1
|
Alarcon B, Schamel WW. Allosteric Changes Underlie the Outside-In Transmission of Activatory Signals in the TCR. Immunol Rev 2025; 329:e13438. [PMID: 39754405 DOI: 10.1111/imr.13438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Rather than being contained in a single polypeptide, and unlike receptor tyrosine kinases, the T cell receptor (TCR) divides its signaling functions among its subunits: TCRα/β bind the extracellular ligand, an antigenic peptide-MHC complex (pMHC), and the CD3 subunits (CD3γ, CD3δ, CD3ε, and CD3ζ) transmit this information to the cytoplasm. How information about the quality of pMHC binding outside is transmitted to the cytoplasm remains a matter of debate. In this review, we compile data generated using a wide variety of experimental systems indicating that TCR engagement by an appropriate pMHC triggers allosteric changes transmitted from the ligand-binding loops in the TCRα and TCRβ subunits to the cytoplasmic tails of the CD3 subunits. We summarize how pMHC and stimulatory antibody binding to TCR ectodomains induces the exposure of a polyproline sequence in the CD3ε cytoplasmic tail for binding to the Nck adapter, the exposure of the RK motif in CD3ε for recruiting the Lck tyrosine kinase, and the induced exposure and phosphorylation of tyrosine residues in all the CD3 cytoplasmic tails. We also review the yet incipient data that help elucidate the structural basis of the Active and Resting conformations of the TCR.
Collapse
Affiliation(s)
- Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Wolfgang W Schamel
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Fernández-Aguilar LM, Vico-Barranco I, Arbulo-Echevarria MM, Aguado E. A Story of Kinases and Adaptors: The Role of Lck, ZAP-70 and LAT in Switch Panel Governing T-Cell Development and Activation. BIOLOGY 2023; 12:1163. [PMID: 37759563 PMCID: PMC10525366 DOI: 10.3390/biology12091163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023]
Abstract
Specific antigen recognition is one of the immune system's features that allows it to mount intense yet controlled responses to an infinity of potential threats. T cells play a relevant role in the host defense and the clearance of pathogens by means of the specific recognition of peptide antigens presented by antigen-presenting cells (APCs), and, to do so, they are equipped with a clonally distributed antigen receptor called the T-cell receptor (TCR). Upon the specific engagement of the TCR, multiple intracellular signals are triggered, which lead to the activation, proliferation and differentiation of T lymphocytes into effector cells. In addition, this signaling cascade also operates during T-cell development, allowing for the generation of cells that can be helpful in the defense against threats, as well as preventing the generation of autoreactive cells. Early TCR signals include phosphorylation events in which the tyrosine kinases Lck and ZAP70 are involved. The sequential activation of these kinases leads to the phosphorylation of the transmembrane adaptor LAT, which constitutes a signaling hub for the generation of a signalosome, finally resulting in T-cell activation. These early signals play a relevant role in triggering the development, activation, proliferation and apoptosis of T cells, and the negative regulation of these signals is key to avoid aberrant processes that could generate inappropriate cellular responses and disease. In this review, we will examine and discuss the roles of the tyrosine kinases Lck and ZAP70 and the membrane adaptor LAT in these cellular processes.
Collapse
Grants
- PY20_01297 Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Spain
- PID2020-113943RB-I00 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- PR2022-037 University of Cádiz
- PAIDI2020/DOC_01433 Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, Spain
Collapse
Affiliation(s)
- Luis M. Fernández-Aguilar
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Inmaculada Vico-Barranco
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Mikel M. Arbulo-Echevarria
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| | - Enrique Aguado
- Institute for Biomedical Research of Cadiz (INIBICA), 11009 Cadiz, Spain; (L.M.F.-A.); (I.V.-B.); (M.M.A.-E.)
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz, 11002 Cadiz, Spain
| |
Collapse
|
3
|
Kennewick KT, Bensinger SJ. Decoding the crosstalk between mevalonate metabolism and T cell function. Immunol Rev 2023; 317:71-94. [PMID: 36999733 DOI: 10.1111/imr.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
The mevalonate pathway is an essential metabolic pathway in T cells regulating development, proliferation, survival, differentiation, and effector functions. The mevalonate pathway is a complex, branched pathway composed of many enzymes that ultimately generate cholesterol and nonsterol isoprenoids. T cells must tightly control metabolic flux through the branches of the mevalonate pathway to ensure sufficient isoprenoids and cholesterol are available to meet cellular demands. Unbalanced metabolite flux through the sterol or the nonsterol isoprenoid branch is metabolically inefficient and can have deleterious consequences for T cell fate and function. Accordingly, there is tight regulatory control over metabolic flux through the branches of this essential lipid synthetic pathway. In this review we provide an overview of how the branches of the mevalonate pathway are regulated in T cells and discuss our current understanding of the relationship between mevalonate metabolism, cholesterol homeostasis and T cell function.
Collapse
Affiliation(s)
- Kelly T Kennewick
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Steven J Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| |
Collapse
|
4
|
Banerjee A, Li D, Guo Y, Mei Z, Lau C, Chen K, Westwick J, Klauda JB, Schrum A, Lazear ER, Krupnick AS. A reengineered common chain cytokine augments CD8+ T cell-dependent immunotherapy. JCI Insight 2022; 7:e158889. [PMID: 35603788 PMCID: PMC9220948 DOI: 10.1172/jci.insight.158889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 11/20/2022] Open
Abstract
Cytokine therapy is limited by undesirable off-target side effects as well as terminal differentiation and exhaustion of chronically stimulated T cells. Here, we describe the signaling properties of a potentially unique cytokine by design, where T cell surface binding and signaling are separated between 2 different families of receptors. This fusion protein cytokine, called OMCPmutIL-2, bound with high affinity to the cytotoxic lymphocyte-defining immunoreceptor NKG2D but signaled through the common γ chain cytokine receptor. In addition to precise activation of cytotoxic T cells due to redirected binding, OMCPmutIL-2 resulted in superior activation of both human and murine CD8+ T cells by improving their survival and memory cell generation and decreasing exhaustion. This functional improvement was the direct result of altered signal transduction based on the reorganization of surface membrane lipid rafts that led to Janus kinase-3-mediated phosphorylation of the T cell receptor rather than STAT/AKT signaling intermediates. This potentially novel signaling pathway increased CD8+ T cell response to low-affinity antigens, activated nuclear factor of activated T cells transcription factors, and promoted mitochondrial biogenesis. OMCPmutIL-2 thus outperformed other common γ chain cytokines as a catalyst for in vitro CD8+ T cell expansion and in vivo CD8+ T cell-based immunotherapy.
Collapse
Affiliation(s)
- Anirban Banerjee
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
- Department of Surgery, University of Maryland, Baltimore, Maryland, USA
| | - Dongge Li
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
- Department of Surgery, University of Maryland, Baltimore, Maryland, USA
| | - Yizhan Guo
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
- Department of Surgery, University of Maryland, Baltimore, Maryland, USA
| | - Zhongcheng Mei
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
- Department of Surgery, University of Maryland, Baltimore, Maryland, USA
| | - Christine Lau
- Department of Surgery, University of Maryland, Baltimore, Maryland, USA
| | - Kelly Chen
- Department of Surgery, University of Maryland, Baltimore, Maryland, USA
| | | | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Adam Schrum
- Departments of Molecular Microbiology and Immunology, Surgery, and Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Eric R. Lazear
- Courier Therapeutics, Houston, Texas, USA
- Valo Health, Boston, Massachusetts, USA
| | - Alexander S. Krupnick
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
- Department of Surgery, University of Maryland, Baltimore, Maryland, USA
- Courier Therapeutics, Houston, Texas, USA
| |
Collapse
|
5
|
Chen Y, Zhu Y, Li X, Gao W, Zhen Z, Dong D, Huang B, Ma Z, Zhang A, Song X, Ma Y, Guo C, Zhang F, Huang Z. Cholesterol inhibits TCR signaling by directly restricting TCR-CD3 core tunnel motility. Mol Cell 2022; 82:1278-1287.e5. [PMID: 35271814 DOI: 10.1016/j.molcel.2022.02.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/09/2022] [Accepted: 02/09/2022] [Indexed: 12/28/2022]
Abstract
Cholesterol molecules specifically bind to the resting αβTCR to inhibit cytoplasmic CD3ζ ITAM phosphorylation through sequestering the TCR-CD3 complex in an inactive conformation. The mechanisms of cholesterol-mediated inhibition of TCR-CD3 and its activation remain unclear. Here, we present cryoelectron microscopy structures of cholesterol- and cholesterol sulfate (CS)-inhibited TCR-CD3 complexes and an auto-active TCR-CD3 variant. The structures reveal that cholesterol molecules act like a latch to lock CD3ζ into an inactive conformation in the membrane. Mutations impairing binding of cholesterol molecules to the tunnel result in the movement of the proximal C terminus of the CD3ζ transmembrane helix, thereby activating the TCR-CD3 complex in human cells. Together, our data reveal the structural basis of TCR inhibition by cholesterol, illustrate how the cholesterol-binding tunnel is allosterically coupled to TCR triggering, and lay a foundation for the development of immunotherapies through directly targeting the TCR-CD3 complex.
Collapse
Affiliation(s)
- Yan Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xiang Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Wenbo Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Ziqi Zhen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - De Dong
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Buliao Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhuo Ma
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xiaocui Song
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Fan Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
6
|
Public and private human T-cell clones respond differentially to HCMV antigen when boosted by CD3 copotentiation. Blood Adv 2021; 4:5343-5356. [PMID: 33125463 DOI: 10.1182/bloodadvances.2020002255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) induces long-lasting T-cell immune responses that control but do not clear infection. Typical responses involve private T-cell clones, expressing T-cell antigen receptors (TCRs) unique to a person, and public T-cell clones with identical TCRs active in different people. Here, we report the development of a pretherapeutic immunostimulation modality against HCMV for human T cells, CD3 copotentiation, and the clonal analysis of its effects in recall assays at single-cell resolution. CD3 copotentiation of human T cells required identification of an intrinsically inert anti-CD3 Fab fragment that conditionally augmented signaling only when TCR was coengaged with antigen. When applied in recall assays, CD3 copotentiation enhanced the expansion of both public and private T-cell clones responding to autologous HLA-A2(+) antigen-presenting cells and immunodominant NLVPMVATV (NLV) peptide from HCMV pp65 protein. Interestingly, public vs private TCR expression was associated with distinct clonal expansion signatures in response to recall stimulus. This implied that besides possible differences in their generation and selection in an immune response, public and private T cells may respond differently to pharmacoimmunomodulation. Furthermore, a third clonal expansion profile was observed upon CD3 copotentiation of T-cell clones from HLA-A2(-) donors and 1 HLA-A2(+) presumed-uninfected donor, where NLV was of low intrinsic potency. We conclude that human T-cell copotentiation can increase the expansion of different classes of T-cell clones responding to recall antigens of different strengths, and this may be exploitable for therapeutic development against chronic, persistent infections such as HCMV.
Collapse
|
7
|
Pathan-Chhatbar S, Drechsler C, Richter K, Morath A, Wu W, OuYang B, Xu C, Schamel WW. Direct Regulation of the T Cell Antigen Receptor's Activity by Cholesterol. Front Cell Dev Biol 2021; 8:615996. [PMID: 33490080 PMCID: PMC7820176 DOI: 10.3389/fcell.2020.615996] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/09/2020] [Indexed: 11/14/2022] Open
Abstract
Biological membranes consist of hundreds of different lipids that together with the embedded transmembrane (TM) proteins organize themselves into small nanodomains. In addition to this function of lipids, TM regions of proteins bind to lipids in a very specific manner, but the function of these TM region-lipid interactions is mostly unknown. In this review, we focus on the role of plasma membrane cholesterol, which directly binds to the αβ T cell antigen receptor (TCR), and has at least two opposing functions in αβ TCR activation. On the one hand, cholesterol binding to the TM domain of the TCRβ subunit keeps the TCR in an inactive, non-signaling conformation by stabilizing this conformation. This assures that the αβ T cell remains quiescent in the absence of antigenic peptide-MHC (the TCR's ligand) and decreases the sensitivity of the T cell toward stimulation. On the other hand, cholesterol binding to TCRβ leads to an increased formation of TCR nanoclusters, increasing the avidity of the TCRs toward the antigen, thus increasing the sensitivity of the αβ T cell. In mouse models, pharmacological increase of the cholesterol concentration in T cells caused an increase in TCR clustering, and thereby enhanced anti-tumor responses. In contrast, the γδ TCR does not bind to cholesterol and might be regulated in a different manner. The goal of this review is to put these seemingly controversial findings on the impact of cholesterol on the αβ TCR into perspective.
Collapse
Affiliation(s)
- Salma Pathan-Chhatbar
- Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Carina Drechsler
- Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Kirsten Richter
- Immunology, Infectious Diseases and Ophthalmology Disease Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Anna Morath
- Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| | - Wei Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wolfgang W. Schamel
- Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Schamel WW, Alarcon B, Minguet S. The TCR is an allosterically regulated macromolecular machinery changing its conformation while working. Immunol Rev 2020; 291:8-25. [PMID: 31402501 DOI: 10.1111/imr.12788] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
Abstract
The αβ T-cell receptor (TCR) is a multiprotein complex controlling the activation of T cells. Although the structure of the complete TCR is not known, cumulative evidence supports that the TCR cycles between different conformational states that are promoted either by thermal motion or by force. These structural transitions determine whether the TCR engages intracellular effectors or not, regulating TCR phosphorylation and signaling. As for other membrane receptors, ligand binding selects and stabilizes the TCR in active conformations, and/or switches the TCR to activating states that were not visited before ligand engagement. Here we review the main models of TCR allostery, that is, ligand binding at TCRαβ changes the structure at CD3 and ζ. (a) The ITAM and proline-rich sequence exposure model, in which the TCR's cytoplasmic tails shield each other and ligand binding exposes them for phosphorylation. (b) The membrane-ITAM model, in which the CD3ε and ζ tails are sequestered inside the membrane and again ligand binding exposes them. (c) The mechanosensor model in which ligand binding exerts force on the TCR, inducing structural changes that allow signaling. Since these models are complementary rather than competing, we propose a unified model that aims to incorporate all existing data.
Collapse
Affiliation(s)
- Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| |
Collapse
|
9
|
Connolly A, Gagnon E. Electrostatic interactions: From immune receptor assembly to signaling. Immunol Rev 2019; 291:26-43. [DOI: 10.1111/imr.12769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Audrey Connolly
- Institut de Recherche en Immunologie et Cancérologie/Institute for Research in Immunology and Cancer Montréal Québec Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Québec Canada
| | - Etienne Gagnon
- Institut de Recherche en Immunologie et Cancérologie/Institute for Research in Immunology and Cancer Montréal Québec Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine Université de Montréal Montréal Québec Canada
| |
Collapse
|
10
|
Hart M, Walch-Rückheim B, Friedmann KS, Rheinheimer S, Tänzer T, Glombitza B, Sester M, Lenhof HP, Hoth M, Schwarz EC, Keller A, Meese E. miR-34a: a new player in the regulation of T cell function by modulation of NF-κB signaling. Cell Death Dis 2019; 10:46. [PMID: 30718475 PMCID: PMC6362007 DOI: 10.1038/s41419-018-1295-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
NF-κB functions as modulator of T cell receptor-mediated signaling and transcriptional regulator of miR-34a. Our in silico analysis revealed that miR-34a impacts the NF-κB signalosome with miR-34a binding sites in 14 key members of the NF-κB signaling pathway. Functional analysis identified five target genes of miR-34a including PLCG1, CD3E, PIK3CB, TAB2, and NFΚBIA. Overexpression of miR-34a in CD4+ and CD8+ T cells led to a significant decrease of NFΚBIA as the most downstream cytoplasmic NF-κB member, a reduced cell surface abundance of TCRA and CD3E, and to a reduction of T cell killing capacity. Inhibition of miR-34a caused an increase of NFΚBIA, TCRA, and CD3E. Notably, activation of CD4+ and CD8+ T cells entrails a gradual increase of miR-34a. Our results lend further support to a model with miR-34a as a central NF-κB regulator in T cells.
Collapse
Affiliation(s)
- Martin Hart
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany.
| | - Barbara Walch-Rückheim
- Institute of Virology and Center of Human and Molecular Biology, Saarland University Medical School, 66421, Homburg, Germany
| | - Kim S Friedmann
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | | | - Tanja Tänzer
- Institute of Virology and Center of Human and Molecular Biology, Saarland University Medical School, 66421, Homburg, Germany
| | - Birgit Glombitza
- Institute of Virology and Center of Human and Molecular Biology, Saarland University Medical School, 66421, Homburg, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, 66421, Homburg, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | | | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
11
|
Rangarajan S, He Y, Chen Y, Kerzic MC, Ma B, Gowthaman R, Pierce BG, Nussinov R, Mariuzza RA, Orban J. Peptide-MHC (pMHC) binding to a human antiviral T cell receptor induces long-range allosteric communication between pMHC- and CD3-binding sites. J Biol Chem 2018; 293:15991-16005. [PMID: 30135211 PMCID: PMC6187629 DOI: 10.1074/jbc.ra118.003832] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
T cells generate adaptive immune responses mediated by the T cell receptor (TCR)-CD3 complex comprising an αβ TCR heterodimer noncovalently associated with three CD3 dimers. In early T cell activation, αβ TCR engagement by peptide-major histocompatibility complex (pMHC) is first communicated to the CD3 signaling apparatus of the TCR-CD3 complex, but the underlying mechanism is incompletely understood. It is possible that pMHC binding induces allosteric changes in TCR conformation or dynamics that are then relayed to CD3. Here, we carried out NMR analysis and molecular dynamics (MD) simulations of both the α and β chains of a human antiviral TCR (A6) that recognizes the Tax antigen from human T cell lymphotropic virus-1 bound to the MHC class I molecule HLA-A2. We observed pMHC-induced NMR signal perturbations in the TCR variable (V) domains that propagated to three distinct sites in the constant (C) domains: 1) the Cβ FG loop projecting from the Vβ/Cβ interface; 2) a cluster of Cβ residues near the Cβ αA helix, a region involved in interactions with CD3; and 3) the Cα AB loop at the membrane-proximal base of the TCR. A biological role for each of these allosteric sites is supported by previous mutational and functional studies of TCR signaling. Moreover, the pattern of long-range, ligand-induced changes in TCR A6 revealed by NMR was broadly similar to that predicted by the MD simulations. We propose that the unique structure of the TCR β chain enables allosteric communication between the TCR-binding sites for pMHC and CD3.
Collapse
MESH Headings
- Allosteric Regulation
- Animals
- Binding Sites
- Gene Products, tax/chemistry
- Gene Products, tax/metabolism
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/metabolism
- Human T-lymphotropic virus 1/chemistry
- Humans
- Mice
- Molecular Dynamics Simulation
- Protein Binding
- Protein Conformation
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- Sneha Rangarajan
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
- the Departments of Cell Biology and Molecular Genetics and
| | - Yanan He
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
- Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, and
| | - Yihong Chen
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Melissa C Kerzic
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Buyong Ma
- the Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | - Ragul Gowthaman
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
- the Departments of Cell Biology and Molecular Genetics and
| | - Brian G Pierce
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
- the Departments of Cell Biology and Molecular Genetics and
| | - Ruth Nussinov
- the Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702
| | - Roy A Mariuzza
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850,
- the Departments of Cell Biology and Molecular Genetics and
| | - John Orban
- From the W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850,
- Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, and
| |
Collapse
|
12
|
Junghans V, Santos AM, Lui Y, Davis SJ, Jönsson P. Dimensions and Interactions of Large T-Cell Surface Proteins. Front Immunol 2018; 9:2215. [PMID: 30319654 PMCID: PMC6170634 DOI: 10.3389/fimmu.2018.02215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/06/2018] [Indexed: 11/23/2022] Open
Abstract
The first step of the adaptive immune response involves the interaction of T cells that express T-cell receptors (TCRs) with peptide-loaded major histocompatibility complexes expressed by antigen-presenting cells (APCs). Exactly how this leads to activation of the TCR and to downstream signaling is uncertain, however. Recent findings suggest that one of the key events is the exclusion of the large receptor-type tyrosine phosphatase CD45, from close contacts formed at sites of T-cell/APC interaction. If this is true, a full understanding of how close contact formation leads to signaling would require insights into the structures of, and interactions between, large membrane proteins like CD45 and other proteins forming the glycocalyx, such as CD43. Structural insights into the overall dimensions of these proteins using crystallographic methods are hard to obtain, and their conformations on the cell surface are also unknown. Several imaging-based optical microscopy techniques have however been developed for analyzing protein dimensions and orientation on model cell surfaces with nanometer precision. Here we review some of these methods with a focus on the use of hydrodynamic trapping, which relies on liquid flow from a micropipette to move and trap membrane-associated fluorescently labeled molecules. Important insights that have been obtained include (i) how protein flexibility and coverage might affect the effective heights of these molecules, (ii) the height of proteins on the membrane as a key parameter determining how they will distribute in cell-cell contacts, and (iii) how repulsive interactions between the extracellular parts of the proteins influences protein aggregation and distribution.
Collapse
Affiliation(s)
| | - Ana Mafalda Santos
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Yuan Lui
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon J. Davis
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter Jönsson
- Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Al-Aghbar MA, Chu YS, Chen BM, Roffler SR. High-Affinity Ligands Can Trigger T Cell Receptor Signaling Without CD45 Segregation. Front Immunol 2018; 9:713. [PMID: 29686683 PMCID: PMC5900011 DOI: 10.3389/fimmu.2018.00713] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
How T cell receptors (TCRs) are triggered to start signaling is still not fully understood. It has been proposed that segregation of the large membrane tyrosine phosphatase CD45 from engaged TCRs initiates signaling by favoring phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) in the cytoplasmic domains of CD3 molecules. However, whether CD45 segregation is important to initiate triggering is still uncertain. We examined CD45 segregation from TCRs engaged to anti-CD3 scFv with high or low affinity and with defined molecular lengths on glass-supported lipid bilayers using total internal reflection microscopy. Both short and elongated high-affinity anti-CD3 scFv effectively induced similar calcium mobilization, Zap70 phosphorylation, and cytokine secretion in Jurkat T cells but CD45 segregated from activated TCR microclusters significantly less for elongated versus short anti-CD3 ligands. In addition, at early times, triggering cells with both high and low affinity elongated anti-CD3 scFv resulted in similar degrees of CD3 co-localization with CD45, but only the high-affinity scFv induced T cell activation. The lack of correlation between CD45 segregation and early markers of T cell activation suggests that segregation of CD45 from engaged TCRs is not mandatory for initial triggering of TCR signaling by elongated high-affinity ligands.
Collapse
Affiliation(s)
- Mohammad Ameen Al-Aghbar
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University, Academia Sinica, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yeh-Shiu Chu
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Schamel WWA, Alarcon B, Höfer T, Minguet S. The Allostery Model of TCR Regulation. THE JOURNAL OF IMMUNOLOGY 2017; 198:47-52. [PMID: 27994168 DOI: 10.4049/jimmunol.1601661] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
Abstract
The activity of the αβ TCR is controlled by conformational switches. In the resting conformation, the TCR is not phosphorylated and is inactive. Binding of multivalent peptide-MHC to the TCR stabilizes the active conformation, leading to TCR signaling. These two conformations allow the TCRs to be allosterically regulated. We review recent data on heterotropic allostery where peptide-MHC and membrane cholesterol serve opposing functions as positive and negative allosteric regulators, respectively. In resting T cells cholesterol keeps TCRs in the resting conformation that otherwise would become spontaneously active. This regulation is well described by the classical Monod-Wyman-Changeux model of allostery. Moreover, the observation that TCRs assemble into nanoclusters might allow for homotropic allostery, in which individual TCRs could positively cooperate and thus enhance the sensitivity of T cell activation. This new view of TCR regulation will contribute to a better understanding of TCR functioning.
Collapse
Affiliation(s)
- Wolfgang W A Schamel
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, 79108 Freiburg, Germany; .,BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, 69120 Heidelberg, Germany; and.,BioQuant Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Susana Minguet
- Department of Immunology, Institute for Biology III, Faculty of Biology, University of Freiburg, 79108 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
15
|
Natarajan K, McShan AC, Jiang J, Kumirov VK, Wang R, Zhao H, Schuck P, Tilahun ME, Boyd LF, Ying J, Bax A, Margulies DH, Sgourakis NG. An allosteric site in the T-cell receptor Cβ domain plays a critical signalling role. Nat Commun 2017; 8:15260. [PMID: 28508865 PMCID: PMC5440810 DOI: 10.1038/ncomms15260] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
The molecular mechanism through which the interaction of a clonotypic αβ T-cell receptor (TCR) with a peptide-loaded major histocompatibility complex (p/MHC) leads to T-cell activation is not yet fully understood. Here we exploit a high-affinity TCR (B4.2.3) to examine the structural changes that accompany binding to its p/MHC ligand (P18-I10/H2-Dd). In addition to conformational changes in complementarity-determining regions (CDRs) of the TCR seen in comparison of unliganded and bound X-ray structures, NMR characterization of the TCR β-chain dynamics reveals significant chemical shift effects in sites removed from the MHC-binding site. Remodelling of electrostatic interactions near the Cβ H3 helix at the membrane-proximal face of the TCR, a region implicated in interactions with the CD3 co-receptor, suggests a possible role for an allosteric mechanism in TCR signalling. The contribution of these TCR residues to signal transduction is supported by mutagenesis and T-cell functional assays.
Collapse
MESH Headings
- Allosteric Site/immunology
- Animals
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/metabolism
- Crystallography, X-Ray
- Major Histocompatibility Complex/immunology
- Mice
- Molecular Dynamics Simulation
- Mutagenesis
- Peptides/metabolism
- Protein Binding/immunology
- Protein Domains/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrew C. McShan
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vlad K Kumirov
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Rui Wang
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Huaying Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mulualem E. Tilahun
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nikolaos G. Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
16
|
In Vitro Analysis of Thymocyte Signaling. Methods Mol Biol 2016; 1323:169-78. [PMID: 26294408 DOI: 10.1007/978-1-4939-2809-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
From the moment a developing thymocyte expresses a TCR, it is subjected to numerous interactions with self-peptide/MHC complexes that determine its ultimate fate. These include death by neglect, negative selection (apoptosis and lineage deviation), positive selection, and lineage commitment. The identification of signals that govern these unique cell fates requires the ability to assess the activity, level of expression, subcellular location, and the molecular associations of numerous proteins within the developing T cell. Thus, this chapter describes methods designed to analyze thymocyte signaling under various types of peptide-based stimulation in vitro.
Collapse
|
17
|
Comrie WA, Burkhardt JK. Action and Traction: Cytoskeletal Control of Receptor Triggering at the Immunological Synapse. Front Immunol 2016; 7:68. [PMID: 27014258 PMCID: PMC4779853 DOI: 10.3389/fimmu.2016.00068] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/12/2016] [Indexed: 01/03/2023] Open
Abstract
It is well known that F-actin dynamics drive the micron-scale cell shape changes required for migration and immunological synapse (IS) formation. In addition, recent evidence points to a more intimate role for the actin cytoskeleton in promoting T cell activation. Mechanotransduction, the conversion of mechanical input into intracellular biochemical changes, is thought to play a critical role in several aspects of immunoreceptor triggering and downstream signal transduction. Multiple molecules associated with signaling events at the IS have been shown to respond to physical force, including the TCR, costimulatory molecules, adhesion molecules, and several downstream adapters. In at least some cases, it is clear that the relevant forces are exerted by dynamics of the T cell actomyosin cytoskeleton. Interestingly, there is evidence that the cytoskeleton of the antigen-presenting cell also plays an active role in T cell activation, by countering the molecular forces exerted by the T cell at the IS. Since actin polymerization is itself driven by TCR and costimulatory signaling pathways, a complex relationship exists between actin dynamics and receptor activation. This review will focus on recent advances in our understanding of the mechanosensitive aspects of T cell activation, paying specific attention to how F-actin-directed forces applied from both sides of the IS fit into current models of receptor triggering and activation.
Collapse
Affiliation(s)
- William A Comrie
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
18
|
Abstract
Potentially harmful T cell precursors are removed from the conventional T cell pool by negative selection. This process can involve the induction of apoptosis, anergy, receptor editing or deviation into a regulatory T cell lineage. As such this process is essential for the health of an organism through its contribution to central and peripheral tolerance. While a great deal is known about the process, the precise mechanisms that regulate negative selection are not clear. Furthermore, the signals that distinguish the different forms of negative selection are not fully understood. Numerous models exist with the potential to address these questions in vitro and in vivo. This chapter describes methods of fetal thymic organ culture designed to analyze the signals that determine these unique cell fates.
Collapse
|
19
|
Paensuwan P, Hartl FA, Yousefi OS, Ngoenkam J, Wipa P, Beck-Garcia E, Dopfer EP, Khamsri B, Sanguansermsri D, Minguet S, Schamel WW, Pongcharoen S. Nck Binds to the T Cell Antigen Receptor Using Its SH3.1 and SH2 Domains in a Cooperative Manner, Promoting TCR Functioning. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:448-458. [PMID: 26590318 DOI: 10.4049/jimmunol.1500958] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022]
Abstract
Ligand binding to the TCR causes a conformational change at the CD3 subunits to expose the CD3ε cytoplasmic proline-rich sequence (PRS). It was suggested that the PRS is important for TCR signaling and T cell activation. It has been shown that the purified, recombinant SH3.1 domain of the adaptor molecule noncatalytic region of tyrosine kinase (Nck) can bind to the exposed PRS of CD3ε, but the molecular mechanism of how full-length Nck binds to the TCR in cells has not been investigated so far. Using the in situ proximity ligation assay and copurifications, we show that the binding of Nck to the TCR requires partial phosphorylation of CD3ε, as it is based on two cooperating interactions. First, the SH3.1(Nck) domain has to bind to the nonphosphorylated and exposed PRS, that is, the first ITAM tyrosine has to be in the unphosphorylated state. Second, the SH2(Nck) domain has to bind to the second ITAM tyrosine in the phosphorylated state. Likewise, mutations of the SH3.1 and SH2 domains in Nck1 resulted in the loss of Nck1 binding to the TCR. Furthermore, expression of an SH3.1-mutated Nck impaired TCR signaling and T cell activation. Our data suggest that the exact pattern of CD3ε phosphorylation is critical for TCR functioning.
Collapse
Affiliation(s)
- Pussadee Paensuwan
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Frederike A Hartl
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - O Sascha Yousefi
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg 79104, Germany
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Esmeralda Beck-Garcia
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany; International Max Planck Research School for Molecular and Cellular Biology, Freiburg 79108, Germany
| | - Elaine P Dopfer
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - Boonruang Khamsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Donruedee Sanguansermsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Susana Minguet
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany
| | - Wolfgang W Schamel
- Department of Molecular Immunology, Faculty of Biology, BIOSS Centre for Biological Signaling Studies and Centre of Chronic Immunodeficiency, University of Freiburg, Freiburg 79108, Germany;
| | - Sutatip Pongcharoen
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; and Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
20
|
Hoffmann MM, Molina-Mendiola C, Nelson AD, Parks CA, Reyes EE, Hansen MJ, Rajagopalan G, Pease LR, Schrum AG, Gil D. Co-potentiation of antigen recognition: A mechanism to boost weak T cell responses and provide immunotherapy in vivo. SCIENCE ADVANCES 2015; 1:e1500415. [PMID: 26601285 PMCID: PMC4646799 DOI: 10.1126/sciadv.1500415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/24/2015] [Indexed: 06/05/2023]
Abstract
Adaptive immunity is mediated by antigen receptors that can induce weak or strong immune responses depending on the nature of the antigen that is bound. In T lymphocytes, antigen recognition triggers signal transduction by clustering T cell receptor (TCR)/CD3 multiprotein complexes. In addition, it hypothesized that biophysical changes induced in TCR/CD3 that accompany receptor engagement may contribute to signal intensity. Nonclustering monovalent TCR/CD3 engagement is functionally inert despite the fact that it may induce changes in conformational arrangement or in the flexibility of receptor subunits. We report that the intrinsically inert monovalent engagement of TCR/CD3 can specifically enhance physiologic T cell responses to weak antigens in vitro and in vivo without stimulating antigen-unengaged T cells and without interrupting T cell responses to strong antigens, an effect that we term as "co-potentiation." We identified Mono-7D6-Fab, which biophysically altered TCR/CD3 when bound and functionally enhanced immune reactivity to several weak antigens in vitro, including a gp100-derived peptide associated with melanoma. In vivo, Mono-7D6-Fab induced T cell antigen-dependent therapeutic responses against melanoma lung metastases, an effect that synergized with other anti-melanoma immunotherapies to significantly improve outcome and survival. We conclude that Mono-7D6-Fab directly co-potentiated TCR/CD3 engagement by weak antigens and that such concept can be translated into an immunotherapeutic design. The co-potentiation principle may be applicable to other receptors that could be regulated by otherwise inert compounds whose latent potency is only invoked in concert with specific physiologic ligands.
Collapse
Affiliation(s)
- Michele M. Hoffmann
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Carlos Molina-Mendiola
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
- Department of Statistics, Polytechnic University of Catalonia, Barcelona 08034, Spain
| | - Alfreda D. Nelson
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Christopher A. Parks
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Edwin E. Reyes
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Michael J. Hansen
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Govindarajan Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Larry R. Pease
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Adam G. Schrum
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Diana Gil
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
21
|
Hoffmann T, Krackhardt AM, Antes I. Quantitative Analysis of the Association Angle between T-cell Receptor Vα/Vβ Domains Reveals Important Features for Epitope Recognition. PLoS Comput Biol 2015; 11:e1004244. [PMID: 26185983 PMCID: PMC4505886 DOI: 10.1371/journal.pcbi.1004244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/17/2015] [Indexed: 02/01/2023] Open
Abstract
T-cell receptors (TCR) play an important role in the adaptive immune system as they recognize pathogen- or cancer-based epitopes and thus initiate the cell-mediated immune response. Therefore there exists a growing interest in the optimization of TCRs for medical purposes like adoptive T-cell therapy. However, the molecular mechanisms behind T-cell signaling are still predominantly unknown. For small sets of TCRs it was observed that the angle between their Vα- and Vβ-domains, which bind the epitope, can vary and might be important for epitope recognition. Here we present a comprehensive, quantitative study of the variation in the Vα/Vβ interdomain-angle and its influence on epitope recognition, performing a systematic bioinformatics analysis based on a representative set of experimental TCR structures. For this purpose we developed a new, cuboid-based superpositioning method, which allows a unique, quantitative analysis of the Vα/Vβ-angles. Angle-based clustering led to six significantly different clusters. Analysis of these clusters revealed the unexpected result that the angle is predominantly influenced by the TCR-clonotype, whereas the bound epitope has only a minor influence. Furthermore we could identify a previously unknown center of rotation (CoR), which is shared by all TCRs. All TCR geometries can be obtained by rotation around this center, rendering it a new, common TCR feature with the potential of improving the accuracy of TCR structure prediction considerably. The importance of Vα/Vβ rotation for signaling was confirmed as we observed larger variances in the Vα/Vβ-angles in unbound TCRs compared to epitope-bound TCRs. Our results strongly support a two-step mechanism for TCR-epitope: First, preformation of a flexible TCR geometry in the unbound state and second, locking of the Vα/Vβ-angle in a TCR-type specific geometry upon epitope-MHC association, the latter being driven by rotation around the unique center of rotation. The recognition of antigenic peptides by cytotoxic T-cells is one of the crucial steps during the adaptive immune response. Thus a detailed understanding of this process is not only important for elucidating the mechanism behind T-cell signaling, but also for various emerging new medical applications like T-cell based immunotherapies and designed bio-therapeutics. However, despite the fast growing interest in this field, the mechanistic basis of the immune response is still largely unknown. Previous qualitative studies suggested that the T-cell receptor (TCR) Vα/Vβ-interdomain angle plays a crucial role in epitope recognition as it predetermines the relative position of its antigen-recognizing CDR1-3 loops and thus TCR specificity. In the manuscript we present a systematic bioinformatic analysis of the structural characteristics of bound and unbound TCR molecules focusing on the Vα/Vβ-angle. Our results demonstrate the importance of this angle for signaling, as several distinct Vα/Vβ-angle based structural clusters could be observed and larger angle flexibilities exist for unbound TCRs than for bound TCRs, providing quantitative proof for a two-step locking mechanism upon epitope recognition. In this context, we could identify a unique rotational point, which allows a quantitative, yet intuitive description of all observed angle variations and the structural changes upon epitope binding.
Collapse
MESH Headings
- Binding Sites
- Computer Simulation
- Epitope Mapping/methods
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/ultrastructure
- Models, Chemical
- Models, Immunological
- Models, Molecular
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/ultrastructure
Collapse
Affiliation(s)
- Thomas Hoffmann
- Department of Biosciences and Center for Integrated Protein Science Munich,Technische Universität München, Freising-Weihenstephan, Germany
| | - Angela M. Krackhardt
- Medizinische Klinik III, Innere Medizin mit Schwerpunkt Hämatologie und Onkologie, Technische Universität München, Munich, Germany
- Clinical Cooperation Group, Antigen specific T cell therapy, Helmholtz Zentrum München (GmbH), German Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Iris Antes
- Department of Biosciences and Center for Integrated Protein Science Munich,Technische Universität München, Freising-Weihenstephan, Germany
- * E-mail:
| |
Collapse
|
22
|
López CA, Sethi A, Goldstein B, Wilson BS, Gnanakaran S. Membrane-mediated regulation of the intrinsically disordered CD3ϵ cytoplasmic tail of the TCR. Biophys J 2015; 108:2481-2491. [PMID: 25992726 PMCID: PMC4457001 DOI: 10.1016/j.bpj.2015.03.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 01/27/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022] Open
Abstract
The regulation of T-cell-mediated immune responses depends on the phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) on T-cell receptors. Although many details of the signaling cascades are well understood, the initial mechanism and regulation of ITAM phosphorylation remains unknown. We used molecular dynamics simulations to study the influence of different compositions of lipid bilayers on the membrane association of the CD3ϵ cytoplasmic tails of the T-cell receptors. Our results show that binding of CD3ϵ to membranes is modulated by both the presence of negatively charged lipids and the lipid order of the membrane. Free-energy calculations reveal that the protein-membrane interaction is favored by the presence of nearby basic residues and the ITAM tyrosines. Phosphorylation minimizes membrane association, rendering the ITAM motif more accessible to binding partners. In systems mimicking biological membranes, the CD3ϵ chain localization is modulated by different facilitator lipids (e.g., gangliosides or phosphoinositols), revealing a plausible regulatory effect on activation through the regulation of lipid composition in cell membranes.
Collapse
Affiliation(s)
- Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anurag Sethi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Byron Goldstein
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Bridget S Wilson
- Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico; New Mexico Consortium, Los Alamos, New Mexico.
| |
Collapse
|
23
|
Blanco R, Borroto A, Schamel W, Pereira P, Alarcon B. Conformational changes in the T cell receptor differentially determine T cell subset development in mice. Sci Signal 2014; 7:ra115. [DOI: 10.1126/scisignal.2005650] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Reed BK, Lee KA, Bell MP, Gil D, Schrum AG. Detection of constant domain of human T cell antigen receptor alpha-chain via novel monoclonal antibody 7F18. Monoclon Antib Immunodiagn Immunother 2014; 33:386-92. [PMID: 25545207 PMCID: PMC4278167 DOI: 10.1089/mab.2013.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 06/28/2014] [Indexed: 11/13/2022] Open
Abstract
The αβ T cell antigen receptor (TCR) endows T lymphocytes with immune specificity and controls their effector functions. Each person possesses a vast repertoire of TCRs that is generated by the well-studied processes of somatic recombination and thymic selection. While many antibodies specific for TCRβ variable domains are available, antibodies specific for human TCRα are rare. We now report a novel monoclonal antibody, 7F18, which binds to human TCRα constant region, with specificity for a denatured epitope that can be visualized by SDS-PAGE followed by Western blot. Both immature and mature TCR α-chain products can be visualized, making 7F18 potentially applicable to various biochemical assays of multiprotein complex assembly and maturation. This new monoclonal antibody provides a tool that can potentially facilitate the biochemical analysis of comprehensive populations of human αβ TCR complexes that need not be limited to small subsets of the repertoire.
Collapse
MESH Headings
- Adaptive Immunity/genetics
- Adaptive Immunity/immunology
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Blotting, Western
- COS Cells
- Chlorocebus aethiops
- Chromatography, Gel
- Computational Biology
- Electrophoresis, Polyacrylamide Gel
- Genetic Engineering
- Humans
- Immunoprecipitation
- Jurkat Cells
- Peptides/genetics
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- Brendan K Reed
- Department of Immunology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | | | | | | | | |
Collapse
|
25
|
Abstract
A critical function of the thymus is to help enforce tolerance to self. The importance of central tolerance in preventing autoimmunity has been enlightened by a deeper understanding of the interactions of developing T cells with a diverse population of thymic antigen presenting cell populations. Furthermore, there has been rapid progress in our understanding of how autoreactive T cell specificities are diverted into the T regulatory lineage. Here we review and highlight the recent progress in how tolerance is imposed on the developing thymocyte repertoire.
Collapse
Affiliation(s)
- Maria L Mouchess
- Diabetes Center, University of California-San Francisco, Box 0540, San Francisco, CA, 94143, USA
| | | |
Collapse
|
26
|
Bettini ML, Guy C, Dash P, Vignali KM, Hamm DE, Dobbins J, Gagnon E, Thomas PG, Wucherpfennig KW, Vignali DAA. Membrane association of the CD3ε signaling domain is required for optimal T cell development and function. THE JOURNAL OF IMMUNOLOGY 2014; 193:258-67. [PMID: 24899501 DOI: 10.4049/jimmunol.1400322] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TCR:CD3 complex transduces signals that are critical for optimal T cell development and adaptive immunity. In resting T cells, the CD3ε cytoplasmic tail associates with the plasma membrane via a proximal basic-rich stretch (BRS). In this study, we show that mice lacking a functional CD3ε-BRS exhibited substantial reductions in thymic cellularity and limited CD4- CD8- double-negative (DN) 3 to DN4 thymocyte transition, because of enhanced DN4 TCR signaling resulting in increased cell death and TCR downregulation in all subsequent populations. Furthermore, positive, but not negative, T cell selection was affected in mice lacking a functional CD3ε-BRS, which led to limited peripheral T cell function and substantially reduced responsiveness to influenza infection. Collectively, these results indicate that membrane association of the CD3ε signaling domain is required for optimal thymocyte development and peripheral T cell function.
Collapse
Affiliation(s)
- Matthew L Bettini
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Clifford Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Pradyot Dash
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Kate M Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - David E Hamm
- Adaptive Biotechnologies, Seattle, WA 98102; and
| | - Jessica Dobbins
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Etienne Gagnon
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Dario A A Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105;
| |
Collapse
|
27
|
Dopfer E, Hartl F, Oberg HH, Siegers G, Yousefi OS, Kock S, Fiala G, Garcillán B, Sandstrom A, Alarcón B, Regueiro J, Kabelitz D, Adams E, Minguet S, Wesch D, Fisch P, Schamel W. The CD3 Conformational Change in the γδ T Cell Receptor Is Not Triggered by Antigens but Can Be Enforced to Enhance Tumor Killing. Cell Rep 2014; 7:1704-1715. [DOI: 10.1016/j.celrep.2014.04.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 03/15/2014] [Accepted: 04/23/2014] [Indexed: 12/24/2022] Open
|
28
|
Borroto A, Abia D, Alarcón B. Crammed signaling motifs in the T-cell receptor. Immunol Lett 2014; 161:113-7. [PMID: 24877875 DOI: 10.1016/j.imlet.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/07/2014] [Accepted: 05/15/2014] [Indexed: 11/30/2022]
Abstract
Although the T cell antigen receptor (TCR) is long known to contain multiple signaling subunits (CD3γ, CD3δ, CD3ɛ and CD3ζ), their role in signal transduction is still not well understood. The presence of at least one immunoreceptor tyrosine-based activation motif (ITAM) in each CD3 subunit has led to the idea that the multiplication of such elements essentially serves to amplify signals. However, the evolutionary conservation of non-ITAM sequences suggests that each CD3 subunit is likely to have specific non-redundant roles at some stage of development or in mature T cell function. The CD3ɛ subunit is paradigmatic because in a relatively short cytoplasmic sequence (∼55 amino acids) it contains several docking sites for proteins involved in intracellular trafficking and signaling, proteins whose relevance in T cell activation is slowly starting to be revealed. In this review we will summarize our current knowledge on the signaling effectors that bind directly to the TCR and we will propose a hierarchy in their response to TCR triggering.
Collapse
Affiliation(s)
- Aldo Borroto
- TCR Signal Transduction Laboratory, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Balbino Alarcón
- TCR Signal Transduction Laboratory, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| |
Collapse
|
29
|
Rojo JM, Ojeda G, Acosta YY, Montes-Casado M, Criado G, Portolés P. Characteristics of TCR/CD3 complex CD3{varepsilon} chains of regulatory CD4+ T (Treg) lymphocytes: role in Treg differentiation in vitro and impact on Treg in vivo. J Leukoc Biol 2013; 95:441-50. [PMID: 24212096 DOI: 10.1189/jlb.1112584] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tregs are anergic CD4(+)CD25(+)Foxp3(+) T lymphocytes exerting active suppression to control immune and autoimmune responses. However, the factors in TCR recognition underlying Treg differentiation are unclear. Based on our previous data, we hypothesized that Treg TCR/CD3 antigen receptor complexes might differ from those of CD4(+)CD25(-) Tconv. Expression levels of TCR/CD3, CD3ε,ζ chains, or other molecules involved in antigen signaling and the characteristics of CD3ε chains were analyzed in thymus or spleen Treg cells from normal mice. Tregs had quantitative and qualitatively distinct TCR/CD3 complexes and CD3ε chains. They expressed significantly lower levels of the TCR/CD3 antigen receptor, CD3ε chains, TCR-ζ chain, or the CD4 coreceptor than Tconv. Levels of kinases, adaptor molecules involved in TCR signaling, and early downstream activation pathways were also lower in Tregs than in Tconv. Furthermore, TCR/CD3 complexes in Tregs were enriched in CD3ε chains conserving their N-terminal, negatively charged amino acid residues; this trait is linked to a higher activation threshold. Transfection of mutant CD3ε chains lacking these residues inhibited the differentiation of mature CD4(+)Foxp3(-) T lymphocytes into CD4(+)Foxp3(+) Tregs, and differences in CD3ε chain recognition by antibodies could be used to enrich for Tregs in vivo. Our results show quantitative and qualitative differences in the TCR/CD3 complex, supporting the hyporesponsive phenotype of Tregs concerning TCR/CD3 signals. These differences might reconcile avidity and flexible threshold models of Treg differentiation and be used to implement therapeutic approaches involving Treg manipulation.
Collapse
Affiliation(s)
- Jose M Rojo
- 2.Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, E-28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
30
|
Nelson AD, Hoffmann MM, Parks CA, Dasari S, Schrum AG, Gil D. IgG Fab fragments forming bivalent complexes by a conformational mechanism that is reversible by osmolytes. J Biol Chem 2012; 287:42936-50. [PMID: 23109335 DOI: 10.1074/jbc.m112.410217] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Generated by proteolytic cleavage of immunoglobulin, Fab fragments possess great promise as blocking reagents, able to bind receptors or other targets without inducing cross-linking. However, aggregation of Fab preparations is a common occurrence, which generates intrinsic stimulatory capacity and thwarts signal blockade strategies. Using a panel of biochemical approaches, including size exclusion chromatography, SDS-PAGE, mass spectrometry, and cell stimulation followed by flow cytometry, we have measured the oligomerization and acquisition of stimulatory capacity that occurs in four monoclonal IgG Fabs specific for TCR/CD3. Unexpectedly, we observed that all Fabs spontaneously formed complexes that were precisely bivalent, and these bivalent complexes possessed most of the stimulatory activity of each Fab preparation. Fabs composing bivalent complexes were more susceptible to proteolysis than monovalent Fabs, indicating a difference in conformation between the Fabs involved in these two different states of valency. Because osmolytes represent a class of compounds that stabilize protein folding and conformation, we sought to determine the extent to which the amino acid osmolyte l-proline might impact bivalent Fab complexation. We found that l-proline (i) inhibited the adoption of the conformation associated with bivalent complexation, (ii) preserved Fab monovalency, (iii) reversed the conformation of preformed bivalent Fabs to that of monovalent Fabs, and (iv) separated a significant percentage of preformed bivalent complexes into monovalent species. Thus, Fab fragments can adopt a conformation that is compatible with folding or packing of a bivalent complex in a process that can be inhibited by osmolytes.
Collapse
Affiliation(s)
- Alfreda D Nelson
- Department of Immunology, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
31
|
Relaxation estimation of RMSD in molecular dynamics immunosimulations. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:173521. [PMID: 23019425 PMCID: PMC3457668 DOI: 10.1155/2012/173521] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 02/05/2023]
Abstract
Molecular dynamics simulations have to be sufficiently long to draw reliable conclusions. However, no method exists to prove that a simulation has converged. We suggest the method of "lagged RMSD-analysis" as a tool to judge if an MD simulation has not yet run long enough. The analysis is based on RMSD values between pairs of configurations separated by variable time intervals Δt. Unless RMSD(Δt) has reached a stationary shape, the simulation has not yet converged.
Collapse
|
32
|
Wang J, Tsai S, Han B, Tailor P, Santamaria P. Autoantigen recognition is required for recruitment of IGRP(206-214)-autoreactive CD8+ T cells but is dispensable for tolerance. THE JOURNAL OF IMMUNOLOGY 2012; 189:2975-84. [PMID: 22908330 DOI: 10.4049/jimmunol.1201787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The progression of autoimmune responses is associated with an avidity maturation process driven by preferential expansion of high avidity clonotypes at the expense of their low avidity counterparts. Central and peripheral tolerance hinder the contribution of high-avidity clonotypes targeting residues 206-214 of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP(206-214)) during the earliest stages of autoimmune diabetes. In this study, we probe the molecular determinants and biochemical consequences of IGRP(206-214)/K(d) recognition by high-, intermediate-, and low-avidity autoreactive CD8+ T cells, and we investigate the effects of genetic IGRP(206-214) silencing on their developmental biology. We find that differences in avidity for IGRP(206-214)/K(d) map to CDR1α and are associated with quantitative differences in CD3ε proline-rich sequence exposure and Nck recruitment. Unexpectedly, we find that tolerance of high-avidity CD8+ T cells, unlike their activation and recruitment into the pancreas, is dissociated from recognition of IGRP(206-214), particularly in adult mice. This finding challenges the view that tolerance of pathogenic autoreactive T cells is invariably triggered by recognition of the peptide-MHC complex that drives their activation in the periphery, indicating the existence of mechanisms of tolerance that are capable of sensing the avidity, hence pathogenicity of autoreactive T cells without the need to rely on local autoantigen availability.
Collapse
Affiliation(s)
- Jinguo Wang
- Julia McFarlane Diabetes Research Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
33
|
Zarnitsyna V, Zhu C. T cell triggering: insights from 2D kinetics analysis of molecular interactions. Phys Biol 2012; 9:045005. [PMID: 22871794 DOI: 10.1088/1478-3975/9/4/045005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interaction of the T cell receptor (TCR) with pathogen-derived peptide presented by the major histocompatibility complex (pMHC) molecule is central to adaptive immunity as it initiates intracellular signaling to trigger T cell response to infection. Kinetic parameters of this interaction have been under intensive investigation for more than two decades using soluble pMHCs and/or TCRs with at least one of them in the solution (three-dimensional (3D) methods). Recently, several techniques have been developed to enable kinetic analysis on live T cells with pMHCs presented by surrogate antigen presenting cells (APCs) or supported planar lipid bilayers (two-dimensional (2D) methods). Comparison of 2D versus 3D parameters reveals drastic differences with broader ranges of 2D affinities and on-rates and orders of magnitude faster 2D off-rates for functionally distinct pMHCs. Here we review new 2D data and discuss how it may impact previously developed models of T cell discrimination between pMHCs of different potencies.
Collapse
Affiliation(s)
- Veronika Zarnitsyna
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| | | |
Collapse
|
34
|
Huang J, Meyer C, Zhu C. T cell antigen recognition at the cell membrane. Mol Immunol 2012; 52:155-64. [PMID: 22683645 DOI: 10.1016/j.molimm.2012.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 11/16/2022]
Abstract
T cell antigen receptors (TCRs) on the surface of T cells bind specifically to particular peptide bound major histocompatibility complexes (pMHCs) presented on the surface of antigen presenting cells (APCs). This interaction is a key event in T cell antigen recognition and activation. Most studies have used surface plasmon resonance (SPR) to measure the in vitro binding kinetics of TCR-pMHC interactions in solution using purified proteins. However, these measurements are not physiologically precise, as both TCRs and pMHCs are membrane-associated molecules which are regulated by their cellular environments. Recently, single-molecule förster resonance energy transfer (FRET) and single-molecule mechanical assays were used to measure the in situ binding kinetics of TCR-pMHC interactions on the surface of live T cells. These studies have provided exciting insights into the biochemical basis of T cell antigen recognition and suggest that TCRs serially engage with a small number of antigens with very fast kinetics in order to maximize TCR signaling and sensitivity.
Collapse
Affiliation(s)
- Jun Huang
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
35
|
Blanco R, Alarcón B. TCR Nanoclusters as the Framework for Transmission of Conformational Changes and Cooperativity. Front Immunol 2012; 3:115. [PMID: 22582078 PMCID: PMC3348506 DOI: 10.3389/fimmu.2012.00115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/22/2012] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence favors the notion that, before triggering, the T cell antigen receptor (TCR) forms nanometer-scale oligomers that are called nanoclusters. The organization of the TCR in pre-existing oligomers cannot be ignored when analyzing the properties of ligand (pMHC) recognition and signal transduction. As with other membrane receptors, the existence of TCR oligomers points out to cooperativity phenomena. We review the data in support of conformational changes in the TCR as the basic principle to transduce the activation signal to the cytoplasm and the incipient data suggesting cooperativity within nanoclusters.
Collapse
Affiliation(s)
- Raquel Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid Madrid, Spain
| | | |
Collapse
|
36
|
Yiemwattana I, Ngoenkam J, Paensuwan P, Kriangkrai R, Chuenjitkuntaworn B, Pongcharoen S. Essential role of the adaptor protein Nck1 in Jurkat T cell activation and function. Clin Exp Immunol 2012; 167:99-107. [PMID: 22132889 PMCID: PMC3248091 DOI: 10.1111/j.1365-2249.2011.04494.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2011] [Indexed: 11/29/2022] Open
Abstract
The non-catalytic region of tyrosine kinase (Nck) is proposed to play an essential role in T cell activation. However, evidence based on functional and biochemical studies has brought into question the critical function of Nck. Therefore, the aim of the present work was to investigate the role of Nck in T cell activation. To study this, the human Jurkat T cell line was used as a model for human T lymphocytes. The short interfering (si) RNA targeting Nck1 gene was used with electroporation to knock-down Nck1 protein expression in Jurkat T cells. Primary human CD4 T cells were also transfected with the siRNA of Nck1. The results showed that decreased Nck1 protein expression did not affect the apoptosis of the transfected Jurkat T cells compared with control siRNA-transfected cells and non-transfected cells. Upon CD3ε/CD28 stimulation, knock-down of Nck1 in Jurkat T cells caused a decrease in CD69 expression and in interleukin (IL)-2 secretion. Similarly, knock-down of Nck1 in primary CD4 T cells also caused decreased CD69 expression. However, no significant alterations of CD69 and IL-2 expression were found upon phytohaemagglutinin (PHA)/phorbol myristate acetate (PMA) stimulation. Knock-down of Nck1 had no effect on the proliferation of Jurkat T cells stimulated with either PHA or anti-T cell receptor (TCR) monoclonal antibody (C305). The reduced Nck1 expression in Jurkat cells was also associated with a reduced phosphorylation of extracellular regulated kinase (Erk)1 and Erk2 proteins upon CD3ε/CD28 stimulation. In conclusion, the decreased Nck1 protein in Jurkat T cells resulted in an impairment of TCR-CD3-mediated activation involving a defective Erk phosphorylation pathway.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- Apoptosis/drug effects
- Apoptosis/immunology
- CD28 Antigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Electroporation
- Humans
- Interleukin-1/biosynthesis
- Interleukin-1/genetics
- Jurkat Cells/drug effects
- Jurkat Cells/immunology
- Jurkat Cells/metabolism
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/genetics
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Oncogene Proteins/antagonists & inhibitors
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Phosphorylation
- Phytohemagglutinins/pharmacology
- Protein Processing, Post-Translational
- RNA Interference
- RNA, Small Interfering/pharmacology
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
Affiliation(s)
- I Yiemwattana
- Department of Preventive Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | | | | | | | | | | |
Collapse
|
37
|
Basic residues in the T-cell receptor ζ cytoplasmic domain mediate membrane association and modulate signaling. Proc Natl Acad Sci U S A 2011; 108:19323-8. [PMID: 22084078 DOI: 10.1073/pnas.1108052108] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The T-cell receptor (TCR) consists of a TCRαβ heterodimer, a TCRζ homodimer, and CD3γε and CD3δε heterodimers. The precise mechanism of T-cell triggering following TCR ligand engagement remains elusive. Previous studies reported that the cytoplasmic tail of CD3ε binds to the plasma membrane through a basic residue-rich stretch (BRS) and proposed that dissociation from the membrane is required for phosphorylation thereof. In this report we show that BRS motifs within the cytoplasmic tail of TCRζ mediate association with the plasma membrane and that TCR engagement results in TCRζ dissociation from the membrane. This dissociation requires phosphorylation of the TCRζ immunoreceptor tyrosine-based activation motifs by lymphocyte cell-specificprotein tyrosine kinase (Lck) but not ζ-chain-associated protein kinase 70 binding. Mutations of the TCRζ BRS motifs that disrupt this membrane association attenuate proximal and distal responses induced by TCR engagement. These mutations appear to alter the localization of TCRζ with respect to Lck as well as the mobility of the TCR complex. This study reveals that tyrosine phosphorylation of the TCRζ cytoplasmic domain regulates its association with the plasma membrane and highlights the functional importance of TCRζ BRS motifs.
Collapse
|
38
|
Bida AT, Gil D, Schrum AG. Multiplex IP-FCM (immunoprecipitation-flow cytometry): Principles and guidelines for assessing physiologic protein-protein interactions in multiprotein complexes. Methods 2011; 56:154-60. [PMID: 21945581 DOI: 10.1016/j.ymeth.2011.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 12/13/2022] Open
Abstract
There is significant interest in the development of methods with the potential to increase access to 'the interactome' for both experimental and clinical applications. Immunoprecipitation detected by flow cytometry (IP-FCM) is a robust, biochemical method that can be used for measuring physiologic protein-protein interactions (PPI) in multiprotein complexes (MPC) with high sensitivity. Because it is based on antibody-mediated capture of protein complexes onto microspheres, IP-FCM is potentially compatible with a multiplex platform that could allow simultaneous assessment of many physiologic PPI. Here, we consider the principles of ambient analyte conditions (AAC) and inter-bead independence, and provide a template set of experiments showing how to convert singleplex IP-FCM to multiplex IP-FCM, including assays to confirm the validity of the experimental conditions for data acquisition. We conclude that singleplex IP-FCM can be successfully upgraded to multiplex format, and propose that the unique strengths of multiplex IP-FCM make it a method that is likely to facilitate the acquisition of new PPI data from primary cell sources.
Collapse
Affiliation(s)
- Anya T Bida
- Mayo Clinic College of Medicine, Department of Immunology, Rochester, MN, USA
| | | | | |
Collapse
|
39
|
DeFord-Watts LM, Dougall DS, Belkaya S, Johnson BA, Eitson JL, Roybal KT, Barylko B, Albanesi JP, Wülfing C, van Oers NS. The CD3 zeta subunit contains a phosphoinositide-binding motif that is required for the stable accumulation of TCR-CD3 complex at the immunological synapse. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:6839-47. [PMID: 21543646 PMCID: PMC3110614 DOI: 10.4049/jimmunol.1002721] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell activation involves a cascade of TCR-mediated signals that are regulated by three distinct intracellular signaling motifs located within the cytoplasmic tails of the CD3 chains. Whereas all the CD3 subunits possess at least one ITAM, the CD3 ε subunit also contains a proline-rich sequence and a basic-rich stretch (BRS). The CD3 ε BRS complexes selected phosphoinositides, interactions that are required for normal cell surface expression of the TCR. The cytoplasmic domain of CD3 ζ also contains several clusters of arginine and lysine residues. In this study, we report that these basic amino acids enable CD3 ζ to complex the phosphoinositides PtdIns(3)P, PtdIns(4)P, PtdIns(5)P, PtdIns(3,5)P(2), and PtdIns(3,4,5)P(3) with high affinity. Early TCR signaling pathways were unaffected by the targeted loss of the phosphoinositide-binding functions of CD3 ζ. Instead, the elimination of the phosphoinositide-binding function of CD3 ζ significantly impaired the ability of this invariant chain to accumulate stably at the immunological synapse during T cell-APC interactions. Without its phosphoinositide-binding functions, CD3 ζ was concentrated in intracellular structures after T cell activation. Such findings demonstrate a novel functional role for CD3 ζ BRS-phosphoinositide interactions in supporting T cell activation.
Collapse
Affiliation(s)
- Laura M. DeFord-Watts
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - David S. Dougall
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Serkan Belkaya
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Blake A. Johnson
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Jennifer L. Eitson
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Kole T. Roybal
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Barbara Barylko
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Joseph P. Albanesi
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Christoph Wülfing
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
- Department of Cell Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| | - Nicolai S.C. van Oers
- Department of Immunology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
- Department of Microbiology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9093
| |
Collapse
|
40
|
Schrum AG, Gil D, Turka LA, Palmer E. Physical and functional bivalency observed among TCR/CD3 complexes isolated from primary T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:870-8. [PMID: 21666056 DOI: 10.4049/jimmunol.1100538] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Unlike BCR and secreted Ig, TCR expression is not thought to occur in a bivalent form. The conventional monovalent model of TCR/CD3 is supported by published studies of complexes solubilized in the detergent digitonin, in which bivalency was not observed. We revisited the issue of TCR valency by examining complexes isolated from primary αβ T cells after solubilization in digitonin. Using immunoprecipitation followed by flow cytometry, we unexpectedly observed TCR/CD3 complexes that contained two TCRs per complex. Standard anti-TCR Abs, being bivalent themselves, tended to bind with double occupancy to bivalent TCRs; this property masked the presence of the second TCR per complex in certain Ab binding assays, which may partially explain why previous data did not reveal these bivalent complexes. We also found that the prevalence of bivalency among fully assembled, mature TCR/CD3 complexes was sufficient to impact the functional performance of immunoprecipitated TCRs in binding antigenic peptide/MHC-Ig fusion proteins. Both TCR positions per bivalent complex required an Ag-specific TCR to effect optimal binding to these soluble ligands. Therefore, we conclude that in primary T cells, TCR/CD3 complexes can be found that are physically and functionally bivalent. The expression of bivalent TCR/CD3 complexes has implications regarding potential mechanisms by which Ag may trigger signaling. It also suggests the possibility that the potential for bivalent expression could represent a general feature of Ag receptors.
Collapse
Affiliation(s)
- Adam G Schrum
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
41
|
de la Cruz J, Kruger T, Parks CA, Silge RL, van Oers NSC, Luescher IF, Schrum AG, Gil D. Basal and antigen-induced exposure of the proline-rich sequence in CD3ε. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2282-90. [PMID: 21228347 PMCID: PMC3810001 DOI: 10.4049/jimmunol.1003225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CD3ε cytoplasmic tail contains a conserved proline-rich sequence (PRS) that influences TCR-CD3 expression and signaling. Although the PRS can bind the SH3.1 domain of the cytosolic adapter Nck, whether the PRS is constitutively available for Nck binding or instead represents a cryptic motif that is exposed via conformational change upon TCR-CD3 engagement (CD3Δc) is currently unresolved. Furthermore, the extent to which a cis-acting CD3ε basic amino acid-rich stretch (BRS), with its unique phosphoinositide-binding capability, might impact PRS accessibility is not clear. In this study, we found that freshly harvested primary thymocytes expressed low to moderate basal levels of Nck-accessible PRS ("open-CD3"), although most TCR-CD3 complexes were inaccessible to Nck ("closed-CD3"). Ag presentation in vivo induced open-CD3, accounting for half of the basal level found in thymocytes from MHC(+) mice. Additional stimulation with either anti-CD3 Abs or peptide-MHC ligands further elevated open-CD3 above basal levels, consistent with a model wherein antigenic engagement induces maximum PRS exposure. We also found that the open-CD3 conformation induced by APCs outlasted the time of ligand occupancy, marking receptors that had been engaged. Finally, CD3ε BRS-phosphoinositide interactions played no role in either adoption of the initial closed-CD3 conformation or induction of open-CD3 by Ab stimulation. Thus, a basal level of open-CD3 is succeeded by a higher, induced level upon TCR-CD3 engagement, involving CD3Δc and prolonged accessibility of the CD3ε PRS to Nck.
Collapse
MESH Headings
- Amino Acid Motifs/immunology
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- CD3 Complex/genetics
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Cell Line, Tumor
- Epitopes, T-Lymphocyte/physiology
- Hybridomas
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Proline/immunology
- Proline/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Javier de la Cruz
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
- Initiative to Maximize Student Diversity and Post Baccalaureate Research Education Program, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Travis Kruger
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
- Summer Undergraduate Research Fellowship Program, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Christopher A. Parks
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
- Summer Undergraduate Research Fellowship Program, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Robert L. Silge
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nicolai S. C. van Oers
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Immanuel F. Luescher
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - Adam G. Schrum
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Diana Gil
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
42
|
|
43
|
Abstract
Immunoprecipitation detected by flow cytometry (IP-FCM) is an efficient method for detecting and quantifying protein-protein interactions. The basic principle extends that of sandwich ELISA, wherein the captured primary analyte can be detected together with other molecules physically associated within multiprotein complexes. The procedure involves covalent coupling of polystyrene latex microbeads with immunoprecipitating monoclonal antibodies (mAb) specific for a protein of interest, incubating these beads with cell lysates, probing captured protein complexes with fluorochrome-conjugated probes, and analyzing bead-associated fluorescence by flow cytometry. IP-FCM is extremely sensitive, allows analysis of proteins in their native (non-denatured) state, and is amenable to either semi-quantitative or quantitative analysis. As additional advantages, IP-FCM requires no genetic engineering or specialized equipment, other than a flow cytometer, and it can be readily adapted for high-throughput applications.
Collapse
Affiliation(s)
- Tessa R Davis
- Department of Immunology, College of Medicine, Mayo Clinic, USA
| | | |
Collapse
|
44
|
Choudhuri K, Dustin ML. Signaling microdomains in T cells. FEBS Lett 2010; 584:4823-31. [PMID: 20965175 DOI: 10.1016/j.febslet.2010.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 01/22/2023]
Abstract
Sub-micron scale signaling domains induced in the plasma membrane of cells are thought to play important roles in signal transduction. In T cells, agonist MHC-peptide complexes induce small diffraction-limited domains enriched in T cell receptor (TCR) and signaling molecules. These microclusters serve as transient platforms for signal initiation and are required for sustained signaling in T cells, although each microcluster functions for only a couple of minutes. How they are formed, and what mechanisms promote and regulate signaling within TCR microclusters is largely unknown, although it is clear that TCR engagement and dynamic reorganization of cortical actin are involved. Here, we review current understanding of signaling within microclusters in T cells, and speculate on how these structures may form, initiate biochemical signals, and serve as sites of both signal integration and amplification, while also facilitating appropriate termination of TCR and related signaling.
Collapse
Affiliation(s)
- Kaushik Choudhuri
- Helen L and Martin S Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine, New York, NY 10016, USA
| | | |
Collapse
|
45
|
|
46
|
van Boxel GI, Holmes S, Fugger L, Jones EY. An alternative conformation of the T-cell receptor alpha constant region. J Mol Biol 2010; 400:828-37. [PMID: 20630474 PMCID: PMC2930249 DOI: 10.1016/j.jmb.2010.05.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/20/2010] [Accepted: 05/24/2010] [Indexed: 11/10/2022]
Abstract
αβ T-cell receptors (TcRs) play a central role in cellular immune response. They are members of the Ig superfamily, with extracellular regions of the α and β chains each comprising a V-type domain and a C-type domain. We have determined the ectodomain structure of an αβ TcR, which recognizes the autoantigen myelin basic protein. The 2.0-Å-resolution structure reveals canonical main-chain conformations for the Vα, Vβ, and Cβ domains, but the Cα domain exhibits a main-chain conformation remarkably different from those previously reported for TcR crystal structures. The global IgC-like fold is maintained, but a piston-like rearrangement between BC and DE β-turns results in β-strand slippage. This substantial conformational change may represent a signaling intermediate. Our structure is the first example for the Ig fold of the increasingly recognized concept of “metamorphic proteins.”
Collapse
Affiliation(s)
- Gijs I van Boxel
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, The University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | |
Collapse
|
47
|
Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI. Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010. [PMID: 20142361 DOI: 10.4049/jimmunol.0902661.mechanism] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Ag-specific T cell tolerance plays a critical role in tumor escape. Recent studies implicated myeloid-derived suppressor cells (MDSCs) in the induction of CD8(+) T cell tolerance in tumor-bearing hosts. However, the mechanism of this phenomenon remained unclear. We have found that incubation of Ag-specific CD8(+) T cells, with peptide-loaded MDSCs, did not induce signaling downstream of TCR. However, it prevented subsequent signaling from peptide-loaded dendritic cells. Using double TCR transgenic CD8(+) T cells, we have demonstrated that MDSC induced tolerance to only the peptide, which was presented by MDSCs. T cell response to the peptide specific to the other TCR was not affected. Incubation of MDSCs with Ag-specific CD8(+) T cells caused nitration of the molecules on the surface of CD8(+) T cells, localized to the site of physical interaction between MDSC and T cells, which involves preferentially only TCR specific for the peptide presented by MDSCs. Postincubation with MDSCs, only nitrotyrosine-positive CD8(+) T cells demonstrated profound nonresponsiveness to the specific peptide, whereas nitrotyrosine-negative CD8(+) T cells responded normally to that stimulation. MDSCs caused dissociation between TCR and CD3zeta molecules, disrupting TCR complexes on T cells. Thus, these data describe a novel mechanism of Ag-specific CD8(+) T cell tolerance in cancer.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigen Presentation/genetics
- Antigen Presentation/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/transplantation
- Cell Line, Tumor
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Genes, T-Cell Receptor beta/immunology
- Leukemia, Experimental/genetics
- Leukemia, Experimental/immunology
- Leukemia, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Myeloid Cells/immunology
- Myeloid Cells/pathology
- Myeloid Cells/transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Transplantation Tolerance/genetics
- Transplantation Tolerance/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Srinivas Nagaraj
- Department of Immunology, H Lee Moffitt Cancer Center, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
48
|
T cell receptor triggering by force. Trends Immunol 2010; 31:1-6. [PMID: 19836999 DOI: 10.1016/j.it.2009.09.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/21/2009] [Accepted: 09/24/2009] [Indexed: 11/18/2022]
Abstract
Antigen recognition through the interaction between the T cell receptor (TCR) and peptide presented by major histocompatibility complex (pMHC) is the first step in T cell-mediated immune responses. How this interaction triggers TCR signalling that leads to T cell activation is still unclear. Taking into account the mechanical stress exerted on the pMHC-TCR interaction at the dynamic interface between T cells and antigen presenting cells (APCs), we propose the so-called receptor deformation model of TCR triggering. In this model, TCR conformational change induced by mechanical forces initiates TCR signalling. The receptor deformation model, for the first time, explains all three aspects of the TCR triggering puzzle: mechanism, specificity, and sensitivity.
Collapse
|
49
|
Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI. Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:3106-16. [PMID: 20142361 DOI: 10.4049/jimmunol.0902661] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ag-specific T cell tolerance plays a critical role in tumor escape. Recent studies implicated myeloid-derived suppressor cells (MDSCs) in the induction of CD8(+) T cell tolerance in tumor-bearing hosts. However, the mechanism of this phenomenon remained unclear. We have found that incubation of Ag-specific CD8(+) T cells, with peptide-loaded MDSCs, did not induce signaling downstream of TCR. However, it prevented subsequent signaling from peptide-loaded dendritic cells. Using double TCR transgenic CD8(+) T cells, we have demonstrated that MDSC induced tolerance to only the peptide, which was presented by MDSCs. T cell response to the peptide specific to the other TCR was not affected. Incubation of MDSCs with Ag-specific CD8(+) T cells caused nitration of the molecules on the surface of CD8(+) T cells, localized to the site of physical interaction between MDSC and T cells, which involves preferentially only TCR specific for the peptide presented by MDSCs. Postincubation with MDSCs, only nitrotyrosine-positive CD8(+) T cells demonstrated profound nonresponsiveness to the specific peptide, whereas nitrotyrosine-negative CD8(+) T cells responded normally to that stimulation. MDSCs caused dissociation between TCR and CD3zeta molecules, disrupting TCR complexes on T cells. Thus, these data describe a novel mechanism of Ag-specific CD8(+) T cell tolerance in cancer.
Collapse
Affiliation(s)
- Srinivas Nagaraj
- Department of Immunology, H Lee Moffitt Cancer Center, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
50
|
Sigalov AB. The SCHOOL of nature: I. Transmembrane signaling. SELF/NONSELF 2010; 1:4-39. [PMID: 21559175 PMCID: PMC3091606 DOI: 10.4161/self.1.1.10832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
Receptor-mediated transmembrane signaling plays an important role in health and disease. Recent significant advances in our understanding of the molecular mechanisms linking ligand binding to receptor activation revealed previously unrecognized striking similarities in the basic structural principles of function of numerous cell surface receptors. In this work, I demonstrate that the Signaling Chain Homooligomerization (SCHOOL)-based mechanism represents a general biological mechanism of transmembrane signal transduction mediated by a variety of functionally unrelated single- and multichain activating receptors. within the SCHOOL platform, ligand binding-induced receptor clustering is translated across the membrane into protein oligomerization in cytoplasmic milieu. This platform resolves a long-standing puzzle in transmembrane signal transduction and reveals the major driving forces coupling recognition and activation functions at the level of protein-protein interactions-biochemical processes that can be influenced and controlled. The basic principles of transmembrane signaling learned from the SCHOOL model can be used in different fields of immunology, virology, molecular and cell biology and others to describe, explain and predict various phenomena and processes mediated by a variety of functionally diverse and unrelated receptors. Beyond providing novel perspectives for fundamental research, the platform opens new avenues for drug discovery and development.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|