1
|
Ehlers C, Thiele T, Biermann H, Traidl S, Bruns L, Ziegler A, Schefzyk M, Bartsch LM, Kalinke U, Witte T, Graalmann T. Toll-Like Receptor 8 is Expressed in Monocytes in Contrast to Plasmacytoid Dendritic Cells and Mediates Aberrant Interleukin-10 Responses in Patients With Systemic Sclerosis. Arthritis Rheumatol 2025; 77:59-66. [PMID: 39112920 PMCID: PMC11685002 DOI: 10.1002/art.42964] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a severe rheumatic disease causing fibrotic tissue rearrangement. Aberrant toll-like receptor (TLR) 8 transcripts in plasmacytoid dendritic cells (pDCs) were recently linked to SSc pathogenesis, which is at least partially mediated by increased type I interferon (IFN-I) responses. Here, we addressed the functional role of TLR8 signaling in different immune cell subsets of patients with SSc. METHODS Monocytes, conventional dendritic cells (cDCs), and pDCs from the blood and skin of patients with SSc were analyzed for TLR8 protein expression. To assess TLR function, cytokine responses upon TLR7 and TLR8 stimulation were studied. To identify relevant alterations specific for patients with SSc (n = 16), patients with primary Sjögren disease (pSS; n = 10) and healthy controls (HCs; n = 13) were included into the study. RESULTS In all individuals, TLR8 was expressed in monocytes and cDCs but not in pDCs. The TLR8 expression levels were overall similar in patients with SSc and pSS and HCs. Additionally, in all study participants, TLR8 stimulation of pDCs did not induce IFN-I expression. In contrast, monocytes from patients with SSc revealed increased interleukin (IL)-10 responses upon TLR8 (patients with SSc vs HCs, P = 0.0126) and TLR7/8 stimulation (patients with SSc vs HCs, P = 0.0170). CONCLUSION TLR8 protein is not expressed in pDCs of patients with SSc. Accordingly, they do not respond to TLR8 stimulation. In contrast, monocytes of patients with SSc respond to TLR8 stimulation with increased IL-10 responses. Therefore, TLR8 signaling in monocytes participates in SSc pathogenesis by conferring aberrant IL-10 expression.
Collapse
Affiliation(s)
- Christine Ehlers
- Junior Research Group for Translational Immunology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany; Biomedical Research in End‐Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL)HannoverGermany
| | - Thea Thiele
- Department for Rheumatology and ImmunologyHannover Medical SchoolHannoverGermany
| | - Hannah Biermann
- Junior Research Group for Translational Immunology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical SchoolHannoverGermany
| | - Stephan Traidl
- Department for Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Luzia Bruns
- Department for Rheumatology and ImmunologyHannover Medical SchoolHannoverGermany
| | - Annett Ziegler
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical SchoolHannoverGermany
| | - Matthias Schefzyk
- Department for Dermatology and AllergyHannover Medical SchoolHannoverGermany
| | - Lea M. Bartsch
- Department for Gastroenterology, Hepatology, Infectious Diseases and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical SchoolHannoverGermany
| | - Torsten Witte
- Department for Rheumatology and ImmunologyHannover Medical SchoolHannoverGermany
| | - Theresa Graalmann
- Junior Research Group for Translational Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany, Biomedical Research in End‐Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany, and Department for Rheumatology and Immunology, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
2
|
Rajwani J, Vishnevskiy D, Turk M, Naumenko V, Gafuik C, Kim DS, Mah LK, Snelling S, Gonzales GA, Xue J, Chanda A, Potts KG, Todesco HM, Lau KCK, Hildebrand KM, Chan JA, Liao S, Monument MJ, Hyrcza M, Bose P, Jenne CN, Canton J, Zemp FJ, Mahoney DJ. VSV ∆M51 drives CD8 + T cell-mediated tumour regression through infection of both cancer and non-cancer cells. Nat Commun 2024; 15:9933. [PMID: 39548070 PMCID: PMC11567966 DOI: 10.1038/s41467-024-54111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
Oncolytic viruses (OV) are designed to selectively infect and kill cancer cells, while simultaneously eliciting antitumour immunity. The mechanism is expected to originate from infected cancer cells. However, recent reports of tumour regression unaccompanied by cancer cell infection suggest a more complex mechanism of action. Here, we engineered vesicular stomatitis virus (VSV)ΔM51-sensitive and VSVΔM51-resistant tumour lines to elucidate the role of OV-infected cancer and non-cancer cells. We found that, while cancer cell infections elicit oncolysis and antitumour immunity as expected, infection of non-cancer cells alone can also contribute to tumour regression. This effect is partly attributed to the systemic production of cytokines that promote dendritic cell (DC) activation, migration and antigen cross-presentation, leading to magnified antitumour CD8+ T cell activation and tumour regression. Such OV-induced antitumour immunity is complementary to PD-1 blockade. Overall, our results reveal mechanistic insights into OV-induced antitumour immunity that can be leveraged to improve OV-based therapeutics.
Collapse
Affiliation(s)
- Jahanara Rajwani
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Daniil Vishnevskiy
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Madison Turk
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Victor Naumenko
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Chris Gafuik
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Dae-Sun Kim
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Laura K Mah
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shannon Snelling
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gerone A Gonzales
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Faculty of Veterinary Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jingna Xue
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ayan Chanda
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Kyle G Potts
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Hayley M Todesco
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Keith C K Lau
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Karys M Hildebrand
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Surgery, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jennifer A Chan
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Pathology and Laboratory Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shan Liao
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Michael J Monument
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Surgery, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Martin Hyrcza
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Pathology and Laboratory Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Pinaki Bose
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Oncology; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Craig N Jenne
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Johnathan Canton
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Faculty of Veterinary Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Franz J Zemp
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Douglas J Mahoney
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
3
|
Ngo C, Garrec C, Tomasello E, Dalod M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell Mol Immunol 2024; 21:1008-1035. [PMID: 38777879 PMCID: PMC11364676 DOI: 10.1038/s41423-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Type I and III interferons (IFNs) are essential for antiviral immunity and act through two different but complimentary pathways. First, IFNs activate intracellular antimicrobial programs by triggering the upregulation of a broad repertoire of viral restriction factors. Second, IFNs activate innate and adaptive immunity. Dysregulation of IFN production can lead to severe immune system dysfunction. It is thus crucial to identify and characterize the cellular sources of IFNs, their effects, and their regulation to promote their beneficial effects and limit their detrimental effects, which can depend on the nature of the infected or diseased tissues, as we will discuss. Plasmacytoid dendritic cells (pDCs) can produce large amounts of all IFN subtypes during viral infection. pDCs are resistant to infection by many different viruses, thus inhibiting the immune evasion mechanisms of viruses that target IFN production or their downstream responses. Therefore, pDCs are considered essential for the control of viral infections and the establishment of protective immunity. A thorough bibliographical survey showed that, in most viral infections, despite being major IFN producers, pDCs are actually dispensable for host resistance, which is achieved by multiple IFN sources depending on the tissue. Moreover, primary innate and adaptive antiviral immune responses are only transiently affected in the absence of pDCs. More surprisingly, pDCs and their IFNs can be detrimental in some viral infections or autoimmune diseases. This makes the conservation of pDCs during vertebrate evolution an enigma and thus raises outstanding questions about their role not only in viral infections but also in other diseases and under physiological conditions.
Collapse
Affiliation(s)
- Clémence Ngo
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Clémence Garrec
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
4
|
Ahodantin J, Wu J, Funaki M, Flores J, Wang X, Zheng P, Liu Y, Su L. Siglec-H -/- Plasmacytoid Dendritic Cells Protect Against Acute Liver Injury by Suppressing IFN-γ/Th1 Response and Promoting IL-21 + CD4 T Cells. Cell Mol Gastroenterol Hepatol 2024; 18:101367. [PMID: 38849082 PMCID: PMC11296256 DOI: 10.1016/j.jcmgh.2024.101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND & AIMS Siglec-H is a receptor specifically expressed in mouse plasmacytoid dendritic cells (pDCs), which functions as a negative regulator of interferon-α production and plays a critical role in pDC maturation to become antigen-presenting cells. The function of pDCs in autoimmune and inflammatory diseases has been reported. However, the effect of Siglec-H expression in pDCs in liver inflammation and diseases remains unclear. METHODS Using the model of concanavalin A-induced acute liver injury (ALI), we investigated the Siglec-H/pDCs axis during ALI in BDCA2 transgenic mice and Siglec-H-/- mice. Anti-BDCA2 antibody, anti-interleukin (IL)-21R antibody, and Stat3 inhibitor were used to specifically deplete pDCs, block IL21 receptor, and inhibit Stat3 signaling, respectively. Splenocytes and purified naive CD4 T cells and bone marrow FLT3L-derived pDCs were cocultured and stimulated with phorbol myristate acetate/ionomycin and CD3/CD28 beads, respectively. RESULTS Data showed that specific depletion of pDCs aggravated concanavalin A-induced ALI. Remarkably, alanine aminotransferase, hyaluronic acid, and proinflammatory cytokines IL6 and tumor necrosis factor-α levels were lower in the blood and liver of Siglec-H knockout mice. This was associated with attenuation of both interferon-γ/Th1 response and Stat1 signaling in the liver of Siglec-H knockout mice while intrahepatic IL21 and Stat3 signaling pathways were upregulated. Blocking IL21R or Stat3 signaling in Siglec-H knockout mice restored concanavalin A-induced ALI. Finally, we observed that the Siglec-H-null pDCs exhibited immature and immunosuppressive phenotypes (CCR9LowCD40Low), resulting in reduction of CD4 T-cell activation and promotion of IL21+CD4 T cells in the liver. CONCLUSIONS During T-cell-mediated ALI, Siglec-H-null pDCs enhance immune tolerance and promote IL21+CD4 T cells in the liver. Targeting Siglec-H/pDC axis may provide a novel approach to modulate liver inflammation and disease.
Collapse
Affiliation(s)
- James Ahodantin
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Jiapeng Wu
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Microbiology and Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Masaya Funaki
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jair Flores
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xu Wang
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Yang Liu
- OncoC4, Inc, Rockville, Maryland
| | - Lishan Su
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Microbiology and Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
5
|
Adams NM, Das A, Yun TJ, Reizis B. Ontogeny and Function of Plasmacytoid Dendritic Cells. Annu Rev Immunol 2024; 42:347-373. [PMID: 38941603 DOI: 10.1146/annurev-immunol-090122-041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.
Collapse
Affiliation(s)
- Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Annesa Das
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Tae Jin Yun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| |
Collapse
|
6
|
Noh HE, Rha MS. Mucosal Immunity against SARS-CoV-2 in the Respiratory Tract. Pathogens 2024; 13:113. [PMID: 38392851 PMCID: PMC10892713 DOI: 10.3390/pathogens13020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The respiratory tract, the first-line defense, is constantly exposed to inhaled allergens, pollutants, and pathogens such as respiratory viruses. Emerging evidence has demonstrated that the coordination of innate and adaptive immune responses in the respiratory tract plays a crucial role in the protection against invading respiratory pathogens. Therefore, a better understanding of mucosal immunity in the airways is critical for the development of novel therapeutics and next-generation vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses. Since the coronavirus disease 2019 pandemic, our knowledge of mucosal immune responses in the airways has expanded. In this review, we describe the latest knowledge regarding the key components of the mucosal immune system in the respiratory tract. In addition, we summarize the host immune responses in the upper and lower airways following SARS-CoV-2 infection and vaccination, and discuss the impact of allergic airway inflammation on mucosal immune responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Hae-Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Ni H, Wang Y, Yao K, Wang L, Huang J, Xiao Y, Chen H, Liu B, Yang CY, Zhao J. Cyclical palmitoylation regulates TLR9 signalling and systemic autoimmunity in mice. Nat Commun 2024; 15:1. [PMID: 38169466 PMCID: PMC10762000 DOI: 10.1038/s41467-023-43650-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes self-DNA and plays intricate roles in systemic lupus erythematosus (SLE). However, the molecular mechanism regulating the endosomal TLR9 response is incompletely understood. Here, we report that palmitoyl-protein thioesterase 1 (PPT1) regulates systemic autoimmunity by removing S-palmitoylation from TLR9 in lysosomes. PPT1 promotes the secretion of IFNα by plasmacytoid dendritic cells (pDCs) and TNF by macrophages. Genetic deficiency in or chemical inhibition of PPT1 reduces anti-nuclear antibody levels and attenuates nephritis in B6.Sle1yaa mice. In healthy volunteers and patients with SLE, the PPT1 inhibitor, HDSF, reduces IFNα production ex vivo. Mechanistically, biochemical and mass spectrometry analyses demonstrated that TLR9 is S-palmitoylated at C258 and C265. Moreover, the protein acyltransferase, DHHC3, palmitoylates TLR9 in the Golgi, and regulates TLR9 trafficking to endosomes. Subsequent depalmitoylation by PPT1 facilitates the release of TLR9 from UNC93B1. Our results reveal a posttranslational modification cycle that controls TLR9 response and autoimmunity.
Collapse
Affiliation(s)
- Hai Ni
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yinuo Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Yao
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ling Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiancheng Huang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongfang Xiao
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyao Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China.
| | - Cliff Y Yang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Jijun Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Weichert L, Düsedau HP, Fritzsch D, Schreier S, Scharf A, Grashoff M, Cebulski K, Michaelsen-Preusse K, Erck C, Lienenklaus S, Dunay IR, Kröger A. Astrocytes evoke a robust IRF7-independent type I interferon response upon neurotropic viral infection. J Neuroinflammation 2023; 20:213. [PMID: 37737190 PMCID: PMC10515022 DOI: 10.1186/s12974-023-02892-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Type I interferons (IFN-I) are fundamental in controlling viral infections but fatal interferonopathy is restricted in the immune-privileged central nervous system (CNS). In contrast to the well-established role of Interferon Regulatory Factor 7 (IRF7) in the regulation of IFN-I response in the periphery, little is known about the specific function in the CNS. METHODS To investigate the role for IRF7 in antiviral response during neurotropic virus infection, mice deficient for IRF3 and IRF7 were infected systemically with Langat virus (LGTV). Viral burden and IFN-I response was analyzed in the periphery and the CNS by focus formation assay, RT-PCR, immunohistochemistry and in vivo imaging. Microglia and infiltration of CNS-infiltration of immune cells were characterized by flow cytometry. RESULTS Here, we demonstrate that during infection with the neurotropic Langat virus (LGTV), an attenuated member of the tick-borne encephalitis virus (TBEV) subgroup, neurons do not rely on IRF7 for cell-intrinsic antiviral resistance and IFN-I induction. An increased viral replication in IRF7-deficient mice suggests an indirect antiviral mechanism. Astrocytes rely on IRF7 to establish a cell-autonomous antiviral response. Notably, the loss of IRF7 particularly in astrocytes resulted in a high IFN-I production. Sustained production of IFN-I in astrocytes is independent of an IRF7-mediated positive feedback loop. CONCLUSION IFN-I induction in the CNS is profoundly regulated in a cell type-specific fashion.
Collapse
Affiliation(s)
- Loreen Weichert
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - David Fritzsch
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - Sarah Schreier
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - Annika Scharf
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Martina Grashoff
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Kristin Cebulski
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | | | - Christian Erck
- Cellular Proteome Research, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hanover Medical School, 30625, Hannover, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Health Campus Immunology, Infectiology, and inflammation (GC-I3), Magdeburg, Germany
- Center for Behavioral Braun Science (CBBS), 39106, Magdeburg, Germany
| | - Andrea Kröger
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany.
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.
- Health Campus Immunology, Infectiology, and inflammation (GC-I3), Magdeburg, Germany.
- Center for Behavioral Braun Science (CBBS), 39106, Magdeburg, Germany.
| |
Collapse
|
9
|
Dalskov L, Gad HH, Hartmann R. Viral recognition and the antiviral interferon response. EMBO J 2023:e112907. [PMID: 37367474 DOI: 10.15252/embj.2022112907] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Interferons (IFNs) are antiviral cytokines that play a key role in the innate immune response to viral infections. In response to viral stimuli, cells produce and release interferons, which then act on neighboring cells to induce the transcription of hundreds of genes. Many of these gene products either combat the viral infection directly, e.g., by interfering with viral replication, or help shape the following immune response. Here, we review how viral recognition leads to the production of different types of IFNs and how this production differs in spatial and temporal manners. We then continue to describe how these IFNs play different roles in the ensuing immune response depending on when and where they are produced or act during an infection.
Collapse
Affiliation(s)
- Louise Dalskov
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Bykov Y, Dawodu G, Javaheri A, Garcia-Sastre A, Cuadrado-Castano S. Immune responses elicited by ssRNA(-) oncolytic viruses in the host and in the tumor microenvironment. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:10. [PMID: 37974615 PMCID: PMC10653360 DOI: 10.20517/2394-4722.2022.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Oncolytic viruses (OVs) are at the forefront of biologicals for cancer treatment. They represent a diverse landscape of naturally occurring viral strains and genetically modified viruses that, either as single agents or as part of combination therapies, are being evaluated in preclinical and clinical settings. As the field gains momentum, the research on OVs has been shifting efforts to expand our understanding of the complex interplay between the virus, the tumor and the immune system, with the aim of rationally designing more efficient therapeutic interventions. Nowadays, the potential of an OV platform is no longer defined exclusively by the targeted replication and cancer cell killing capacities of the virus, but by its contribution as an immunostimulator, triggering the transformation of the immunosuppressive tumor microenvironment (TME) into a place where innate and adaptive immunity players can efficiently engage and lead the development of tumor-specific long-term memory responses. Here we review the immune mechanisms and host responses induced by ssRNA(-) (negative-sense single-stranded RNA) viruses as OV platforms. We focus on two ssRNA(-) OV candidates: Newcastle disease virus (NDV), an avian paramyxovirus with one of the longest histories of utilization as an OV, and influenza A (IAV) virus, a well-characterized human pathogen with extraordinary immunostimulatory capacities that is steadily advancing as an OV candidate through the development of recombinant IAV attenuated platforms.
Collapse
Affiliation(s)
- Yonina Bykov
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gloria Dawodu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aryana Javaheri
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Cuadrado-Castano
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
11
|
Grabherr S, Waltenspühl A, Büchler L, Lütge M, Cheng HW, Caviezel-Firner S, Ludewig B, Krebs P, Pikor NB. An Innate Checkpoint Determines Immune Dysregulation and Immunopathology during Pulmonary Murine Coronavirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:774-785. [PMID: 36715496 PMCID: PMC9986052 DOI: 10.4049/jimmunol.2200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/21/2022] [Indexed: 01/31/2023]
Abstract
Hallmarks of life-threatening, coronavirus-induced disease include dysregulated antiviral immunity and immunopathological tissue injury. Nevertheless, the sampling of symptomatic patients overlooks the initial inflammatory sequela culminating in severe coronavirus-induced disease, leaving a fundamental gap in our understanding of the early mechanisms regulating anticoronavirus immunity and preservation of tissue integrity. In this study, we delineate the innate regulators controlling pulmonary infection using a natural mouse coronavirus. Within hours of infection, the cellular landscape of the lung was transcriptionally remodeled altering host metabolism, protein synthesis, and macrophage maturation. Genetic perturbation revealed that these transcriptional programs were type I IFN dependent and critically controlled both host cell survival and viral spread. Unrestricted viral replication overshooting protective IFN responses culminated in increased IL-1β and alarmin production and triggered compensatory neutrophilia, interstitial inflammation, and vascular injury. Thus, type I IFNs critically regulate early viral burden, which serves as an innate checkpoint determining the trajectory of coronavirus dissemination and immunopathology.
Collapse
Affiliation(s)
- Sarah Grabherr
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Alexandra Waltenspühl
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lorina Büchler
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Sonja Caviezel-Firner
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Natalia B. Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
12
|
Van Eyndhoven LC, Tel J. Revising immune cell coordination: Origins and importance of single-cell variation. Eur J Immunol 2022; 52:1889-1897. [PMID: 36250412 PMCID: PMC10092580 DOI: 10.1002/eji.202250073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
Moving from the optimalization of single-cell technologies to the interpretation of the multi-complex single-cell data, the field of immunoengineering is granted with numerous important insights into the coordination of immune cell activation and how to modulate it for therapeutic purposes. However, insights come with additional follow-up questions that challenge our perception on how immune responses are generated and fine-tuned to fight a wide array of pathogens in ever-changing and often unpredictable microenvironments. Are immune responses really either being tightly regulated by molecular determinants, or highly flexible attributed to stochasticity? What exactly makes up the basic rules by which single cells cooperate to establish tissue-level immunity? Taking the type I IFN system and its newest insights as a main example throughout this review, we revise the basic concepts of (single) immune cell coordination, redefine the concepts of noise, stochasticity and determinism, and highlight the importance of single-cell variation in immunology and beyond.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
13
|
Tan PH, Ji J, Hsing CH, Tan R, Ji RR. Emerging Roles of Type-I Interferons in Neuroinflammation, Neurological Diseases, and Long-Haul COVID. Int J Mol Sci 2022; 23:ijms232214394. [PMID: 36430870 PMCID: PMC9696119 DOI: 10.3390/ijms232214394] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Interferons (IFNs) are pleiotropic cytokines originally identified for their antiviral activity. IFN-α and IFN-β are both type I IFNs that have been used to treat neurological diseases such as multiple sclerosis. Microglia, astrocytes, as well as neurons in the central and peripheral nervous systems, including spinal cord neurons and dorsal root ganglion neurons, express type I IFN receptors (IFNARs). Type I IFNs play an active role in regulating cognition, aging, depression, and neurodegenerative diseases. Notably, by suppressing neuronal activity and synaptic transmission, IFN-α and IFN-β produced potent analgesia. In this article, we discuss the role of type I IFNs in cognition, neurodegenerative diseases, and pain with a focus on neuroinflammation and neuro-glial interactions and their effects on cognition, neurodegenerative diseases, and pain. The role of type I IFNs in long-haul COVID-associated neurological disorders is also discussed. Insights into type I IFN signaling in neurons and non-neuronal cells will improve our treatments of neurological disorders in various disease conditions.
Collapse
Affiliation(s)
- Ping-Heng Tan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 701, Taiwan
- Correspondence: (P.-H.T.); (C.-H.H.)
| | - Jasmine Ji
- Neuroscience Department, Wellesley College, Wellesley, MA 02482, USA
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 701, Taiwan
- Correspondence: (P.-H.T.); (C.-H.H.)
| | - Radika Tan
- Kaohsiung American School, Kaohsiung 81354, Taiwan
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
14
|
Deak P, Studnitzer B, Ung T, Steinhardt R, Swartz M, Esser-Kahn A. Isolating and targeting a highly active, stochastic dendritic cell subpopulation for improved immune responses. Cell Rep 2022; 41:111563. [PMID: 36323246 PMCID: PMC10099975 DOI: 10.1016/j.celrep.2022.111563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/09/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Dendritic cell (DC) activation via pathogen-associated molecular patterns (PAMPs) is critical for antigen presentation and development of adaptive immune responses, but the stochastic distribution of DC responses to PAMP signaling, especially during the initial stages of immune activation, is poorly understood. In this study, we isolate a unique DC subpopulation via preferential phagocytosis of microparticles (MPs) and characterize this subpopulation of "first responders" (FRs). We present results that show these cells (1) can be isolated and studied via both increased accumulation of the micron-sized particles and combinations of cell surface markers, (2) show increased responses to PAMPs, (3) facilitate adaptive immune responses by providing the initial paracrine signaling, and (4) can be selectively targeted by vaccines to modulate both antibody and T cell responses in vivo. This study presents insights into a temporally controlled, distinctive cell population that influences downstream immune responses. Furthermore, it demonstrates potential for improving vaccine designs via FR targeting.
Collapse
Affiliation(s)
- Peter Deak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Bradley Studnitzer
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rachel Steinhardt
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Melody Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Aaron Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
15
|
Simoes DCM, Paschalidis N, Kourepini E, Panoutsakopoulou V. An integrin axis induces IFN-β production in plasmacytoid dendritic cells. J Biophys Biochem Cytol 2022; 221:213363. [PMID: 35878016 PMCID: PMC9354318 DOI: 10.1083/jcb.202102055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/30/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
Type I interferon (IFN) production by plasmacytoid dendritic cells (pDCs) has been mainly studied in the context of Toll-like receptor (TLR) activation. In the current report, we reveal that, in the absence of TLR activation, the integrin-binding SLAYGLR motif of secreted osteopontin (sOpn) induces IFN-β production in murine pDCs. This process is mediated by α4β1 integrin, indicating that integrin triggering may act as a subtle danger signal leading to IFN-β induction. The SLAYGLR-mediated α4 integrin/IFN-β axis is MyD88 independent and operates via a PI3K/mTOR/IRF3 pathway. Consequently, SLAYGLR-treated pDCs produce increased levels of type I IFNs following TLR stimulation. Intratumoral administration of SLAYGLR induces accumulation of IFN-β-expressing pDCs and efficiently suppresses melanoma tumor growth. In this process, pDCs are crucial. Finally, SLAYGLR enhances pDC development from bone marrow progenitors. These findings open new questions on the roles of sOpn and integrin α4 during homeostasis and inflammation. The newly identified integrin/IFN-β axis may be implicated in a wide array of immune responses.
Collapse
Affiliation(s)
- Davina Camargo Madeira Simoes
- Cellular Immunology Laboratory of Vily Panoutsakopoulou, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Nikolaos Paschalidis
- Cellular Immunology Laboratory of Vily Panoutsakopoulou, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelia Kourepini
- Cellular Immunology Laboratory of Vily Panoutsakopoulou, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vily Panoutsakopoulou
- Cellular Immunology Laboratory of Vily Panoutsakopoulou, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
16
|
Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. Int J Mol Sci 2022; 23:ijms23137325. [PMID: 35806328 PMCID: PMC9266676 DOI: 10.3390/ijms23137325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending on their immunogenicity; this heterogeneity affects the success of dendritic cell-based immunotherapy. Here, we review the ontogeny of dendritic cells and dendritic cell subsets. We also review the characteristics of hot and cold tumors and briefly introduce therapeutic trials related to hot and cold tumors. Lastly, we discuss dendritic cell-based cancer immunotherapy in hot and cold tumors.
Collapse
|
17
|
Hebbandi Nanjundappa R, Sokke Umeshappa C, Geuking MB. The impact of the gut microbiota on T cell ontogeny in the thymus. Cell Mol Life Sci 2022; 79:221. [PMID: 35377005 PMCID: PMC11072498 DOI: 10.1007/s00018-022-04252-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022]
Abstract
The intestinal microbiota is critical for the development of gut-associated lymphoid tissues, including Peyer's patches and mesenteric lymph nodes, and is instrumental in educating the local as well as systemic immune system. In addition, it also impacts the development and function of peripheral organs, such as liver, lung, and the brain, in health and disease. However, whether and how the intestinal microbiota has an impact on T cell ontogeny in the hymus remains largely unclear. Recently, the impact of molecules and metabolites derived from the intestinal microbiota on T cell ontogeny in the thymus has been investigated in more detail. In this review, we will discuss the recent findings in the emerging field of the gut-thymus axis and we will highlight the current questions and challenges in the field.
Collapse
Affiliation(s)
- Roopa Hebbandi Nanjundappa
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, IWK Research Center, Halifax, NS, Canada
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, IWK Research Center, Halifax, NS, Canada
| | - Markus B Geuking
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
18
|
Yu C, Wang B, Zhu Y, Zhang C, Ren L, Lei X, Xiang Z, Zhou Z, Huang H, Wang J, Zhao Z. ID2 inhibits innate antiviral immunity by blocking TBK1- and IKKε-induced activation of IRF3. Sci Signal 2022; 15:eabh0068. [PMID: 34982578 DOI: 10.1126/scisignal.abh0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The transcription regulator ID2 plays an essential role in the development and differentiation of immune cells. Here, we report that ID2 also negatively regulates antiviral innate immune responses. During viral infection of human epithelial cells, ID2 bound to TANK-binding kinase 1 (TBK1) and to inhibitor of nuclear factor κB kinase ε (IKKε). These interactions inhibited the recruitment and activation of interferon (IFN) regulatory factor 3 (IRF3) by TBK1 or IKKε, leading to a reduction in the expression of IFN-β1 (IFNB1). IFN-β induced the nuclear export of ID2 to form a negative feedback loop. Knocking out ID2 in human cells enhanced innate immune responses and suppressed infection by different viruses, including SARS-CoV-2. Mice with a myeloid-specific deficiency of ID2 produced more IFN-α in response to viral infection and were more resistant to viral infection than wild-type mice. Our findings not only establish ID2 as a modulator of IRF3 activation induced by TBK1 and/or IKKε but also introduce a mechanism for cross-talk between innate immunity and cell development and differentiation.
Collapse
Affiliation(s)
- Congci Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chongyang Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobo Lei
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zichun Xiang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University Genome Editing Research Center, School of Life Sciences,, Peking University, Beijing, China
| | - He Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhendong Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- CAMS-Oxford University International Center for Translational Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Tan PH, Ji J, Yeh CC, Ji RR. Interferons in Pain and Infections: Emerging Roles in Neuro-Immune and Neuro-Glial Interactions. Front Immunol 2021; 12:783725. [PMID: 34804074 PMCID: PMC8602180 DOI: 10.3389/fimmu.2021.783725] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Interferons (IFNs) are cytokines that possess antiviral, antiproliferative, and immunomodulatory actions. IFN-α and IFN-β are two major family members of type-I IFNs and are used to treat diseases, including hepatitis and multiple sclerosis. Emerging evidence suggests that type-I IFN receptors (IFNARs) are also expressed by microglia, astrocytes, and neurons in the central and peripheral nervous systems. Apart from canonical transcriptional regulations, IFN-α and IFN-β can rapidly suppress neuronal activity and synaptic transmission via non-genomic regulation, leading to potent analgesia. IFN-γ is the only member of the type-II IFN family and induces central sensitization and microglia activation in persistent pain. We discuss how type-I and type-II IFNs regulate pain and infection via neuro-immune modulations, with special focus on neuroinflammation and neuro-glial interactions. We also highlight distinct roles of type-I IFNs in the peripheral and central nervous system. Insights into IFN signaling in nociceptors and their distinct actions in physiological vs. pathological and acute vs. chronic conditions will improve our treatments of pain after surgeries, traumas, and infections.
Collapse
Affiliation(s)
- Ping-Heng Tan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Jasmine Ji
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts, MA, United States
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Chun-Chang Yeh
- Department of Anesthesiology of Tri-Service General Hospital & National Defense Medical Center, Taipei City, Taiwan
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
20
|
Anzaghe M, Kronhart S, Niles MA, Höcker L, Dominguez M, Kochs G, Waibler Z. Type I interferon receptor-independent interferon-α induction upon infection with a variety of negative-strand RNA viruses. J Gen Virol 2021; 102. [PMID: 34269676 DOI: 10.1099/jgv.0.001616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type I interferons (IFNs) are a first line of defence against viral infections. Upon infection, a first small wave of early type I IFN, mainly IFN-β and particularly IFN-α4, are induced and bind to the type I IFN receptor (IFNAR) to amplify the IFN response. It was shown for several viruses that robust type I IFN responses require this positive feedback loop via the IFNAR. Recently, we showed that infection of IFNAR knockout mice with the orthomyxovirus Thogoto virus lacking the ML open reading frame (THOV(ML-)) results in the expression of unexpected high amounts of type I IFN. To investigate if IFNAR-independent IFN responses are unique for THOV(ML-), we performed infection experiments with several negative-strand RNA viruses using different routes and dosages for infection. A variety of these viruses induced type I IFN responses IFNAR-independently when using the intraperitoneal (i.p.) route for infection. In vitro studies demonstrated that myeloid dendritic cells (mDC) are capable of producing IFNAR-independent IFN-α responses that are dependent on the expression of the adaptor protein mitochondrial antiviral-signalling protein (MAVS) whereas pDC where entirely depending on the IFNAR feedback loop in vitro. Thus, depending on dose and route of infection, the IFNAR feedback loop is not strictly necessary for robust type I IFN expression and an IFNAR-independent type I IFN production might be the rule rather than the exception for infections with numerous negative-strand RNA viruses.
Collapse
Affiliation(s)
- Martina Anzaghe
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Stefanie Kronhart
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Marc A Niles
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Lena Höcker
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Monica Dominguez
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Zoe Waibler
- Section 3/1 "Product Testing of Immunological Biomedicines", Paul-Ehrlich-Institut, D-63225 Langen, Germany
| |
Collapse
|
21
|
Van Eyndhoven LC, Singh A, Tel J. Decoding the dynamics of multilayered stochastic antiviral IFN-I responses. Trends Immunol 2021; 42:824-839. [PMID: 34364820 DOI: 10.1016/j.it.2021.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/11/2021] [Accepted: 07/11/2021] [Indexed: 12/11/2022]
Abstract
Type I Interferon (IFN-I) responses were first recognized for their role in antiviral immunity, but it is now widely appreciated that IFN-Is have many immunomodulatory functions, influencing antitumor responses, autoimmune manifestations, and antimicrobial defenses. Given these pivotal roles, it may be surprising that multilayered stochastic events create highly heterogeneous, but tightly regulated, all-or-nothing cellular decisions. Recently, mathematical models have provided crucial insights into the stochastic nature of antiviral IFN-I responses, which we critically evaluate in this review. In this context, we emphasize the need for innovative single-cell technologies combined with mathematical models to further reveal, understand, and predict the complexity of the IFN-I system in physiological and pathological conditions that may be relevant to a plethora of diseases.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, USA
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
22
|
Darzianiazizi M, Allison KE, Kulkarni RR, Sharif S, Karimi K, Bridle BW. Disruption of type I interferon signaling causes sexually dimorphic dysregulation of anti-viral cytokines. Cytokine X 2021; 3:100053. [PMID: 34189454 PMCID: PMC8215187 DOI: 10.1016/j.cytox.2021.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 12/01/2022] Open
Abstract
Type I interferons (IFNs) play a crucial role in the establishment of an antiviral state via signaling through their cognate type I IFN receptor (IFNAR). In this study, a replication-competent but highly attenuated strain of VSV (rVSVΔm51) carrying a deletion at position 51 of the matrix protein to remove suppression of anti-viral type I IFN responses was used to explore the effect of disrupted IFNAR signaling on inflammatory cytokine responses in mice. The kinetic responses of interleukin-6, tumor necrosis factor-α and interleukin-12 were evaluated in virus-infected male and female mice with or without concomitant antibody-mediated IFNAR-blockade. Unlike controls, both male and female IFNAR-blocked mice showed signs of sickness by 24-hours post-infection. Female IFNAR-blocked mice experienced greater morbidity as demonstrated by a significant decrease in body temperature. This was not the case for males. In addition, females with IFNAR-blockade mounted prolonged and exaggerated systemic inflammatory cytokine responses to rVSVΔm51. This was in stark contrast to controls with intact IFNAR signaling and males with IFNAR-blockade; they were able to down-regulate virus-induced inflammatory cytokine responses by 24-hours post-infection. Exaggerated cytokine responses in females with impaired IFNAR signaling was associated with more effective control of viremia than their male counterparts. However, the trade-off was greater immune-mediated morbidity. The results of this study demonstrated a role for IFNAR signaling in the down-regulation of antiviral cytokine responses, which was strongly influenced by sex. Our findings suggested that the potential to mount toxic cytokine responses to a virus with concomitant disruption of IFNAR signaling was heavily biased towards females.
Collapse
Affiliation(s)
- Maedeh Darzianiazizi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Katrina E Allison
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
23
|
Van Eyndhoven LC, Chouri E, Subedi N, Tel J. Phenotypical Diversification of Early IFNα-Producing Human Plasmacytoid Dendritic Cells Using Droplet-Based Microfluidics. Front Immunol 2021; 12:672729. [PMID: 33995415 PMCID: PMC8117785 DOI: 10.3389/fimmu.2021.672729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a rare type of highly versatile immune cells that besides their specialized function of massive type I interferon (IFN-I) production are able to exert cytotoxic effector functions. However, diversification upon toll like receptor (TLR)-induced activation leads to highly heterogeneous responses that have not been fully characterized yet. Using droplet-based microfluidics, we showed that upon TLR7/8 and TLR9-induced single-cell activation only 1-3% secretes IFNα, and only small fractions upregulate cytotoxicity markers. Interestingly, this 1-3% of early IFN-producing pDCs, also known as first responders, express high levels of programmed death-ligand 1 (PD-L1) and TNF-related apoptosis-inducing ligand (TRAIL), which makes these hybrid cells similar to earlier described IFN-I producing killer pDCs (IKpDCs). IFN-I priming increases the numbers of IFNα producing cells up to 40%, but does not significantly upregulate the cytotoxicity markers. Besides, these so-called second responders do not show a cytotoxic phenotype as potent as observed for the first responders. Overall, our results indicate that the first responders are the key drivers orchestrating population wide IFN-I responses and possess high cytotoxic potential.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Eleni Chouri
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nikita Subedi
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
24
|
Huerga Encabo H, Traveset L, Argilaguet J, Angulo A, Nistal-Villán E, Jaiswal R, Escalante CR, Gekas C, Meyerhans A, Aramburu J, López-Rodríguez C. The transcription factor NFAT5 limits infection-induced type I interferon responses. J Exp Med 2020; 217:132619. [PMID: 31816635 PMCID: PMC7062515 DOI: 10.1084/jem.20190449] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/23/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Huerga Encabo et al. show that NFAT5, previously characterized as a pro-inflammatory transcription factor, limits the IFN-I response to control antiviral defenses and preserve HSC quiescence. NFAT5 represses IFN-I and ISG expression through an evolutionarily conserved DNA element that prevents IRF3 recruitment to the IFNB1 enhanceosome. Type I interferon (IFN-I) provides effective antiviral immunity but can exacerbate harmful inflammatory reactions and cause hematopoietic stem cell (HSC) exhaustion; therefore, IFN-I expression must be tightly controlled. While signaling mechanisms that limit IFN-I induction and function have been extensively studied, less is known about transcriptional repressors acting directly on IFN-I regulatory regions. We show that NFAT5, an activator of macrophage pro-inflammatory responses, represses Toll-like receptor 3 and virus-induced expression of IFN-I in macrophages and dendritic cells. Mice lacking NFAT5 exhibit increased IFN-I production and better control of viral burden upon LCMV infection but show exacerbated HSC activation under systemic poly(I:C)-induced inflammation. We identify IFNβ as a primary target repressed by NFAT5, which opposes the master IFN-I inducer IRF3 by binding to an evolutionarily conserved sequence in the IFNB1 enhanceosome that overlaps a key IRF site. These findings illustrate how IFN-I responses are balanced by simultaneously opposing transcription factors.
Collapse
Affiliation(s)
- Hector Huerga Encabo
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Traveset
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Argilaguet
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Estanislao Nistal-Villán
- Microbiology Section, Departamento de Ciencias, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, CEU Universities, Madrid, Spain
| | - Rahul Jaiswal
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Carlos R Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Christos Gekas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
25
|
Perez-Shibayama C, Islander U, Lütge M, Cheng HW, Onder L, Ring SS, De Martin A, Novkovic M, Colston J, Gil-Cruz C, Ludewig B. Type I interferon signaling in fibroblastic reticular cells prevents exhaustive activation of antiviral CD8 + T cells. Sci Immunol 2020; 5:5/51/eabb7066. [PMID: 32917792 DOI: 10.1126/sciimmunol.abb7066] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
Fibroblastic reticular cells (FRCs) are stromal cells that actively promote the induction of immune responses by coordinating the interaction of innate and adaptive immune cells. However, whether and to which extent immune cell activation is determined by lymph node FRC reprogramming during acute viral infection has remained unexplored. Here, we genetically ablated expression of the type I interferon-α receptor (Ifnar) in Ccl19-Cre+ cells and found that sensing of type I interferon imprints an antiviral state in FRCs and thereby preserves myeloid cell composition in lymph nodes of naive mice. During localized lymphocytic choriomeningitis virus infection, IFNAR signaling precipitated profound phenotypic adaptation of all FRC subsets enhancing antigen presentation, chemokine-driven immune cell recruitment, and immune regulation. The IFNAR-dependent shift of all FRC subsets toward an immunostimulatory state reduced exhaustive CD8+ T cell activation. In sum, these results unveil intricate circuits underlying type I IFN sensing in lymph node FRCs that enable protective antiviral immunity.
Collapse
Affiliation(s)
| | - Ulrika Islander
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Sandra S Ring
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mario Novkovic
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Julia Colston
- Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland. .,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Deb P, Dai J, Singh S, Kalyoussef E, Fitzgerald-Bocarsly P. Triggering of the cGAS-STING Pathway in Human Plasmacytoid Dendritic Cells Inhibits TLR9-Mediated IFN Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:223-236. [PMID: 32471881 PMCID: PMC7460725 DOI: 10.4049/jimmunol.1800933] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 04/29/2020] [Indexed: 12/24/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are potent producers of type I and type III IFNs and play a major role in antiviral immunity and autoimmune disorders. The innate sensing of nucleic acids remains the major initiating factor for IFN production by pDCs. TLR-mediated sensing of nucleic acids via endosomal pathways has been studied and documented in detail, whereas the sensing of DNA in cytosolic compartment in human pDCs remains relatively unexplored. We now demonstrate the existence and functionality of the components of cytosolic DNA-sensing pathway comprising cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of IFN gene (STING) in human pDCs. cGAS was initially located in the cytosolic compartment of pDCs and time-dependently colocalized with non-CpG double-stranded immunostimulatory DNA (ISD). Following the colocalization of ISD with cGAS, the downstream pathway was triggered as STING disassociated from its location at the endoplasmic reticulum. Upon direct stimulation of pDCs by STING agonist 2'3' cGAMP or dsDNA, pDC-s produced type I, and type III IFN. Moreover, we documented that cGAS-STING-mediated IFN production is mediated by nuclear translocation of IRF3 whereas TLR9-mediated activation occurs through IRF7. Our data also indicate that pDC prestimulation of cGAS-STING dampened the TLR9-mediated IFN production. Furthermore, triggering of cGAS-STING induced expression of SOCS1 and SOCS3 in pDCs, indicating a possible autoinhibitory loop that impedes IFN production by pDCs. Thus, our study indicates that the cGAS-STING pathway exists in parallel to the TLR9-mediated DNA recognition in human pDCs with cross-talk between these two pathways.
Collapse
Affiliation(s)
- Pratik Deb
- Rutgers School of Graduate Studies, Newark, NJ 07103
| | - Jihong Dai
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Sukhwinder Singh
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103; and
| | - Evelyne Kalyoussef
- Department of Otolaryngology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Patricia Fitzgerald-Bocarsly
- Rutgers School of Graduate Studies, Newark, NJ 07103;
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103; and
| |
Collapse
|
27
|
Tuerxun W, Wang Y, Cui C, Yang L, Wang S, Yu Y, Wang L. Expression pattern of the interferon regulatory factor family members in influenza virus induced local and systemic inflammatory responses. Clin Immunol 2020; 217:108469. [PMID: 32479990 DOI: 10.1016/j.clim.2020.108469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/18/2020] [Indexed: 11/24/2022]
Abstract
Type I interferon is considered to be a key cytokine in influenza virus-induced acute lung injury (ALI), in which IRF3 and IRF7 play particularly important roles. However, whether all nine members of IRF family are involved in influenza virus-induced immune response is currently unknown. In this study, we found that all members of IRF family responded to influenza virus. The IRF family expression profile seems to be related to the pathogenicity of the particular influenza virus strain. The influenza virus mainly relies on endosomal TLR signals and the positive feedback loop of IFN-I to cause either direct or indirect different expression of all IRF family members locally or systemically. Interestingly, IRF6 was somewhat different from other IRF family members during influenza virus infection. Overall, the expression profile of the IRF family may be a valuable reference for the prevention and treatment of influenza complications, which encourage further, more in-depth research.
Collapse
Affiliation(s)
- Wuqiekun Tuerxun
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China; Department of Cell Biology, College of Basic Medical Sciences, Xinjiang Medical University, Wulumuqi 830054, PR China
| | - Ying Wang
- Institute of Pediatrics, First Hospital of Jilin University, Jilin University, Changchun 130021, PR China
| | - Cuiyun Cui
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Lei Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Shengnan Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China; Institute of Pediatrics, First Hospital of Jilin University, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
28
|
Ye Y, Gaugler B, Mohty M, Malard F. Plasmacytoid dendritic cell biology and its role in immune-mediated diseases. Clin Transl Immunology 2020; 9:e1139. [PMID: 32489664 PMCID: PMC7248678 DOI: 10.1002/cti2.1139] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subset of dendritic cells specialised in secreting high levels of type I interferons. pDCs play a crucial role in antiviral immunity and have been implicated in the initiation and development of many autoimmune and inflammatory diseases. This review summarises the latest advances in recent years in several aspects of pDC biology, with special focus on pDC heterogeneity, pDC development via the lymphoid pathway, and newly identified proteins/pathways involved in pDC trafficking, nucleic acid sensing and interferon production. Finally, we also highlight the current understanding of pDC involvement in autoimmunity and alloreactivity, and opportunities for pDC‐targeting therapies in these diseases. These new insights have contributed to answers to several fundamental questions remaining in pDC biology and may pave the way to successful pDC‐targeting therapy in the future.
Collapse
Affiliation(s)
- Yishan Ye
- INSERM, Centre de Recherche Saint-Antoine (CRSA) Sorbonne Université Paris France.,Bone Marrow Transplantation Center The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
| | - Béatrice Gaugler
- INSERM, Centre de Recherche Saint-Antoine (CRSA) Sorbonne Université Paris France
| | - Mohamad Mohty
- INSERM, Centre de Recherche Saint-Antoine (CRSA) Sorbonne Université Paris France.,Service d'Hématologie Clinique et Thérapie Cellulaire AP-HP, Hôpital Saint-Antoine Sorbonne Université Paris France
| | - Florent Malard
- INSERM, Centre de Recherche Saint-Antoine (CRSA) Sorbonne Université Paris France.,Service d'Hématologie Clinique et Thérapie Cellulaire AP-HP, Hôpital Saint-Antoine Sorbonne Université Paris France
| |
Collapse
|
29
|
Perez-Shibayama C, Gil-Cruz C, Ludewig B. Fibroblastic reticular cells at the nexus of innate and adaptive immune responses. Immunol Rev 2020; 289:31-41. [PMID: 30977192 PMCID: PMC6850313 DOI: 10.1111/imr.12748] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
Abstract
Lymphoid organs guarantee productive immune cell interactions through the establishment of distinct microenvironmental niches that are built by fibroblastic reticular cells (FRC). These specialized immune‐interacting fibroblasts coordinate the migration and positioning of lymphoid and myeloid cells in lymphoid organs and provide essential survival and differentiation factors during homeostasis and immune activation. In this review, we will outline the current knowledge on FRC functions in secondary lymphoid organs such as lymph nodes, spleen and Peyer's patches and will discuss how FRCs contribute to the regulation of immune processes in fat‐associated lymphoid clusters. Moreover, recent evidence indicates that FRC critically impact immune regulatory processes, for example, through cytokine deprivation during immune activation or through fostering the induction of regulatory T cells. Finally, we highlight how different FRC subsets integrate innate immunological signals and molecular cues from immune cells to fulfill their function as nexus between innate and adaptive immune responses.
Collapse
Affiliation(s)
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
30
|
Toll-like receptor 7-adapter complex modulates interferon-α production in HIV-stimulated plasmacytoid dendritic cells. PLoS One 2019; 14:e0225806. [PMID: 31830058 PMCID: PMC6907767 DOI: 10.1371/journal.pone.0225806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
Plasmacytoid dendritic cells (PDCs) and their production of interferon-alpha (IFN-α) are believed to play an important role in human immunodeficiency virus, type I (HIV-1) pathogenesis. PDCs produce IFN-α and other proinflammatory cytokines through stimulation of Toll-like receptor 7 (TLR7) and TLR9 present in endosomal compartments. TLR7 recognizes single-stranded viral RNA, while TLR9 recognizes unmethylated DNA. In this study, we examined the mechanisms that may underlie variations in IFN-α production in response to HIV, and the impact of these variations on HIV pathogenesis. In four distinct cohorts, we examined PDC production of IFN-α upon stimulation with inactivated HIV-1 particles and unmethylated DNA. The signaling cascade of TLR7 bifurcates at the myeloid differentiation protein 88 (MyD88) adaptor protein to induce expression of either IFN-α or TNF-α. To determine whether variations in IFN-α production are modulated at the level of the receptor complex or downstream of it, we correlated production of IFN-α and TNF-α following stimulation of TLR7 or TLR9 receptors. Flow cytometry detection of intracellular cytokines showed strong, direct correlations between IFN-α and TNF-α expression in all four cohorts, suggesting that variations in IFN-α production are not due to variations downstream of the receptor complex. We then investigated the events upstream of TLR binding by using lipid-like vesicles to deliver TLR ligands directly to the TLR receptors, bypassing the need for CD4 binding and endocytosis. Similar tight correlations were found in IFN-α and TNF-α production in response to the TLR ligands. Taken together, these results strongly suggest that differences in IFN-α production depend on the regulatory processes at the level of the TLR7 receptor complex. Additionally, we found no association between IFN-α production before HIV infection and disease progression.
Collapse
|
31
|
Netravali IA, Cariappa A, Yates K, Haining WN, Bertocchi A, Allard-Chamard H, Rosenberg I, Pillai S. 9-O-acetyl sialic acid levels identify committed progenitors of plasmacytoid dendritic cells. Glycobiology 2019; 29:861-875. [PMID: 31411667 DOI: 10.1093/glycob/cwz062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 11/12/2022] Open
Abstract
The origins of plasmacytoid dendritic cells (pDCs) have long been controversial and progenitors exclusively committed to this lineage have not been described. We show here that the fate of hematopoietic progenitors is determined in part by their surface levels of 9-O-acetyl sialic acid. Pro-pDCs were identified as lineage negative 9-O-acetyl sialic acid low progenitors that lack myeloid and lymphoid potential but differentiate into pre-pDCs. The latter cells are also lineage negative, 9-O-acetyl sialic acid low cells but are exclusively committed to the pDC lineage. Levels of 9-O-acetyl sialic acid provide a distinct way to define progenitors and thus facilitate the study of hematopoietic differentiation.
Collapse
Affiliation(s)
- Ilka A Netravali
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Annaiah Cariappa
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kathleen Yates
- Dana-Farber Cancer Institute, Pediatric Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - W Nicholas Haining
- Dana-Farber Cancer Institute, Pediatric Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Bertocchi
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hugues Allard-Chamard
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.,Division of Rheumatology, Faculté de Médecine et des Sciences de la Santé de l', Université de Sherbrooke et Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Québec, Canada, J1K 2R1
| | - Ian Rosenberg
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge MA 02139 and The MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
32
|
Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:1-68. [PMID: 31810551 DOI: 10.1016/bs.ircmb.2019.07.004] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) are a unique class of immune cells that act as a bridge between innate and adaptive immunity. The discovery of DCs by Cohen and Steinman in 1973 laid the foundation for DC biology, and the advances in the field identified different versions of DCs with unique properties and functions. DCs originate from hematopoietic stem cells, and their differentiation is modulated by Flt3L. They are professional antigen-presenting cells that patrol the environmental interphase, sites of infection, or infiltrate pathological tissues looking for antigens that can be used to activate effector cells. DCs are critical for the initiation of the cellular and humoral immune response and protection from infectious diseases or tumors. DCs can take up antigens using specialized surface receptors such as endocytosis receptors, phagocytosis receptors, and C type lectin receptors. Moreover, DCs are equipped with an array of extracellular and intracellular pattern recognition receptors for sensing different danger signals. Upon sensing the danger signals, DCs get activated, upregulate costimulatory molecules, produce various cytokines and chemokines, take up antigen and process it and migrate to lymph nodes where they present antigens to both CD8 and CD4 T cells. DCs are classified into different subsets based on an integrated approach considering their surface phenotype, expression of unique and conserved molecules, ontogeny, and functions. They can be broadly classified as conventional DCs consisting of two subsets (DC1 and DC2), plasmacytoid DCs, inflammatory DCs, and Langerhans cells.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
33
|
Becker J, Kinast V, Döring M, Lipps C, Duran V, Spanier J, Tegtmeyer PK, Wirth D, Cicin-Sain L, Alcamí A, Kalinke U. Human monocyte-derived macrophages inhibit HCMV spread independent of classical antiviral cytokines. Virulence 2019; 9:1669-1684. [PMID: 30403913 PMCID: PMC7000197 DOI: 10.1080/21505594.2018.1535785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infection of healthy individuals with human cytomegalovirus (HCMV) is usually unnoticed and results in life-long latency, whereas HCMV reactivation as well as infection of newborns or immunocompromised patients can cause life-threatening disease. To better understand HCMV pathogenesis we studied mechanisms that restrict HCMV spread. We discovered that HCMV-infected cells can directly trigger plasmacytoid dendritic cells (pDC) to mount antiviral type I interferon (IFN-I) responses, even in the absence of cell-free virus. In contrast, monocyte-derived cells only expressed IFN-I when stimulated by cell-free HCMV, or upon encounter of HCMV-infected cells that already produced cell-free virus. Nevertheless, also in the absence of cell-free virus, i.e., upon co-culture of infected epithelial/endothelial cells and monocyte-derived macrophages (moMΦ) or dendritic cells (moDC), antiviral responses were induced that limited HCMV spread. The induction of this antiviral effect was dependent on cell-cell contact, whereas cell-free supernatants from co-culture experiments also inhibited virus spread, implying that soluble factors were critically needed. Interestingly, the antiviral effect was independent of IFN-γ, TNF-α, and IFN-I as indicated by cytokine inhibition experiments using neutralizing antibodies or the vaccinia virus-derived soluble IFN-I binding protein B18R, which traps human IFN-α and IFN-β. In conclusion, our results indicate that human macrophages and dendritic cells can limit HCMV spread by IFN-I dependent as well as independent mechanisms, whereas the latter ones might be particularly relevant for the restriction of HCMV transmission via cell-to-cell spread.
Collapse
Affiliation(s)
- Jennifer Becker
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Volker Kinast
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Marius Döring
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Christoph Lipps
- b Model Systems for Infection and Immunity , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Veronica Duran
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Julia Spanier
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Pia-Katharina Tegtmeyer
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Dagmar Wirth
- b Model Systems for Infection and Immunity , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Luka Cicin-Sain
- c Department of Vaccinology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,d German Center for Infection Research (DZIF) , Hannover-Braunschweig site , Germany.,e Institute for Virology , Hannover Medical School , Hannover , Germany
| | - Antonio Alcamí
- f Centro de Biología Molecular Severo Ochoa , Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid , Madrid , Spain
| | - Ulrich Kalinke
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| |
Collapse
|
34
|
Ali S, Mann-Nüttel R, Schulze A, Richter L, Alferink J, Scheu S. Sources of Type I Interferons in Infectious Immunity: Plasmacytoid Dendritic Cells Not Always in the Driver's Seat. Front Immunol 2019; 10:778. [PMID: 31031767 PMCID: PMC6473462 DOI: 10.3389/fimmu.2019.00778] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Type I Interferons (IFNs) are hallmark cytokines produced in immune responses to all classes of pathogens. Type I IFNs can influence dendritic cell (DC) activation, maturation, migration, and survival, but also directly enhance natural killer (NK) and T/B cell activity, thus orchestrating various innate and adaptive immune effector functions. Therefore, type I IFNs have long been considered essential in the host defense against virus infections. More recently, it has become clear that depending on the type of virus and the course of infection, production of type I IFN can also lead to immunopathology or immunosuppression. Similarly, in bacterial infections type I IFN production is often associated with detrimental effects for the host. Although most cells in the body are thought to be able to produce type I IFN, plasmacytoid DCs (pDCs) have been termed the natural "IFN producing cells" due to their unique molecular adaptations to nucleic acid sensing and ability to produce high amounts of type I IFN. Findings from mouse reporter strains and depletion experiments in in vivo infection models have brought new insights and established that the role of pDCs in type I IFN production in vivo is less important than assumed. Production of type I IFN, especially the early synthesized IFNβ, is rather realized by a variety of cell types and cannot be mainly attributed to pDCs. Indeed, the cell populations responsible for type I IFN production vary with the type of pathogen, its tissue tropism, and the route of infection. In this review, we summarize recent findings from in vivo models on the cellular source of type I IFN in different infectious settings, ranging from virus, bacteria, and fungi to eukaryotic parasites. The implications from these findings for the development of new vaccination and therapeutic designs targeting the respectively defined cell types are discussed.
Collapse
Affiliation(s)
- Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Anja Schulze
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Judith Alferink
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
35
|
Becker T, Le-Trilling VTK, Trilling M. Cellular Cullin RING Ubiquitin Ligases: Druggable Host Dependency Factors of Cytomegaloviruses. Int J Mol Sci 2019; 20:E1636. [PMID: 30986950 PMCID: PMC6479302 DOI: 10.3390/ijms20071636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that frequently causes morbidity and mortality in individuals with insufficient immunity, such as transplant recipients, AIDS patients, and congenitally infected newborns. Several antiviral drugs are approved to treat HCMV infections. However, resistant HCMV mutants can arise in patients receiving long-term therapy. Additionally, side effects and the risk to cause birth defects limit the use of currently approved antivirals against HCMV. Therefore, the identification of new drug targets is of clinical relevance. Recent work identified DNA-damage binding protein 1 (DDB1) and the family of the cellular cullin (Cul) RING ubiquitin (Ub) ligases (CRLs) as host-derived factors that are relevant for the replication of human and mouse cytomegaloviruses. The first-in-class CRL inhibitory compound Pevonedistat (also called MLN4924) is currently under investigation as an anti-tumor drug in several clinical trials. Cytomegaloviruses exploit CRLs to regulate the abundance of viral proteins, and to induce the proteasomal degradation of host restriction factors involved in innate and intrinsic immunity. Accordingly, pharmacological blockade of CRL activity diminishes viral replication in cell culture. In this review, we summarize the current knowledge concerning the relevance of DDB1 and CRLs during cytomegalovirus replication and discuss chances and drawbacks of CRL inhibitory drugs as potential antiviral treatment against HCMV.
Collapse
Affiliation(s)
- Tanja Becker
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
36
|
Solmaz G, Puttur F, Francozo M, Lindenberg M, Guderian M, Swallow M, Duhan V, Khairnar V, Kalinke U, Ludewig B, Clausen BE, Wagner H, Lang KS, Sparwasser TD. TLR7 Controls VSV Replication in CD169 + SCS Macrophages and Associated Viral Neuroinvasion. Front Immunol 2019; 10:466. [PMID: 30930901 PMCID: PMC6428728 DOI: 10.3389/fimmu.2019.00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/21/2019] [Indexed: 01/21/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is an insect-transmitted rhabdovirus that is neurovirulent in mice. Upon peripheral VSV infection, CD169+ subcapsular sinus (SCS) macrophages capture VSV in the lymph, support viral replication, and prevent CNS neuroinvasion. To date, the precise mechanisms controlling VSV infection in SCS macrophages remain incompletely understood. Here, we show that Toll-like receptor-7 (TLR7), the main sensing receptor for VSV, is central in controlling lymph-borne VSV infection. Following VSV skin infection, TLR7−/− mice display significantly less VSV titers in the draining lymph nodes (dLN) and viral replication is attenuated in SCS macrophages. In contrast to effects of TLR7 in impeding VSV replication in the dLN, TLR7−/− mice present elevated viral load in the brain and spinal cord highlighting their susceptibility to VSV neuroinvasion. By generating novel TLR7 floxed mice, we interrogate the impact of cell-specific TLR7 function in anti-viral immunity after VSV skin infection. Our data suggests that TLR7 signaling in SCS macrophages supports VSV replication in these cells, increasing LN infection and may account for the delayed onset of VSV-induced neurovirulence observed in TLR7−/− mice. Overall, we identify TLR7 as a novel and essential host factor that critically controls anti-viral immunity to VSV. Furthermore, the novel mouse model generated in our study will be of valuable importance to shed light on cell-intrinsic TLR7 biology in future studies.
Collapse
Affiliation(s)
- Gülhas Solmaz
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Franz Puttur
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Marcela Francozo
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Marc Lindenberg
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Melanie Guderian
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Vikas Duhan
- Institute of Immunology of the University Hospital in Essen, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Vishal Khairnar
- Institute of Immunology of the University Hospital in Essen, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Kalinke
- Institute of Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hermann Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Karl S Lang
- Institute of Immunology of the University Hospital in Essen, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Tim D Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.,Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
37
|
Role of Type I Interferons on Filovirus Pathogenesis. Vaccines (Basel) 2019; 7:vaccines7010022. [PMID: 30791589 PMCID: PMC6466283 DOI: 10.3390/vaccines7010022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 01/19/2023] Open
Abstract
Filoviruses, such as Ebola and Marburg virus, encode viral proteins with the ability to counteract the type I interferon (IFN-I) response. These IFN-I antagonist proteins are crucial to ensure virus replication, prevent an antiviral state in infected and bystander cells, and impair the ability of antigen-presenting cells to initiate adaptive immune responses. However, in recent years, a number of studies have underscored the conflicting data between in vitro studies and in vivo data obtained in animal models and clinical studies during outbreaks. This review aims to summarize these data and to discuss the relative contributions of IFN-α and IFN-β to filovirus pathogenesis in animal models and humans. Finally, we evaluate the putative utilization of IFN-I in post-exposure therapy and its implications as a biomarker of vaccine efficacy.
Collapse
|
38
|
Reizis B. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity 2019; 50:37-50. [PMID: 30650380 PMCID: PMC6342491 DOI: 10.1016/j.immuni.2018.12.027] [Citation(s) in RCA: 431] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique sentinel cell type that can detect pathogen-derived nucleic acids and respond with rapid and massive production of type I interferon. This review summarizes our current understanding of pDC biology, including transcriptional regulation, heterogeneity, role in antiviral immune responses, and involvement in immune pathology, particularly in autoimmune diseases, immunodeficiency, and cancer. We also highlight the remaining gaps in our knowledge and important questions for the field, such as the molecular basis of unique interferon-producing capacity of pDCs. A better understanding of cell type-specific positive and negative control of pDC function should pave the way for translational applications focused on this immune cell type.
Collapse
Affiliation(s)
- Boris Reizis
- Department of Pathology and Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
39
|
Walsh SR, Bastin D, Chen L, Nguyen A, Storbeck CJ, Lefebvre C, Stojdl D, Bramson JL, Bell JC, Wan Y. Type I IFN blockade uncouples immunotherapy-induced antitumor immunity and autoimmune toxicity. J Clin Invest 2018; 129:518-530. [PMID: 30422820 DOI: 10.1172/jci121004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022] Open
Abstract
Despite its success in treating melanoma and hematological malignancies, adoptive cell therapy (ACT) has had only limited effects in solid tumors. This is due in part to a lack of specific antigen targets, poor trafficking and infiltration, and immunosuppression in the tumor microenvironment. In this study, we combined ACT with oncolytic virus vaccines (OVVs) to drive expansion and tumor infiltration of transferred antigen-specific T cells and demonstrated that the combination is highly potent for the eradication of established solid tumors. Consistent with other successful immunotherapies, this approach elicited severe autoimmune consequences when the antigen targeted was a self-protein. However, modulation of IFN-α/-β signaling, either by functional blockade or rational selection of an OVV backbone, ameliorated autoimmune side effects without compromising antitumor efficacy. Our study uncovers a pathogenic role for IFN-α/-β in facilitating autoimmune toxicity during cancer immunotherapy and presents a safe and powerful combinatorial regimen with immediate translational applications.
Collapse
Affiliation(s)
- Scott R Walsh
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Donald Bastin
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lan Chen
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Andrew Nguyen
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Christopher J Storbeck
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Charles Lefebvre
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - David Stojdl
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Jonathan L Bramson
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
40
|
Szappanos D, Tschismarov R, Perlot T, Westermayer S, Fischer K, Platanitis E, Kallinger F, Novatchkova M, Lassnig C, Müller M, Sexl V, Bennett KL, Foong-Sobis M, Penninger JM, Decker T. The RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity. PLoS Pathog 2018; 14:e1007397. [PMID: 30475900 PMCID: PMC6283616 DOI: 10.1371/journal.ppat.1007397] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 12/06/2018] [Accepted: 10/11/2018] [Indexed: 12/30/2022] Open
Abstract
DExD/H box RNA helicases, such as the RIG-I-like receptors (RLR), are important components of the innate immune system. Here we demonstrate a pivotal and sex-specific role for the heterosomal isoforms of the DEAD box RNA helicase DDX3 in the immune system. Mice lacking DDX3X during hematopoiesis showed an altered leukocyte composition in bone marrow and spleen and a striking inability to combat infection with Listeria monocytogenes. Alterations in innate immune responses resulted from decreased effector cell availability and function as well as a sex-dependent impairment of cytokine synthesis. Thus, our data provide further in vivo evidence for an essential contribution of a non-RLR DExD/H RNA helicase to innate immunity and suggest it may contribute to sex-related differences in resistance to microbes and resilience to inflammatory disease.
Collapse
Affiliation(s)
- Daniel Szappanos
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Roland Tschismarov
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Thomas Perlot
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
| | - Sandra Westermayer
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Katrin Fischer
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Ekaterini Platanitis
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Fabian Kallinger
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Keiryn L. Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Michelle Foong-Sobis
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
41
|
Tomasello E, Naciri K, Chelbi R, Bessou G, Fries A, Gressier E, Abbas A, Pollet E, Pierre P, Lawrence T, Vu Manh TP, Dalod M. Molecular dissection of plasmacytoid dendritic cell activation in vivo during a viral infection. EMBO J 2018; 37:embj.201798836. [PMID: 30131424 PMCID: PMC6166132 DOI: 10.15252/embj.201798836] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN-I) during viral infections, in response to triggering of endosomal Toll-like receptors (TLRs) 7 or 9 by viral single-stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN-I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN-I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN-I downstream of the TLR9-to-MyD88-to-IRF7 signaling pathway without requiring IFN-I positive feedback, high IRF7 expression, or AP3-driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN-I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection.
Collapse
Affiliation(s)
- Elena Tomasello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Karima Naciri
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Rabie Chelbi
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Gilles Bessou
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Anissa Fries
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Elise Gressier
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Abdenour Abbas
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Emeline Pollet
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Philippe Pierre
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Toby Lawrence
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Thien-Phong Vu Manh
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Marc Dalod
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
42
|
Schleicher U, Liese J, Justies N, Mischke T, Haeberlein S, Sebald H, Kalinke U, Weiss S, Bogdan C. Type I Interferon Signaling Is Required for CpG-Oligodesoxynucleotide-Induced Control of Leishmania major, but Not for Spontaneous Cure of Subcutaneous Primary or Secondary L. major Infection. Front Immunol 2018; 9:79. [PMID: 29459858 PMCID: PMC5807663 DOI: 10.3389/fimmu.2018.00079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/11/2018] [Indexed: 01/11/2023] Open
Abstract
We previously showed that in mice infected with Leishmania major type I interferons (IFNs) initiate the innate immune response to the parasite at day 1 and 2 of infection. Here, we investigated which type I IFN subtypes are expressed during the first 8 weeks of L. major infection and whether type I IFNs are essential for a protective immune response and clinical cure of the disease. In self-healing C57BL/6 mice infected with a high dose of L. major, IFN-α4, IFN-α5, IFN-α11, IFN-α13, and IFN-β mRNA were most prominently regulated during the course of infection. In C57BL/6 mice deficient for IFN-β or the IFN-α/β-receptor chain 1 (IFNAR1), development of skin lesions and parasite loads in skin, draining lymph node, and spleen was indistinguishable from wild-type (WT) mice. In line with the clinical findings, C57BL/6 IFN-β−/−, IFNAR1−/−, and WT mice exhibited similar mRNA expression levels of IFN-γ, interleukin (IL)-4, IL-12, IL-13, inducible nitric oxide synthase, and arginase 1 during the acute and late phase of the infection. Also, myeloid dendritic cells from WT and IFNAR1−/− mice produced comparable amounts of IL-12p40/p70 protein upon exposure to L. major in vitro. In non-healing BALB/c WT mice, the mRNAs of IFN-α subtypes (α2, α4, α5, α6, and α9) were rapidly induced after high-dose L. major infection. However, genetic deletion of IFNAR1 or IFN-β did not alter the progressive course of infection seen in WT BALB/c mice. Finally, we tested whether type I IFNs and/or IL-12 are required for the prophylactic effect of CpG-oligodesoxynucleotides (ODN) in BALB/c mice. Local and systemic administration of CpG-ODN 1668 protected WT and IFN-β−/− mice equally well from progressive leishmaniasis. By contrast, the protective effect of CpG-ODN 1668 was lost in BALB/c IFNAR1−/− (despite a sustained suppression of IL-4) and in BALB/c IL-12p35−/− mice. From these data, we conclude that IFN-β and IFNAR1 signaling are dispensable for a curative immune response to L. major in C57BL/6 mice and irrelevant for disease development in BALB/c mice, whereas IL-12 and IFN-α subtypes are essential for the disease prevention by CpG-ODNs in this mouse strain.
Collapse
Affiliation(s)
- Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Liese
- Abteilung Mikrobiologie und Hygiene, Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Nicole Justies
- Abteilung Mikrobiologie und Hygiene, Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Thomas Mischke
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simone Haeberlein
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Heidi Sebald
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ulrich Kalinke
- Institut für Experimentelle Infektionsforschung, TWINCORE, Zentrum für Experimentelle und Klinische Infektionsforschung, eine Gemeinschaftseinrichtung vom Helmholtz Zentrum für Infektionsforschung und der Medizinischen Hochschule Hannover, Hannover, Germany
| | - Siegfried Weiss
- Abteilung für Molekulare Immunologie, Helmholtz Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
43
|
Sprokholt JK, Kaptein TM, van Hamme JL, Overmars RJ, Gringhuis SI, Geijtenbeek TBH. RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production. PLoS Pathog 2017; 13:e1006738. [PMID: 29186193 PMCID: PMC5724900 DOI: 10.1371/journal.ppat.1006738] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 12/11/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022] Open
Abstract
Follicular T helper cells (TFH) are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV) infection of human dendritic cells (DCs) drives TFH formation via crosstalk of RIG-I-like receptor (RLR) RIG-I and MDA5 with type I Interferon (IFN) signaling. DENV infection leads to RLR-dependent IKKε activation, which phosphorylates IFNα/β receptor-induced STAT1 to drive IL-27 production via the transcriptional complex ISGF3. Inhibiting RLR activation as well as neutralizing antibodies against IL-27 prevented TFH formation. DENV-induced CXCR5+PD-1+Bcl-6+ TFH cells secreted IL-21 and activated B cells to produce IgM and IgG. Notably, RLR activation by synthetic ligands also induced IL-27 secretion and TFH polarization. These results identify an innate mechanism by which antibodies develop during viral disease and identify RLR ligands as potent adjuvants for TFH-promoting vaccination strategies.
Collapse
Affiliation(s)
- Joris K. Sprokholt
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Tanja M. Kaptein
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - John L. van Hamme
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Ronald J. Overmars
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Sonja I. Gringhuis
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| |
Collapse
|
44
|
Positive and Negative Regulation of Type I Interferons by the Human T Cell Leukemia Virus Antisense Protein HBZ. J Virol 2017; 91:JVI.00853-17. [PMID: 28768861 DOI: 10.1128/jvi.00853-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/14/2017] [Indexed: 01/11/2023] Open
Abstract
The pathogenesis of human T cell leukemia virus type 1 (HTLV-1) is strongly linked to the viral regulatory proteins Tax1 and HBZ, whose opposing functions contribute to the clinical outcome of infection. Type I interferons alpha and beta (IFN-α and IFN-β) are key cytokines involved in innate immunity, and IFN-α, in combination with other antivirals, is extensively used in the treatment of HTLV-1 infection. The relationship between HTLV-1 and IFN signaling is unclear, and to date the effect of HBZ on this pathway has not been examined. Here we report that HBZ significantly enhances interferon regulatory factor 7 (IRF7)-induced IFN-α- and IFN-stimulated response element (ISRE) promoter activities and IFN-α production and can counteract the inhibitory effect of Tax1. In contrast to this, we show that HBZ and Tax1 cooperate to inhibit the induction of IFN-β and ISRE promoters by IRF3 and IFN-β production. In addition, we reveal that HBZ enhances ISRE activation by IFN-α. We further show that HBZ enhances IRF7 and suppresses IRF3 activation by TBK1 and IKKε. We demonstrate that HBZ has no effect on virus-induced nuclear accumulation of IRF3, suggesting that it may inhibit IRF3 activity at a transcriptional level. We show that HBZ physically interacts with IRF7 and IKKε but not with IRF3 or TBK1. Overall, our findings suggest that both HBZ and Tax1 are negative regulators of immediate early IFN-β innate immune responses, while HBZ but not Tax1 positively regulates the induction of IFN-α and downstream IFN-α signaling.IMPORTANCE Type I interferons are powerful antiviral cytokines and are used extensively in the treatment of HTLV-1-induced adult T cell leukemia (ATL). To date, the relationship between HTLV-1 and the IFN pathway is poorly understood, and studies so far have focused on Tax1. Our study is unique in that it examined the effect of HBZ, alone or in combination with Tax1, on type I IFN signaling. This is important because HBZ is frequently the only viral protein expressed in infected cells, particularly at later stages of infection. A better understanding of the how HBZ regulates IFN signaling may lead to the development of therapeutics that can modify such responses and improve the clinical outcome for infected individuals.
Collapse
|
45
|
Melzer MK, Lopez-Martinez A, Altomonte J. Oncolytic Vesicular Stomatitis Virus as a Viro-Immunotherapy: Defeating Cancer with a "Hammer" and "Anvil". Biomedicines 2017; 5:E8. [PMID: 28536351 PMCID: PMC5423493 DOI: 10.3390/biomedicines5010008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/17/2022] Open
Abstract
Oncolytic viruses have gained much attention in recent years, due, not only to their ability to selectively replicate in and lyse tumor cells, but to their potential to stimulate antitumor immune responses directed against the tumor. Vesicular stomatitis virus (VSV), a negative-strand RNA virus, is under intense development as an oncolytic virus due to a variety of favorable properties, including its rapid replication kinetics, inherent tumor specificity, and its potential to elicit a broad range of immunomodulatory responses to break immune tolerance in the tumor microenvironment. Based on this powerful platform, a multitude of strategies have been applied to further improve the immune-stimulating potential of VSV and synergize these responses with the direct oncolytic effect. These strategies include: 1. modification of endogenous virus genes to stimulate interferon induction; 2. virus-mediated expression of cytokines or immune-stimulatory molecules to enhance anti-tumor immune responses; 3. vaccination approaches to stimulate adaptive immune responses against a tumor antigen; 4. combination with adoptive immune cell therapy for potentially synergistic therapeutic responses. A summary of these approaches will be presented in this review.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Arturo Lopez-Martinez
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Jennifer Altomonte
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
46
|
Rodríguez M, Márquez S, de la Rosa JV, Alonso S, Castrillo A, Sánchez Crespo M, Fernández N. Fungal pattern receptors down-regulate the inflammatory response by a cross-inhibitory mechanism independent of interleukin-10 production. Immunology 2016; 150:184-198. [PMID: 27709605 DOI: 10.1111/imm.12678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022] Open
Abstract
Cyclic AMP regulatory element binding protein and signal transducer and activator of transcription 3 (STAT3) may control inflammation by several mechanisms, one of the best characterized is the induction of the expression of the anti-inflammatory cytokine interleukin-10 (IL-10). STAT3 also down-regulates the production of pro-inflammatory cytokines induced by immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors, a mechanism termed cross-inhibition. Because signalling via ITAM-dependent mechanisms is a hallmark of fungal pattern receptors, STAT3 activation might be involved in the cross-inhibition associated with invasive fungal infections. The fungal surrogate zymosan produced the phosphorylation of Y705-STAT3 and the expression of Ifnb1 and Socs3, but did not induce the interferon (IFN)-signature cytokines Cxcl9 and Cxcl10 in bone marrow-derived dendritic cells. Unlike lipopolysaccharide (LPS), zymosan induced IL-10 and phosphorylated Y705-STAT3 to a similar extent in Irf3 and Ifnar1 knockout and wild-type mice. Human dendritic cells showed similar results, although the induction of IFNB1 was less prominent. These results indicate that LPS and zymosan activate STAT3 through different routes. Whereas type I IFN is the main effector of LPS effect, the mechanism involved in Y705-STAT3 phosphorylation by zymosan is more complex, cannot be associated with type I IFN, IL-6 or granulocyte-macrophage colony-stimulating factor, and seems dependent on several factors given that it was partially inhibited by the platelet-activating factor antagonist WEB2086 and high concentrations of COX inhibitors, p38 mitogen-activate protein kinase inhibitors, and blockade of tumour necrosis factor-α function. Altogether, these results indicate that fungal pattern receptors share with other ITAM-coupled receptors the capacity to produce cross-inhibition through a mechanism involving STAT3 and induction of SOCS3 and IL-10, but that cannot be explained through type I IFN signalling.
Collapse
Affiliation(s)
- Mario Rodríguez
- Departamento de Bioquímica y Biología Molecular, y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Saioa Márquez
- Departamento de Bioquímica y Biología Molecular, y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Juan Vladimir de la Rosa
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-Universidad Autónoma de Madrid, Madrid, Spain.,Unidad Asociada de Biomedicina CSIC-Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la ULPGC, Las Palmas de Gran Canaria, Spain
| | - Sara Alonso
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-Universidad Autónoma de Madrid, Madrid, Spain.,Unidad Asociada de Biomedicina CSIC-Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la ULPGC, Las Palmas de Gran Canaria, Spain
| | - Mariano Sánchez Crespo
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Nieves Fernández
- Departamento de Bioquímica y Biología Molecular, y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.,Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
47
|
Antoniak S, Tatsumi K, Bode M, Vanja S, Williams JC, Mackman N. Protease-Activated Receptor 1 Enhances Poly I:C Induction of the Antiviral Response in Macrophages and Mice. J Innate Immun 2016; 9:181-192. [PMID: 27820939 DOI: 10.1159/000450853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/16/2016] [Indexed: 12/23/2022] Open
Abstract
The coagulation cascade is activated during viral infections as part of the host defense system. Coagulation proteases activate cells by cleavage of protease-activated receptors (PARs). Recently, we reported that the activation of PAR-1 enhanced interferon (IFN)β and CXCL10 expression in cardiac fibroblasts and in the hearts of mice infected with Coxsackievirus B3. In this study, we used the double-stranded RNA mimetic polyinosinic:polycytidylic acid (poly I:C) to induce an antiviral response in macrophages and mice. Activation of PAR-1 enhanced poly I:C induction of IFNβ and CXCL10 expression in the murine macrophage cell line RAW264.7, bone-marrow derived mouse macrophages (BMM) and mouse splenocytes. Next, poly I:C was used to induce a type I IFN innate immune response in the spleen and plasma of wild-type (WT) and PAR-1-/- mice. We found that poly I:C treated PAR-1-/- mice and WT mice given the thrombin inhibitor dabigatran etexilate exhibited significantly less IFNβ and CXCL10 expression in the spleen and plasma than WT mice. These studies suggest that thrombin activation of PAR-1 contributes to the antiviral response in mice.
Collapse
Affiliation(s)
- Silvio Antoniak
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, UNC McAllister Heart Institute, Chapel Hill, N.C., USA
| | | | | | | | | | | |
Collapse
|
48
|
In Vivo Conditions Enable IFNAR-Independent Type I Interferon Production by Peritoneal CD11b+ Cells upon Thogoto Virus Infection. J Virol 2016; 90:9330-7. [PMID: 27512061 DOI: 10.1128/jvi.00744-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Type I interferons (IFNs) crucially contribute to host survival upon viral infections. Robust expression of type I IFNs (IFN-α/β) and induction of an antiviral state critically depend on amplification of the IFN signal via the type I IFN receptor (IFNAR). A small amount of type I IFN produced early upon virus infection binds the IFNAR and activates a self-enhancing positive feedback loop, resulting in induction of large, protective amounts of IFN-α. Unexpectedly, we found robust, systemic IFN-α expression upon infection of IFNAR knockout mice with the orthomyxovirus Thogoto virus (THOV). The IFNAR-independent IFN-α production required in vivo conditions and was not achieved during in vitro infection. Using replication-incompetent THOV-derived virus-like particles, we demonstrate that IFNAR-independent type I IFN induction depends on viral polymerase activity but is largely independent of viral replication. To discover the cell type responsible for this effect, we used type I IFN reporter mice and identified CD11b(+) F4/80(+) myeloid cells within the peritoneal cavity of infected animals as the main source of IFNAR-independent type I IFN, corresponding to the particular tropism of THOV for this cell type. IMPORTANCE Type I IFNs are crucial for the survival of a host upon most viral infections, and, moreover, they shape subsequent adaptive immune responses. Production of protective amounts of type I IFN critically depends on the positive feedback amplification via the IFNAR. Unexpectedly, we observed robust IFNAR-independent type I IFN expression upon THOV infection and unraveled molecular mechanisms and determined the tissue and cell type involved. Our data indicate that the host can effectively use alternative pathways to induce type I IFN responses if the classical feedback amplification is not available. Understanding how type I IFN can be produced in large amounts independently of IFNAR-dependent enhancement will identify mechanisms which might contribute to novel therapeutic strategies to fight viral pathogens.
Collapse
|
49
|
Ding Z, Dahlin JS, Xu H, Heyman B. IgE-mediated enhancement of CD4(+) T cell responses requires antigen presentation by CD8α(-) conventional dendritic cells. Sci Rep 2016; 6:28290. [PMID: 27306570 PMCID: PMC4910288 DOI: 10.1038/srep28290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
IgE, forming an immune complex with small proteins, can enhance the specific antibody and CD4(+) T cell responses in vivo. The effects require the presence of CD23 (Fcε-receptor II)(+) B cells, which capture IgE-complexed antigens (Ag) in the circulation and transport them to splenic B cell follicles. In addition, also CD11c(+) cells, which do not express CD23, are required for IgE-mediated enhancement of T cell responses. This suggests that some type of dendritic cell obtains IgE-Ag complexes from B cells and presents antigenic peptides to T cells. To elucidate the nature of this dendritic cell, mice were immunized with ovalbumin (OVA)-specific IgE and OVA, and different populations of CD11c(+) cells, obtained from the spleens four hours after immunization, were tested for their ability to present OVA. CD8α(-) conventional dendritic cells (cDCs) were much more efficient in inducing specific CD4(+) T cell proliferation ex vivo than were CD8α(+) cDCs or plasmacytoid dendritic cells. Thus, IgE-Ag complexes administered intravenously are rapidly transported to the spleen by recirculating B cells where they are delivered to CD8α(-) cDCs which induce proliferation of CD4(+) T cells.
Collapse
Affiliation(s)
- Zhoujie Ding
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joakim S. Dahlin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hui Xu
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Birgitta Heyman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
50
|
Bauer J, Dress RJ, Schulze A, Dresing P, Ali S, Deenen R, Alferink J, Scheu S. Cutting Edge: IFN-β Expression in the Spleen Is Restricted to a Subpopulation of Plasmacytoid Dendritic Cells Exhibiting a Specific Immune Modulatory Transcriptome Signature. THE JOURNAL OF IMMUNOLOGY 2016; 196:4447-51. [PMID: 27183572 DOI: 10.4049/jimmunol.1500383] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/29/2016] [Indexed: 12/26/2022]
Abstract
Type I IFNs are critical in initiating protective antiviral immune responses, and plasmacytoid dendritic cells (pDCs) represent a major source of these cytokines. We show that only few pDCs are capable of producing IFN-β after virus infection or CpG stimulation. Using IFNβ/YFP reporter mice, we identify these IFN-β-producing cells in the spleen as a CCR9(+)CD9(-) pDC subset that is localized exclusively within the T/B cell zones. IFN-β-producing pDCs exhibit a distinct transcriptome profile, with higher expression of genes encoding cytokines and chemokines, facilitating T cell recruitment and activation. These distinctive characteristics of IFN-β-producing pDCs are independent of the type I IFNR-mediated feedback loop. Furthermore, IFN-β-producing pDCs exhibit enhanced CCR7-dependent migratory properties in vitro. Additionally, they effectively recruit T cells in vivo in a peritoneal inflammation model. We define "professional type I IFN-producing cells" as a distinct subset of pDCs specialized in coordinating cellular immune responses.
Collapse
Affiliation(s)
- Jens Bauer
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Regine J Dress
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Anja Schulze
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Dresing
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - René Deenen
- Center for Biological and Medical Research, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Judith Alferink
- Department of Psychiatry, University of Münster, 48149 Münster, Germany; and Cluster of Excellence EXC 1003, Cells in Motion, 48149 Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|