1
|
Anh Luong TL, Hoang TL, Tran DP, Le TM, Tran H, Ho PT, Hoang HN, Giang H, Vu DL, Dinh NH, Nguyen MT, Nguyen HS. Identification of novel variants of XPA and POLH/XPV genes in xeroderma pigmentosum patients in Vietnam. Per Med 2024; 21:341-351. [PMID: 39655645 DOI: 10.1080/17410541.2024.2393073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/13/2024] [Indexed: 12/21/2024]
Abstract
Xeroderma pigmentosum (XP) disorder is recognized as a genetic condition inherited by autosomal recessive fashion. XP results from a defective DNA repair mechanism that significantly increases skin cancer risk. Fifteen Vietnamese patients were investigated with typical clinical manifestations of XP. Eight XP genes (XPA to XPG and POLH/XPV) were sequenced using peripheral blood samples. Overall, three novel variants on the XPA and XPV genes were detected in members of two families. One novel missense variant c.388A>G (p.R130G) of XPA was found in three patients with XP group A, two novel variants: c.680G>A (p.C227Y) and c.1652dupC (p.Gln553Profs*8) of XPV in one patient with XP group F/G. Our study contributes to the recognition of new mutations in XP patients which have not been reported in Human Gene Mutation Database (HGMD).
Collapse
Affiliation(s)
- Thi Lan Anh Luong
- Hanoi Medical University, Hanoi city, Vietnam
- Hanoi Medical University Hospital, Hanoi city, Vietnam
| | - Thu Lan Hoang
- Hanoi Medical University, Hanoi city, Vietnam
- Hanoi Medical University Hospital, Hanoi city, Vietnam
| | - Duc Phan Tran
- Hanoi Medical University, Hanoi city, Vietnam
- Hanoi Medical University Hospital, Hanoi city, Vietnam
| | - Thi Mai Le
- National Hospital of Dermatology & Venereology, Hanoi city, Vietnam
| | - Hien Tran
- Hanoi Medical University, Hanoi city, Vietnam
| | - Phuong Thuy Ho
- National Hospital of Dermatology & Venereology, Hanoi city, Vietnam
| | | | - Hoa Giang
- Medical Genetics Institute, Ho Chi Minh city, Vietnam
| | - Duy Linh Vu
- Bach Mai Hospital, Dermatology and Burn Department, Hanoi city, Vietnam
| | - Nghi Huu Dinh
- Hanoi Medical University, Hanoi city, Vietnam
- National Hospital of Dermatology & Venereology, Hanoi city, Vietnam
| | - Manh Tan Nguyen
- Hanoi Medical University, Hanoi city, Vietnam
- National Hospital of Dermatology & Venereology, Hanoi city, Vietnam
| | - Huu Sau Nguyen
- Hanoi Medical University, Hanoi city, Vietnam
- National Hospital of Dermatology & Venereology, Hanoi city, Vietnam
| |
Collapse
|
2
|
Hao Q, Li J, Yeap LS. Molecular mechanisms of DNA lesion and repair during antibody somatic hypermutation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2344-2353. [PMID: 39048716 DOI: 10.1007/s11427-024-2615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024]
Abstract
Antibody diversification is essential for an effective immune response, with somatic hypermutation (SHM) serving as a key molecular process in this adaptation. Activation-induced cytidine deaminase (AID) initiates SHM by inducing DNA lesions, which are ultimately resolved into point mutations, as well as small insertions and deletions (indels). These mutational outcomes contribute to antibody affinity maturation. The mechanisms responsible for generating point mutations and indels involve the base excision repair (BER) and mismatch repair (MMR) pathways, which are well coordinated to maintain genomic integrity while allowing for beneficial mutations to occur. In this regard, translesion synthesis (TLS) polymerases contribute to the diversity of mutational outcomes in antibody genes by enabling the bypass of DNA lesions. This review summarizes our current understanding of the distinct molecular mechanisms that generate point mutations and indels during SHM. Understanding these mechanisms is critical for elucidating the development of broadly neutralizing antibodies (bnAbs) and autoantibodies, and has implications for vaccine design and therapeutics.
Collapse
Affiliation(s)
- Qian Hao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinfeng Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Endocrinology and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Bedaiwi S, Usmani A, Carty MP. Canonical and Non-Canonical Roles of Human DNA Polymerase η. Genes (Basel) 2024; 15:1271. [PMID: 39457395 PMCID: PMC11507097 DOI: 10.3390/genes15101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
DNA damage tolerance pathways that allow for the completion of replication following fork arrest are critical in maintaining genome stability during cell division. The main DNA damage tolerance pathways include strand switching, replication fork reversal and translesion synthesis (TLS). The TLS pathway is mediated by specialised DNA polymerases that can accommodate altered DNA structures during DNA synthesis, and are important in allowing replication to proceed after fork arrest, preventing fork collapse that can generate more deleterious double-strand breaks in the genome. TLS may occur directly at the fork, or at gaps remaining behind the fork, in the process of post-replication repair. Inactivating mutations in the human POLH gene encoding the Y-family DNA polymerase Pol η causes the skin cancer-prone genetic disease xeroderma pigmentosum variant (XPV). Pol η also contributes to chemoresistance during cancer treatment by bypassing DNA lesions induced by anti-cancer drugs including cisplatin. We review the current understanding of the canonical role of Pol η in translesion synthesis following replication arrest, as well as a number of emerging non-canonical roles of the protein in other aspects of DNA metabolism.
Collapse
Affiliation(s)
| | | | - Michael P. Carty
- DNA Damage Response Laboratory, Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91W2TY, Ireland; (S.B.); (A.U.)
| |
Collapse
|
4
|
Mu Y, Chen Z, Plummer JB, Zelazowska MA, Dong Q, Krug LT, McBride KM. UNG-RPA interaction governs the choice between high-fidelity and mutagenic uracil repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591927. [PMID: 38746347 PMCID: PMC11092621 DOI: 10.1101/2024.04.30.591927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Mammalian Uracil DNA glycosylase (UNG) removes uracils and initiates high-fidelity base excision repair to maintain genomic stability. During B cell development, activation-induced cytidine deaminase (AID) creates uracils that UNG processes in an error-prone fashion to accomplish immunoglobulin (Ig) somatic hypermutation (SHM) or class switch recombination (CSR). The mechanism that governs high-fidelity versus mutagenic uracil repair is not understood. The B cell tropic gammaherpesvirus (GHV) encodes a functional homolog of UNG that can process AID induced genomic uracils. GHVUNG does not support hypermutation, suggesting intrinsic properties of UNG influence repair outcome. Noting the structural divergence between the UNGs, we define the RPA interacting motif as the determinant of mutation outcome. UNG or RPA mutants unable to interact with each other, only support high-fidelity repair. In B cells, transversions at the Ig variable region are abated while CSR is supported. Thus UNG-RPA governs the generation of mutations and has implications for locus specific mutagenesis in B cells and deamination associated mutational signatures in cancer.
Collapse
|
5
|
Steele EJ, Franklin A, Lindley RA. Somatic mutation patterns at Ig and Non-Ig Loci. DNA Repair (Amst) 2024; 133:103607. [PMID: 38056368 DOI: 10.1016/j.dnarep.2023.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
The reverse transcriptase (RT) model of immunoglobulin (Ig) somatic hypermutation (SHM) has received insufficient scientific attention. This is understandable given that DNA deamination mediated by activation-induced deaminase (AID), the initiating step of Ig SHM, has dominated experiments since 2002. We summarise some key history of the RT Ig SHM model dating to 1987. For example, it is now established that DNA polymerase η, the sole DNA repair polymerase involved in post-replication short-patch repair, is an efficient cellular RT. This implies that it is potentially able to initiate target site reverse transcription by RNA-directed DNA repair at AID-induced lesions. Recently, DNA polymerase θ has also been shown to be an efficient cellular RT. Since DNA polymerase θ plays no significant role in Ig SHM, it could serve a similar RNA-dependent DNA polymerase role as DNA polymerase η at non-Ig loci in the putative RNA-templated nucleotide excision repair of bulky adducts and other mutagenic lesions on the transcribed strand. A major yet still poorly recognised consequence of the proposed RT process in Ig SHM is the generation of significant and characteristic strand-biased mutation signatures at both deoxyadenosine/deoxythymidine and deoxyguanosine/deoxycytidine base pairs. In this historical perspective, we highlight how diagnostic strand-biased mutation signatures are detected in vivo during SHM at both Ig loci in germinal centre B lymphocytes and non-Ig loci in cancer genomes. These strand-biased signatures have been significantly obscured by technical issues created by improper use of the polymerase chain reaction technique. A heightened awareness of this fact should contribute to better data interpretation and somatic mutation pattern recognition both at Ig and non-Ig loci.
Collapse
Affiliation(s)
- Edward J Steele
- Melville Analytics Pty Ltd, 2/102 Duke St, Kangaroo Point, Brisbane 4169, Qld, Australia.
| | - Andrew Franklin
- Novartis Pharmaceuticals UK Limited, The WestWorks Building, White City Place, 195 Wood Lane, W12 7FQ London, United Kingdom
| | - Robyn A Lindley
- GMDxgenomics, Suite 201, 697 Burke Rd, Camberwell, Melbourne 3124, Vic, Australia; Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Vic, Australia
| |
Collapse
|
6
|
Eckert KA. Nontraditional Roles of DNA Polymerase Eta Support Genome Duplication and Stability. Genes (Basel) 2023; 14:genes14010175. [PMID: 36672916 PMCID: PMC9858799 DOI: 10.3390/genes14010175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
DNA polymerase eta (Pol η) is a Y-family polymerase and the product of the POLH gene. Autosomal recessive inheritance of POLH mutations is the cause of the xeroderma pigmentosum variant, a cancer predisposition syndrome. This review summarizes mounting evidence for expanded Pol η cellular functions in addition to DNA lesion bypass that are critical for maintaining genome stability. In vitro, Pol η displays efficient DNA synthesis through difficult-to-replicate sequences, catalyzes D-loop extensions, and utilizes RNA-DNA hybrid templates. Human Pol η is constitutively present at the replication fork. In response to replication stress, Pol η is upregulated at the transcriptional and protein levels, and post-translational modifications regulate its localization to chromatin. Numerous studies show that Pol η is required for efficient common fragile site replication and stability. Additionally, Pol η can be recruited to stalled replication forks through protein-protein interactions, suggesting a broader role in replication fork recovery. During somatic hypermutations, Pol η is recruited by mismatch repair proteins and is essential for VH gene A:T basepair mutagenesis. Within the global context of repeat-dense genomes, the recruitment of Pol η to perform specialized functions during replication could promote genome stability by interrupting pure repeat arrays with base substitutions. Alternatively, not engaging Pol η in genome duplication is costly, as the absence of Pol η leads to incomplete replication and increased chromosomal instability.
Collapse
Affiliation(s)
- Kristin A Eckert
- Gittlen Cancer Research Laboratories, Department of Pathology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17036, USA
| |
Collapse
|
7
|
Lerner LK, Bonte D, Le Guillou M, Mohammad MM, Kasraian Z, Sarasin A, Despras E, Aoufouchi S. Expression of Constitutive Fusion of Ubiquitin to PCNA Restores the Level of Immunoglobulin A/T Mutations During Somatic Hypermutation in the Ramos Cell Line. Front Immunol 2022; 13:871766. [PMID: 35432321 PMCID: PMC9010874 DOI: 10.3389/fimmu.2022.871766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 12/05/2022] Open
Abstract
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is a B cell specific process required for the generation of specific and high affinity antibodies during the maturation of the immune response against foreign antigens. This process depends on the activity of both activation-induced cytidine deaminase (AID) and several DNA repair factors. AID-dependent SHM creates the full spectrum of mutations in Ig variable (V) regions equally distributed at G/C and A/T bases. In most mammalian cells, deamination of deoxycytidine into uracil during S phase induces targeted G/C mutagenesis using either direct replication of uracils or TLS mediated bypass, however only the machinery of activated B lymphocytes can generate A/T mutagenesis around AID-created uracils. The molecular mechanism behind the latter remains incompletely understood to date. However, the lack of a cellular model that reproduces both G/C and A/T mutation spectra constitutes the major hurdle to elucidating it. The few available B cell lines used thus far to study Ig SHM indeed undergo mainly G/C mutations, that make them inappropriate or of limited use. In this report, we show that in the Ramos cell line that undergoes constitutive G/C-biased SHM in culture, the low rate of A/T mutations is due to an imbalance in the ubiquitination/deubiquitination reaction of PCNA, with the deubiquitination reaction being predominant. The inhibition of the deubiquitinase complex USP1-UAF1 or the expression of constitutive fusion of ubiquitin to PCNA provides the missing clue required for DNA polymerase η recruitment and thereafter the introduction of A/T base pair (bp) mutations during the process of IgV gene diversification. This study reports the establishment of the first modified human B cell line that recapitulates the mechanism of SHM of Ig genes in vitro.
Collapse
Affiliation(s)
- Leticia K. Lerner
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dorine Bonte
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
| | - Morwenna Le Guillou
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
| | - Mahwish Mian Mohammad
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
- Sorbonne Université, Paris, France
| | - Zeinab Kasraian
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
| | - Alain Sarasin
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
| | - Emmanuelle Despras
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
| | - Said Aoufouchi
- Centre National de la Recherche Scientifique UMR 9019, B Cell and Genome Plasticity Team, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Orsay, France
- Sorbonne Université, Paris, France
| |
Collapse
|
8
|
Sepúlveda-Yáñez JH, Alvarez Saravia D, Pilzecker B, van Schouwenburg PA, van den Burg M, Veelken H, Navarrete MA, Jacobs H, Koning MT. Tandem Substitutions in Somatic Hypermutation. Front Immunol 2022; 12:807015. [PMID: 35069591 PMCID: PMC8781386 DOI: 10.3389/fimmu.2021.807015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Upon antigen recognition, activation-induced cytosine deaminase initiates affinity maturation of the B-cell receptor by somatic hypermutation (SHM) through error-prone DNA repair pathways. SHM typically creates single nucleotide substitutions, but tandem substitutions may also occur. We investigated incidence and sequence context of tandem substitutions by massive parallel sequencing of V(D)J repertoires in healthy human donors. Mutation patterns were congruent with SHM-derived single nucleotide mutations, delineating initiation of the tandem substitution by AID. Tandem substitutions comprised 5,7% of AID-induced mutations. The majority of tandem substitutions represents single nucleotide juxtalocations of directly adjacent sequences. These observations were confirmed in an independent cohort of healthy donors. We propose a model where tandem substitutions are predominantly generated by translesion synthesis across an apyramidinic site that is typically created by UNG. During replication, apyrimidinic sites transiently adapt an extruded configuration, causing skipping of the extruded base. Consequent strand decontraction leads to the juxtalocation, after which exonucleases repair the apyramidinic site and any directly adjacent mismatched base pairs. The mismatch repair pathway appears to account for the remainder of tandem substitutions. Tandem substitutions may enhance affinity maturation and expedite the adaptive immune response by overcoming amino acid codon degeneracies or mutating two adjacent amino acid residues simultaneously.
Collapse
Affiliation(s)
- Julieta H Sepúlveda-Yáñez
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
- School of Medicine, University of Magallanes, Punta Arenas, Chile
| | | | - Bas Pilzecker
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Mirjam van den Burg
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Marvyn T Koning
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
9
|
Feng Y, Li C, Stewart JA, Barbulescu P, Seija Desivo N, Álvarez-Quilón A, Pezo RC, Perera MLW, Chan K, Tong AHY, Mohamad-Ramshan R, Berru M, Nakib D, Li G, Kardar GA, Carlyle JR, Moffat J, Durocher D, Di Noia JM, Bhagwat AS, Martin A. FAM72A antagonizes UNG2 to promote mutagenic repair during antibody maturation. Nature 2021; 600:324-328. [PMID: 34819670 PMCID: PMC9425297 DOI: 10.1038/s41586-021-04144-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
Activation-induced cytidine deaminase (AID) catalyses the deamination of deoxycytidines to deoxyuracils within immunoglobulin genes to induce somatic hypermutation and class-switch recombination1,2. AID-generated deoxyuracils are recognized and processed by subverted base-excision and mismatch repair pathways that ensure a mutagenic outcome in B cells3-6. However, why these DNA repair pathways do not accurately repair AID-induced lesions remains unknown. Here, using a genome-wide CRISPR screen, we show that FAM72A is a major determinant for the error-prone processing of deoxyuracils. Fam72a-deficient CH12F3-2 B cells and primary B cells from Fam72a-/- mice exhibit reduced class-switch recombination and somatic hypermutation frequencies at immunoglobulin and Bcl6 genes, and reduced genome-wide deoxyuracils. The somatic hypermutation spectrum in B cells from Fam72a-/- mice is opposite to that observed in mice deficient in uracil DNA glycosylase 2 (UNG2)7, which suggests that UNG2 is hyperactive in FAM72A-deficient cells. Indeed, FAM72A binds to UNG2, resulting in reduced levels of UNG2 protein in the G1 phase of the cell cycle, coinciding with peak AID activity. FAM72A therefore causes U·G mispairs to persist into S phase, leading to error-prone processing by mismatch repair. By disabling the DNA repair pathways that normally efficiently remove deoxyuracils from DNA, FAM72A enables AID to exert its full effects on antibody maturation. This work has implications in cancer, as the overexpression of FAM72A that is observed in many cancers8 could promote mutagenesis.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Conglei Li
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | | | - Philip Barbulescu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Noé Seija Desivo
- Institut de recherches cliniques de Montréal, Montreal, Quebec, Canada
- Molecular Biology Programs, Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Alejandro Álvarez-Quilón
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Rossanna C Pezo
- Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Katherine Chan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Amy Hin Yan Tong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Maribel Berru
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Diana Nakib
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Gavin Li
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Gholam Ali Kardar
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - James R Carlyle
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Durocher
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Javier M Di Noia
- Institut de recherches cliniques de Montréal, Montreal, Quebec, Canada
- Molecular Biology Programs, Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Franklin A, Steele EJ. RNA-directed DNA repair and antibody somatic hypermutation. Trends Genet 2021; 38:426-436. [PMID: 34740453 DOI: 10.1016/j.tig.2021.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 10/19/2022]
Abstract
Somatic hypermutation at antibody loci affects both deoxyadenosine-deoxythymidine (A/T) and deoxycytidine-deoxyguanosine (C/G) pairs. Deamination of C to deoxyuridine (U) by activation-induced deaminase (AID) explains how mutation at C/G pairs is potentiated. Mutation at A/T pairs is triggered during the initial stages of repair of AID-generated U lesions and occurs through an as yet unknown mechanism in which polymerase η has a major role. Recent evidence confirms that human polymerase η can act as a reverse transcriptase. Here, we compare the popular suggestion of mutation at A/T pairs through nucleotide mispairing (owing to polymerase error) during short-patch repair synthesis with the alternative proposal of mutation at A/T pairs through RNA editing and RNA-directed DNA repair.
Collapse
Affiliation(s)
- Andrew Franklin
- Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland.
| | | |
Collapse
|
11
|
Nucleotide Pool Imbalance and Antibody Gene Diversification. Vaccines (Basel) 2021; 9:vaccines9101050. [PMID: 34696158 PMCID: PMC8538681 DOI: 10.3390/vaccines9101050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
The availability and adequate balance of deoxyribonucleoside triphosphate (dNTP) is an important determinant of both the fidelity and the processivity of DNA polymerases. Therefore, maintaining an optimal balance of the dNTP pool is critical for genomic stability in replicating and quiescent cells. Since DNA synthesis is required not only in genomic replication but also in DNA damage repair and recombination, the abnormalities in the dNTP pool affect a wide range of chromosomal activities. The generation of antibody diversity relies on antigen-independent V(D)J recombination, as well as antigen-dependent somatic hypermutation and class switch recombination. These processes involve diverse sets of DNA polymerases, which are affected by the dNTP pool imbalances. This review discusses the role of the optimal dNTP pool balance in the diversification of antibody encoding genes.
Collapse
|
12
|
Böttcher K, Braunschmidt K, Hirth G, Schärich K, Klassert TE, Stock M, Sorgatz J, Fischer-Burkart S, Ullrich S, Frankenberger S, Kritsch D, Kosan C, Küppers R, Strobl LJ, Slevogt H, Zimber-Strobl U, Jungnickel B. Context-dependent regulation of immunoglobulin mutagenesis by p53. Mol Immunol 2021; 138:128-136. [PMID: 34392111 DOI: 10.1016/j.molimm.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
p53 plays a major role in genome maintenance. In addition to multiple p53 functions in the control of DNA repair, a regulation of DNA damage bypass via translesion synthesis has been implied in vitro. Somatic hypermutation of immunoglobulin genes for affinity maturation of antibody responses is based on aberrant translesion polymerase action and must be subject to stringent control to prevent genetic alterations and lymphomagenesis. When studying the role of p53 in somatic hypermutation in vivo, we found altered translesion polymerase-mediated A:T mutagenesis in mice lacking p53 in all organs, but notably not in mice with B cell-specific p53 inactivation, implying that p53 functions in non-B cells may alter mutagenesis in B cells. During class switch recombination, when p53 prevents formation of chromosomal translocations, we in addition detected a B cell-intrinsic role for p53 in altering G:C and A:T mutagenesis. Thus, p53 regulates translesion polymerase activity and shows differential activity during somatic hypermutation versus class switch recombination in vivo. Finally, p53 inhibition leads to increased somatic hypermutation in human B lymphoma cells. We conclude that loss of p53 function may promote genetic instability via multiple routes during antibody diversification in vivo.
Collapse
Affiliation(s)
- Katrin Böttcher
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Kerstin Braunschmidt
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany; Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Gianna Hirth
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Karsten Schärich
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Tilman E Klassert
- Host Septomics, ZIK Septomics, Jena University Hospital, Jena, Germany.
| | - Magdalena Stock
- Host Septomics, ZIK Septomics, Jena University Hospital, Jena, Germany.
| | - Janine Sorgatz
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Sabine Fischer-Burkart
- Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Steffen Ullrich
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Samantha Frankenberger
- Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Daniel Kritsch
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany; Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Christian Kosan
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| | - Lothar J Strobl
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Hortense Slevogt
- Host Septomics, ZIK Septomics, Jena University Hospital, Jena, Germany.
| | - Ursula Zimber-Strobl
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany; Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| |
Collapse
|
13
|
Attaf N, Baaklini S, Binet L, Milpied P. Heterogeneity of germinal center B cells: New insights from single-cell studies. Eur J Immunol 2021; 51:2555-2567. [PMID: 34324199 DOI: 10.1002/eji.202149235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Upon antigen exposure, activated B cells in antigen-draining lymphoid organs form microanatomical structures, called germinal centers (GCs), where affinity maturation occurs. Within the GC microenvironment, GC B cells undergo proliferation and B cell receptor (BCR) genes somatic hypermutation in the dark zone (DZ), and affinity-based selection in the light zone (LZ). In the current paradigm of GC dynamics, high-affinity LZ B cells may be selected by cognate T- follicular helper cells to either differentiate into plasma cells or memory B cells, or re-enter the DZ and initiate a new round of proliferation and BCR diversification, before migrating back to the LZ. Given the diversity of cell states and potential cell fates that GC B cells may adopt, the two-state DZ-LZ paradigm has been challenged by studies that explored GC B-cell heterogeneity with a variety of single-cell technologies. Here, we review studies and single-cell technologies which have allowed to refine the working model of GC B-cell cellular and molecular heterogeneity during affinity maturation. This review also covers the use of single-cell quantitative data for mathematical modeling of GC reactions, and the application of single-cell genomics to the study of GC-derived malignancies.
Collapse
Affiliation(s)
- Noudjoud Attaf
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Sabrina Baaklini
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Laurine Binet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Pierre Milpied
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France.,French Germinal Center Club, French Society for Immunology (SFI), Paris, France
| |
Collapse
|
14
|
Bilal S, Etayo A, Hordvik I. Immunoglobulins in teleosts. Immunogenetics 2021; 73:65-77. [PMID: 33439286 DOI: 10.1007/s00251-020-01195-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
Immunoglobulins are glycoproteins which are produced as membrane-bound receptors on B-cells or in a secreted form, known as antibodies. In teleosts, three immunoglobulin isotypes, IgM, IgT, and IgD, are present, each comprising two identical heavy and two identical light polypeptide chains. The basic mechanisms for generation of immunoglobulin diversity are similar in teleosts and higher vertebrates. The B-cell pre-immune repertoire is diversified by VDJ recombination, junctional flexibility, addition of nucleotides, and combinatorial association of light and heavy chains, while the post-immune repertoire undergoes somatic hypermutation during clonal expansion. Typically, the teleost immunoglobulin heavy chain gene complex has a modified translocon arrangement where the Dτ-Jτ-Cτ cluster of IgT is generally located between the variable heavy chain (VH) region and the Dμ/δ-Jμ/δ-Cμ-Cδ gene segments, or within the set of VH gene segments. However, multiple genome duplication and deletion events and loss of some individual genes through evolution has complicated the IgH gene organization. The IgH gene arrangement allows the expression of either IgT or IgM/IgD. Alternative splicing is responsible for the regulation of IgM/IgD expression and the secreted versus transmembrane forms of IgT, IgD, and IgM. The overall structure of IgM and IgT is usually conserved across species, whereas IgD has a large variety of structures. IgM is the main effector molecule in both systemic and mucosal immunity and shows a broad range of concentrations in different teleost species. Although IgM is usually present in higher concentrations under normal conditions, IgT is considered the main mucosal Ig.
Collapse
Affiliation(s)
- Sumaira Bilal
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Angela Etayo
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ivar Hordvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
15
|
Shilkin ES, Boldinova EO, Stolyarenko AD, Goncharova RI, Chuprov-Netochin RN, Khairullin RF, Smal MP, Makarova AV. Translesion DNA Synthesis and Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2021; 85:425-435. [PMID: 32569550 DOI: 10.1134/s0006297920040033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tens of thousands of DNA lesions are formed in mammalian cells each day. DNA translesion synthesis is the main mechanism of cell defense against unrepaired DNA lesions. DNA polymerases iota (Pol ι), eta (Pol η), kappa (Pol κ), and zeta (Pol ζ) have active sites that are less stringent toward the DNA template structure and efficiently incorporate nucleotides opposite DNA lesions. However, these polymerases display low accuracy of DNA synthesis and can introduce mutations in genomic DNA. Impaired functioning of these enzymes can lead to an increased risk of cancer.
Collapse
Affiliation(s)
- E S Shilkin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - E O Boldinova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - R I Goncharova
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - R N Chuprov-Netochin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - R F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420012, Russia
| | - M P Smal
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus.
| | - A V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
16
|
Perdiguero P, Martín-Martín A, Benedicenti O, Díaz-Rosales P, Morel E, Muñoz-Atienza E, García-Flores M, Simón R, Soleto I, Cerutti A, Tafalla C. Teleost IgD +IgM - B Cells Mount Clonally Expanded and Mildly Mutated Intestinal IgD Responses in the Absence of Lymphoid Follicles. Cell Rep 2020; 29:4223-4235.e5. [PMID: 31875534 PMCID: PMC6941218 DOI: 10.1016/j.celrep.2019.11.101] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/19/2019] [Accepted: 11/25/2019] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin D (IgD) is an ancient antibody with dual membrane-bound and fluid-phase antigen receptor functions. The biology of secreted IgD remains elusive. Here, we demonstrate that teleost IgD+IgM− plasmablasts constitute a major lymphocyte population in some mucosal surfaces, including the gut mucosa. Remarkably, secreted IgD binds to gut commensal bacteria, which in turn stimulate IgD gene transcription in gut B cells. Accordingly, secreted IgD from gut as well as gill mucosae, but not the spleen, show a V(D)J gene configuration consistent with microbiota-driven clonal expansion and diversification, including mild somatic hypermutation. By showing that secreted IgD establishes a mutualistic relationship with commensals, our findings suggest that secreted IgD may play an evolutionary conserved role in mucosal homeostasis. IgD+IgM− B cells constitute the main non-IgT B cell subset in rainbow trout guts Gut IgD responses establish a two-way interaction with the local microbiota Mucosal but not splenic IgD undergoes clonal expansion and diversification Despite the lack of germinal centers, mucosal IgD is mildly mutated in rainbow trout
Collapse
Affiliation(s)
- Pedro Perdiguero
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Alba Martín-Martín
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | | | | | - Esther Morel
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | | | | | - Rocío Simón
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Irene Soleto
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Andrea Cerutti
- Catalan Institute for Research and Advanced Studies (ICREA), 08003 Barcelona, Spain; Inflammatory and Cardiovascular Disorders Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Carolina Tafalla
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain.
| |
Collapse
|
17
|
Nguyen DT, Wu B, Xiao S, Hao W. Evolution of a Record-Setting AT-Rich Genome: Indel Mutation, Recombination, and Substitution Bias. Genome Biol Evol 2020; 12:2344-2354. [PMID: 32986811 PMCID: PMC7846184 DOI: 10.1093/gbe/evaa202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2020] [Indexed: 12/16/2022] Open
Abstract
Genome-wide nucleotide composition varies widely among species. Despite extensive research, the source of genome-wide nucleotide composition diversity remains elusive. Yeast mitochondrial genomes (mitogenomes) are highly A + T rich, and they provide a unique opportunity to study the evolution of AT-biased landscape. In this study, we sequenced ten complete mitogenomes of the Saccharomycodes ludwigii yeast with 8% G + C content, the lowest genome-wide %(G + C) in all published genomes to date. The S. ludwigii mitogenomes have high densities of short tandem repeats but severely underrepresented mononucleotide repeats. Comparative population genomics of these record-setting A + T-rich genomes shows dynamic indel mutations and strong mutation bias toward A/T. Indel mutations play a greater role in genomic variation among very closely related strains than nucleotide substitutions. Indels have resulted in presence–absence polymorphism of tRNAArg (ACG) among S. ludwigii mitogenomes. Interestingly, these mitogenomes have undergone recombination, a genetic process that can increase G + C content by GC-biased gene conversion. Finally, the expected equilibrium G + C content under mutation pressure alone is higher than observed G + C content, suggesting existence of mechanisms other than AT-biased mutation operating to increase A/T. Together, our findings shed new lights on mechanisms driving extremely AT-rich genomes.
Collapse
Affiliation(s)
- Duong T Nguyen
- Department of Biological Sciences, Wayne State University
| | - Baojun Wu
- Department of Biological Sciences, Wayne State University
| | - Shujie Xiao
- Department of Biological Sciences, Wayne State University
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University
| |
Collapse
|
18
|
Franklin A, Steele EJ, Lindley RA. A proposed reverse transcription mechanism for (CAG)n and similar expandable repeats that cause neurological and other diseases. Heliyon 2020; 6:e03258. [PMID: 32140575 PMCID: PMC7044655 DOI: 10.1016/j.heliyon.2020.e03258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/26/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanism of (CAG)n repeat generation, and related expandable repeat diseases in non-dividing cells, is currently understood in terms of a DNA template-based DNA repair synthesis process involving hairpin stabilized slippage, local error-prone repair via MutSβ (MSH2-MSH3) hairpin protective stabilization, then nascent strand extension by DNA polymerases-β and -δ. We advance a very similar slipped hairpin-stabilized model involving MSH2-MSH3 with two key differences: the copying template may also be the nascent pre-mRNA with the repair pathway being mediated by the Y-family error-prone enzymes DNA polymerase-η and DNA polymerase-κ acting as reverse transcriptases. We argue that both DNA-based and RNA-based mechanisms could well be activated in affected non-dividing brain cells in vivo. Here, we compare the advantages of the RNA/RT-based model proposed by us as an adjunct to previously proposed models. In brief, our model depends upon dysregulated innate and adaptive immunity cascades involving AID/APOBEC and ADAR deaminases that are known to be involved in normal locus-specific immunoglobulin somatic hypermutation, cancer progression and somatic mutations at many off-target non-immunoglobulin sites across the genome: we explain how these processes could also play an active role in repeat expansion diseases at RNA polymerase II-transcribed genes.
Collapse
Affiliation(s)
- Andrew Franklin
- Medical Department, Novartis Pharmaceuticals UK Limited, 200 Frimley Business Park, Frimley, Surrey, GU16 7SR, United Kingdom
| | - Edward J. Steele
- Melville Analytics Pty Ltd, Melbourne, Vic, 3004, Australia
- CYO’Connor ERADE Village Foundation, Perth, WA, Australia
| | - Robyn A. Lindley
- GMDxgenomics, Melbourne, Vic, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Vic, Australia
| |
Collapse
|
19
|
Choi JE, Matthews AJ, Michel G, Vuong BQ. AID Phosphorylation Regulates Mismatch Repair-Dependent Class Switch Recombination and Affinity Maturation. THE JOURNAL OF IMMUNOLOGY 2020; 204:13-22. [PMID: 31757865 DOI: 10.4049/jimmunol.1900809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023]
Abstract
Activation-induced cytidine deaminase (AID) generates U:G mismatches in Ig genes that can be converted into untemplated mutations during somatic hypermutation or DNA double-strand breaks during class switch recombination (CSR). Null mutations in UNG and MSH2 demonstrate the complementary roles of the base excision repair (BER) and mismatch repair pathways, respectively, in CSR. Phosphorylation of AID at serine 38 was previously hypothesized to regulate BER during CSR, as the AID phosphorylation mutant, AID(S38A), cannot interact with APE1, a BER protein. Consistent with these findings, we observe a complete block in CSR in AIDS38A/S38AMSH2-/- mouse B cells that correlates with an impaired mutation frequency at 5'Sμ. Similarly, somatic hypermutation is almost negligible at the JH4 intron in AIDS38A/S38AMSH2-/- mouse B cells, and, consistent with this, NP-specific affinity maturation in AIDS38A/S38AMSH2-/- mice is not significantly elevated in response to NP-CGG immunization. Surprisingly, AIDS38A/S38AUNG-/- mouse B cells also cannot complete CSR or affinity maturation despite accumulating significant mutations in 5'Sμ as well as the JH4 intron. These data identify a novel role for phosphorylation of AID at serine 38 in mismatch repair-dependent CSR and affinity maturation.
Collapse
Affiliation(s)
- Jee Eun Choi
- The City College of New York, The City University of New York, New York, NY 10031; and
| | - Allysia J Matthews
- The City College of New York, The City University of New York, New York, NY 10031; and
| | - Genesis Michel
- The City College of New York, The City University of New York, New York, NY 10031; and
| | - Bao Q Vuong
- The Graduate Center, The City University of New York, New York, NY 10016
| |
Collapse
|
20
|
Zhu Z, Zhu X, Liu CL, Shi H, Shen S, Yang Y, Hasegawa K, Camargo CA, Liang L. Shared genetics of asthma and mental health disorders: a large-scale genome-wide cross-trait analysis. Eur Respir J 2019; 54:13993003.01507-2019. [PMID: 31619474 DOI: 10.1183/13993003.01507-2019] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
Epidemiological studies demonstrate an association between asthma and mental health disorders, although little is known about the shared genetics and causality of this association. Thus, we aimed to investigate shared genetics and the causal link between asthma and mental health disorders.We conducted a large-scale genome-wide cross-trait association study to investigate genetic overlap between asthma from the UK Biobank and eight mental health disorders from the Psychiatric Genomics Consortium: attention deficit hyperactivity disorder (ADHD), anxiety disorder (ANX), autism spectrum disorder, bipolar disorder, eating disorder, major depressive disorder (MDD), post-traumatic stress disorder and schizophrenia (sample size 9537-394 283).In the single-trait genome-wide association analysis, we replicated 130 previously reported loci and discovered 31 novel independent loci that are associated with asthma. We identified that ADHD, ANX and MDD have a strong genetic correlation with asthma at the genome-wide level. Cross-trait meta-analysis identified seven loci jointly associated with asthma and ADHD, one locus with asthma and ANX, and 10 loci with asthma and MDD. Functional analysis revealed that the identified variants regulated gene expression in major tissues belonging to the exocrine/endocrine, digestive, respiratory and haemic/immune systems. Mendelian randomisation analyses suggested that ADHD and MDD (including 6.7% sample overlap with asthma) might increase the risk of asthma.This large-scale genome-wide cross-trait analysis identified shared genetics and potential causal links between asthma and three mental health disorders (ADHD, ANX and MDD). Such shared genetics implicate potential new biological functions that are in common among them.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA .,Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Dept of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xi Zhu
- Dept of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Cong-Lin Liu
- Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Huwenbo Shi
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sipeng Shen
- Dept of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yunqi Yang
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kohei Hasegawa
- Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Dept of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Dept of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Dept of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
21
|
Heltzel JMH, Gearhart PJ. What Targets Somatic Hypermutation to the Immunoglobulin Loci? Viral Immunol 2019; 33:277-281. [PMID: 31770070 DOI: 10.1089/vim.2019.0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the most profound enigmas in B cell biology is how activation-induced deaminase (AID) is targeted to a very small region of DNA in the immunoglobulin loci. Two specific regions are singled out: the variable region of 2 kb that contains rearranged genes on the heavy, κ light, and λ light chain loci, and the switch region of ∼4 kb that contains an extensive stretch of G:C rich DNA on the heavy chain locus. Transcription is required for AID recruitment; however, many genes are also highly transcribed and do not undergo the catastrophic mutagenesis that occurs in variable and switch regions. The DNA sequences of these regions cause RNA polymerase II to accumulate for an extended distance of 2-4 kb. The stalled polymerases then recruit the transcription cofactor Spt5, and AID, which deaminates cytosines to uracils in exposed transcription bubbles. Thus, the immunoglobulin loci are unique in that a favorable combination of DNA sequences and 3' transcription enhancers make them the perfect storm for AID-induced somatic hypermutation.
Collapse
Affiliation(s)
- Justin M H Heltzel
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
22
|
IJspeert H, van Schouwenburg PA, Pico-Knijnenburg I, Loeffen J, Brugieres L, Driessen GJ, Blattmann C, Suerink M, Januszkiewicz-Lewandowska D, Azizi AA, Seidel MG, Jacobs H, van der Burg M. Repertoire Sequencing of B Cells Elucidates the Role of UNG and Mismatch Repair Proteins in Somatic Hypermutation in Humans. Front Immunol 2019; 10:1913. [PMID: 31507588 PMCID: PMC6718458 DOI: 10.3389/fimmu.2019.01913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 01/12/2023] Open
Abstract
The generation of high-affinity antibodies depends on somatic hypermutation (SHM). SHM is initiated by the activation-induced cytidine deaminase (AID), which generates uracil (U) lesions in the B-cell receptor (BCR) encoding genes. Error-prone processing of U lesions creates a typical spectrum of point mutations during SHM. The aim of this study was to determine the molecular mechanism of SHM in humans; currently available knowledge is limited by the number of mutations analyzed per patient. We collected a unique cohort of 10 well-defined patients with bi-allelic mutations in genes involved in base excision repair (BER) (UNG) or mismatch repair (MMR) (MSH2, MSH6, or PMS2) and are the first to present next-generation sequencing (NGS) data of the BCR, allowing us to study SHM extensively in humans. Analysis using ARGalaxy revealed selective skewing of SHM mutation patterns specific for each genetic defect, which are in line with the five-pathway model of SHM that was recently proposed based on mice data. However, trans-species comparison revealed differences in the role of PMS2 and MSH2 in strand targeting between mice and man. In conclusion, our results indicate a role for UNG, MSH2, MSH6, and PMS2 in the generation of SHM in humans comparable to their function in mice. However, we observed differences in strand targeting between humans and mice, emphasizing the importance of studying molecular mechanisms in a human setting. The here developed method combining NGS and ARGalaxy analysis of BCR mutation data forms the basis for efficient SHM analyses of other immune deficiencies.
Collapse
Affiliation(s)
- Hanna IJspeert
- Department of Immunology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands.,Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Pauline A van Schouwenburg
- Department of Immunology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ingrid Pico-Knijnenburg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Loeffen
- Department of Pediatric Oncology and Hematology, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, Netherlands
| | - Laurence Brugieres
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Gertjan J Driessen
- Department of Paediatrics, Juliana Children's Hospital, Haga Teaching Hospital, The Hague, Netherlands
| | - Claudia Blattmann
- Department of Pediatric Hematology and Oncology, Palliative Care, Olgahospital Klinikum Stuttgart, Stuttgart, Germany
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Marcus G Seidel
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
23
|
Abstract
DNA contains information that must be safeguarded, but also accessed for transcription and replication. To perform replication, eukaryotic cells use the B-family DNA polymerase enzymes Polδ and Polɛ, which are optimized for accuracy, speed, and processivity. The molecular basis of these high-performance characteristics causes these replicative polymerases to fail at sites of DNA damage (lesions), which would lead to genomic instability and cell death. To avoid this, cells possess additional DNA polymerases such as the Y-family of polymerases and the B-family member Polζ that can replicate over sites of DNA damage in a process called translesion synthesis (TLS). While able to replicate over DNA lesions, the TLS polymerases exhibit low-fidelity on undamaged DNA and, consequently, must be prevented from replicating DNA under normal circumstances and recruited only when necessary. The replicative bypass of most types of DNA lesions requires the consecutive action of these specialized TLS polymerases assembled into a dynamic multiprotein complex called the Rev1/Polζ mutasome. To this end, posttranslational modifications and a network of protein-protein interactions mediated by accessory domains/subunits of the TLS polymerases control the assembly and rearrangements of the Rev1/Polζ mutasome and recruitment of TLS proteins to sites of DNA damage. This chapter focuses on the structures and interactions that control these processes underlying the function of the Rev1/Polζ mutasome, as well as the development of small molecule inhibitors of the Rev1/Polζ-dependent TLS holding promise as a potential anticancer therapy.
Collapse
Affiliation(s)
- Alessandro A Rizzo
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, United States
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, United States.
| |
Collapse
|
24
|
Pilzecker B, Jacobs H. Mutating for Good: DNA Damage Responses During Somatic Hypermutation. Front Immunol 2019; 10:438. [PMID: 30915081 PMCID: PMC6423074 DOI: 10.3389/fimmu.2019.00438] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes plays a key role in antibody mediated immunity. SHM in B cells provides the molecular basis for affinity maturation of antibodies. In this way SHM is key in optimizing antibody dependent immune responses. SHM is initiated by targeting the Activation-Induced Cytidine Deaminase (AID) to rearranged V(D)J and switch regions of Ig genes. The mutation rate of this programmed mutagenesis is ~10-3 base pairs per generation, a million-fold higher than the non-AID targeted genome of B cells. AID is a processive enzyme that binds single-stranded DNA and deaminates cytosines in DNA. Cytosine deamination generates highly mutagenic deoxy-uracil (U) in the DNA of both strands of the Ig loci. Mutagenic processing of the U by the DNA damage response generates the entire spectrum of base substitutions characterizing SHM at and around the initial U lesion. Starting from the U as a primary lesion, currently five mutagenic DNA damage response pathways have been identified in generating a well-defined SHM spectrum of C/G transitions, C/G transversions, and A/T mutations around this initial lesion. These pathways include (1) replication opposite template U generates transitions at C/G, (2) UNG2-dependent translesion synthesis (TLS) generates transversions at C/G, (3) a hybrid pathway comprising non-canonical mismatch repair (ncMMR) and UNG2-dependent TLS generates transversions at C/G, (4) ncMMR generates mutations at A/T, and (5) UNG2- and PCNA Ubiquitination (PCNA-Ub)-dependent mutations at A/T. Furthermore, specific strand-biases of SHM spectra arise as a consequence of a biased AID targeting, ncMMR, and anti-mutagenic repriming. Here, we review mammalian SHM with special focus on the mutagenic DNA damage response pathways involved in processing AID induced Us, the origin of characteristic strand biases, and relevance of the cell cycle.
Collapse
Affiliation(s)
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
25
|
van Schouwenburg PA, IJspeert H, Pico-Knijnenburg I, Dalm VASH, van Hagen PM, van Zessen D, Stubbs AP, Patel SY, van der Burg M. Identification of CVID Patients With Defects in Immune Repertoire Formation or Specification. Front Immunol 2018; 9:2545. [PMID: 30532750 PMCID: PMC6265514 DOI: 10.3389/fimmu.2018.02545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023] Open
Abstract
Common variable immune deficiency disorder (CVID) is the most clinically relevant cause of antibody failure. It is a highly heterogeneous disease with different underlying etiologies. CVID has been associated with a quantitative B cell defect, however, little is known about the quality of B cells present. Here, we studied the naïve and antigen selected B-cell receptor (BCR) repertoire in 33 CVID patients using next generation sequencing, to investigate B cells quality. Analysis for each individual patient revealed whether they have a defect in immune repertoire formation [V(D)J recombination] or specification (somatic hypermutation, subclass distribution, or selection). The naïve BCR repertoire was normal in most of the patients, although alterations in repertoire diversity and the junctions were found in a limited number of patients indicating possible defects in early B-cell development or V(D)J recombination in these patients. In contrast, major differences were found in the antigen selected BCR repertoire. Here, most patients (15/17) showed a reduced frequency of somatic hypermutation (SHM), changes in subclass distribution and/or minor alterations in antigen selection. Together these data show that in our CVID cohort only a small number of patients have a defect in formation of the naïve BCR repertoire, whereas the clear majority of patients have disturbances in their antigen selected repertoire, suggesting a defect in repertoire specification in the germinal centers of these patients. This highlights that CVID patients not only have a quantitative B cell defect, but that also the quality of, especially post germinal center B cells, is impaired.
Collapse
Affiliation(s)
| | - Hanna IJspeert
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | | | - Virgil A S H Dalm
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Division of Clinical Immunology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - P Martin van Hagen
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Division of Clinical Immunology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - David van Zessen
- Clinical Bioinformatics Unit, Department of Pathology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Andrew P Stubbs
- Clinical Bioinformatics Unit, Department of Pathology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Smita Y Patel
- Nuffield Department of Clinical Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
26
|
The active site residues Gln55 and Arg73 play a key role in DNA damage bypass by S. cerevisiae Pol η. Sci Rep 2018; 8:10314. [PMID: 29985422 PMCID: PMC6037775 DOI: 10.1038/s41598-018-28664-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic DNA polymerase eta (Pol η) plays a key role in the efficient and accurate DNA translesion synthesis (TLS) opposite UV-induced thymine dimers. Pol η is also involved in bypass of many other DNA lesions but possesses low fidelity on undamaged DNA templates. To better understand the mechanism of DNA synthesis by Pol η we investigated substitutions of evolutionary conserved active site residues Gln55 and Arg73 in Saccharomyces cerevisiae Pol η. We analyzed the efficiency and fidelity of DNA synthesis by the mutant Pol η variants opposite thymine dimers, abasic site, thymine glycol, 8-oxoguanine and on undamaged DNA. Substitutions Q55A and R73A decreased the catalytic activity and significantly affected DNA damage bypass by Pol η. In particular, the Q55A substitution reduced the efficiency of thymine dimers bypass, R73A had a stronger effect on the TLS-activity opposite abasic site, while both substitutions impaired replication opposite thymine glycol. Importantly, the R73A substitution also increased the fidelity of Pol η. Altogether, these results reveal a key role of residues Gln55 and Arg73 in DNA synthesis opposite various types of DNA lesions and highlight the evolutionary importance of the Pol η TLS function at the cost of DNA replication accuracy.
Collapse
|
27
|
Abos B, Estensoro I, Perdiguero P, Faber M, Hu Y, Díaz Rosales P, Granja AG, Secombes CJ, Holland JW, Tafalla C. Dysregulation of B Cell Activity During Proliferative Kidney Disease in Rainbow Trout. Front Immunol 2018; 9:1203. [PMID: 29904385 PMCID: PMC5990594 DOI: 10.3389/fimmu.2018.01203] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/14/2018] [Indexed: 11/15/2022] Open
Abstract
Proliferative kidney disease (PKD) is a widespread disease caused by the endoparasite Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea). Clinical disease, provoked by the proliferation of extrasporogonic parasite stages, is characterized by a chronic kidney pathology with underlying transcriptional changes indicative of altered B cell responses and dysregulated T-helper cell-like activities. Despite the relevance of PKD to European and North American salmonid aquaculture, no studies, to date, have focused on further characterizing the B cell response during the course of this disease. Thus, in this work, we have studied the behavior of diverse B cell populations in rainbow trout (Oncorhynchus mykiss) naturally infected with T. bryosalmonae at different stages of preclinical and clinical disease. Our results show a clear upregulation of all trout immunoglobulins (Igs) (IgM, IgD, and IgT) demonstrated by immunohistochemistry and Western blot analysis, suggesting the alteration of diverse B cell populations that coexist in the infected kidney. Substantial changes in IgM, IgD, and IgT repertoires were also identified throughout the course of the disease further pointing to the involvement of the three Igs in PKD through what appear to be independently regulated mechanisms. Thus, our results provide strong evidence of the involvement of IgD in the humoral response to a specific pathogen for the first time in teleosts. Nevertheless, it was IgT, a fish-specific Ig isotype thought to be specialized in mucosal immunity, which seemed to play a prevailing role in the kidney response to T. bryosalmonae. We found that IgT was the main Ig coating extrasporogonic parasite stages, IgT+ B cells were the main B cell subset that proliferated in the kidney with increasing kidney pathology, and IgT was the Ig for which more significant changes in repertoire were detected. Hence, although our results demonstrate a profound dysregulation of different B cell subsets during PKD, they point to a major involvement of IgT in the immune response to the parasite. These results provide further insights into the pathology of PKD that may facilitate the future development of control strategies.
Collapse
Affiliation(s)
- Beatriz Abos
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Itziar Estensoro
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain.,Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Madrid, Spain
| | - Pedro Perdiguero
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Marc Faber
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Yehfang Hu
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Aitor G Granja
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| |
Collapse
|
28
|
SAMHD1 enhances immunoglobulin hypermutation by promoting transversion mutation. Proc Natl Acad Sci U S A 2018; 115:4921-4926. [PMID: 29669924 DOI: 10.1073/pnas.1719771115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Activation-induced deaminase (AID) initiates hypermutation of Ig genes in activated B cells by converting C:G into U:G base pairs. G1-phase variants of uracil base excision repair (BER) and mismatch repair (MMR) then deploy translesion polymerases including REV1 and Pol η, which exacerbates mutation. dNTP paucity may contribute to hypermutation, because dNTP levels are reduced in G1 phase to inhibit viral replication. To derestrict G1-phase dNTP supply, we CRISPR-inactivated SAMHD1 (which degrades dNTPs) in germinal center B cells. Samhd1 inactivation increased B cell virus susceptibility, increased transition mutations at C:G base pairs, and substantially decreased transversion mutations at A:T and C:G base pairs in both strands. We conclude that SAMHD1's restriction of dNTP supply enhances AID's mutagenicity and that the evolution of Ig hypermutation included the repurposing of antiviral mechanisms based on dNTP starvation.
Collapse
|
29
|
Steele EJ. Reverse Transcriptase Mechanism of Somatic Hypermutation: 60 Years of Clonal Selection Theory. Front Immunol 2017; 8:1611. [PMID: 29218047 PMCID: PMC5704389 DOI: 10.3389/fimmu.2017.01611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/07/2017] [Indexed: 01/24/2023] Open
Abstract
The evidence for the reverse transcriptase mechanism of somatic hypermutation is substantial and multifactorial. In this 60th anniversary year of the publication of Sir MacFarlane Burnet's Clonal Selection Theory, the evidence is briefly reviewed and updated.
Collapse
Affiliation(s)
- Edward J. Steele
- CYO’Connor ERADE Village Foundation Inc., Piara Waters, WA, Australia
| |
Collapse
|
30
|
Abstract
Bloom's syndrome (BS) is an autosomal recessive disease, caused by mutations in the BLM gene. This gene codes for BLM protein, which is a helicase involved in DNA repair. DNA repair is especially important for the development and maturation of the T and B cells. Since BLM is involved in DNA repair, we aimed to study if BLM deficiency affects T and B cell development and especially somatic hypermutation (SHM) and class switch recombination (CSR) processes. Clinical data of six BS patients was collected, and immunoglobulin serum levels were measured at different time points. In addition, we performed immune phenotyping of the B and T cells and analyzed the SHM and CSR in detail by analyzing IGHA and IGHG transcripts using next-generation sequencing. The serum immunoglobulin levels were relatively low, and patients had an increased number of infections. The absolute number of T, B, and NK cells were low but still in the normal range. Remarkably, all BS patients studied had a high percentage (20-80%) of CD4+ and CD8+ effector memory T cells. The process of SHM seems normal; however, the Ig subclass distribution was not normal, since the BS patients had more IGHG1 and IGHG3 transcripts. In conclusion, BS patients have low number of lymphocytes, but the immunodeficiency seems relatively mild since they have no severe or opportunistic infections. Most changes in the B cell development were seen in the CSR process; however, further studies are necessary to elucidate the exact role of BLM in CSR.
Collapse
|
31
|
Bahjat M, Guikema JEJ. The Complex Interplay between DNA Injury and Repair in Enzymatically Induced Mutagenesis and DNA Damage in B Lymphocytes. Int J Mol Sci 2017; 18:ijms18091876. [PMID: 28867784 PMCID: PMC5618525 DOI: 10.3390/ijms18091876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
Lymphocytes are endowed with unique and specialized enzymatic mutagenic properties that allow them to diversify their antigen receptors, which are crucial sensors for pathogens and mediators of adaptive immunity. During lymphocyte development, the antigen receptors expressed by B and T lymphocytes are assembled in an antigen-independent fashion by ordered variable gene segment recombinations (V(D)J recombination), which is a highly ordered and regulated process that requires the recombination activating gene products 1 & 2 (RAG1, RAG2). Upon activation by antigen, B lymphocytes undergo additional diversifications of their immunoglobulin B-cell receptors. Enzymatically induced somatic hypermutation (SHM) and immunoglobulin class switch recombination (CSR) improves the affinity for antigen and shape the effector function of the humoral immune response, respectively. The activation-induced cytidine deaminase (AID) enzyme is crucial for both SHM and CSR. These processes have evolved to both utilize as well as evade different DNA repair and DNA damage response pathways. The delicate balance between enzymatic mutagenesis and DNA repair is crucial for effective immune responses and the maintenance of genomic integrity. Not surprisingly, disturbances in this balance are at the basis of lymphoid malignancies by provoking the formation of oncogenic mutations and chromosomal aberrations. In this review, we discuss recent mechanistic insight into the regulation of RAG1/2 and AID expression and activity in lymphocytes and the complex interplay between these mutagenic enzymes and DNA repair and DNA damage response pathways, focusing on the base excision repair and mismatch repair pathways. We discuss how disturbances of this interplay induce genomic instability and contribute to oncogenesis.
Collapse
Affiliation(s)
- Mahnoush Bahjat
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
32
|
Thientosapol ES, Sharbeen G, Lau KKE, Bosnjak D, Durack T, Stevanovski I, Weninger W, Jolly CJ. Proximity to AGCT sequences dictates MMR-independent versus MMR-dependent mechanisms for AID-induced mutation via UNG2. Nucleic Acids Res 2017; 45:3146-3157. [PMID: 28039326 PMCID: PMC5389528 DOI: 10.1093/nar/gkw1300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022] Open
Abstract
AID deaminates C to U in either strand of Ig genes, exclusively producing C:G/G:C to T:A/A:T transition mutations if U is left unrepaired. Error-prone processing by UNG2 or mismatch repair diversifies mutation, predominantly at C:G or A:T base pairs, respectively. Here, we show that transversions at C:G base pairs occur by two distinct processing pathways that are dictated by sequence context. Within and near AGCT mutation hotspots, transversion mutation at C:G was driven by UNG2 without requirement for mismatch repair. Deaminations in AGCT were refractive both to processing by UNG2 and to high-fidelity base excision repair (BER) downstream of UNG2, regardless of mismatch repair activity. We propose that AGCT sequences resist faithful BER because they bind BER-inhibitory protein(s) and/or because hemi-deaminated AGCT motifs innately form a BER-resistant DNA structure. Distal to AGCT sequences, transversions at G were largely co-dependent on UNG2 and mismatch repair. We propose that AGCT-distal transversions are produced when apyrimidinic sites are exposed in mismatch excision patches, because completion of mismatch repair would require bypass of these sites.
Collapse
Affiliation(s)
- Eddy Sanchai Thientosapol
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - George Sharbeen
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - K K Edwin Lau
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Daniel Bosnjak
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Timothy Durack
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Igor Stevanovski
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Wolfgang Weninger
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Christopher J Jolly
- Centenary Institute, Royal Prince Alfred Hospital, Camperdown NSW 2050, and Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
33
|
Supek F, Lehner B. Clustered Mutation Signatures Reveal that Error-Prone DNA Repair Targets Mutations to Active Genes. Cell 2017; 170:534-547.e23. [PMID: 28753428 DOI: 10.1016/j.cell.2017.07.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/17/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations.
Collapse
Affiliation(s)
- Fran Supek
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Division of Electronics, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Ben Lehner
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
34
|
De Palma A, Morren MA, Ged C, Pouvelle C, Taïeb A, Aoufouchi S, Sarasin A. Diagnosis of Xeroderma pigmentosum variant in a young patient with two novel mutations in the POLH gene. Am J Med Genet A 2017; 173:2511-2516. [PMID: 28688171 DOI: 10.1002/ajmg.a.38340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
We describe the characterization of Xeroderma Pigmentosum variant (XPV) in a young Caucasian patient with phototype I, who exhibited a high sensitivity to sunburn and multiple cutaneous tumors at the age of 15 years. Two novel mutations in the POLH gene, which encodes the translesion DNA polymerase η, with loss of function due to two independent exon skippings, are reported to be associated as a compound heterozygous state in the patient. Western blot analysis performed on proteins from dermal fibroblasts derived from the patient and analysis of the mutation spectrum on immunoglobulin genes produced during the somatic hypermutation process in his memory B cells, show the total absence of translesion polymerase η activity in the patient. The total lack of Polη activity, necessary to bypass in an error-free manner UVR-induced pyrimidine dimers following sun exposure, explains the early unusual clinical appearance of this patient.
Collapse
Affiliation(s)
- Armando De Palma
- Department of Dermatology, University hospitals Leuven, Leuven, Belgium
| | - Marie-Anne Morren
- Department of Dermatology, University hospitals Leuven, Leuven, Belgium
| | - Cécile Ged
- Unité INSERM U1035 and Center de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Caroline Pouvelle
- Laboratory of Genetic Instability and Oncogenesis, UMR8200 CNRS, Gustave Roussy, Université Paris-Sud, Villejuif, France
| | - Alain Taïeb
- Unité INSERM U1035 and Center de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Said Aoufouchi
- Laboratory of Genetic Instability and Oncogenesis, UMR8200 CNRS, Gustave Roussy, Université Paris-Sud, Villejuif, France.,Université Pierre et Marie Curie, Paris, France
| | - Alain Sarasin
- Laboratory of Genetic Instability and Oncogenesis, UMR8200 CNRS, Gustave Roussy, Université Paris-Sud, Villejuif, France
| |
Collapse
|
35
|
Steele EJ, Lindley RA. ADAR deaminase A-to-I editing of DNA and RNA moieties of RNA:DNA hybrids has implications for the mechanism of Ig somatic hypermutation. DNA Repair (Amst) 2017; 55:1-6. [PMID: 28482199 DOI: 10.1016/j.dnarep.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 11/16/2022]
Abstract
The implications are discussed of recently published biochemical studies on ADAR-mediated A-to-I DNA and RNA deamination at RNA:DNA hybrids. The significance of these data are related to previous work on strand-biased and codon-context mutation signatures in B lymphocytes and cancer genomes. Those studies have established that there are two significant strand biases at A:T and G:C base pairs, A-site mutations exceed T-site mutations (A>>T) by 2.9 fold and G-site mutations exceed C-site mutations (G>>C) by 1.7 fold. Both these strand biases are inconsistent with alternative "DNA Deamination" mechanisms, yet are expected consequences of the RNA/RT-based "Reverse Transcriptase" mechanism of immunoglobulin (Ig) somatic hypermutation (SHM). The A-to-I DNA editing component at RNA:DNA hybrids that is likely to occur in Transcription Bubbles, while important, is of far lower A-to-I editing efficiency than in dsRNA substrates. The RNA moiety of RNA:DNA hybrids is also edited at similar lower frequencies relative to the editing rate at dsRNA substrates. Further, if the A-to-I DNA editing at RNA:DNA hybrids were the sole cause of A-to-I (read as A-to-G) mutation events for Ig SHM in vivo then the exact opposite strand biases at A:T base pairs (T>>A) of what is actually observed (A>>T) would be predicted. It is concluded that the strand-biased somatic mutation patterns at both A:T and G:C base pairs in vivo are best interpreted by the sequential steps of the RNA/RT-based mechanism. Further, the direct DNA A-to-I deamination at Transcription Bubbles is expected to contribute to the T-to-C component of the strand-biased Ig SHM spectrum.
Collapse
Affiliation(s)
- Edward J Steele
- CYO'Connor ERADE Village Foundation Inc., Piara Waters, WA, Australia.
| | - Robyn A Lindley
- GMDxCo Pty Ltd., Hawthorn Vic, Australia; Department of Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne Vic, Australia
| |
Collapse
|
36
|
Deconstructing the germinal center, one cell at a time. Curr Opin Immunol 2017; 45:112-118. [PMID: 28319730 DOI: 10.1016/j.coi.2017.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
Successful vaccination relies on driving the immune response towards high specificity, affinity and longevity. Germinal centers facilitate the evolution of antigen-specific B cells by iterative rounds of diversification, selection, and differentiation to memory and plasma cells. Experimental evidence points to B cell receptor affinity and amount of antigen presented to follicular helper T cells as main drivers of clonal evolution. Concurrent studies suggest that modifiers of cognate contact, temporal mechanisms, and stochastic factors can also shape diversity and influence differentiation to memory and plasma cells, but molecular pathways driving these selection decisions are unresolved. Due to rapid cycles of transcriptional change in the germinal center, single-cell resolution is imperative to dissect mechanisms dictating the mature antigen-specific repertoire. Future studies linking high-resolution analysis of this diverse evolving population with cellular outcome are needed to fully understand the complex mechanisms of selection driving antigen-specific humoral immunity.
Collapse
|
37
|
Girelli Zubani G, Zivojnovic M, De Smet A, Albagli-Curiel O, Huetz F, Weill JC, Reynaud CA, Storck S. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs. J Exp Med 2017; 214:1169-1180. [PMID: 28283534 PMCID: PMC5379981 DOI: 10.1084/jem.20161576] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
Girelli Zubani et al. show that the Pms2 component of the mismatch repair complex and multiple uracil glycosylases contribute, each with a distinct strand bias, to enlarge the Ig gene mutation spectrum from G-C to A-T bases. During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung−/−Pms2−/− mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases.
Collapse
Affiliation(s)
- Giulia Girelli Zubani
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Marija Zivojnovic
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Annie De Smet
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Olivier Albagli-Curiel
- Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Faculté de Médecine-Site Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - François Huetz
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France.,Département d'Immunologie, Institut Pasteur, 75015 Paris, France
| | - Jean-Claude Weill
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Sébastien Storck
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Centre National de la Recherche Scientifique UMR 8253, Faculté de Médecine-Site Broussais, Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| |
Collapse
|
38
|
Methot S, Di Noia J. Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv Immunol 2017; 133:37-87. [DOI: 10.1016/bs.ai.2016.11.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
IJspeert H, van Schouwenburg PA, van Zessen D, Pico-Knijnenburg I, Driessen GJ, Stubbs AP, van der Burg M. Evaluation of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and Adults. Front Immunol 2016; 7:410. [PMID: 27799928 PMCID: PMC5066086 DOI: 10.3389/fimmu.2016.00410] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/22/2016] [Indexed: 12/03/2022] Open
Abstract
Upon antigen recognition via their B cell receptor (BR), B cells migrate to the germinal center where they undergo somatic hypermutation (SHM) to increase their affinity for the antigen, and class switch recombination (CSR) to change the effector function of the secreted antibodies. These steps are essential to create an antigen-experienced BR repertoire that efficiently protects the body against pathogens. At the same time, the BR repertoire should be selected to protect against responses to self-antigen or harmless antigens. Insights into the processes of SHM, selection, and CSR can be obtained by studying the antigen-experienced BR repertoire. Currently, a large reference data set of healthy children and adults, which ranges from neonates to the elderly, is not available. In this study, we analyzed the antigen-experienced repertoire of 38 healthy donors (HD), ranging from cord blood to 74 years old, by sequencing IGA and IGG transcripts using next generation sequencing. This resulted in a large, freely available reference data set containing 412,890 IGA and IGG transcripts. We used this data set to study mutation levels, SHM patterns, antigenic selection, and CSR from birth to elderly HD. Only small differences were observed in SHM patterns, while the mutation levels increase in early childhood and stabilize at 6 years of age at around 7%. Furthermore, comparison of the antigen-experienced repertoire with sequences from the naive immune repertoire showed that features associated with autoimmunity such as long CDR3 length and IGHV4-34 usage are reduced in the antigen-experienced repertoire. Moreover, IGA2 and IGG2 usage was increased in HD in higher age categories, while IGG1 usage was decreased. In addition, we studied clonal relationship in the different samples. Clonally related sequences were found with different subclasses. Interestingly, we found transcripts with the same CDR1–CDR3 sequence, but different subclasses. Together, these data suggest that a single antigen can provoke a B-cell response with BR of different subclasses and that, during the course of an immune response, some B cells change their isotype without acquiring additional SHM or can directly switch to different isotypes.
Collapse
Affiliation(s)
- Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | | | - David van Zessen
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands; Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ingrid Pico-Knijnenburg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Gertjan J Driessen
- Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Andrew P Stubbs
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| |
Collapse
|
40
|
Somatic hypermutation in immunity and cancer: Critical analysis of strand-biased and codon-context mutation signatures. DNA Repair (Amst) 2016; 45:1-24. [DOI: 10.1016/j.dnarep.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023]
|
41
|
Maul RW, MacCarthy T, Frank EG, Donigan KA, McLenigan MP, Yang W, Saribasak H, Huston DE, Lange SS, Woodgate R, Gearhart PJ. DNA polymerase ι functions in the generation of tandem mutations during somatic hypermutation of antibody genes. J Exp Med 2016; 213:1675-83. [PMID: 27455952 PMCID: PMC4995076 DOI: 10.1084/jem.20151227] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 06/01/2016] [Indexed: 11/04/2022] Open
Abstract
DNA polymerase ι (Pol ι) is an attractive candidate for somatic hypermutation in antibody genes because of its low fidelity. To identify a role for Pol ι, we analyzed mutations in two strains of mice with deficiencies in the enzyme: 129 mice with negligible expression of truncated Pol ι, and knock-in mice that express full-length Pol ι that is catalytically inactive. Both strains had normal frequencies and spectra of mutations in the variable region, indicating that loss of Pol ι did not change overall mutagenesis. We next examined if Pol ι affected tandem mutations generated by another error-prone polymerase, Pol ζ. The frequency of contiguous mutations was analyzed using a novel computational model to determine if they occur during a single DNA transaction or during two independent events. Analyses of 2,000 mutations from both strains indicated that Pol ι-compromised mice lost the tandem signature, whereas C57BL/6 mice accumulated significant amounts of double mutations. The results support a model where Pol ι occasionally accesses the replication fork to generate a first mutation, and Pol ζ extends the mismatch with a second mutation.
Collapse
Affiliation(s)
- Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY 11794
| | - Ekaterina G Frank
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Katherine A Donigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Mary P McLenigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Huseyin Saribasak
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Donald E Huston
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Sabine S Lange
- Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20850
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
42
|
Related Mechanisms of Antibody Somatic Hypermutation and Class Switch Recombination. Microbiol Spectr 2016; 3:MDNA3-0037-2014. [PMID: 26104555 DOI: 10.1128/microbiolspec.mdna3-0037-2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The primary antibody repertoire is generated by mechanisms involving the assembly of the exons that encode the antigen-binding variable regions of immunoglobulin heavy (IgH) and light (IgL) chains during the early development of B lymphocytes. After antigen-dependent activation, mature B lymphocytes can further alter their IgH and IgL variable region exons by the process of somatic hypermutation (SHM), which allows the selection of B cells in which SHMs resulted in the production of antibodies with increased antigen affinity. In addition, during antigen-dependent activation, B cells can also change the constant region of their IgH chain through a DNA double-strand-break (DSB) dependent process referred to as IgH class switch recombination (CSR), which generates B cell progeny that produce antibodies with different IgH constant region effector functions that are best suited for a elimination of a particular pathogen or in a particular setting. Both the mutations that underlie SHM and the DSBs that underlie CSR are initiated in target genes by activation-induced cytidine deaminase (AID). This review describes in depth the processes of SHM and CSR with a focus on mechanisms that direct AID cytidine deamination in activated B cells and mechanisms that promote the differential outcomes of such cytidine deamination.
Collapse
|
43
|
Zanotti KJ, Gearhart PJ. Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair (Amst) 2016; 38:110-116. [PMID: 26719140 PMCID: PMC4740194 DOI: 10.1016/j.dnarep.2015.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/30/2015] [Indexed: 10/25/2022]
Abstract
The enzyme activation-induced deaminase (AID) targets the immunoglobulin loci in activated B cells and creates DNA mutations in the antigen-binding variable region and DNA breaks in the switch region through processes known, respectively, as somatic hypermutation and class switch recombination. AID deaminates cytosine to uracil in DNA to create a U:G mismatch. During somatic hypermutation, the MutSα complex binds to the mismatch, and the error-prone DNA polymerase η generates mutations at A and T bases. During class switch recombination, both MutSα and MutLα complexes bind to the mismatch, resulting in double-strand break formation and end-joining. This review is centered on the mechanisms of how the MMR pathway is commandeered by B cells to generate antibody diversity.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
44
|
The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability. PLoS Genet 2016; 12:e1005759. [PMID: 26727495 PMCID: PMC4699697 DOI: 10.1371/journal.pgen.1005759] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
DNA polymerase ζ (pol ζ) is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/-Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/-Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents. Translesion synthesis allows DNA replication to occur in the presence of damaged DNA. This process is mediated by low-fidelity DNA polymerases (such as pol ζ or pol η) that maintain genomic stability. The action of these polymerases is crucial to limit cancer. In mice, complete deletion of DNA pol ζ leads to embryonic lethality, and conditional deletion enhances tumorigenesis. Pol ζ is a large protein with many domains that interact with other essential proteins and maintain the structural integrity of pol ζ. It is not known if the polymerase activity of pol ζ mediates its essential activities. Using a cell culture complementation system and in vivo knock-in mice, our work shows that pol ζ–mediated maintenance of genomic stability in the presence of DNA damage is absolutely dependent on its DNA polymerase activity. Others have demonstrated in chicken cells that co-deletion of pol ζ and pol η rescues the pol ζ-dependent phenotypes, but our work in mice and in mouse cell culture does not support that conclusion. These results demonstrate the physiological importance of pol ζ polymerase activity, and show that employing small-molecule inhibitors of the polymerase reaction is a valid strategy for sensitizing tumor cells to chemotherapeutic agents.
Collapse
|
45
|
Chen YW, Harris RA, Hatahet Z, Chou KM. Ablation of XP-V gene causes adipose tissue senescence and metabolic abnormalities. Proc Natl Acad Sci U S A 2015; 112:E4556-64. [PMID: 26240351 PMCID: PMC4547227 DOI: 10.1073/pnas.1506954112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Obesity and the metabolic syndrome have evolved to be major health issues throughout the world. Whether loss of genome integrity contributes to this epidemic is an open question. DNA polymerase η (pol η), encoded by the xeroderma pigmentosum (XP-V) gene, plays an essential role in preventing cutaneous cancer caused by UV radiation-induced DNA damage. Herein, we demonstrate that pol η deficiency in mice (pol η(-/-)) causes obesity with visceral fat accumulation, hepatic steatosis, hyperleptinemia, hyperinsulinemia, and glucose intolerance. In comparison to WT mice, adipose tissue from pol η(-/-) mice exhibits increased DNA damage and a greater DNA damage response, indicated by up-regulation and/or phosphorylation of ataxia telangiectasia mutated (ATM), phosphorylated H2AX (γH2AX), and poly[ADP-ribose] polymerase 1 (PARP-1). Concomitantly, increased cellular senescence in the adipose tissue from pol η(-/-) mice was observed and measured by up-regulation of senescence markers, including p53, p16(Ink4a), p21, senescence-associated (SA) β-gal activity, and SA secretion of proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) as early as 4 wk of age. Treatment of pol η(-/-) mice with a p53 inhibitor, pifithrin-α, reduced adipocyte senescence and attenuated the metabolic abnormalities. Furthermore, elevation of adipocyte DNA damage with a high-fat diet or sodium arsenite exacerbated adipocyte senescence and metabolic abnormalities in pol η(-/-) mice. In contrast, reduction of adipose DNA damage with N-acetylcysteine or metformin ameliorated cellular senescence and metabolic abnormalities. These studies indicate that elevated DNA damage is a root cause of adipocyte senescence, which plays a determining role in the development of obesity and insulin resistance.
Collapse
Affiliation(s)
- Yih-Wen Chen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Robert A Harris
- Richard Roudebush Veterans Affairs Medical Center and the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Zafer Hatahet
- Department of Biological and Physical Sciences, Northwestern State University of Louisiana, Natchitoches, LA 71497
| | - Kai-ming Chou
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202;
| |
Collapse
|
46
|
129-Derived Mouse Strains Express an Unstable but Catalytically Active DNA Polymerase Iota Variant. Mol Cell Biol 2015; 35:3059-70. [PMID: 26124279 DOI: 10.1128/mcb.00371-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/18/2015] [Indexed: 01/08/2023] Open
Abstract
Mice derived from the 129 strain have a nonsense codon mutation in exon 2 of the polymerase iota (Polι) gene and are therefore considered Polι deficient. When we amplified Polι mRNA from 129/SvJ or 129/Ola testes, only a small fraction of the full-length cDNA contained the nonsense mutation; the major fraction corresponded to a variant Polι isoform lacking exon 2. Polι mRNA lacking exon 2 contains an open reading frame, and the corresponding protein was detected using a polyclonal antibody raised against the C terminus of the murine Polι protein. The identity of the corresponding protein was further confirmed by mass spectrometry. Although the variant protein was expressed at only 5 to 10% of the level of wild-type Polι, it retained de novo DNA synthesis activity, the capacity to form replication foci following UV irradiation, and the ability to rescue UV light sensitivity in Polι(-/-) embryonic fibroblasts derived from a new, fully deficient Polι knockout (KO) mouse line. Furthermore, in vivo treatment of 129-derived male mice with Velcade, a drug that inhibits proteasome function, stabilized and restored a substantial amount of the variant Polι in these animals, indicating that its turnover is controlled by the proteasome. An analysis of two xeroderma pigmentosum-variant (XPV) cases corresponding to missense mutants of Polη, a related translesion synthesis (TLS) polymerase in the same family, similarly showed a destabilization of the catalytically active mutant protein by the proteasome. Collectively, these data challenge the prevailing hypothesis that 129-derived strains of mice are completely deficient in Polι activity. The data also document, both for 129-derived mouse strains and for some XPV patients, new cases of genetic defects corresponding to the destabilization of an otherwise functional protein, the phenotype of which is reversible by proteasome inhibition.
Collapse
|
47
|
Su Y, Patra A, Harp JM, Egli M, Guengerich FP. Roles of Residues Arg-61 and Gln-38 of Human DNA Polymerase η in Bypass of Deoxyguanosine and 7,8-Dihydro-8-oxo-2'-deoxyguanosine. J Biol Chem 2015; 290:15921-33. [PMID: 25947374 DOI: 10.1074/jbc.m115.653691] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Indexed: 11/06/2022] Open
Abstract
Like the other Y-family DNA polymerases, human DNA polymerase η (hpol η) has relatively low fidelity and is able to tolerate damage during DNA synthesis, including 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG), one of the most abundant DNA lesions in the genome. Crystal structures show that Arg-61 and Gln-38 are located near the active site and may play important roles in the fidelity and efficiency of hpol η. Site-directed mutagenesis was used to replace these side chains either alone or together, and the wild type or mutant proteins were purified and tested by replicating DNA past deoxyguanosine (G) or 8-oxoG. The catalytic activity of hpol η was dramatically disrupted by the R61M and Q38A/R61A mutations, as opposed to the R61A and Q38A single mutants. Crystal structures of hpol η mutant ternary complexes reveal that polarized water molecules can mimic and partially compensate for the missing side chains of Arg-61 and Gln-38 in the Q38A/R61A mutant. The combined data indicate that the positioning and positive charge of Arg-61 synergistically contribute to the nucleotidyl transfer reaction, with additional influence exerted by Gln-38. In addition, gel filtration chromatography separated multimeric and monomeric forms of wild type and mutant hpol η, indicating the possibility that hpol η forms multimers in vivo.
Collapse
Affiliation(s)
- Yan Su
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Amritraj Patra
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Joel M Harp
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
48
|
McHeyzer-Williams LJ, Milpied PJ, Okitsu SL, McHeyzer-Williams MG. Class-switched memory B cells remodel BCRs within secondary germinal centers. Nat Immunol 2015; 16:296-305. [PMID: 25642821 PMCID: PMC4333102 DOI: 10.1038/ni.3095] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022]
Abstract
Effective vaccines induce high-affinity memory B cells and durable antibody responses through accelerated mechanisms of natural selection. Secondary changes in antibody repertoires after vaccine boosts suggest progressive rediversification of B cell receptors (BCRs), but the underlying mechanisms remain unresolved. Here, the integrated specificity and function of individual memory B cell progeny revealed ongoing evolution of polyclonal antibody specificities through germinal center (GC)-specific transcriptional activity. At the clonal and subclonal levels, single-cell expression of the genes encoding the costimulatory molecule CD83 and the DNA polymerase Polη segregated the secondary GC transcriptional program into four stages that regulated divergent mechanisms of memory BCR evolution. Our studies demonstrate that vaccine boosts reactivate a cyclic program of GC function in class-switched memory B cells to remodel existing antibody specificities and enhance durable immunological protection.
Collapse
|
49
|
Rajewsky K. The DNA deamination model of somatic antibody diversification. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2041-2042. [PMID: 25710956 DOI: 10.4049/jimmunol.1403252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
50
|
Abstract
POLH (DNA polymerase η), a target of p53 tumour suppressor, plays a key role in TLS (translesion DNA synthesis). Loss of POLH is responsible for the human cancer-prone syndrome XPV (xeroderma pigmentosum variant). Owing to its critical role in DNA repair and genome stability, POLH expression and activity are regulated by multiple pathways. In the present study, we found that the levels of both POLH transcript and protein were decreased upon knockdown of the transcript encoding PCBP1 [poly(rC)-binding protein 1]. We also found that the half-life of POLH mRNA was markedly decreased upon knockdown of PCBP1. Moreover, we found that PCBP1 directly bound to the POLH 3'-UTR and the PCBP1-binding site in POLH mRNA is an atypical AU-rich element. Finally, we showed that the AU-rich element in POLH 3'-UTR was responsive to PCBP1 and sufficient for PCBP1 to regulate POLH expression. Taken together, we uncovered a novel mechanism by which POLH expression is controlled by PCBP1 via mRNA stability.
Collapse
|