M3-deficient mice to investigate the role of H2-M3 in immunity against Listeria monocytogenes (LM), a model intracellular bacterial pathogen. H2-M3-deficient mice are impaired in early bacterial clearance during primary infection, with diminished LM-specific CD8+ T cell responses and compromised innate immune functions. Although H2-M3-restricted CD8+ T cells constitute a significant proportion of the anti-listerial CD8+ T cell repertoire, the kinetics and magnitude of MHC class Ia-restricted T cell responses are not altered in H2-M3-deficient mice. The fact that MHC class Ia-restricted responses cannot compensate for the H2-M3-mediated immunity suggests a nonredundant role of H2-M3 in the protective immunity against LM. Thus, the early H2-M3-restricted response temporally bridges the gap between innate and adaptive immune responses, subsequently affecting the function of both branches of the immune system.
Collapse
Affiliation(s)
- Honglin Xu
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
33
|
Hansen TH, Lybarger L, Yu L, Mitaksov V, Fremont DH. Recognition of open conformers of classical MHC by chaperones and monoclonal antibodies. Immunol Rev 2005; 207:100-11. [PMID: 16181330 DOI: 10.1111/j.0105-2896.2005.00315.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is considerable evidence that the conformation and stability of class I and class II major histocompatibility complex (MHC) proteins is dependent upon high-affinity peptide ligation, but structural data for an empty MHC protein unfortunately is lacking. However, several monoclonal antibodies (mAbs) that specifically detect open MHC conformers have been characterized, and they provide insights into the changes associated with peptide loading and unloading. Here, the structural changes make the argument that certain of these open conformer-specific mAbs recognize analogous MHC segments as the molecular chaperones tapasin and DM. MHC residues located in regions flanking the peptide-terminal anchoring pockets have been implicated in both chaperone and monoclonal antibody binding. Indeed, we propose these regions serve as peptide-binding hinges that are uniquely accessible in open MHC.
Collapse
Affiliation(s)
- Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
34
|
Battersby BJ, Redpath ME, Shoubridge EA. Mitochondrial DNA segregation in hematopoietic lineages does not depend on MHC presentation of mitochondrially encoded peptides. Hum Mol Genet 2005; 14:2587-94. [PMID: 16049030 DOI: 10.1093/hmg/ddi293] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) are associated with a broad spectrum of clinical disorders. The segregation pattern of pathogenic mtDNAs is an important determinant of both the onset and the severity of the disease phenotype, but the mechanisms controlling mtDNA segregation remain poorly understood. To investigate this, we previously generated heteroplasmic mice containing two different mtDNA haplotypes and showed that BALB/c mtDNA was invariably selected over NZB mtDNA in blood and spleen. Here, we have characterized this process in hematopoietic tissues and tested whether it involves the presentation of mtDNA-encoded peptides by MHC class Ib molecules. Selection against NZB mtDNA was widespread across different hematopoietic cell lineages and proportional to heteroplasmy levels. Backcrossing heteroplasmic mice with CAST/Ei, a strain in which the MHC class Ib molecule H2-M3 is silent, completely abolished selection against NZB mtDNA in the spleen. To test whether this effect depended on an intact immune system, we generated heteroplasmic mice missing functional copies of Tap1, beta2m or Rag1 to impair presentation or recognition of mtDNA-encoded peptides. The kinetics of selection against NZB mtDNA were unaltered in these mice compared with their wild-type littermates. We conclude that mtDNA selection in hematopoietic tissues is not based on an immune mechanism, but likely involves metabolic signaling.
Collapse
Affiliation(s)
- Brendan J Battersby
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
35
|
Sanchez DJ, Gumperz JE, Ganem D. Regulation of CD1d expression and function by a herpesvirus infection. J Clin Invest 2005; 115:1369-78. [PMID: 15864354 PMCID: PMC1087176 DOI: 10.1172/jci24041] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 03/01/2005] [Indexed: 12/23/2022] Open
Abstract
Little is known about the role of CD1d-restricted T cells in antiviral immune responses. Here we show that the lytic replication cycle of the Kaposi sarcoma-associated herpesvirus (KSHV) promotes downregulation of cell-surface CD1d. This is caused by expression of the 2 modulator of immune recognition (MIR) proteins of the virus, each of which promotes the loss of surface CD1d expression following transfection into uninfected cells. Inhibition of CD1d surface expression is due to ubiquitination of the CD1d alpha-chain on a unique lysine residue in its cytoplasmic tail, which triggers endocytosis. Unlike MIR-mediated MHC class I downregulation, however, CD1d downregulation does not appear to include accelerated lysosomal degradation. MIR2-induced downregulation of CD1d results in reduced activation of CD1d-restricted T cells in vitro. KSHV modulation of CD1d expression represents a strategy for viral evasion of innate host immune responses and implicates CD1d-restricted T cells as regulators of this viral infection.
Collapse
Affiliation(s)
- David Jesse Sanchez
- George Williams Hooper Foundation, University of California, San Francisco, 94143, USA
| | | | | |
Collapse
|
36
|
Abstract
Our understanding of the classical MHC class I molecules (MHC class Ia molecules) has long focused on their extreme polymorphism. These molecules present peptides to T cells and are central to discrimination between self and non-self. By contrast, the functions of the non-polymorphic MHC class I molecules (MHC class Ib molecules) have been elusive, but emerging evidence reveals that, in addition to antigen presentation, MHC class Ib molecules are involved in immunoregulation. As we discuss here, the subset of MHC class Ib molecules that presents peptides to T cells bridges innate and acquired immunity, and this provides insights into the origins of acquired immunity.
Collapse
Affiliation(s)
- John R Rodgers
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
37
|
Sanchez DJ, Gumperz JE, Ganem D. Regulation of CD1d expression and function by a herpesvirus infection. J Clin Invest 2005. [DOI: 10.1172/jci200524041] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
38
|
Wang X, Connors R, Harris MR, Hansen TH, Lybarger L. Requirements for the selective degradation of endoplasmic reticulum-resident major histocompatibility complex class I proteins by the viral immune evasion molecule mK3. J Virol 2005; 79:4099-108. [PMID: 15767411 PMCID: PMC1061547 DOI: 10.1128/jvi.79.7.4099-4108.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent studies suggest that certain viral proteins co-opt endoplasmic reticulum (ER) degradation pathways to prevent the surface display of major histocompatibility complex class I molecules to the immune system. A novel example of such a molecule is the mK3 protein of gammaherpesvirus 68. mK3 belongs to an extensive family of structurally similar viral and cellular proteins that function as ubiquitin ligases using a conserved RING-CH domain. In the specific case of mK3, it selectively targets the rapid degradation of nascent class I heavy chains in the ER while they are associated with the class I peptide-loading complex (PLC). We present here evidence that the PLC imposes a relative proximity and/or orientation on the RING-CH domain of mK3 that is required for it to specifically target class I molecules for degradation. Furthermore, we demonstrate that full assembly of class I molecules with peptide is not a prerequisite for mK3-mediated degradation. Surprisingly, although the cytosolic tail of class I is required for rapid mK3-mediated degradation, we observed that a class I mutant lacking lysine residues in its cytosolic tail was ubiquitinated and degraded in the presence of mK3 in a manner indistinguishable from wild-type class I molecules. These findings are consistent with a "partial dislocation" model for turnover of ER proteins and define some common features of ER degradation pathways initiated by structurally distinct herpesvirus proteins.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
39
|
Huang S, Gilfillan S, Cella M, Miley MJ, Lantz O, Lybarger L, Fremont DH, Hansen TH. Evidence for MR1 antigen presentation to mucosal-associated invariant T cells. J Biol Chem 2005; 280:21183-93. [PMID: 15802267 DOI: 10.1074/jbc.m501087200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The novel class Ib molecule MR1 is highly conserved in mammals, particularly in its alpha1/alpha2 domains. Recent studies demonstrated that MR1 expression is required for development and expansion of a small population of T cells expressing an invariant T cell receptor (TCR) alpha chain called mucosal-associated invariant T (MAIT) cells. Despite these intriguing properties it has been difficult to determine whether MR1 expression and MAIT cell recognition is ligand-dependent. To address these outstanding questions, monoclonal antibodies were produced in MR1 knock-out mice immunized with recombinant MR1 protein, and a series of MR1 mutations were generated at sites previously shown to disrupt the ability of class Ia molecules to bind peptide or TCR. Here we show that 1) MR1 molecules are detected by monoclonal antibodies in either an open or folded conformation that correlates precisely with peptide-induced conformational changes in class Ia molecules, 2) only the folded MR1 conformer activated 2/2 MAIT hybridoma cells tested, 3) the pattern of MAIT cell activation by the MR1 mutants implies the MR1/TCR orientation is strikingly similar to published major histocompatibility complex/alphabetaTCR engagements, 4) all the MR1 mutations tested and found to severely reduce surface expression of folded molecules were located in the putative ligand binding groove, and 5) certain groove mutants of MR1 that are highly expressed on the cell surface disrupt MAIT cell activation. These combined data strongly support the conclusion that MR1 has an antigen presentation function.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
D'Orazio SEF, Velasquez M, Roan NR, Naveiras-Torres O, Starnbach MN. The Listeria monocytogenes lemA gene product is not required for intracellular infection or to activate fMIGWII-specific T cells. Infect Immun 2004; 71:6721-7. [PMID: 14638756 PMCID: PMC308916 DOI: 10.1128/iai.71.12.6721-6727.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clearance of the intracellular bacterial pathogen Listeria monocytogenes requires antigen-specific CD8(+) T cells. Recently it was shown that activation of class Ib major histocompatibility complex (MHC)-restricted CD8(+) T cells alone is sufficient for immune protection against listeriae. A major component of the class Ib MHC-restricted T-cell response is T cells that recognize formylated peptide antigens presented by M3 molecules. Although three N-formylated peptides derived from L. monocytogenes are known to bind to M3 molecules, fMIGWII is the immunodominant epitope presented by M3 during infection of mice. The source of fMIGWII peptide is the L. monocytogenes lemA gene, which encodes a 30-kDa protein of unknown function. In this report, we describe the generation of two L. monocytogenes lemA deletion mutants. We show that lemA is not required for growth of listeriae in tissue culture cells or for virulence during infection of mice. Surprisingly, we found that fMIGWII-specific T cells were still primed following infection with lemA mutant listeriae, suggesting that L. monocytogenes contains at least one additional antigen that is cross-reactive with the fMIGWII epitope. This cross-reactive antigen appears to be a small protease-resistant molecule that is secreted by L. monocytogenes.
Collapse
Affiliation(s)
- Sarah E F D'Orazio
- Department of Microbiology & Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
CD8 T cells respond to viral infections but also participate in defense against bacterial and protozoal infections. In the last few years, as new methods to accurately quantify and characterize pathogen-specific CD8 T cells have become available, our understanding of in vivo T cell responses has increased dramatically. Pathogen-specific T cells, once thought to be quite rare following infection, are now known to be present at very high frequencies, particularly in peripheral, nonlymphoid tissues. With the ability to visualize in vivo CD8 T cell responses has come the recognition that T cell expansion is programmed and, to a great extent, independent of antigen concentrations. Comparison of CD8 T cell responses to different pathogens also highlights the intricate relationship between microbially induced innate inflammatory responses and the kinetics, magnitude, and character of long-term T cell responses. This review describes recent progress in some of the major murine models of CD8 T cell-mediated immunity to viral, bacterial, and protozoal infection.
Collapse
Affiliation(s)
- Phillip Wong
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
42
|
Miley MJ, Truscott SM, Yu YYL, Gilfillan S, Fremont DH, Hansen TH, Lybarger L. Biochemical features of the MHC-related protein 1 consistent with an immunological function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6090-8. [PMID: 12794138 DOI: 10.4049/jimmunol.170.12.6090] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
MHC-related protein (MR)1 is an MHC class I-related molecule encoded on chromosome 1 that is highly conserved among mammals and is more closely related to classical class I molecules than are other nonclassical class I family members. In this report, we show for the first time that both mouse and human MR1 molecules can associate with the peptide-loading complex and can be detected at low levels at the surface of transfected cells. We also report the production of recombinant human MR1 molecules in insect cells using highly supplemented media and provide evidence that the MR1 H chain can assume a folded conformation and is stoichiometrically associated with beta(2)-microglobulin, similar to class I molecules. Cumulatively, these findings demonstrate that surface expression of MR1 is possible but may be limited by a specific ligand or associated molecule.
Collapse
Affiliation(s)
- Michael J Miley
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kurepa Z, Su J, Forman J. Memory phenotype of CD8+ T cells in MHC class Ia-deficient mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5414-20. [PMID: 12759416 DOI: 10.4049/jimmunol.170.11.5414] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B6.K(b-)D(b-) mice are devoid of class Ia but express normal levels of class Ib molecules. They have low levels of CD8 T cells in both the thymus as well as peripheral T cell compartments. Although the percentage of splenic CD8 alpha alpha T cells is increased in these animals, approximately 90% of CD8 T cells are CD8 alpha beta. In contrast to B6 animals, most of the CD8 T cells from these mice have a memory phenotype (CD44(high)CD122(high) CD62L(low)) including both CD8 alpha beta and CD8 alpha alpha subsets. In the thymus of B6.K(b-)D(b-) animals, there is a decrease in the percentage of SP CD8 T cells, although most are CD44(low), similar to that seen in B6 mice. The spleens from day 1-old B6 and B6.K(b-)D(b-) mice have a relatively high proportion of CD44(high)CD62L(low) CD8 T cells. However, by day 28 most CD8 T cells in B6 mice have a naive phenotype while in B6.K(b-)D(b-) mice the memory phenotype remains. Unlike CD44(high) cells that are found in B6 animals, most CD44(high) cells from B6.K(b-)D(b-) mice do not secrete IFN-gamma rapidly upon activation. The paucity of CD8 T cells in B6.K(b-)D(b-) mice might be due in part to their inability to undergo homeostatic expansion. Consistent with this, we found that CD8 T cells from these animals expand poorly in X-irradiated syngeneic hosts compared with B6 CD8 T cells that respond to class Ia Ags. We examined homeostatic expansion of B6 CD8 T cells in single as well as double class Ia knockout mice and were able to estimate the fraction of cells reactive against class Ia vs class Ib molecules.
Collapse
Affiliation(s)
- Zoran Kurepa
- Center for Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
44
|
Kerksiek KM, Ploss A, Leiner I, Busch DH, Pamer EG. H2-M3-restricted memory T cells: persistence and activation without expansion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1862-9. [PMID: 12574352 DOI: 10.4049/jimmunol.170.4.1862] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
H2-M3-restricted T cells respond more rapidly to primary Listeria monocytogenes infection than conventional MHC class Ia-restricted T cells. Reinfection with L. monocytogenes, while inducing explosive proliferation of H2-K(d)-restricted T cells, does not stimulate significant expansion of H2-M3-restricted CTL. These disparate responses to reinfection are apparent within 5 days of primary L. monocytogenes infection. However, H2-M3-restricted memory T cells are generated, and are indistinguishable from classically restricted T cells in terms of cell surface memory markers and longevity. Early responses of H2-M3- and H2-K(d)-restricted memory T cells to reinfection are similar, with increases in size and expression of activation markers. Interestingly, priming of H2-M3-restricted T cells with an L. monocytogenes-derived N-formyl peptide plus anti-CD40 generates memory T cells that expand upon re-exposure to Ag during L. monocytogenes infection. Our data indicate that disparate H2-M3- and MHC class Ia-restricted memory T cell responses reflect intrinsic differences between these T cell populations. Although distinct proliferative programs appear to be hardwired in these populations during primary L. monocytogenes infection, under different inflammatory circumstances M3-restricted T cell populations can maintain the ability to expand upon re-exposure to Ag.
Collapse
Affiliation(s)
- Kristen M Kerksiek
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
45
|
Kang SJ, Cresswell P. Calnexin, calreticulin, and ERp57 cooperate in disulfide bond formation in human CD1d heavy chain. J Biol Chem 2002; 277:44838-44. [PMID: 12239218 DOI: 10.1074/jbc.m207831200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the CD1 family of membrane glycoproteins can present antigenic lipids to T lymphocytes. Like major histocompatibility complex class I molecules, they form a heterodimeric complex of a heavy chain and beta(2)-microglobulin (beta(2)m) in the endoplasmic reticulum (ER). Binding of lipid antigens, however, takes place in endosomal compartments, similar to class II molecules, and on the plasma membrane. Unlike major histocompatibility complex class I or CD1b molecules, which need beta(2)m to exit the ER, CD1d can be expressed on the cell surface as either a free heavy chain or associated with beta(2)m. These differences led us to investigate early events of CD1d biosynthesis and maturation and the role of ER chaperones in its assembly. Here we show that CD1d associates in the ER with both calnexin and calreticulin and with the thiol oxidoreductase ERp57 in a manner dependent on glucose trimming of its N-linked glycans. Complete disulfide bond formation in the CD1d heavy chain was substantially impaired if the chaperone interactions were blocked by the glucosidase inhibitors castanospermine or N-butyldeoxynojirimycin. The formation of at least one of the disulfide bonds in the CD1d heavy chain is coupled to its glucose trimming-dependent association with ERp57, calnexin, and calreticulin.
Collapse
Affiliation(s)
- Suk-Jo Kang
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | |
Collapse
|
46
|
Baron JL, Gardiner L, Nishimura S, Shinkai K, Locksley R, Ganem D. Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 2002; 16:583-94. [PMID: 11970881 DOI: 10.1016/s1074-7613(02)00305-9] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NKT cells are specialized cells of the immune system that bear both T cell and NK cell markers. Classical NKT cells display TCRs of restricted heterogeneity (Valpha14-Jalpha281) and recognize lipid antigens (e.g., alpha-galactosyl ceramide) presented by nonpolymorphic CD1 molecules. Recently, other nonclassical NKT subsets have been recognized, including NKT cells not reactive with CD1d-alpha-galactosyl ceramide complexes. The biological functions of these cells are unknown. Here, we show that nonclassical NKT cells that are CD1d restricted but nonreactive to alpha-GalCer are activated in response to hepatocytes expressing hepatitis B viral antigens in a transgenic mouse model of acute hepatitis B virus infection. Our results document the first in vivo function for such nonclassical NKT cells and suggest a role for these cells in the host response to HBV infection.
Collapse
MESH Headings
- Acute Disease
- Adoptive Transfer
- Animals
- Antigens, CD1/immunology
- Antigens, CD1d
- Antigens, Viral/genetics
- Disease Models, Animal
- Female
- Galactosylceramides/immunology
- Hepatitis B/immunology
- Hepatitis B e Antigens/genetics
- Hepatitis B virus/genetics
- Hepatitis B virus/immunology
- Hepatitis B, Chronic/immunology
- Homeodomain Proteins/genetics
- Humans
- Killer Cells, Natural/immunology
- Liver/cytology
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Spleen/cytology
- T-Lymphocyte Subsets/immunology
- Transgenes
- Virus Replication
Collapse
Affiliation(s)
- Jody L Baron
- Department of Microbiology/Immunology, Howard Hughes Medical Institute, University of California Medical Center, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
47
|
Yamaguchi H, Hashimoto K. Association of MR1 protein, an MHC class I-related molecule, with beta(2)-microglobulin. Biochem Biophys Res Commun 2002; 290:722-9. [PMID: 11785959 DOI: 10.1006/bbrc.2001.6277] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MR1 is a major histocompatibility complex (MHC) class I-related gene conserved among mammals, and its predicted amino acid sequence is relatively closer to the classical MHC class I molecules among several divergent class I molecules. However, as its molecular nature and function have not yet been clarified, we set out in this study to establish transfected P388 murine cell lines that stably produce a large number of MR1 proteins and conducted analyses to investigate the molecular nature of MR1. Immunoprecipitation and Western blot analyses with specific antisera revealed that the MR1 protein can associate with beta(2)-microglobulin, suggesting its molecular form of a typical class I heterodimer composed of a heavy and a light chain (beta(2)-microglobulin), like the classical MHC class I molecules.
Collapse
Affiliation(s)
- Hisateru Yamaguchi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | | |
Collapse
|
48
|
Lybarger L, Yu YY, Chun T, Wang CR, Grandea AG, Van Kaer L, Hansen TH. Tapasin enhances peptide-induced expression of H2-M3 molecules, but is not required for the retention of open conformers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2097-105. [PMID: 11489993 DOI: 10.4049/jimmunol.167.4.2097] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
H2-M3 is a class Ib MHC molecule that binds a highly restricted pool of peptides, resulting in its intracellular retention under normal conditions. However, addition of exogenous M3 ligands induces its escape from the endoplasmic reticulum (ER) and, ultimately, its expression at the cell surface. These features of M3 make it a powerful and novel model system to study the potentially interrelated functions of the ER-resident class I chaperone tapasin. The functions ascribed to tapasin include: 1) ER retention of peptide-empty class I molecules, 2) TAP stabilization resulting in increased peptide transport, 3) direct facilitation of peptide binding by class I, and 4) peptide editing. We report in this study that M3 is associated with the peptide-loading complex and that incubation of live cells with M3 ligands dramatically decreased this association. Furthermore, high levels of open conformers of M3 were efficiently retained intracellularly in tapasin-deficient cells, and addition of exogenous M3 ligands resulted in substantial surface induction that was enhanced by coexpression of either membrane-bound or soluble tapasin. Thus, in the case of M3, tapasin directly facilitates intracellular peptide binding, but is not required for intracellular retention of open conformers. As an alternative approach to define unique aspects of M3 biosynthesis, M3 was expressed in human cell lines that lack an M3 ortholog, but support expression of murine class Ia molecules. Unexpectedly, peptide-induced surface expression of M3 was observed in only one of two cell lines. These results demonstrate that M3 expression is dependent on a unique factor compared with class Ia molecules.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP Binding Cassette Transporter, Subfamily B, Member 3
- ATP-Binding Cassette Transporters/metabolism
- Adjuvants, Immunologic/deficiency
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Adjuvants, Immunologic/physiology
- Animals
- Antiporters/deficiency
- Antiporters/genetics
- Antiporters/metabolism
- Antiporters/physiology
- Cell Line, Transformed
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/metabolism
- H-2 Antigens/metabolism
- HeLa Cells
- Histocompatibility Antigen H-2D
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunoglobulins/deficiency
- Immunoglobulins/genetics
- Immunoglobulins/metabolism
- Immunoglobulins/physiology
- L Cells
- Membrane Transport Proteins
- Mice
- Mutagenesis, Site-Directed
- Peptides/metabolism
- Peptides/pharmacology
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Conformation
- Transfection
Collapse
Affiliation(s)
- L Lybarger
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Chun T, Grandea AG, Lybarger L, Forman J, Van Kaer L, Wang CR. Functional roles of TAP and tapasin in the assembly of M3-N-formylated peptide complexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1507-14. [PMID: 11466371 DOI: 10.4049/jimmunol.167.3.1507] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
H2-M3 is a MHC class Ib molecule with a high propensity to bind N-formylated peptides. Due to the paucity of endogenous Ag, the majority of M3 is retained in the endoplasmic reticulum (ER). Upon addition of exogenous N-formylated peptides, M3 trafficks rapidly to the cell surface. To understand the mechanism underlying Ag presentation by M3, we examined the role of molecular chaperones in M3 assembly, particularly TAP and tapasin. M3-specific CTLs fail to recognize cells isolated from both TAP-deficient (TAP(o)) and tapasin-deficient mice, suggesting that TAP and tapasin are required for M3-restricted Ag presentation. Impaired M3 expression in TAP(o) mice is due to instability of the intracellular pool of M3. Addition of N-formylated peptides to TAP(o) cells stabilizes M3 in the ER and partially restores surface expression. Surprisingly, significant amounts of M3 are retained in the ER in tapasin-deficient mice, even in the presence of N-formylated peptides. Our results define the role of TAP and tapasin in the assembly of M3-peptide complexes. TAP is essential for stabilization of M3 in the ER, whereas tapasin is critical for loading of N-formylated peptides onto the intracellular pool of M3. However, neither TAP nor tapasin is required for ER retention of empty M3.
Collapse
Affiliation(s)
- T Chun
- Gwen Knapp Center for Lupus and Immunology Research, Committee on Immunology and Department of Pathology, University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
50
|
Lauvau G, Pamer EG. CD8 T cell detection of bacterial infection: sniffing for formyl peptides derived from Mycobacterium tuberculosis. J Exp Med 2001; 193:F35-9. [PMID: 11369794 PMCID: PMC2193328 DOI: 10.1084/jem.193.10.f35] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Gregoire Lauvau
- Infectious Disease Service, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Eric G. Pamer
- Infectious Disease Service, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| |
Collapse
|