1
|
Jia W, Wu Y, Xie Y, Yu M, Chen Y. Advanced Polymeric Nanoparticles for Cancer Immunotherapy: Materials Engineering, Immunotherapeutic Mechanism and Clinical Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413603. [PMID: 39797474 DOI: 10.1002/adma.202413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies. PNPs provide an optimal platform to amplify the potency and minimize systematic toxicity in a broad spectrum of immunotherapeutic modalities. In this comprehensive review, the basics of polymer chemistry, and state-of-the-art designs of PNPs from a physicochemical standpoint for cancer immunotherapy, encompassing therapeutic cancer vaccines, in situ vaccination, adoptive T-cell therapies, tumor-infiltrating immune cell-targeted therapies, therapeutic antibodies, and cytokine therapies are delineated. Each immunotherapy necessitates distinctively tailored design strategies in polymeric nanoplatforms. The extensive applications of PNPs, and investigation of their mechanisms of action for enhanced efficacy are particularly focused on. The safety profiles of PNPs and clinical research progress are discussed. Additionally, forthcoming developments and emergent trends of polymeric nano-immunotherapeutics poised to transform cancer treatment paradigms into clinics are explored.
Collapse
Affiliation(s)
- Wencong Jia
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Ye Wu
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Institute of Materdicine, Shanghai, 200051, China
| |
Collapse
|
2
|
Jiao D, Hao M, Sun R, Ren X, Wei Y, Ding M, Yue X, Wu Z, Li C, Gao L, Ma C, Sang Y, Liang X, Liu H. Dynamic Hybrid Module-Driven NK Cell Stimulation and Release for Tumor Immunotherapy. NANO LETTERS 2024; 24:5481-5489. [PMID: 38639407 DOI: 10.1021/acs.nanolett.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Natural killer (NK) cells have become a powerful candidate for adoptive tumor immunotherapy, while their therapeutic efficacy in solid tumors remains unsatisfactory. Here, we developed a hybrid module with an injectable hydrogel and hydroxyapatite (HAp) nanobelts for the controlled delivery of NK cells to enhance the therapy of solid tumors. Surface-functionalized HAp nanobelts modified with agonistic antibodies against NKG2D and 4-1BB and cytokines IL-2 and IL-21 support survival and dynamic activation. Thus, the HAp-modified chitosan (CS) thermos-sensitive hydrogel not only improved the retention of NK cells for more than 20 days in vivo but also increased NK cell function by more than one-fold. The unique architecture of this biomaterial complex protects NK cells from the hostile tumor environment and improves antitumor efficacy. The generation of a transient inflammatory niche for NK cells through a biocompatible hydrogel reservoir may be a conversion pathway to prevent cancer recurrence of resectable tumors.
Collapse
Affiliation(s)
- Deyan Jiao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo Medical College, Shandong University, Jinan 250000, China
| | - Min Hao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250000, China
| | - Renhui Sun
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo Medical College, Shandong University, Jinan 250000, China
| | - Xiaolei Ren
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo Medical College, Shandong University, Jinan 250000, China
| | - Yanfei Wei
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo Medical College, Shandong University, Jinan 250000, China
| | - Miaomiao Ding
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo Medical College, Shandong University, Jinan 250000, China
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo Medical College, Shandong University, Jinan 250000, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo Medical College, Shandong University, Jinan 250000, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Shandong University, Jinan 250000, China
| | - Chunyang Li
- Department of Histology and Embryology, Cheeloo College of Medical, Shandong University, Jinan 250000, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo Medical College, Shandong University, Jinan 250000, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Shandong University, Jinan 250000, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo Medical College, Shandong University, Jinan 250000, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Shandong University, Jinan 250000, China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250000, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Cheeloo Medical College, Shandong University, Jinan 250000, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Shandong University, Jinan 250000, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250000, China
| |
Collapse
|
3
|
Sconocchia G, Lanzilli G, Cesarini V, Silvestris DA, Rezvani K, Arriga R, Caratelli S, Chen K, Dou J, Cenciarelli C, Toietta G, Baldari S, Sconocchia T, De Paolis F, Aureli A, Iezzi G, Irno Consalvo M, Buccisano F, Del Principe MI, Maurillo L, Venditti A, Ottaviani A, Spagnoli GC. Direct CD32 T-cell cytotoxicity: implications for breast cancer prognosis and treatment. Life Sci Alliance 2022; 5:e202201590. [PMID: 36241426 PMCID: PMC9586128 DOI: 10.26508/lsa.202201590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
The FcγRII (CD32) ligands are IgFc fragments and pentraxins. The existence of additional ligands is unknown. We engineered T cells with human chimeric receptors resulting from the fusion between CD32 extracellular portion and transmembrane CD8α linked to CD28/ζ chain intracellular moiety (CD32-CR). Transduced T cells recognized three breast cancer (BC) and one colon cancer cell line among 15 tested in the absence of targeting antibodies. Sensitive BC cell conjugation with CD32-CR T cells induced CD32 polarization and down-regulation, CD107a release, mutual elimination, and proinflammatory cytokine production unaffected by human IgGs but enhanced by cetuximab. CD32-CR T cells protected immunodeficient mice from subcutaneous growth of MDA-MB-468 BC cells. RNAseq analysis identified a 42 gene fingerprint predicting BC cell sensitivity and favorable outcomes in advanced BC. ICAM1 was a major regulator of CD32-CR T cell-mediated cytotoxicity. CD32-CR T cells may help identify cell surface CD32 ligand(s) and novel prognostically relevant transcriptomic signatures and develop innovative BC treatments.
Collapse
Affiliation(s)
- Giuseppe Sconocchia
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Giulia Lanzilli
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | | | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Roberto Arriga
- Department of Systems Medicine, the University of Rome "Tor Vergata", Rome, Italy
| | - Sara Caratelli
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Ken Chen
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Carlo Cenciarelli
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Baldari
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Tommaso Sconocchia
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Francesca De Paolis
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Anna Aureli
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Giandomenica Iezzi
- Department of Surgery, Università Svizzera Italiana, Lugano, Switzerland
| | - Maria Irno Consalvo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Maria I Del Principe
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Luca Maurillo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Alessio Ottaviani
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Giulio C Spagnoli
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| |
Collapse
|
4
|
Frazao A, Rethacker L, Jeudy G, Colombo M, Pasmant E, Avril MF, Toubert A, Moins-Teisserenc H, Roelens M, Dalac S, Maubec E, Caignard A. BRAF inhibitor resistance of melanoma cells triggers increased susceptibility to natural killer cell-mediated lysis. J Immunother Cancer 2021; 8:jitc-2019-000275. [PMID: 32912923 PMCID: PMC7482503 DOI: 10.1136/jitc-2019-000275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background Targeted therapies and immunotherapies are first-line treatments for patients with advanced melanoma. Serine–threonine protein kinase B-RAF (BRAF) and mitogen-activated protein kinase (MEK) inhibition leads to a 70% response rate in patients with advanced melanoma with a BRAFV600E/K mutation. However, acquired resistance occurs in the majority of patients, leading to relapse. Immunotherapies that activate immune cytotoxic effectors induce long-lasting responses in 30% of patients. In that context, combination of targeted therapies with immunotherapy (IT) is a promising approach. We considered boosting natural killer (NK) cell tumor immunosurveillance, as melanoma cells express stress-induced molecules and activate NK cell lysis. Methods Here we have generated vemurafenib (a BRAF inihibitor)-resistant (R) cells from BRAFV600E SK28 and M14-sensitive (S) melanoma cell lines and investigated how resistance interferes with immunogenicity to NK cells. We determined the levels of several soluble molecules including NK ligands in 61 melanoma patients at baseline and 6 months M post-treatment with targeted therapies or immunotherapies. Results Vemurafenib resistance involved activation of p-AKT in SK28R and of p-MEK/p-ERK in M14R cells and was accompanied by modulation of NK ligands. Compared with S cells, SK28R displayed an increased expression of natural killer group 2 D (NKG2D) receptor ligands (major histocompatibility complex class (MHC) I chain-related protein A (MICA) and UL16-binding protein 2 (ULBP2)) whereas M14R exhibited decreased ULBP2. SK28R and M14R cells induced higher NK degranulation and interferon gamma secretion and were more efficiently lysed by donor and patient NK cells. SK28R showed increased tumor necrosis factor-related apoptosis-inducing ligand receptor II (TRAIL-RII) expression and TRAIL-induced apoptosis, and TRAIL-induced apoptosis of M14R was decreased. Combined BRAF/MEK inhibitors abrogated the growth of SK28S, M14S, and M14R cells, while growth of SK28R was maintained. BRAF/MEK inhibition attenuated NK activity but R cell lines activated polyfunctional NK cells and were lysed with high efficiency. We investigated the relationship of soluble NK ligands and response to treatment in a series of melanoma patients. Soluble NKG2D ligands known to regulate the receptor function have been associated to cancer progression. Serum analysis of patients treated with target therapies or IT indicates that soluble forms of NK ligands (MICA, B7H6, programmed cell death ligand 1, and carcinoembryonic antigen cell adhesion molecule 1) may correlate with clinical response. Conclusion These results support strategies combining targeted therapies and NK-based immunotherapies.
Collapse
Affiliation(s)
- Alexandra Frazao
- Université de Paris, INSERM UMRS-1160, Institut de Recherche Saint-Louis, 75010, Paris, France
| | - Louise Rethacker
- Université de Paris, INSERM UMRS-1160, Institut de Recherche Saint-Louis, 75010, Paris, France
| | - Géraldine Jeudy
- University Hospital Centre Dijon Bocage Complex, Dermatology Department, Dijon, France
| | - Marina Colombo
- Université de Paris, INSERM UMRS-1160, Institut de Recherche Saint-Louis, 75010, Paris, France
| | - Eric Pasmant
- Université de Paris, AP-HP Hôpital Cochin, Genetic and Molecular Biology Department, Institut Cochin, Paris, France
| | - Marie-Françoise Avril
- Université de Paris, AP-HP Hôpital Cochin, Dermatology Department, Institute Cochin, Paris, France
| | - Antoine Toubert
- Université de Paris, INSERM UMRS-1160, Institut de Recherche Saint-Louis, 75010, Paris, France
| | - Helene Moins-Teisserenc
- Université de Paris, INSERM UMRS-1160, AP-HP hopital Saint-Louis, Institut de Recherche Saint-Louis, 75010, Paris, France
| | - Marie Roelens
- Université de Paris, INSERM UMRS-1160, AP-HP hopital Saint-Louis, Institut de Recherche Saint-Louis, 75010, Paris, France
| | - Sophie Dalac
- University Hospital Centre Dijon Bocage Complex, Dermatology Department, Dijon, France
| | - Eve Maubec
- Université de Paris 13, AP-HP Hôpital Avicenne, Dermatology Department, Bobigny, France
| | - Anne Caignard
- Université de Paris, INSERM UMRS-1160, Institut de Recherche Saint-Louis, 75010, Paris, France
| |
Collapse
|
5
|
Davis-Marcisak EF, Fitzgerald AA, Kessler MD, Danilova L, Jaffee EM, Zaidi N, Weiner LM, Fertig EJ. Transfer learning between preclinical models and human tumors identifies a conserved NK cell activation signature in anti-CTLA-4 responsive tumors. Genome Med 2021; 13:129. [PMID: 34376232 PMCID: PMC8356429 DOI: 10.1186/s13073-021-00944-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tumor response to therapy is affected by both the cell types and the cell states present in the tumor microenvironment. This is true for many cancer treatments, including immune checkpoint inhibitors (ICIs). While it is well-established that ICIs promote T cell activation, their broader impact on other intratumoral immune cells is unclear; this information is needed to identify new mechanisms of action and improve ICI efficacy. Many preclinical studies have begun using single-cell analysis to delineate therapeutic responses in individual immune cell types within tumors. One major limitation to this approach is that therapeutic mechanisms identified in preclinical models have failed to fully translate to human disease, restraining efforts to improve ICI efficacy in translational research. METHOD We previously developed a computational transfer learning approach called projectR to identify shared biology between independent high-throughput single-cell RNA-sequencing (scRNA-seq) datasets. In the present study, we test this algorithm's ability to identify conserved and clinically relevant transcriptional changes in complex tumor scRNA-seq data and expand its application to the comparison of scRNA-seq datasets with additional data types such as bulk RNA-seq and mass cytometry. RESULTS We found a conserved signature of NK cell activation in anti-CTLA-4 responsive mouse and human tumors. In human metastatic melanoma, we found that the NK cell activation signature associates with longer overall survival and is predictive of anti-CTLA-4 (ipilimumab) response. Additional molecular approaches to confirm the computational findings demonstrated that human NK cells express CTLA-4 and bind anti-CTLA-4 antibodies independent of the antibody binding receptor (FcR) and that similar to T cells, CTLA-4 expression by NK cells is modified by cytokine-mediated and target cell-mediated NK cell activation. CONCLUSIONS These data demonstrate a novel application of our transfer learning approach, which was able to identify cell state transitions conserved in preclinical models and human tumors. This approach can be adapted to explore many questions in cancer therapeutics, enhance translational research, and enable better understanding and treatment of disease.
Collapse
Affiliation(s)
- Emily F Davis-Marcisak
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Allison A Fitzgerald
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Michael D Kessler
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ludmila Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Louis M Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Elucidation of the molecular interactions that enable stable assembly and structural diversity in multicomponent immune receptors. Proc Natl Acad Sci U S A 2021; 118:2026318118. [PMID: 34155106 DOI: 10.1073/pnas.2026318118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multicomponent immune receptors are essential complexes in which distinct ligand-recognition and signaling subunits are held together by interactions between acidic and basic residues of their transmembrane helices. A 2:1 acidic-to-basic motif in the transmembrane domains of the subunits is necessary and sufficient to assemble these receptor complexes. Here, we study a prototype for these receptors, a DAP12-NKG2C 2:1 heterotrimeric complex, in which the two DAP12 subunits each contribute a single transmembrane Asp residue, and the NKG2C subunit contributes a Lys to form the complex. DAP12 can also associate with 20 other subunits using a similar motif. Here, we use molecular-dynamics simulations to understand the basis for the high affinity and diversity of interactions in this group of receptors. Simulations of the transmembrane helices with differing protonation states of the Asp-Asp-Lys triad identified a structurally stable interaction in which a singly-protonated Asp-Asp pair forms a hydrogen-bonded carboxyl-carboxylate clamp that clasps onto a charged Lys side chain. This polar motif was also supported by density functional theory and a Protein Data Bank-wide search. In contrast, the helices are dynamic at sites distal to the stable carboxyl-carboxylate clamp motif. Such a locally stable but globally dynamic structure is well suited to accommodate the sequence and structural variations in the transmembrane helices of multicomponent receptors, which mix and match subunits to create combinatorial functional diversity from a limited number of subunits. It also supports a signaling mechanism based on multisubunit clustering rather than propagation of rigid conformational changes through the membrane.
Collapse
|
7
|
Rethacker L, Roelens M, Bejar C, Maubec E, Moins-Teisserenc H, Caignard A. Specific Patterns of Blood ILCs in Metastatic Melanoma Patients and Their Modulations in Response to Immunotherapy. Cancers (Basel) 2021; 13:cancers13061446. [PMID: 33810032 PMCID: PMC8004602 DOI: 10.3390/cancers13061446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Anti-CTLA-4 and anti-PD-1 immune checkpoints inhibitors (ICI) have revolutionized the treatment of metastatic melanoma patients, leading to durable responses. However, some patients still not respond to this clinically used immunotherapies and there is a lack of biomarkers leading to the choice of first-line therapies. Innate lymphoid cells (ILC) express immune checkpoint receptors and are involved in anti-melanoma immune response. The aim of this article is to study ILCs from peripheral blood of melanoma patients receiving Ipilimumab, an anti-CTLA-4 treatment, and their association with clinical responses to this therapy. Our results show an impact of Ipilimumab on ILCs proportions and phenotype in blood. Moreover, the presence of anergic CD56dimCD16−DNAM-1− NK cells were associated with progression of the disease. These findings demonstrate the important role of ILC in the response to ICI. Abstract Immunotherapy targeting immune checkpoint receptors brought a breakthrough in the treatment of metastatic melanoma patients. However, a number of patients still resist these immunotherapies. Present on CD8+T cells, immune checkpoint receptors are expressed by innate lymphoid cells (ILCs), which may contribute to the clinical response. ILCs are composed of natural killer (NK) cells, which are cytotoxic effectors involved in tumor immunosurveillance. NK cell activation is regulated by a balance between activating receptors that detect stress molecules on tumor cells and HLA-I-specific inhibitory receptors. Helper ILCs (h-ILCs) are newly characterized ILCs that secrete cytokines and regulate the immune homeostasis of tissue. We investigated the modulation of blood ILCs in melanoma patients treated with ipilimumab. Circulating ILCs from metastatic stage IV melanoma patients and healthy donors were studied for their complete phenotypic status. Patients were studied before and at 3, 6, and 12 weeks of ipilimumab treatment. A comparison of blood ILC populations from donors and melanoma patients before treatment showed changes in proportions of ILC subsets, and a significant inverse correlation of CD56dim NK cells and h-ILC subsets was identified in patients. During treatment with ipilimumab, percentages of all ILC subsets were reduced. Ipilimumab also impacted the expression of the CD96/TIGIT/DNAM-1 pathway in all ILCs and increased CD161 and CTLA-4 expression by h-ILCs. When considering the response to the treatment, patients without disease control were characterized by higher percentages of CD56bright NK cells and ILC1. Patients with disease control displayed larger populations of activated CD56dimCD16+ DNAM-1+ NK cells, while anergic CD56dimCD16−DNAM-1− NK cells were prominent in patients without disease control. These results provide original findings on the distribution of ILC subsets in advanced melanoma patients and their modulation through immunotherapy. The effects of ipilimumab on these ILC subsets may critically influence therapeutic outcomes. These data indicate the importance of considering these innate cell subsets in immunotherapeutic strategies for melanoma patients.
Collapse
Affiliation(s)
- Louise Rethacker
- INSERM UMRS1160, Institut de Recherche Saint Louis, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France; (L.R.); (M.R.)
| | - Marie Roelens
- INSERM UMRS1160, Institut de Recherche Saint Louis, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France; (L.R.); (M.R.)
| | - Claudia Bejar
- Dermatology department, AP-HP Hôpital Avicenne and University Paris 13, 93008 Bobigny, France; (C.B.); (E.M.)
| | - Eve Maubec
- Dermatology department, AP-HP Hôpital Avicenne and University Paris 13, 93008 Bobigny, France; (C.B.); (E.M.)
| | - Hélène Moins-Teisserenc
- Institut de Recherche Saint-Louis, AP-HP hopital Saint-Louis, Université de Paris, INSERM UMRS-1160, 75010 Paris, France;
| | - Anne Caignard
- INSERM UMRS1160, Institut de Recherche Saint Louis, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France; (L.R.); (M.R.)
- Correspondence: ; Tel.: +33-1-4249-4889; Fax: +33-1-4238-5345
| |
Collapse
|
8
|
van der Heide SL, Xi Y, Upham JW. Natural Killer Cells and Host Defense Against Human Rhinoviruses Is Partially Dependent on Type I IFN Signaling. Front Cell Infect Microbiol 2020; 10:510619. [PMID: 33194777 PMCID: PMC7609819 DOI: 10.3389/fcimb.2020.510619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Rhinovirus (RV), the causative agent of the common cold, causes only mild upper respiratory tract infections in healthy individuals, but can cause longer lasting and more severe pulmonary infections in people with chronic lung diseases and in the setting of immune suppression or immune deficiency. RV-infected lung structural cells release type I interferon (IFN-I), initiating the immune response, leading to protection against viruses in conjunction with migratory immune cells. However, IFN-I release is deficient in some people with asthma. Innate immune cells, such as natural killer (NK) cells, are proposed to play major roles in the control of viral infections, and may contribute to exacerbations of chronic lung diseases, such as asthma. In this study, we characterized the NK cell response to RV infection using an in vitro model of infection in healthy individuals, and determined the extent to which IFN-I signaling mediates this response. The results indicate that RV stimulation in vitro induces NK cell activation in healthy donors, leading to degranulation and the release of cytotoxic mediators and cytokines. IFN-I signaling was partly responsible for NK cell activation and functional responses to RV. Overall, our findings suggest the involvement of NK cells in the control of RV infection in healthy individuals. Further understanding of NK cell regulation may deepen our understanding of the mechanisms that contribute to susceptibility to RV infections in asthma and other chronic lung diseases.
Collapse
Affiliation(s)
- Saskia L van der Heide
- Lung and Allergy Research Centre, Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Yang Xi
- Lung and Allergy Research Centre, Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - John W Upham
- Lung and Allergy Research Centre, Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Frazao A, Messaoudene M, Nunez N, Dulphy N, Roussin F, Sedlik C, Zitvogel L, Piaggio E, Toubert A, Caignard A. CD16 +NKG2A high Natural Killer Cells Infiltrate Breast Cancer-Draining Lymph Nodes. Cancer Immunol Res 2018; 7:208-218. [PMID: 30514793 DOI: 10.1158/2326-6066.cir-18-0085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/03/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022]
Abstract
Tumor-draining lymph nodes (TD-LNs) are the first site of metastasis of breast cancer. Natural killer (NK) cells that infiltrate TD-LNs [including noninvaded (NI) or metastatic (M)-LNs from breast cancer patients] and NK cells from healthy donor (HD)-LNs were characterized, and their phenotype analyzed by flow cytometry. Low percentages of tumor cells invaded M-LNs, and these cells expressed ULBP2 and HLA class I molecules. Although NK cells from paired NI and M-LNs were similar, they expressed different markers compared with HD-LN NK cells. Compared with HD-LNs, TD-LN NK cells expressed activating DNAM-1, NKG2C and inhibitory NKG2A receptors, and exhibited elevated CXCR3 expression. CD16, NKG2A, and NKp46 expression were shown to be increased in stage IIIA breast cancer patients. TD-LNs contained a large proportion of activated CD56brightCD16+ NK cells with high expression of NKG2A. We also showed that a subset of LN NK cells expressed PD-1, expression of which was correlated with NKp30 and NKG2C expression. LN NK cell activation status was evaluated by degranulation potential and lytic capacity toward breast cancer cells. NK cells from TD-LNs degranulated after coculture with breast cancer cell lines. Cytokine-activated TD-LN NK cells exerted greater lysis of breast cancer cell lines than HD-LN NK cells and preferentially lysed the HLA class Ilow MCF-7 breast cancer cell line. TD-LNs from breast cancer patients, thus, contained activated lytic NK cells. The expression of inhibitory receptor NKG2A and checkpoint PD-1 by NK cells infiltrating breast cancer-draining LNs supports their potential as targets for immunotherapies using anti-NKG2A and/or anti-PD-1.
Collapse
Affiliation(s)
- Alexandra Frazao
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Meriem Messaoudene
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Gustave Roussy Cancer Campus (GRCC), Villejuif, France
| | - Nicolas Nunez
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Nicolas Dulphy
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatibilité, Paris, France
| | - France Roussin
- Service d'Anesthésie-Réanimation, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Christine Sedlik
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France.,Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Villejuif, France.,Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.,Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Eliane Piaggio
- Institut Curie, PSL Research University, INSERM U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Antoine Toubert
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie et Histocompatibilité, Paris, France
| | - Anne Caignard
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France.
| |
Collapse
|
10
|
Messaoudene M, Frazao A, Gavlovsky PJ, Toubert A, Dulphy N, Caignard A. Patient's Natural Killer Cells in the Era of Targeted Therapies: Role for Tumor Killers. Front Immunol 2017; 8:683. [PMID: 28659921 PMCID: PMC5466965 DOI: 10.3389/fimmu.2017.00683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are potent antitumor effectors, involved in hematological malignancies and solid tumor immunosurveillance. They infiltrate various solid tumors, and their numbers are correlated with good outcome. The function of NK cells extends their lytic capacities toward tumor cells expressing stress-induced ligands, through secretion of immunoregulatory cytokines, and interactions with other immune cells. Altered NK cell function due to tumor immune escape is frequent in advanced tumors; however, strategies to release the function of NK infiltrating tumors are emerging. Recent therapies targeting specific oncogenic mutations improved the treatment of cancer patients, but patients often relapse. The actual development consists in combined therapeutic strategies including agents targeting the proliferation of tumor cells and others restorating functional antitumor immune effectors for efficient and durable efficacy of anticancer treatment. In that context, we discuss the recent results of the literature to propose hypotheses concerning the potential use of NK cells, potent antitumor cytotoxic effectors, to design novel antitumor strategies.
Collapse
Affiliation(s)
- Meriem Messaoudene
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Alexandra Frazao
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Pierre Jean Gavlovsky
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Antoine Toubert
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Nicolas Dulphy
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Anne Caignard
- INSERM U1160, Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| |
Collapse
|
11
|
Natural Killer Cells in the Orchestration of Chronic Inflammatory Diseases. J Immunol Res 2017; 2017:4218254. [PMID: 28428965 PMCID: PMC5385901 DOI: 10.1155/2017/4218254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/04/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammation, altered immune cell phenotype, and functions are key features shared by diverse chronic diseases, including cardiovascular, neurodegenerative diseases, diabetes, metabolic syndrome, and cancer. Natural killer cells are innate lymphoid cells primarily involved in the immune system response to non-self-components but their plasticity is largely influenced by the pathological microenvironment. Altered NK phenotype and function have been reported in several pathological conditions, basically related to impaired or enhanced toxicity. Here we reviewed and discussed the role of NKs in selected, different, and “distant” chronic diseases, cancer, diabetes, periodontitis, and atherosclerosis, placing NK cells as crucial orchestrator of these pathologic conditions.
Collapse
|
12
|
Coppola A, Arriga R, Lauro D, Del Principe MI, Buccisano F, Maurillo L, Palomba P, Venditti A, Sconocchia G. NK Cell Inflammation in the Clinical Outcome of Colorectal Carcinoma. Front Med (Lausanne) 2015; 2:33. [PMID: 26131447 PMCID: PMC4469113 DOI: 10.3389/fmed.2015.00033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/06/2015] [Indexed: 11/28/2022] Open
Abstract
The ability of natural killer (NK) cells to provide protection against myeloid leukemia has been demonstrated in clinical settings. However, whether NK cells play a role in the clinical course of solid tumors is debated. The controversy surrounding the role of NK cells is due, at least in part, to the limited extent of NK cell infiltration found in the tumor bed. Inactivation of NK cells may explain the shortage of NK cells in the microenvironment of colorectal cancer (CRC). Upon NK cell/tumor cell interaction, tumor cells may escape NK cells by creating an immunosuppressive microenvironment, which possibly affects T-cells as well. Such an immunosuppressive microenvironment would hamper the functions of NK and T-cell and reduce NK and T-cell interactions. CRC patients with levels of tumor NK cell infiltration suitable for statistical analysis have been identified. The infiltration of the CRC microenvironment by NK cells, in combination with CD8+ T-lymphocytes, has been shown to enhance the prognosis of CRC patients. Here, we discuss the clinicopathological role of NK cells in CRC, and present clinical data indicating a potential supporting role for NK cells in the anti-CRC effects of CD8+ T-cells.
Collapse
Affiliation(s)
- Andrea Coppola
- Institute of Systems Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Roberto Arriga
- Institute of Systems Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Davide Lauro
- Institute of Systems Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Maria Ilaria Del Principe
- Hematology, Department of Biomedicine and Prevention, University of Rome "Tor Vergata" , Rome , Italy
| | - Francesco Buccisano
- Hematology, Department of Biomedicine and Prevention, University of Rome "Tor Vergata" , Rome , Italy
| | - Luca Maurillo
- Hematology, Department of Biomedicine and Prevention, University of Rome "Tor Vergata" , Rome , Italy
| | - Patrizia Palomba
- Hematology, Department of Biomedicine and Prevention, University of Rome "Tor Vergata" , Rome , Italy
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University of Rome "Tor Vergata" , Rome , Italy
| | - Giuseppe Sconocchia
- Laboratory of Tumor Immunology and Immunotherapy, Institute of Translational Pharmacology, CNR , Rome , Italy
| |
Collapse
|
13
|
RASOLZADEH S, HAJI FATAHALIHA M, HOSSEINI M, JAFARI R, MIAHIPOUR A, MOVASSAGHPOUR AA, BABALO Z, RAFATI S, YOUSEFI M. Recombinant LPG3 Stimulates IFN-Γ and TNF-A Secretion by Human NK Cells. IRANIAN JOURNAL OF PARASITOLOGY 2015; 10:554-60. [PMID: 26811721 PMCID: PMC4724831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Natural killer (NK) cells play an important role in early stages of innate immune responses against viral and tumoral attacks. Activation of NK cells by leishmaniasis results in secretion of cytokines such as interferon (IFN)-γ and tumor necrosis factor (TNF)-α, which enhances the phagocytosis and clearance of parasite. Lipophosphoglycan 3 (LPG3), the Leishmania homologous with GRP94 (glucose regulated protein 94), a member of HSP90 family, contributes to LPG assembly as the most abundant macromolecule on the surface of Leishmania promastigotes. METHODS We purified NK cells from healthy individuals (n=10) using magnetic-activated cell sorting (MACS) technology. Purified NK cells were co-incubated with different concentrations of recombinant LPG3 (rLPG3), and its N-terminal (NT) and C-terminal (CT) fragments. Finally, the production of IFN-γ and TNF-α by NK cells were measured by ELISA. RESULTS Recombinant LPG3 but not its fragments (CT and NT), can significantly enhance the production of TNF-α by NK cells (P<0.05). Moreover, rLPG3, CT, and NT fragments were markedly stimulated the secretion of IFN-γ by NK cells (P<0.001). CONCLUSION The Leishmania LPG3 antigen can effectively activate NK cells, in vitro. Leishmania LPG3 participates in the innate immunity against leishmaniasis and thereby improves the effective parasite destruction. However, its efficiency should be tested in vivo.
Collapse
Affiliation(s)
- Sanaz RASOLZADEH
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Dept. of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa HAJI FATAHALIHA
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Dept. of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam HOSSEINI
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Dept. of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza JAFARI
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Dept. of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl MIAHIPOUR
- Dept. of Medical Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Akbar MOVASSAGHPOUR
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Dept. of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh BABALO
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Dept. of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima RAFATI
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi YOUSEFI
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Dept. of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Correspondence:
| |
Collapse
|
14
|
Recombinant LPG3 Stimulates IFN-Γ and TNF-Α Secretion by Human NK Cells. IRANIAN JOURNAL OF PARASITOLOGY 2015; 10:457-64. [PMID: 26622301 PMCID: PMC4662746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Natural killer (NK) cells play an important role in early stages of innate immune responses against viral and tumoral attacks. Activation of NK cells by leishmaniasis results in secretion of cytokines such as interferon (IFN)-γ and tumor necrosis factor (TNF)-α, which enhance the phagocytosis and clearance of parasite. Lipophosphoglycan 3 (LPG3), the Leishmania homologous with GRP94 (glucose regulated protein 94), a member of HSP90 family, contributes to LPG assembly as the most abundant macromolecule on the surface of Leishmania promastigotes. METHODS We purified NK cells from healthy individuals (n=10) using magnetic-activated cell sorting (MACS) technology. Purified NK cells were co-incubated with different concentrations of recombinant LPG3 (rLPG3), and its N-terminal (NT) and C-terminal (CT) fragments. Finally, the production of IFN-γ and TNF-α by NK cells were measured by ELISA. RESULTS Recombinant LPG3 but not its fragments (CT and NT), could significantly enhance the production of TNF-α by NK cells (P<0.05). Moreover, rLPG3, CT, and NT fragments were markedly stimulated the secretion of IFN-γ by NK cells (P<0.001). CONCLUSION The Leishmania LPG3 antigen could effectively activate NK cells, in vitro. Leishmania LPG3 participates in the innate immunity against leishmaniasis and thereby improves the effective parasite destruction. However, its efficiency should be tested in vivo.
Collapse
|
15
|
Messaoudene M, Fregni G, Fourmentraux-Neves E, Chanal J, Maubec E, Mazouz-Dorval S, Couturaud B, Girod A, Sastre-Garau X, Albert S, Guédon C, Deschamps L, Mitilian D, Cremer I, Jacquelot N, Rusakiewicz S, Zitvogel L, Avril MF, Caignard A. Mature cytotoxic CD56(bright)/CD16(+) natural killer cells can infiltrate lymph nodes adjacent to metastatic melanoma. Cancer Res 2013; 74:81-92. [PMID: 24225017 DOI: 10.1158/0008-5472.can-13-1303] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Melanomas are characterized by high metastatic potential, with regional lymph node representing the most frequent site of early dissemination in this disease. These regional lymph nodes also represent the primary site for differentiation of natural killer (NK) cells. Although blood-derived NK cells can efficiently lyse melanoma cells isolated from metastatic lymph node (M-LN), there has been no study of the properties of the most disease-relevant NK cells isolated from M-LN in patients with melanoma. Here, we report that M-LN contains 0.5% to 11% of CD56(bright) NK cells among CD45(+) hematopoietic cells present and that this cell population surrounds tumor cell clusters in M-LN. This NK cell population was characterized by expression of CD62L, chemokine receptors, and high levels of natural cytotoxicity receptors (NCR), NK group 2 D (NKG2D), and DNAX accessory molecule 1 (DNAM-1). Expression of NCR-NKp30 and NKG2D correlated negatively with percentages of tumor cells in M-LN. Interestingly, M-LN contained a unique subset of mature CD56(bright)CD16(+) NK cells displaying coregulated expression of NCR and NKG2D activating receptors. Ex vivo analyses suggested that M-LN-derived NK cells were inactive but could be activated by appropriate cytokine signals [interleukin (IL)-2 or IL-15], and could lyse metastatic melanoma cells in a highly efficient manner compared with blood-derived NK cells. Taken together, the results offer evidence that adjuvant immunotherapy that targets NK cells in M-LN for activation may improve treatment of patients with sentinel lymph node-positive melanoma.
Collapse
Affiliation(s)
- Meriem Messaoudene
- Authors' Affiliations: INSERM U1016, CNRS UMR 8104, Institut Cochin; APHP, Department of Dermatology, Hospital Cochin, University Paris Descartes; APHP, Department of Dermatology; APHP, Department of Surgery, Hospital Bichat, University Paris Diderot; Surgery Department, Institut Curie, rue d'Ulm-Paris; Hospital Foch, Suresnes; Centre de Recherche des Cordeliers, 15 rue de l'école de médecine; and INSERM U1015 INSERM, Institut Gustave Roussy, Villejuif, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shimanovsky A, Jethava A, Dasanu CA. Immune alterations in malignant melanoma and current immunotherapy concepts. Expert Opin Biol Ther 2013; 13:1413-27. [PMID: 23930800 DOI: 10.1517/14712598.2013.827658] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Malignant melanoma is a highly aggressive, immunogenic tumor that has the ability to modulate the immune system to its own advantage. Patients with melanoma present numerous cellular immune defects and cytokine abnormalities, all leading to suppression of the host anti-tumor immune response. Innovative treatment strategies can be achieved through employing our knowledge of the melanoma-induced immune alterations. AREAS COVERED The authors review comprehensively the immune abnormalities in individuals with melanoma, and provide a summary of currently available melanoma immunotherapy agents that are currently on the market or undergoing clinical trials. EXPERT OPINION Ipilimumab, a monoclonal antibody directed against the CTLA-4, is one of the current forefront treatment strategies in malignant melanoma. Novel immunomodulating agents have shown clear activity in patients with malignant melanoma. These include anti-PD-1 and anti-PD-1 ligand antibodies that may soon become important items in the anti-melanoma armamentarium. Combinations of different immunotherapy agents, between themselves or with other agents, are currently being studied in an attempt to further enhance the antineoplastic effect in patients with malignant melanoma.
Collapse
Affiliation(s)
- Alexei Shimanovsky
- University of Connecticut Health Science Center, Department of Medicine , Farmington, 21 Temple Street # 501, Hartford, CT 06103 , USA
| | | | | |
Collapse
|
17
|
Abstract
Natural killer (NK) cells play an important role in the direct killing of cancerous and virus-infected cells. One of the important activating receptors which mediates this killing is NKG2D. This receptor recognizes various stress-induced ligands including the major histocompatibility complex class I-related chain A and B (MICA and MICB respectively). The mechanisms controlling the expression of the NKG2D ligands are not completely understood, yet various studies have demonstrated that the expression of the NKG2D ligands is manipulated by viruses and by tumor cells in order to escape the NKG2D detection. Cumulative data have emphasized that various microRNAs (miRNAs) of both human and viral origin control the expression of NKG2D ligands, particularly MICB. Herein we review recent findings regarding the miRNA regulation of the NKG2D ligands. We propose that these miRNAs generate a complex network of interactions that control the expression of the NKG2D ligands under normal conditions and during disease development.
Collapse
Affiliation(s)
- Shlomo Elias
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem Israel
| | | |
Collapse
|
18
|
Patankar MS, Gubbels JAA, Felder M, Connor JP. The immunomodulating roles of glycoproteins in epithelial ovarian cancer. Front Biosci (Elite Ed) 2012; 4:631-50. [PMID: 22201900 DOI: 10.2741/405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The complexity of the immune system demands an intricate defense mechanism by tumors. Ovarian and other tumors employ specific glycoproteins and the associated glycan sequences to modulate immune responses. Glycoproteins enable tumor cells that express or secrete these molecules to evade immune cell attack and induce the immune system to promote tumor growth. This review focuses first on the immune environment in ovarian cancer, and the mechanisms of activation and inhibition that immune cells undergo in order to either attack or ignore a target cell. Next we illustrate the immunomodulatory roles of ovarian cancer-associated glycans and glycoproteins in 1. preventing immune synapse formation, 2. serving as ligands of immune cell receptors, 3. scavenging cytokines and chemokines, and 4. participating in the formation of autoantibodies against the tumor. The importance of these immunomodulating strategies from the view points of understanding the tumor immunology of ovarian tumors, potential origin of such mechanisms, and specific strategies to circumvent the glycoconjugate-mediated suppression of immune responses is discussed in this review.
Collapse
Affiliation(s)
- Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, WI 53792-6188, USA.
| | | | | | | |
Collapse
|
19
|
Mutations of the von Hippel-Lindau gene confer increased susceptibility to natural killer cells of clear-cell renal cell carcinoma. Oncogene 2011; 30:2622-32. [PMID: 21258414 DOI: 10.1038/onc.2010.638] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The tumor suppressor gene von Hippel-Lindau (VHL) is involved in the development of sporadic clear-cell renal cell carcinoma (RCC). VHL interferes with angiogenesis and also controls cell adhesion and invasion. Therapies that target VHL-controlled genes are currently being evaluated in RCC patients. RCC is a immunogenic tumor and treatment with interleukin-2 (IL2) or interferon (IFN)-α results in regression in some patients. We used two renal tumor cell lines (RCC6 and RCC4) carrying VHL loss-of-function mutations to investigate the role of mutant VHL in susceptibility to natural killer (NK) cell-mediated lysis. The RCC6 and RCC4 cell lines were transfected with the wild-type gene to restore the function of VHL. The presence of the gene in RCC cells downregulated hypoxia-inducible factor (HIF)-1α and subsequently decreased vascular endothelial growth factor (VEGF) production. Relative to control transfectants and parental cells, pVHL-transfected cell lines activated resting and IL2-activated NK cells less strongly, as assessed by IFNγ secretion, NK degranulation and cell lysis. NKG2A, a human leukocyte antigen (HLA)-I-specific inhibitory NK receptor, controls the lysis of tumor targets. We show that HLA-I expression in RCC-pVHL cells is stronger than that in parental and controls cells, although the expression of activating receptor NK ligands remains unchanged. Blocking NKG2A/HLA-I interactions substantially increased lysis of RCC-pVHL, but had little effect on the lysis of VHL-mutated RCC cell lines. In addition, in response to IFNα, the exponential growth of RCC-pVHL was inhibited more than that of RCC-pE cells, indicating that VHL mutations may be involved in IFNα resistance. These results indicate that a decreased expression of HLA-I molecules in mutated VHL renal tumor cells sensitizes them to NK-mediated lysis. These results suggest that combined immunotherapy with anti-angiogenic drugs may be beneficial for patients with mutated VHL.
Collapse
|
20
|
Fregni G, Perier A, Pittari G, Jacobelli S, Sastre X, Gervois N, Allard M, Bercovici N, Avril MF, Caignard A. Unique functional status of natural killer cells in metastatic stage IV melanoma patients and its modulation by chemotherapy. Clin Cancer Res 2011; 17:2628-37. [PMID: 21224372 DOI: 10.1158/1078-0432.ccr-10-2084] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy is an alternative for metastatic melanoma patients resistant to chemotherapy. Natural killer (NK) cells are powerful antileukemia effectors and their role in solid tumors is suspected. NK cell activation is regulated by a balance between activating receptors, which detect stress molecules on tumor cells, and HLA-I specific inhibitory receptors. Here, we studied the phenotype and function of NK cells in stage IV metastatic melanoma patients. EXPERIMENTAL DESIGN Circulating NK cells from 35 healthy donors and 51 patients were studied: 24 patients before chemotherapy (prechemotherapy), 17 patients 1 month after 1 to 4 lines of chemotherapy (postchemotherapy), and 10 patients analyzed pre- and postchemotherapy. NK functionality was carried out toward 2 primary metastatic melanoma cell lines, analyzed for the expression of NK receptor ligands. RESULTS NK cells from prechemotherapy patients exhibit an NKp46(dim)/NKG2A(dim) phenotype. In contrast, NK cells from postchemotherapy patients display high expression of NKp46 and NKG2A receptors. Purified NK cells from patients are efficiently activated in response to melanoma cells. Melanoma cells express different level of NKG2D ligands and HLA-I molecules. In agreements with their phenotype, NK cells from pre- and postchemotherapy patients present distinct functional status toward these primary melanoma cells. A dynamic label free assay was used to determine the pathways involved in the lysis of melanoma cells by IL-2-activated NK cells. NKG2D, NCR (natural cytotoxicity receptor), and DNAM-1 are involved in the NK-mediated lysis of melanoma cells. CONCLUSIONS These results provide new arguments and clues to design NK cell-based immunotherapeutic strategies for melanoma patients.
Collapse
Affiliation(s)
- Giulia Fregni
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Hôpital Cochin, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bambard ND, Mathew SO, Mathew PA. LLT1-mediated activation of IFN-gamma production in human natural killer cells involves ERK signalling pathway. Scand J Immunol 2010; 71:210-9. [PMID: 20415786 DOI: 10.1111/j.1365-3083.2009.02367.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Natural killer (NK) cell functions are regulated by a delicate balance of signals received through activating and inhibitory receptors expressed on the cell surface. Lectin-like transcript-1 (LLT1), expressed on a subpopulation of NK cells and other immune cells is a ligand for the NK cell inhibitory receptor, NKR-P1A (CD161). Previous studies showed that cross-linking surface LLT1 with a monoclonal antibody stimulated NK cell IFN-gamma secretion but had no effect on cytotoxicity. Here, we have examined the signalling pathways associated with LLT1-stimulated IFN-gamma secretion. We ligated LLT1 on NK92 cells with CD161 on target cells and analysed IFN-gamma production in the presence of pharmacological inhibitors specific for various signalling mechanisms. These results indicate that LLT1 employs Src-PTK, p38 and ERK signalling pathways, but not PKC, PI3K or calcineurin. Phosphorylation studies of the signalling adaptor molecules confirmed that the ERK signalling pathway is associated with LLT1-mediated IFN-gamma production. LLT1 ligation is not associated with any change in detectable IFN-gamma mRNA levels suggesting that LLT1-stimulated IFN-gamma production in NK cells may involve post-transcriptional or translational events.
Collapse
Affiliation(s)
- N D Bambard
- Department of Molecular Biology and Immunology and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | |
Collapse
|
22
|
Abstract
Introduction. Natural Killer cells (NK cells) represent the subset of peripheral lymphocytes that play critical role in the innate immune response to virus-infected and tumor transformed cells. Lysis of NK sensitive target cells could be mediated independently of antigen stimulation and without requirement of peptide presentation by the major histocompatibility complex (MHC) molecules. NK cell activity and functions are controlled by a considerable number of cell surface receptors, which exist in both inhibitory and activating isoforms. There are several groups of NK cell surface receptors: 1) killer immunoglobulin like receptors-KIR, 2) C-type lectin receptors,3)natural citotoxicity receptors-NCR and 4) Toll-like receptors-TLR. Functions of NK receptors. Defining the biology of NK cell surface receptors has contributed to the concept of the manner how NK cells selectively recognize and lyse tumor and virally infected cells while sparing normal cells. Further, identification of NK receptor ligands and their expression on the normal and transformed cells has led to the development of clinical approaches to manipulating receptor/ligand interactions that showed clinical benefit. NK cells are the first lymphocyte subset that reconstitute the peripheral blood following allogeneic HSCT and multiple roles for alloreactive donor NK cells have been demonstrated, in diminishing Graft vs. Host Disease (GvHD) through selective killing recipient dendritic cells, prevention of graft rejection by killing recipient T cells and participation in Graft vs. Leukaemia (GvL) effect through destruction of residual host tumor cells. Conclusion. Besides their role in HSCT, NK cell receptors have an important clinical relevance that reflects from the fact that they play a crucial role in the development of some diseases as well as in possibilities of managing all NK receptors through selective expansion and usage of NK cells in cancer immunotherapy.
Collapse
|
23
|
Multhoff G. Activation of natural killer cells by heat shock protein 70. 2002. Int J Hyperthermia 2009; 25:169-75. [PMID: 19437234 DOI: 10.1080/02656730902902001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Intracellular heat shock proteins (HSP) function as molecular chaperones, they support folding and transport mechanisms of other proteins under physiological conditions and following physical or chemical stress. More recently, extracellular localized HSP have been found to play key roles in the induction of a cellular immune response. Either they act as carrier molecules for immunogenic peptides that are presented on Antigen Presenting Cells (APC) to cytotoxic T-cells or they themselves act as activatory molecules for the innate immune system. Binding of uncomplexed HSP to HSP-receptors on APC has been found to induce the secretion of inflammatory cytokines. Furthermore, an unusual tumor-selective membrane-localization of non-conserved regions of the 72 000 Da HSP (Hsp70) has been found to act as a recognition structure for natural killer (NK) cells. In this review the interaction of NK cells with Hsp70 or peptides derived thereof will be eluciated in more detail.
Collapse
Affiliation(s)
- Gabriele Multhoff
- Department of Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
24
|
Hematopoietic cell transplantation for tolerance induction: animal models to clinical trials. Transplantation 2009; 87:309-16. [PMID: 19202432 DOI: 10.1097/tp.0b013e31819535c2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The induction of donor-specific immune tolerance is the "holy grail" of transplantation, as it would avoid the toxicities of chronic immunosuppressive therapies while preventing acute and chronic graft rejection. A large number of approaches to tolerance induction have been described in the experimental literature, but only hematopoietic cell transplantation has shown preliminary success for intentional tolerance induction in pilot clinical trials. This review summarizes the conditions that allow progress to be made in moving strategies for tolerance induction from the bench to the bedside and discuss the mechanisms by which tolerance may be achieved through hematopoietic cell transplantation.
Collapse
|
25
|
Binyamin L, Alpaugh RK, Hughes TL, Lutz CT, Campbell KS, Weiner LM. Blocking NK cell inhibitory self-recognition promotes antibody-dependent cellular cytotoxicity in a model of anti-lymphoma therapy. THE JOURNAL OF IMMUNOLOGY 2008; 180:6392-401. [PMID: 18424763 DOI: 10.4049/jimmunol.180.9.6392] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human NK cells lyse Ab-coated target cells through the process of Ab-dependent cellular cytotoxicity (ADCC). Improving ADCC responses is desirable because it is thought to be an important antitumor mechanism for some Abs. NK cell inhibitory receptors, such as killer cell Ig-like receptors, engage with MHC class I molecules on self-cells to block NK cell activation. Accordingly, we enhanced ADCC responses by blocking NK cell inhibitory receptors, thus perturbing induction of the self-recognition signal. In a cell line model of anti-lymphoma therapy, the combination of rituximab with an Ab that blocks inhibitory self-recognition yielded increased NK cell-mediated target cell lysis when compared with rituximab alone. To validate this proof-of-concept, we then used a more representative approach in which an individual's fresh primary NK cells encountered autologous, EBV-transformed B cells. In this system, rituximab and a combination of Abs that block NK cell inhibitory receptors yielded improved NK cell-mediated lysis over rituximab alone. The results show, for the first time, that disruption of inhibitory self-recognition can efficiently promote ADCC in a human model, applying an autologous system in which physiologic checkpoints are in place. This method provides an alternative approach to potentiate the therapeutic benefit of antitumor Abs that mediate ADCC.
Collapse
Affiliation(s)
- Liat Binyamin
- Department of Medical Oncology and Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Infiltration of natural killer (NK) cells into solid organ allografts is observed in clinical and experimental transplantation. Studies suggest a role for NK cells in acute and chronic rejection of solid organ allografts; however, the effects of immunosuppressive agents on NK cells are not clearly established. Rat NK cell lines were analyzed for proliferation and cytotoxicity in the presence of cyclosporine, FK506, or rapamycin. Lewis recipients of DA liver allografts received immunosuppressive agents after transplantation. NK cells demonstrated robust function both in the absence and presence of cyclosporine and FK506. In contrast, rapamycin significantly inhibited proliferation and cytotoxicity of NK cells. NK cell numbers remained stable in graft recipients treated with cyclosporine and FK506, whereas there was a significant decrease in NK cells in rapamycin-treated recipients. These data indicate that immunosuppressive drugs have differential effects on NK cell function that may impact the immune response of transplant recipients.
Collapse
|
27
|
Fildes JE, Yonan N, Leonard CT. Natural killer cells and lung transplantation, roles in rejection, infection, and tolerance. Transpl Immunol 2008; 19:1-11. [PMID: 18346631 DOI: 10.1016/j.trim.2008.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 01/07/2008] [Indexed: 01/23/2023]
Abstract
Despite improvements in surgical technique, organ preservation, immunosuppression, and management of infection, the long term survival following lung transplantation remains low, mainly due to immune mediated complications such as acute and chronic rejection. Almost all immunosuppressive agents used in the prophylaxis and treatment of rejection following lung transplantation are targets of T cell maturation, function or proliferation, which in theory should cause sufficient disruption of the adaptive immune system to prevent graft rejection. However the five year survival rate of only 50% suggests this is not the case. More recent evidence suggests that NK cells may play a significant role in immune processes following lung transplantation. This article reviews the literature on the potential function of NK cells in rejection, infection, malignancy and tolerance following lung transplantation.
Collapse
Affiliation(s)
- J E Fildes
- The Transplant Centre, University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Southmoor Road, Manchester, M23 9LT, UK.
| | | | | |
Collapse
|
28
|
Mehling M, Simon P, Mittelbronn M, Meyermann R, Ferrone S, Weller M, Wiendl H. WHO grade associated downregulation of MHC class I antigen-processing machinery components in human astrocytomas: does it reflect a potential immune escape mechanism? Acta Neuropathol 2007; 114:111-9. [PMID: 17541610 DOI: 10.1007/s00401-007-0231-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/04/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Defects of major histocompatibility complex (MHC) class I antigen-processing machinery (APM) components have been shown to contribute to immune escape of malignant cells. We investigated the expression of APM components in astrocytomas without detectable defects in HLA class I antigen expression and correlated it with grade of malignancy. Quantitative immunohistochemical analysis of astrocytomas revealed reduced expression of the cytosolic proteasome subunit low molecular weight protein 2 (LMP2), the endoplasmatic reticulum (ER) transporter associated with antigen processing-1 (TAP1), and the ER chaperone beta2-microglobulin (beta2m) in astrocytoma cells when compared to astrocytes from nonpathological brain. Among human WHO grade II-IV astrocytomas, downregulation of LMP2, TAP1 and beta2m correlated with grade of malignancy. Furthermore, astrocytoma cell lines (n = 12) expressed all APM components analyzed at levels comparable to dendritic cells (DC), which were used for comparative purposes. However, upregulation of beta2m after stimulation with inflammatory cytokines was significantly lower in astrocytoma cell lines than in control cells. Our results support the hypothesis that coordinated downregulation or impaired upregulation of certain HLA class I APM components may serve as a mechanism for astrocytoma cells to evade the host's immune response, even if HLA class I antigen surface expression is not altered.
Collapse
Affiliation(s)
- Matthias Mehling
- Department of General Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Strasse 3, 72076, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Salazar-Mather TP, Hokeness KL. Cytokine and chemokine networks: pathways to antiviral defense. Curr Top Microbiol Immunol 2007; 303:29-46. [PMID: 16570855 DOI: 10.1007/978-3-540-33397-5_2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The complex interplays between cytokines and chemokines are emerging as key communication signals in the shaping of innate and adaptive immune responses against foreign pathogens, including viruses. In particular, the virus-induced expression of cytokine and chemokine profiles drives the recruitment and activation of immune effector cells to sites of tissue infection. Under the conditions of infection with murine cytomegalovirus (MCMV), a herpesvirus with pathogenic potential, early immune functions are essential in the control of virus replication and virus-induced pathology. The coordinated MCMV-induced cytokine and chemokine responses promote effective natural killer (NK) cell recruitment and function, and ultimately MCMV clearance. The studies highlighted in this chapter illustrate in vivo pathways mediated by innate cytokines in regulating chemokine responses that are vital for localized antiviral defenses.
Collapse
Affiliation(s)
- T P Salazar-Mather
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, 69 Brown Street, Box G-B6, Providence, RI 02912, USA.
| | | |
Collapse
|
30
|
Jewett A, Cacalano NA, Teruel A, Romero M, Rashedi M, Wang M, Nakamura H. Inhibition of nuclear factor kappa B (NFkappaB) activity in oral tumor cells prevents depletion of NK cells and increases their functional activation. Cancer Immunol Immunother 2006; 55:1052-63. [PMID: 16328384 PMCID: PMC11030165 DOI: 10.1007/s00262-005-0093-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 10/17/2005] [Indexed: 01/04/2023]
Abstract
The aim of this study is to identify candidate factors which may be responsible for the functional inactivation and depletion of NK cells by tumor cells. Inhibition of NFkappaB activity by an IkappaB super-repressor in HEp2 cells, a cell line commonly used as an oral tumor model, blocked tumor-induced NK cell death, and increased the function of NK cells significantly. Increased expression of CD69 early activation antigen on NK cells as well as augmented proliferation and secretion of IFN-gamma by NK cells were observed when these cells were co-incubated with IkappaB super-repressor transfected HEp2 cells (HEp2-IkappaB((S32AS36A))). More importantly, the secretion of IL-6 was significantly inhibited when NK cells were co-cultured with HEp2-IkappaB((S32AS36A)) cells. In addition, the survival and function of cytotoxic effector cells remained significantly elevated in the presence of IFN-gamma-treated HEp2-IkappaB((S32AS36A)) cells when compared to either untreated or IFN-gamma-treated vector-alone transfected HEp2 cells. Similar findings to those obtained using purified peripheral blood NK cells were also observed when non-fractionated peripheral blood mononuclear cells were used in the co-cultures of immune effectors with HEp2 cell transfectants. Addition of recombinant human IL-6 to the co-cultures of immune effectors with the NFkappaB knockdown HEp2 tumor cells substantially decreased the levels of secreted IFN-gamma. Thus, the results presented in this paper suggest that the inhibition of NFkappaB function in oral tumors may serve to activate and expand the function and numbers of NK cells. Moreover, NFkappaB-mediated increase in IL-6 secretion by oral tumors may in part be responsible for the observed inactivation and death of the immune effectors.
Collapse
Affiliation(s)
- Anahid Jewett
- The Jane and Jerry Weintraub center for reconstructive biotechnology, The Jonsson Comprehensive Cancer Center, Dental Research Institute, School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Jewett A, Cacalano NA, Head C, Teruel A. Coengagement of CD16 and CD94 receptors mediates secretion of chemokines and induces apoptotic death of naive natural killer cells. Clin Cancer Res 2006; 12:1994-2003. [PMID: 16609008 DOI: 10.1158/1078-0432.ccr-05-2306] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Down-modulation of CD16 (FcgammaRIII) receptors and loss of natural killer (NK) cell function have been observed in oral cancer patients. However, neither the mechanisms nor the significance of the decrease in CD16 receptors have been fully understood. The cytotoxic activity and survival of NK cells are negatively regulated by antibodies directed against CD16 surface receptor. The addition of anti-CD94 antibody in combination with either F(ab')(2) fragment or intact anti-CD16 antibody to NK cells resulted in significant inhibition of NK cell cytotoxic function and induction of apoptosis in resting human peripheral blood NK cells. Addition of interleukin-2 to anti-CD16 and/or anti-CD94 antibody-treated NK cells significantly inhibited apoptosis and increased the function of NK cells. There was a significant increase in tumor necrosis factor-alpha (TNF-alpha) but not IFN-gamma secretion in NK cells treated either with anti-CD16 antibody alone or in combination with anti-CD94 antibodies. Consequently, the addition of anti-TNF-alpha antibody partially inhibited apoptosis of NK cells mediated by the combination of anti-CD94 and anti-CD16 antibodies. Increase in apoptotic death of NK cells also correlated with an increase in type 2 inflammatory cytokines and in the induction of chemokines. Thus, we conclude that binding of antibodies to CD16 and CD94 NK cell receptors induces death of the NK cells and signals for the release of chemokines.
Collapse
Affiliation(s)
- Anahid Jewett
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology and Division of Oral Biology and Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
32
|
Song H, Kim J, Cosman D, Choi I. Soluble ULBP suppresses natural killer cell activity via down-regulating NKG2D expression. Cell Immunol 2006; 239:22-30. [PMID: 16630603 DOI: 10.1016/j.cellimm.2006.03.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 03/03/2006] [Accepted: 03/07/2006] [Indexed: 01/08/2023]
Abstract
NKG2D is an activating receptor that is expressed on most natural killer (NK) cells and CD8(+) T cells. MHC class I-related chain A(MICA) and UL16-binding protein (ULBP) 1, 2, and 3 are well-known ligands for NKG2D. Human gastric cancer cell lines, SNU216 and SNU638 cells which expressed UL16-binding protein (ULBP) were susceptible to NK cells in a NKG2D-dependent manner. However, SNU484 and SNU620 cells which had no ULBP on their surface were resistant to NK cells. ULBP 1, 2, and 3 are glycosylphosphatidylinositol (GPI)-anchored proteins which are sensitive to phosphatidylinositol-specific phospholipase C (PI-PLC). When SNU620 cells were treated with U73122, an inhibitor of PI-PLC, the surface expression of ULBP was elevated with increased NK susceptibility. Pre-incubating NK cells with culture supernatants of SNU620 or SNU638 cells, which contained soluble ULBP protein, reduced NK cell activity by decreasing surface expression of NKG2D in NK cells. Furthermore, recombinant ULBP-Fc induced the down-regulation of NKG2D expression in NK cells. Taken together, down-regulation of NKG2D by soluble ULBP provides a potential mechanism by which gastric cancer cells escape NKG2D-mediated attack by the immune cells.
Collapse
Affiliation(s)
- Hyunkeun Song
- Department of Anatomy, Inje University College of Medicine, Pusan 614-735, Republic of Korea
| | | | | | | |
Collapse
|
33
|
Busche A, Goldmann T, Naumann U, Steinle A, Brandau S. Natural killer cell-mediated rejection of experimental human lung cancer by genetic overexpression of major histocompatibility complex class I chain-related gene A. Hum Gene Ther 2006; 17:135-46. [PMID: 16454647 DOI: 10.1089/hum.2006.17.135] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Studies have highlighted molecular and cell biological mechanisms of the NKG2D-NKG2D ligand system in the activation of natural killer (NK) cell and T cell functions. In this study we explore the potential of genetic overexpression of human major histocompatibility complex class I chain-related gene A (MICA), a powerful NKG2D ligand, for the induction of NK cell-mediated antitumor immunity in a humanized murine model of non-small cell lung cancer. Using tissue microarray technology we detected expression of MICA in only 30% of the samples from patients with lung cancer. Staining was always weak and focal, indicating that expression of MICA is detectable but limited in human lung cancer. Genetic overexpression of MICA by means of adenoviral transduction or transfection of expression plasmids was feasible in cell lines in vitro, primary human cancer tissue ex vivo, and in experimental human cancers in vivo. The presence of MICA on the surface of largely NK cell-resistant human lung cancer cells reestablished NK cell susceptibility and provoked NK cell-mediated antitumor immunity by murine and human NK cells in two different experimental therapy models. In this study we analyze the interaction of human NK cells with MICA-positive human cancer cells in an in vivo setting. Our data demonstrate that MICA overexpression can function as NK cell-mediated immunotherapy in experimental lung cancer.
Collapse
Affiliation(s)
- Andreas Busche
- Division of Immunotherapy, Department of Immunology and Cell Biology, Research Center Borstel, D-23845 Borstel, Germany
| | | | | | | | | |
Collapse
|
34
|
Azeredo EL, De Oliveira-Pinto LM, Zagne SM, Cerqueira DIS, Nogueira RMR, Kubelka CF. NK cells, displaying early activation, cytotoxicity and adhesion molecules, are associated with mild dengue disease. Clin Exp Immunol 2006; 143:345-56. [PMID: 16412060 PMCID: PMC1809585 DOI: 10.1111/j.1365-2249.2006.02996.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2005] [Indexed: 11/28/2022] Open
Abstract
During the innate immune response against infections, Natural Killer (NK) cells are as important effector cells as are Cytotoxic T lymphocytes (CTL) generated after antigenic stimulation in the adaptative response. NK cells increase in numbers, after viral infection or vaccination. We investigated the NK cell and CD8 T lymphocyte status in 55 dengue infected patients. The NK (CD56+CD3-) and CD56+ T cell (CD56+CD3+) rates rise during the acute phase of disease. The majority of NK cells from dengue patients display early markers for activation (CD69, HLA-DR, and CD38) and cell adhesion molecules (CD44, CD11a) during the acute phase of disease. The intracellular cytotoxic granule, TIA-1, is also up-regulated early in NK cells. Most of these markers appear also on CD8+ T lymphocytes but during the late acute phase. Circulating IL-15 is elevated in a significant number of patients during early acute infection and its values were statistically correlated with NK frequencies and cytotoxic markers on NKs. We have therefore shown that dengue virus infection is very likely stimulating a cytotoxic response that may be efficient in controlling the virus in synergism with CD8+ T lymphocytes. Interestingly, the heightened CD56+CD3-, CD56+CD3+, CD56+TIA-1+ and CD56+CD11a+ cell rates are associated with mild dengue clinical manifestations and might indicate a good prognosis of the disease.
Collapse
Affiliation(s)
- E L Azeredo
- Department of Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Volz A, Radeloff B. Detecting the unusual: natural killer cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:473-541. [PMID: 16891179 DOI: 10.1016/s0079-6603(06)81012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Armin Volz
- Institut für Immungenetik Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Spanndauer Damm 130, 14050 Berlin, Germany
| | | |
Collapse
|
36
|
Busche A, Goldmann T, Naumann U, Steinle A, Brandau S. Natural Killer Cell-Mediated Rejection of Experimental Human Lung Cancer by Genetic Overexpression of Major Histocompatibility Complex Class I Chain-Related Gene A. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.17.ft-164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
37
|
Tahara-Hanaoka S, Shibuya K, Kai H, Miyamoto A, Morikawa Y, Ohkochi N, Honda SI, Shibuya A. Tumor rejection by the poliovirus receptor family ligands of the DNAM-1 (CD226) receptor. Blood 2005; 107:1491-6. [PMID: 16249389 DOI: 10.1182/blood-2005-04-1684] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The poliovirus receptor CD155 and its family member CD112 (nectin-2) are the ligands for the activating cell-surface receptor DNAM-1 on CD8+ T cells and natural killer (NK) cells. Here, we demonstrate that, whereas the RMA tumor grew in syngeneic mice, DNAM-1 ligand-transduced RMA was rejected, in which CD8+ T cells and NK cells played an essential role. Importantly, CD8+ memory cytotoxic T cells to parental RMA were generated in these mice. We found that DNAM-1 was also expressed on CD8alpha+, rather than CD8alpha-, dendritic cells (DCs). Cross-linking DNAM-1 induced maturation of CD8alpha+ DCs. Antigen presentation by these stimulated DCs drove Th1 cells. Moreover, the rejection of DNAM-1 ligand-transduced RMA was canceled in CD4+ T-cell-depleted and major histocompatibility complex class II-deficient mice. Taken together, these results suggest that DNAM-1 ligands stimulate innate immunity by CD8alpha+ DCs as well as NK cells, which efficiently prime cell-mediated tumor-specific immunity.
Collapse
Affiliation(s)
- Satoko Tahara-Hanaoka
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Ten-nodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sconocchia G, Lau M, Provenzano M, Rezvani K, Wongsena W, Fujiwara H, Hensel N, Melenhorst J, Li J, Ferrone S, Barrett AJ. The antileukemia effect of HLA-matched NK and NK-T cells in chronic myelogenous leukemia involves NKG2D-target-cell interactions. Blood 2005; 106:3666-72. [PMID: 16046526 PMCID: PMC1895055 DOI: 10.1182/blood-2005-02-0479] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study natural killer (NK) cell-mediated antileukemic activity in chronic myelogenous leukemia (CML), we investigated the ability of HLA-matched and mismatched CD56(+) cells to inhibit granulocyte macrophage-colony-forming unit (CFU-GM) formation by leukemic CD34(+) cells. In 14 HLA-identical donor-recipient pairs, donor CD56(+) cells inhibited CML CFU-GM comparably to effectors from 14 HLA-mismatched unrelated individuals (mean inhibition 42% +/- 9% vs 39.5% +/- 7% at a 10:1 effector-to-target (E/T) ratio), suggesting that killer inhibitory receptor (KIR) incompatibility was not essential for an antileukemic effect. Both CD56(+)CD3(-) (natural killer [NK]) and CD56(+)CD3(+)(NK-T) cells inhibited CFU-GM growth of CML but not normal CD34(+) cells. A mechanism for this leukemia-specific cytotoxicity was suggested by the abnormal overexpression of major histocompatibility class I chain-related gene A or gene B (MICA/B) on CML CD34 cells and their ability to bind the NK activation ligand NKG2D. However, in vivo, CML cells may avoid NK-cell-mediated immune destruction by immune escape, shedding MICA into the plasma, thereby down-regulating NKG2D on CML CD56(+) cells.
Collapse
Affiliation(s)
- Giuseppe Sconocchia
- Stem Cell Allotransplantation Section, Hematology Branch, National Heart Lung and Blood Institute, Department of Transfusion Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Adam C, King S, Allgeier T, Braumüller H, Lüking C, Mysliwietz J, Kriegeskorte A, Busch DH, Röcken M, Mocikat R. DC-NK cell cross talk as a novel CD4+ T-cell-independent pathway for antitumor CTL induction. Blood 2005; 106:338-44. [PMID: 15769894 DOI: 10.1182/blood-2004-09-3775] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is generally accepted that priming of antitumor CD8+ cytotoxic T lymphocytes (CTLs) needs help that can be provided by CD4+ T cells. We show that interactions between dendritic cells (DCs) and natural killer (NK) cells can bypass the T helper arm in CTL induction. Bone marrow-derived DCs caused rejection of the A20 lymphoma and induced tumor-specific long-term memory, although they were not loaded with tumor-derived antigen. Experiments using CD40(-) knock-out mice and cell depletion showed that this effect did not require CD4+ cells. Both primary rejection and long-term CTL memory were the result of NK cell activation by DCs. NK cytotoxicity, which was necessary for primary rejection, was dependent on expression of natural killer group 2 D (NKG2D) ligands on tumor cells. Blocking of these ligands using NKG2D tetramers abrogated tumor killing in vitro and in vivo. The long-term response was due to CTLs directed against antigen(s) expressed on A20 and in vitro-differentiated DCs. The mechanism leading to CD4+ helper cell-independent CTL responses was elucidated as a cascade that was initiated by NK cell activation. This pathway was dependent on inter-feron-gamma expression and involved priming endogenous DCs for interleukin-12 production. Our data suggest a novel pathway linking innate and adaptive immunity.
Collapse
Affiliation(s)
- Christian Adam
- GSF-Institut für Molekulare Immunologie, Marchioninistr. 25, D-81377 München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cao MY, Lee Y, Feng N, Li H, Du C, Miao D, Li J, Lee V, Jin H, Wang M, Gu X, Wright JA, Young AH. NK cell activation and tumor infiltration are involved in the antitumor mechanism of Virulizin. Cancer Immunol Immunother 2005; 54:229-42. [PMID: 15378281 PMCID: PMC11034282 DOI: 10.1007/s00262-004-0582-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 06/15/2004] [Indexed: 12/01/2022]
Abstract
Previous studies have demonstrated antitumor efficacy of Virulizin in several human tumor xenograft models and a critical role for macrophages in the antitumor mechanism of Virulizin. Although there is growing support for an immune stimulatory mechanism of action for Virulizin, the details remain to be elucidated. The aim of this study was to determine whether infiltration of natural killer (NK) cells into xenografted tumors is altered by Virulizin treatment, and whether such alterations contribute to the antitumor activity of Virulizin. Immunohistochemical analysis demonstrated that xenografted tumors from Virulizin-treated mice had an increase in infiltration of F4/80(+) (macrophages) and NK1.1(+) (NK) cells. The increase in NK1.1(+) cell infiltration occurred at an early stage of Virulizin treatment, which correlated with an early sign of apoptosis. In addition, Virulizin resulted in an increase in the number of NK cells in the spleens, and NK cells isolated from the spleen exhibited increased cytotoxicity to tumor cells in vitro. In NK cell-deficient SCID-beige mice, the antitumor activity of Virulizin was compromised, providing additional support to the hypothesis that NK cells are necessary for inhibition of tumor growth by Virulizin. Finally, depletion of macrophages resulted in the loss of Virulizin-induced increase in NK1.1(+) cell infiltration into xenografted tumors, suggesting the involvement of macrophages in NK cell infiltration into tumors. Taken together, these results strongly support a mechanism in which Virulizin stimulates a sustained expansion and infiltration of NK cells and macrophages into tumors with subsequent activation of NK cells that is responsible for the observed antitumor activity.
Collapse
Affiliation(s)
- Ming Yu Cao
- Research and Development Department, Lorus Therapeutics Inc., 2 Meridian Road, Toronto, ON, Canada, M9W 4Z7.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Osman MS, Silver ET, Varghese JC, Chang CS, Gong DE, Audette GF, Hazes B, Kane KP. Epitope mapping of Ly-49G and G-like receptors: CK-1 antibody defines a polymorphic site of functional interaction with class I ligand. J Leukoc Biol 2005; 77:644-51. [PMID: 15703200 DOI: 10.1189/jlb.0704407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ly-49 receptors regulate mouse natural killer cell functions. Members of the polymorphic Ly-49 multigene family recognize specific alleles of major histocompatibility complex class I (MHC I) or MHC I-like proteins. Previous studies have provided insight into the nature of Ly-49A and -C interaction with their high-affinity MHC I ligands, H-2Dd and Kb, respectively. Unlike Ly-49C, recognition of MHC I by Ly-49A is regulated in part by residues within the beta4-beta5 loop of its ectodomain. Ly-49A and -G are within the same Ly-49 subfamily, and both receptors recognize Dd. However, there have been no studies that define specific sites on Ly-49G that mediate class I MHC recognition. The Ly-49G receptors of different inbred mouse strains can differ as a result of amino acid polymorphisms within their ectodomains. In this report, we have generated a novel antibody, CK-1, which recognizes Ly-49G(B6) and a Ly-49G(B6)-like receptor, Ly-49M(nonobese diabetic), but not Ly-49G(BALB/c). By exploiting the differences within ectodomains of C57BL/6 and BALB/c Ly-49G allele products, we identified epitopes recognized by the Ly-49G-specific antibodies CK-1 and Cwy-3, whose epitopes mapped within the beta4-beta5 loop and the beta1 strand, respectively, and were nonoverlapping. Although both antibodies specifically recognized the Ly-49G(B6) ectodomain, Cwy-3 was unable to block its interaction with MHC I, and CK-1 significantly inhibited it. The importance of residues within the beta4-beta5 loop in Ly-49G recognition demonstrates that its interaction with MHC I is similar to that of Ly-49A but not Ly-49C.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antigens, Ly/chemistry
- Antigens, Ly/genetics
- Antigens, Ly/immunology
- COS Cells
- Chlorocebus aethiops
- Epitope Mapping
- Flow Cytometry
- Genes, MHC Class I/immunology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Lymphocyte Subsets/cytology
- Lymphocyte Subsets/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Models, Molecular
- Molecular Sequence Data
- Polymorphism, Genetic
- Protein Structure, Tertiary
- Receptors, NK Cell Lectin-Like
- Sequence Alignment
- Species Specificity
Collapse
Affiliation(s)
- Mohammed S Osman
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada, T6G 2S2
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chua HL, Serov Y, Brahmi Z. Regulation of FasL expression in natural killer cells. Hum Immunol 2004; 65:317-27. [PMID: 15120186 DOI: 10.1016/j.humimm.2004.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Revised: 01/13/2004] [Accepted: 01/14/2004] [Indexed: 11/25/2022]
Abstract
Fas ligand (FasL)-mediated cytotoxicity is initiated in natural killer (NK) cells through ligation of their activating receptors. The CD16 receptor has been shown to induce FasL expression and cytotoxicity in NK cells. In this study, we made the novel observation that FasL expression was upregulated in NKL cells stimulated through 2B4 and LFA-1 activating receptors, implying a role for FasL-mediated cytotoxicity early in the immune response. Coligation with CD94/NKG2A human leukocyte antigen (HLA) class I inhibitory receptor did not block the induced FasL expression; therefore, these opposing pathways appear to function independently. We also showed, however, that FasL-mediated cytotoxicity was downregulated in CD94/NKG2A-expressing LAK cells in response to the HLA-E ligand, suggesting a mechanism by which aberrant cells expressing class I may evade FasL-mediated cytotoxicity. Thus we show for the first time that 2B4, LFA-1, and CD94/NKG2A receptors are involved in modulating FasL expression and, therefore, cytotoxicity mediated by NK cells.
Collapse
Affiliation(s)
- Hui Lin Chua
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
43
|
Yoder JA. Investigating the morphology, function and genetics of cytotoxic cells in bony fish. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138:271-80. [PMID: 15533785 DOI: 10.1016/j.cca.2004.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Revised: 03/08/2004] [Accepted: 03/30/2004] [Indexed: 10/26/2022]
Abstract
Bony fish (teleosts) possess multiple cytotoxic cell lineages that recognize and destroy virally infected and transformed cells. In general, these lineages parallel their functional equivalents in mammals and include neutrophilic granulocytes, macrophages, cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. These four cell types have been morphologically identified in multiple fish species but only limited information is available about their function. In contrast, much work has gone into examining the function of a fifth cytotoxic cell lineage, termed nonspecific cytotoxic cells (NCC), that has been referred to as the bony fish equivalent of NK cells. However, evidence suggesting that NCC do not represent the NK lineage has come through the development of multiple cytotoxic catfish cell lines that are morphologically and functionally similar to human NK cells and are distinct from NCC. In addition to characterizing cytotoxic cells from fish, recent work has identified the novel immune-type receptors (NITR) and cichlid killer leukocyte receptors (cKLR) that are structurally related to mammalian NK receptors and likely play a role in cytotoxic function in fish. This review summarizes the morphological and functional evidence for cytotoxic cells within bony fish and discusses future directions for examining cytotoxicity through genomics and transgenics.
Collapse
Affiliation(s)
- Jeffrey A Yoder
- Department of Biology, University of South Florida, 4202 East Fowler Avenue-SCA 110, Tampa, FL 33620, USA.
| |
Collapse
|
44
|
Hsieh CL, Ogura Y, Obara H, Ali UA, Rodriguez GM, Nepomuceno RR, Martinez OM, Krams SM. Identification, cloning, and characterization of a novel rat natural killer receptor, RNKP30: a molecule expressed in liver allografts. Transplantation 2004; 77:121-8. [PMID: 14724446 DOI: 10.1097/01.tp.0000110423.27977.6f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND As a component of the innate immune system, natural killer (NK) cells may play a significant role in the early events after solid-organ transplantation. Activated NK cells have been shown to infiltrate allografts in transplant models. To better understand NK cells and the role of NK cell receptors in transplantation, we have cloned and begun characterizing a novel rat molecule, rNKp30. METHODS RNKp30 cDNA was cloned by 5' rapid amplification of cDNA ends polymerase chain reaction (PCR) and reverse transcriptase (RT)-PCR from mononuclear cells infiltrating a rejecting liver allograft. Southern blot analysis was used to determine the rNKp30 gene copy number. RT-PCR and Northern blotting were used to examine rNKp30 RNA expression in NK cells, multiple tissues, and liver grafts. Immunocytochemistry, immunoprecipitation, and Western blot analysis with two anti-rNKp30 polyclonal antibodies, CA680 and CA1071, were performed. Tunicamycin and endoglycosidase treatments determined the extent of rNKp30 glycosylation. RESULTS RNKp30 is homologous to human and macaque NKp30. It is a single copy gene with five identified single-nucleotide polymorphisms. RNKp30 is expressed by NK cells and is detectable as a single transcript by Northern blot in normal spleen, lymph node, and lung tissues. RNKp30 is a variably N-glycosylated cell surface molecule with a protein backbone of approximately 21 kDa. Elevated transcript expression of rNKp30 is detected in both rejected and spontaneously accepted liver allografts, but not in syngeneic or cyclosporine A-treated allografts. CONCLUSIONS RNKp30 is a glycosylated surface NK cell receptor with limited polymorphism. This putative activation receptor is expressed in liver allografts and may participate in the innate immune response after transplantation.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Animals
- Antigens, Surface/metabolism
- Base Sequence/genetics
- Cloning, Molecular
- DNA, Complementary/genetics
- Female
- Lectins, C-Type/metabolism
- Liver/metabolism
- Liver Transplantation
- Male
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily B
- Natural Cytotoxicity Triggering Receptor 3
- Rats
- Rats, Inbred Strains
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Transcription, Genetic/physiology
- Transplantation, Homologous
Collapse
Affiliation(s)
- Christine L Hsieh
- Department of Surgery and Program in Immunology, Stanford University School of Medicine, Stanford, California 94305-5492, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lozupone F, Pende D, Burgio VL, Castelli C, Spada M, Venditti M, Luciani F, Lugini L, Federici C, Ramoni C, Rivoltini L, Parmiani G, Belardelli F, Rivera P, Marcenaro S, Moretta L, Fais S. Effect Of Human Natural Killer and γδ T Cells on the Growth of Human Autologous Melanoma Xenografts in SCID Mice. Cancer Res 2004; 64:378-85. [PMID: 14729648 DOI: 10.1158/0008-5472.can-03-1501] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural killer (NK) cells were first identified for their ability to kill tumor cells of different origin in vitro. Similarly, gammadelta T lymphocytes display strong cytotoxic activity against various tumor cell lines. However, the ability of both the NK and gammadelta cells to mediate natural immune response against human malignant tumors in vivo is still poorly defined. Severe combined immunodeficient (SCID) mice have been successfully engrafted with human tumors. In this study, the antitumor effect of local as well as of systemic treatments based on NK cells or Vdelta1 or Vdelta2 gamma/delta T lymphocytes against autologous melanoma cells was investigated in vivo. The results show that all three of the populations were effective in preventing growth of autologous human melanomas when both tumor and lymphoid cells were s.c. inoculated at the same site. However, when lymphoid cells were infused i.v., only NK cells and Vdelta1 gamma/delta T lymphocytes could either prevent or inhibit the s.c. growth of autologous melanoma. Accordingly, both NK cells and Vdelta1 gammadelta T lymphocytes could be detected at the s.c. tumor site. In contrast, Vdelta2 gammadelta T lymphocytes were only detectable in the spleen of the SCID mice. Moreover, NK cells maintained their inhibitory effect on tumor growth even after discontinuation of the treatment. Indeed they were present at the tumor site for a longer period. These data support the possibility to exploit NK cells and Vdelta1 gammadelta T lymphocytes in tumor immunotherapy. Moreover, our study emphasizes the usefulness of human tumor/SCID mouse models for preclinical evaluation of immunotherapy protocols against human tumors.
Collapse
Affiliation(s)
- Francesco Lozupone
- Laboratories of Immunology and Virology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Westwood JA, Kelly JM, Tanner JE, Kershaw MH, Smyth MJ, Hayakawa Y. Cutting Edge: Novel Priming of Tumor-Specific Immunity by NKG2D-Triggered NK Cell-Mediated Tumor Rejection and Th1-Independent CD4+ T Cell Pathway. THE JOURNAL OF IMMUNOLOGY 2004; 172:757-61. [PMID: 14707044 DOI: 10.4049/jimmunol.172.2.757] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKG2D is an activation receptor on NK cells and has been demonstrated as a primary cytotoxicity receptor for mouse NK cells. Primary rejection of class I-deficient RMA-S lymphoma cells expressing the NKG2D ligand, retinoic acid early inducible-1beta, was critically dependent upon NK cell perforin and occurred independently of T cells. NKG2D-triggered NK cell rejection of RMA-S-retinoic acid early inducible-1beta tumor primed a secondary tumor-specific T cell response mediated by both CD4+ and CD8+ T cells in the effector phase. Surprisingly, during the priming phase, CD4+ T cells, but not CD8+ T cells, were also required to generate this secondary T cell immunity; however, T cell priming was independent of Th1 cytokines, such as IFN-gamma and IL-12. These data imply a novel pathway for priming T cell immunity, that is, stimulated upon NK cell-mediated cytotoxicity of NKG2D ligand-expressing tumor cells, dependent upon CD4+ T cells in the primary phase, and independent of conventional Th1-type immunity.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/genetics
- Graft Rejection/immunology
- Immunity, Cellular/genetics
- Immunity, Innate/genetics
- Immunization, Secondary
- Immunologic Memory/genetics
- Injections, Subcutaneous
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NK Cell Lectin-Like Receptor Subfamily K
- Neoplasm Transplantation
- Receptors, Immunologic/physiology
- Receptors, Natural Killer Cell
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Jennifer A Westwood
- Cancer Immunology Program, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Centre, A'Beckett Street, East Melbourne, 8006 Victoria, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Salazar-Mather TP, Hokeness KL. Calling in the troops: regulation of inflammatory cell trafficking through innate cytokine/chemokine networks. Viral Immunol 2004; 16:291-306. [PMID: 14583145 DOI: 10.1089/088282403322396109] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The recruitment of immune effector cells to localized sites of infection is crucial for the effective delivery of innate immune mechanisms. Under the conditions of infections with murine cytomegalovirus (MCMV), a herpesvirus with pathogenic potential, early immune functions are essential in the control of virus replication and virus-induced pathology. Our studies have demonstrated that the chemokine macrophage inflammatory protein-1alpha (MIP-1alpha) is critical for natural killer (NK) cell inflammation and delivery of interferon (IFN)-gamma to mediate downstream protective responses against MCMV infection in liver. Moreover, IFN-alpha/beta-dependent mechanisms promote MIP-1alpha production and subsequently the accumulation of NK cells in liver. Taken together, the studies highlighted in this review define a unique in vivo pathway mediated by innate cytokines in regulating chemokine responses that are essential in the promotion of NK cell inflammation for localized antiviral defense. In addition, the downstream consequences of these events in enhancing endogenous adaptive immune responses will also be discussed. Overall, the innate cytokine/chemokine networks that are described emphasize the emerging importance of chemokine functions for protective immune responses during infection with viruses.
Collapse
Affiliation(s)
- Thais P Salazar-Mather
- Departments of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
48
|
Abstract
NK cells are crucial components of the innate immune system, capable of directly eliminating infected or tumorigenic cells and regulating down-stream adaptive immune responses. Unlike T cells, where the key recognition event driving activation is mediated by the unique T cell receptor (TCR) expressed on a given cell, NK cells express multiple activating and inhibitory cell-surface receptors (NKRs), often with overlapping ligand specificities. NKRs display two ectodomain structural homologies, either immunoglobulin- or C-type lectin-like (CTLD). The CTLD immunoreceptor NKG2D is found on NK cells but is also widely expressed on T cells and other immune system cells, providing stimulatory or co-stimulatory signals. NKG2D drives target cell killing following engagement of diverse, conditionally expressed MHC class I-like protein ligands whose expression can signal cellular distress due to infection or transformation. The symmetric, homodimeric receptor interacts with its asymmetric, monomeric ligands in similar 2:1 complexes, with an equivalent surface on each NKG2D monomer binding extensively and intimately to distinct, structurally divergent surfaces on the ligands. Thus, NKG2D ligand-binding site recognition is highly degenerate, further demonstrated by NKG2D's ability to simultaneously accommodate multiple non-conservative allelic or isoform substitutions in the ligands. In TCRs, "induced-fit" recognition explains cross-reactivity, but structural, computational, thermodynamic and kinetic analyses of multiple NKG2D-ligand pairs show that rather than classical "induced-fit" binding, NKG2D degeneracy is achieved using distinct interaction mechanisms at each rigid interface: recognition degeneracy by "rigid adaptation." While likely forming similar complexes with their ligand (HLA-E), other NKG2x NKR family members do not require such recognition degeneracy.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Histocompatibility Antigens Class I/immunology
- Humans
- Killer Cells, Natural/immunology
- Ligands
- Models, Molecular
- Molecular Sequence Data
- NK Cell Lectin-Like Receptor Subfamily K
- Phylogeny
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Roland K Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
49
|
Bezouška K. Carbohydrate and Non-Carbohydrate Ligands for the C-Type Lectin-Like Receptors of Natural Killer Cells. A Review. ACTA ACUST UNITED AC 2004. [DOI: 10.1135/cccc20040535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The superfamily of C-type animal lectins is defined by a sequence motif of the carbohydrate- recognition domains (CRDs) and comprises seven groups of molecules. The soluble proteins are group I proteoglycans, group III collectins, and group VII containing the isolated CRDs. Type I membrane proteins include group IV selectins and group VI macrophage receptors and related molecules. Type II membrane proteins are group II hepatic lectins and group V natural killer cell receptors. The latter group has recently attracted considerable attention of the biomedical community. These receptors are arranged at the surface of lymphocytes as homo- or heterodimers composed of two polypeptides consisting of N-terminal peptide tails responsible for signaling, transmembrane domain, neck regions of varying length, and C-terminal lectin-like domains (CTLDs). Since this group is evolutionarily most distant from the rest of C-type animal lectins, the sequence of the C-terminal ligand-binding domain has diversified to accommodate other ligands than calcium or carbohydrates. These domains are referred to as natural killer domains (NKDs) forming a large percentage of CTLDs in vertebrates. Here are summarized the data indicating that calcium, carbohydrates, peptides, and large proteins such as major histocompatibility complex (MHC) class I can all be ligands for NKDs. The wide range of ligands that can be recognized by NKDs includes some new, unexpected compounds such as signal peptide-derived fragments, heat shock proteins, or oxidized lipids. The biological importance of this extended range of recognition abilities is also discussed. A review with 134 references.
Collapse
|
50
|
Affiliation(s)
- Dorothy Yuan
- Laboratory of Molecular Pathology, Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|