1
|
Endo-Umeda K, Makishima M. Exploring the Roles of Liver X Receptors in Lipid Metabolism and Immunity in Atherosclerosis. Biomolecules 2025; 15:579. [PMID: 40305368 PMCID: PMC12024750 DOI: 10.3390/biom15040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Hypercholesterolemia causes atherosclerosis by inducing immune cell migration and chronic inflammation in arterial walls. Recent single-cell analyses reveal the presence of lipid-enriched foamy macrophages, as well as other macrophage subtypes, neutrophils, T cells, and B cells, in atherosclerotic plaques in both animal models and humans. These cells interact with each other and other cells, including non-immune cells such as endothelial cells and smooth muscle cells. They thereby regulate metabolic, inflammatory, phagocytic, and cell death processes, thus affecting the progression and stability of atherosclerotic plaques. The nuclear receptors liver X receptor (LXR)α and LXRβ are transcription factors that are activated by oxysterols and regulate lipid metabolism and immune responses. LXRs regulate cholesterol homeostasis by controlling cholesterol's transport, absorption, synthesis, and breakdown in the liver and intestine. LXRs are also highly expressed in tissue-resident and monocyte-derived macrophages and other immune cells, including both myeloid cells and lymphocytes, and they regulate both innate and adaptive immune responses. Interestingly, LXRs have immunosuppressive and immunoregulatory functions that are cell-type-dependent. In animal models of atherosclerosis, LXRs have been shown to be involved in both progression and regression phases. The pharmacological activation of LXR enhances cholesterol efflux from macrophages and promotes atherosclerosis progression. Deleting LXR in immune cells, especially myeloid cells, accelerates atherosclerosis by increasing monocyte migration, macrophage proliferation and activation, and neutrophil extracellular traps (NETs); furthermore, the deletion of hematopoietic LXRs impairs the regression of atherosclerotic plaques. Therefore, LXRs in immune cells may be a potent therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan;
| | | |
Collapse
|
2
|
Bartoloni E, Cacciapaglia F, Erre GL, Gremese E, Manfredi A, Piga M, Sakellariou G, Spinelli FR, Viapiana O, Atzeni F. Immunomodulation for accelerated atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus. Autoimmun Rev 2025; 24:103760. [PMID: 39894242 DOI: 10.1016/j.autrev.2025.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
In the last decades, consisting evidence supported a close relationship between both innate and adaptive immune systems and the accelerated cardiovascular (CV) disease characterizing autoimmune diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Indeed, several cell lines involved in the pathogenesis of these autoimmune diseases, such as macrophages and dendritic cells, as well as different T and B lymphocyte subsets, and inflammatory cytokines, have been demonstrated to be directly involved in the mechanisms underlying early atherosclerotic arterial wall damage. Traditional CV risk factors play a concomitant role but do not sufficiently account for the increased prevalence of CV disease in these patients. Indeed, the pathophysiological link between RA and SLE and atherosclerosis is based on complex inflammatory pathways that interconnect these conditions and may explain the significant morbidity and mortality rates demonstrated in these patients, with consequent significant negative effects on quality of life and long-term survival. Consequently, it is intriguing to hypothesize that immunosuppressive drugs commonly used in the treatment of these pathologies may also exert an immunomodulatory and anti-inflammatory effect in mitigating the atherosclerotic damage that has been demonstrated to occur early in the initial stages of the disease. Recognizing risk factors, predicting occurrences and early intervention to prevent CV disease development have emerged as critical objectives in RA and SLE treatment. In this review, we aimed to provide an updated overview of the atherogenic effects exerted by the immune and inflammatory pathways involved in the pathogenesis of RA and SLE. Moreover, we examined the available evidence which may support the potential effects of immunosuppressive therapies in reducing CV damage and, consequently, CV disease risk in these patients.
Collapse
Affiliation(s)
- Elena Bartoloni
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Italy
| | - Fabio Cacciapaglia
- Rheumatology Unit, Department of Precision and Regenerative Medicine and Ionian Area (DePReMeI), University of Bari, Bari, Italy; Department of Medicine and Surgery, LUM University "Giuseppe De Gennaro" Casamassima & Rheumatology Service "Miulli" General Hospital Acquaviva delle Fonti, Bari, Italy
| | - Gian Luca Erre
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università degli Studi di Sassari, Italy
| | - Elisa Gremese
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Andreina Manfredi
- University of Modena and Reggio Emilia,AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Matteo Piga
- Rheumatology Unit, AOU Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Garifallia Sakellariou
- Department of Internal Medicine and Therapeutics, University of Pavia, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Francesca Romana Spinelli
- Reumatology Unit, Department of Internal, Anesthesiological, and Cardiovascular Clinical Sciences, Sapienza University of Rome, Rome, Italy
| | - Ombretta Viapiana
- Rheumatology Unit, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, Italy.
| |
Collapse
|
3
|
Khalaf K, Chamieh M, Welc N, Singh C, Kaouk JL, Kaouk A, Mackiewicz A, Kaczmarek M, Perek B. Cellular aspects of immunity involved in the development of atherosclerosis. Front Immunol 2025; 16:1461535. [PMID: 39944697 PMCID: PMC11813763 DOI: 10.3389/fimmu.2025.1461535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/09/2025] [Indexed: 05/09/2025] Open
Abstract
Atherosclerosis, previously regarded as a lipid storage disease, has now been classified as a chronic inflammatory disease. The hardening of arterial vessels characterizes atherosclerosis due to the accumulation of lipids in the arterial walls, eliciting an inflammatory response. The development of atherosclerosis occurs in various stages and is facilitated by many clinical factors, such as hypertension, hyperlipidemia, and inflammatory status. A large arsenal of cells has been implicated in its development. This review will summarize the phases of atherosclerotic formation and all the cells involved in either promoting or inhibiting its development.
Collapse
Affiliation(s)
- Khalil Khalaf
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marc Chamieh
- Department of Spine Disorders and Pediatric Orthopedics, Poznan University of Medical Sciences, Poznań, Poland
| | - Natalia Welc
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Chandpreet Singh
- Department of Internal Medicine, University of California, Los Angeles (UCLA) - Kern Medical Center, Bakersfield, CA, United States
| | - Joanne Lynn Kaouk
- Department of Science, Louisiana State University, Lousiana, LA, United States
| | - Aiden Kaouk
- Department of Natural Sciences, The University of Texas at Austin, Texas, TX, United States
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
| | - Bartlomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
4
|
Hua Y, Zhou Z, Miao S, Wang Z, Song R, Meng X. Exploring the molecular interactions between nephrolithiasis and carotid atherosclerosis: asporin as a potential biomarker. Urolithiasis 2024; 52:169. [PMID: 39589536 DOI: 10.1007/s00240-024-01665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/09/2024] [Indexed: 11/27/2024]
Abstract
Increasing evidence suggested nephrolithiasis has a close linkage with carotid atherosclerosis (CAS), with Randall's plaque (RP) being a precursor to kidney stones. Our study aimed to examine the crosstalk genes and potential molecular mechanisms between RP and CAS. We obtained microarray data for RP and CAS from the Gene Expression Omnibus (GEO) and used weighted gene co-expression network analysis (WGCNA) and differential gene expression (DEG) analysis to identify shared genes. By integrating WGCNA and DEG analysis, Asporin (ASPN) was identified as the key gene connecting RP and CAS, with its diagnostic potential assessed via a receiver operating characteristic (ROC) curve. Immune infiltration studies showed a significant correlation between ASPN and various immune cells in RP and CAS. ASPN was found to be less expressed in RP and CAS tissues compared to normal tissues, as confirmed by immunohistochemistry (IHC) and quantitative reverse-transcription PCR (qRT-PCR). The rat model confirmed the human tissue findings. ASPN can elucidate the shared pathogenic mechanisms underlying the two conditions, including immune response and osteoblast differentiation.
Collapse
Affiliation(s)
- Yibo Hua
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, P.R. China
| | - Zijian Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Suyu Miao
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, P.R. China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, P.R. China
| | - Rijin Song
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, P.R. China.
| | - Xianghu Meng
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, P.R. China.
| |
Collapse
|
5
|
Iwabuchi K, Satoh M, Yoshino K, Ishimori N. Recent advances regarding the potential roles of invariant natural killer T cells in cardiovascular diseases with immunological and inflammatory backgrounds. Int Immunol 2024; 36:377-392. [PMID: 38557824 DOI: 10.1093/intimm/dxae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/31/2024] [Indexed: 04/04/2024] Open
Abstract
Invariant natural killer T (iNKT) cells, which bear αβ-type T-cell antigen-receptors (TCRs), recognize glycolipid antigens in a cluster of differentiation 1d (CD1d)-restricted manner. Regarding these cells, the unique modes of thymic selection and maturation elucidate innateness, irrespective of them also being members of the adaptive immune system as a T-cell. iNKT cells develop and differentiate into NKT1 [interferon γ (IFN-γ)-producing], NKT2 [interleukin 4 (IL-4)/IL-13-producing], or NKT17 (IL-17-producing) subsets in the thymus. After egress, NKT10 (IL-10-producing), follicular helper NKT (NKTfh; IL-21-producing), and regulatory NKT (NKTreg) subsets emerge following stimulation in the periphery. Moreover, iNKT cells have been shown to possess several physiological or pathological roles. iNKT cells exhibit dual alleviating or aggravating roles in experimentally induced immune and/or inflammatory diseases in mice. These findings indicate that the modulation of iNKT cells can be employed for therapeutic use or prevention of human diseases. In this review, we discuss the potential roles of iNKT cells in the development of immune/inflammatory diseases of the cardiovascular system, with emphasis on atherosclerosis, aortic aneurysms, and cardiac remodeling.
Collapse
Affiliation(s)
| | - Masashi Satoh
- Department of Immunology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Kazuhisa Yoshino
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan
| | - Naoki Ishimori
- Department of Cardiovascular Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-0638, Japan
| |
Collapse
|
6
|
Fularski P, Czarnik W, Dąbek B, Lisińska W, Radzioch E, Witkowska A, Młynarska E, Rysz J, Franczyk B. Broader Perspective on Atherosclerosis-Selected Risk Factors, Biomarkers, and Therapeutic Approach. Int J Mol Sci 2024; 25:5212. [PMID: 38791250 PMCID: PMC11121693 DOI: 10.3390/ijms25105212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands as the leading cause of mortality worldwide. At its core lies a progressive process of atherosclerosis, influenced by multiple factors. Among them, lifestyle-related factors are highlighted, with inadequate diet being one of the foremost, alongside factors such as cigarette smoking, low physical activity, and sleep deprivation. Another substantial group of risk factors comprises comorbidities. Amongst others, conditions such as hypertension, diabetes mellitus (DM), chronic kidney disease (CKD), or familial hypercholesterolemia (FH) are included here. Extremely significant in the context of halting progression is counteracting the mentioned risk factors, including through treatment of the underlying disease. What is more, in recent years, there has been increasing attention paid to perceiving atherosclerosis as an inflammation-related disease. Consequently, efforts are directed towards exploring new anti-inflammatory medications to limit ASCVD progression. Simultaneously, research is underway to identify biomarkers capable of providing insights into the ongoing process of atherosclerotic plaque formation. The aim of this study is to provide a broader perspective on ASCVD, particularly focusing on its characteristics, traditional and novel treatment methods, and biomarkers that can facilitate its early detection.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Alicja Witkowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
7
|
Xu L, Chen F, Fan W, Saito S, Cao D. The role of γδT lymphocytes in atherosclerosis. Front Immunol 2024; 15:1369202. [PMID: 38774876 PMCID: PMC11106432 DOI: 10.3389/fimmu.2024.1369202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Atherosclerosis poses a significant threat to human health, impacting overall well-being and imposing substantial financial burdens. Current treatment strategies mainly focus on managing low-density lipids (LDL) and optimizing liver functions. However, it's crucial to recognize that Atherosclerosis involves more than just lipid accumulation; it entails a complex interplay of immune responses. Research highlights the pivotal role of lipid-laden macrophages in the formation of atherosclerotic plaques. These macrophages attract lymphocytes like CD4 and CD8 to the inflamed site, potentially intensifying the inflammatory response. γδ T lymphocytes, with their diverse functions in innate and adaptive immune responses, pathogen defense, antigen presentation, and inflammation regulation, have been implicated in the early stages of Atherosclerosis. However, our understanding of the roles of γδ T cells in Atherosclerosis remains limited. This mini-review aims to shed light on the characteristics and functions of γδ T cells in Atherosclerosis. By gaining insights into the roles of γδ T cells, we may uncover a promising strategy to mitigate plaque buildup and dampen the inflammatory response, thereby opening new avenues for effectively managing this condition.
Collapse
Affiliation(s)
- LiMin Xu
- Department of Neurosurgery, Shenzhen Entry-Exit Frontier Inspection Hospital, Shenzhen, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
8
|
Tomas L, Katra P, Badn W, Andersson L, Nilsson J, Schiopu A, Engelbertsen D, Gonçalves I, Bengtsson E, Björkbacka H. Invariant natural killer T cells and incidence of first-time coronary events: a nested case-control study. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead094. [PMID: 38025652 PMCID: PMC10630548 DOI: 10.1093/ehjopen/oead094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023]
Abstract
Aims Invariant natural killer T (iNKT) cells, a T cell subset that is CD1d-restricted and expresses a semi-invariant T cell receptor, have been proposed to contribute to dyslipidaemia-driven cardiovascular disease due to their ability to specifically recognize lipid antigens. Studies in mice have attributed pro-atherogenic properties to iNKT cells, but studies in humans investigating associations of iNKT cells with incident coronary events (CE) are lacking. Methods and results Here, we used flow cytometry to enumerate circulating iNKT cells (CD3+ CD1d-PBS57-Tetramer+) in a case-control cohort nested within the prospective population-based Malmö Diet and Cancer Study (n = 416) to explore associations with incident first-time CE during a median follow-up of 14 years. We found a significant inverse association between CD4- and CD8- double negative (DN) iNKT cells and incident CE, with an odds ratio of 0.62 [95% confidence interval (CI) 0.38-0.99; P = 0.046] comparing the highest vs. the lowest tertile of DN iNKT cells. The association remained significant after adjustment for cardiovascular risk factors with an odds ratio of 0.57 (95% CI 0.33-0.99; P = 0.046). In contrast, total iNKT cells were not significantly associated with incident CE after adjustment, with an odds ratio of 0.74 (95% CI 0.43-1.27; P = 0.276). Conclusion Our findings indicate that animal studies suggesting an atherosclerosis-promoting role for iNKT cells may not translate to human cardiovascular disease as our data show an association between high circulating numbers of DN iNKT cells and decreased risk of incident CE.
Collapse
Affiliation(s)
- Lukas Tomas
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Pernilla Katra
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Wiaam Badn
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Linda Andersson
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Alexandru Schiopu
- Department of Translational Medicine, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Lund, Sweden
| | - Daniel Engelbertsen
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
- Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms – Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Harry Björkbacka
- Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-214 28, Malmö, Sweden
| |
Collapse
|
9
|
Hinkley H, Counts DA, VonCanon E, Lacy M. T Cells in Atherosclerosis: Key Players in the Pathogenesis of Vascular Disease. Cells 2023; 12:2152. [PMID: 37681883 PMCID: PMC10486666 DOI: 10.3390/cells12172152] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-rich plaques within arterial walls. T cells play a pivotal role in the pathogenesis of atherosclerosis in which they help orchestrate immune responses and contribute to plaque development and instability. Here, we discuss the recognition of atherosclerosis-related antigens that may trigger T cell activation together with additional signaling from co-stimulatory molecules and lesional cytokines. Although few studies have indicated candidates for the antigen specificity of T cells in atherosclerosis, further research is needed. Furthermore, we describe the pro-atherogenic and atheroprotective roles of diverse subsets of T cells such as CD4+ helper, CD8+ cytotoxic, invariant natural killer, and γδ T cells. To classify and quantify T cell subsets in atherosclerosis, we summarize current methods to analyze cellular heterogeneity including single cell RNA sequencing and T cell receptor (TCR) sequencing. Further insights into T cell biology will help shed light on the immunopathology of atherosclerosis, inform potential therapeutic interventions, and pave the way for precision medicine approaches in combating cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | - Michael Lacy
- Department of Medical Laboratory Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
10
|
Chakrabarti R, Duddu S, Tiwari A, Naidu KT, Sharma P, Chakravorty N, Shukla PC. Natural Killer T cells and the invariant subset promote atherosclerosis: A meta-analysis. Life Sci 2023; 321:121620. [PMID: 37011534 DOI: 10.1016/j.lfs.2023.121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
AIMS Natural Killer T (NKT) cells are reported to be both pro- and anti-atherosclerotic. With this meta-analysis, we evaluated the NKT population and their subsets in regulating the atherosclerotic disease in mice. MAIN METHODS Eighteen pre-clinical (mice, n = 1276) and 6 clinical observational studies (humans, n = 116) met the eligibility criteria for inclusion. Random effects model was used and standard mean difference (SMD) was calculated for the cell counts and aortic lesion area. KEY FINDINGS Lesion area decreased in the absence of whole NKT cell population (-1.33[95%CI, -2.14, -0.52]), and in the absence of only iNKT subset (-0.66[95%CI, -1.69, 0.37]). However, lesion area increased after over-expression/activation of iNKTs (1.40[95%CI, 0.28, 2.52]). Atherogenic diet (AD) or high fat diet (HFD) increased the number of NKT cells (2.51[95%CI, 1.42, 3.61]), whereas the iNKT cell numbers and iNKT cell-specific gene expression decreased in mice (-2.04[95%CI, -3.34, -0.75]) and atherosclerotic patients (-1.81[95 % CI, -2.89, -0.74]). SIGNIFICANCE Here we show that, NKT and iNKT cells promote atherosclerosis. In general, NKT cell population increases with the progression of the plaque in mice and the numbers of iNKT cells reduce once the disease is established both in mice and humans.
Collapse
|
11
|
Tissue-specific metabolic profile drives iNKT cell function during obesity and liver injury. Cell Rep 2023; 42:112035. [PMID: 36848232 DOI: 10.1016/j.celrep.2023.112035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 10/21/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a distinct population of lymphocytes characterized by their reactivity to glycolipids presented by CD1d. iNKT cells are found throughout the body, and little is known about their tissue-specific metabolic regulation. Here, we show that splenic and hepatic iNKT cells are metabolically comparable and rely on glycolytic metabolism to support their activation. Deletion of the pyruvate kinase M2 (Pkm2) gene in splenic and hepatic iNKT cells impairs their response to specific stimulation and their ability to mitigate acute liver injury. In contrast, adipose tissue (AT) iNKT cells exhibit a distinctive immunometabolic profile, with AMP-activated protein kinase (AMPK) being necessary for their function. AMPK deficiency impairs AT-iNKT physiology, blocking their capacity to maintain AT homeostasis and their ability to regulate AT inflammation during obesity. Our work deepens our understanding on the tissue-specific immunometabolic regulation of iNKT cells, which directly impacts the course of liver injury and obesity-induced inflammation.
Collapse
|
12
|
Oh SF, Jung DJ, Choi E. Gut Microbiota-Derived Unconventional T Cell Ligands: Contribution to Host Immune Modulation. Immunohorizons 2022; 6:476-487. [PMID: 35868838 PMCID: PMC9924074 DOI: 10.4049/immunohorizons.2200006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023] Open
Abstract
Besides the prototypic innate and adaptive pathways, immune responses by innate-like lymphocytes have gained significant attention due to their unique roles. Among innate-like lymphocytes, unconventional T cells such as NKT cells and mucosal-associated invariant T (MAIT) cells recognize small nonpeptide molecules of specific chemical classes. Endogenous or microbial ligands are loaded to MHC class I-like molecule CD1d or MR1, and inducing immediate effector T cell and ligand structure is one of the key determinants of NKT/MAIT cell functions. Unconventional T cells are in close, constant contact with symbiotic microbes at the mucosal layer, and CD1d/MR1 can accommodate diverse metabolites produced by gut microbiota. There is a strong interest to identify novel immunoactive molecules of endobiotic (symbiont-produced) origin as new NKT/MAIT cell ligands, as well as new cognate Ags for previously uncharacterized unconventional T cell subsets. Further studies will open an possibility to explore basic biology as well as therapeutic potential.
Collapse
Affiliation(s)
- Sungwhan F. Oh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Da-Jung Jung
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Eungyo Choi
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
13
|
Cruz MS, Loureiro JP, Oliveira MJ, Macedo MF. The iNKT Cell-Macrophage Axis in Homeostasis and Disease. Int J Mol Sci 2022; 23:ijms23031640. [PMID: 35163561 PMCID: PMC8835952 DOI: 10.3390/ijms23031640] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are CD1d-restricted, lipid-reactive T cells that exhibit preponderant immunomodulatory properties. The ultimate protective or deleterious functions displayed by iNKT cells in tissues are known to be partially shaped by the interactions they establish with other immune cells. In particular, the iNKT cell–macrophage crosstalk has gained growing interest over the past two decades. Accumulating evidence has highlighted that this immune axis plays central roles not only in maintaining homeostasis but also during the development of several pathologies. Hence, this review summarizes the reported features of the iNKT cell–macrophage axis in health and disease. We discuss the pathophysiological significance of this interplay and provide an overview of how both cells communicate with each other to regulate disease onset and progression in the context of infection, obesity, sterile inflammation, cancer and autoimmunity.
Collapse
Affiliation(s)
- Mariana S. Cruz
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
| | - José Pedro Loureiro
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Experimental Immunology Group, Department of Biomedicine (DBM), University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Maria J. Oliveira
- Tumour and Microenvironment Interactions Group, Instituto Nacional de Engenharia Biomédica (INEB), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- Department of Molecular Biology, ICBAS-Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Fatima Macedo
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.S.C.); (J.P.L.)
- Department of Medical Sciences, University of Aveiro (UA), 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
14
|
Xu C, Li H, Tang CK. Sterol Carrier Protein 2: A promising target in the pathogenesis of atherosclerosis. Genes Dis 2022; 10:457-467. [DOI: 10.1016/j.gendis.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022] Open
|
15
|
Miao T, Wang T, Feng T, Yuan D, Guo Q, Xiong F, Yang Y, Liu L, He Z, Huang B, Zhao J. Activated invariant natural killer T cells infiltrate aortic tissue as key participants in abdominal aortic aneurysm pathology. Immunology 2021; 164:792-802. [PMID: 34379797 DOI: 10.1111/imm.13401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023] Open
Abstract
Adaptive immunity and innate immunity have been implicated in the pathogenesis of abdominal aortic aneurysm (AAA), and damage and remodelling in the tunica media are a focus of the aneurysm development. Thus, identification of key immune cells or molecules that might be targets for the treatment of AAA is critical. We characterized the innate immune cells in human AAA tissue specimens by flow cytometry and found that apart from other lymphocytes, many invariant natural killer T (iNKT) cells marked as CD3 and Va24Ja18 had invaded the aortic tissues and were numerous, especially in the tunica media. These infiltrating iNKT cells have a high expression of CD69, indicating a highly active function. We were interested in whether iNKT cells could be the drivers of media damage in AAA. To answer this question, we used an AAA mouse model induced by angiotensin II (Ang II) infusion, which can reproduce the inflammatory response of AAA in mouse, which was confirmed by RNAseq. The results showed that the incidence of AAA was significantly higher after administration of α-galactosylceramide (α-GalCer), a synthetic glycolipid that activates iNKT cells via CD1d, compared with the Ang II-induced AAA alone (61·54% vs 31·82%) in mice. Histopathological and immunofluorescent staining results showed significantly more severe inflammatory infiltration and pathological lesions in the Ang II+α-GalCer treatment group. These results are highly suggestive that activated iNKT cells greatly contribute to AAA development and that the control of the activation state in iNKT cells may represent an important therapeutic strategy for AAA.
Collapse
Affiliation(s)
- Tianyu Miao
- Vascular Surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Tiehao Wang
- Vascular Surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Ting Feng
- Laboratory of infection and immunity, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ding Yuan
- Vascular Surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Guo
- Vascular Surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xiong
- Vascular Surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Yi Yang
- Vascular Surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Lihua Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhangyu He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Bin Huang
- Vascular Surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Jichun Zhao
- Vascular Surgery of West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Medved J, Knott BM, Tarrah SN, Li AN, Shah N, Moscovich TC, Boscia AR, Salazar JE, Santhanakrishnan M, Hendrickson JE, Fu X, Zimring JC, Luckey CJ. The lysophospholipid-binding molecule CD1D is not required for the alloimmunization response to fresh or stored RBCs in mice despite RBC storage driving alterations in lysophospholipids. Transfusion 2021; 61:2169-2178. [PMID: 34181769 DOI: 10.1111/trf.16554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite the significant adverse clinical consequences of RBC alloimmunization, our understanding of the signals that induce immune responses to transfused RBCs remains incomplete. Though RBC storage has been shown to enhance alloimmunization in the hen egg lysozyme, ovalbumin, and human Duffy (HOD) RBC alloantigen mouse model, the molecular signals leading to immune activation in this system remain unclear. Given that the nonclassical major histocompatibility complex (MHC) Class I molecule CD1D can bind to multiple different lysophospholipids and direct immune activation, we hypothesized that storage of RBCs increases lysophospholipids known to bind CD1D, and further that recipient CD1D recognition of these altered lipids mediates storage-induced alloimmunization responses. STUDY DESIGN AND METHODS We used a mass spectrometry-based approach to analyze the changes in lysophospholipids that are induced during storage of mouse RBCs. CD1D knockout (CD1D-KO) and wild-type (WT) control mice were transfused with stored HOD RBCs to measure the impact of CD1D deficiency on RBC alloimmunization. RESULTS RBC storage results in alterations in multiple lysophospholipid species known to bind to CD1D and activate the immune system. Prior to transfusion, CD1D-deficient mice had lower baseline levels of polyclonal immunoglobulin (IgG) relative to WT mice. In response to stored RBC transfusion, CD1D-deficient mice generated similar levels of anti-HOD IgM and anti-HOD IgG. CONCLUSION Although storage of RBCs leads to alteration of several lysophospholipids known to be capable of binding CD1D, storage-induced RBC alloimmunization responses are not impacted by recipient CD1D deficiency.
Collapse
Affiliation(s)
- Jelena Medved
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Brittney M Knott
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Soraya N Tarrah
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Andria N Li
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Neha Shah
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Tamara C Moscovich
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Alexis R Boscia
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Juan E Salazar
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Jeanne E Hendrickson
- Departments of Laboratory Medicine and Pediatrics, Yale University, New Haven, Connecticut, USA
| | - Xiaoyun Fu
- Bloodworks NW Research Institute, and Department of Internal Medicine, Division of Hematology, University of Washington School of Medicine, Seattle, Washington, USA
| | - James C Zimring
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Chance John Luckey
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
17
|
Zhao Y, Zhang J, Zhang W, Xu Y. A myriad of roles of dendritic cells in atherosclerosis. Clin Exp Immunol 2021; 206:12-27. [PMID: 34109619 DOI: 10.1111/cei.13634] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Atherosclerosis is an inflammatory disease with break-down of homeostatic immune regulation of vascular tissues. As a critical initiator of host immunity, dendritic cells (DCs) have also been identified in the aorta of healthy individuals and atherosclerotic patients, whose roles in regulating arterial inflammation aroused great interest. Accumulating evidence has now pointed to the fundamental roles for DCs in every developmental stage of atherosclerosis due to their myriad of functions in immunity and tolerance induction, ranging from lipid uptake, efferocytosis and antigen presentation to pro- and anti-inflammatory cytokine or chemokine secretion. In this study we provide a timely summary of the published works in this field, and comprehensively discuss both the direct and indirect roles of DCs in atherogenesis. Understanding the pathogenic roles of DCs during the development of atherosclerosis in vascular tissues would certainly help to open therapeutic avenue to the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yanfang Zhao
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| | - Jing Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, School of Life Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
18
|
Carrasco E, Gómez de Las Heras MM, Gabandé-Rodríguez E, Desdín-Micó G, Aranda JF, Mittelbrunn M. The role of T cells in age-related diseases. Nat Rev Immunol 2021; 22:97-111. [PMID: 34099898 DOI: 10.1038/s41577-021-00557-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Age-related T cell dysfunction can lead to failure of immune tolerance mechanisms, resulting in aberrant T cell-driven cytokine and cytotoxic responses that ultimately cause tissue damage. In this Review, we discuss the role of T cells in the onset and progression of age-associated conditions, focusing on cardiovascular disorders, metabolic dysfunction, neuroinflammation and defective tissue repair and regeneration. We present different mechanisms by which T cells contribute to inflammageing and might act as modulators of age-associated diseases, including through enhanced pro-inflammatory and cytotoxic activity, defective clearance of senescent cells or regulation of the gut microbiota. Finally, we propose that 'resetting' immune system tolerance or targeting pathogenic T cells could open up new therapeutic opportunities to boost resilience to age-related diseases.
Collapse
Affiliation(s)
- Elisa Carrasco
- Departamento de Biología, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Enrique Gabandé-Rodríguez
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Gabriela Desdín-Micó
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Juan Francisco Aranda
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Maria Mittelbrunn
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain. .,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain.
| |
Collapse
|
19
|
van Leent MMT, Beldman TJ, Toner YC, Lameijer MA, Rother N, Bekkering S, Teunissen AJP, Zhou X, van der Meel R, Malkus J, Nauta SA, Klein ED, Fay F, Sanchez-Gaytan BL, Pérez-Medina C, Kluza E, Ye YX, Wojtkiewicz G, Fisher EA, Swirski FK, Nahrendorf M, Zhang B, Li Y, Zhang B, Joosten LAB, Pasterkamp G, Boltjes A, Fayad ZA, Lutgens E, Netea MG, Riksen NP, Mulder WJM, Duivenvoorden R. Prosaposin mediates inflammation in atherosclerosis. Sci Transl Med 2021; 13:eabe1433. [PMID: 33692130 PMCID: PMC8209679 DOI: 10.1126/scitranslmed.abe1433] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/17/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Macrophages play a central role in the pathogenesis of atherosclerosis. The inflammatory properties of these cells are dictated by their metabolism, of which the mechanistic target of rapamycin (mTOR) signaling pathway is a key regulator. Using myeloid cell-specific nanobiologics in apolipoprotein E-deficient (Apoe -/-) mice, we found that targeting the mTOR and ribosomal protein S6 kinase-1 (S6K1) signaling pathways rapidly diminished plaque macrophages' inflammatory activity. By investigating transcriptome modifications, we identified Psap, a gene encoding the lysosomal protein prosaposin, as closely related with mTOR signaling. Subsequent in vitro experiments revealed that Psap inhibition suppressed both glycolysis and oxidative phosphorylation. Transplantation of Psap -/- bone marrow to low-density lipoprotein receptor knockout (Ldlr -/-) mice led to a reduction in atherosclerosis development and plaque inflammation. Last, we confirmed the relationship between PSAP expression and inflammation in human carotid atherosclerotic plaques. Our findings provide mechanistic insights into the development of atherosclerosis and identify prosaposin as a potential therapeutic target.
Collapse
Affiliation(s)
- Mandy M T van Leent
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Experimetal Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, 1105 AZ Amsterdam, Netherlands
| | - Thijs J Beldman
- Experimetal Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, 1105 AZ Amsterdam, Netherlands
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Yohana C Toner
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marnix A Lameijer
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Experimetal Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, 1105 AZ Amsterdam, Netherlands
| | - Nils Rother
- Department of Nephrology and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Siroon Bekkering
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Abraham J P Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roy van der Meel
- Department of Chemical Biology, Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands
| | - Joost Malkus
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sheqouia A Nauta
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emma D Klein
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francois Fay
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institut Galien Paris-Saclay, Faculté de Pharmacie, CNRS, Université Paris-Saclay, 92 296 Châtenay-Malabry, France
| | - Brenda L Sanchez-Gaytan
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Chemistry Center, Science Institute, Meritorious Autonomous University of Puebla, Puebla 72570, Mexico
| | - Carlos Pérez-Medina
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Ewelina Kluza
- Department of Chemical Biology, Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands
| | - Yu-Xiang Ye
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Department of Diagnostic and Interventional Radiology, University Hospitals Tuebingen, 72076 Tuebingen, Germany
| | - Gregory Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Edward A Fisher
- Department of Medicine (Cardiology) and Cell Biology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yang Li
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Bowen Zhang
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
- Department of Medical Genetics, University of Medicine and Pharmacy, Iuliu Haţieganu, Cluj-Napoca 400000, Romania
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Arjan Boltjes
- Central Diagnostics Laboratory, Division Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Esther Lutgens
- Experimetal Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, 1105 AZ Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, 80331 Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80539 Munich, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, 53127 Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Willem J M Mulder
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
- Department of Chemical Biology, Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raphaël Duivenvoorden
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Nephrology and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| |
Collapse
|
20
|
Li Y, Wang F, Imani S, Tao L, Deng Y, Cai Y. Natural Killer Cells: Friend or Foe in Metabolic Diseases? Front Immunol 2021; 12:614429. [PMID: 33717101 PMCID: PMC7943437 DOI: 10.3389/fimmu.2021.614429] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
The worldwide epidemic of metabolic diseases, especially obesity and other diseases caused by it, has shown a dramatic increase in incidence. A great deal of attention has been focused on the underlying mechanisms of these pathological processes and potential strategies to solve these problems. Chronic inflammation initiated by abdominal adipose tissues and immune cell activation in obesity is the major cause of the consequent development of complications. In addition to adipocytes, macrophages and monocytes, natural killer (NK) cells have been verified to be vital components involved in shaping the inflammatory microenvironment, thereby leading to various obesity-related metabolic diseases. Here, we provide an overview of the roles of NK cells and the interactions of these cells with other immune and nonimmune cells in the pathological processes of metabolic diseases. Finally, we also discuss potential therapeutic strategies targeting NK cells to treat metabolic diseases.
Collapse
Affiliation(s)
- Yi Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yue Cai
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Trujillo-Ocampo A, Cho HW, Clowers M, Pareek S, Ruiz-Vazquez W, Lee SE, Im JS. IL-7 During Antigenic Stimulation Using Allogeneic Dendritic Cells Promotes Expansion of CD45RA -CD62L +CD4 + Invariant NKT Cells With Th-2 Biased Cytokine Production Profile. Front Immunol 2020; 11:567406. [PMID: 33329531 PMCID: PMC7728799 DOI: 10.3389/fimmu.2020.567406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/29/2020] [Indexed: 11/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are innate-like T lymphocytes cells that recognize glycolipid antigens associated with CD1d, non-classical antigen presenting proteins. They can drive either pro-inflammatory (Th-1) or anti-inflammatory (Th-2) immune microenvironment through the production of both Th-1 and Th-2 type cytokines upon activation, thus play a vital role in cancer, infection, and autoimmune diseases. Adoptive cell therapy using ex vivo expanded iNKT cells is a promising approach to enhance anti-tumor immunity or immunosuppression. However, overcoming phenotypic and functional heterogeneity and promoting in vivo persistency of iNKT cells remains to be a challenge. Here, we compared various methods for ex vivo expansion of human iNKT cells and assessed the quality of expansion, phenotype, and cytokine production profile of expanded iNKT cells. While a direct stimulation of iNKT cells in peripheral blood mononuclear cells with agonist glycolipid led to the expansion of iNKT cells in varying degrees, stimulation of enriched iNKT cells by irradiated autologous peripheral blood mononuclear cells or allogeneic dendritic cells resulted in consistent expansion of highly pure iNKT cells. Interestingly, the mode of antigenic stimulation influenced the dominant subtype of expanded iNKT cells. Further, we evaluated whether additional IL-7 or IL-15 during antigenic stimulation with allogeneic dendritic cells can improve the phenotypic heterogeneity and modify cytokine production profile of iNKT cells expanded from 18 consecutive donors. The presence of IL-7 or IL-15 during antigenic stimulation did not affect the fold of expansion or purity of expanded iNKT cells. However, IL-7, but not IL-15, led to a better expansion of CD4+ iNKT cells, enhanced Th-2 type cytokine production of CD4+ iNKT cells, and maintained the expansion of central memory (CD45RA-CD62L+) CD4+ iNKT cells. Our results suggest the addition of IL-7 during antigenic stimulation with allogeneic dendritic cells can promote the expansion of CD62L+Th-2+CD4+ human iNKT cells that can be used as novel immunotherapeutic to control excessive inflammation to treat various autoimmune diseases.
Collapse
Affiliation(s)
- Abel Trujillo-Ocampo
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hyun-Woo Cho
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Clowers
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sumedha Pareek
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wilfredo Ruiz-Vazquez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sung-Eun Lee
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin S Im
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
22
|
Amin MN, Siddiqui SA, Ibrahim M, Hakim ML, Ahammed MS, Kabir A, Sultana F. Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med 2020; 8:2050312120965752. [PMID: 33194199 PMCID: PMC7594225 DOI: 10.1177/2050312120965752] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory cytokines are highly inducible small glycoproteins or regulatory proteins of low molecular weight secreted by different cell types. They regulate intercellular communication and mediate a number of physiological functions in the human immune system. Numerous prospective studies report that inflammatory cytokines strongly predict coronary artery disease, myocardial infarction, heart failure and other adverse cardiac events. Inflammatory cascade is believed to be a causative factor in the development of atherosclerotic process. Several aspects of atherogenesis are accelerated by cytokines. This article provides an overall overview of current understanding of cytokines in various cardiovascular events. Besides, inflammatory cytokines trigger cellular events that can induce malignancy and carcinogenesis. Elevated expression of several cytokines such as interleukin-1, interleukin-6, interleukin-10, tumor necrosis factor-α, macrophage migration inhibitory factor and transforming growth factor-β are involved in tumor initiation and progression. Thus, they exert a pivotal role in cancer pathogenesis. This review highlights the role of several cytokines in various events of tumorigenesis. Actually, this article summarizes the contributions of cytokines in the pathogenesis of cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| | - Shafayet Ahmed Siddiqui
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| | - Md Ibrahim
- College of Medicine, University of South
Alabama, Mobile, AL, USA
| | - Md Lukman Hakim
- Department of Pharmaceutical Sciences,
North South University, Dhaka, Bangladesh
| | - Md. Salim Ahammed
- Department of Pharmacy, University of
Information Technology and Sciences, Dhaka, Bangladesh
| | - Asma Kabir
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| | - Farhana Sultana
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| |
Collapse
|
23
|
Karadimou G, Gisterå A, Gallina AL, Caravaca AS, Centa M, Salagianni M, Andreakos E, Hansson GK, Malin S, Olofsson PS, Paulsson-Berne G. Treatment with a Toll-like Receptor 7 ligand evokes protective immunity against atherosclerosis in hypercholesterolaemic mice. J Intern Med 2020; 288:321-334. [PMID: 32410352 DOI: 10.1111/joim.13085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The interplay between innate and adaptive immunity is central in life-threatening clinical complications of atherosclerosis such as myocardial infarction and stroke. The specific mechanisms involved and their protective versus detrimental effects in the disease process remain poorly understood. We have previously shown that higher levels of Toll-like receptor 7 (TLR7) expression in human atherosclerotic lesions are correlated with better patient outcome. OBJECTIVE In this study, we explored whether TLR7 activation can ameliorate disease in experimental atherosclerosis in mice. METHODS Apolipoprotein E deficient mice (Apoe-/- ) with established disease were injected for five weeks intraperitoneally with the TLR7 ligand R848. Local effects were evaluated by characterization of the lesion. Systemic effects of the treatment were investigated by immune composition analysis in the spleen and plasma measurements. RESULTS The in vivo treatment arrested lesion progression in the aorta. We also detected expansion of marginal zone B cells and Treg in the spleen together with increased plasma IgM antibodies against oxidized low-density lipoprotein (oxLDL) and reduced plasma cholesterol levels. These changes were accompanied by increased accumulation of IgM antibodies, decreased necrosis and fewer apoptotic cells in atherosclerotic lesions. CONCLUSIONS Our findings show that TLR7 stimulation could ameliorate atherosclerotic lesion burden and reduce plasma cholesterol in Apoe-/- mice. TLR7 stimulation was associated with an atheroprotective B-cell and Treg response, which may have systemic and local effects within lesions that could prevent arterial lipid accumulation and inflammation.
Collapse
Affiliation(s)
- G Karadimou
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - A Gisterå
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - A L Gallina
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - A S Caravaca
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - M Centa
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - M Salagianni
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - E Andreakos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - G K Hansson
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - S Malin
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - P S Olofsson
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - G Paulsson-Berne
- Laboratory of Immunobiology, Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall and the primary underlying cause of cardiovascular disease. Data from in vivo imaging, cell-lineage tracing and knockout studies in mice, as well as clinical interventional studies and advanced mRNA sequencing techniques, have drawn attention to the role of T cells as critical drivers and modifiers of the pathogenesis of atherosclerosis. CD4+ T cells are commonly found in atherosclerotic plaques. A large body of evidence indicates that T helper 1 (TH1) cells have pro-atherogenic roles and regulatory T (Treg) cells have anti-atherogenic roles. However, Treg cells can become pro-atherogenic. The roles in atherosclerosis of other TH cell subsets such as TH2, TH9, TH17, TH22, follicular helper T cells and CD28null T cells, as well as other T cell subsets including CD8+ T cells and γδ T cells, are less well understood. Moreover, some T cells seem to have both pro-atherogenic and anti-atherogenic functions. In this Review, we summarize the knowledge on T cell subsets, their functions in atherosclerosis and the process of T cell homing to atherosclerotic plaques. Much of our understanding of the roles of T cells in atherosclerosis is based on findings from experimental models. Translating these findings into human disease is challenging but much needed. T cells and their specific cytokines are attractive targets for developing new preventive and therapeutic approaches including potential T cell-related therapies for atherosclerosis.
Collapse
Affiliation(s)
- Ryosuke Saigusa
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
25
|
Xia Y, Feng H, Li ZW, Tang KX, Gao HQ, Wang WL, Cui XP, Li XL. Low-dose phloretin alleviates diabetic atherosclerosis through endothelial KLF2 restoration. Biosci Biotechnol Biochem 2020; 84:815-823. [PMID: 31791197 DOI: 10.1080/09168451.2019.1699396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ABSTRACT
We investigated whether low-dose phloretin served as daily dietary supplements could ameliorate diabetic atherosclerosis and the role of kruppel-like factor 2 (KLF2). HUVECs cultured in high glucose medium were treated with different concentrations of phloretin and KLF2 mRNA, and protein level was detected. Diabetes was induced using streptozotocin in Apoe−/- mice after which they were fed a high-cholesterol diet for 8 weeks. Diabetic mice injected with KLF2 shRNA-lentivirus or control virus were treated with 20 mg/kg phloretin. Glucose, lipid profile, aortic atheroma, and endothelial nitric oxide synthase (eNOS) expression were detected. Phloretin retained endothelial function by KLF2-eNOS activation under hyperglycemia. Low-dose phloretin helped with lipid metabolism, and blocked the acceleration of atherosclerosis in STZ-induced diabetic mice since the early stage, which was diminished by KLF2 knockdown. Low-dose phloretin exhibited athero-protective effect in diabetic Apoe−/- mice dependent on KLF2 activation. This finding makes phloretin for diabetic atherosclerosis.
Collapse
Affiliation(s)
- Yong Xia
- Department of Geriatric Medicine, Qi-lu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Hua Feng
- Department of Digestive Disease, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhen-Wei Li
- Department of Gastroenterology, Mengyin People’s Hospital, Mengyin, China
| | - Kuan-Xiao Tang
- Department of Geriatric Medicine, Qi-lu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Hai-Qing Gao
- Department of Geriatric Medicine, Qi-lu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Wei-Ling Wang
- Department of Geriatric Medicine, Qi-lu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao-Pei Cui
- Department of Geriatric Medicine, Qi-lu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao-Li Li
- Department of Drug Purchase and Supply, Qi-Lu Hospital of Shandong University, Jinan, China
| |
Collapse
|
26
|
Haybar H, Maleki Behzad M, Shahrabi S, Ansari N, Saki N. Expression of Blood Cells Associated CD Markers and Cardiovascular Diseases: Clinical Applications in Prognosis. Lab Med 2020; 51:122-142. [PMID: 31340048 DOI: 10.1093/labmed/lmz049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are a major cause of mortality worldwide. The results of various studies have shown that abnormality in the frequency and function of blood cells can be involved in CVD complications. In this review, we have focused on abnormalities in the expression of the CD (cluster of differentiation) markers of blood cells to assess the association of these abnormalities with CVD prognosis. METHODS We identified the relevant literature through a PubMed search (1990-2018) of English-language articles using the terms "Cardiovascular diseases", "CD markers", "leukocytes", "platelets", and "endothelial cells". RESULTS There is a variety of mechanisms for the effect of CD-marker expressions on CVDs prognosis, ranging from proinflammatory processes to dysfunctional effects in blood cells. CONCLUSION Considering the possible effects of CD-marker expression on CVDs prognosis, particularly prognosis of acute myocardial infarction and atherosclerosis, long-term studies in large cohorts are required to identify the prognostic value of CD markers and to target them with appropriate therapeutic agents.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masumeh Maleki Behzad
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Ansari
- Isfahan Bone Metabolic Disorders Research Center, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
27
|
Abstract
There is now overwhelming experimental and clinical evidence that atherosclerosis is a chronic inflammatory disease. Lessons from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice, and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb atherosclerosis. Here, we summarize and discuss the pathogenesis of atherosclerosis with a focus on adaptive immunity. We discuss some limitations of animal models and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment.
Collapse
Affiliation(s)
- Dennis Wolf
- From the Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany (D.W.).,Faculty of Medicine, University of Freiburg, Germany (D.W.)
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (K.L.).,Department of Bioengineering, University of California San Diego, La Jolla (K.L.)
| |
Collapse
|
28
|
VanderLaan PA, Reardon CA, Cabana VG, Wang CR, Getz GS. Invariant Natural Killer T-Cells and Total CD1d Restricted Cells Differentially Influence Lipid Metabolism and Atherosclerosis in Low Density Receptor Deficient Mice. Int J Mol Sci 2019; 20:ijms20184566. [PMID: 31540125 PMCID: PMC6770011 DOI: 10.3390/ijms20184566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Natural killer T (NKT) cells are a distinct subset of lymphocytes that bridge the innate and adaptive immune response and can be divided into type I invariant NKT cells (iNKT) and type II NKT cells. The objective of this study is to examine the effects of NKT cell on lipid metabolism and the initiation and progression of atherosclerosis in LDL receptor deficient (LDLR−/−) mice. Mice were fed an atherogenic diet for 4 or 8 weeks and plasma lipids, lipoproteins, and atherosclerosis were measured. The selective absence of iNKT cells in Jα18−/−LDLR−/− mice led to an increase in plasma cholesterol levels in female mice. Transgenic Vα14tg/LDLR−/− mice with elevated numbers of iNKT cells had increased late atherosclerosis of the innominate artery, though absence of either iNKT cells or all NKT cells and other CD1d expressing cells had varying effects on atherosclerotic lesion burden in the ascending aortic arch and aortic root. These studies not only highlight the potential modulatory role played by NKT cells in atherosclerosis and lipid metabolism, but also raise the possibility that divergent roles may be played by iNKT and CD1d restricted cells such as type II NKT cells or other CD1d expressing cells.
Collapse
Affiliation(s)
- Paul A VanderLaan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, 633 Clark St, Evanston, IL 60208, USA.
| | - Godfrey S Getz
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
29
|
The Role of Neutrophils and Neutrophil Extracellular Traps in Vascular Damage in Systemic Lupus Erythematosus. J Clin Med 2019; 8:jcm8091325. [PMID: 31466329 PMCID: PMC6780421 DOI: 10.3390/jcm8091325] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/16/2019] [Accepted: 08/25/2019] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune syndrome of unknown etiology, characterized by multi-organ inflammation and clinical heterogeneity. SLE affects mostly women and is associated with a high risk of cardiovascular disease. As the therapeutic management of SLE improved, a pattern of early atherosclerotic disease became one of the hallmarks of late disease morbidity and mortality. Neutrophils emerged as important players in SLE pathogenesis and they are associated with increased risk of developing atherosclerotic disease and vascular damage. Enhanced neutrophil extracellular trap (NET) formation was linked to vasculopathy in both SLE and non-SLE subjects and may promote enhanced coronary plaque formation and lipoprotein dysregulation. Foundational work provided insight into the complex relationship between NETs and immune and tissue resident cells within the diseased artery. In this review, we highlight the mechanistic link between neutrophils, NETs, and atherosclerosis within the context of both SLE and non-SLE subjects. We aim to identify actionable pathways that will drive future research toward translational therapeutics, with the ultimate goal of preventing early morbidity and mortality in SLE.
Collapse
|
30
|
Xu MM, Murphy PA, Vella AT. Activated T-effector seeds: cultivating atherosclerotic plaque through alternative activation. Am J Physiol Heart Circ Physiol 2019; 316:H1354-H1365. [PMID: 30925075 PMCID: PMC6620674 DOI: 10.1152/ajpheart.00148.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic inflammatory pathology that precipitates substantial morbidity and mortality. Although initiated by physiological patterns of low and disturbed flow that differentially prime endothelial cells at sites of vessel branch points and curvature, the chronic, smoldering inflammation of atherosclerosis is accelerated by comorbidities involving inappropriate activation of the adaptive immune system, such as autoimmunity. The innate contributions to atherosclerosis, especially in the transition of monocyte to lipid-laden macrophage, are well established, but the mechanisms underpinning the infiltration, persistence, and effector dynamics of CD8 T cells in particular are not well understood. Adaptive immunity is centered on a classical cascade of antigen recognition and activation, costimulation, and effector cytokine secretion upon recall of antigen. However, chronic inflammation can generate alternative cues that supplant this behavior pattern and promote the retention and activation of peripherally activated T cells. Furthermore, the atherogenic foci that activated immune cell infiltrate are unique lipid-laden environments that offer a diverse array of stimuli, including those of survival, antigen hyporesponsiveness, and inflammatory cytokine expression. This review will focus on how known cardiovascular comorbidities may be influencing CD8 T-cell activation and how, once infiltrated within atherogenic foci, these T cells face a multitude of cues that skew the classical cascade of T-cell behavior, highlighting alternative modes of activation that may help contextualize associations of autoimmunity, viral infection, and immunotherapy with cardiovascular morbidity.
Collapse
Affiliation(s)
- Maria M Xu
- Department of Immunology, School of Medicine, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health School of Medicine , Farmington, Connecticut
| |
Collapse
|
31
|
Abstract
There is now overwhelming experimental and clinical evidence that arteriosclerosis is a chronic inflammatory disease. Lessons learned from genome-wide association studies, advanced in vivo imaging techniques, transgenic lineage tracing mice models and clinical interventional studies have shown that both innate and adaptive immune mechanisms can accelerate or curb arteriosclerosis. This article summarizes and discusses the pathogenesis of arteriosclerosis with a focus on the role of the adaptive immune system. Some limitations of animal models are discussed and the need for models that are tailored to better translate to human atherosclerosis and ultimately progress in prevention and treatment are emphasized.
Collapse
Affiliation(s)
- D Wolf
- Abteilung für Kardiologie und Angiologie I, Universitäts-Herzzentrum Freiburg, Freiburg, Deutschland
- Medizinische Fakultät, Universität Freiburg, Freiburg, Deutschland
| | - K Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, 92037, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
32
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune rheumatic disease with a prevalence of approximately 1 in 1000. Over the last 30 years, advances in treatment such as use of corticosteroids and immunosuppressants have improved life expectancy and quality of life for patients with lupus and the key unmet needs have therefore changed. With the reduced mortality from disease activity, development of cardiovascular disease (CVD) has become an increasingly important cause of death in patients with SLE. The increased CVD risk in these patients is partly, but not fully explained by standard risk factors, and abnormalities in the immune response to lipids may play a role. Invariant natural killer T cells, which are triggered specifically by lipid antigens, may protect against progression of subclinical atherosclerosis. However, currently our recommendation is that clinicians should focus on optimal management of standard CVD risk factors such as smoking, blood pressure and lipid levels. Fatigue is one of the most common and most limiting symptoms suffered by patients with SLE. The cause of fatigue is multifactorial and disease activity does not explain this symptom. Consequently, therapies directed towards reducing inflammation and disease activity do not reliably reduce fatigue and new approaches are needed. Currently, we recommend asking about sleep pattern, optimising pain relief and excluding other causes of fatigue such as anaemia and metabolic disturbances. For the subgroup of patients whose disease activity is not fully controlled by standard treatment regimes, a range of different biologic agents have been proposed and subjected to clinical trials. Many of these trials have given disappointing results, though belimumab, which targets B lymphocytes, did meet its primary endpoint. New biologics targeting B cells, T cells or cytokines (especially interferon) are still going through trials raising the hope that novel therapies for patients with refractory SLE may be available soon.
Collapse
|
33
|
Kritikou E, van Duijn J, Nahon JE, van der Heijden T, Bouwman M, Groeneveldt C, Schaftenaar FH, Kröner MJ, Kuiper J, van Puijvelde GH, Bot I. Disruption of a CD1d-mediated interaction between mast cells and NKT cells aggravates atherosclerosis. Atherosclerosis 2019; 280:132-139. [DOI: 10.1016/j.atherosclerosis.2018.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/10/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
|
34
|
Halder RC, Tran C, Prasad P, Wang J, Nallapothula D, Ishikawa T, Wang M, Zajonc DM, Singh RR. Self-glycerophospholipids activate murine phospholipid-reactive T cells and inhibit iNKT cell activation by competing with ligands for CD1d loading. Eur J Immunol 2018; 49:242-254. [PMID: 30508304 DOI: 10.1002/eji.201847717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/15/2018] [Accepted: 11/27/2018] [Indexed: 01/12/2023]
Abstract
Glycosphingolipids and glycerophospholipids bind CD1d. Glycosphingolipid-reactive invariant NKT-cells (iNKT) exhibit myriad immune effects, however, little is known about the functions of phospholipid-reactive T cells (PLT). We report that the normal mouse immune repertoire contains αβ T cells, which recognize self-glycerophospholipids such as phosphatidic acid (PA) in a CD1d-restricted manner and don't cross-react with iNKT-cell ligands. PA bound to CD1d in the absence of lipid transfer proteins. Upon in vivo priming, PA induced an expansion and activation of T cells in Ag-specific manner. Crystal structure of the CD1d:PA complex revealed that the ligand is centrally located in the CD1d-binding groove opening for TCR recognition. Moreover, the increased flexibility of the two acyl chains in diacylglycerol ligands and a less stringent-binding orientation for glycerophospholipids as compared with the bindings of glycosphingolipids may allow glycerophospholipids to readily occupy CD1d. Indeed, PA competed with α-galactosylceramide to load onto CD1d, leading to reduced expression of CD1d:α-galactosylceramide complexes on the surface of dendritic cells. Consistently, glycerophospholipids reduced iNKT-cell proliferation, expansion, and cytokine production in vitro and in vivo. Such superior ability of self-glycerophospholipids to compete with iNKT-cell ligands to occupy CD1d may help maintain homeostasis between the diverse subsets of lipid-reactive T cells, with important pathogenetic and therapeutic implications.
Collapse
Affiliation(s)
- Ramesh Chandra Halder
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Cynthia Tran
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Priti Prasad
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.,Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Jing Wang
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Dhiraj Nallapothula
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Tatsuya Ishikawa
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Meiying Wang
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Dirk M Zajonc
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ram Raj Singh
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.,Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
35
|
Reustle A, Torzewski M. Role of p38 MAPK in Atherosclerosis and Aortic Valve Sclerosis. Int J Mol Sci 2018; 19:ijms19123761. [PMID: 30486366 PMCID: PMC6321637 DOI: 10.3390/ijms19123761] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis and aortic valve sclerosis are cardiovascular diseases with an increasing prevalence in western societies. Statins are widely applied in atherosclerosis therapy, whereas no pharmacological interventions are available for the treatment of aortic valve sclerosis. Therefore, valve replacement surgery to prevent acute heart failure is the only option for patients with severe aortic stenosis. Both atherosclerosis and aortic valve sclerosis are not simply the consequence of degenerative processes, but rather diseases driven by inflammatory processes in response to lipid-deposition in the blood vessel wall and the aortic valve, respectively. The p38 mitogen-activated protein kinase (MAPK) is involved in inflammatory signaling and activated in response to various intracellular and extracellular stimuli, including oxidative stress, cytokines, and growth factors, all of which are abundantly present in atherosclerotic and aortic valve sclerotic lesions. The responses generated by p38 MAPK signaling in different cell types present in the lesions are diverse and might support the progression of the diseases. This review summarizes experimental findings relating to p38 MAPK in atherosclerosis and aortic valve sclerosis and discusses potential functions of p38 MAPK in the diseases with the aim of clarifying its eligibility as a pharmacological target.
Collapse
Affiliation(s)
- Anna Reustle
- Dr. Margarete-Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany.
- University of Tuebingen, 72074 Tuebingen, Germany.
| | - Michael Torzewski
- Department of Laboratory Medicine and Hospital Hygiene, Robert Bosch-Hospital, 70376 Stuttgart, Germany.
| |
Collapse
|
36
|
Bagchi S, Genardi S, Wang CR. Linking CD1-Restricted T Cells With Autoimmunity and Dyslipidemia: Lipid Levels Matter. Front Immunol 2018; 9:1616. [PMID: 30061888 PMCID: PMC6055000 DOI: 10.3389/fimmu.2018.01616] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
Dyslipidemia, or altered blood lipid content, is a risk factor for developing cardiovascular disease. Furthermore, several autoimmune diseases, including systemic lupus erythematosus, psoriasis, diabetes, and rheumatoid arthritis, are correlated highly with dyslipidemia. One common thread between both autoimmune diseases and altered lipid levels is the presence of inflammation, suggesting that the immune system might act as the link between these related pathologies. Deciphering the role of innate and adaptive immune responses in autoimmune diseases and, more recently, obesity-related inflammation, have been active areas of research. The broad picture suggests that antigen-presenting molecules, which present self-peptides to autoreactive T cells, can result in either aggravation or amelioration of inflammation. However, very little is known about the role of self-lipid reactive T cells in dyslipidemia-associated autoimmune events. Given that a range of autoimmune diseases are linked to aberrant lipid profiles and a majority of lipid-specific T cells are reactive to self-antigens, it is important to examine the role of these T cells in dyslipidemia-related autoimmune ailments and determine if dysregulation of these T cells can be drivers of autoimmune conditions. CD1 molecules present lipids to T cells and are divided into two groups based on sequence homology. To date, most of the information available on lipid-reactive T cells comes from the study of group 2 CD1d-restricted natural killer T (NKT) cells while T cells reactive to group 1 CD1 molecules remain understudied, despite their higher abundance in humans compared to NKT cells. This review evaluates the mechanisms by which CD1-reactive, self-lipid specific T cells contribute to dyslipidemia-associated autoimmune disease progression or amelioration by examining available literature on NKT cells and highlighting recent progress made on the study of group 1 CD1-restricted T cells.
Collapse
Affiliation(s)
| | | | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
37
|
Oxidized low density lipoproteins: The bridge between atherosclerosis and autoimmunity. Possible implications in accelerated atherosclerosis and for immune intervention in autoimmune rheumatic disorders. Autoimmun Rev 2018; 17:366-375. [DOI: 10.1016/j.autrev.2017.11.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023]
|
38
|
Endo-Umeda K, Nakashima H, Umeda N, Seki S, Makishima M. Dysregulation of Kupffer Cells/Macrophages and Natural Killer T Cells in Steatohepatitis in LXRα Knockout Male Mice. Endocrinology 2018; 159:1419-1432. [PMID: 29409022 DOI: 10.1210/en.2017-03141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
Liver X receptor (LXR) α expression is mainly localized to metabolic tissues, such as the liver, whereas LXRβ is ubiquitously expressed. LXRα is activated by oxysterols and plays an important role in the regulation of lipid metabolism in metabolic tissues. In macrophages, LXRs stimulate reverse cholesterol transport and regulate immune responses. Although a high-cholesterol diet induces severe steatohepatitis in LXRα-knockout (KO) mice, the underlying mechanisms linking lipid metabolism and immune responses remain largely unknown. In this study, we investigated the role of LXRα in the pathogenesis of steatohepatitis by assessing the effects of a high-fat and high-cholesterol diet (HFCD) on hepatic immune cell proportion and function as well as lipid metabolism in wild-type (WT) and LXRα-KO mice. HFCD feeding induced severe steatohepatitis in LXRα-KO mice compared with WT mice. These mice had higher cholesterol levels in the plasma and the liver and dysregulated expression of LXR target and proinflammatory genes in both whole liver samples and isolated hepatic mononuclear cells. Flow cytometry showed an increase in CD68+CD11b+ Kupffer cells/macrophages and a decrease in invariant natural killer T cells in the liver of HFCD-fed LXRα-KO mice. These mice were more susceptible to lipopolysaccharide-induced liver injury and resistant to inflammatory responses against α-galactosylceramide or concanavalin-A treatment. The findings provide evidence for activation of bone marrow-derived Kupffer cells/macrophages and dysfunction of invariant natural killer T cells in LXRα-KO mouse liver. These findings indicate that LXRα regulates hepatic immune function along with lipid metabolism and protects against the pathogenesis of nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Naoki Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
39
|
Subramanian S, Goodspeed L, Wang S, Ding Y, O'Brien KD, Getz GS, Chait A, Reardon CA. Deficiency of Invariant Natural Killer T Cells Does Not Protect Against Obesity but Exacerbates Atherosclerosis in Ldlr -/- Mice. Int J Mol Sci 2018; 19:ijms19020510. [PMID: 29419749 PMCID: PMC5855732 DOI: 10.3390/ijms19020510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 12/30/2022] Open
Abstract
Obesity is a chronic inflammatory state characterized by altered levels of adipose tissue immune cell populations. Natural killer T (NKT) cells are CD1d restricted lymphocyte subsets that recognize lipid antigens whose level decreases in obese adipose tissue. However, studies in mice with deficiency or increased levels of NKT cells have yielded contradictory results, so the exact role of these cells in obesity and adipose tissue inflammation is not yet established. We previously showed that Ldlr−/− mice with excess invariant NKT (iNKT) cells demonstrate significant weight gain, adiposity, metabolic abnormalities, and atherosclerosis. The current study evaluates the effects of NKT cell deficiency on obesity, associated metabolic changes, and atherosclerosis in Jα18−/−Ldlr−/− (lacking iNKT cells) and Cd1d−/−Ldlr−/− (lacking invariant and type II NKT cells) mice, and control mice were fed an obesogenic diet (high fat, sucrose, cholesterol) for 16 weeks. Contrary to expectations, Ja18−/−Ldlr−/− mice gained significantly more weight than Ldlr−/− or Cd1d−/−Ldlr−/− mice, developed hypertriglyceridemia, and had worsened adipose tissue inflammation. All the mice developed insulin resistance and hepatic triglyceride accumulation. Ja18−/−Ldlr−/− mice also had increased atherosclerotic lesion area. Our findings suggest that iNKT cells exacerbates the metabolic, inflammatory, and atherosclerotic features of diet-induced obesity. Further work is required to unravel the paradox of an apparently similar effect of iNKT cell surplus and depletion on obesity.
Collapse
Affiliation(s)
- Savitha Subramanian
- Diabetes Obesity Center for Excellence, Division of Metabolism, Endocrinology and Nutrition, University of Washington, 850 Republican Street Box 35805, Seattle, WA 98109, USA.
| | - Leela Goodspeed
- Diabetes Obesity Center for Excellence, Division of Metabolism, Endocrinology and Nutrition, University of Washington, 850 Republican Street Box 35805, Seattle, WA 98109, USA.
| | - Shari Wang
- Diabetes Obesity Center for Excellence, Division of Metabolism, Endocrinology and Nutrition, University of Washington, 850 Republican Street Box 35805, Seattle, WA 98109, USA.
| | - Yilei Ding
- Diabetes Obesity Center for Excellence, Division of Metabolism, Endocrinology and Nutrition, University of Washington, 850 Republican Street Box 35805, Seattle, WA 98109, USA.
| | - Kevin D O'Brien
- Division of Cardiology, University of Washington, Seattle, WA 98195, USA.
| | - Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| | - Alan Chait
- Diabetes Obesity Center for Excellence, Division of Metabolism, Endocrinology and Nutrition, University of Washington, 850 Republican Street Box 35805, Seattle, WA 98109, USA.
| | | |
Collapse
|
40
|
Ascher S, Reinhardt C. The gut microbiota: An emerging risk factor for cardiovascular and cerebrovascular disease. Eur J Immunol 2018; 48:564-575. [DOI: 10.1002/eji.201646879] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/24/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Stefanie Ascher
- Center for Thrombosis and Hemostasis; University Medical Center Mainz, Johannes Gutenberg University of Mainz; Mainz Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis; University Medical Center Mainz, Johannes Gutenberg University of Mainz; Mainz Germany
- German Center for Cardiovascular Research (DZHK); Partner Site RheinMain; Mainz Germany
| |
Collapse
|
41
|
van Puijvelde GHM, Foks AC, van Bochove RE, Bot I, Habets KLL, de Jager SC, ter Borg MND, van Osch P, Boon L, Vos M, de Waard V, Kuiper J. CD1d deficiency inhibits the development of abdominal aortic aneurysms in LDL receptor deficient mice. PLoS One 2018; 13:e0190962. [PMID: 29346401 PMCID: PMC5773169 DOI: 10.1371/journal.pone.0190962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/22/2017] [Indexed: 11/19/2022] Open
Abstract
An abdominal aortic aneurysm (AAA) is a dilatation of the abdominal aorta leading to serious complications and mostly to death. AAA development is associated with an accumulation of inflammatory cells in the aorta including NKT cells. An important factor in promoting the recruitment of these inflammatory cells into tissues and thereby contributing to the development of AAA is angiotensin II (Ang II). We demonstrate that a deficiency in CD1d dependent NKT cells under hyperlipidemic conditions (LDLr-/-CD1d-/- mice) results in a strong decline in the severity of angiotensin II induced aneurysm formation when compared with LDLr-/- mice. In addition, we show that Ang II amplifies the activation of NKT cells both in vivo and in vitro. We also provide evidence that type I NKT cells contribute to AAA development by inducing the expression of matrix degrading enzymes in vSMCs and macrophages, and by cytokine dependently decreasing vSMC viability. Altogether, these data prove that CD1d-dependent NKT cells contribute to AAA development in the Ang II-mediated aneurysm model by enhancing aortic degradation, establishing that therapeutic applications which target NKT cells can be a successful way to prevent AAA development.
Collapse
Affiliation(s)
- Gijs H. M. van Puijvelde
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- * E-mail:
| | - Amanda C. Foks
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rosemarie E. van Bochove
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Kim L. L. Habets
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Saskia C. de Jager
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mariëtte N. D. ter Borg
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Puck van Osch
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Mariska Vos
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
42
|
Nour-Eldine W, Joffre J, Zibara K, Esposito B, Giraud A, Zeboudj L, Vilar J, Terada M, Bruneval P, Vivier E, Ait-Oufella H, Mallat Z, Ugolini S, Tedgui A. Genetic Depletion or Hyperresponsiveness of Natural Killer Cells Do Not Affect Atherosclerosis Development. Circ Res 2018; 122:47-57. [DOI: 10.1161/circresaha.117.311743] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/12/2017] [Accepted: 10/17/2016] [Indexed: 01/20/2023]
Abstract
Rationale:
Chronic inflammation is central in the development of atherosclerosis. Both innate and adaptive immunities are involved. Although several studies have evaluated the functions of natural killer (NK) cells in experimental animal models of atherosclerosis, it is not yet clear whether NK cells behave as protective or proatherogenic effectors. One of the main caveats of previous studies was the lack of specificity in targeting loss or gain of function of NK cells.
Objectives:
We used 2 selective genetic approaches to investigate the role of NK cells in atherosclerosis: (1)
Ncr1
iCre/+
R26
lsl−
DTA/+
mice in which NK cells were depleted and (2)
Noé
mice in which NK cells are hyperresponsive.
Methods and Results:
No difference in atherosclerotic lesion size was found in
Ldlr
−/−
(low-density lipoprotein receptor null) mice transplanted with bone marrow (BM) cells from
Ncr1
iCre
R26R
lsl−
DTA
,
Noé
, or wild-type mice. Also, no difference was observed in plaque composition in terms of collagen content, macrophage infiltration, or the immune profile, although
Noé
chimera had more IFN (interferon)-γ–producing NK cells, compared with wild-type mice. Then, we investigated the NK-cell selectivity of anti–asialoganglioside M1 antiserum, which was previously used to conclude the proatherogenicity of NK cells. Anti–asialoganglioside M1 treatment decreased atherosclerosis in both
Ldlr
−/−
mice transplanted with
Ncr1
iCre
R26R
lsl−
DTA
or wild-type bone marrow, indicating that its antiatherogenic effects are unrelated to NK-cell depletion, but to CD8
+
T and NKT cells. Finally, to determine whether NK cells could contribute to the disease in conditions of pathological NK-cell overactivation, we treated irradiated
Ldlr
−/−
mice reconstituted with either wild-type or
Ncr1
iCre
R26R
lsl−
DTA
bone marrow with the viral mimic polyinosinic:polycytidylic acid and found a significant reduction of plaque size in NK-cell–deficient chimeric mice.
Conclusions:
Our findings, using state-of-the-art mouse models, demonstrate that NK cells have no direct effect on the natural development of hypercholesterolemia-induced atherosclerosis, but may play a role when an additional systemic NK-cell overactivation occurs.
Collapse
Affiliation(s)
- Wared Nour-Eldine
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Jérémie Joffre
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Kazem Zibara
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Bruno Esposito
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Andréas Giraud
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Lynda Zeboudj
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - José Vilar
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Megumi Terada
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Patrick Bruneval
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Eric Vivier
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Hafid Ait-Oufella
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Ziad Mallat
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Sophie Ugolini
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Alain Tedgui
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| |
Collapse
|
43
|
van Puijvelde GH, Kuiper J. NKT cells in cardiovascular diseases. Eur J Pharmacol 2017; 816:47-57. [DOI: 10.1016/j.ejphar.2017.03.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
|
44
|
Atherosclerosis in systemic lupus erythematosus. Best Pract Res Clin Rheumatol 2017; 31:364-372. [PMID: 29224678 DOI: 10.1016/j.berh.2017.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/05/2017] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD), comprising coronary heart disease and stroke, is one of the most important causes of death in patients with systemic lupus erythematosus (SLE). The risks of developing both clinical CVD and sub-clinical atherosclerosis are increased in patients with SLE. This increase is not fully explained by traditional cardiovascular risk factors such as smoking, hypertension and elevated cholesterol, and it is believed that immune dysfunction also contributes to CVD risk in SLE. In particular, recent studies have shown that abnormalities in both serum lipid profile and the autoantibody and T lymphocyte response to lipids may play a role in development of atherosclerosis. The standard CVD risk calculation algorithms based on traditional risk factors underestimate the risk of developing CVD in patients with SLE. Thus, novel algorithms incorporating new biomarkers such as pro-inflammatory high-density lipoprotein and use of imaging techniques such as carotid ultrasound scanning may become increasingly valuable.
Collapse
|
45
|
Wu MY, Li CJ, Hou MF, Chu PY. New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2017; 18:2034. [PMID: 28937652 PMCID: PMC5666716 DOI: 10.3390/ijms18102034] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, smooth muscle cell proliferation, cell apoptosis, necrosis, fibrosis, and local inflammation. Immune and inflammatory responses have significant effects on every phase of atherosclerosis, and increasing evidence shows that immunity plays a more important role in atherosclerosis by tightly regulating its progression. Therefore, understanding the relationship between immune responses and the atherosclerotic microenvironment is extremely important. This article reviews existing knowledge regarding the pathogenesis of immune responses in the atherosclerotic microenvironment, and the immune mechanisms involved in atherosclerosis formation and activation.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Surgery, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung 807, Taiwan.
- Division of Breast Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
46
|
Cianferoni A, Saltzman R, Saretta F, Barni S, Dudek E, Kelleher M, Spergel JM. Invariant natural killer cells change after an oral allergy desensitization protocol for cow's milk. Clin Exp Allergy 2017; 47:1390-1397. [DOI: 10.1111/cea.12975] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 06/05/2017] [Accepted: 06/12/2017] [Indexed: 01/08/2023]
Affiliation(s)
- A. Cianferoni
- Division of Allergy and Immunology; The Children's Hospital of Philadelphia; Philadelphia PA USA
- Department of Pediatrics; The Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - R. Saltzman
- Division of Allergy and Immunology; The Children's Hospital of Philadelphia; Philadelphia PA USA
- Department of Pediatrics; The Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - F. Saretta
- Ospedale Palmanova; Palmanova Udine Italy
| | - S. Barni
- Az Ospedaliera A Meyer; Florence Italy
| | - E. Dudek
- Division of Allergy and Immunology; The Children's Hospital of Philadelphia; Philadelphia PA USA
| | - M. Kelleher
- Division of Allergy and Immunology; The Children's Hospital of Philadelphia; Philadelphia PA USA
| | - J. M. Spergel
- Division of Allergy and Immunology; The Children's Hospital of Philadelphia; Philadelphia PA USA
- Department of Pediatrics; The Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
47
|
Kyaw T, Peter K, Li Y, Tipping P, Toh BH, Bobik A. Cytotoxic lymphocytes and atherosclerosis: significance, mechanisms and therapeutic challenges. Br J Pharmacol 2017; 174:3956-3972. [PMID: 28471481 DOI: 10.1111/bph.13845] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 04/02/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic lymphocytes encompass natural killer lymphocytes (cells) and cytotoxic T cells that include CD8+ T cells, natural killer (NK) T cells, γ, δ (γδ)-T cells and human CD4 + CD28- T cells. These cells play critical roles in inflammatory diseases and in controlling cancers and infections. Cytotoxic lymphocytes can be activated via a number of mechanisms that may involve dendritic cells, macrophages, cytokines or surface proteins on stressed cells. Upon activation, they secrete pro-inflammatory cytokines as well as anti-inflammatory cytokines, chemokines and cytotoxins to promote inflammation and the development of atherosclerotic lesions including vulnerable lesions, which are strongly implicated in myocardial infarctions and strokes. Here, we review the mechanisms that activate and regulate cytotoxic lymphocyte activity, including activating and inhibitory receptors, cytokines, chemokine receptors-chemokine systems utilized to home to inflamed lesions and cytotoxins and cytokines through which they affect other cells within lesions. We also examine their roles in human and mouse models of atherosclerosis and the mechanisms by which they exert their pathogenic effects. Finally, we discuss strategies for therapeutically targeting these cells to prevent the development of atherosclerotic lesions and vulnerable plaques and the challenge of developing highly targeted therapies that only minimally affect the body's immune system, avoiding the complications, such as increased susceptibility to infections, which are currently associated with many immunotherapies for autoimmune diseases. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Tin Kyaw
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia
| | - Yi Li
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Peter Tipping
- Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Ban-Hock Toh
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| | - Alex Bobik
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.,Department of Immunology, Monash University, Melbourne, Vic, Australia.,Department of Medicine, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
48
|
Bagchi S, He Y, Zhang H, Cao L, Van Rhijn I, Moody DB, Gudjonsson JE, Wang CR. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. J Clin Invest 2017; 127:2339-2352. [PMID: 28463230 DOI: 10.1172/jci92217] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/03/2017] [Indexed: 01/09/2023] Open
Abstract
A large proportion of human T cells are autoreactive to group 1 CD1 proteins, which include CD1a, CD1b, and CD1c. However, the physiological role of the CD1 proteins remains poorly defined. Here, we have generated a double-transgenic mouse model that expresses human CD1b and CD1c molecules (hCD1Tg) as well as a CD1b-autoreactive TCR (HJ1Tg) in the ApoE-deficient background (hCD1Tg HJ1Tg Apoe-/- mice) to determine the role of CD1-autoreactive T cells in hyperlipidemia-associated inflammatory diseases. We found that hCD1Tg HJ1Tg Apoe-/- mice spontaneously developed psoriasiform skin inflammation characterized by T cell and neutrophil infiltration and a Th17-biased cytokine response. Anti-IL-17A treatment ameliorated skin inflammation in vivo. Additionally, phospholipids and cholesterol preferentially accumulated in diseased skin and these autoantigens directly activated CD1b-autoreactive HJ1 T cells. Furthermore, hyperlipidemic serum enhanced IL-6 secretion by CD1b+ DCs and increased IL-17A production by HJ1 T cells. In psoriatic patients, the frequency of CD1b-autoreactive T cells was increased compared with that in healthy controls. Thus, this study has demonstrated the pathogenic role of CD1b-autoreactive T cells under hyperlipidemic conditions in a mouse model of spontaneous skin inflammation. As a large proportion of psoriatic patients are dyslipidemic, this finding is of clinical significance and indicates that self-lipid-reactive T cells might serve as a possible link between hyperlipidemia and psoriasis.
Collapse
Affiliation(s)
- Sreya Bagchi
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ying He
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hong Zhang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Liang Cao
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ildiko Van Rhijn
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Infectious Diseases and Immunology, School of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - D Branch Moody
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
49
|
Abstract
Cardiovascular disease is the leading cause of death worldwide, both in the general population and among patients with chronic kidney disease (CKD). In most cases, the underlying cause of the cardiovascular event is atherosclerosis - a chronic inflammatory disease. CKD accelerates atherosclerosis via augmentation of inflammation, perturbation of lipid metabolism, and other mechanisms. In the artery wall, subendothelial retention of plasma lipoproteins triggers monocyte-derived macrophages and T helper type 1 (TH1) cells to form atherosclerotic plaques. Inflammation is initiated by innate immune reactions to modified lipoproteins and is perpetuated by TH1 cells that react to autoantigens from the apolipoprotein B100 protein of LDL. Other T cells are also active in atherosclerotic lesions; regulatory T cells inhibit pathological inflammation, whereas TH17 cells can promote plaque fibrosis. The slow build-up of atherosclerotic plaques is asymptomatic, but plaque rupture or endothelial erosion can induce thrombus formation, leading to myocardial infarction or ischaemic stroke. Targeting risk factors for atherosclerosis has reduced mortality, but a need exists for novel therapies to stabilize plaques and to treat arterial inflammation. Patients with CKD would likely benefit from such preventive measures.
Collapse
Affiliation(s)
- Anton Gisterå
- Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Göran K Hansson
- Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, SE-17176 Stockholm, Sweden
| |
Collapse
|
50
|
Echeverri Tirado LC, Yassin LM. B cells interactions in lipid immune responses: implications in atherosclerotic disease. Lipids Health Dis 2017; 16:30. [PMID: 28166809 PMCID: PMC5295187 DOI: 10.1186/s12944-016-0390-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is considered as an inflammatory and chronic disorder with an important immunologic component, which underlies the majority of cardiovascular diseases; condition that belongs to a group of noncommunicable diseases that to date and despite of prevention and treatment approaches, they remain as the main cause of death worldwide, with 17.5 million of deaths every year. The impact of lipids in human health and disease is taking center stage in research, due to lipotoxicity explained by elevated concentration of circulating lipids, in addition to altered adipose tissue metabolism, and aberrant intracellular signaling. Immune response and metabolic regulation are highly integrated systems and the proper function of each one is dependent on the other. B lymphocytes express a variety of receptors that can recognize foreign, endogenous or modified self-antigens, among them oxidized low density lipoproteins, which are the main antigens in atherosclerosis. Mechanisms of B cells to recognize, remove and present lipids are not completely clear. However, it has been reported that B cell can recognize/remove lipids through a range of receptors, such as LDLR, CD1d, FcR and SR, which might have an atheroprotector or proatherogenic role during the course of atherosclerotic disease. Pertinent literature related to these receptors was examined to inform the present conclusions.
Collapse
Affiliation(s)
| | - Lina M Yassin
- Facultad de Medicina, Universidad CES, Calle 10 A Nro. 22-04, Medellín, Colombia.
| |
Collapse
|