1
|
Abdelghany L, Sillapachaiyaporn C, Zhivotovsky B. The concealed side of caspases: beyond a killer of cells. Cell Mol Life Sci 2024; 81:474. [PMID: 39625520 PMCID: PMC11615176 DOI: 10.1007/s00018-024-05495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024]
Abstract
Since the late 20th century, researchers have known that caspases are a pillar of cell death, particularly apoptosis. However, recent advances in cell biology have unraveled the multiple roles of caspases. These enzymes have an unconventional role in cell proliferation, differentiation, and invasion. As a result, caspase deregulation can fuel the fire of cancer, incite flames of inflammation, flare neurodegenerative disorders, and exacerbate skin pathologies. Several therapeutic approaches toward caspase inhibition have been investigated, but can caspase inhibitors harness the maladaptive effect of these proteases without causing significant side effects? A few studies have exploited caspase induction for cancer or adoptive cell therapies. Here, we provide a compelling picture of caspases, starting with their evolution, their polytomous roles beyond cell death, the flaws of their deregulation, and the merits of targeting them for therapeutic implications. Furthermore, we provide a deeper understanding of the evolution of caspase-related research up to the current era, pinpointing the role of caspases in cell survival and aiding in the development of effective caspase-targeted therapies.
Collapse
Affiliation(s)
- Lina Abdelghany
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | | | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden.
- Engelhardt Institute of Molecular Biology, RAS, Moscow, 119991, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia.
| |
Collapse
|
2
|
Menon V, Slavinsky M, Hermine O, Ghaffari S. Mitochondrial regulation of erythropoiesis in homeostasis and disease. Br J Haematol 2024; 205:429-439. [PMID: 38946206 PMCID: PMC11619715 DOI: 10.1111/bjh.19600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Erythroid cells undergo a highly complex maturation process, resulting in dynamic changes that generate red blood cells (RBCs) highly rich in haemoglobin. The end stages of the erythroid cell maturation process primarily include chromatin condensation and nuclear polarization, followed by nuclear expulsion called enucleation and clearance of mitochondria and other organelles to finally generate mature RBCs. While healthy RBCs are devoid of mitochondria, recent evidence suggests that mitochondria are actively implicated in the processes of erythroid cell maturation, erythroblast enucleation and RBC production. However, the extent of mitochondrial participation that occurs during these ultimate steps is not completely understood. This is specifically important since abnormal RBC retention of mitochondria or mitochondrial DNA contributes to the pathophysiology of sickle cell and other disorders. Here we review some of the key findings so far that elucidate the importance of this process in various aspects of erythroid maturation and RBC production under homeostasis and disease conditions.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Mary Slavinsky
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Olivier Hermine
- Department Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Descartes
- INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
3
|
Ghorbani N, Yaghubi R, Davoodi J, Pahlavan S. How does caspases regulation play role in cell decisions? apoptosis and beyond. Mol Cell Biochem 2024; 479:1599-1613. [PMID: 37976000 DOI: 10.1007/s11010-023-04870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
Caspases are a family of cysteine proteases, and the key factors behind the cellular events which occur during apoptosis and inflammation. However, increasing evidence shows the non-conventional pro-survival action of apoptotic caspases in crucial processes. These cellular events include cell proliferation, differentiation, and migration, which may appear in the form of metastasis, and chemotherapy resistance in cancerous situations. Therefore, there should be a precise and strict control of caspases activity, perhaps through maintaining the threshold below the required levels for apoptosis. Thus, understanding the regulators of caspase activities that render apoptotic caspases as non-apoptotic is of paramount importance both mechanistically and clinically. Furthermore, the functions of apoptotic caspases are affected by numerous post-translational modifications. In the present mini-review, we highlight the various mechanisms that directly impact caspases with respect to their anti- or non-apoptotic functions. In this regard, post-translational modifications (PTMs), isoforms, subcellular localization, transient activity, substrate availability, substrate selection, and interaction-mediated regulations are discussed.
Collapse
Affiliation(s)
- Negar Ghorbani
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Roham Yaghubi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Jamshid Davoodi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Ghorbani N, Shiri M, Alian M, Yaghubi R, Shafaghi M, Hojjat H, Pahlavan S, Davoodi J. A Non-Apoptotic Pattern of Caspase-9/Caspase-3 Activation During Differentiation of Human Embryonic Stem Cells into Cardiomyocytes. Adv Biol (Weinh) 2024; 8:e2400026. [PMID: 38640919 DOI: 10.1002/adbi.202400026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/22/2024] [Indexed: 04/21/2024]
Abstract
In vitro studies have demonstrated that the differentiation of embryonic stem cells (ESCs) into cardiomyocytes requires activation of caspases through the mitochondrial pathway. These studies have relied on synthetic substrates for activity measurements, which can be misleading due to potential none-specific hydrolysis of these substrates by proteases other than caspases. Hence, caspase-9 and caspase-3 activation are investigated during the differentiation of human ESCs (hESCs) by directly assessing caspase-9 and -3 cleavage. Western blot reveals the presence of the cleaved caspase-9 prior to and during the differentiation of human ESCs (hESCs) into cardiomyocytes at early stages, which diminishes as the differentiation progresses, without cleavage and activation of endogenous procaspase-3. Activation of exogenous procaspase-3 by endogenous caspase-9 and subsequent cleavage of chromogenic caspase-3 substrate i.e. DEVD-pNA during the course of differentiation confirmes that endogenous caspase-9 has the potency to recognize and activate procaspase-3, but for reasons that are unknown to us fails to do so. These observations suggest the existence of distinct mechanisms of caspase regulation in differentiation as compared to apoptosis. Bioinformatics analysis suggests the presence of caspase-9 regulators, which may influence proteolytic function under specific conditions.
Collapse
Affiliation(s)
- Negar Ghorbani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
| | - Mahshad Shiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Maedeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
| | - Roham Yaghubi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, 1417614411, Iran
| | - Mojtaba Shafaghi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamidreza Hojjat
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614335, Iran
| |
Collapse
|
5
|
Cumming T, Levayer R. Toward a predictive understanding of epithelial cell death. Semin Cell Dev Biol 2024; 156:44-57. [PMID: 37400292 DOI: 10.1016/j.semcdb.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Epithelial cell death is highly prevalent during development and tissue homeostasis. While we have a rather good understanding of the molecular regulators of programmed cell death, especially for apoptosis, we still fail to predict when, where, how many and which specific cells will die in a tissue. This likely relies on the much more complex picture of apoptosis regulation in a tissular and epithelial context, which entails cell autonomous but also non-cell autonomous factors, diverse feedback and multiple layers of regulation of the commitment to apoptosis. In this review, we illustrate this complexity of epithelial apoptosis regulation by describing these different layers of control, all demonstrating that local cell death probability is a complex emerging feature. We first focus on non-cell autonomous factors that can locally modulate the rate of cell death, including cell competition, mechanical input and geometry as well as systemic effects. We then describe the multiple feedback mechanisms generated by cell death itself. We also outline the multiple layers of regulation of epithelial cell death, including the coordination of extrusion and regulation occurring downstream of effector caspases. Eventually, we propose a roadmap to reach a more predictive understanding of cell death regulation in an epithelial context.
Collapse
Affiliation(s)
- Tom Cumming
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France; Sorbonne Université, Collège Doctoral, F75005 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
6
|
Abbas H, Derkaoui DK, Jeammet L, Adicéam E, Tiollier J, Sicard H, Braun T, Poyet JL. Apoptosis Inhibitor 5: A Multifaceted Regulator of Cell Fate. Biomolecules 2024; 14:136. [PMID: 38275765 PMCID: PMC10813780 DOI: 10.3390/biom14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Apoptosis, or programmed cell death, is a fundamental process that maintains tissue homeostasis, eliminates damaged or infected cells, and plays a crucial role in various biological phenomena. The deregulation of apoptosis is involved in many human diseases, including cancer. One of the emerging players in the intricate regulatory network of apoptosis is apoptosis inhibitor 5 (API5), also called AAC-11 (anti-apoptosis clone 11) or FIF (fibroblast growth factor-2 interacting factor). While it may not have yet the same level of notoriety as some other cancer-associated proteins, API5 has garnered increasing attention in the cancer field in recent years, as elevated API5 levels are often associated with aggressive tumor behavior, resistance to therapy, and poor patient prognosis. This review aims to shed light on the multifaceted functions and regulatory mechanisms of API5 in cell fate decisions as well as its interest as therapeutic target in cancer.
Collapse
Affiliation(s)
- Hafsia Abbas
- Université Oran 1, Ahmed Ben Bella, Oran 31000, Algeria; (H.A.); (D.K.D.)
| | | | - Louise Jeammet
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Emilie Adicéam
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Jérôme Tiollier
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Hélène Sicard
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Thorsten Braun
- Laboratoire de Transfert des Leucémies, EA3518, Institut de Recherche Saint Louis, Hôpital Saint Louis, Université de Paris, 75010 Paris, France;
- AP-HP, Service d’Hématologie Clinique, Hôpital Avicenne, Université Paris XIII, 93000 Bobigny, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, 75010 Paris, France
| | - Jean-Luc Poyet
- INSERM UMRS976, Institut de Recherche Saint Louis, Hôpital Saint Louis, 75010 Paris, France
- Université Paris Cité, 75015 Paris, France
| |
Collapse
|
7
|
Reyes-Rivera J, Grillo-Alvarado V, Soriano-López AE, García-Arrarás JE. Evidence of interactions among apoptosis, cell proliferation, and dedifferentiation in the rudiment during whole-organ intestinal regeneration in the sea cucumber. Dev Biol 2024; 505:99-109. [PMID: 37925124 PMCID: PMC11163280 DOI: 10.1016/j.ydbio.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Sea cucumbers have an extraordinary regenerative capability. Under stressful conditions, Holothuria glaberrima can eviscerate their internal organs, including the digestive tract. From the mesentery, a rudiment grows and gives rise to a new intestine within a few weeks. In the last decades, the cellular events that occur during intestinal regeneration have been characterized, including apoptosis, cell proliferation, and muscle cell dedifferentiation. Nevertheless, their contribution to the formation and early growth of the rudiment is still unknown. Furthermore, these cellular events' relationship and potential interdependence remain a mystery. Using modulators to inhibit apoptosis and cell proliferation, we tested whether rudiment growth or other regenerative cellular events like muscle cell dedifferentiation were affected. We found that inhibition of apoptosis by zVAD and cell proliferation by aphidicolin and mitomycin did not affect the overall size of the rudiment seven days post-evisceration (7-dpe). Interestingly, animals treated with aphidicolin showed higher levels of muscle cell dedifferentiation in the distal mesentery, which could act as a compensatory mechanism. On the other hand, inhibition of apoptosis led to a decrease in cell proliferation in the rudiment and a delay in the spatiotemporal progression of muscle cell dedifferentiation throughout the rudiment-mesentery structure. Our findings suggest that neither apoptosis nor cell proliferation significantly contributes to early rudiment growth during intestinal regeneration in the sea cucumber. Nevertheless, apoptosis may play an essential role in modulating cell proliferation in the rudiment (a process known as apoptosis-induced proliferation) and the timing for the progression of muscle cell dedifferentiation. These findings provide new insights into the role and relationship of cellular events during intestinal regeneration in an emerging regeneration model.
Collapse
Affiliation(s)
- Josean Reyes-Rivera
- Department of Biology, University of Puerto Rico, Río Piedras, PR, USA; Molecular and Cell Biology Department, University of California, Berkeley, CA, USA
| | | | | | | |
Collapse
|
8
|
Quotti Tubi L, Canovas Nunes S, Mandato E, Pizzi M, Vitulo N, D’Agnolo M, Colombatti R, Martella M, Boaro MP, Doriguzzi Breatta E, Fregnani A, Spinello Z, Nabergoj M, Filhol O, Boldyreff B, Albiero M, Fadini GP, Gurrieri C, Vianello F, Semenzato G, Manni S, Trentin L, Piazza F. CK2β Regulates Hematopoietic Stem Cell Biology and Erythropoiesis. Hemasphere 2023; 7:e978. [PMID: 38026791 PMCID: PMC10673422 DOI: 10.1097/hs9.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
The Ser-Thr kinase CK2 plays important roles in sustaining cell survival and resistance to stress and these functions are exploited by different types of blood tumors. Yet, the physiological involvement of CK2 in normal blood cell development is poorly known. Here, we discovered that the β regulatory subunit of CK2 is critical for normal hematopoiesis in the mouse. Fetal livers of conditional CK2β knockout embryos showed increased numbers of hematopoietic stem cells associated to a higher proliferation rate compared to control animals. Both hematopoietic stem and progenitor cells (HSPCs) displayed alterations in the expression of transcription factors involved in cell quiescence, self-renewal, and lineage commitment. HSPCs lacking CK2β were functionally impaired in supporting both in vitro and in vivo hematopoiesis as demonstrated by transplantation assays. Furthermore, KO mice developed anemia due to a reduced number of mature erythroid cells. This compartment was characterized by dysplasia, proliferative defects at early precursor stage, and apoptosis at late-stage erythroblasts. Erythroid cells exhibited a marked compromise of signaling cascades downstream of the cKit and erythropoietin receptor, with a defective activation of ERK/JNK, JAK/STAT5, and PI3K/AKT pathways and perturbations of several transcriptional programs as demonstrated by RNA-Seq analysis. Moreover, we unraveled an unforeseen molecular mechanism whereby CK2 sustains GATA1 stability and transcriptional proficiency. Thus, our work demonstrates new and crucial functions of CK2 in HSPC biology and in erythropoiesis.
Collapse
Affiliation(s)
- Laura Quotti Tubi
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sara Canovas Nunes
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisa Mandato
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marco Pizzi
- Department of Medicine, Cytopathology and Surgical Pathology Unit, University of Padova, Italy
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Italy
| | - Mirco D’Agnolo
- Department of Women’s and Child’s Health, University of Padova, Italy
| | | | | | - Maria Paola Boaro
- Department of Women’s and Child’s Health, University of Padova, Italy
| | - Elena Doriguzzi Breatta
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Anna Fregnani
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Zaira Spinello
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Mitja Nabergoj
- Hematology Service, Institut Central des Hôpitaux (ICH), Hôpital du Valais, Sion, Switzerland
| | - Odile Filhol
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1036, Institute de Reserches en Technologies et Sciences pour le Vivant/Biologie du Cancer et de l’Infection, Grenoble, France
| | | | - Mattia Albiero
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
- Veneto Institute of Molecular Medicine, Experimental Diabetology Lab, Padova, Italy
| | - Gian Paolo Fadini
- Veneto Institute of Molecular Medicine, Experimental Diabetology Lab, Padova, Italy
- Department of Medicine, University of Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Fabrizio Vianello
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Livio Trentin
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
9
|
Kondratov KA, Artamonov AA, Mikhailovskii VY, Velmiskina AA, Mosenko SV, Grigoryev EA, Anisenkova AY, Nikitin YV, Apalko SV, Sushentseva NN, Ivanov AM, Scherbak SG. SARS-CoV-2 Impact on Red Blood Cell Morphology. Biomedicines 2023; 11:2902. [PMID: 38001903 PMCID: PMC10669871 DOI: 10.3390/biomedicines11112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Severe COVID-19 alters the biochemical and morphological characteristics of blood cells in a wide variety of ways. To date, however, the vast majority of research has been devoted to the study of leukocytes, while erythrocyte morphological changes have received significantly less attention. The aim of this research was to identify erythrocyte morphology abnormalities that occur in COVID-19, compare the number of different poikilocyte types, and measure erythrocyte sizes to provide data on size dispersion. Red blood cells obtained from 6 control donors (800-2200 cells per donor) and 5 COVID-19 patients (800-1900 cells per patient) were examined using low-voltage scanning electron microscopy. We did not discover any forms of erythrocyte morphology abnormalities that would be specific to COVID-19. Among COVID-19 patients, we observed an increase in the number of acanthocytes (p = 0.01) and a decrease in the number of spherocytes (p = 0.03). In addition, our research demonstrates that COVID-19 causes an increase in the median (p = 0.004) and interquartile range (p = 0.009) when assessing erythrocyte size. The limitation of our study is a small number of participants.
Collapse
Affiliation(s)
- Kirill A. Kondratov
- City Hospital No. 40, St. Petersburg 197706, Russia
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | | | - Anastasiya A. Velmiskina
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Sergey V. Mosenko
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | - Anna Yu. Anisenkova
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Yuri V. Nikitin
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
| | - Svetlana V. Apalko
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| | | | - Andrey M. Ivanov
- S. M. Kirov Military Medical Academy, St. Petersburg 194044, Russia
| | - Sergey G. Scherbak
- City Hospital No. 40, St. Petersburg 197706, Russia
- Saint-Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
10
|
Rodrigues F, Coman T, Fouquet G, Côté F, Courtois G, Trovati Maciel T, Hermine O. A deep dive into future therapies for microcytic anemias and clinical considerations. Expert Rev Hematol 2023; 16:349-364. [PMID: 37092971 DOI: 10.1080/17474086.2023.2206556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Microcytic anemias (MA) have frequent or rare etiologies. New discoveries in understanding and treatment of microcytic anemias need to be reviewed. AREAS COVERED Microcytic anemias with a focus on the most frequent causes and on monogenic diseases that are relevant for understanding biocellular mechanisms of MA. All treatments except gene therapy, with a focus on recent advances. PubMed search with references selected by expert opinion. EXPERT OPINION As the genetic and cellular backgrounds of dyserythropoiesis will continue to be clarified, collaboration with bioengineering of treatments acting specifically at the protein domain level will continue to provide new therapies in hematology as well as oncology and neurology.
Collapse
Affiliation(s)
- François Rodrigues
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, France
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| | - Tereza Coman
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
- Département d'hématologie, Institut Gustave Roussy, Villejuif, France
| | - Guillemette Fouquet
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, France
- Hématologie clinique, Centre Hospitalier Sud Francilien, Corbeil Essonnes, France
| | - Francine Côté
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| | | | | | - Olivier Hermine
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, France
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| |
Collapse
|
11
|
Shoshan-Barmatz V, Arif T, Shteinfer-Kuzmine A. Apoptotic proteins with non-apoptotic activity: expression and function in cancer. Apoptosis 2023; 28:730-753. [PMID: 37014578 PMCID: PMC10071271 DOI: 10.1007/s10495-023-01835-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Apoptosis is a process of programmed cell death in which a cell commits suicide while maintaining the integrity and architecture of the tissue as a whole. Apoptosis involves activation of one of two major pathways: the extrinsic pathway, where extracellular pro-apoptotic signals, transduced through plasma membrane death receptors, activate a caspase cascade leading to apoptosis. The second, the intrinsic apoptotic pathway, where damaged DNA, oxidative stress, or chemicals, induce the release of pro-apoptotic proteins from the mitochondria, leading to the activation of caspase-dependent and independent apoptosis. However, it has recently become apparent that proteins involved in apoptosis also exhibit non-cell death-related physiological functions that are related to the cell cycle, differentiation, metabolism, inflammation or immunity. Such non-conventional activities were predominantly reported in non-cancer cells although, recently, such a dual function for pro-apoptotic proteins has also been reported in cancers where they are overexpressed. Interestingly, some apoptotic proteins translocate to the nucleus in order to perform a non-apoptotic function. In this review, we summarize the unconventional roles of the apoptotic proteins from a functional perspective, while focusing on two mitochondrial proteins: VDAC1 and SMAC/Diablo. Despite having pro-apoptotic functions, these proteins are overexpressed in cancers and this apparent paradox and the associated pathophysiological implications will be discussed. We will also present possible mechanisms underlying the switch from apoptotic to non-apoptotic activities although a deeper investigation into the process awaits further study.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- National Institute for Biotechnology in the Negev, Beer Sheva, Israel.
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
12
|
Haftorn KL, Denault WRP, Lee Y, Page CM, Romanowska J, Lyle R, Næss ØE, Kristjansson D, Magnus PM, Håberg SE, Bohlin J, Jugessur A. Nucleated red blood cells explain most of the association between DNA methylation and gestational age. Commun Biol 2023; 6:224. [PMID: 36849614 PMCID: PMC9971030 DOI: 10.1038/s42003-023-04584-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Determining if specific cell type(s) are responsible for an association between DNA methylation (DNAm) and a given phenotype is important for understanding the biological mechanisms underlying the association. Our EWAS of gestational age (GA) in 953 newborns from the Norwegian MoBa study identified 13,660 CpGs significantly associated with GA (pBonferroni<0.05) after adjustment for cell type composition. When the CellDMC algorithm was applied to explore cell-type specific effects, 2,330 CpGs were significantly associated with GA, mostly in nucleated red blood cells [nRBCs; n = 2,030 (87%)]. Similar patterns were found in another dataset based on a different array and when applying an alternative algorithm to CellDMC called Tensor Composition Analysis (TCA). Our findings point to nRBCs as the main cell type driving the DNAm-GA association, implicating an epigenetic signature of erythropoiesis as a likely mechanism. They also explain the poor correlation observed between epigenetic age clocks for newborns and those for adults.
Collapse
Affiliation(s)
- Kristine L Haftorn
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
- Institute of Health and Society, University of Oslo, Oslo, Norway.
| | - William R P Denault
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Yunsung Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Physical Health and Ageing, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Julia Romanowska
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, , University of Bergen, Bergen, Norway
| | - Robert Lyle
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Øyvind E Næss
- Institute of Health and Society, University of Oslo, Oslo, Norway
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Dana Kristjansson
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Per M Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon Bohlin
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Division for Infection Control and Environmental Health, Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, , University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Lamarque M, Gautier EF, Rodrigues F, Guillem F, Bayard E, Broussard C, Maciel Trovati T, Arlet JB, Mayeux P, Hermine O, Courtois G. Role of Caspase-10-P13tBID axis in erythropoiesis regulation. Cell Death Differ 2023; 30:208-220. [PMID: 36202990 PMCID: PMC9883265 DOI: 10.1038/s41418-022-01066-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023] Open
Abstract
Red blood cell production is negatively controlled by the rate of apoptosis at the stage of CFU-E/pro-erythroblast differentiation, depending on the balance between erythropoietin (EPO) levels and activation of the Fas/FasL pathway. At this stage, activation of transient caspases through depolarization via mitochondrial outer membrane permeabilization (MOMP) is also required for terminal erythroid differentiation. Molecular mechanisms regulating the differential levels of MOMP during differentiation and apoptosis, however, remain poorly understood. Here we show a novel and essential role for the caspase-10-P13-tBID axis in erythroid terminal differentiation. Caspase-10 (but not caspase-8, which is activated during apoptosis) is activated at the early stages of erythroid terminal differentiation leading to the cleavage of P22-BID into P18-tBID, and later into P13-tBID. Erythropoietin (EPO) by inducing casein kinase I alpha (CKIα) expression, which in turn phosphorylates P18-tBID, prevents the generation of MYR-P15-tBID (leading to apoptosis) and allows the generation of P13-tBID by caspase-10. Unlike P15-tBID, P13-tBID is not myristoylated and as such, does not irreversibly anchor the mitochondrial membrane resulting in a transient MOMP. Likewise, transduction of a P13-tBID fragment induces rapid and strong erythroid terminal differentiation. Thus, EPO modulates the pattern of BID cleavage to control the level of MOMP and determines the fate of erythroblasts between apoptosis and differentiation. This pathway is impaired in 5q- myelodysplastic syndromes because of CK1α haplo-insufficiency and may contribute to erythroid differentiation arrest and high sensitivity of this disease to lenalidomide (LEN).
Collapse
Affiliation(s)
- Mathilde Lamarque
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Emilie-Fleur Gautier
- grid.484422.cLaboratory of Excellence GR-Ex, Paris, France ,grid.7429.80000000121866389Institut Cochin, Département Développement, Reproduction, Cancer, CNRS INSERM UMR, 8104 Paris, France
| | - François Rodrigues
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Flavia Guillem
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Elisa Bayard
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Cédric Broussard
- grid.462098.10000 0004 0643 431X3P5 Proteom’IC facility, Université Paris-Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Thiago Maciel Trovati
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Jean-Benoît Arlet
- grid.508487.60000 0004 7885 7602Service de Médecine Interne, Hôpital européen Georges-Pompidou APHP, Faculté de Médecine Paris Descartes, Université Paris-Cité, Paris, France
| | - Patrick Mayeux
- grid.484422.cLaboratory of Excellence GR-Ex, Paris, France ,grid.7429.80000000121866389Institut Cochin, Département Développement, Reproduction, Cancer, CNRS INSERM UMR, 8104 Paris, France
| | - Olivier Hermine
- INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France. .,Department of Hematology, Hôpital Necker Enfants Malades, AP-HP, Faculté de Médecine Paris Descartes, Université Paris-Cité, Paris, France.
| | - Geneviève Courtois
- INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
14
|
Qu Y, He Y, Meng B, Zhang X, Ding J, Kou X, Teng W, Shi S. Apoptotic vesicles inherit SOX2 from pluripotent stem cells to accelerate wound healing by energizing mesenchymal stem cells. Acta Biomater 2022; 149:258-272. [PMID: 35830925 DOI: 10.1016/j.actbio.2022.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Billions of cells undergo apoptosis every day in the human body, resulting in the generation of a large number of apoptotic vesicles (apoVs) to maintain organ and tissue homeostasis. However, the characteristics and function of pluripotent stem cell (PSC)-derived apoVs (PSC-apoVs) are largely unknown. In this study, we showed that human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) produced larger numbers of apoVs than human umbilical cord mesenchymal stem cells (UMSCs) do when induced by staurosporine. In addition to expressing the general apoV markers cleaved caspase 3, Annexin V, calreticulin, ALIX, CD63 and TSG101, ESC-apoVs inherited pluripotent-specific molecules SOX2 from ESCs in a caspase 3-dependent manner. Moreover, ESC-apoVs could promote mouse skin wound healing via transferring SOX2 into skin MSCs via activating Hippo signaling pathway. Collectively, these findings reveal that apoVs are capable of inheriting pluripotent molecules from ESCs to energize adult stem cells, suggesting the potential to use PSC-apoVs for clinical applications. STATEMENT OF SIGNIFICANCE: Apoptotic vesicles (apoVs) are essential to maintain organ and tissue homeostasis. However, the characteristics and function of pluripotent stem cell (PSC)-derived apoVs (PSC-apoVs) are largely unknown. This study showed that PSC-apoVs produced 100 times more apoVs than human umbilical cord mesenchymal stem cells (UMSCs). Despite expressing the general apoV makers, PSC-apoVs inherited pluripotent-specific molecule SOX2 from PSCs in a caspase 3-dependent manner. Moreover, PSC-apoVs promote mouse skin wound healing via transferring SOX2 into skin MSCs, thus activating Hippo signaling pathway. These findings reveal that apoVs are capable of inheriting pluripotent molecules from PSCs to energize adult stem cells, thus providing a cell-free strategy for clinical applications of PSCs.
Collapse
Affiliation(s)
- Yan Qu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China
| | - Yifan He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China
| | - Bowen Meng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, Beijing 100081, China
| | - Junjun Ding
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Wei Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055, Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
15
|
Soboleva S, Miharada K. Induction of enucleation in primary and immortalized erythroid cells. Int J Hematol 2022; 116:192-198. [PMID: 35610497 DOI: 10.1007/s12185-022-03386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Enucleation is a crucial event during the erythropoiesis, implicating drastic morphologic and transcriptomic/proteomic changes. While many genes deletion lead to failed or impaired enucleation have been identified, directly triggering the erythroid maturation, particularly enucleation, is still challenging. Inducing enucleation at the desired timing is necessary to develop efficient methods to generate mature, fully functional red blood cells in vitro for future transfusion therapies. However, there are considerable differences between primary erythroid cells and cultured cell sources, particularly pluripotent stem cell-derived erythroid cells and immortalized erythroid cell lines. For instance, the difference in the proliferative status between those cell types could be a critical factor, as cell cycle exit is closely connected to the terminal maturation of primary. In this review, we will discuss previous findings on the enucleation machinery and current challengings to trigger the enucleation of infinite erythroid cell sources.
Collapse
Affiliation(s)
- Svetlana Soboleva
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kenichi Miharada
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden. .,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
16
|
Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol 2022; 221:213213. [PMID: 35551578 PMCID: PMC9106709 DOI: 10.1083/jcb.202201159] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/22/2022] Open
Abstract
Caspase-3 is a widely expressed member of a conserved family of proteins, generally recognized for their activated proteolytic roles in the execution of apoptosis in cells responding to specific extrinsic or intrinsic inducers of this mode of cell death. However, accumulating evidence indicates that caspase-3 also plays key roles in regulating the growth and homeostatic maintenance of both normal and malignant cells and tissues in multicellular organisms. Given that yeast possess an ancestral caspase-like gene suggests that the caspase-3 protein may have acquired different functions later during evolution to better meet the needs of more complex multicellular organisms, but without necessarily losing all of the functions of its ancestral yeast precursor. This review provides an update on what has been learned about these interesting dichotomous roles of caspase-3, their evolution, and their potential relevance to malignant as well as normal cell biology.
Collapse
Affiliation(s)
- Ebrahim Eskandari
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada,Correspondence to Connie J. Eaves:
| |
Collapse
|
17
|
Alonso-Alconada D, Gressens P, Golay X, Robertson NJ. Neurogenesis Is Reduced at 48 h in the Subventricular Zone Independent of Cell Death in a Piglet Model of Perinatal Hypoxia-Ischemia. Front Pediatr 2022; 10:793189. [PMID: 35573964 PMCID: PMC9106110 DOI: 10.3389/fped.2022.793189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular and tissue damage triggered after hypoxia-ischemia (HI) can be generalized and affect the neurogenic niches present in the central nervous system. As neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy, the goal of the present work was to investigate the neurogenic response to HI in the neurogenic niche of the subventricular zone (SVZ) in the neonatal piglet. A total of 13 large white male piglets aged <24 h were randomized into two groups: i) HI group (n = 7), animals submitted to transient cerebral HI and resuscitation; and ii) Control group (n = 6), non-HI animals. At 48 h, piglets were euthanized, and the SVZ and its surrounding regions, such as caudate and periventricular white matter, were analyzed for histology using hematoxylin-eosin staining and immunohistochemistry by evaluating the presence of cleaved caspase 3 and TUNEL positive cells, together with the cell proliferation/neurogenesis markers Ki67 (cell proliferation), GFAP (neural stem cells processes), Sox2 (neural stem/progenitor cells), and doublecortin (DCX, a marker of immature migrating neuroblasts). Hypoxic-ischemic piglets showed a decrease in cellularity in the SVZ independent of cell death, together with decreased length of neural stem cells processes, neuroblast chains area, DCX immunoreactivity, and lower number of Ki67 + and Ki67 + Sox2 + cells. These data suggest a reduction in both cell proliferation and neurogenesis in the SVZ of the neonatal piglet, which could in turn compromise the replacement of the lost neurons and the achievement of global repair.
Collapse
Affiliation(s)
- Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Xavier Golay
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, United Kingdom
| | - Nicola J. Robertson
- Institute for Women’s Health, University College London, London, United Kingdom
- Edinburgh Neuroscience, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Colon-Plaza S, Su TT. Non-Apoptotic Role of Apoptotic Caspases in the Drosophila Nervous System. Front Cell Dev Biol 2022; 10:839358. [PMID: 35223857 PMCID: PMC8863954 DOI: 10.3389/fcell.2022.839358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023] Open
Abstract
An increasing number of studies demonstrate that cells can activate apoptotic caspases but not die and, instead, display profound changes in cellular structure and function. In this minireview, we will discuss observations in the nervous system of Drosophila melanogaster that illustrate non-apoptotic roles of apoptotic caspases. We will preface these examples with similar observations in other experimental systems and end with a discussion of how apoptotic caspase activity might be constrained to provide non-lethal functions without killing the cell.
Collapse
Affiliation(s)
- Sarah Colon-Plaza
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
19
|
Bahatyrevich-Kharitonik B, Medina-Guzman R, Flores-Cortes A, García-Cruzado M, Kavanagh E, Burguillos MA. Cell Death Related Proteins Beyond Apoptosis in the CNS. Front Cell Dev Biol 2022; 9:825747. [PMID: 35096845 PMCID: PMC8794922 DOI: 10.3389/fcell.2021.825747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cell death related (CDR) proteins are a diverse group of proteins whose original function was ascribed to apoptotic cell death signaling. Recently, descriptions of non-apoptotic functions for CDR proteins have increased. In this minireview, we comment on recent studies of CDR proteins outside the field of apoptosis in the CNS, encompassing areas such as the inflammasome and non-apoptotic cell death, cytoskeleton reorganization, synaptic plasticity, mitophagy, neurodegeneration and calcium signaling among others. Furthermore, we discuss the evolution of proteomic techniques used to predict caspase substrates that could potentially explain their non-apoptotic roles. Finally, we address new concepts in the field of non-apoptotic functions of CDR proteins that require further research such the effect of sexual dimorphism on non-apoptotic CDR protein function and the emergence of zymogen-specific caspase functions.
Collapse
Affiliation(s)
- Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Alicia Flores-Cortes
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Marta García-Cruzado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Edel Kavanagh
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Miguel Angel Burguillos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| |
Collapse
|
20
|
Eryptosis: Programmed Death of Nucleus-Free, Iron-Filled Blood Cells. Cells 2022; 11:cells11030503. [PMID: 35159312 PMCID: PMC8834305 DOI: 10.3390/cells11030503] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Human erythrocytes are organelle-free cells packaged with iron-containing hemoglobin, specializing in the transport of oxygen. With a total number of approximately 25 trillion cells per individual, the erythrocyte is the most abundant cell type not only in blood but in the whole organism. Despite their low complexity and their inability to transcriptionally upregulate antioxidant defense mechanisms, they display a relatively long life time, of 120 days. This ensures the maintenance of tissue homeostasis where the clearance of old or damaged erythrocytes is kept in balance with erythropoiesis. Whereas the regulatory mechanisms of erythropoiesis have been elucidated over decades of intensive research, the understanding of the mechanisms of erythrocyte clearance still requires some refinement. Here, we present the main pathways leading to eryptosis, the programmed death of erythrocytes, with special emphasis on Ca2+ influx, the generation of ceramide, oxidative stress, kinase activation, and iron metabolism. We also compare stress-induced erythrocyte death with erythrocyte ageing and clearance, and discuss the similarities between eryptosis and ferroptosis, the iron-dependent regulated death of nucleated blood cells. Finally, we focus on the pathologic consequences of deranged eryptosis, and discuss eryptosis in the context of different infectious diseases, e.g., viral or parasitic infections, and hematologic disorders.
Collapse
|
21
|
Wu S, Chen K, Xu T, Ma K, Gao L, Fu C, Zhang W, Jing C, Ren C, Deng M, Chen Y, Zhou Y, Pan W, Jia X. Tpr Deficiency Disrupts Erythroid Maturation With Impaired Chromatin Condensation in Zebrafish Embryogenesis. Front Cell Dev Biol 2021; 9:709923. [PMID: 34722501 PMCID: PMC8548687 DOI: 10.3389/fcell.2021.709923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Vertebrate erythropoiesis involves nuclear and chromatin condensation at the early stages of terminal differentiation, which is a unique process to distinguish mature erythrocytes from erythroblasts. However, the underlying mechanisms of chromatin condensation during erythrocyte maturation remain elusive. Here, we reported a novel zebrafish mutant cas7 with erythroid maturation deficiency. Positional cloning showed that a single base mutation in tprb gene, which encodes nucleoporin translocated promoter region (Tpr), is responsible for the disrupted erythroid maturation and upregulation of erythroid genes, including ae1-globin and be1-globin. Further investigation revealed that deficient erythropoiesis in tprb cas7 mutant was independent on HIF signaling pathway. The proportion of euchromatin was significantly increased, whereas the percentage of heterochromatin was markedly decreased in tprb cas7 mutant. In addition, TPR knockdown in human K562 cells also disrupted erythroid differentiation and dramatically elevated the expression of globin genes, which suggests that the functions of TPR in erythropoiesis are highly conserved in vertebrates. Taken together, this study revealed that Tpr played vital roles in chromatin condensation and gene regulation during erythroid maturation in vertebrates.
Collapse
Affiliation(s)
- Shuang Wu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Kai Chen
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tao Xu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Central Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Ke Ma
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Gao
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Cong Fu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Zhang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changbin Jing
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Chunguang Ren
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Min Deng
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yi Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhou
- Stem Cell Program, Hematology/Oncology Program at Children’s Hospital Boston, Harvard Medical School, Boston, MA, United States
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoe Jia
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| |
Collapse
|
22
|
Krasovec G, Karaiskou A, Quéinnec É, Chambon JP. Comparative transcriptomic analysis reveals gene regulation mediated by caspase activity in a chordate organism. BMC Mol Cell Biol 2021; 22:51. [PMID: 34615460 PMCID: PMC8495957 DOI: 10.1186/s12860-021-00388-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apoptosis is a caspase regulated cell death present in all metazoans defined by a conserved set of morphological features. A well-described function of apoptosis is the removal of excessive cells during development and homeostasis. Recent studies have shown an unexpected signalling property of apoptotic cells, affecting cell fate and/or behaviour of neighbouring cells. In contrast to the apoptotic function of cell elimination, this new role of apoptosis is not well understood but seems caspase-dependent. To deepen our understanding of apoptotic functions, it is necessary to work on a biological model with a predictable apoptosis pattern affecting cell fate and/or behaviour. The tunicate Ciona intestinalis has a bi-phasic life cycle with swimming larvae which undergo metamorphosis after settlement. Previously, we have shown that the tail regression step during metamorphosis, characterized by a predictable polarized apoptotic wave, ensures elimination of most tail cells and controls primordial germ cells survival and migration. RESULTS We performed differential transcriptomic analysis between control metamorphosing larvae and larvae treated with the pan-caspase inhibitor Z-VAD-fmk in order to explore the transcriptional control of apoptotic cells on neighbouring cells that survive and migrate. When caspase activity was impaired, genes known to be involved in metamorphosis were downregulated along with other implicated in cell migration and survival molecular pathways. CONCLUSION We propose these results as a confirmation that apoptotic cells can control surrounding cells fate and as a reference database to explore novel apoptotic functions in animals, including those related to migration and differentiation.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, Muséum National d'histoire Naturelle, CNRS, EPHE, 7 Quai St-Bernard, F-75252, Paris Cedex 05, France. .,Center for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Anthi Karaiskou
- INSERM UMRS_938, Centre de recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Éric Quéinnec
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, Muséum National d'histoire Naturelle, CNRS, EPHE, 7 Quai St-Bernard, F-75252, Paris Cedex 05, France
| | - Jean-Philippe Chambon
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000, Montpellier, France
| |
Collapse
|
23
|
Asadi M, Taghizadeh S, Kaviani E, Vakili O, Taheri-Anganeh M, Tahamtan M, Savardashtaki A. Caspase-3: Structure, function, and biotechnological aspects. Biotechnol Appl Biochem 2021; 69:1633-1645. [PMID: 34342377 DOI: 10.1002/bab.2233] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/01/2021] [Indexed: 12/16/2022]
Abstract
Caspase-3, a cysteine-aspartic acid protease, has recently attracted much attention because of its incredible roles in tissue differentiation, regeneration, and neural development. This enzyme is a key zymogen in cell apoptosis and is not activated until it is cleaved by initiator caspases during apoptotic flux. Since caspase-3 has represented valuable capabilities in the field of medical research, biotechnological aspects of this enzyme, including the production of recombinant type, protein engineering, and designing delivery systems, have been considered as emerging therapeutic strategies in treating the apoptosis-related disorders. To date, several advances have been made in the therapeutic use of caspase-3 in the management of some diseases such as cancers, heart failure, and neurodegenerative disorders. In the current review, we intend to discuss the caspase-3's structure, functions, therapeutic applications, as well as its molecular cloning, protein engineering, and relevant delivery systems.
Collapse
Affiliation(s)
- Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elina Kaviani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Tahamtan
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Jeffery NN, Davidson C, Peslak SA, Kingsley PD, Nakamura Y, Palis J, Bulger M. Histone H2A.X phosphorylation and Caspase-Initiated Chromatin Condensation in late-stage erythropoiesis. Epigenetics Chromatin 2021; 14:37. [PMID: 34330317 PMCID: PMC8325214 DOI: 10.1186/s13072-021-00408-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background Condensation of chromatin prior to enucleation is an essential component of terminal erythroid maturation, and defects in this process are associated with inefficient erythropoiesis and anemia. However, the mechanisms involved in this phenomenon are not well understood. Here, we describe a potential role for the histone variant H2A.X in erythropoiesis. Results We find in multiple model systems that this histone is essential for normal maturation, and that the loss of H2A.X in erythroid cells results in dysregulation in expression of erythroid-specific genes as well as a nuclear condensation defect. In addition, we demonstrate that erythroid maturation is characterized by phosphorylation at both S139 and Y142 on the C-terminal tail of H2A.X during late-stage erythropoiesis. Knockout of the kinase BAZ1B/WSTF results in loss of Y142 phosphorylation and a defect in nuclear condensation, but does not replicate extensive transcriptional changes to erythroid-specific genes observed in the absence of H2A.X. Conclusions We relate these findings to Caspase-Initiated Chromatin Condensation (CICC) in terminal erythroid maturation, where aspects of the apoptotic pathway are invoked while apoptosis is specifically suppressed. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00408-5.
Collapse
Affiliation(s)
- Nazish N Jeffery
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Christina Davidson
- Wilmot Cancer Institute, Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Scott A Peslak
- Department of Medicine, Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul D Kingsley
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - James Palis
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Michael Bulger
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
25
|
Conde-Rubio MDC, Mylonas R, Widmann C. The proteolytic landscape of cells exposed to non-lethal stresses is shaped by executioner caspases. Cell Death Discov 2021; 7:164. [PMID: 34226511 PMCID: PMC8257705 DOI: 10.1038/s41420-021-00539-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Cells are in constant adaptation to environmental changes to insure their proper functioning. When exposed to stresses, cells activate specific pathways to elicit adaptive modifications. Those changes can be mediated by selective modulation of gene and protein expression as well as by post-translational modifications, such as phosphorylation and proteolytic processing. Protein cleavage, as a controlled and limited post-translational modification, is involved in diverse physiological processes such as the maintenance of protein homeostasis, activation of repair pathways, apoptosis and the regulation of proliferation. Here we assessed by quantitative proteomics the proteolytic landscape in two cell lines subjected to low cisplatin concentrations used as a mild non-lethal stress paradigm. This landscape was compared to the one obtained in the same cells stimulated with cisplatin concentrations inducing apoptosis. These analyses were performed in wild-type cells and in cells lacking the two main executioner caspases: caspase-3 and caspase-7. Ninety-two proteins were found to be cleaved at one or a few sites (discrete cleavage) in low stress conditions compared to four hundred and fifty-three in apoptotic cells. Many of the cleaved proteins in stressed cells were also found to be cleaved in apoptotic conditions. As expected, ~90% of the cleavage events were dependent on caspase-3/caspase-7 in apoptotic cells. Strikingly, upon exposure to non-lethal stresses, no discrete cleavage was detected in cells lacking caspase-3 and caspase-7. This indicates that the proteolytic landscape in stressed viable cells fully depends on the activity of executioner caspases. These results suggest that the so-called executioner caspases fulfill important stress adaptive responses distinct from their role in apoptosis. Mass spectrometry data are available via ProteomeXchange with identifier PXD023488.
Collapse
Affiliation(s)
| | - Roman Mylonas
- Protein Analysis Facility, University of Lausanne, Génopode, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Amphipole, Lausanne, Switzerland
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, Bugnon 7, Lausanne, Switzerland.
| |
Collapse
|
26
|
Hawkins CJ, Miles MA. Mutagenic Consequences of Sublethal Cell Death Signaling. Int J Mol Sci 2021; 22:ijms22116144. [PMID: 34200309 PMCID: PMC8201051 DOI: 10.3390/ijms22116144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023] Open
Abstract
Many human cancers exhibit defects in key DNA damage response elements that can render tumors insensitive to the cell death-promoting properties of DNA-damaging therapies. Using agents that directly induce apoptosis by targeting apoptotic components, rather than relying on DNA damage to indirectly stimulate apoptosis of cancer cells, may overcome classical blocks exploited by cancer cells to evade apoptotic cell death. However, there is increasing evidence that cells surviving sublethal exposure to classical apoptotic signaling may recover with newly acquired genomic changes which may have oncogenic potential, and so could theoretically spur the development of subsequent cancers in cured patients. Encouragingly, cells surviving sublethal necroptotic signaling did not acquire mutations, suggesting that necroptosis-inducing anti-cancer drugs may be less likely to trigger therapy-related cancers. We are yet to develop effective direct inducers of other cell death pathways, and as such, data regarding the consequences of cells surviving sublethal stimulation of those pathways are still emerging. This review details the currently known mutagenic consequences of cells surviving different cell death signaling pathways, with implications for potential oncogenic transformation. Understanding the mechanisms of mutagenesis associated (or not) with various cell death pathways will guide us in the development of future therapeutics to minimize therapy-related side effects associated with DNA damage.
Collapse
Affiliation(s)
- Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Mark A. Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Correspondence:
| |
Collapse
|
27
|
Mathangasinghe Y, Fauvet B, Jane SM, Goloubinoff P, Nillegoda NB. The Hsp70 chaperone system: distinct roles in erythrocyte formation and maintenance. Haematologica 2021; 106:1519-1534. [PMID: 33832207 PMCID: PMC8168490 DOI: 10.3324/haematol.2019.233056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 01/14/2023] Open
Abstract
Erythropoiesis is a tightly regulated cell differentiation process in which specialized oxygen- and carbon dioxide-carrying red blood cells are generated in vertebrates. Extensive reorganization and depletion of the erythroblast proteome leading to the deterioration of general cellular protein quality control pathways and rapid hemoglobin biogenesis rates could generate misfolded/aggregated proteins and trigger proteotoxic stresses during erythropoiesis. Such cytotoxic conditions could prevent proper cell differentiation resulting in premature apoptosis of erythroblasts (ineffective erythropoiesis). The heat shock protein 70 (Hsp70) molecular chaperone system supports a plethora of functions that help maintain cellular protein homeostasis (proteostasis) and promote red blood cell differentiation and survival. Recent findings show that abnormalities in the expression, localization and function of the members of this chaperone system are linked to ineffective erythropoiesis in multiple hematological diseases in humans. In this review, we present latest advances in our understanding of the distinct functions of this chaperone system in differentiating erythroblasts and terminally differentiated mature erythrocytes. We present new insights into the protein repair-only function(s) of the Hsp70 system, perhaps to minimize protein degradation in mature erythrocytes to warrant their optimal function and survival in the vasculature under healthy conditions. The work also discusses the modulatory roles of this chaperone system in a wide range of hematological diseases and the therapeutic gain of targeting Hsp70.
Collapse
Affiliation(s)
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Lausanne University, Lausanne
| | - Stephen M Jane
- Central Clinical School, Monash University, Prahran, Victoria, Australia; Department of Hematology, Alfred Hospital, Monash University, Prahran, Victoria
| | | | - Nadinath B Nillegoda
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria.
| |
Collapse
|
28
|
p53 activation during ribosome biogenesis regulates normal erythroid differentiation. Blood 2021; 137:89-102. [PMID: 32818241 DOI: 10.1182/blood.2019003439] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
The role of ribosome biogenesis in erythroid development is supported by the recognition of erythroid defects in ribosomopathies in both Diamond-Blackfan anemia and 5q- syndrome. Whether ribosome biogenesis exerts a regulatory function on normal erythroid development is still unknown. In the present study, a detailed characterization of ribosome biogenesis dynamics during human and murine erythropoiesis showed that ribosome biogenesis is abruptly interrupted by the decline in ribosomal DNA transcription and the collapse of ribosomal protein neosynthesis. Its premature arrest by the RNA Pol I inhibitor CX-5461 targeted the proliferation of immature erythroblasts. p53 was activated spontaneously or in response to CX-5461, concomitant to ribosome biogenesis arrest, and drove a transcriptional program in which genes involved in cell cycle-arrested, negative regulation of apoptosis, and DNA damage response were upregulated. RNA Pol I transcriptional stress resulted in nucleolar disruption and activation of the ATR-CHK1-p53 pathway. Our results imply that the timing of ribosome biogenesis extinction and p53 activation is crucial for erythroid development. In ribosomopathies in which ribosome availability is altered by unbalanced production of ribosomal proteins, the threshold downregulation of ribosome biogenesis could be prematurely reached and, together with pathological p53 activation, prevents a normal expansion of erythroid progenitors.
Collapse
|
29
|
Arama E, Baena-Lopez LA, Fearnhead HO. Non-lethal message from the Holy Land: The first international conference on nonapoptotic roles of apoptotic proteins. FEBS J 2021; 288:2166-2183. [PMID: 32885609 DOI: 10.1111/febs.15547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/20/2020] [Indexed: 12/01/2022]
Abstract
Apoptosis is a major form of programmed cell death (PCD) that eliminates unnecessary and potentially dangerous cells in all metazoan organisms, thus ensuring tissue homeostasis and many developmental processes. Accordingly, defects in the activation of the apoptotic pathway often pave the way to disease. After several decades of intensive research, the molecular details controlling the apoptosis program have largely been unraveled, as well as the regulatory mechanisms of caspase activation during apoptosis. Nevertheless, an ever-growing list of studies is suggesting the essential role of caspases and other apoptotic proteins in ensuring nonlethal cellular functions during normal development, tissue repair, and regeneration. Moreover, if deregulated, these novel nonapoptotic functions can also instigate diseases. The difficulty of identifying and manipulating the caspase-dependent nonlethal cellular processes (CDPs), as well as the nonlethal functions of other cell death proteins (NLF-CDPs), meant that CDPs and NLF-CDPs have been only curiosities within the apoptotic field; however, the recent technical advancements and the latest biological findings are assigning an unanticipated biological significance to these nonapoptotic functions. Here, we summarize the various talks presented in the first international conference fully dedicated to discuss CDPs and NFL-CDPs and named 'The Batsheva de Rothschild Seminar on Non-Apoptotic Roles of Apoptotic Proteins'. The conference was organized between September 22, 2019, and 25, 2019, by Eli Arama (Weizmann Institute of Science), Luis Alberto Baena-Lopez (University of Oxford), and Howard O. Fearnhead (NUI Galway) at the Weizmann Institute of Science in Israel, and hosted a large international group of researchers.
Collapse
Affiliation(s)
- Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Howard O Fearnhead
- Pharmacology and Therapeutics, Biomedical Sciences, Dangan, NUI Galway, Ireland
| |
Collapse
|
30
|
Menon V, Ghaffari S. Erythroid enucleation: a gateway into a "bloody" world. Exp Hematol 2021; 95:13-22. [PMID: 33440185 PMCID: PMC8147720 DOI: 10.1016/j.exphem.2021.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Erythropoiesis is an intricate process starting in hematopoietic stem cells and leading to the daily production of 200 billion red blood cells (RBCs). Enucleation is a greatly complex and rate-limiting step during terminal maturation of mammalian RBC production involving expulsion of the nucleus from the orthochromatic erythroblasts, resulting in the formation of reticulocytes. The dynamic enucleation process involves many factors ranging from cytoskeletal proteins to transcription factors to microRNAs. Lack of optimum terminal erythroid maturation and enucleation has been an impediment to optimum RBC production ex vivo. Major efforts in the past two decades have exposed some of the mechanisms that govern the enucleation process. This review focuses in detail on mechanisms implicated in enucleation and discusses the future perspectives of this fascinating process.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
31
|
Han SY, Lee EM, Kim S, Kwon AM, Baek EJ. Role of Plasma Gelsolin Protein in the Final Stage of Erythropoiesis and in Correction of Erythroid Dysplasia In Vitro. Int J Mol Sci 2020; 21:ijms21197132. [PMID: 32992584 PMCID: PMC7583768 DOI: 10.3390/ijms21197132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
Gelsolin, an actin-remodeling protein, is involved in cell motility, cytoskeletal remodeling, and cytokinesis and is abnormally expressed in many cancers. Recently, human recombinant plasma gelsolin protein (pGSN) was reported to have important roles in cell cycle and maturation of primary erythroblasts. However, the role of human plasma gelsolin in late stage erythroblasts prior to enucleation and putative clinical relevance in patients with myelodysplastic syndrome (MDS) and hemato-oncologic diseases have not been reported. Polychromatic and orthochromatic erythroblasts differentiated from human cord blood CD34+ cells, and human bone marrow (BM) cells derived from patients with MDS, were cultured in serum-free medium containing pGSN. Effects of pGSN on mitochondria, erythroid dysplasia, and enucleation were assessed in cellular and transcriptional levels. With pGSN treatment, terminal maturation at the stage of poly- and ortho-chromatic erythroblasts was enhanced, with higher numbers of orthochromatic erythroblasts and enucleated red blood cells (RBCs). pGSN also significantly decreased dysplastic features of cell morphology. Moreover, we found that patients with MDS with multi-lineage dysplasia or with excess blasts-1 showed significantly decreased expression of gelsolin mRNA (GSN) in their peripheral blood. When BM erythroblasts of MDS patients were cultured with pGSN, levels of mRNA transcripts related to terminal erythropoiesis and enucleation were markedly increased, with significantly decreased erythroid dysplasia. Moreover, pGSN treatment enhanced mitochondrial transmembrane potential that is unregulated in MDS and cultured cells. Our findings demonstrate a key role for plasma gelsolin in erythropoiesis and in gelsolin-depleted MDS patients, and raises the possibility that pGSN administration may promote erythropoiesis in erythroid dysplasia.
Collapse
Affiliation(s)
- So Yeon Han
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea; (S.Y.H.); (S.K.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Eun Mi Lee
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Suyeon Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea; (S.Y.H.); (S.K.)
| | - Amy M. Kwon
- Biostatistical Consulting and Research Laboratory, Medical Research Collaborating Center, Industry-University Cooperation Foundation, Hanyang University, Seoul 04763, Korea;
| | - Eun Jung Baek
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea; (S.Y.H.); (S.K.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
- Correspondence: ; Tel.: +82-31-560-2485; Fax: +82-31-560-2489
| |
Collapse
|
32
|
Guillem F, Dussiot M, Colin E, Suriyun T, Arlet JB, Goudin N, Marcion G, Seigneuric R, Causse S, Gonin P, Gastou M, Deloger M, Rossignol J, Lamarque M, Choucair ZB, Gautier EF, Ducamp S, Vandekerckhove J, Moura IC, Maciel TT, Garrido C, An X, Mayeux P, Mohandas N, Courtois G, Hermine O. XPO1 regulates erythroid differentiation and is a new target for the treatment of β-thalassemia. Haematologica 2020; 105:2240-2249. [PMID: 33054049 PMCID: PMC7556489 DOI: 10.3324/haematol.2018.210054] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 11/19/2019] [Indexed: 11/09/2022] Open
Abstract
β-thalassemia major (β-TM) is an inherited hemoglobinopathy caused by a quantitative defect in the synthesis of β-globin chains of hemoglobin, leading to the accumulation of free a-globin chains that aggregate and cause ineffective erythropoiesis. We have previously demonstrated that terminal erythroid maturation requires a transient activation of caspase-3 and that the chaperone Heat Shock Protein 70 (HSP70) accumulates in the nucleus to protect GATA-1 transcription factor from caspase-3 cleavage. This nuclear accumulation of HSP70 is inhibited in human β-TM erythroblasts due to HSP70 sequestration in the cytoplasm by free a-globin chains, resulting in maturation arrest and apoptosis. Likewise, terminal maturation can be restored by transduction of a nuclear-targeted HSP70 mutant. Here we demonstrate that in normal erythroid progenitors, HSP70 localization is regulated by the exportin-1 (XPO1), and that treatment of β-thalassemic erythroblasts with an XPO1 inhibitor increased the amount of nuclear HSP70, rescued GATA-1 expression and improved terminal differentiation, thus representing a new therapeutic option to ameliorate ineffective erythropoiesis of β-TM.
Collapse
Affiliation(s)
- Flavia Guillem
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Michaël Dussiot
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Elia Colin
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Thunwarat Suriyun
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Jean Benoit Arlet
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France; Service de Médecine Interne, Faculté de Médecine Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Nicolas Goudin
- US24, Cell Imaging Platform, Necker Federative Structure of Research (SFR-Necker), Paris, France
| | - Guillaume Marcion
- INSERM, Unité Mixte de Recherche 866, Equipe Labellisée Ligue Contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et Santé (LipSTIC), Dijon, France; Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - Renaud Seigneuric
- INSERM, Unité Mixte de Recherche 866, Equipe Labellisée Ligue Contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et Santé (LipSTIC), Dijon, France; Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - Sebastien Causse
- INSERM, Unité Mixte de Recherche 866, Equipe Labellisée Ligue Contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et Santé (LipSTIC), Dijon, France; Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - Patrick Gonin
- Gustave Roussy, Université Paris-Saclay, Plateforme d'Evaluation Préclinique-UMS 3655/US23, Villejuif, France
| | - Marc Gastou
- Laboratory of Excellence GRex, Paris, France; Gustave Roussy, Université Paris-Saclay, Plateforme d'Evaluation Préclinique-UMS 3655/US23, Villejuif, France; Université Paris 7 Denis Diderot-Sorbonne Paris Cité, Paris, France
| | - Marc Deloger
- Institut Curie, PSL Research University, INSERM, U 900, MINES, ParisTech, Paris, France
| | - Julien Rossignol
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Service d'Hématologie, Faculté de Médecine Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris Hôpital Necker, Paris, France; Département d'Hématologie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Mathilde Lamarque
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Zakia Belaid Choucair
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Emilie Fleur Gautier
- Laboratory of Excellence GRex, Paris, France; Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, and Plateforme de Proteomique Paris 5 (3P5), Paris, France
| | - Sarah Ducamp
- Laboratory of Excellence GRex, Paris, France; Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, and Plateforme de Proteomique Paris 5 (3P5), Paris, France
| | - Julie Vandekerckhove
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France
| | - Ivan C Moura
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Thiago Trovati Maciel
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Carmen Garrido
- INSERM, Unité Mixte de Recherche 866, Equipe Labellisée Ligue Contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et Santé (LipSTIC), Dijon, France; Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France; Centre Anticancéreux George François Leclerc, Dijon, France
| | - Xiuli An
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Patrick Mayeux
- Laboratory of Excellence GRex, Paris, France; Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, and Plateforme de Proteomique Paris 5 (3P5), Paris, France
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Geneviève Courtois
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France
| | - Olivier Hermine
- INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Paris, France; Imagine Institute, Université Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France; Laboratory of Excellence GRex, Paris, France; Service d'Hématologie, Faculté de Médecine Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris Hôpital Necker, Paris, France.
| |
Collapse
|
33
|
Abstract
This Open Question article highlights current advances in the study of non-apoptotic roles of apoptotic proteins. Apoptosis is a highly regulated and energy-requiring process in which cells actively kill themselves. Apoptosis helps remove extra cells to sculpt organs during embryo development and culls damaged cells throughout the body. Apoptosis relies on evolutionarily conserved proteins that include a family of proteases called caspases. Caspases activity has long been considered a hallmark of apoptosis. Yet an emerging body of literature indicates that caspase activity is required for a number of non-lethal processes that range from sculpting cells, removing protein aggregates, changing cell identity during differentiation or de-differentiation, and rebuilding tissues. Failure in each of these processes is associated with human disease. This article is not meant to be an exhaustive review but an introduction to the subject for an educated public, with caspases as a gateway example. I propose that it is time to explore non-apoptotic roles of caspases and other apoptotic proteins, in order to better understand their non-apoptosis function and to leverage new knowledge into new therapies.
Collapse
Affiliation(s)
- Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology. University of Colorado, 347 UCB, Boulder, CO 80309-0347, USA.,Molecular and Cellular Oncology Program, University of Colorado Comprehensive Cancer Center, Anschutz Medical Campus, 13001 E. 17th Pl., Aurora, CO 80045, USA
| |
Collapse
|
34
|
Wang Y, Hu S, Tuerdi M, Yu X, Zhang H, Zhou Y, Cao J, da Silva Vaz I, Zhou J. Initiator and executioner caspases in salivary gland apoptosis of Rhipicephalus haemaphysaloides. Parasit Vectors 2020; 13:288. [PMID: 32503655 PMCID: PMC7275347 DOI: 10.1186/s13071-020-04164-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Apoptosis is fundamental in maintaining cell balance in multicellular organisms, and caspases play a crucial role in apoptosis pathways. It is reported that apoptosis plays an important role in tick salivary gland degeneration. Several different caspases have been found in ticks, but the interactions between them are currently unknown. Here, we report three new caspases, isolated from the salivary glands of the tick Rhipicephalus haemaphysaloides. METHODS The full-length cDNA of the RhCaspases 7, 8 and 9 genes were obtained by transcriptome, and RhCaspases 7, 8 and 9 were expressed in E. coli; after protein purification and immunization in mice, specific polyclonal antibodies (PcAb) were created in response to the recombinant protein. Reverse-transcription quantitative PCR (RT-qPCR) and western blot were used to detect the existence of RhCaspases 7, 8 and 9 in ticks. TUNEL assays were used to determine the apoptosis level in salivary glands at different feeding times after gene silencing. The interaction between RhCaspases 7, 8 and 9 were identified by co-transfection assays. RESULTS The transcription of apoptosis-related genes in R. haemaphysaloides salivary glands increased significantly after tick engorgement. Three caspase-like molecules containing conserved caspase domains were identified and named RhCaspases 7, 8 and 9. RhCaspase8 and RhCaspase9 contain a long pro-domain at their N-terminals. An RT-qPCR assay demonstrated that the transcription of these three caspase genes increased significantly during the engorged periods of the tick developmental stages (engorged larval, nymph, and adult female ticks). Transcriptional levels of RhCaspases 7, 8 and 9 in salivary glands increased more significantly than other tissues post-engorgement. RhCaspase9-RNAi treatment significantly inhibited tick feeding. In contrast, knockdown of RhCaspase7 and RhCaspase8 had no influence on tick feeding. Compared to the control group, apoptosis levels were significantly reduced after interfering with RhCaspase 7, 8 and 9 expressions. Co-transfection assays showed RhCaspase7 was cleaved by RhCaspases 8 and 9, demonstrating that RhCaspases 8 and 9 are initiator caspases and RhCaspase7 is an executioner caspase. CONCLUSIONS To the best of our knowledge, this is the first study to identify initiator and executioner caspases in ticks, confirm the interaction among them, and associate caspase activation with tick salivary gland degeneration.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Shanming Hu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Mayinuer Tuerdi
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Xinmao Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| |
Collapse
|
35
|
Role of Extrinsic Apoptotic Signaling Pathway during Definitive Erythropoiesis in Normal Patients and in Patients with β-Thalassemia. Int J Mol Sci 2020; 21:ijms21093325. [PMID: 32397135 PMCID: PMC7246929 DOI: 10.3390/ijms21093325] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Apoptosis is a process of programmed cell death which has an important role in tissue homeostasis and in the control of organism development. Here, we focus on information concerning the role of the extrinsic apoptotic pathway in the control of human erythropoiesis. We discuss the role of tumor necrosis factor α (TNFα), tumor necrosis factor ligand superfamily member 6 (FasL), tumor necrosis factor-related apoptosis-inducing (TRAIL) and caspases in normal erythroid maturation. We also attempt to initiate a discussion on the observations that mature erythrocytes contain most components of the receptor-dependent apoptotic pathway. Finally, we point to the role of the extrinsic apoptotic pathway in ineffective erythropoiesis of different types of β-thalassemia.
Collapse
|
36
|
Sibon D, Coman T, Rossignol J, Lamarque M, Kosmider O, Bayard E, Fouquet G, Rignault R, Topçu S, Bonneau P, Bernex F, Dussiot M, Deroy K, Laurent L, Callebert J, Launay JM, Georgin-Lavialle S, Courtois G, Maroteaux L, Vaillancourt C, Fontenay M, Hermine O, Côté F. Enhanced Renewal of Erythroid Progenitors in Myelodysplastic Anemia by Peripheral Serotonin. Cell Rep 2020; 26:3246-3256.e4. [PMID: 30893598 DOI: 10.1016/j.celrep.2019.02.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 12/30/2018] [Accepted: 02/20/2019] [Indexed: 10/27/2022] Open
Abstract
Tryptophan as the precursor of several active compounds, including kynurenine and serotonin, is critical for numerous important metabolic functions. Enhanced tryptophan metabolism toward the kynurenine pathway has been associated with myelodysplastic syndromes (MDSs), which are preleukemic clonal diseases characterized by dysplastic bone marrow and cytopenias. Here, we reveal a fundamental role for tryptophan metabolized along the serotonin pathway in normal erythropoiesis and in the physiopathology of MDS-related anemia. We identify, both in human and murine erythroid progenitors, a functional cell-autonomous serotonergic network with pro-survival and proliferative functions. In vivo studies demonstrate that pharmacological increase of serotonin levels using fluoxetine, a common antidepressant, has the potential to become an important therapeutic strategy in low-risk MDS anemia refractory to erythropoietin.
Collapse
Affiliation(s)
- David Sibon
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Tereza Coman
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France; Département d'Hématologie, Gustave Roussy Cancer Campus Grand Paris, 94800 Villejuif, France
| | - Julien Rossignol
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France; Département d'Hématologie, Gustave Roussy Cancer Campus Grand Paris, 94800 Villejuif, France
| | - Mathilde Lamarque
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Olivier Kosmider
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, APHP, Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Centre-Cochin, Paris 75014, France
| | - Elisa Bayard
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Guillemette Fouquet
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Rachel Rignault
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Selin Topçu
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Pierre Bonneau
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Florence Bernex
- Institut de Recherche en Cancérologie de Montpellier, Montpellier 34298, France; INSERM, U1194, Network of Experimental Histology, BioCampus, CNRS, UMS3426, Montpellier 34094, France
| | - Michael Dussiot
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Kathy Deroy
- INRS-Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Montreal, QC H7V 1B7, Canada
| | - Laetitia Laurent
- INRS-Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Montreal, QC H7V 1B7, Canada
| | - Jacques Callebert
- Service de Biochimie, INSERM U942, Hôpital Lariboisière, 75010 Paris, France
| | - Jean-Marie Launay
- Service de Biochimie, INSERM U942, Hôpital Lariboisière, 75010 Paris, France
| | - Sophie Georgin-Lavialle
- Département de Médecine Interne, Hôpital Tenon, Université Pierre et Marie Curie, AP-HP, 4 rue de la Chine, 75020 Paris, France
| | - Geneviève Courtois
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Luc Maroteaux
- INSERM UMR-S1270, Sorbonne Universités, Université Pierre et Marie Curie, Institut du Fer à Moulin, 75005 Paris, France
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Montreal, QC H7V 1B7, Canada
| | - Michaela Fontenay
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, APHP, Service d'Hématologie Biologique, Hôpitaux Universitaires Paris Centre-Cochin, Paris 75014, France
| | - Olivier Hermine
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France; Department of Hematology, Hôpital Necker AP-HP, 75015 Paris, France
| | - Francine Côté
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France.
| |
Collapse
|
37
|
Mekonnen YA, Gültas M, Effa K, Hanotte O, Schmitt AO. Identification of Candidate Signature Genes and Key Regulators Associated With Trypanotolerance in the Sheko Breed. Front Genet 2019; 10:1095. [PMID: 31803229 PMCID: PMC6872528 DOI: 10.3389/fgene.2019.01095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022] Open
Abstract
African animal trypanosomiasis (AAT) is caused by a protozoan parasite that affects the health of livestock. Livestock production in Ethiopia is severely hampered by AAT and various controlling measures were not successful to eradicate the disease. AAT affects the indigenous breeds in varying degrees. However, the Sheko breed shows better trypanotolerance than other breeds. The tolerance attributes of Sheko are believed to be associated with its taurine genetic background but the genetic controls of these tolerance attributes of Sheko are not well understood. In order to investigate the level of taurine background in the genome, we compare the genome of Sheko with that of 11 other African breeds. We find that Sheko has an admixed genome composed of taurine and indicine ancestries. We apply three methods: (i) The integrated haplotype score (iHS), (ii) the standardized log ratio of integrated site specific extended haplotype homozygosity between populations (Rsb), and (iii) the composite likelihood ratio (CLR) method to discover selective sweeps in the Sheko genome. We identify 99 genomic regions harboring 364 signature genes in Sheko. Out of the signature genes, 15 genes are selected based on their biological importance described in the literature. We also identify 13 overrepresented pathways and 10 master regulators in Sheko using the TRANSPATH database in the geneXplain platform. Most of the pathways are related with oxidative stress responses indicating a possible selection response against the induction of oxidative stress following trypanosomiasis infection in Sheko. Furthermore, we present for the first time the importance of master regulators involved in trypanotolerance not only for the Sheko breed but also in the context of cattle genomics. Our finding shows that the master regulator Caspase is a key protease which plays a major role for the emergence of adaptive immunity in harmony with the other master regulators. These results suggest that designing and implementing genetic intervention strategies is necessary to improve the performance of susceptible animals. Moreover, the master regulatory analysis suggests potential candidate therapeutic targets for the development of new drugs for trypanosomiasis treatment.
Collapse
Affiliation(s)
- Yonatan Ayalew Mekonnen
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| | - Kefena Effa
- Animal Biosciences, National Program Coordinator for African Dairy Genetic Gain, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- Cells, Organisms amd Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Armin O Schmitt
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| |
Collapse
|
38
|
Heat shock protein 60 regulates yolk sac erythropoiesis in mice. Cell Death Dis 2019; 10:766. [PMID: 31601784 PMCID: PMC6786998 DOI: 10.1038/s41419-019-2014-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
The yolk sac is the first site of blood-cell production during embryonic development in both murine and human. Heat shock proteins (HSPs), including HSP70 and HSP27, have been shown to play regulatory roles during erythropoiesis. However, it remains unknown whether HSP60, a molecular chaperone that resides mainly in mitochondria, could also regulate early erythropoiesis. In this study, we used Tie2-Cre to deactivate the Hspd1 gene in both hematopoietic and vascular endothelial cells, and found that Tie2-Cre+Hspd1f/f (HSP60CKO) mice were embryonic lethal between the embryonic day 10.5 (E10.5) and E11.5, exhibiting growth retardation, anemia, and vascular defects. Of these, anemia was observed first, independently of vascular and growth phenotypes. Reduced numbers of erythrocytes, as well as an increase in cell apoptosis, were found in the HSP60CKO yolk sac as early as E9.0, indicating that deletion of HSP60 led to abnormality in yolk sac erythropoiesis. Deletion of HSP60 was also able to reduce mitochondrial membrane potential and the expression of the voltage-dependent anion channel (VDAC) in yolk sac erythrocytes. Furthermore, cyclosporine A (CsA), which is a well-recognized modulator in regulating the opening of the mitochondrial permeability transition pore (mPTP) by interacting with Cyclophilin D (CypD), could significantly decrease cell apoptosis and partially restore VDAC expression in mutant yolk sac erythrocytes. Taken together, we demonstrated an essential role of HSP60 in regulating yolk sac cell survival partially via a mPTP-dependent mechanism.
Collapse
|
39
|
Caspases interplay with kinases and phosphatases to determine cell fate. Eur J Pharmacol 2019; 855:20-29. [DOI: 10.1016/j.ejphar.2019.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
|
40
|
Ballesteros Reviriego C, Clare S, Arends MJ, Cambridge EL, Swiatkowska A, Caetano S, Abu-Helil B, Kane L, Harcourt K, Goulding DA, Gleeson D, Ryder E, Doe B, White JK, van der Weyden L, Dougan G, Adams DJ, Speak AO. FBXO7 sensitivity of phenotypic traits elucidated by a hypomorphic allele. PLoS One 2019; 14:e0212481. [PMID: 30840666 PMCID: PMC6402633 DOI: 10.1371/journal.pone.0212481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/04/2019] [Indexed: 11/19/2022] Open
Abstract
FBXO7 encodes an F box containing protein that interacts with multiple partners to facilitate numerous cellular processes and has a canonical role as part of an SCF E3 ubiquitin ligase complex. Mutation of FBXO7 is responsible for an early onset Parkinsonian pyramidal syndrome and genome-wide association studies have linked variants in FBXO7 to erythroid traits. A putative orthologue in Drosophila, nutcracker, has been shown to regulate the proteasome, and deficiency of nutcracker results in male infertility. Therefore, we reasoned that modulating Fbxo7 levels in a murine model could provide insights into the role of this protein in mammals. We used a targeted gene trap model which retained 4-16% residual gene expression and assessed the sensitivity of phenotypic traits to gene dosage. Fbxo7 hypomorphs showed regenerative anaemia associated with a shorter erythrocyte half-life, and male mice were infertile. Alterations to T cell phenotypes were also observed, which intriguingly were both T cell intrinsic and extrinsic. Hypomorphic mice were also sensitive to infection with Salmonella, succumbing to a normally sublethal challenge. Despite these phenotypes, Fbxo7 hypomorphs were produced at a normal Mendelian ratio with a normal lifespan and no evidence of neurological symptoms. These data suggest that erythrocyte survival, T cell development and spermatogenesis are particularly sensitive to Fbxo7 gene dosage.
Collapse
Affiliation(s)
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Mark J. Arends
- University of Edinburgh Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Emma L. Cambridge
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Agnieszka Swiatkowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Susana Caetano
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Bushra Abu-Helil
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Leanne Kane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Katherine Harcourt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - David A. Goulding
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Diane Gleeson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Edward Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Brendan Doe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Jacqueline K. White
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Louise van der Weyden
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Gordon Dougan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Anneliese O. Speak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| |
Collapse
|
41
|
Maturation-associated gene expression profiles during normal human bone marrow erythropoiesis. Cell Death Discov 2019; 5:69. [PMID: 30854228 PMCID: PMC6395734 DOI: 10.1038/s41420-019-0151-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Erythropoiesis has been extensively studied using in vitro and in vivo animal models. Despite this, there is still limited data about the gene expression profiles (GEP) of primary (ex vivo) normal human bone marrow (BM) erythroid maturation. We investigated the GEP of nucleated red blood cell (NRBC) precursors during normal human BM erythropoiesis. Three maturation-associated populations of NRBC were identified and purified from (fresh) normal human BM by flow cytometry and the GEP of each purified cell population directly analyzed using DNA-oligonucleotide microarrays. Overall, 6569 genes (19% of the genes investigated) were expressed in ≥1 stage of BM erythropoiesis at stable (e.g., genes involved in DNA process, cell signaling, protein organization and hemoglobin production) or variable amounts (e.g., genes related to cell differentiation, apoptosis, metabolism), the latter showing a tendency to either decrease from stage 1 to 3 (genes associated with regulation of erythroid differentiation and survival, e.g., SPI1, STAT5A) or increase from stage 2 to stage 3 (genes associated with autophagy, erythroid functions such as heme production, e.g., ALAS1, ALAS2), iron metabolism (e.g., ISCA1, SLC11A2), protection from oxidative stress (e.g., UCP2, PARK7), and NRBC enucleation (e.g., ID2, RB1). Interestingly, genes involved in apoptosis (e.g., CASP8, P2RX1) and immune response (e.g., FOXO3, TRAF6) were also upregulated in the last stage (stage 3) of maturation of NRBC precursors. Our results confirm and extend on previous observations and providing a frame of reference for better understanding the critical steps of human erythroid maturation and its potential alteration in patients with different clonal and non-clonal erythropoietic disorders.
Collapse
|
42
|
Regulation of globin-heme balance in Diamond-Blackfan anemia by HSP70/GATA1. Blood 2019; 133:1358-1370. [PMID: 30700418 DOI: 10.1182/blood-2018-09-875674] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/12/2019] [Indexed: 02/07/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is a congenital erythroblastopenia that is characterized by a blockade in erythroid differentiation related to impaired ribosome biogenesis. DBA phenotype and genotype are highly heterogeneous. We have previously identified 2 in vitro erythroid cell growth phenotypes for primary CD34+ cells from DBA patients and following short hairpin RNA knockdown of RPS19, RPL5, and RPL11 expression in normal human CD34+ cells. The haploinsufficient RPS19 in vitro phenotype is less severe than that of 2 other ribosomal protein (RP) mutant genes. We further documented that proteasomal degradation of HSP70, the chaperone of GATA1, is a major contributor to the defect in erythroid proliferation, delayed erythroid differentiation, increased apoptosis, and decreased globin expression, which are all features of the RPL5 or RPL11 DBA phenotype. In the present study, we explored the hypothesis that an imbalance between globin and heme synthesis may be involved in pure red cell aplasia of DBA. We identified disequilibrium between the globin chain and the heme synthesis in erythroid cells of DBA patients. This imbalance led to accumulation of excess free heme and increased reactive oxygen species production that was more pronounced in cells of the RPL5 or RPL11 phenotype. Strikingly, rescue experiments with wild-type HSP70 restored GATA1 expression levels, increased globin synthesis thereby reducing free heme excess and resulting in decreased apoptosis of DBA erythroid cells. These results demonstrate the involvement of heme in DBA pathophysiology and a major role of HSP70 in the control of balanced heme/globin synthesis.
Collapse
|
43
|
Zhao B, Liu H, Mei Y, Liu Y, Han X, Yang J, Wickrema A, Ji P. Disruption of erythroid nuclear opening and histone release in myelodysplastic syndromes. Cancer Med 2019; 8:1169-1174. [PMID: 30701702 PMCID: PMC6434191 DOI: 10.1002/cam4.1969] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022] Open
Abstract
Mammalian terminal erythropoiesis involves several characteristic phenomena including chromatin condensation and enucleation. One of the newly identified features of terminal erythropoiesis in mouse is a dynamic nuclear opening and histone release process, which is required for chromatin condensation. However, it is unclear whether the same feature is present in human. Here, we use an in vitro human CD34‐positive hematopoietic stem and progenitor cell culture system and reveal that nuclear openings and histone release are also identified during human terminal erythropoiesis. In contrast to mouse in which each erythroblast contains a single opening, multiple nuclear openings are present in human erythroblast, particularly during the late‐stage differentiation. The nuclear opening and histone release process is mediated by caspase‐3. Inhibition of caspase‐3 blocks nuclear opening, histone release, chromatin condensation, and terminal differentiation. We confirm the finding of histone cytosolic release in paraffin‐embedded human bone marrow in vivo. Importantly, we find that patients with myelodysplastic syndrome (MDS) exhibit significant defects in histone release in the dysplastic erythroblasts. Our results reveal developmentally conserved nuclear envelop and histone dynamic changes in human terminal erythropoiesis and indicate that disruption of the histone release process plays a critical role in the pathogenesis of dyserythropoiesis in MDS.
Collapse
Affiliation(s)
- Baobing Zhao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hui Liu
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Yang Mei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yijie Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xu Han
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
44
|
Khan C, Muliyil S, Rao BJ. Genome Damage Sensing Leads to Tissue Homeostasis in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 345:173-224. [PMID: 30904193 DOI: 10.1016/bs.ircmb.2018.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA repair is a critical cellular process required for the maintenance of genomic integrity. It is now well appreciated that cells employ several DNA repair pathways to take care of distinct types of DNA damage. It is also well known that a cascade of signals namely DNA damage response or DDR is activated in response to DNA damage which comprise cellular responses, such as cell cycle arrest, DNA repair and cell death, if the damage is irreparable. There is also emerging literature suggesting a cross-talk between DNA damage signaling and several signaling networks within a cell. Moreover, cell death players themselves are also well known to engage in processes outside their canonical function of apoptosis. This chapter attempts to build a link between DNA damage, DDR and signaling from the studies mainly conducted in mammals and Drosophila model systems, with a special emphasis on their relevance in overall tissue homeostasis and development.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sonia Muliyil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - B J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
45
|
Rivella S. Iron metabolism under conditions of ineffective erythropoiesis in β-thalassemia. Blood 2019; 133:51-58. [PMID: 30401707 PMCID: PMC6318430 DOI: 10.1182/blood-2018-07-815928] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
β-Thalassemia (BT) is an inherited genetic disorder that is characterized by ineffective erythropoiesis (IE), leading to anemia and abnormal iron metabolism. IE is an abnormal expansion of the number of erythroid progenitor cells with unproductive synthesis of enucleated erythrocytes, leading to anemia and hypoxia. Anemic patients affected by BT suffer from iron overload, even in the absence of chronic blood transfusion, suggesting the presence of ≥1 erythroid factor with the ability to modulate iron metabolism and dietary iron absorption. Recent studies suggest that decreased erythroid cell differentiation and survival also contribute to IE, aggravating the anemia in BT. Furthermore, hypoxia can also affect and increase iron absorption. Understanding the relationship between iron metabolism and IE could provide important insights into the BT condition and help to develop novel treatments. In fact, genetic or pharmacological manipulations of iron metabolism or erythroid cell differentiation and survival have been shown to improve IE, iron overload, and anemia in animal models of BT. Based on those findings, new therapeutic approaches and drugs have been proposed; clinical trials are underway that have the potential to improve erythrocyte production, as well as to reduce the iron overload and organ toxicity in BT and in other disorders characterized by IE.
Collapse
Affiliation(s)
- Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
46
|
Putinski C, Abdul-Ghani M, Brunette S, Burgon PG, Megeney LA. Caspase Cleavage of Gelsolin Is an Inductive Cue for Pathologic Cardiac Hypertrophy. J Am Heart Assoc 2018; 7:e010404. [PMID: 30486716 PMCID: PMC6405540 DOI: 10.1161/jaha.118.010404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic hypertrophy yield distinct outcomes, yet both are dependent on caspase‐directed proteolysis. This suggests that each form of myocardial growth may derive from a specific caspase cleavage event(s). We examined whether caspase 3 cleavage of the actin capping/severing protein gelsolin is essential for the development of pathologic hypertrophy. Methods and Results Caspase targeting of gelsolin was established through protein analysis of hypertrophic cardiomyocytes and mass spectrometry mapping of cleavage sites. Pathologic agonists induced late‐stage caspase‐mediated cleavage of gelsolin. The requirement of caspase‐mediated gelsolin cleavage for hypertrophy induction was evaluated in primary cardiomyocytes by cell size analysis, monitoring of prohypertrophy markers, and measurement of hypertrophy‐related transcription activity. The in vivo impact of caspase‐mediated cleavage was investigated by echo‐guided intramyocardial injection of adenoviral‐expressed gelsolin. Expression of the N‐terminal gelsolin caspase cleavage fragment was necessary and sufficient to cause pathologic remodeling in isolated cardiomyocytes and the intact heart, whereas expression of a noncleavable form prevents cardiac remodeling. Alterations in myocardium structure and function were determined by echocardiography and end‐stage cardiomyocyte cell size analysis. Gelsolin secretion was also monitored for its impact on naïve cells using competitive antibody trapping, demonstrating that hypertrophic agonist stimulation of cardiomyocytes leads to gelsolin secretion, which induces hypertrophy in naïve cells. Conclusions These results suggest that cell autonomous caspase cleavage of gelsolin is essential for pathologic hypertrophy and that cardiomyocyte secretion of gelsolin may accelerate this negative remodeling response.
Collapse
Affiliation(s)
- Charis Putinski
- 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada.,2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada
| | - Mohammad Abdul-Ghani
- 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada.,2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada
| | - Steve Brunette
- 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada
| | - Patrick G Burgon
- 2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada.,3 Department of Medicine University of Ottawa Ontario Canada.,4 University of Ottawa Heart Institute Ottawa Ontario Canada
| | - Lynn A Megeney
- 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada.,2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada.,3 Department of Medicine University of Ottawa Ontario Canada
| |
Collapse
|
47
|
Baena-Lopez LA, Arthurton L, Xu DC, Galasso A. Non-apoptotic Caspase regulation of stem cell properties. Semin Cell Dev Biol 2018; 82:118-126. [PMID: 29102718 PMCID: PMC6191935 DOI: 10.1016/j.semcdb.2017.10.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/23/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022]
Abstract
The evolutionarily conserved family of proteins called caspases are the main factors mediating the orchestrated programme of cell suicide known as apoptosis. Since this protein family was associated with this essential biological function, the majority of scientific efforts were focused towards understanding their molecular activation and function during cell death. However, an emerging body of evidence has highlighted a repertoire of non-lethal roles within a large variety of cell types, including stem cells. Here we intend to provide a comprehensive overview of the key role of caspases as regulators of stem cell properties. Finally, we briefly discuss the possible pathological consequences of caspase malfunction in stem cells, and the therapeutic potential of caspase regulation applied to this context.
Collapse
Affiliation(s)
| | - Lewis Arthurton
- University of Oxford, Sir William Dunn School of Pathology, Oxford, OX13RE, United Kingdom
| | - Derek Cui Xu
- University of Oxford, Sir William Dunn School of Pathology, Oxford, OX13RE, United Kingdom
| | - Alessia Galasso
- University of Oxford, Sir William Dunn School of Pathology, Oxford, OX13RE, United Kingdom
| |
Collapse
|
48
|
Lee JA, Wang Z, Sambo D, Bunting KD, Pallas DC. Global loss of leucine carboxyl methyltransferase-1 causes severe defects in fetal liver hematopoiesis. J Biol Chem 2018; 293:9636-9650. [PMID: 29735529 PMCID: PMC6016458 DOI: 10.1074/jbc.ra118.002012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/12/2018] [Indexed: 11/06/2022] Open
Abstract
Leucine carboxyl methyltransferase-1 (LCMT-1) methylates the C-terminal leucine α-carboxyl group of the catalytic subunits of the protein phosphatase 2A (PP2A) subfamily of protein phosphatases, PP2Ac, PP4c, and PP6c. LCMT-1 differentially regulates the formation and function of a subset of the heterotrimeric complexes that PP2A and PP4 form with their regulatory subunits. Global LCMT-1 knockout causes embryonic lethality in mice, but LCMT-1 function in development is unknown. In this study, we analyzed the effects of global LCMT-1 loss on embryonic development. LCMT-1 knockout causes loss of PP2Ac methylation, indicating that LCMT-1 is the sole PP2Ac methyltransferase. PP2A heterotrimers containing the Bα and Bδ B-type subunits are dramatically reduced in whole embryos, and the steady-state levels of PP2Ac and the PP2A structural A subunit are also down ∼30%. Strikingly, global loss of LCMT-1 causes severe defects in fetal hematopoiesis and usually death by embryonic day 16.5. Fetal livers of homozygous lcmt-1 knockout embryos display hypocellularity, elevated apoptosis, and greatly reduced numbers of hematopoietic stem and progenitor cell-enriched Kit+Lin-Sca1+ cells. The percent cycling cells and mitotic indices of WT and lcmt-1 knockout fetal liver cells are similar, suggesting that hypocellularity may be due to a combination of apoptosis and/or defects in specification, self-renewal, or survival of stem cells. Indicative of a possible intrinsic defect in stem cells, noncompetitive and competitive transplantation experiments reveal that lcmt-1 loss causes a severe multilineage hematopoietic repopulating defect. Therefore, this study reveals a novel role for LCMT-1 as a key player in fetal liver hematopoiesis.
Collapse
Affiliation(s)
- Jocelyn A Lee
- From the Department of Biochemistry, Winship Cancer Institute, the Biochemistry, Cell, and Developmental Graduate Program, and
| | - Zhengqi Wang
- the Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Department of Pediatrics, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Danielle Sambo
- From the Department of Biochemistry, Winship Cancer Institute, the Biochemistry, Cell, and Developmental Graduate Program, and
| | - Kevin D Bunting
- the Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Department of Pediatrics, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David C Pallas
- From the Department of Biochemistry, Winship Cancer Institute, the Biochemistry, Cell, and Developmental Graduate Program, and
| |
Collapse
|
49
|
Liao C, Hardison RC, Kennett MJ, Carlson BA, Paulson RF, Prabhu KS. Selenoproteins regulate stress erythroid progenitors and spleen microenvironment during stress erythropoiesis. Blood 2018; 131:2568-2580. [PMID: 29615406 PMCID: PMC5992864 DOI: 10.1182/blood-2017-08-800607] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 03/15/2018] [Indexed: 12/30/2022] Open
Abstract
Micronutrient selenium (Se) plays a key role in redox regulation through its incorporation into selenoproteins as the 21st amino acid selenocysteine (Sec). Because Se deficiency appears to be a cofactor in the anemia associated with chronic inflammatory diseases, we reasoned that selenoproteins may contribute to erythropoietic recovery from anemia, referred to as stress erythropoiesis. Here, we report that loss of selenoproteins through Se deficiency or by mutation of the Sec tRNA (tRNA[Sec]) gene (Trsp) severely impairs stress erythropoiesis at 2 stages. Early stress erythroid progenitors failed to expand and properly differentiate into burst-forming unit-erythroid cells , whereas late-stage erythroid progenitors exhibited a maturation defect that affected the transition of proerythroblasts to basophilic erythroblasts. These defects were, in part, a result of the loss of selenoprotein W (SelenoW), whose expression was reduced at both transcript and protein levels in Se-deficient erythroblasts. Mutation of SelenoW in the bone marrow cells significantly decreased the expansion of stress burst-forming unit-erythroid cell colonies, which recapitulated the phenotypes induced by Se deficiency or mutation of Trsp Similarly, mutation of SelenoW in murine erythroblast (G1E) cell line led to defects in terminal differentiation. In addition to the erythroid defects, the spleens of Se-deficient mice contained fewer red pulp macrophages and exhibited impaired development of erythroblastic island macrophages, which make up the niche supporting erythroblast development. Taken together, these data reveal a critical role of selenoproteins in the expansion and development of stress erythroid progenitors, as well as the erythroid niche during acute anemia recovery.
Collapse
Affiliation(s)
- Chang Liao
- Pathobiology Program
- Department of Veterinary and Biomedical Sciences, and
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA; and
| | | | - Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Robert F Paulson
- Pathobiology Program
- Department of Veterinary and Biomedical Sciences, and
| | - K Sandeep Prabhu
- Pathobiology Program
- Department of Veterinary and Biomedical Sciences, and
| |
Collapse
|
50
|
Han SY, Lee EM, Choi HS, Chun BH, Baek EJ. The effects of plasma gelsolin on human erythroblast maturation for erythrocyte production. Stem Cell Res 2018; 29:64-75. [DOI: 10.1016/j.scr.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 01/06/2023] Open
|