1
|
Li S, Yuan H, Yang XZ, Xu X, Yu W, Wu Y, Yao S, Xie J, He W, Guo Z, Chen Y. Synergistic Antitumor Immunotherapy via Mitochondria Regulation in Macrophages and Tumor Cells by an Iridium Photosensitizer. ACS CENTRAL SCIENCE 2025; 11:441-451. [PMID: 40161955 PMCID: PMC11950858 DOI: 10.1021/acscentsci.4c02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Mitochondrial targeting has emerged as an attractive method for antitumor treatment. However, most of the mitochondria targeted drugs focused on inhibiting tumor cells, while their potential for activation of immune responses in the tumor microenvironment has rarely been described. In this study, we report a photosensitive iridium complex MitoIrL2, which enabled the simultaneous mitochondrial modulation of macrophages and tumor cells to achieve synergistic antitumor immunity. The adjustment of the mitochondrial respiratory chain, HIF-1α, and the NF-κB pathway in macrophages drove the metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis, converting protumor M2 into the antitumor M1 phenotype. Downregulated expression of immunosuppressive checkpoint SIRPα has also been observed on macrophages. Meanwhile, the mitochondrial targeting MitoIrL2 enhanced the immunogenic cell death of tumor cells and reversed the immunosuppressive tumor microenvironment, which activated the systemic immune response and established long-term immune memory in vivo. This work illustrates a promising strategy to simultaneously regulate macrophages toward the antitumor phenotype and enhance immunogenic cell death in tumor cells for synergistic antitumor immunotherapy.
Collapse
Affiliation(s)
- Shumeng Li
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Hao Yuan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Xiu-Zhi Yang
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Xinyu Xu
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Wenhao Yu
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Yanping Wu
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Shankun Yao
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Jin Xie
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Weijiang He
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Zijian Guo
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing 210023, Jiangsu, P.R. China
- Department
of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, Jiangsu, P.R. China
| |
Collapse
|
2
|
Goto Y. Immunomodulation by Leishmania parasites: Potential for controlling other diseases. Parasitol Int 2025; 104:102987. [PMID: 39515578 DOI: 10.1016/j.parint.2024.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
In the mammalian hosts, Leishmania parasites survive and proliferate within phagolysosomes of macrophages. To avoid being killed by the immune cells, Leishmania parasites utilize their molecules to manipulate macrophages' functions for survival. Targets of such immunomodulatory molecules are not limited to macrophages, as Leishmania-derived molecules sometimes show influence on other immune cells such as neutrophils, dendritic cells, T cells and B cells. This review covers research on immunomodulation of host immunity by Leishmania parasites and introduces some examples of parasite-derived molecules participating in the immunomodulation. For example, Leishmania cell surface lipophosphoglycan (LPG) can modulate TLR2 signaling and PI3K/Akt axis in macrophages leading to induction of Th2 cells. Because chronic secretion of inflammatory cytokines is one of the causes of immune-mediated diseases such as atherosclerosis, Crohn's disease, and rheumatoid arthritis, LPG may be useful as a drug to suppress the inflammatory conditions. The unique characteristics of leishmanial molecules pose a promise as a source of immunomodulatory drugs for controlling diseases other than leishmaniasis.
Collapse
Affiliation(s)
- Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.
| |
Collapse
|
3
|
Pöpperl P, Stoff M, Beineke A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. Int J Mol Sci 2025; 26:407. [PMID: 39796262 PMCID: PMC11721917 DOI: 10.3390/ijms26010407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections. Here, detection of viral pathogens causes diverse antiviral and proinflammatory reactions. This fact not only makes them promising research targets, but also suggests them as potential targets for therapeutic and prophylactic approaches. This review aims to give a comprehensive overview of the current knowledge about the role of AlvMϕ in respiratory viral infections of humans and animals.
Collapse
Affiliation(s)
- Pauline Pöpperl
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
4
|
Jiang W, Chen Y, Yu CY, Zou B, Lu Y, Yang Q, Tang Z, Mao W, Li J, Han H, Shao L, Zeng J, Chu Y, Tang J, Lu M. Alveolar epithelial cells shape lipopolysaccharide-induced inflammatory responses and reprogramming of alveolar macrophages. Eur J Immunol 2025; 55:e2350378. [PMID: 39498697 DOI: 10.1002/eji.202350378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Alveolar macrophages (AMs) are sentinels in the airways, where they sense and respond to invading microbes and other stimuli. Unlike macrophages in other locations, AMs can remain responsive to Gram-negative lipopolysaccharides (LPS) after they have responded to LPS in vivo (they do not develop "endotoxin tolerance"), suggesting that the alveolar microenvironment may influence their responses. Although alveolar epithelial cells (AECs) normally limit AMs' innate responses, preventing inflammation induced by harmless antigens in the lung, how AECs influence the innate responses of AMs to infectious agents has been uncertain. Here we report that (1) after exposure to aspirated (intranasal instillation) LPS, AMs increase their responses to TLR agonists and elevate their phagocytic and bactericidal activities in mice; (2) Aspirated LPS pre-exposure increases host resistance to pulmonary infection caused by Gram-negative bacteria and the protection effect lasts for at least 35 days; (3) LPS stimulation of AECs both increases AMs' innate immune responses and prevents AMs from developing tolerance in vitro; (4) Upon LPS stimulation, AMs secreted TNF-α induces AECs to release GM-CSF, which potentiates AMs' response. These experiments have revealed a previously unappreciated role that AECs may play in boosting the innate responses of AMs and promoting resistance to pulmonary infections.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Department of Rheumatology and Immunology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yeying Chen
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Cheng-Yun Yu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Benkun Zou
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yimeng Lu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian Yang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Zihui Tang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiying Mao
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Li
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Han Han
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiashun Zeng
- Department of Rheumatology and Immunology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Mingfang Lu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| |
Collapse
|
5
|
Sakano Y, Sakano K, Hurrell BP, Shafiei-Jahani P, Kazemi MH, Li X, Shen S, Barbers R, Akbari O. SIRPα engagement regulates ILC2 effector function and alleviates airway hyperreactivity via modulating energy metabolism. Cell Mol Immunol 2024; 21:1158-1174. [PMID: 39160226 PMCID: PMC11442993 DOI: 10.1038/s41423-024-01208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Group-2 innate lymphoid cells (ILC2) are part of a growing family of innate lymphocytes known for their crucial role in both the development and exacerbation of allergic asthma. The activation and function of ILC2s are regulated by various activating and inhibitory molecules, with their balance determining the severity of allergic responses. In this study, we aim to elucidate the critical role of the suppressor molecule signal regulatory protein alpha (SIRPα), which interacts with CD47, in controlling ILC2-mediated airway hyperreactivity (AHR). Our data indicate that activated ILC2s upregulate the expression of SIRPα, and the interaction between SIRPα and CD47 effectively suppresses both ILC2 proliferation and effector function. To evaluate the function of SIRPα in ILC2-mediated AHR, we combined multiple approaches including genetically modified mouse models and adoptive transfer experiments in murine models of allergen-induced AHR. Our findings suggest that the absence of SIRPα leads to the overactivation of ILC2s. Conversely, engagement of SIRPα with CD47 reduces ILC2 cytokine production and effectively regulates ILC2-dependent AHR. Furthermore, the SIRPα-CD47 axis modulates mitochondrial metabolism through the JAK/STAT and ERK/MAPK signaling pathways, thereby regulating NF-κB activity and the production of type 2 cytokines. Additionally, our studies have revealed that SIRPα is inducible and expressed on human ILC2s, and administration of human CD47-Fc effectively suppresses the effector function and cytokine production. Moreover, administering human CD47-Fc to humanized ILC2 mice effectively alleviates AHR and lung inflammation. These findings highlight the promising therapeutic potential of targeting the SIRPα-CD47 axis in the treatment of ILC2-dependent allergic asthma.
Collapse
Affiliation(s)
- Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Shen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Richard Barbers
- Department of Clinical Medicine, Division of Pulmonary and Critical Care Medicine, Keck School of Medicine of USC, University of Southern California Hospital, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Wang J, Wu Q, Wang X, Liu H, Chen M, Xu L, Zhang Z, Li K, Li W, Zhong J. Targeting Macrophage Phenotypes and Metabolism as Novel Therapeutic Approaches in Atherosclerosis and Related Cardiovascular Diseases. Curr Atheroscler Rep 2024; 26:573-588. [PMID: 39133247 PMCID: PMC11392985 DOI: 10.1007/s11883-024-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE OF THE REVIEW Macrophage accumulation and activation function as hallmarks of atherosclerosis and have complex and intricate dynamics throughout all components and stages of atherosclerotic plaques. In this review, we focus on the regulatory roles and underlying mechanisms of macrophage phenotypes and metabolism in atherosclerosis. We highlight the diverse range of macrophage phenotypes present in atherosclerosis and their potential roles in progression and regression of atherosclerotic plaque. Furthermore, we discuss the challenges and opportunities in developing therapeutic strategies for preventing and treating atherosclerotic cardiovascular disease. RECENT FINDINGS Dysregulation of macrophage polarization between the proinflammatory M1 and anti-inflammatory M2 phenotypealters the immuno-inflammatory response during atherosclerosis progression, leading to plaque initiation, growth, and ultimately rupture. Altered metabolism of macrophage is a key feature for their function and the subsequent progression of atherosclerotic cardiovascular disease. The immunometabolism of macrophage has been implicated to macrophage activation and metabolic rewiring of macrophages within atherosclerotic lesions, thereby shifting altered macrophage immune-effector and tissue-reparative function. Targeting macrophage phenotypes and metabolism are potential therapeutic strategies in the prevention and treatment of atherosclerosis and atherosclerotic cardiovascular diseases. Understanding the precise function and metabolism of specific macrophage subsets and their contributions to the composition and growth of atherosclerotic plaques could reveal novel strategies to delay or halt development of atherosclerotic cardiovascular diseases and their associated pathophysiological consequences. Identifying biological stimuli capable of modulating macrophage phenotypes and metabolism may lead to the development of innovative therapeutic approaches for treating patients with atherosclerosis and coronary artery diseases.
Collapse
Affiliation(s)
- Juan Wang
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Qiang Wu
- Senior Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- Journal of Geriatric Cardiology Editorial Office, Chinese PLA General Hospital, Beijing, China
| | - Xinyu Wang
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongbin Liu
- Department of Cardiology, the Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Mulei Chen
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li Xu
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ze Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Kuibao Li
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weiming Li
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Jiuchang Zhong
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Tan Z, Zhang Q, Wang Y, Wang Y, Zhang S, Xing X, Liu H, Shen Z, Sang W. Clinicopathological analysis of immunohistochemical CD47 and signal-regulatory protein-α expression in Extranodal Natural killer/T-cell lymphoma. Ann Hematol 2024; 103:3033-3042. [PMID: 38886192 DOI: 10.1007/s00277-024-05852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The interaction between CD47 and signal-regulatory protein-alpha (SIRPα) inhibits phagocytosis, and their clinicopathological characteristics have been evaluated in various diseases. However, the significance of CD47 and SIRPα expression, as well as the combined effect, in Extranodal Natural killer/T-cell Lymphoma (ENKTL) remains uncertain. METHODS In total, 76 newly diagnosed ENKTL patients (mean age 49.9 years, 73.7% male) were included in this study. CD47 and SIRPα expression were examined by immunohistochemistry. Survival analyses were conducted through Kaplan-Meier curves and the Cox regression model. RESULTS Seventy-one (93.4%) cases were categorized as the CD47 positive group and 59 (77.6%) cases were categorized as the SIRPα positive group. CD47-negative cases had more advanced-stage illness (P = 0.001), while SIRPα-positive cases showed significantly lower levels of high-density lipoprotein (P < 0.001). In univariable analysis, CD47, SIRPα expression, and their combination were significantly associated with prognosis (P < 0.05). In multivariable analysis, only positive SIRPα expression remained significantly associated with superior overall survival (Hazard ratio [HR] 0.446; 95% confidence interval [CI] 0.207-0.963; P = 0.004). Furthermore, SIRPα expression could re-stratify the survival of patients in ECOG (< 2), advanced CA stage, PINK (HR), CD38-positive, PD1-positive, and CD30-positive groups. CONCLUSIONS SIRPα status was a potential independent prognostic factor for ENKTL. The prognostic significance of CD47 expression and the interaction between CD47 and SIRPα in ENKTL need further investigation.
Collapse
Affiliation(s)
- Zaixiang Tan
- Research Center of Health Policy and Health Management, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Qing Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
| | - Ying Wang
- Research Center of Health Policy and Health Management, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Department of Personnel, Suqian First Hospital, Suqian, Jiangsu, 223800, China
| | - Yubo Wang
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Shuo Zhang
- Department of Hematology, Linyi People's Hospital, Linyi, Shandong, 276002, China
| | - Xing Xing
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hui Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Ziyuan Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, 221006, China.
| |
Collapse
|
8
|
Paldino E, Migliorato G, Fusco FR. Neuroimmune pathways involvement in neurodegeneration of R6/2 mouse model of Huntington's disease. Front Cell Neurosci 2024; 18:1360066. [PMID: 38444595 PMCID: PMC10912295 DOI: 10.3389/fncel.2024.1360066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024] Open
Abstract
Mechanisms of tissue damage in Huntington's disease (HD) involve excitotoxicity, mitochondrial damage, and neuroinflammation, including microglia activation. CD47 is a membrane protein that interacts with the inhibitory immunoreceptor SIRPα. Engagement of SIRPα by CD47 provides a downregulatory signal that inhibits host cell phagocytosis, promoting a "don't-eat-me" signal. These proteins are involved in the immune response and are downmodulated in inflammatory diseases. The involvement of inflammation and of the inflammasome in HD has already been described. In this study, we focused on other factors that can be involved in the unregulated inflammatory response that accelerates and exacerbate the neurodegenerative process in HD. Our results show that CD47 on striatal neurons decreased in HD mice, while it increased in wild type mice with age. SIRPα, on the other hand, was present in neurons in the wild type and increases in the R6/2 mice at all stages. Recruitment of SIRPα and binding to CD47 promotes the activation through phosphorylating events of non-receptor protein tyrosine phosphatase SHP-1 and SHP-2 in neurons and microglia. SHP phosphatases are able to curb the activity of NLRP3 inflammasome thereby reducing the detrimental effect of neuroinflammation. Such activity is mediated by the inhibition (dephosphorylation) of the proteins signal transducer and activator of transcription (STAT). We found that activated SHP-1 was present in microglia and neurons of WT mice at 5 and 13 weeks, increasing with time; while in R6/2 it was not localized in neurons but only in microglia, where it decreases with time. Consequently, STAT1 was overexpressed in neurons of R6/2 mice, as an effect of lack of modulation by SHP-1. Thus, our results shed light on the pathophysiology of neuronal damage, on one hand, paving the way toward a modulation of signal transducer proteins by specific inhibitors to achieve neuroprotection in HD, on the other.
Collapse
Affiliation(s)
- Emanuela Paldino
- Laboratory of Neuroanatomy, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Giorgia Migliorato
- Laboratory of Neuroanatomy, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
9
|
Yuan T, Zhang S, He S, Ma Y, Chen J, Gu J. Bacterial lipopolysaccharide related genes signature as potential biomarker for prognosis and immune treatment in gastric cancer. Sci Rep 2023; 13:15916. [PMID: 37741901 PMCID: PMC10517958 DOI: 10.1038/s41598-023-43223-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
The composition of microbial microenvironment is an important factor affecting the development of tumor diseases. However, due to the limitations of current technological levels, we are still unable to fully study and elucidate the depth and breadth of the impact of microorganisms on tumors, especially whether microorganisms have an impact on cancer. Therefore, the purpose of this study is to conduct in-depth research on the role and mechanism of prostate microbiome in gastric cancer (GC) based on the related genes of bacterial lipopolysaccharide (LPS) by using bioinformatics methods. Through comparison in the Toxin Genomics Database (CTD), we can find and screen out the bacterial LPS related genes. In the study, Venn plots and lasso analysis were used to obtain differentially expressed LPS related hub genes (LRHG). Afterwards, in order to establish a prognostic risk score model and column chart in LRHG features, we used univariate and multivariate Cox regression analysis for modeling and composition. In addition, we also conducted in-depth research on the clinical role of immunotherapy with TMB, MSI, KRAS mutants, and TIDE scores. We screened 9 LRHGs in the database. We constructed a prognostic risk score and column chart based on LRHG, indicating that low risk scores have a protective effect on patients. We particularly found that low risk scores are beneficial for immunotherapy through TIDE score evaluation. Based on LPS related hub genes, we established a LRHG signature, which can help predict immunotherapy and prognosis for GC patients. Bacterial lipopolysaccharide related genes can also be biomarkers to predict progression free survival in GC patients.
Collapse
Affiliation(s)
- Tianyi Yuan
- Nantong Integrated Traditional Chinese and Western Medicine Hospital, Nantong, Jiangsu, China
| | - Siming Zhang
- Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Songnian He
- Nantong Integrated Traditional Chinese and Western Medicine Hospital, Nantong, Jiangsu, China
| | - Yijie Ma
- Nantong Integrated Traditional Chinese and Western Medicine Hospital, Nantong, Jiangsu, China
| | - Jianhong Chen
- Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Jue Gu
- Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
10
|
Fang D, Li Y, He B, Gu D, Zhang M, Guo J, Ren H, Li X, Zhang Z, Tang M, Li X, Yang D, Xu C, Hu Y, Wang H, Jose PA, Han Y, Zeng C. Gastrin attenuates sepsis-induced myocardial dysfunction by down-regulation of TLR4 expression in macrophages. Acta Pharm Sin B 2023; 13:3756-3769. [PMID: 37719375 PMCID: PMC10502292 DOI: 10.1016/j.apsb.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/10/2023] [Accepted: 06/06/2023] [Indexed: 09/19/2023] Open
Abstract
Myocardial dysfunction is the most serious complication of sepsis. Sepsis-induced myocardial dysfunction (SMD) is often associated with gastrointestinal dysfunction, but its pathophysiological significance remains unclear. The present study found that patients with SMD had higher plasma gastrin concentrations than those without SMD. In mice, knockdown of the gastrin receptor, cholecystokinin B receptor (Cckbr), aggravated lipopolysaccharide (LPS)-induced cardiac dysfunction and increased inflammation in the heart, whereas the intravenous administration of gastrin ameliorated SMD and cardiac injury. Macrophage infiltration plays a significant role in SMD because depletion of macrophages by the intravenous injection of clodronate liposomes, 48 h prior to LPS administration, alleviated LPS-induced cardiac injury in Cckbr-deficient mice. The intravenous injection of bone marrow macrophages (BMMs) overexpressing Cckbr reduced LPS-induced myocardial dysfunction. Furthermore, gastrin treatment inhibited toll-like receptor 4 (TLR4) expression through the peroxisome proliferator-activated receptor α (PPAR-α) signaling pathway in BMMs. Thus, our findings provide insights into the mechanism of the protective role of gastrin/CCKBR in SMD, which could be used to develop new treatment modalities for SMD.
Collapse
Affiliation(s)
- Dandong Fang
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Yu Li
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
| | - Bo He
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
| | - Daqian Gu
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
| | - Mingming Zhang
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
| | - Jingwen Guo
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
| | - Xinyue Li
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
| | - Ziyue Zhang
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
| | - Ming Tang
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
| | - Xingbing Li
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
| | - Donghai Yang
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
| | - Chunmei Xu
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
| | - Yijie Hu
- Department of Cardiac Surgery, Daping Hospital, Third Military Medical University, Chongqing 400010, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
| | - Pedro A. Jose
- Division of Renal Disease & Hypertension, the George Washington University School of Medicine & Health Sciences, Washington, DC 20237, USA
| | - Yu Han
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, the Third Military Medical University (Army Medical University), Chongqing 400000, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400010, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, the Third Military Medical University, Chongqing 400010, China
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences Chongqing 400010, China
| |
Collapse
|
11
|
Shin J, Miyaki S, Asahara H, Akimoto T. MicroRNA-140 is not involved in sepsis-induced muscle atrophy. Am J Physiol Cell Physiol 2023; 325:C509-C518. [PMID: 37486067 DOI: 10.1152/ajpcell.00157.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Sepsis is a life-threatening inflammatory response to infection, often accompanied by skeletal muscle atrophy. A previous study demonstrated that the administration of microRNA-140 (miR-140) attenuated lipopolysaccharide (LPS)-induced muscle atrophy, whereas miR-140 knockdown with siRNA promoted atrophy. Therefore, we investigated whether miR-140 is involved in LPS-induced muscle atrophy using a genetic model, miR-140-/- mice. We found that a single injection of LPS induced atrophy both in slow-twitch and fast-twitch muscles. The muscle weights and fiber cross-sectional areas were significantly reduced in both the wild-type (WT) and miR-140-/- mice, with no difference between genotypes. The expression of several proteolysis markers, muscle-specific RING-finger 1 (MuRF1) and MAFbx/atrogin-1, increased in both groups after LPS injection. The ubiquitinated proteins in the miR-140-/- mice were similar to those in the WT mice. Therefore, the deletion of miR-140 did not affect LPS-induced muscle atrophy.NEW & NOTEWORTHY We used miR-140-/- mice to determine the function of miR-140 in LPS-induced skeletal muscle atrophy. To our knowledge, this study is the first to examine slow-twitch muscles in LPS-induced muscle wasting after miR-140 manipulation.
Collapse
Affiliation(s)
- Jaehoon Shin
- Laboratory of Muscle Biology, Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Advanced Therapeutic Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Japan
| | - Takayuki Akimoto
- Laboratory of Muscle Biology, Faculty of Sport Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
12
|
Li SY, Guo YL, Tian JW, Zhang HJ, Li RF, Gong P, Yu ZL. Anti-Tumor Strategies by Harnessing the Phagocytosis of Macrophages. Cancers (Basel) 2023; 15:2717. [PMID: 37345054 DOI: 10.3390/cancers15102717] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Macrophages are essential for the human body in both physiological and pathological conditions, engulfing undesirable substances and participating in several processes, such as organism growth, immune regulation, and maintenance of homeostasis. Macrophages play an important role in anti-bacterial and anti-tumoral responses. Aberrance in the phagocytosis of macrophages may lead to the development of several diseases, including tumors. Tumor cells can evade the phagocytosis of macrophages, and "educate" macrophages to become pro-tumoral, resulting in the reduced phagocytosis of macrophages. Hence, harnessing the phagocytosis of macrophages is an important approach to bolster the efficacy of anti-tumor treatment. In this review, we elucidated the underlying phagocytosis mechanisms, such as the equilibrium among phagocytic signals, receptors and their respective signaling pathways, macrophage activation, as well as mitochondrial fission. We also reviewed the recent progress in the area of application strategies on the basis of the phagocytosis mechanism, including strategies targeting the phagocytic signals, antibody-dependent cellular phagocytosis (ADCP), and macrophage activators. We also covered recent studies of Chimeric Antigen Receptor Macrophage (CAR-M)-based anti-tumor therapy. Furthermore, we summarized the shortcomings and future applications of each strategy and look into their prospects with the hope of providing future research directions for developing the application of macrophage phagocytosis-promoting therapy.
Collapse
Affiliation(s)
- Si-Yuan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yong-Lin Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jia-Wen Tian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - He-Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rui-Fang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ping Gong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
13
|
Hirai H, Hong J, Fujii W, Sanjoba C, Goto Y. Leishmania Infection-Induced Proteolytic Processing of SIRPα in Macrophages. Pathogens 2023; 12:pathogens12040593. [PMID: 37111479 PMCID: PMC10146913 DOI: 10.3390/pathogens12040593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The shedding of cell surface receptors may bring synergistic outcomes through the loss of receptor-mediated cell signaling and competitive binding of the shed soluble receptor to its ligand. Thus, soluble receptors have both biological importance and diagnostic importance as biomarkers in immunological disorders. Signal regulatory protein α (SIRPα), one of the receptors responsible for the 'don't-eat-me' signal, is expressed by myeloid cells where its expression and function are in part regulated by proteolytic cleavage. However, reports on soluble SIRPα as a biomarker are limited. We previously reported that mice with experimental visceral leishmaniasis (VL) manifest anemia and enhanced hemophagocytosis in the spleen accompanied with decreased SIRPα expression. Here, we report increased serum levels of soluble SIRPα in mice infected with Leishmania donovani, a causative agent of VL. Increased soluble SIRPα was also detected in a culture supernatant of macrophages infected with L. donovani in vitro, suggesting the parasite infection promotes ectodomain shedding of SIRPα on macrophages. The release of soluble SIRPα was partially inhibited by an ADAM proteinase inhibitor in both LPS stimulation and L. donovani infection, suggesting a shared mechanism for cleavage of SIRPα in both cases. In addition to the ectodomain shedding of SIRPα, both LPS stimulation and L. donovani infection induced the loss of the cytoplasmic region of SIRPα. Although the effects of these proteolytic processes or changes in SIRPα still remain unclear, these proteolytic regulations on SIRPα during L. donovani infection may explain hemophagocytosis and anemia induced by infection, and serum soluble SIRPα may serve as a biomarker for hemophagocytosis and anemia in VL and the other inflammatory disorders.
Collapse
Affiliation(s)
- Hana Hirai
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Jing Hong
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Wataru Fujii
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
14
|
Ma X, Liang X, Li Y, Feng Q, Cheng K, Ma N, Zhu F, Guo X, Yue Y, Liu G, Zhang T, Liang J, Ren L, Zhao X, Nie G. Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field. Nat Commun 2023; 14:1606. [PMID: 36959204 PMCID: PMC10036336 DOI: 10.1038/s41467-023-37225-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
Micro-nano biorobots based on bacteria have demonstrated great potential for tumor diagnosis and treatment. The bacterial gene expression and drug release should be spatiotemporally controlled to avoid drug release in healthy tissues and undesired toxicity. Herein, we describe an alternating magnetic field-manipulated tumor-homing bacteria developed by genetically modifying engineered Escherichia coli with Fe3O4@lipid nanocomposites. After accumulating in orthotopic colon tumors in female mice, the paramagnetic Fe3O4 nanoparticles enable the engineered bacteria to receive and convert magnetic signals into heat, thereby initiating expression of lysis proteins under the control of a heat-sensitive promoter. The engineered bacteria then lyse, releasing its anti-CD47 nanobody cargo, that is pre-expressed and within the bacteria. The robust immunogenicity of bacterial lysate cooperates with anti-CD47 nanobody to activate both innate and adaptive immune responses, generating robust antitumor effects against not only orthotopic colon tumors but also distal tumors in female mice. The magnetically engineered bacteria also enable the constant magnetic field-controlled motion for enhanced tumor targeting and increased therapeutic efficacy. Thus, the gene expression and drug release behavior of tumor-homing bacteria can be spatiotemporally manipulated in vivo by a magnetic field, achieving tumor-specific CD47 blockage and precision tumor immunotherapy.
Collapse
Affiliation(s)
- Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- The Higher Educational Key Laboratory of Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Fei Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xinjing Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yale Yue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Tianjiao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lei Ren
- The Higher Educational Key Laboratory of Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- The GBA National Institute for Nanotechnology Innovation, Guangdong, 510700, China.
| |
Collapse
|
15
|
Davis KM, Rosinger AY, Murdock KW. Ex vivo LPS-stimulated cytokine production is associated with hydration status in community-dwelling middle-to-older-aged adults. Eur J Nutr 2023; 62:1681-1690. [PMID: 36790579 DOI: 10.1007/s00394-023-03105-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Suboptimal hydration has been linked to a variety of adverse health outcomes. Few studies have examined the impact of hydration status on immune function, a plausible physiological mechanism underlying these associations. Therefore, we tested how variation in hydration status was associated with circulating pro-inflammatory cytokine levels and ex vivo lipopolysaccharide (LPS)-stimulated pro-inflammatory cytokine production. METHODS Blood samples were obtained from a community sample of healthy middle-to-older-aged adults (N = 72). These samples were used to assess serum osmolality, a biomarker of hydration status, and markers of immune function including circulating pro-inflammatory cytokines and stimulated pro-inflammatory cytokine production after 4 and 24 h of incubation with LPS. Multiple linear regressions were used to test the association between serum osmolality (as a continuous variable) and markers of immune function at baseline and after 4 and 24 h adjusting for age, sex, and BMI. These models were re-estimated with serum osmolality dichotomized at the cut-off for dehydration (> 300 mOsm/kg). RESULTS While not significantly associated with circulating cytokines (B = - 0.03, p = 0.09), serum osmolality was negatively associated with both 4 h (B = - 0.05, p = 0.048) and 24 h (B = - 0.05, p = 0.03) stimulated cytokine production when controlling for age, sex, and BMI. Similarly, dehydration was associated with significantly lower cytokine production at both 4 h (B = - 0.54, p = 0.02) and 24 h (B = - 0.51, p = 0.02) compared to adequate hydration. CONCLUSION These findings suggest that dehydration may be associated with suppressed immune function in generally healthy middle-to-older aged community-dwelling adults. Further longitudinal research is needed to more clearly define the role of hydration in immune function.
Collapse
Affiliation(s)
- Kristin M Davis
- Department of Biobehavioral Health, Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - Asher Y Rosinger
- Department of Biobehavioral Health, Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA.,Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Kyle W Murdock
- Department of Biobehavioral Health, Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA.
| |
Collapse
|
16
|
Guan T, Zhou X, Zhou W, Lin H. Regulatory T cell and macrophage crosstalk in acute lung injury: future perspectives. Cell Death Dis 2023; 9:9. [PMID: 36646692 PMCID: PMC9841501 DOI: 10.1038/s41420-023-01310-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
Acute lung injury (ALI) describes the injury to endothelial cells in the lungs and associated vessels due to various factors. Furthermore, ALI accompanied by inflammation and thrombosis has been reported as a common complication of SARS-COV-2 infection. It is widely accepted that inflammation and the cytokine storm are main causes of ALI. Two classical anti-inflammatory cell types, regulatory T cells (Tregs) and M2 macrophages, are theoretically capable of resisting uncontrolled inflammation. Recent studies have indicated possible crosstalk between Tregs and macrophages involving their mutual activation. In this review, we discuss the current findings related to ALI pathogenesis and the role of Tregs and macrophages. In particular, we review the molecular mechanisms underlying the crosstalk between Tregs and macrophages in ALI pathogenesis. Understanding the role of Tregs and macrophages will provide the potential targets for treating ALI.
Collapse
Affiliation(s)
- Tianshu Guan
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825Queen Mary university, Nanchang University, 330006 Nanchang, Jiangxi Province China
| | - Xv Zhou
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825Queen Mary university, Nanchang University, 330006 Nanchang, Jiangxi Province China
| | - Wenwen Zhou
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China
| | - Hui Lin
- grid.260463.50000 0001 2182 8825Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, 330006 Nanchang, Jiangxi China
| |
Collapse
|
17
|
Wang D, Lin Y, Xu F, Zhang H, Zhu X, Liu Z, Hu Y, Dong G, Sun B, Yu Y, Ma G, Tang Z, Legarda D, Ting A, Liu Y, Hou J, Dong L, Xiong H. SIRPα maintains macrophage homeostasis by interacting with PTK2B kinase in Mycobacterium tuberculosis infection and through autophagy and necroptosis. EBioMedicine 2022; 85:104278. [PMID: 36202053 PMCID: PMC9535427 DOI: 10.1016/j.ebiom.2022.104278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022] Open
Abstract
Background To determine whether SIRPα can be a diagnostic marker of pulmonary tuberculosis (PTB) and the molecular mechanism of SIRPα regulating macrophages to kill Mycobacterium tuberculosis (MTB). Methods Meta-analysis combined with subsequent qRT-PCR, western-blotting and flow cytometry assay were used to detect SIRPα expression in PTB patients. Cell-based assays were used to explore the regulation of macrophage function by SIRPα. SIRPα−/- and wide type macrophages transplanted C57BL/6J mice were used to determine the function of SIRPα on MTB infection in vivo. Findings SIRPα levels are closely correlated with the treatment outcomes among PTB patients. Cell-based assay demonstrated that MTB significantly induces the expression of SIRPα on macrophages. SIRPα deficiency enhances the killing ability of macrophages against MTB through processes that involve enhanced autophagy and reduced necroptosis of macrophages. Mechanistically, SIRPα forms a direct interaction with PTK2B through its intracellular C-terminal domain, thus inhibiting PTK2B activation in macrophages. Necroptosis inhibition due to SIRPα deficiency requires PTK2B activity. The transfer of SIRPα-deficient bone marrow-derived macrophages (BMDMs) into wild type mice resulted in a drop of bacterial load in the lungs but an enhancement of inflammatory lung damage, and the combination of ulinastatin and SIRPα−/−→WT treatment could decrease the inflammation and maintain the bactericidal capacity. Interpretation Our data define SIRPα a novel biomarker for tuberculosis infection and underlying mechanisms for maintaining macrophage homeostasis. Funding This work was financially supported by the Chinese National Natural Science Foundation project (No.81401635). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Di Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, Shanghai, National Center for Liver Cancer, Shanghai, China,Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, America,The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunkai Lin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, Shanghai, National Center for Liver Cancer, Shanghai, China
| | - Feihong Xu
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, America
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining Shandong, China
| | - Xiaoyan Zhu
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhen Liu
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuan Hu
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, America
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining Shandong, China
| | - Bingqi Sun
- Department of Clinical Laboratory, Shenyang Thoracic Hospital, Shenyang Liaoning, China
| | - Yanhong Yu
- Department of Clinical Laboratory, Shenyang Tenth People's Hospital, Shenyang Liaoning, China
| | - Guoren Ma
- Ningxia No. 4 People's Hospital, Yinchuan Ningxia, China
| | | | - Diana Legarda
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, America
| | - Adrian Ting
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, America
| | - Yuan Liu
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, America
| | - Jia Hou
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan Ningxia, China,Corresponding author at: Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan Ningxia, China.
| | - Liwei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, Shanghai, National Center for Liver Cancer, Shanghai, China,Corresponding author at: International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, Shanghai, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining Shandong, China,Corresponding author at: Institute of Immunology and Molecular Medicine, Jining Medical University, Jining Shandong, China.
| |
Collapse
|
18
|
Cara-Fuentes G, Andres-Hernando A, Bauer C, Banks M, Garcia GE, Cicerchi C, Kuwabara M, Shimada M, Johnson RJ, Lanaspa MA. Pulmonary surfactants and the respiratory-renal connection in steroid-sensitive nephrotic syndrome of childhood. iScience 2022; 25:104694. [PMID: 35847557 PMCID: PMC9284382 DOI: 10.1016/j.isci.2022.104694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 01/21/2023] Open
Abstract
Steroid-sensitive nephrotic syndrome (SSNS) in childhood is usually due to minimal change disease (MCD). Unlike many glomerular conditions, SSNS/MCD is commonly precipitated by respiratory infections. Of interest, pulmonary inflammation releases surfactants in circulation which are soluble agonists of SIRPα, a podocyte receptor that regulates integrin signaling. Here, we characterized this pulmonary-renal connection in MCD and performed studies to determine its importance. Children with SSNS/MCD in relapse but not remission had elevated plasma surfactants and urinary SIRPα. Sera from relapsing subjects triggered podocyte SIRPα signaling via tyrosine phosphatase SHP-2 and nephrin dephosphorylation, a marker of podocyte activation. Further, addition of surfactants to MCD sera from patients in remission replicated these findings. Similarly, nasal instillation of toll-like receptor 3 and 4 agonists in mice resulted in elevated serum surfactants and their binding to glomeruli triggering proteinuria. Together, our data document a critical pulmonary-podocyte signaling pathway involving surfactants and SIRPα signaling in SSNS/MCD.
Collapse
Affiliation(s)
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA,Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, OR, USA
| | - Colin Bauer
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Mindy Banks
- Rocky Mountain Pediatric Kidney Center, Denver, CO, USA
| | - Gabriela E. Garcia
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Christina Cicerchi
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Masanari Kuwabara
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Michiko Shimada
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA
| | - Miguel A. Lanaspa
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Denver, CO, USA,Division of Nephrology and Hypertension, Oregon Health & Science University, Portland, OR, USA,Corresponding author
| |
Collapse
|
19
|
Flow Cytometric Analysis of Leukocyte Populations in the Lung Tissue of Dromedary Camels. Vet Sci 2022; 9:vetsci9060287. [PMID: 35737339 PMCID: PMC9231337 DOI: 10.3390/vetsci9060287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Respiratory tract infections are among the most common infections in dromedary camels, with a high impact on animal health, production, and welfare. Tissue-specific distribution of immune cells is one of the important factors that influence the nature and outcome of the immune response to pathogens. Several protocols have recently been described for the flow cytometric analysis of immune cells in the lung tissue of several species. However, no such protocol currently exists for dromedary camels. The aim of the present study was, therefore, to establish a flow cytometric protocol for the identification of immune cell populations in the camel lung tissue and the evaluation of some of their phenotypic and functional properties. Combined staining of camel lung leukocytes with monoclonal antibodies to the pan-leukocyte marker CD45 and the myeloid cell marker CD172a allowed the identification of myeloid cells (CD45+CD172a+) and lymphoid cells (CD45+CD172a−) in the lung of healthy camels. The cell adhesion molecules CD11a and CD18 were found in a higher abundance on myeloid cells compared to lymphoid cells. Based on their differential expression of the LPS receptor CD14, macrophages (CD172a+CD14high cells) were identified as the most abundant immune cell population in the camel lung tissue. In contrast to their dominance in camel peripheral blood, granulocytes (CD172a+CD14low) presented only a minor population in the lung tissue. The higher frequency of γδ T cells in the lung tissue than in peripheral blood suggests a role for these cells in the pulmonary immune system. Flow cytometric analysis of bacterial phagocytosis and ROS production upon bacterial stimulation revealed high antimicrobial activity of camel lung phagocytes, which was comparable with the antimicrobial activity of blood granulocytes. Comparative analysis of immune cell distribution between the cranial and caudal lobes of the camel lung revealed a higher frequency of granulocytes and a lower frequency of macrophages in the cranial compared to the caudal lung lobe. In addition, the higher frequency of cells expressing the M2 macrophage marker CD163 in the caudal lung tissue, with a slightly higher fraction of MHCII-positive cells (M1 phenotype) in the cranial lung tissue, may suggest the distribution of different macrophage subtypes in the different lobes of the camel lung. Such differences between lung lobes could influence the effectiveness of the immune response to infection or vaccination with respiratory pathogens. Collectively, the present study identified some similarities and differences between camels and other farm animals regarding the distribution of the main immune cell populations in their lungs. Further studies are required for comprehensive immunophenotyping of the cellular pulmonary immune system in camels.
Collapse
|
20
|
Shen Q, Zhao L, Pan L, Li D, Chen G, Chen Z, Jiang Z. Soluble SIRP-Alpha Promotes Murine Acute Lung Injury Through Suppressing Macrophage Phagocytosis. Front Immunol 2022; 13:865579. [PMID: 35634325 PMCID: PMC9133620 DOI: 10.3389/fimmu.2022.865579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Soluble signal regulatory protein-alpha (SIRP-alpha) is elevated in bronchoalveolar lavage (BAL) of mice with lipopolysaccharides (LPS)-induced acute lung injury (ALI). To define the role of soluble SIRP-alpha in the pathogenesis of ALI, we established murine ALI in wild-type (WT) and SIRP-alpha knock-out (KO) mice by intratracheal administration of LPS. The results indicated that lack of SIRP-alpha significantly reduced the pathogenesis of ALI, in association with attenuated lung inflammation, infiltration of neutrophils and expression of pro-inflammatory cytokines in mice. In addition, lack of SIRP-alpha reduced the expression of pro-inflammatory cytokines in LPS-treated bone marrow-derived macrophages (BMDMs) from KO mice, accompanied with improved macrophage phagocytosis. Blockade of soluble SIRP-alpha activity in ALI BAL by anti-SIRP-alpha antibody (aSIRP) effectively reduced the expression of TNF-alpha and IL-6 mRNA transcripts and proteins, improved macrophage phagocytosis in vitro. In addition, lack of SIRP-alpha reduced activation of Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) and improved activation of signal transducer and activator of transcription-3 (STAT3) and STAT6. Suppression of SHP-1 activity by tyrosine phosphatase inhibitor 1 (TPI-1) increased activation of STAT3 and STAT6, and improved macrophage phagocytosis, that was effectively reversed by STAT3 and STAT6 inhibitors. Thereby, SIRP-alpha suppressed macrophage phagocytosis through activation of SHP-1, subsequently inhibiting downstream STAT3 and STAT6 signaling. Lack of SIRP-alpha attenuated murine ALI possibly through increasing phagocytosis, and improving STAT3 and STAT6 signaling in macrophages. SIRP-alpha would be promising biomarker and molecular target in the treatment of murine ALI and patients with acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Qinjun Shen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Zhao
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Linyue Pan
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dandan Li
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihong Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhilong Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Lee KM, Park T, Kim MS, Park JS, Chi WJ, Kim SY. Anti-inflammatory Activities of 7,8-Dihydroxy-4-Methylcoumarin Acetylation Products via NF-κB and MAPK Pathways in LPS-Stimulated RAW 264.7 Cells. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221086893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coumarins are phenolic compounds that are characterized by fused benzene and α-pyrone rings. Among coumarin-based compounds, 7,8-dihydroxy-4-methylcoumarin (DHMC) has anti-inflammatory activities, but whether the level of this activity varies according to the degree of acetylation remains unknown. Therefore, we acetylated DHMC to yield monoacetylated 8-acetoxy-4-methylcoumarin (8AMC) and 7,8-diacetoxy-4-methylcoumarin (DAMC). We then compared the anti-inflammatory activities of DHMC with its acetylated derivatives and discovered a novel anti-inflammatory agent. We evaluated whether DHMC, 8AMC, and DAMC could inhibit lipopolysaccharide (LPS)-induced stimulation in RAW 264.7 cells. We found that DHMC, 8AMC, and DAMC induced a dose-dependent downregulation of nitric oxide (NO), prostaglandin E2 (PGE2), pro-inflammatory cytokine, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2) expression at the mRNA and protein levels. Western blotting showed that DHMC, 8AMC, and DAMC inhibited phosphorylated mitogen-activated protein kinase (MAK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and nuclear factor-kappa B (NF-κB) expression in a concentration-dependent manner. Furthermore, 8AMC was the most effective inhibitor with powerful anti-inflammatory activity. These results indicate that acetylation can improve the anti-inflammatory activity of natural precursors. We also discovered the new anti-inflammatory compounds 8AMC and DAMC.
Collapse
Affiliation(s)
| | | | - Min-Seon Kim
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangwon-do, Korea
| | - Jin-Soo Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangwon-do, Korea
| | - Won-Jae Chi
- Microorganism Resources Division Biological Resources Research Department, National Institute of Biological Resource, Incheon, South Korea
| | | |
Collapse
|
22
|
Martins PDC, de Souza HADS, Blanco CM, Santos-de-Oliveira L, Pratt-Riccio LR, Daniel-Ribeiro CT, Totino PRR. Modulation of Signal Regulatory Protein α (SIRPα) by Plasmodium Antigenic Extract: A Preliminary In Vitro Study on Peripheral Blood Mononuclear Cells. Microorganisms 2022; 10:microorganisms10050903. [PMID: 35630348 PMCID: PMC9144821 DOI: 10.3390/microorganisms10050903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Signal regulatory protein α (SIRPα) is an immunoreceptor expressed in myeloid innate immune cells that signals for inhibition of both phagocytosis and inflammatory response. Malaria parasites have evolutionarily selected multiple mechanisms that allow them to evade host immune defenses, including the modulation of cells belonging to innate immunity. Notwithstanding, little attention has been given to SIRPα in the context of immunosuppressive states induced by malaria. The present study attempted to investigate if malaria parasites are endowed with the capacity of modulating the expression of SIRPα on cells of innate immune system. Human peripheral blood mononuclear cells (PBMC) from healthy individuals were incubated in the presence of lipopolysaccharide (LPS) or crude extracts of P. falciparum or P. vivax and then, the expression of SIRPα was evaluated by flow cytometry. As expected, LPS showed an inhibitory effect on the expression of SIRPα in the population of monocytes, characterized by cell morphology in flow cytometry analysis, while Plasmodium extracts induced a significant positive modulation. Additional phenotyping of cells revealed that the modulatory potential of Plasmodium antigens on SIRPα expression was restricted to the population of monocytes (CD14+CD11c+), as no effect on myeloid dendritic cells (CD14−CD11c+) was observed. We hypothesize that malaria parasites explore inhibitory signaling of SIRPα to suppress antiparasitic immune responses contributing to the establishment of infection. Nevertheless, further studies are still required to better understand the role of SIRPα modulation in malaria immunity and pathogenesis.
Collapse
|
23
|
Lv T, Zhang Z, Yu H, Ren S, Wang J, Li S, Sun L. Tamoxifen Exerts Anticancer Effects on Pituitary Adenoma Progression via Inducing Cell Apoptosis and Inhibiting Cell Migration. Int J Mol Sci 2022; 23:ijms23052664. [PMID: 35269804 PMCID: PMC8910631 DOI: 10.3390/ijms23052664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Although pituitary adenomas are histologically benign, they are often accompanied by multiple complications, such as cardiovascular disease and metabolic dysfunction. In the present study, we repositioned the Food and Drug Administration -approved immune regulator tamoxifen to target STAT6 based on the genomics analysis of PAs. Tamoxifen inhibited the proliferation of GH3 and AtT-20 cells with respective IC50 values of 9.15 and 7.52 μM and increased their apoptotic rates in a dose-dependent manner. At the molecular level, tamoxifen downregulated phosphorylated PI3K, phosphorylated AKT and the anti-apoptotic protein Bcl-2 and increased the expression of pro-apoptotic proteins p53 and Bax in GH3 and AtT-20 cells. Furthermore, tamoxifen also inhibited the migration of both cell lines by reprogramming tumor-associated macrophages to the M1 phenotype through STAT6 inactivation and inhibition of the macrophage-specific immune checkpoint SHP1/SHP. Finally, administration of tamoxifen (20, 50, 100 mg·kg−1·d−1, for 21 days) inhibited the growth of pituitary adenomas xenografts in nude mice in a dose-dependent manner. Taken together, tamoxifen is likely to be a promising combination therapy for pituitary adenomas and should be investigated further.
Collapse
Affiliation(s)
- Tingting Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zirui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haoying Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuyue Ren
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingrong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Correspondence:
| |
Collapse
|
24
|
Wang C, Sallman DA. Targeting the cluster of differentiation 47/signal-regulatory protein alpha axis in myeloid malignancies. Curr Opin Hematol 2022; 29:44-52. [PMID: 34854834 DOI: 10.1097/moh.0000000000000691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The antitumor activity of macrophages is regulated by a balance of prophagocytic and antiphagocytic signals. Cluster of differentiation 47 (CD47), the dominant macrophage immune checkpoint ('do not eat me' signal), interacts with its receptor signal-regulatory protein alpha (SIRPα) to suppress phagocytic activities. This axis plays a pivotal role in immune evasion in myeloid malignancies as well as multiple cancers providing strong rationale for therapeutic exploitation. RECENT FINDINGS Preclinical studies have revealed overexpression of CD47 on leukemic stem cells and myeloblasts from patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), which contributes to immune surveillance evasion and is associated with poor outcomes. Blockade of CD47 with different approaches has demonstrated proof-of-concept antitumor activities mainly through phagocytic clearance. Early phase clinical trials combining the anti-CD47 mAb magrolimab with the hypomethylating agent azacitidine have showed synergistic activities, deep and durable responses, as well as a tolerable safety profile in these patients, including those with TP53 mutations. SUMMARY Targeting CD47/SIRPα axis, in combination with other therapeutic agents, represents a promising treatment approach for patients with myeloid malignancies, particularly the challenging TP53-mutated subgroup.
Collapse
Affiliation(s)
- Chen Wang
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
25
|
Cabral F, Al-Rahem M, Skaggs J, Thomas TA, Kumar N, Wu Q, Fadda P, Yu L, Robinson JM, Kim J, Pandey E, Sun X, Jarjour WN, Rajaram MV, Harris EN, Ganesan LP. Stabilin receptors clear LPS and control systemic inflammation. iScience 2021; 24:103337. [PMID: 34816100 PMCID: PMC8591421 DOI: 10.1016/j.isci.2021.103337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/17/2021] [Accepted: 10/20/2021] [Indexed: 01/17/2023] Open
Abstract
Lipopolysaccharides (LPSs) cause lethal endotoxemia if not rapidly cleared from blood circulation. Liver sinusoidal endothelial cells (LSEC) systemically clear LPS by unknown mechanisms. We discovered that LPS clearance through LSEC involves endocytosis and lysosomal inactivation via Stabilin-1 and 2 (Stab1 and Stab2) but does not involve TLR4. Cytokine production was inversely related to clearance/endocytosis of LPS by LSEC. When exposed to LPS, Stabilin double knockout mice (Stab DK) and Stab1 KO, but not Stab2 KO, showed significantly enhanced systemic inflammatory cytokine production and early death compared with WT mice. Stab1 KO is not significantly different from Stab DK in circulatory LPS clearance, LPS uptake and endocytosis by LSEC, and cytokine production. These data indicate that (1) Stab1 receptor primarily facilitates the proactive clearance of LPS and limits TLR4-mediated inflammation and (2) TLR4 and Stab1 are functionally opposing LPS receptors. These findings suggest that endotoxemia can be controlled by optimizing LPS clearance by Stab1.
Collapse
Affiliation(s)
- Fatima Cabral
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Mustafa Al-Rahem
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John Skaggs
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thushara A. Thomas
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Naresh Kumar
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Qian Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Paolo Fadda
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - John M. Robinson
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jonghan Kim
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, MA 01854, USA
| | - Ekta Pandey
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Wael N. Jarjour
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Murugesan V.S. Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Latha P. Ganesan
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Chen W, Liu Z, Zheng Y, Wei B, Shi J, Shao B, Wang D. Selenium donor restricts the intracellular growth of Mycobacterium tuberculosis through the induction of c-Jun-mediated both canonical autophagy and LC3-associated phagocytosis of alveolar macrophages. Microb Pathog 2021; 161:105269. [PMID: 34742891 DOI: 10.1016/j.micpath.2021.105269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 10/25/2022]
Abstract
The relationship between selenium and Mycobacterium tuberculosis (MTB) infection has been reported previously; however, the specific mechanism is still not clear. In this study, selenium levels decreased in the serum of patients with pulmonary tuberculosis (PTB) compared with the healthy controls; they were associated with the treatment outcome of such patients. The qRT-PCR assay revealed that selenium might function through proinflammatory and autophagy pathways. The treatment with methylseleninic acid (MSeA), a selenium donor, blocked the M1 polarization of MTB-infected macrophages through the induction of both canonical autophagy and LC3-associated phagocytosis (LAP). c-Jun is vital in mediating the MSeA-triggered canonical autophagy and LAP process, thus displaying a restricting function against intracellular MTB. An in vivo study confirmed that the activity of MSeA was shown through enhancing macrophage autophagy related pathway. The results showed that selenium had a restricting function against intracellular MTB by regulating autophagy in macrophages. The findings might provide a novel direction for PTB therapy in the future.
Collapse
Affiliation(s)
- Wenhui Chen
- Thoracic Surgery Department, Capital Medical University Beijing Tiantan Hospital, No.119 South Fourth Ring West Road, Fengtai District, Beijing,100070, China
| | - Zhen Liu
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing, 100091, China
| | - Ying Zheng
- Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Australia
| | - Bo Wei
- Thoracic Surgery Department, Capital Medical University Beijing Tiantan Hospital, No.119 South Fourth Ring West Road, Fengtai District, Beijing,100070, China
| | - Jingdong Shi
- Thoracic Surgery Department, Capital Medical University Beijing Tiantan Hospital, No.119 South Fourth Ring West Road, Fengtai District, Beijing,100070, China.
| | - Baowei Shao
- Department of Cardiac Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan, Shandong, 250013, China.
| | - Di Wang
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing, 100091, China; Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Australia.
| |
Collapse
|
27
|
Sheng M, Lin Y, Xu D, Tian Y, Zhan Y, Li C, Farmer DG, Kupiec-Weglinski JW, Ke B. CD47-Mediated Hedgehog/SMO/GLI1 Signaling Promotes Mesenchymal Stem Cell Immunomodulation in Mouse Liver Inflammation. Hepatology 2021; 74:1560-1577. [PMID: 33765345 PMCID: PMC9436023 DOI: 10.1002/hep.31831] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/18/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS The cluster of differentiation 47 (CD47)-signal regulatory protein alpha (SIRPα) signaling pathway plays important roles in immune homeostasis and tissue inflammatory response. Activation of the Hedgehog/smoothened (SMO)/GLI family zinc finger 1 (Gli1) pathway regulates cell growth, differentiation, and immune function. However, it remains unknown whether and how the CD47-SIRPα interaction may regulate Hedgehog/SMO/Gli1 signaling in mesenchymal stem cell (MSC)-mediated immune regulation during sterile inflammatory liver injury. APPROACH AND RESULTS In a mouse model of ischemia/reperfusion (IR)-induced sterile inflammatory liver injury, we found that adoptive transfer of MSCs increased CD47 expression and ameliorated liver IR injury. However, deletion of CD47 in MSCs exacerbated IR-induced liver damage, with increased serum ALT levels, macrophage/neutrophil infiltration, and pro-inflammatory mediators. MSC treatment augmented SIRPα, Hedgehog/SMO/Gli1, and Notch1 intracellular domain (NICD), whereas CD47-deficient MSC treatment reduced these gene expressions in IR-stressed livers. Moreover, disruption of myeloid SMO or Notch1 increased IR-triggered liver inflammation with diminished Gli1 and NICD, but enhanced NIMA related kinase 7 (NEK7) and NLR family pyrin domain containing 3 (NLRP3) activation in MSC-transferred mice. Using a MSC/macrophage co-culture system, we found that MSC CD47 and macrophage SIRPα expression were increased after LPS stimulation. The CD47-SIRPα interaction increased macrophage Gli1 and NICD nuclear translocation, whereby NICD interacted with Gli1 and regulated its target gene Dvl2 (dishevelled segment polarity protein 2), which in turn inhibited NEK7/NLRP3 activity. CONCLUSIONS The CD47-SIRPα signaling activates the Hedgehog/SMO/Gli1 pathway, which controls NEK7/NLRP3 activity through a direct interaction between Gli1 and NICD. NICD is a coactivator of Gli1, and the target gene Dvl2 regulated by the NICD-Gli1 complex is crucial for the modulation of NLRP3-driven inflammatory response in MSC-mediated immune regulation. Our findings provide potential therapeutic targets in MSC-mediated immunotherapy of sterile inflammatory liver injury.
Collapse
Affiliation(s)
- Mingwei Sheng
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Department of Anesthesiology, Tianjin First Center Hospital, Nankai University, Tianjin, China
| | - Yuanbang Lin
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Dongwei Xu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yizhu Tian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yongqiang Zhan
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Changyong Li
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Douglas G. Farmer
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA,Corresponding author: Bibo Ke, MD, PhD. The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095. Tel: (310) 825-7444; Fax: (310) 267-2367; .
| |
Collapse
|
28
|
Shi L, Bian Z, Kidder K, Liang H, Liu Y. Non-Lyn Src Family Kinases Activate SIRPα-SHP-1 to Inhibit PI3K-Akt2 and Dampen Proinflammatory Macrophage Polarization. THE JOURNAL OF IMMUNOLOGY 2021; 207:1419-1427. [PMID: 34348974 DOI: 10.4049/jimmunol.2100266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
Macrophage functional plasticity plays a central role in responding to proinflammatory stimuli. The molecular basis underlying the dynamic phenotypic activation of macrophages, however, remains incompletely understood. In this article, we report that SIRPα is a chief negative regulator of proinflammatory macrophage polarization. In response to TLR agonists, proinflammatory cytokines, or canonical M1 stimulation, Src family kinases (SFK) excluding Lyn phosphorylate SIRPα ITIMs, leading to the preferential recruitment and activation of SHP-1, but not SHP-2. Solely extracellular ligation of SIRPα by CD47 does not greatly induce phosphorylation of SIRPα ITIMs, but it enhances proinflammatory stimuli-induced SIRPα phosphorylation. Examination of downstream signaling elicited by IFN-γ and TLR3/4/9 agonists found that SIRPα-activated SHP-1 moderately represses STAT1, NF-κB, and MAPK signaling but markedly inhibits Akt2, resulting in dampened proinflammatory cytokine production and expression of Ag presentation machinery. Pharmacological inhibition of SHP-1 or deficiency of SIRPα conversely attenuates SIRPα-mediated inhibition and, as such, augments macrophage proinflammatory polarization that in turn exacerbates proinflammation in mouse models of type I diabetes and peritonitis. Our results reveal an SFK-SIRPα-SHP-1 mechanism that fine-tunes macrophage proinflammatory phenotypic activation via inhibition of PI3K-Akt2, which controls the transcription and translation of proinflammatory cytokines, Ag presentation machinery, and other cellular programs.
Collapse
Affiliation(s)
- Lei Shi
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Center for Diagnostics and Therapeutics, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA
| | - Zhen Bian
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Center for Diagnostics and Therapeutics, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA
| | - Koby Kidder
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Center for Diagnostics and Therapeutics, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA
| | - Hongwei Liang
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Center for Diagnostics and Therapeutics, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA
| | - Yuan Liu
- Program of Immunology and Molecular Cellular Biology, Department of Biology, Center for Diagnostics and Therapeutics, Center of Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA
| |
Collapse
|
29
|
Beyranvand Nejad E, Labrie C, van Elsas MJ, Kleinovink JW, Mittrücker HW, Franken KLMC, Heink S, Korn T, Arens R, van Hall T, van der Burg SH. IL-6 signaling in macrophages is required for immunotherapy-driven regression of tumors. J Immunother Cancer 2021; 9:e002460. [PMID: 33879600 PMCID: PMC8061866 DOI: 10.1136/jitc-2021-002460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND High serum interleukin (IL-6) levels may cause resistance to immunotherapy by modulation of myeloid cells in the tumor microenvironment. IL-6 signaling blockade is tested in cancer, but as this inflammatory cytokine has pleiotropic effects, this treatment is not always effective. METHODS IL-6 and IL-6R blockade was applied in an IL-6-mediated immunotherapy-resistant TC-1 tumor model (TC-1.IL-6) and immunotherapy-sensitive TC-1. CONTROL Effects on therapeutic vaccination-induced tumor regression, recurrence and survival as well on T cells and myeloid cells in the tumor microenvironment were studied. The effects of IL-6 signaling in macrophages under therapy conditions were studied in Il6rafl/fl×LysMcre+ mice. RESULTS Our therapeutic vaccination protocol elicits a strong tumor-specific CD8+ T-cell response, leading to enhanced intratumoral T-cell infiltration and recruitment of tumoricidal macrophages. Blockade of IL-6 signaling exacerbated tumor outgrowth, reflected by fewer complete regressions and more recurrences after therapeutic vaccination, especially in TC-1.IL-6 tumor-bearing mice. Early IL-6 signaling blockade partly inhibited the development of the vaccine-induced CD8+ T-cell response. However, the main mechanism was the malfunction of macrophages during therapy-induced tumor regression. Therapy efficacy was impaired in Il6rafl/fl×LysMcre+ but not cre-negative control mice, while no differences in the vaccine-induced CD8+ T-cell response were found between these mice. IL-6 signaling blockade resulted in decreased expression of suppressor of cytokine signaling 3, essential for effective M1-type function in macrophages, and increased expression of the phagocytic checkpoint molecule signal-regulatory protein alpha by macrophages. CONCLUSION IL-6 signaling is critical for macrophage function under circumstances of immunotherapy-induced tumor tissue destruction, in line with the acute inflammatory functions of IL-6 signaling described in infections.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/drug effects
- Female
- Injections, Subcutaneous
- Interleukin-6/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/immunology
- Papillomavirus E7 Proteins/administration & dosage
- Papillomavirus E7 Proteins/immunology
- Phenotype
- Receptors, Interleukin-6/genetics
- Receptors, Interleukin-6/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- Tumor-Associated Macrophages/drug effects
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
- Mice
Collapse
Affiliation(s)
- Elham Beyranvand Nejad
- Medical Oncology, Oncode institute, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Camilla Labrie
- Medical Oncology, Oncode institute, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Marit J van Elsas
- Medical Oncology, Oncode institute, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Jan Willem Kleinovink
- Medical Oncology, Oncode institute, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Hans-Willi Mittrücker
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kees L M C Franken
- Department of Immunology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Sylvia Heink
- Experimental Neuroimmunology, Technische Universität München, Munchen, Bayern, Germany
| | - Thomas Korn
- Experimental Neuroimmunology, Technische Universität München, Munchen, Bayern, Germany
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Thorbald van Hall
- Medical Oncology, Oncode institute, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Sjoerd H van der Burg
- Medical Oncology, Oncode institute, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
30
|
Elhag DA, Kumar M, Al Khodor S. Exploring the Triple Interaction between the Host Genome, the Epigenome, and the Gut Microbiome in Type 1 Diabetes. Int J Mol Sci 2020; 22:ijms22010125. [PMID: 33374418 PMCID: PMC7795494 DOI: 10.3390/ijms22010125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is an auto-immune disorder characterized by a complex interaction between the host immune system and various environmental factors in genetically susceptible individuals. Genome-wide association studies (GWAS) identified different T1D risk and protection alleles, however, little is known about the environmental factors that can be linked to these alleles. Recent evidence indicated that, among those environmental factors, dysbiosis (imbalance) in the gut microbiota may play a role in the pathogenesis of T1D, affecting the integrity of the gut and leading to systemic inflammation and auto-destruction of the pancreatic β cells. Several studies have identified changes in the gut microbiome composition in humans and animal models comparing T1D subjects with controls. Those changes were characterized by a higher abundance of Bacteroides and a lower abundance of the butyrate-producing bacteria such as Clostridium clusters IV and XIVa. The mechanisms by which the dysbiotic bacteria and/or their metabolites interact with the genome and/or the epigenome of the host leading to destructive autoimmunity is still not clear. As T1D is a multifactorial disease, understanding the interaction between different environmental factors such as the gut microbiome, the genetic and the epigenetic determinants that are linked with the early appearance of autoantibodies can expand our knowledge about the disease pathogenesis. This review aims to provide insights into the interaction between the gut microbiome, susceptibility genes, epigenetic factors, and the immune system in the pathogenesis of T1D.
Collapse
|
31
|
Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPα Immune Checkpoint. Immunity 2020; 52:742-752. [PMID: 32433947 DOI: 10.1016/j.immuni.2020.04.011] [Citation(s) in RCA: 411] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The cytotoxic activity of myeloid cells is regulated by a balance of signals that are transmitted through inhibitory and activating receptors. The Cluster of Differentiation 47 (CD47) protein, expressed on both healthy and cancer cells, plays a pivotal role in this balance by delivering a "don't eat me signal" upon binding to the Signal-regulatory protein alpha (SIRPα) receptor on myeloid cells. Here, we review the current understanding of the role of the CD47-SIRPα axis in physiological tissue homeostasis and as a promising therapeutic target in, among others, oncology, fibrotic diseases, atherosclerosis, and stem cell therapies. We discuss gaps in understanding and highlight where additional insight will be beneficial to allow optimal exploitation of this myeloid cell checkpoint as a target in human disease.
Collapse
Affiliation(s)
- Meike E W Logtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ferenc A Scheeren
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
32
|
Kidder K, Bian Z, Shi L, Liu Y. Inflammation Unrestrained by SIRPα Induces Secondary Hemophagocytic Lymphohistiocytosis Independent of IFN-γ. THE JOURNAL OF IMMUNOLOGY 2020; 205:2821-2833. [PMID: 33028619 DOI: 10.4049/jimmunol.2000652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022]
Abstract
A hallmark of secondary hemophagocytic lymphohistiocytosis (sHLH), a severe form of cytokine storm syndrome, is the emergence of overactivated macrophages that engulf healthy host blood cells (i.e., hemophagocytosis) and contribute to the dysregulated inflammation-driven pathology. In this study, we show that depleting SIRPα (SIRPα-/-) in mice during TLR9-driven inflammation exacerbates and accelerates the onset of fulminant sHLH, in which systemic hemophagocytosis, hypercytokinemia, consumptive cytopenias, hyperferritinemia, and other hemophagocytic lymphohistiocytosis hallmarks were apparent. In contrast, mice expressing SIRPα, including those deficient of the SIRPα ligand CD47 (CD47-/-), do not phenocopy SIRPα deficiency and fail to fully develop sHLH, albeit TLR9-inflamed wild-type and CD47-/- mice exhibited hemophagocytosis, anemia, and splenomegaly. Although IFN-γ is largely considered a driver of hemophagocytic lymphohistiocytosis pathology, IFN-γ neutralization did not preclude the precipitation of sHLH in TLR9-inflamed SIRPα-/- mice, whereas macrophage depletion attenuated sHLH in SIRPα-/- mice. Mechanistic studies confirmed that SIRPα not only restrains macrophages from acquiring a hemophagocytic phenotype but also tempers their proinflammatory cytokine and ferritin secretion by negatively regulating Erk1/2 and p38 activation downstream of TLR9 signaling. In addition to TLR9 agonists, TLR2, TLR3, or TLR4 agonists, as well as TNF-α, IL-6, or IL-17A, but not IFN-γ, similarly induced sHLH in SIRPα-/- mice but not SIRPα+ mice. Collectively, our study suggests that SIRPα plays a previously unappreciated role in sHLH/cytokine storm syndrome pathogenesis by preventing macrophages from becoming both hemophagocytic and hyperactivated under proinflammation.
Collapse
Affiliation(s)
- Koby Kidder
- Program of Immunology and Cellular Biology, Department of Biology, Georgia State University, Atlanta, GA 30302; and
| | - Zhen Bian
- Program of Immunology and Cellular Biology, Department of Biology, Georgia State University, Atlanta, GA 30302; and.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Lei Shi
- Program of Immunology and Cellular Biology, Department of Biology, Georgia State University, Atlanta, GA 30302; and.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Yuan Liu
- Program of Immunology and Cellular Biology, Department of Biology, Georgia State University, Atlanta, GA 30302; and .,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302
| |
Collapse
|
33
|
Dang CP, Leelahavanichkul A. Over-expression of miR-223 induces M2 macrophage through glycolysis alteration and attenuates LPS-induced sepsis mouse model, the cell-based therapy in sepsis. PLoS One 2020; 15:e0236038. [PMID: 32658933 PMCID: PMC7357756 DOI: 10.1371/journal.pone.0236038] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/27/2020] [Indexed: 12/31/2022] Open
Abstract
The attenuation of hyper-inflammation in sepsis with the administration of anti-inflammatory macrophages is an interesting adjuvant therapy for sepsis. Because the induction of anti-inflammatory macrophages by microRNA (miR), a regulator of mRNA, has been mentioned, the exploration on miR-induced anti-inflammatory macrophages was performed. The over-expression of miR-223 and miR-146a in RAW264.7 induced M2 macrophage-polarization (anti-inflammatory macrophages) as evaluated by the enhanced expression of Arginase-1 and Fizz. However, miR-223 over-expressed cells demonstrated the more potent anti-inflammatory property against LPS stimulation as lesser iNOS expression, lower supernatant IL-6 and higher supernatant IL-10 compared with miR-146a over-expressed cells. Interestingly, LPS stimulation in miR-223 over-expressed cells, compared with LPS-stimulated control cells, demonstrated lower activity of glycolysis pathway and higher mitochondrial respiration, as evaluated by the extracellular flux analysis, and also down-regulated HIF-1α, an important enzyme of glycolysis pathway. In addition, the administration of miR-223 over-expressed macrophages with IL-4 pre-conditioning, but not IL-4 stimulated control cells, attenuated sepsis severity in LPS injected mice as evaluated by serum creatinine, liver enzymes, lung histology and serum cytokines. In conclusion, miR-223 interfered with the glycolysis pathway through the down-regulation of HIF-1α, resulting in the anti-inflammatory status. The over-expression of miR-223 in macrophages prevented the conversion into M1 macrophage polarization after LPS stimulation. The administration of miR-223 over-expressed macrophages, with IL-4 preconditioning, attenuated sepsis severity in LPS model. Hence, a proof of concept in the induction of anti-inflammatory macrophages through the cell-energy interference for sepsis treatment was proposed as a basis of cell-based therapy in sepsis.
Collapse
Affiliation(s)
- Cong Phi Dang
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
34
|
Zhang J, Tan SB, Guo ZG. CD47 decline in pancreatic islet cells promotes macrophage-mediated phagocytosis in type I diabetes. World J Diabetes 2020; 11:239-251. [PMID: 32547698 PMCID: PMC7284019 DOI: 10.4239/wjd.v11.i6.239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/30/2020] [Accepted: 04/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type I diabetes (T1D) is characterized by insulin loss caused by inflammatory cells that excessively infiltrate and destroy the pancreas, resulting in dysregulation of tissue homeostasis, mechanobiological properties, and the immune response. The streptozotocin (STZ)-induced mouse model exhibits multiple features of human T1D and enables mechanistic analysis of disease progression. However, the relationship between the mechanochemical signaling regulation of STZ-induced T1D and macrophage migration and phagocytosis is unclear.
AIM To study the mechanochemical regulation of STZ-induced macrophage response on pancreatic beta islet cells to gain a clearer understanding of T1D.
METHODS We performed experiments using different methods. We stimulated isolated pancreatic beta islet cells with STZ and then tested the macrophage migration and phagocytosis.
RESULTS In this study, we discovered that the integrin-associated surface factor CD47 played a critical role in immune defense in the STZ-induced T1D model by preventing pancreatic beta islet inflammation. In comparison with healthy mice, STZ-treated mice showed decreased levels of CD47 on islet cells and reduced interaction of CD47 with signal regulatory protein α (SIRPα), which negatively regulates macrophage-mediated phagocytosis. This resulted in weakened islet cell immune defense and promoted macrophage migration and phagocytosis of target inflammatory cells. Moreover, lipopolysaccharide-activated human acute monocytic leukemia THP-1 cells also exhibited enhanced phagocytosis in the STZ-treated islets, and the aggressive attack of the inflammatory islets correlated with impaired CD47-SIRPα interactions. In addition, CD47 overexpression rescued the pre-labeled targeted cells.
CONCLUSION This study indicates that CD47 deficiency promotes the migration and phagocytosis of macrophages and provides mechanistic insights into T1D by associating the interactions between membrane structures and inflammatory disease progression.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210097, Jiangsu Province, China
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Su-Bee Tan
- National Key Laboratory for Biochemistry, College of Life Sciences, Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Zhi-Gang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210097, Jiangsu Province, China
| |
Collapse
|
35
|
Kharlamovа OS, Nikolaev KY, Ragino YI, Voevoda MI. [Surfactant proteins A and D: role in the pathogenesis of community-acquired pneumonia and possible predictive perspectives]. TERAPEVT ARKH 2020; 92:109-115. [PMID: 32598802 DOI: 10.26442/00403660.2020.03.000275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 11/22/2022]
Abstract
Community-acquired pneumonia is one of the most common infectious diseases and remains one of the leading causes of death in this group of diseases. Studies of community-acquired pneumonia are extremely relevant for modern clinical practice. One of the important role in the pathogenesis of bacterial, viral, fungal invasion in the system of a human lung system belongs to the pulmonary surfactant, in particular, its proteins SP-A and SP-D. This article reviews the well-known mechanisms of important biological properties of immunomodulatory activity of the proteins SP-A and SP-D in response to microbial infection in the lungs. The mechanisms of participation of surfactant proteins SP-A and SP-D in the cascade of reactions that lead to severe life-threatening complications in community-acquired pneumonia are considered. The use of serum levels of surfactant proteins SP-A and SP-D can help finding new diagnostic and prognostic approaches in patients with community-acquired pneumonia.
Collapse
Affiliation(s)
- O S Kharlamovа
- Research Institute of Therapy and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics.,City Clinical Hospital №25
| | - K Y Nikolaev
- Research Institute of Therapy and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics.,Novosibirsk National Research State University
| | - Y I Ragino
- Research Institute of Therapy and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics
| | - M I Voevoda
- Research Institute of Therapy and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics
| |
Collapse
|
36
|
Morimoto A, Uchida K, Chambers JK, Sato K, Hong J, Sanjoba C, Matsumoto Y, Yamagishi J, Goto Y. Hemophagocytosis induced by Leishmania donovani infection is beneficial to parasite survival within macrophages. PLoS Negl Trop Dis 2019; 13:e0007816. [PMID: 31738750 PMCID: PMC6886864 DOI: 10.1371/journal.pntd.0007816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/02/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023] Open
Abstract
Visceral leishmaniasis (VL) is caused by parasitic protozoa of the genus Leishmania and is characterized by clinical manifestations such as fever, hepatosplenomegaly and anemia. Hemophagocytosis, the phenomenon of phagocytosis of blood cells by macrophages, is found in VL patients. In a previous study we established an experimental model of VL, reproducing anemia in mice for the first time, and identified hemophagocytosis by heavily infected macrophages in the spleen as a possible cause of anemia. However, the mechanism for parasite-induced hemophagocytosis or its role in parasite survival remained unclear. Here, we established an in vitro model of Leishmania-induced hemophagocytosis to explore the molecules involved in this process. In contrast to naïve RAW264.7 cells (mouse macrophage cell line) which did not uptake freshly isolated erythrocytes, RAW264.7 cells infected with L. donovani showed enhanced phagocytosis of erythrocytes. Additionally, for hemophagocytes found both in vitro and in vivo, the expression of signal regulatory protein α (SIRPα), one of the receptors responsible for the ‘don’t-eat-me’ signal was suppressed by post-transcriptional control. Furthermore, the overlapped phagocytosis of erythrocytes and Leishmania parasites within a given macrophage appeared to be beneficial to the parasites; the in vitro experiments showed a higher number of parasites within macrophages that had been induced to engulf erythrocytes. Together, these results suggest that Leishmania parasites may actively induce hemophagocytosis by manipulating the expression of SIRPα in macrophages/hemophagocytes, in order to secure their parasitism. Parasites can manipulate host immune responses to build favorable environment to them. Because this parasite-driven immune modulation is often linked to symptoms in infected individuals, not only parasiticidal compounds but also immunological interventions limiting such the parasites’ abilities will serve as treatment options. In this study, we studied the mechanism and its role of hemophagocytosis (the phenomenon whereby macrophages engulf erythrocytes) caused by Leishmania donovani, a causative agent of VL. In vitro experiments revealed parasites have ability to directly disrupt macrophage’s recognition of self-cells, and that the induced engulfment of erythrocytes by L. donovani infection is beneficial to the parasites for their intracellular survival. These results suggest that Leishmania parasites actively induce hemophagocytosis by manipulating the ‘don’t-eat-me’ signal in macrophages for their survival. Although it is still to be determined how Leishmania parasites change the ‘don’t-eat-me’ signal in macrophages, our study may facilitate development of an immunotherapy which limits the change and lead to improvement of anemia due to hemophagocytosis as well as control of parasite survival.
Collapse
Affiliation(s)
- Ayako Morimoto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - James K. Chambers
- Laboratory of Veterinary Pathology, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kai Sato
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jing Hong
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshitsugu Matsumoto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
37
|
SIRPα expression delineates subsets of intratumoral monocyte/macrophages with different functional and prognostic impact in follicular lymphoma. Blood Cancer J 2019; 9:84. [PMID: 31611550 PMCID: PMC6791879 DOI: 10.1038/s41408-019-0246-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022] Open
Abstract
Signal regulatory protein-α (SIRPα) is a key member of the “do-not-eat-me” signaling pathway, but its biological role and clinical relevance in B-cell NHL is relatively unknown. Using biopsy specimens from follicular lymphoma (FL), we identified three subsets (CD14+SIRPαhi, CD14−SIRPαlow, and CD14−SIRPαneg) of monocyte/macrophages (Mo/MΦ) based on CD14 and SIRPα expression. CD14+SIRPαhi cells expressed common Mo/MΦ markers; exhibited characteristic differentiation, migration, and phagocytosis; and suppressed T-cell function. CD14−SIRPαlow cells expressed fewer typical Mo/MΦ markers; migrated less and phagocytosed tumor cells less efficiently; and stimulated rather than suppressed T-cell function. Interestingly, the CD14−SIRPαneg subset expressed distinct Mo/MΦ markers compared to the other two subsets; had limited ability to migrate and phagocytose; but stimulated T-cell function. When using SIRPα-Fc to block the interaction between SIRPα and CD47, alone or in combination with rituximab, phagocytosis of tumor cells was differentially increased in the three Mo/MΦ subsets. Clinically, increased numbers of CD14+SIRPαhi cells were associated with an inferior survival in FL. In contrast, increased numbers of the CD14−SIRPαlow subset appeared to correlate with a better survival. Taken together, our results show that SIRPα expression delineates unique subsets of intratumoral Mo/MΦs with differing prognostic importance.
Collapse
|
38
|
Ma J, Abram CL, Hu Y, Lowell CA. CARD9 mediates dendritic cell-induced development of Lyn deficiency-associated autoimmune and inflammatory diseases. Sci Signal 2019; 12:12/602/eaao3829. [PMID: 31594855 DOI: 10.1126/scisignal.aao3829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CARD9 is an immune adaptor protein in myeloid cells that is involved in C-type lectin signaling and antifungal immunity. CARD9 is implicated in autoimmune and inflammatory-related diseases, such as rheumatoid arthritis, IgA nephropathy, ankylosing spondylitis, and inflammatory bowel disease (IBD). Given that Lyn-deficient (Lyn-/-) mice are susceptible to both autoimmunity and IBD, we investigated the immunological role of CARD9 in the development of these diseases using the Lyn-/- mouse model. We found that genetic deletion of CARD9 was sufficient to reduce the development of both spontaneous autoimmune disease as well as DSS- or IL-10 deficiency-associated colitis in Lyn-/- mice. Mechanistically, CARD9 was a vital component of the Lyn-mediated regulation of Toll-like receptor (TLR2 and TLR4) signaling in dendritic cells, but not in macrophages. In the absence of Lyn, signaling through a CD11b-Syk-PKCδ-CARD9 pathway was amplified, leading to increased TLR-induced production of inflammatory cytokines. Dendritic cell-specific deletion of CARD9 reversed the development of autoimmune and experimental colitis observed in dendritic cell-specific, Lyn-deficient mice. These findings suggest that targeting CARD9 may suppress the development of colitis and autoimmunity by reducing dendritic cell-driven inflammation.
Collapse
Affiliation(s)
- Jun Ma
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clare L Abram
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yongmei Hu
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
39
|
Bennett LF, Liao C, Quickel MD, Yeoh BS, Vijay-Kumar M, Hankey-Giblin P, Prabhu KS, Paulson RF. Inflammation induces stress erythropoiesis through heme-dependent activation of SPI-C. Sci Signal 2019; 12:12/598/eaap7336. [PMID: 31506384 DOI: 10.1126/scisignal.aap7336] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammation alters bone marrow hematopoiesis to favor the production of innate immune effector cells at the expense of lymphoid cells and erythrocytes. Furthermore, proinflammatory cytokines inhibit steady-state erythropoiesis, which leads to the development of anemia in diseases with chronic inflammation. Acute anemia or hypoxic stress induces stress erythropoiesis, which generates a wave of new erythrocytes to maintain erythroid homeostasis until steady-state erythropoiesis can resume. Although hypoxia-dependent signaling is a key component of stress erythropoiesis, we found that inflammation also induced stress erythropoiesis in the absence of hypoxia. Using a mouse model of sterile inflammation, we demonstrated that signaling through Toll-like receptors (TLRs) paradoxically increased the phagocytosis of erythrocytes (erythrophagocytosis) by macrophages in the spleen, which enabled expression of the heme-responsive gene encoding the transcription factor SPI-C. Increased amounts of SPI-C coupled with TLR signaling promoted the expression of Gdf15 and Bmp4, both of which encode ligands that initiate the expansion of stress erythroid progenitors (SEPs) in the spleen. Furthermore, despite their inhibition of steady-state erythropoiesis in the bone marrow, the proinflammatory cytokines TNF-α and IL-1β promoted the expansion and differentiation of SEPs in the spleen. These data suggest that inflammatory signals induce stress erythropoiesis to maintain erythroid homeostasis when inflammation inhibits steady-state erythropoiesis.
Collapse
Affiliation(s)
- Laura F Bennett
- Intercollege Graduate Program in Genetics, Penn State University, University Park, PA 16802, USA.,Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA 16802, USA
| | - Chang Liao
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA 16802, USA.,Graduate Program in Pathobiology, Penn State University, University Park, PA 16802, USA.,Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - Michael D Quickel
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA 16802, USA.,Graduate Program in Pathobiology, Penn State University, University Park, PA 16802, USA.,Clinical and Translational Science Institute, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Beng San Yeoh
- Graduate Program in Molecular, Cellular and Integrative Biosciences, Penn State University, University Park, PA 16802, USA
| | - Matam Vijay-Kumar
- Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA.,Graduate Program in Molecular, Cellular and Integrative Biosciences, Penn State University, University Park, PA 16802, USA.,Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA
| | - Pamela Hankey-Giblin
- Intercollege Graduate Program in Genetics, Penn State University, University Park, PA 16802, USA.,Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA 16802, USA.,Graduate Program in Pathobiology, Penn State University, University Park, PA 16802, USA.,Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA 16802, USA.,Graduate Program in Pathobiology, Penn State University, University Park, PA 16802, USA.,Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA.,Graduate Program in Molecular, Cellular and Integrative Biosciences, Penn State University, University Park, PA 16802, USA
| | - Robert F Paulson
- Intercollege Graduate Program in Genetics, Penn State University, University Park, PA 16802, USA. .,Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA 16802, USA.,Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA.,Graduate Program in Molecular, Cellular and Integrative Biosciences, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
40
|
Ghimire K, Chiba T, Minhas N, Meijles DN, Lu B, O'Connell P, Rogers NM. Deficiency in SIRP-α cytoplasmic recruitment confers protection from acute kidney injury. FASEB J 2019; 33:11528-11540. [PMID: 31370677 DOI: 10.1096/fj.201900583r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acute kidney injury (AKI) remains an important source of progressive chronic kidney injury. Loss of renal blood flow with subsequent restoration, termed ischemia reperfusion (IR), is a common cause of AKI. The cell surface receptor signal regulatory protein α (SIRP-α) is expressed on macrophages and limits inflammation and phagocytosis. SIRP-α has recently been found to have wider cell-based expression and play a role in renal IR. We have explored this in a genetic model of deficient SIRP-α signaling. Mice lacking SIRP-α cytoplasmic signaling (SIRP-αmut) and wild-type (WT) littermate controls underwent renal ischemia and reperfusion. Chimeric mice transplanted with WT or SIRP-αmut bone marrow were similarly challenged following engraftment. Molecular and immunohistochemical analysis of renal function, tissue damage, and key molecular targets was performed. SIRP-αmut mice were protected from renal IR compared with WT animals, demonstrating improved serum creatinine, less histologic damage, reduced proinflammatory cytokine production, and diminished production of reactive oxygen species (ROS). Resistance to renal IR in SIRP-αmut occurred alongside down-regulation of CD47 and thrombospondin-1, which are known to exert SIRP-α crosstalk and also promote IR. In chimeric mice, lack of SIRP-α signaling conferred protection to IR regardless of the genotype of circulating cells. Renal tubular epithelial cells from SIRP-αmut mice produced fewer ROS and proinflammatory cytokines in vitro. These results identify parenchymal SIRP-α as an independent driver of IR-mediated AKI and a potential therapeutic target.-Ghimire, K., Chiba, T., Minhas, N., Meijles, D. N., Lu, B., O'Connell, P., Rogers, N. M. Deficiency in SIRP-α cytoplasmic recruitment confers protection from acute kidney injury.
Collapse
Affiliation(s)
- Kedar Ghimire
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Takuto Chiba
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nikita Minhas
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Daniel N Meijles
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, United Kingdom
| | - Bo Lu
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Philip O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Department of Medicine, Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Medicine, Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
41
|
Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino T. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med 2019; 25:1057-1063. [PMID: 31270504 PMCID: PMC6688650 DOI: 10.1038/s41591-019-0498-z] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
Synthetic biology is driving a new era of medicine through the genetic programming of living cells1,2. This transformative approach allows for the creation of engineered systems that intelligently sense and respond to diverse environments, ultimately adding specificity and efficacy that extends beyond the capabilities of molecular-based therapeutics3–6. One particular focus area has been the engineering of bacteria as therapeutic delivery systems to selectively release therapeutic payloads in vivo7–11. Here, we engineered a non-pathogenic E. coli to specifically lyse within the tumor microenvironment and release an encoded nanobody antagonist of CD47 (CD47nb)12, an anti-phagocytic receptor commonly overexpressed in several human cancers13,14. We show that delivery of CD47nb by tumor-colonizing bacteria increases activation of tumor-infiltrating T cells, stimulates rapid tumor regression, prevents metastasis, and leads to long-term survival in a syngeneic tumor model. Moreover, we report that local injection of CD47nb bacteria stimulates systemic tumor antigen–specific immune responses that reduce the growth of untreated tumors – providing, to the best of our knowledge, the first demonstration of an abscopal effect induced by an engineered bacterial immunotherapy. Thus, engineered bacteria may be used for safe and local delivery of immunotherapeutic payloads leading to systemic antitumor immunity.
Collapse
Affiliation(s)
- Sreyan Chowdhury
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.,Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Samuel Castro
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Courtney Coker
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Taylor E Hinchliffe
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA. .,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA. .,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA. .,Data Science Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
42
|
Carvalho BC, Oliveira LC, Rocha CD, Fernandes HB, Oliveira IM, Leão FB, Valverde TM, Rego IMG, Ghosh S, Silva AM. Both knock-down and overexpression of Rap2a small GTPase in macrophages result in impairment of NF-κB activity and inflammatory gene expression. Mol Immunol 2019; 109:27-37. [PMID: 30851634 DOI: 10.1016/j.molimm.2019.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/12/2019] [Accepted: 02/17/2019] [Indexed: 02/08/2023]
Abstract
Small Ras GTPases are key molecules that regulate a variety of cellular responses in different cell types. Rap1 plays important functions in the regulation of macrophage biology during inflammation triggered by toll-like receptors (TLRs). However, despite sharing a relatively high degree of similarity with Rap1, no studies concerning Rap2 in macrophages and innate immunity have been reported yet. In this work, we show that either way alterations in the levels of Rap2a hampers proper macrophages response to TLR stimulation. Rap2a is activated by LPS in macrophages, and although putative activator TLR-inducible Ras guanine exchange factor RasGEF1b was sufficient to induce, it was not fully required for Rap2a activation. Silencing of Rap2a impaired LPS-induced production of IL-6 cytokine and KC/Cxcl1 chemokine, and also NF-κB activity as measured by reporter gene studies. Surprisingly, overexpression of Rap2a did also lead to marked inhibition of NF-κB activation induced by LPS, Pam3CSK4 and downstream TLR signaling molecules. We also found that Rap2a can inhibit the LPS-induced phosphorylation of the NF-κB subunit p65 at serine 536. Collectively, our data suggest that expression levels of Rap2a in macrophages might be tightly regulated to avoid unbalanced immune response. Our results implicate Rap2a in TLR-mediated responses by contributing to balanced NF-κB activity status in macrophages.
Collapse
Affiliation(s)
- Brener C Carvalho
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Leonardo C Oliveira
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Carolina D Rocha
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Heliana B Fernandes
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Isadora M Oliveira
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Felipe B Leão
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thalita M Valverde
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Igor M G Rego
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Sankar Ghosh
- Department of Microbiology & Immunology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Aristóbolo M Silva
- Laboratory of Inflammatory Genes, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
43
|
Soldevila F, Edwards JC, Graham SP, Stevens LM, Crudgington B, Crooke HR, Werling D, Steinbach F. Characterization of the Myeloid Cell Populations' Resident in the Porcine Palatine Tonsil. Front Immunol 2018; 9:1800. [PMID: 30158925 PMCID: PMC6104124 DOI: 10.3389/fimmu.2018.01800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
The palatine tonsil is the portal of entry for food and air and is continuously subjected to environmental challenges, including pathogens, which use the tonsil and pharynx as a primary site of replication. In pigs, this includes the viruses causing porcine respiratory and reproductive syndrome, and classical and African swine fever; diseases that have impacted the pig production industry globally. Despite the importance of tonsils in host defense, little is known regarding the phenotype of the myeloid cells resident in the porcine tonsil. Here, we have characterized five myeloid cell populations that align to orthologous populations defined in other mammalian species: a CD4+ plasmacytoid dendritic cell (DC) defined by expression of the conserved markers E2.2 and IRF-7, a conventional dendritic cell (cDC1) population expressing CADM1highCD172alow and high levels of XCR1 able to activate allogeneic CD4 and CD8 T cells; a cDC2 population of CADM1dim cells expressing FLT3, IRF4, and CSF1R with an ability to activate allogeneic CD4 T cells; CD163+ macrophages (Mϴs) defined by high levels of endocytosis and responsiveness to LPS and finally a CD14+ population likely derived from the myelomonocytic lineage, which showed the highest levels of endocytosis, a capacity for activation of CD4+ memory T cells, combined with lower relative expression of FLT3. Increased knowledge regarding the phenotypic and functional properties of myeloid cells resident in porcine tonsil will enable these cells to be targeted for future vaccination strategies to current and emerging porcine viruses.
Collapse
Affiliation(s)
- Ferran Soldevila
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Jane C Edwards
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Simon P Graham
- The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Lisa M Stevens
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Bentley Crudgington
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
44
|
Lin Y, Zhao JL, Zheng QJ, Jiang X, Tian J, Liang SQ, Guo HW, Qin HY, Liang YM, Han H. Notch Signaling Modulates Macrophage Polarization and Phagocytosis Through Direct Suppression of Signal Regulatory Protein α Expression. Front Immunol 2018; 9:1744. [PMID: 30105024 PMCID: PMC6077186 DOI: 10.3389/fimmu.2018.01744] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/16/2018] [Indexed: 12/23/2022] Open
Abstract
The Notch pathway plays critical roles in the development and functional modulation of myeloid cells. Previous studies have demonstrated that Notch activation promotes M1 polarization and phagocytosis of macrophages; however, the downstream molecular mechanisms mediating Notch signal remain elusive. In an attempt to identify Notch downstream targets in bone marrow-derived macrophages (BMDMs) using mass spectrometry, the signal regulatory protein α (SIRPα) appeared to respond to knockout of recombination signal-binding protein Jk (RBP-J), the critical transcription factor of Notch pathway, in macrophages. In this study, we validated that Notch activation could repress SIRPα expression likely via the Hes family co-repressors. SIRPα promoted macrophage M2 polarization, which was dependent on the interaction with CD47 and mediated by intracellular signaling through SHP-1. We provided evidence that Notch signal regulated macrophage polarization at least partially through SIRPα. Interestingly, Notch signal regulated macrophage phagocytosis of tumor cells through SIRPα but in a SHP-1-independent way. To access the translational value of our findings, we expressed the extracellular domains of the mouse SIRPα (mSIRPαext) to block the interaction between CD47 and SIRPα. We demonstrated that the soluble mSIRPαext polypeptides could promote M1 polarization and increase phagocytosis of tumor cells by macrophages. Taken together, our results provided new insights into the molecular mechanisms of notch-mediated macrophage polarization and further validated SIRPα as a target for tumor therapy through modulating macrophage polarization and phagocytosis.
Collapse
Affiliation(s)
- Yan Lin
- Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Jun-Long Zhao
- Department of Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Qi-Jun Zheng
- Department of Cardiac Surgery, Xijng Hospital, Fourth Military Medical University, Xi'an, China
| | - Xun Jiang
- Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiao Tian
- Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shi-Qian Liang
- Department of Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Hong-Wei Guo
- Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong-Yan Qin
- Department of Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Ying-Min Liang
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- Department of Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
45
|
Lei R, Hou J, Chen Q, Yuan W, Cheng B, Sun Y, Jin Y, Ge L, Ben-Sasson SA, Chen J, Wang H, Lu W, Fang X. Self-Assembling Myristoylated Human α-Defensin 5 as a Next-Generation Nanobiotics Potentiates Therapeutic Efficacy in Bacterial Infection. ACS NANO 2018; 12:5284-5296. [PMID: 29856606 DOI: 10.1021/acsnano.7b09109] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The increasing prevalence of antibacterial resistance globally underscores the urgent need to the update of antibiotics. Here, we describe a strategy for inducing the self-assembly of a host-defense antimicrobial peptide (AMP) into nanoparticle antibiotics (termed nanobiotics) with significantly improved pharmacological properties. Our strategy involves the myristoylation of human α-defensin 5 (HD5) as a therapeutic target and subsequent self-assembly in aqueous media in the absence of exogenous excipients. Compared with its parent HD5, the C-terminally myristoylated HD5 (HD5-myr)-assembled nanobiotic exhibited significantly enhanced broad-spectrum bactericidal activity in vitro. Mechanistically, it selectively killed Escherichia coli ( E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) through disruption of the cell wall and/or membrane structure. The in vivo results further demonstrated that the HD5-myr nanobiotic protected against skin infection by MRSA and rescued mice from E. coli-induced sepsis by lowering the systemic bacterial burden and alleviating organ damage. The self-assembled HD5-myr nanobiotic also showed negligible hemolytic activity and substantially low toxicity in animals. Our findings validate this design rationale as a simple yet versatile strategy for generating AMP-derived nanobiotics with excellent in vivo tolerability. This advancement will likely have a broad impact on antibiotic discovery and development efforts aimed at combating antibacterial resistance.
Collapse
Affiliation(s)
- Ruyi Lei
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Jinchao Hou
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Qixing Chen
- The Children's Hospital, School of Medicine , Zhejiang University , Hangzhou 310052 , China
| | - Weirong Yuan
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Baoli Cheng
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Yaqi Sun
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Yue Jin
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Lujie Ge
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Shmuel A Ben-Sasson
- Department of Developmental Biology, Institute for Medical Research Israel-Canada , The Hebrew University-Hadassah Medical School , Jerusalem 91120 , Israel
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology , Ningbo University , Ningbo 315211 , China
| | - Hangxiang Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| |
Collapse
|
46
|
Zhang Q, Lee WB, Kang JS, Kim LK, Kim YJ. Integrin CD11b negatively regulates Mincle-induced signaling via the Lyn-SIRPα-SHP1 complex. Exp Mol Med 2018; 50:e439. [PMID: 29400702 PMCID: PMC5992981 DOI: 10.1038/emm.2017.256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022] Open
Abstract
During mycobacteria infection, anti-inflammatory responses allow the host to avoid tissue damage caused by overactivation of the immune system; however, little is known about the negative modulators that specifically control mycobacteria-induced immune responses. Here we demonstrate that integrin CD11b is a critical negative regulator of mycobacteria cord factor-induced macrophage-inducible C-type lectin (Mincle) signaling. CD11b deficiency resulted in hyperinflammation following mycobacterial infection. Activation of Mincle by mycobacterial components turns on not only the Syk signaling pathway but also CD11b signaling and induces formation of a Mincle–CD11b signaling complex. The activated CD11b recruits Lyn, SIRPα and SHP1, which dephosphorylate Syk to inhibit Mincle-mediated inflammation. Furthermore, the Lyn activator MLR1023 effectively suppressed Mincle signaling, indicating the possibility of Lyn-mediated control of inflammatory responses. These results describe a new role for CD11b in fine-tuning the immune response against mycobacterium infection.
Collapse
Affiliation(s)
- Quanri Zhang
- Department of Integrated Omics for Biomedical Science, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Wook-Bin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ji-Seon Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS Project to Medical Sciences, Seoul, Republic of Korea.,Severance Institute for Vascular and Metabolic Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Joon Kim
- Department of Integrated Omics for Biomedical Science, Graduate School, Yonsei University, Seoul, Republic of Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
47
|
de Souza HADS, Costa-Correa EH, Bianco-Junior C, Andrade MCR, Lima-Junior JDC, Pratt-Riccio LR, Daniel-Ribeiro CT, Totino PRR. Detection of Signal Regulatory Protein α in Saimiri sciureus (Squirrel Monkey) by Anti-Human Monoclonal Antibody. Front Immunol 2017; 8:1814. [PMID: 29312325 PMCID: PMC5735064 DOI: 10.3389/fimmu.2017.01814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022] Open
Abstract
Non-human primates (NHP) are suitable models for studying different aspects of the human system, including pathogenesis and protective immunity to many diseases. However, the lack of specific immunological reagents for neo-tropical monkeys, such as Saimiri sciureus, is still a major factor limiting studies in these models. An alternative strategy to circumvent this obstacle has been the selection of immunological reagents directed to humans, which present cross-reactivity with NHP molecules. In this context and considering the key role of inhibitory immunoreceptors—such as the signal regulatory protein α (SIRPα)—in the regulation of immune responses, in the present study, we attempted to evaluate the ability of anti-human SIRPα monoclonal antibodies to recognize SIRPα in antigen-presenting S. sciureus peripheral blood mononuclear cells (PBMC). As shown by flow cytometry analysis, the profile of anti-SIRPα staining as well as the levels of SIRPα-positive cells in PBMC from S. sciureus were similar to those observed in human PBMC. Furthermore, using anti-SIRPα monoclonal antibody, it was possible to detect a decrease of the SIRPα levels on surface of S. sciureus cells after in vitro stimulation with lipopolysaccharides. Finally, using computed-based analysis, we observed a high degree of conservation of SIRPα across six species of primates and the presence of shared epitopes in the extracellular domain between humans and Saimiri genus that could be targeted by antibodies. In conclusion, we have identified a commercially available anti-human monoclonal antibody that is able to detect SIRPα of S. sciureus monkeys and that, therefore, can facilitate the study of the immunomodulatory role of SIRPα when S. sciureus is used as a model.
Collapse
Affiliation(s)
| | - Edmar Henrique Costa-Correa
- Laboratory for Malaria Research, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cesare Bianco-Junior
- Laboratory for Malaria Research, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | | - Lilian Rose Pratt-Riccio
- Laboratory for Malaria Research, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratory for Malaria Research, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Paulo Renato Rivas Totino
- Laboratory for Malaria Research, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
48
|
Abstract
There is an increasing recognition that inflammation plays a critical role in neurodegenerative diseases of the CNS, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and the prototypic neuroinflammatory disease multiple sclerosis (MS). Differential immune responses involving the adaptive versus the innate immune system are observed at various stages of neurodegenerative diseases, and may not only drive disease processes but could serve as therapeutic targets. Ongoing investigations into the specific inflammatory mechanisms that play roles in disease causation and progression have revealed lessons about inflammation-driven neurodegeneration that can be applied to other neurodegenerative diseases. An increasing number of immunotherapeutic strategies that have been successful in MS are now being applied to other neurodegenerative diseases. Some approaches suppress CNS immune mechanisms, while others harness the immune system to clear deleterious products and cells. This Review focuses on the mechanisms by which inflammation, mediated either by the peripheral immune response or by endogenous CNS immune mechanisms, can affect CNS neurodegeneration.
Collapse
|
49
|
Matlung HL, Szilagyi K, Barclay NA, van den Berg TK. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol Rev 2017; 276:145-164. [PMID: 28258703 DOI: 10.1111/imr.12527] [Citation(s) in RCA: 406] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immune checkpoint inhibitors, including those targeting CTLA-4/B7 and the PD-1/PD-L1 inhibitory pathways, are now available for clinical use in cancer patients, with other interesting checkpoint inhibitors being currently in development. Most of these have the purpose to promote adaptive T cell-mediated immunity against cancer. Here, we review another checkpoint acting to potentiate the activity of innate immune cells towards cancer. This innate immune checkpoint is composed of what has become known as the 'don't-eat me' signal CD47, which is a protein broadly expressed on normal cells and often overexpressed on cancer cells, and its counter-receptor, the myeloid inhibitory immunoreceptor SIRPα. Blocking CD47-SIRPα interactions has been shown to promote the destruction of cancer cells by phagocytes, including macrophages and neutrophils. Furthermore, there is growing evidence that targeting of the CD47-SIRPα axis may also promote antigen-presenting cell function and thereby stimulate adaptive T cell-mediated anti-cancer immunity. The development of CD47-SIRPα checkpoint inhibitors and the potential side effects that these may have are discussed. Collectively, this identifies the CD47-SIRPα axis as a promising innate immune checkpoint in cancer, and with data of the first clinical studies with CD47-SIRPα checkpoint inhibitors expected within the coming years, this is an exciting and rapidly developing field.
Collapse
Affiliation(s)
- Hanke L Matlung
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neil A Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cell Biology and Immunology, VU medical Center, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Yao C, Li G, Cai M, Qian Y, Wang L, Xiao L, Thaiss F, Shi B. Prostate cancer downregulated SIRP-α modulates apoptosis and proliferation through p38-MAPK/NF-κB/COX-2 signaling. Oncol Lett 2017; 13:4995-5001. [PMID: 28588738 DOI: 10.3892/ol.2017.6070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/26/2017] [Indexed: 01/05/2023] Open
Abstract
The present study investigated the regulatory mechanism of signal-regulatory protein (SIRP)-α in the apoptosis and proliferation of prostate cancer (CaP) cells. The expression profile of SIRP-α in prostate cancer cells was analyzed using reverse transcription-quantitative polymerase chain reaction and western blotting. Then SIRP-α function in CaP cells was further analyzed with the overexpression and RNA interference of SIRP-α. The results revealed that SIRP-α expression levels were decreased in CaP tissues and cell lines, with androgen-independent CaP exhibiting a lower SIRP-α expression compared with androgen-dependent CaP. Overexpression of SIRP-α resulted in a significantly reduced number of live CaP cells by enhancing apoptosis, whereas SIRP-α silencing increased CaP cell proliferation. Mechanistically, SIRP-α decreases cyclooxygenase-2 (COX-2) expression and cytokine production by negatively regulating p38 mitogen-activated protein kinase and nuclear factor-κB pathway. Therefore, SIRP-α knockdown decreases cell apoptosis by enhancing COX-2 expression. The present results indicate that SIRP-α may function as a novel negative regulator to modulate cellular proliferation, survival and migration in CaP cells. The heightened sensitivity of cells restoring SIRP-α function could be exploited in the development of therapeutics that may potentiate the antineoplastic effects of conventional cytokines or chemotherapeutic agents.
Collapse
Affiliation(s)
- Chen Yao
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Gang Li
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Ming Cai
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Yeyong Qian
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Liqin Wang
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Li Xiao
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| | - Friedrich Thaiss
- III Medical Clinic, University Hospital, Eppendorf, D-20246 Hamburg, Germany
| | - Bingyi Shi
- Organ Transplant Institute, Chinese People's Liberation Army 309th Hospital, Beijing 100091, P.R. China
| |
Collapse
|