1
|
Roy-Biswas S, Hibma M. The Epithelial Immune Response to Human Papillomavirus Infection. Pathogens 2025; 14:464. [PMID: 40430784 PMCID: PMC12114228 DOI: 10.3390/pathogens14050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
The skin is a complex organ, containing an intricate network of immune cells that are crucial for host barrier function and defence against pathogens. Human papillomavirus (HPV) exclusively infects the skin, and its lifecycle is intimately associated with epithelial cell division and differentiation. There are over 450 HPV types, 12 of which are classified as carcinogenic. The primary focus of this review is the epithelial immune response to HPV infection of the cervix during the initial stages of infection, productive infection, and disease progression. During the early stages of infection, cells are HPV-positive; however, there are no attributable histological changes to the epithelium. The HPV-infected cells have the capacity for innate sensing and signalling through toll-like receptors in response to viral nucleic acids. However, HPV has evolved multiple mechanisms to evade the innate response. During productive infection, all viral antigens are expressed and there are visible histological changes to the epithelium, including koilocytosis. Disease regression is associated with Tbet positive cells in the infected epithelium and the presence of CD4 and CD8 T cells in the lamina propria. Disease progression is associated with the overexpression of the E6 and E7 oncoproteins after integration of viral genomes into the host chromosomal DNA. Histologically, the epithelium is less differentiated, and changes to cells include a higher nuclear-to-cytoplasmic ratio and an increased mitotic index. Immune changes associated with disease progression include increased numbers of cells expressing suppressor molecules, such as FoxP3, Blimp-1, and HMGB1, and myeloid cell infiltrates with an M2-like phenotype. This review highlights the gaps in the understanding of the immune response in HPV-positive cervical neoplasia, and in regression and progression of disease. This knowledge is critical for the development of effective immunotherapies that reliably cause HPV-positive cervical neoplasia to regress.
Collapse
Affiliation(s)
| | - Merilyn Hibma
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| |
Collapse
|
2
|
Boyd DF, Jordan SV, Balachandran S. ZBP1-driven cell death in severe influenza. Trends Microbiol 2025; 33:521-532. [PMID: 39809680 DOI: 10.1016/j.tim.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Influenza A virus (IAV) infections can cause life-threatening illness in humans. The severity of disease is directly linked to virus replication in the alveoli of the lower respiratory tract. In particular, the lytic death of infected alveolar epithelial cells (AECs) is a major driver of influenza severity. Recent studies have begun to define the molecular mechanisms by which IAV triggers lytic cell death. Z-form nucleic-acid-binding protein 1 (ZBP1) senses replicating IAV and drives programmed cell death (PCD) in infected cells, including apoptosis and necroptosis in AECs and pyroptosis in myeloid cells. Necroptosis and pyroptosis, both lytic forms of death, contribute to pathogenesis during severe infections. Pharmacological blockade of necroptosis shows strong therapeutic potential in mouse models of lethal influenza. We suggest that targeting ZBP1-initiated necroinflammatory cell lysis, either alone or in combination antiviral drugs, will provide clinical benefit in severe influenza.
Collapse
Affiliation(s)
- David F Boyd
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA.
| | - Summer Vaughn Jordan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|
3
|
Dinant S, Castille J, Deloizy C, Bruder E, Sedano L, Daniel-Carlier N, Da Costa B, Passet B, Béringue V, Duchesne A, Chevalier C, Larcher T, Moazami-Goudarzi K, Vilotte JL, Le Goffic R. The prion-family protein Doppel exerts a protective role during influenza virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf031. [PMID: 40204637 DOI: 10.1093/jimmun/vkaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/24/2025] [Indexed: 04/11/2025]
Abstract
The cellular form of the prion protein (PrPC), known for its involvement as a misfolded isoform in transmissible spongiform encephalopathies, has recently been identified to exert a protective effect against viral infections. In this study, we explored the role of 2 other prion family members, Shadoo and Doppel, in protection against influenza A virus infection in mice. Lung expression levels of these genes revealed marked differences, with high expression of PrPC, low expression of Doppel, while Shadoo remained undetectable. Mice genetically knocked out for the genes encoding PrPC, Prnp-/- or Doppel, Prnd-/-, showed increased susceptibility to the virus, resulting in elevated morbidity compared with wild-type mice and mice knocked out for Shadoo, Sprn-/-. Unlike previous results observed in Prnp-/- mice, the absence of Doppel does not show enhancing effect on virus replication levels. Histological analysis of lung tissue from Prnd-/- mice revealed no difference in lesion size and severity compared with wild-type mice. However, transcriptomic analysis on day 7 postinfection revealed distinct signatures in Prnd-/- mice, highlighting the role of specific genes associated with polymorphonuclear neutrophil cells. Bronchoalveolar lavages confirmed a substantial neutrophil influx and increased inflammatory markers in the lungs of Prnd-/- mice. Neutrophil depletion experiments demonstrated a direct link between excessive neutrophil influx and increased susceptibility, mitigating pathology and partially restoring a wild-type phenotype in Prnd-/- mice. These findings underscore the complex role of Doppel in modulating the host immune response to influenza virus infection, particularly in regulating neutrophil recruitment and its implications on disease outcomes.
Collapse
Affiliation(s)
- Soraya Dinant
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Johan Castille
- UMR1313 GABI, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78350, France
| | - Charlotte Deloizy
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Elise Bruder
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Laura Sedano
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | | | - Bruno Da Costa
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Bruno Passet
- UMR1313 GABI, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78350, France
| | - Vincent Béringue
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| | - Amandine Duchesne
- UMR1313 GABI, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78350, France
| | | | | | | | - Jean-Luc Vilotte
- UMR1313 GABI, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78350, France
| | - Ronan Le Goffic
- UMR892 VIM, UVSQ, INRAE, Université Paris-Saclay, Jouy-en-Josas, F78352, France
| |
Collapse
|
4
|
Gheorghiu M, Trandafir MF, Savu O, Pasarica D, Bleotu C. Unexpectedly High and Difficult-to-Explain Regenerative Capacity in an 82-Year-Old Patient with Insulin-Requiring Type 2 Diabetes and End-Stage Renal Disease. J Clin Med 2025; 14:2556. [PMID: 40283387 PMCID: PMC12027714 DOI: 10.3390/jcm14082556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The case we present is part of a large study that we conducted on hemodialysis patients with type 2 diabetes mellitus (T2DM) and which set the following objectives: studying changes in the intestinal microbiota, innate and acquired immune response capacity, and tissue regeneration. Methods: (1) For the genetic study of the gut microbiota, special techniques that are not based on cultivation were used since most of the species in the intestinal flora are not cultivable. (2) The immunological study had two targets: innate immunity (inflammation) and adaptive immunity (we chose to address the cellular immune response because, unlike the humoral one, it is insufficiently studied in this category of associated pathologies). As markers for innate immunity (inflammation), the following were determined: IL-6, sIL-6R, IL-1β, TNFα, IL-10, and NGAL. TNFβ/LTα was determined as a marker for adaptive immunity (the cellular immune response). (3) The study of tissue regeneration capacity was performed using NT-3 (this is the first study to do so) and VEGFβ (another marker that is scarce in this category of patients) as markers. All the aforementioned compounds were determined from serum samples, utilizing Merck Millipore ELISA kits for IL-6, IL-1β, IL-10, NT-3, and VEGF β, and Elabscience ELISA kits for IL-6R, TNFα, TNFβ, and NGAL. Results: We were very surprised to find unexpected immunological changes and tissue regenerative capacity in one of the patients studied, an 82-year-old female patient diagnosed with insulin-dependent T2DM with multiple complications, including end-stage renal disease (ESRD). The patient showed a huge capacity for tissue regeneration, combined with amplification of immunological capacity, in comparison to patients in the same group (T2DM and ESRD) and to those in the control group (ESRD). Thus, extremely elevated serum concentrations of IL-1β, IL-6, IL-10, and TNF-β, as well as the tissue regeneration indicators NT-3 and VEGFβ, were obtained in comparison to all other members of the patient group. At the same time, serum levels of the soluble IL-6 receptor (sIL6-R) and TNFα were greatly reduced compared to the test group's mean. Conclusions: All the data obtained during our research were corroborated with those from the specialized literature and entitle us to support the hypothesis that the cause of these unexpected behaviors is the genetically conditioned overproduction (possibly acquired post-infection) of IL-6, along with its predominant anti-inflammatory and pro-regenerative signaling through the membrane-bound receptor IL-6R.
Collapse
Affiliation(s)
- Mihaela Gheorghiu
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Maria-Florina Trandafir
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Octavian Savu
- “N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
- Doctoral School of “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Pasarica
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Coralia Bleotu
- “Stefan S. Nicolau” Institute of Virology, 030304 Bucharest, Romania;
| |
Collapse
|
5
|
Wei C, Xu Y, Zheng Y, Hong L, Lyu C, Li H, Cao B. The LTB4-BLT1 axis attenuates influenza-induced lung inflammation by suppressing NLRP3 activation. Cell Death Discov 2025; 11:148. [PMID: 40189592 PMCID: PMC11973165 DOI: 10.1038/s41420-025-02450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
The mortality associated with influenza A virus (IAV) infection typically results from excessive immune responses, leading to immunopathological lung damage and compromised pulmonary function. Various immunomodulators are seen beneficial when used in conjunction with direct anti-infection treatment. Leukotriene B4 (LTB4) is a derivative of arachidonic acid (AA) and has been shown to be advantageous for numerous infectious diseases, allergies, and autoimmune disorders. Nonetheless, the function of LTB4 in influenza infection remains unclear. This study demonstrates that LTB4 and its primary receptor BLT1, as opposed to the secondary receptor BLT2, act as a protective immune modulator during influenza infection in bone marrow-derived macrophages and mouse models. Mechanistically, LTB4 promotes K27-linked and K48-linked polyubiquitination of the NLRP3 protein at its K886 and K1023 sites via a cAMP/PKA-dependent pathway, which inhibits NLRP3 inflammasome assembly and thereby diminishes subsequent NLRP3 inflammasome activation. The consequent decline in the release of IL-1β and IL-18 leads to a reduction in inflammation caused by viral infection. Furthermore, the administration of a LTB4 treatment in a fatal IAV infection model can mitigate the excessive NLRP3 inflammasome activation and reduce IAV-induced severe pulmonary damage. These findings illustrate the protective function of LTB4 in fatal IAV infection by mitigating the severe inflammation induced by the virus.
Collapse
Affiliation(s)
- Cheng Wei
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yitian Xu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zheng
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Lizhe Hong
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Lyu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haibo Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Bin Cao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
- New Cornerstone Science Laboratory, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
6
|
Flower L, Vozza EG, Bryant CE, Summers C. Role of inflammasomes in acute respiratory distress syndrome. Thorax 2025; 80:255-263. [PMID: 39884849 PMCID: PMC12015084 DOI: 10.1136/thorax-2024-222596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
Acute respiratory distress syndrome (ARDS) is present in >10% of all people admitted to critical care and is associated with severe morbidity and mortality. Despite more than half a century since its first description, no efficacious pharmacological therapies have been developed, and little progress has been made in improving clinical outcomes. Neutrophils are the principal drivers of ARDS, with their priming and subsequent aberrant downstream functions, including interleukin (IL) 1β and IL-18 secretion, central to the disease pathogenesis. The dominant pathways through which IL-1β and IL-18 are believed to be elaborated are multimeric protein structures called inflammasomes that consist of sensor proteins, adaptor proteins and an effector enzyme. The inflammasome's initial activation depends on one of a variety of damage-associated (DAMP) or pathogen-associated (PAMP) molecular patterns. However, once activated, a common downstream inflammatory pathway is initiated regardless of the specific DAMP or PAMP involved. Several inflammasomes exist in humans. The nucleotide-binding domain leucine-rich repeat (NLR) family, pyrin domain-containing 3 (NLRP3), inflammasome is the best described in the context of ARDS and is known to be activated in both infective and sterile cases. The NLR family, caspase activation and recruitment domain-containing 4 (NLRC4) and absent in melanoma 2 (AIM2) inflammasomes have also been implicated in various ARDS settings, as have inflammasome-independent pathways. Further work is required to understand human biology as much of our knowledge is extrapolated from rodent experimental models. Experimental lung injury models have demonstrated beneficial responses to inflammasome, IL-1β and IL-18 blockade. However, findings have yet to be successfully translated into humans with ARDS, likely due to an underappreciation of the central role of the neutrophil inflammasome. A thorough understanding of inflammasome pathways is vital for critical care clinicians and researchers and for the development of beneficial therapies. In this review, we describe the central role of the inflammasome in the development of ARDS and its potential for immunomodulation, highlighting key areas for future research.
Collapse
Affiliation(s)
- Luke Flower
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Emilio G Vozza
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Clare E Bryant
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Charlotte Summers
- Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
7
|
Rodrigues TS, Zamboni DS. Inflammasome Activation by RNA Respiratory Viruses: Mechanisms, Viral Manipulation, and Therapeutic Insights. Immunol Rev 2025; 330:e70003. [PMID: 39891396 DOI: 10.1111/imr.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
Respiratory viruses, including SARS-CoV-2, influenza, parainfluenza, rhinovirus, and respiratory syncytial virus (RSV), are pathogens responsible for lower respiratory tract infections, particularly in vulnerable populations such as children and the elderly. Upon infection, these viruses are recognized by pattern recognition receptors, leading to the activation of inflammasomes, which are essential for mediating inflammatory responses. This review discusses the mechanisms by which these RNA respiratory viruses activate inflammasomes, emphasizing the roles of various signaling pathways and components involved in this process. Additionally, we highlight the specific interactions between viral proteins and inflammasome sensors, elucidating how these viruses manipulate the host immune response to facilitate infection. Understanding the dynamics of inflammasome activation in response to respiratory viruses provides critical insights for developing immunomodulatory therapeutic strategies aimed at mitigating inflammation and improving outcomes in respiratory tract infections.
Collapse
Affiliation(s)
- Tamara S Rodrigues
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
8
|
Kobayashi M, Kobayashi N, Deguchi K, Omori S, Ichinohe T. SARS-CoV-2 infection primes cross-protective respiratory IgA in a MyD88- and MAVS-dependent manner. NPJ Vaccines 2025; 10:40. [PMID: 40016252 PMCID: PMC11868564 DOI: 10.1038/s41541-025-01095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/16/2025] [Indexed: 03/01/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is constantly evolving mutations in the Spike protein to evade humoral immunity. Respiratory tract antiviral IgA antibodies are superior to circulating IgG antibodies in preventing SARS-CoV-2 infection. However, the role of innate immune signals required for the induction of mucosal IgA against SARS-CoV-2 infection is unknown. Here we show that hamsters recovered from ancestral SARS-CoV-2 infection are cross-protected against heterologous SARS-CoV-2 alpha, gamma, delta, and omicron BA.1 variants. Intranasal vaccination with an inactivated whole virus vaccine completely protects hamsters against heterologous SARS-CoV-2 infection. In addition, we show that intranasal boost vaccination of mice recovered from SARS-CoV-2 infection with unadjuvanted Spike protein induces robust levels of respiratory anti-Spike IgA and protects the mice from a heterologous SARS-CoV-2 infection. Furthermore, our findings suggest that MyD88 and MAVS play a role in the induction of the memory IgA response following an intranasal booster with unadjuvanted Spike protein in mice recovered from the SARS-CoV-2 infection. These findings provide a useful basis for the development of cross-protective mucosal vaccines against heterologous SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Moe Kobayashi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nene Kobayashi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kyoka Deguchi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seira Omori
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Mercuri FA, Anderson GP, Miller BE, Demaison C, Tal-Singer R. Discovery and development of INNA-051, a TLR2/6 agonist for the prevention of complications resulting from viral respiratory infections. Antiviral Res 2025; 234:106063. [PMID: 39733845 DOI: 10.1016/j.antiviral.2024.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
Viral respiratory infection is associated with significant morbidity and mortality. The diversity of viruses implicated, coupled with their propensity for mutation, ignited an interest in host-directed antiviral therapies effective across a wide range of viral variants. Toll-like receptors (TLRs) are potential targets for the development of broad-spectrum antivirals given their central role in host immune defenses. Synthetic agonists of TLRs have been shown to boost protective innate immune responses against respiratory viruses. However, clinical success was hindered by short duration of benefit and/or induction of systemic adverse effects. INNA-051, a TLR2/6 agonist, is in development as an intranasal innate immune enhancer for prophylactic treatment in individuals at risk of complications resulting from respiratory viral infections. In vivo animal studies demonstrated the efficacy as prophylaxis against multiple viruses including SARS-CoV-2, influenza, and rhinovirus. Early clinical trials demonstrated an acceptable safety and tolerability profile. Intranasal delivery to the primary site of infection in humans induced a local innate host defense response characterized by innate immune cell infiltration into the nasal epithelium and activation and antiviral response genes. Taken together, the preclinical and clinical data on INNA-051 support further investigation of its use in community infection settings.
Collapse
Affiliation(s)
| | - Gary P Anderson
- Department of Biochemistry and Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, VIC, Australia; Lung Health Research Centre, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, VIC, Australia
| | - Bruce E Miller
- ENA Respiratory Pty Ltd, Melbourne, Australia; BEM Consulting LLC, Phoenixville, PA, USA
| | | | | |
Collapse
|
10
|
Gopal R, Marinelli MA, Rago F, Richwalls LJ, Constantinesco NJ, Debnath D, Kupul S, Garcia-Hernandez MDLL, Rangel-Moreno J, Kolls JK, Alcorn JF. CD209d/e promotes inflammation and lung injury during influenza virus infection. Immunohorizons 2025; 9:vlae001. [PMID: 39846844 PMCID: PMC11841971 DOI: 10.1093/immhor/vlae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/21/2024] [Indexed: 01/30/2025] Open
Abstract
Influenza virus infects millions each year, contributing greatly to human morbidity and mortality. Upon viral infection, pathogen-associated molecular patterns activate pattern recognition receptors on host cells, triggering an immune response. The CD209 protein family, homologs of DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), is thought to modulate immune responses to viruses. The effects of the mouse functional DC-SIGN homolog CD209d/e on the lung immune responses during influenza viral infection are not known. Therefore, we generated mice that lack both CD209d and e isoforms to determine the role in influenza viral infection. We infected wild-type and CD209d/e gene-deficient (CD209d/e-/-) mice with influenza virus and measured the cellular response in bronchoalveolar lavage, the expression of proinflammatory cytokines, antiviral genes, toll-like receptors (TLRs) in the lung, and lung pathology. We found CD209d/e-/- mice had decreased viral burden, TLR3 and TLR9 expression, interferon response, macrophages in bronchoalveolar lavage, and parenchymal lung inflammation compared with control mice. We also found less influenza viral uptake in alveolar macrophages and bone marrow-derived macrophages isolated from CD209d/e-/- mice when compared with control mice. We further investigated the role CD209d/e by treating bone marrow-derived macrophages from control and CD209d/e-/- mice with TLR agonists. We found that lacking CD209d/e decreased the expression of TLR3, TLR9, RIG1, STAT1, and STAT2 compared with controls. Collectively these results show that CD209d/e plays an important role in viral sensing/uptake and inflammatory immune responses during influenza viral infection.
Collapse
Affiliation(s)
- Radha Gopal
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Michael A Marinelli
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Flavia Rago
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Lacee J Richwalls
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas J Constantinesco
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Deepa Debnath
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Saran Kupul
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | | | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester, Rochester, NY, United States
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, United States
| | - John F Alcorn
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Ren D, Ye X, Chen R, Jia X, He X, Tao J, Jin T, Wu S, Zhang H. Activation and evasion of inflammasomes during viral and microbial infection. Cell Mol Life Sci 2025; 82:56. [PMID: 39833559 PMCID: PMC11753444 DOI: 10.1007/s00018-025-05575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
The inflammasome is a cytoplasmic multiprotein complex that induces the maturation of the proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) or pyroptosis by activating caspases, which play critical roles in regulating inflammation, cell death, and various cellular processes. Multiple studies have shown that the inflammasome is a key regulator of the host defence response against pathogen infections. During the process of pathogenic microbe invasion into host cells, the host's innate immune system recognizes these microbes by activating inflammasomes, triggering inflammatory responses to clear the microbes and initiate immune responses. Moreover, microbial pathogens have evolved various mechanisms to inhibit or evade the activation of inflammasomes. Therefore, we review the interactions between viruses and microbes with inflammasomes during the invasion process, highlight the molecular mechanisms of inflammasome activation induced by microbial pathogen infection, and highlight the corresponding strategies that pathogens employ to evade inflammasome activity. Finally, we also discuss potential therapeutic strategies for the treatment of pathogenic microbial infections via the targeting of inflammasomes and their products.
Collapse
Affiliation(s)
- Dan Ren
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xiaoou Ye
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Ruiming Chen
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xiuzhi Jia
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xianhong He
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| |
Collapse
|
12
|
Zhang Z, Wang N, Lu J, Qu Y, Song Y, Yang X, Wei Z, Zhang Q, Herdewijn P, Chang J, Wang XN, Wang Z. Synthesis and pharmacodynamic evaluation of 2-aminoindole derivatives against influenza A virus in vitro/vivo. Eur J Med Chem 2025; 281:117044. [PMID: 39547081 DOI: 10.1016/j.ejmech.2024.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Influenza virus is a kind of respiratory pathogen with high morbidity and mortality, which still threatens human health. Existing anti-influenza drugs have various limitations, such as the inability to alleviate body injury and side effects. There remains an urgent need to develop a novel antiviral drug to efficiently inhibit viral infection while avoiding body injury. A series of 2-aminoindole derivatives were synthesized via the TMSOTf-catalyzed reactions of N-arylynamides with sulfilimines and evaluated for their anti-influenza virus activity. The experimental results showed that 2-aminoindole 3h had significant antiviral activity (EC50 = 8.37 ± 0.65 μM) and the lowest cytotoxicity (CC50 = 669.26 ± 11.42 μM) in vitro. 2-Aminoindole 3h could inhibit viral replication by effectively binding to RNA-dependent RNA polymerase (RdRp), and could also directly target host cells to inhibit cytokine storms and apoptosis induced by viral infection, thereby improving host cell survival rate. In addition, viral load and organ injury in the lung tissue of infected mice were effectively reduced by 2-aminoindole 3h with satisfactory biosafety. These findings highlight the potential of a valuable therapeutic option against influenza infection while also laying the foundation for further research and development in this area.
Collapse
Affiliation(s)
- Zhongmou Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Nanfang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China
| | - Jiejie Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying Qu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhanyong Wei
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Piet Herdewijn
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Junbiao Chang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiao-Na Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, 450001, China.
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; XNA Platform, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
13
|
Shiri Aghbash P, Rasizadeh R, Sadri Nahand J, Bannazadeh Baghi H. The role of immune cells and inflammasomes in Modulating cytokine responses in HPV-Related cervical cancer. Int Immunopharmacol 2025; 145:113625. [PMID: 39637578 DOI: 10.1016/j.intimp.2024.113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/26/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024]
Abstract
One of the most frequent cancers associated with gynecological malignancies is cervical cancer. Nearly 99% of cervical tumor lesions are produced by prolonged infection with hr-HPV and almost 70% of cases are related to HPV-16 and HPV-18. The human immune system has a crucial role in defending against infections caused by HPV infection. As an illustration, elevation in neutrophils reduces T cell antitumor activity, which in turn results in the development of malignancies and subsequently inhibits immune system function. HPV-infected cells, also, express a significant number of genes related to pro-inflammatory mediators including IL-1β. Moreover, inflammasomes, which are multi-protein complexes, owing the production of the pro-inflammatory cytokines including IL-1β and IL-18 in response to viral infections. In other words, these multi-protein complexes have a crucial role in tumor immunity regulation through the secretion of pro-inflammatory cytokines and induction of antigen presentation and maturation by APCs including dendritic cells. In this study, we attempted to investigate the inflammasome's general role in the initiation and advancement of cervical cancer, as well as a summary of the pathways connected to the possible participation of inflammasomes in the pathological process of cervical carcinoma and immune cell engagement. Novel strategy techniques that target the inflammatory reaction of tumor-related antigens may be created with an understanding of inflammasome-dependent pathways to accomplish tumor immunotherapy and cervical tumor treatment.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Rasizadeh
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Kobayashi M, Kobayashi N, Deguchi K, Omori S, Nagai M, Fukui R, Song I, Fukuda S, Miyake K, Ichinohe T. TNF-α exacerbates SARS-CoV-2 infection by stimulating CXCL1 production from macrophages. PLoS Pathog 2024; 20:e1012776. [PMID: 39652608 DOI: 10.1371/journal.ppat.1012776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/19/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Since most genetically modified mice are C57BL/6 background, a mouse-adapted SARS-CoV-2 that causes lethal infection in young C57BL/6 mice is useful for studying innate immune protection against SARS-CoV-2 infection. Here, we established two mouse-adapted SARS-CoV-2, ancestral and Delta variants, by serial passaging 80 times in C57BL/6 mice. Although young C57BL/6 mice were resistant to infection with the mouse-adapted ancestral SARS-CoV-2, the mouse-adapted SARS-CoV-2 Delta variant caused lethal infection in young C57BL/6 mice. In contrast, MyD88 and IFNAR1 KO mice exhibited resistance to lethal infection with the mouse-adapted SARS-CoV-2 Delta variant. Treatment with recombinant IFN-α/β at the time of infection protected mice from lethal infection with the mouse-adapted SARS-CoV-2 Delta variant, but intranasal administration of recombinant IFN-α/β at 2 days post infection exacerbated the disease severity following the mouse-adapted ancestral SARS-CoV-2 infection. Moreover, we showed that TNF-α amplified by type I IFN signals exacerbated the SARS-CoV-2 infection by stimulating CXCL1 production from macrophages and neutrophil recruitment into the lung tissue. Finally, we showed that intravenous administration to mice or hamsters with TNF protease inhibitor 2 alleviated the severity of SARS-CoV-2 and influenza virus infection. Our results uncover an unexpected mechanism by which type I interferon-mediated TNF-α signaling exacerbates the disease severity and will aid in the development of novel therapeutic strategies to treat respiratory virus infection and associated diseases such as influenza and COVID-19.
Collapse
Affiliation(s)
- Moe Kobayashi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nene Kobayashi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kyoka Deguchi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seira Omori
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Minami Nagai
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Isaiah Song
- Institute for Advanced Biosciences, Keio University, Mizukami, Kakuganji, Tsuruoka, Yamagata, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Mizukami, Kakuganji, Tsuruoka, Yamagata, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology,Tonomachi, Kawasaki, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Tengesdal IW, Banks M, Dinarello CA, Marchetti C. Screening NLRP3 drug candidates in clinical development: lessons from existing and emerging technologies. Front Immunol 2024; 15:1422249. [PMID: 39188718 PMCID: PMC11345644 DOI: 10.3389/fimmu.2024.1422249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/11/2024] [Indexed: 08/28/2024] Open
Abstract
Decades of evidence positioned IL-1β as a master regulatory cytokine in acute and chronic inflammatory diseases. Approved biologics aimed at inhibiting IL-1 signaling have shown efficacy but variable safety. More recently, targeting NLRP3 activation, an upstream mediator of IL-1β, has garnered the most attention. Aberrant NLRP3 activation has been demonstrated to participate in the progression of several pathological conditions from neurogenerative diseases to cardio-metabolic syndromes and cancer. Pharmacological and genetic strategies aimed to limit NLRP3 function have proven effective in many preclinical models of diseases. These evidences have lead to a significant effort in the generation and clinical testing of small orally active molecules that can target NLRP3. In this report, we discuss different properties of these molecules with translational potential and describe the technologies currently available to screen NLRP3 targeting molecules highlighting advantages and limitations of each method.
Collapse
Affiliation(s)
- Isak W. Tengesdal
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Migachelle Banks
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Carlo Marchetti
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
- Department of Research, Rocky Mountain Regional Veteran Affairs (VA) Medical Center, Aurora, CO, United States
| |
Collapse
|
16
|
Liao Q, Yang Y, Li Y, Zhang J, Fan K, Guo Y, Chen J, Chen Y, Zhu P, Huang L, Liu Z. Targeting TANK-binding kinase 1 attenuates painful diabetic neuropathy via inhibiting microglia pyroptosis. Cell Commun Signal 2024; 22:368. [PMID: 39030571 PMCID: PMC11264750 DOI: 10.1186/s12964-024-01723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/22/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Painful diabetic neuropathy (PDN) is closely linked to inflammation, which has been demonstrated to be associated with pyroptosis. Emerging evidence has implicated TANK-binding kinase 1 (TBK1) in various inflammatory diseases. However, it remains unknown whether activated TBK1 causes hyperalgesia via pyroptosis. METHODS PDN mice model of type 1 or type 2 diabetic was induced by C57BL/6J or BKS-DB mice with Lepr gene mutation. For type 2 diabetes PDN model, TBK1-siRNA, Caspase-1 inhibitor Ac-YVAD-cmk or TBK1 inhibitor amlexanox (AMX) were delivered by intrathecal injection or intragastric administration. The pain threshold and plantar skin blood perfusion were evaluated through animal experiments. The assessments of spinal cord, dorsal root ganglion, sciatic nerve, plantar skin and serum included western blotting, immunofluorescence, ELISA, and transmission electron microscopy. RESULTS In the PDN mouse model, we found that TBK1 was significantly activated in the spinal dorsal horn (SDH) and mainly located in microglia, and intrathecal injection of chemically modified TBK1-siRNA could improve hyperalgesia. Herein, we described the mechanism that TBK1 could activate the noncanonical nuclear factor κB (NF-κB) pathway, mediate the activation of NLRP3 inflammasome, trigger microglia pyroptosis, and ultimately induce PDN, which could be reversed following TBK1-siRNA injection. We also found that systemic administration of AMX, a TBK1 inhibitor, could effectively improve peripheral nerve injury. These results revealed the key role of TBK1 in PDN and that TBK1 inhibitor AMX could be a potential strategy for treating PDN. CONCLUSIONS Our findings revealed a novel causal role of TBK1 in pathogenesis of PDN, which raises the possibility of applying amlexanox to selectively target TBK1 as a potential therapeutic strategy for PDN.
Collapse
Affiliation(s)
- Qinming Liao
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Yimei Yang
- Department of Neurosurgery, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510030, Guangdong, China
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Yilu Li
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Jun Zhang
- Department of Neurosurgery, Dalang Hospital, Dongguan, 523775, Guangdong, China
| | - Keke Fan
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, 518000, Guangdong, China
| | - Yihao Guo
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510220, Guangdong, China
| | - Jun Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Yinhao Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Pian Zhu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510220, Guangdong, China
- Department of Anesthesiology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200032, China
| | - Lijin Huang
- Department of Neurosurgery, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510030, Guangdong, China.
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China.
| | - Zhongjie Liu
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, 518000, Guangdong, China.
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510220, Guangdong, China.
| |
Collapse
|
17
|
An W, Lakhina S, Leong J, Rawat K, Husain M. Host Innate Antiviral Response to Influenza A Virus Infection: From Viral Sensing to Antagonism and Escape. Pathogens 2024; 13:561. [PMID: 39057788 PMCID: PMC11280125 DOI: 10.3390/pathogens13070561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza virus possesses an RNA genome of single-stranded, negative-sensed, and segmented configuration. Influenza virus causes an acute respiratory disease, commonly known as the "flu" in humans. In some individuals, flu can lead to pneumonia and acute respiratory distress syndrome. Influenza A virus (IAV) is the most significant because it causes recurring seasonal epidemics, occasional pandemics, and zoonotic outbreaks in human populations, globally. The host innate immune response to IAV infection plays a critical role in sensing, preventing, and clearing the infection as well as in flu disease pathology. Host cells sense IAV infection through multiple receptors and mechanisms, which culminate in the induction of a concerted innate antiviral response and the creation of an antiviral state, which inhibits and clears the infection from host cells. However, IAV antagonizes and escapes many steps of the innate antiviral response by different mechanisms. Herein, we review those host and viral mechanisms. This review covers most aspects of the host innate immune response, i.e., (1) the sensing of incoming virus particles, (2) the activation of downstream innate antiviral signaling pathways, (3) the expression of interferon-stimulated genes, (4) and viral antagonism and escape.
Collapse
Affiliation(s)
| | | | | | | | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.A.); (S.L.); (J.L.); (K.R.)
| |
Collapse
|
18
|
Kim DH, Lee WW. IL-1 Receptor Dynamics in Immune Cells: Orchestrating Immune Precision and Balance. Immune Netw 2024; 24:e21. [PMID: 38974214 PMCID: PMC11224669 DOI: 10.4110/in.2024.24.e21] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
IL-1, a pleiotropic cytokine with profound effects on various cell types, particularly immune cells, plays a pivotal role in immune responses. The proinflammatory nature of IL-1 necessitates stringent control mechanisms of IL-1-mediated signaling at multiple levels, encompassing transcriptional and translational regulation, precursor processing, as well as the involvement of a receptor accessory protein, a decoy receptor, and a receptor antagonist. In T-cell immunity, IL-1 signaling is crucial during both the priming and effector phases of immune reactions. The fine-tuning of IL-1 signaling hinges upon two distinct receptor types; the functional IL-1 receptor (IL-1R) 1 and the decoy IL-1R2, accompanied by ancillary molecules such as the IL-1R accessory protein (IL-1R3) and IL-1R antagonist. IL-1R1 signaling by IL-1β is critical for the differentiation, expansion, and survival of Th17 cells, essential for defense against extracellular bacteria or fungi, yet implicated in autoimmune disease pathogenesis. Recent investigations emphasize the physiological importance of IL-1R2 expression, particularly in its capacity to modulate IL-1-dependent responses within Tregs. The precise regulation of IL-1R signaling is indispensable for orchestrating appropriate immune responses, as unchecked IL-1 signaling has been implicated in inflammatory disorders, including Th17-mediated autoimmunity. This review provides a thorough exploration of the IL-1R signaling complex and its pivotal roles in immune regulation. Additionally, it highlights recent advancements elucidating the mechanisms governing the expression of IL-1R1 and IL-1R2, underscoring their contributions to fine-tuning IL-1 signaling. Finally, the review briefly touches upon therapeutic strategies targeting IL-1R signaling, with potential clinical applications.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won-Woo Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Seoul National University Cancer Research Institute, Seoul 03080, Korea
- Institute of Endemic Diseases and Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
- Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea
| |
Collapse
|
19
|
Buckley CT, Lee YL, Michele Schuler A, Langley RJ, Kutcher ME, Barrington R, Audia JP, Simmons JD. Deleterious effects of plasma-derived cellular debris in a porcine model of hemorrhagic shock. Injury 2024; 55:111300. [PMID: 38160196 DOI: 10.1016/j.injury.2023.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Recent studies identify large quantities of inflammatory cellular debris within Fresh Frozen Plasma (FFP). As FFP is a mainstay of hemorrhagic shock resuscitation, we used a porcine model of hemorrhagic shock and ischemia/reperfusion to investigate the inflammatory potential of plasma-derived cellular debris administered during resuscitation. METHODS The porcine model of hemorrhagic shock included laparotomy with 35 % hemorrhage (Hem), 45 min of ischemia from supraceliac aortic occlusion with subsequent clamp release (IR), followed by protocolized resuscitation for 6 h. Cellular debris (Debris) was added to the resuscitation phase in three groups. The four groups consisted of Hem + IR (n = 4), Hem + IR + Debris (n = 3), Hem + Debris (n = 3), and IR + Debris (n = 3). A battery of laboratory, physiologic, cytokine, and outcome data were compared between groups. RESULTS As expected, the Hem + IR group showed severe time dependent decrements in organ function and physiologic parameters. All animals that included both IR and Debris (Hem + IR + Debris or IR + Debris) died prior to the six-hour end point, while all animals in the Hem + IR and Hem + Debris survived. Cytokines measured at 30-60 min after initiation of resuscitation revealed significant differences in IL-18 and IL-1β between all groups. CONCLUSIONS Ischemia and reperfusion appear to prime the immune system to the deleterious effects of plasma-derived cellular debris. In the presence of ischemia and reperfusion, this model showed the equivalency of 100 % lethality when resuscitation included quantities of cellular debris at levels routinely administered to trauma patients during transfusion of FFP. A deeper understanding of the immunobiology of FFP-derived cellular debris is critical to optimize resuscitation for hemorrhagic shock.
Collapse
Affiliation(s)
- Colin T Buckley
- Department of Surgery, University of South Alabama, Mobile, AL, United States
| | - Yannleei L Lee
- Department of Surgery, University of South Alabama, Mobile, AL, United States
| | - A Michele Schuler
- Department of Comparative Medicine, University of South Alabama, United States; Department of Microbiology and Immunology, University of South Alabama, United States
| | - Raymond J Langley
- Department of Cellular & Molecular Pharmacology, University of South Alabama, United States
| | | | - Robert Barrington
- Department of Microbiology and Immunology, University of South Alabama, United States
| | - Jonathon P Audia
- Department of Microbiology and Immunology, University of South Alabama, United States
| | - Jon D Simmons
- Department of Surgery, University of South Alabama, Mobile, AL, United States; Department of Cellular & Molecular Pharmacology, University of South Alabama, United States.
| |
Collapse
|
20
|
Wallace HL, Russell RS. Inflammatory Consequences: Hepatitis C Virus-Induced Inflammasome Activation and Pyroptosis. Viral Immunol 2024; 37:126-138. [PMID: 38593460 DOI: 10.1089/vim.2023.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Hepatitis C virus (HCV), despite the availability of effective direct-acting antivirals (DAAs) that clear the virus from >95% of individuals treated, continues to cause significant health care burden due to disease progression that can lead to fibrosis, cirrhosis, and/or hepatocellular carcinoma. The fact that some people who are treated with DAAs still go on to develop worsening liver disease warrants further study into the immunopathogenesis of HCV. Many viral infections, including HCV, have been associated with activation of the inflammasome/pyroptosis pathway. This inflammatory cell death pathway ultimately results in cell lysis and release of inflammatory cytokines, IL-18 and IL-1β. This review will report on studies that investigated HCV and inflammasome activation/pyroptosis. This includes clinical in vivo data showing elevated pyroptosis-associated cytokines in the blood of individuals living with HCV, studies of genetic associations of pyroptosis-related genes and development of liver disease, and in vitro studies aimed at understanding the mechanism of pyroptosis induced by HCV. Finally, we discuss major gaps in understanding and outstanding questions that remain in the field of HCV-induced pyroptosis.
Collapse
Affiliation(s)
- Hannah L Wallace
- Immunology and Infectious Diseases Group, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St John's, Canada
| | - Rodney S Russell
- Immunology and Infectious Diseases Group, Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St John's, Canada
| |
Collapse
|
21
|
Speaks S, McFadden MI, Zani A, Solstad A, Leumi S, Roettger JE, Kenney AD, Bone H, Zhang L, Denz PJ, Eddy AC, Amer AO, Robinson RT, Cai C, Ma J, Hemann EA, Forero A, Yount JS. Gasdermin D promotes influenza virus-induced mortality through neutrophil amplification of inflammation. Nat Commun 2024; 15:2751. [PMID: 38553499 PMCID: PMC10980740 DOI: 10.1038/s41467-024-47067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Influenza virus activates cellular inflammasome pathways, which can be both beneficial and detrimental to infection outcomes. Here, we investigate the function of the inflammasome-activated, pore-forming protein gasdermin D (GSDMD) during infection. Ablation of GSDMD in knockout (KO) mice (Gsdmd-/-) significantly attenuates influenza virus-induced weight loss, lung dysfunction, lung histopathology, and mortality compared with wild type (WT) mice, despite similar viral loads. Infected Gsdmd-/- mice exhibit decreased inflammatory gene signatures shown by lung transcriptomics. Among these, diminished neutrophil gene activation signatures are corroborated by decreased detection of neutrophil elastase and myeloperoxidase in KO mouse lungs. Indeed, directly infected neutrophils are observed in vivo and infection of neutrophils in vitro induces release of DNA and tissue-damaging enzymes that is largely dependent on GSDMD. Neutrophil depletion in infected WT mice recapitulates the reductions in mortality, lung inflammation, and lung dysfunction observed in Gsdmd-/- animals, while depletion does not have additive protective effects in Gsdmd-/- mice. These findings implicate a function for GSDMD in promoting lung neutrophil responses that amplify influenza virus-induced inflammation and pathogenesis. Targeting the GSDMD/neutrophil axis may provide a therapeutic avenue for treating severe influenza.
Collapse
Affiliation(s)
- Samuel Speaks
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Matthew I McFadden
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Ashley Zani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Abigail Solstad
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Steve Leumi
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Jack E Roettger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Adam D Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Hannah Bone
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Lizhi Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Parker J Denz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Adrian C Eddy
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Richard T Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Chuanxi Cai
- Department of Surgery, Division of Surgical Science, University of Virginia, Charlottesville, VA, USA
| | - Jianjie Ma
- Department of Surgery, Division of Surgical Science, University of Virginia, Charlottesville, VA, USA
| | - Emily A Hemann
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
22
|
Immanuel CN, Teng B, Dong BE, Gordon EM, Luellen C, Lopez B, Harding J, Cormier SA, Fitzpatrick EA, Schwingshackl A, Waters CM. Two-pore potassium channel TREK-1 (K2P2.1) regulates NLRP3 inflammasome activity in macrophages. Am J Physiol Lung Cell Mol Physiol 2024; 326:L367-L376. [PMID: 38252657 PMCID: PMC11281793 DOI: 10.1152/ajplung.00313.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages (AMs) and bone marrow-derived macrophages (BMDMs) from wild-type (wt) and TREK-1-/- mice, we measured responses to inflammasome priming [using lipopolysaccharide (LPS)] and activation (LPS + ATP). We measured IL-1β, caspase-1, and NLRP3 via ELISA and Western blot. A membrane-permeable potassium indicator was used to measure potassium efflux during ATP exposure, and a fluorescence-based assay was used to assess changes in membrane potential. Inflammasome activation induced by LPS + ATP increased IL-1β secretion in wt AMs, whereas activation was significantly reduced in TREK-1-/- AMs. Priming of BMDMs using LPS was not affected by either genetic deficiency or pharmacological inhibition of TREK-1 with Spadin. Cleavage of caspase-1 following LPS + ATP treatment was significantly reduced in TREK-1-/- BMDMs. The intracellular potassium concentration in LPS-primed wt BMDMs was significantly lower compared with TREK-1-/- BMDMs or wt BMDMs treated with Spadin. Conversely, activation of TREK-1 with BL1249 caused a decrease in intracellular potassium in wt BMDMs. Treatment of LPS-primed BMDMs with ATP caused a rapid reduction in intracellular potassium levels, with the largest change observed in TREK-1-/- BMDMs. Intracellular K+ changes were associated with changes in the plasma membrane potential (Em), as evidenced by a more depolarized Em in TREK-1-/- BMDMs compared with wt, and Em hyperpolarization upon TREK-1 channel opening with BL1249. These results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.NEW & NOTEWORTHY Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages and bone marrow-derived macrophages from wild-type and TREK-1-/- mice, we measured responses to inflammasome priming (using LPS) and activation (LPS + ATP). Our results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.
Collapse
Grants
- HL131526 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Le Bonheur Children's Hospital
- 20TPA35490010 American Heart Association (AHA)
- R01 HL131526 NHLBI NIH HHS
- HL151419 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- IA-678511 American Lung Association (ALA)
- R01 HL146821 NHLBI NIH HHS
- HL146821 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL123540 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL151419 NHLBI NIH HHS
- R01 HL123540 NHLBI NIH HHS
- HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)
Collapse
Affiliation(s)
- Camille N Immanuel
- Division of Pediatric Critical Care, Department of Pediatrics, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Bin Teng
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Brittany E Dong
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Elizabeth M Gordon
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Charlean Luellen
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Benjamin Lopez
- Department of Pediatrics, University of California, Los Angeles, California, United States
| | - Jeffrey Harding
- Department of Biological Sciences, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Stephania A Cormier
- Department of Biological Sciences, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Elizabeth A Fitzpatrick
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Andreas Schwingshackl
- Department of Pediatrics, University of California, Los Angeles, California, United States
| | - Christopher M Waters
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
23
|
Chang D, Dela Cruz C, Sharma L. Beneficial and Detrimental Effects of Cytokines during Influenza and COVID-19. Viruses 2024; 16:308. [PMID: 38400083 PMCID: PMC10892676 DOI: 10.3390/v16020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Cytokines are signaling molecules that play a role in myriad processes, including those occurring during diseases and homeostasis. Their homeostatic function begins during embryogenesis and persists throughout life, including appropriate signaling for the cell and organism death. During viral infections, antiviral cytokines such as interferons and inflammatory cytokines are upregulated. Despite the well-known benefits of these cytokines, their levels often correlate with disease severity, linking them to unfavorable outcomes. In this review, we discuss both the beneficial and pathological functions of cytokines and the potential challenges in separating these two roles. Further, we discuss challenges in targeting these cytokines during disease and propose a new method for quantifying the cytokine effect to limit the pathological consequences while preserving their beneficial effects.
Collapse
Affiliation(s)
- De Chang
- College of Pulmonary and Critical Care Medicine of Eighth Medical Center, Chinese PLA General Hospital, Beijing 100028, China;
- Department of Pulmonary and Critical Care Medicine of Seventh Medical Center, Chinese PLA General Hospital, Beijing 100028, China
| | - Charles Dela Cruz
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Lokesh Sharma
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| |
Collapse
|
24
|
Tsankov BK, Luchak A, Carr C, Philpott DJ. The effects of NOD-like receptors on adaptive immune responses. Biomed J 2024; 47:100637. [PMID: 37541620 PMCID: PMC10796267 DOI: 10.1016/j.bj.2023.100637] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
It has long been appreciated that cues from the innate immune system orchestrate downstream adaptive immune responses. Although previous work has focused on the roles of Toll-like receptors in this regard, relatively little is known about how Nod-like receptors instruct adaptive immunity. Here we review the functions of different members of the Nod-like receptor family in orchestrating effector and anamnestic adaptive immune responses. In particular, we address the ways in which inflammasome and non-inflammasome members of this family affect adaptive immunity under various infectious and environmental contexts. Furthermore, we identify several key mechanistic questions that studies in this field have left unaddressed. Our aim is to provide a framework through which immunologists in the adaptive immune field may view their questions through an innate-immune lens and vice-versa.
Collapse
Affiliation(s)
- Boyan K Tsankov
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Alexander Luchak
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Charles Carr
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Yue Z, Zhang X, Gu Y, Liu Y, Lan LM, Liu Y, Li Y, Yang G, Wan P, Chen X. Regulation and functions of the NLRP3 inflammasome in RNA virus infection. Front Cell Infect Microbiol 2024; 13:1309128. [PMID: 38249297 PMCID: PMC10796458 DOI: 10.3389/fcimb.2023.1309128] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024] Open
Abstract
Virus infection is one of the greatest threats to human life and health. In response to viral infection, the host's innate immune system triggers an antiviral immune response mostly mediated by inflammatory processes. Among the many pathways involved, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome has received wide attention in the context of viral infection. The NLRP3 inflammasome is an intracellular sensor composed of three components, including the innate immune receptor NLRP3, adaptor apoptosis-associated speck-like protein containing CARD (ASC), and the cysteine protease caspase-1. After being assembled, the NLRP3 inflammasome can trigger caspase-1 to induce gasdermin D (GSDMD)-dependent pyroptosis, promoting the maturation and secretion of proinflammatory cytokines such as interleukin-1 (IL-1β) and interleukin-18 (IL-18). Recent studies have revealed that a variety of viruses activate or inhibit the NLRP3 inflammasome via viral particles, proteins, and nucleic acids. In this review, we present a variety of regulatory mechanisms and functions of the NLRP3 inflammasome upon RNA viral infection and demonstrate multiple therapeutic strategies that target the NLRP3 inflammasome for anti-inflammatory effects in viral infection.
Collapse
Affiliation(s)
- Zhaoyang Yue
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Xuelong Zhang
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yu Gu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Ying Liu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Lin-Miaoshen Lan
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yilin Liu
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yongkui Li
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xin Chen
- Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| |
Collapse
|
26
|
Van Den Eeckhout B, Ballegeer M, De Clercq J, Burg E, Saelens X, Vandekerckhove L, Gerlo S. Rethinking IL-1 Antagonism in Respiratory Viral Infections: A Role for IL-1 Signaling in the Development of Antiviral T Cell Immunity. Int J Mol Sci 2023; 24:15770. [PMID: 37958758 PMCID: PMC10650641 DOI: 10.3390/ijms242115770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
IL-1R integrates signals from IL-1α and IL-1β, and it is widely expressed across tissues and immune cell types. While the expression pattern and function of IL-1R within the innate immune system is well studied, its role in adaptive immunity, particularly within the CD8 T cell compartment, remains underexplored. Here, we show that CD8 T cells dynamically upregulate IL-1R1 levels during priming by APCs, which correlates with their proliferation status and the acquisition of an effector phenotype. Notably, this IL-1 sensitivity persists in memory CD8 T cells of both mice and humans, influencing effector cytokine production upon TCR reactivation. Furthermore, our study highlights that antiviral effector and tissue-resident CD8 T cell responses against influenza A virus infection become impaired in the absence of IL-1 signaling. Altogether, these data support the exploitation of IL-1 activity in the context of T cell vaccination strategies and warrant consideration of the impact of clinical IL-1 inhibition on the rollout of T cell immunity.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- HIV Cure and Research Center (HCRC), 9000 Ghent, Belgium (J.D.C.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9820 Ghent, Belgium
| | - Marlies Ballegeer
- VIB Center for Medical Biotechnology, 9052 Ghent, Belgium; (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Jozefien De Clercq
- HIV Cure and Research Center (HCRC), 9000 Ghent, Belgium (J.D.C.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Elianne Burg
- HIV Cure and Research Center (HCRC), 9000 Ghent, Belgium (J.D.C.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, 9052 Ghent, Belgium; (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure and Research Center (HCRC), 9000 Ghent, Belgium (J.D.C.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Sarah Gerlo
- HIV Cure and Research Center (HCRC), 9000 Ghent, Belgium (J.D.C.)
- Department of Biomolecular Medicine, Ghent University, 9820 Ghent, Belgium
| |
Collapse
|
27
|
Le J, Kulatheepan Y, Jeyaseelan S. Role of toll-like receptors and nod-like receptors in acute lung infection. Front Immunol 2023; 14:1249098. [PMID: 37662905 PMCID: PMC10469605 DOI: 10.3389/fimmu.2023.1249098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
The respiratory system exposed to microorganisms continuously, and the pathogenicity of these microbes not only contingent on their virulence factors, but also the host's immunity. A multifaceted innate immune mechanism exists in the respiratory tract to cope with microbial infections and to decrease tissue damage. The key cell types of the innate immune response are macrophages, neutrophils, dendritic cells, epithelial cells, and endothelial cells. Both the myeloid and structural cells of the respiratory system sense invading microorganisms through binding or activation of pathogen-associated molecular patterns (PAMPs) to pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and NOD-like receptors (NLRs). The recognition of microbes and subsequent activation of PRRs triggers a signaling cascade that leads to the activation of transcription factors, induction of cytokines/5chemokines, upregulation of cell adhesion molecules, recruitment of immune cells, and subsequent microbe clearance. Since numerous microbes resist antimicrobial agents and escape innate immune defenses, in the future, a comprehensive strategy consisting of newer vaccines and novel antimicrobials will be required to control microbial infections. This review summarizes key findings in the area of innate immune defense in response to acute microbial infections in the lung. Understanding the innate immune mechanisms is critical to design host-targeted immunotherapies to mitigate excessive inflammation while controlling microbial burden in tissues following lung infection.
Collapse
Affiliation(s)
- John Le
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural & Mechanical College, Baton Rouge, LA, United States
| | - Yathushigan Kulatheepan
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural & Mechanical College, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Lung Biology and Disease, School of Veterinary Medicine, Louisiana State University (LSU) and Agricultural & Mechanical College, Baton Rouge, LA, United States
- Section of Pulmonary and Critical Care Department of Medicine, LSU Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
28
|
Karki R, Kanneganti TD. PANoptosome signaling and therapeutic implications in infection: central role for ZBP1 to activate the inflammasome and PANoptosis. Curr Opin Immunol 2023; 83:102348. [PMID: 37267644 PMCID: PMC10524556 DOI: 10.1016/j.coi.2023.102348] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
The innate immune response provides the first line of defense against infection and disease. Regulated cell death (RCD) is a key component of innate immune activation, and RCD must be tightly controlled to clear pathogens while preventing excess inflammation. Recent studies have highlighted a central role for the innate immune sensor Z-DNA-binding protein 1 (ZBP1) as an activator of a form of inflammatory RCD called PANoptosis, which is regulated by a multifaceted cell death complex called the PANoptosome. In response to influenza A virus infection, ZBP1 activates the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, which then acts as an integral component of the ZBP1-PANoptosome to drive inflammatory cell death, PANoptosis. In this context, the NLRP3 inflammasome is critical for caspase-1 activation and proinflammatory cytokine interleukin (IL)-1β and IL-18 maturation, but dispensable for cell death due to functional redundancies between PANoptosome molecules. Similarly, ZBP1 is also central to the absent in melanoma 2 (AIM2)-PANoptosome; this PANoptosome forms in response to Francisella novicida and herpes simplex virus 1 infection and incorporates the AIM2 inflammasome as an integral component. In this review, we will discuss the critical roles of ZBP1 in mediating innate immune responses through inflammasomes, PANoptosomes, and PANoptosis during infection. An improved understanding of the molecular mechanisms of innate immunity and cell death will be essential for the development of targeted modalities that can improve patient outcomes by mitigating severe disease.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | | |
Collapse
|
29
|
Lane TR, Fu J, Sherry B, Tarbet B, Hurst BL, Riabova O, Kazakova E, Egorova A, Clarke P, Leser JS, Frost J, Rudy M, Tyler KL, Klose T, Volobueva AS, Belyaevskaya SV, Zarubaev VV, Kuhn RJ, Makarov V, Ekins S. Efficacy of an isoxazole-3-carboxamide analog of pleconaril in mouse models of Enterovirus-D68 and Coxsackie B5. Antiviral Res 2023; 216:105654. [PMID: 37327878 PMCID: PMC10527014 DOI: 10.1016/j.antiviral.2023.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Enteroviruses (EV) cause a number of life-threatening infectious diseases. EV-D68 is known to cause respiratory illness in children that can lead to acute flaccid myelitis. Coxsackievirus B5 (CVB5) is commonly associated with hand-foot-mouth disease. There is no antiviral treatment available for either. We have developed an isoxazole-3-carboxamide analog of pleconaril (11526092) which displayed potent inhibition of EV-D68 (IC50 58 nM) as well as other enteroviruses including the pleconaril-resistant Coxsackievirus B3-Woodruff (IC50 6-20 nM) and CVB5 (EC50 1 nM). Cryo-electron microscopy structures of EV-D68 in complex with 11526092 and pleconaril demonstrate destabilization of the EV-D68 MO strain VP1 loop, and a strain-dependent effect. A mouse respiratory model of EV-D68 infection, showed 3-log decreased viremia, favorable cytokine response, as well as statistically significant 1-log reduction in lung titer reduction at day 5 after treatment with 11526092. An acute flaccid myelitis neurological infection model did not show efficacy. 11526092 was tested in a mouse model of CVB5 infection and showed a 4-log TCID50 reduction in the pancreas. In summary, 11526092 represents a potent in vitro inhibitor of EV with in vivo efficacy in EV-D68 and CVB5 animal models suggesting it is worthy of further evaluation as a potential broad-spectrum antiviral therapeutic against EV.
Collapse
Affiliation(s)
- Thomas R Lane
- Collaborations Pharmaceuticals Inc., Raleigh, NC, USA
| | - Jianing Fu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Barbara Sherry
- Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA
| | - Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, UT, USA; Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA; Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Olga Riabova
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Elena Kazakova
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Anna Egorova
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Penny Clarke
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Smith Leser
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua Frost
- Department of Immunology and Microbiology, Infectious Disease, Medicine and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Kenneth L Tyler
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Veterans Affairs, Aurora, CO, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | - Vladimir V Zarubaev
- Saint Petersburg Pasteur Institute, 14 Mira Street, 197101, Saint Petersburg, Russia
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Vadim Makarov
- Research Center of Biotechnology RAS, 33-1 Leninsky prospect, 119071, Moscow, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., Raleigh, NC, USA.
| |
Collapse
|
30
|
Honda TSB, Ku J, Anders HJ. Cell type-specific roles of NLRP3, inflammasome-dependent and -independent, in host defense, sterile necroinflammation, tissue repair, and fibrosis. Front Immunol 2023; 14:1214289. [PMID: 37564649 PMCID: PMC10411525 DOI: 10.3389/fimmu.2023.1214289] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023] Open
Abstract
The NLRP3 inflammasome transforms a wide variety of infectious and non-infectious danger signals that activate pro-inflammatory caspases, which promote the secretion of IL-1β and IL-18, and pyroptosis, a pro-inflammatory form of cell necrosis. Most published evidence documents the presence and importance of the NLRP3 inflammasome in monocytes, macrophages, and neutrophils during host defense and sterile forms of inflammation. In contrast, in numerous unbiased data sets, NLRP3 inflammasome-related transcripts are absent in non-immune cells. However, an increasing number of studies report the presence and functionality of the NLRP3 inflammasome in almost every cell type. Here, we take a closer look at the reported cell type-specific expression of the NLRP3 inflammasome components, review the reported inflammasome-dependent and -independent functions, and discuss possible explanations for this discrepancy.
Collapse
Affiliation(s)
| | | | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| |
Collapse
|
31
|
Cerato JA, da Silva EF, Porto BN. Breaking Bad: Inflammasome Activation by Respiratory Viruses. BIOLOGY 2023; 12:943. [PMID: 37508374 PMCID: PMC10376673 DOI: 10.3390/biology12070943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
The nucleotide-binding domain leucine-rich repeat-containing receptor (NLR) family is a group of intracellular sensors activated in response to harmful stimuli, such as invading pathogens. Some NLR family members form large multiprotein complexes known as inflammasomes, acting as a platform for activating the caspase-1-induced canonical inflammatory pathway. The canonical inflammasome pathway triggers the secretion of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 by the rapid rupture of the plasma cell membrane, subsequently causing an inflammatory cell death program known as pyroptosis, thereby halting viral replication and removing infected cells. Recent studies have highlighted the importance of inflammasome activation in the response against respiratory viral infections, such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While inflammasome activity can contribute to the resolution of respiratory virus infections, dysregulated inflammasome activity can also exacerbate immunopathology, leading to tissue damage and hyperinflammation. In this review, we summarize how different respiratory viruses trigger inflammasome pathways and what harmful effects the inflammasome exerts along with its antiviral immune response during viral infection in the lungs. By understanding the crosstalk between invading pathogens and inflammasome regulation, new therapeutic strategies can be exploited to improve the outcomes of respiratory viral infections.
Collapse
Affiliation(s)
- Julia A. Cerato
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
| | - Emanuelle F. da Silva
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
| | - Barbara N. Porto
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
32
|
Nagai M, Moriyama M, Ishii C, Mori H, Watanabe H, Nakahara T, Yamada T, Ishikawa D, Ishikawa T, Hirayama A, Kimura I, Nagahara A, Naito T, Fukuda S, Ichinohe T. High body temperature increases gut microbiota-dependent host resistance to influenza A virus and SARS-CoV-2 infection. Nat Commun 2023; 14:3863. [PMID: 37391427 PMCID: PMC10313692 DOI: 10.1038/s41467-023-39569-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Fever is a common symptom of influenza and coronavirus disease 2019 (COVID-19), yet its physiological role in host resistance to viral infection remains less clear. Here, we demonstrate that exposure of mice to the high ambient temperature of 36 °C increases host resistance to viral pathogens including influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). High heat-exposed mice increase basal body temperature over 38 °C to enable more bile acids production in a gut microbiota-dependent manner. The gut microbiota-derived deoxycholic acid (DCA) and its plasma membrane-bound receptor Takeda G-protein-coupled receptor 5 (TGR5) signaling increase host resistance to influenza virus infection by suppressing virus replication and neutrophil-dependent tissue damage. Furthermore, the DCA and its nuclear farnesoid X receptor (FXR) agonist protect Syrian hamsters from lethal SARS-CoV-2 infection. Moreover, we demonstrate that certain bile acids are reduced in the plasma of COVID-19 patients who develop moderate I/II disease compared with the minor severity of illness group. These findings implicate a mechanism by which virus-induced high fever increases host resistance to influenza virus and SARS-CoV-2 in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Minami Nagai
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Miyu Moriyama
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Hirotake Mori
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | | | - Takuji Yamada
- Metagen Therapeutics, Inc., Yamagata, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Dai Ishikawa
- Metagen Therapeutics, Inc., Yamagata, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takamasa Ishikawa
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akihito Nagahara
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Toshio Naito
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan.
- Metagen Therapeutics, Inc., Yamagata, Japan.
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan.
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan.
| | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
33
|
Niu J, Meng G. Roles and Mechanisms of NLRP3 in Influenza Viral Infection. Viruses 2023; 15:1339. [PMID: 37376638 DOI: 10.3390/v15061339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Pathogenic viral infection represents a major challenge to human health. Due to the vast mucosal surface of respiratory tract exposed to the environment, host defense against influenza viruses has perpetually been a considerable challenge. Inflammasomes serve as vital components of the host innate immune system and play a crucial role in responding to viral infections. To cope with influenza viral infection, the host employs inflammasomes and symbiotic microbiota to confer effective protection at the mucosal surface in the lungs. This review article aims to summarize the current findings on the function of NACHT, LRR and PYD domains-containing protein 3 (NLRP3) in host response to influenza viral infection involving various mechanisms including the gut-lung crosstalk.
Collapse
Affiliation(s)
- Junling Niu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| | - Guangxun Meng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, 320 Yueyang Road, Life Science Research Building B-205, Shanghai 200031, China
| |
Collapse
|
34
|
Barnett KC, Li S, Liang K, Ting JPY. A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases. Cell 2023; 186:2288-2312. [PMID: 37236155 PMCID: PMC10228754 DOI: 10.1016/j.cell.2023.04.025] [Citation(s) in RCA: 208] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.
Collapse
Affiliation(s)
- Katherine C Barnett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sirui Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaixin Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
35
|
Schmidt A, Paudyal B, Villanueva-Hernández S, Mcnee A, Vatzia E, Carr BV, Schmidt S, Mccarron A, Martini V, Schroedel S, Thirion C, Waters R, Salguero FJ, Gerner W, Tenbusch M, Tchilian E. Effect of mucosal adjuvant IL-1β on heterotypic immunity in a pig influenza model. Front Immunol 2023; 14:1181716. [PMID: 37153548 PMCID: PMC10159270 DOI: 10.3389/fimmu.2023.1181716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
T cell responses directed against highly conserved viral proteins contribute to the clearance of the influenza virus and confer broadly cross-reactive and protective immune responses against a range of influenza viruses in mice and ferrets. We examined the protective efficacy of mucosal delivery of adenoviral vectors expressing hemagglutinin (HA) and nucleoprotein (NP) from the H1N1 virus against heterologous H3N2 challenge in pigs. We also evaluated the effect of mucosal co-delivery of IL-1β, which significantly increased antibody and T cell responses in inbred Babraham pigs. Another group of outbred pigs was first exposed to pH1N1 as an alternative means of inducing heterosubtypic immunity and were subsequently challenged with H3N2. Although both prior infection and adenoviral vector immunization induced strong T-cell responses against the conserved NP protein, none of the treatment groups demonstrated increased protection against the heterologous H3N2 challenge. Ad-HA/NP+Ad-IL-1β immunization increased lung pathology, although viral load was unchanged. These data indicate that heterotypic immunity may be difficult to achieve in pigs and the immunological mechanisms may differ from those in small animal models. Caution should be applied in extrapolating from a single model to humans.
Collapse
Affiliation(s)
- Anna Schmidt
- Virologisches Institut-Klinische und Molekulare Virologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Basudev Paudyal
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | | | - Adam Mcnee
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Eleni Vatzia
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | | | - Selma Schmidt
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Amy Mccarron
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | - Ryan Waters
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | | | - Wilhelm Gerner
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Matthias Tenbusch
- Virologisches Institut-Klinische und Molekulare Virologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Elma Tchilian
- Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| |
Collapse
|
36
|
Speaks S, Zani A, Solstad A, Kenney A, McFadden MI, Zhang L, Eddy AC, Amer AO, Robinson R, Cai C, Ma J, Hemann EA, Forero A, Yount JS. Gasdermin D promotes influenza virus-induced mortality through neutrophil amplification of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531787. [PMID: 36945485 PMCID: PMC10028878 DOI: 10.1101/2023.03.08.531787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Influenza virus activates cellular inflammasome pathways, which can be either beneficial or detrimental to infection outcomes. Here, we investigated the role of the inflammasome-activated pore-forming protein gasdermin D (GSDMD) during infection. Ablation of GSDMD in knockout (KO) mice significantly attenuated virus-induced weight loss, lung dysfunction, lung histopathology, and mortality compared with wild type (WT) mice, despite similar viral loads. Infected GSDMD KO mice exhibited decreased inflammatory gene signatures revealed by lung transcriptomics, which also implicated a diminished neutrophil response. Importantly, neutrophil depletion in infected WT mice recapitulated the reduced mortality and lung inflammation observed in GSDMD KO animals, while having no additional protective effects in GSDMD KOs. These findings reveal a new function for GSDMD in promoting lung neutrophil responses that amplify influenza virus-induced inflammation and pathogenesis. Targeting the GSDMD/neutrophil axis may provide a new therapeutic avenue for treating severe influenza.
Collapse
Affiliation(s)
- Samuel Speaks
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Ashley Zani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Abigail Solstad
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Adam Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Matthew I. McFadden
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Lizhi Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Adrian C. Eddy
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Richard Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Chuanxi Cai
- Department of Surgery, Division of Surgical Science, University of Virginia, Charlottesville, VA 22903
| | - Jianjie Ma
- Department of Surgery, Division of Surgical Science, University of Virginia, Charlottesville, VA 22903
| | - Emily A. Hemann
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Adriana Forero
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
37
|
Kim CU, Lim D, Kim YS, Ku B, Kim DJ. Influenza viral matrix 1 protein aggravates viral pathogenicity by inducing TLR4-mediated reactive oxygen species production and apoptotic cell death. Cell Death Dis 2023; 14:228. [PMID: 36990977 PMCID: PMC10060384 DOI: 10.1038/s41419-023-05749-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
Influenza virus is one of the most challenging viruses threating human health. Since infection with influenza virus triggers inflammatory responses and induces cell death, the molecular and cellular mechanisms by which the virus-infected cells undergo apoptotic and necrotic cell death have been widely studied. However, most of the studies have focused on the molecular events occurring in the cytosol and there is limited information on the physiological correlation between virus-induced cell death and the viral pathogenesis in vivo. In this study, we demonstrate that the influenza virus matrix 1 (M1) protein is released from virus-infected cells and triggers apoptotic cell death of lung epithelial and pulmonary immune cells, through the activation of Toll-like receptor 4 (TLR4) signaling. Treatment with M1 protein led to robust cellular inflammatory responses, such as the production of proinflammatory cytokines and cellular reactive oxygen species (ROS), and induction of cell death. When M1 protein was administered in vivo, it induced the activation of inflammatory responses and cell death in the lungs. Furthermore, the administration of M1 aggravated lung pathology and mortality of the virus-infected mice in a TLR4-dependent manner. These results demonstrate that M1 is an important pathogenic factor contributing to influenza virus pathogenicity by enhancing cell death in the lungs, thereby expanding our understanding of the molecular mechanism of influenza virus-induced cell death through the interaction with an innate immune receptor.
Collapse
Affiliation(s)
- Chang-Ung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Dahwan Lim
- Department of Biochemistry, Chungnam National University, Daejeon, South Korea
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Young Sang Kim
- Department of Biochemistry, Chungnam National University, Daejeon, South Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
- University of Science and Technology (UST), Daejeon, South Korea.
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
- Department of Biochemistry, Chungnam National University, Daejeon, South Korea.
- University of Science and Technology (UST), Daejeon, South Korea.
| |
Collapse
|
38
|
MLKL-Driven Inflammasome Activation and Caspase-8 Mediate Inflammatory Cell Death in Influenza A Virus Infection. mBio 2023; 14:e0011023. [PMID: 36852999 PMCID: PMC10127685 DOI: 10.1128/mbio.00110-23] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Influenza A virus (IAV) triggers multiple programmed cell death pathways, including MLKL-dependent necroptosis, caspase-8-dependent apoptosis, and caspase-1-dependent pyroptosis in myeloid cells. All three pathways share common upstream regulators, namely, ZBP1 and RIPK3. Yet, the molecular mechanism underlying IAV-induced inflammasome activation remains unclear. Here, we demonstrate that MLKL promotes inflammasome activation and IL-1β processing in IAV-infected macrophages. MLKL drives NLRP3 inflammasome activation through potassium efflux. In the absence of the MLKL-inflammasome axis, caspase-8 coordinates the maturation and secretion of IL-1β. MLKL alone is dispensable for host inflammatory responses to IAV in vivo. Taken together, MLKL and caspase-8 serve as redundant mechanisms by which to drive an inflammatory form of cell death in response to an IAV infection. IMPORTANCE Influenza A virus (IAV) induces multiple types of cell death, which play important roles in the host antiviral responses but can also cause unwanted inflammation and tissue damage. In this study, we dissect the interplay of cell death pathways and demonstrate that macrophages utilize redundant mechanisms to drive an inflammatory form of cell death upon IAV infection. MLKL, the executor of necroptosis, promotes inflammasome activation and pyroptotic cell death. When the MLKL-inflammasome axis is inhibited, cells divert to caspase-8-dependent inflammatory cell death. Our findings advance the current understanding of the innate immune response to IAV infection as well as broader contexts involving multifaceted cell death.
Collapse
|
39
|
Inflammatory cell death: how macrophages sense neighbouring cell infection and damage. Biochem Soc Trans 2023; 51:303-313. [PMID: 36695550 PMCID: PMC9987993 DOI: 10.1042/bst20220807] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Programmed cell death is a critical host defence strategy during viral infection. Neighbouring cells deal with this death in distinct ways depending on how the infected cell dies. While apoptosis is considered immunologically silent, the lytic pathways of necroptosis and pyroptosis trigger inflammatory responses by releasing inflammatory host molecules. All these pathways have been implicated in influenza A virus infection. Here, we review how cells sense neighbouring infection and death and how sensing shapes ensuing inflammatory responses.
Collapse
|
40
|
Barnett KC, Xie Y, Asakura T, Song D, Liang K, Taft-Benz SA, Guo H, Yang S, Okuda K, Gilmore RC, Loome JF, Oguin Iii TH, Sempowski GD, Randell SH, Heise MT, Lei YL, Boucher RC, Ting JPY. An epithelial-immune circuit amplifies inflammasome and IL-6 responses to SARS-CoV-2. Cell Host Microbe 2023; 31:243-259.e6. [PMID: 36563691 PMCID: PMC9731922 DOI: 10.1016/j.chom.2022.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/12/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Elevated levels of cytokines IL-1β and IL-6 are associated with severe COVID-19. Investigating the underlying mechanisms, we find that while primary human airway epithelia (HAE) have functional inflammasomes and support SARS-CoV-2 replication, they are not the source of IL-1β released upon infection. In leukocytes, the SARS-CoV-2 E protein upregulates inflammasome gene transcription via TLR2 to prime, but not activate, inflammasomes. SARS-CoV-2-infected HAE supply a second signal, which includes genomic and mitochondrial DNA, to stimulate leukocyte IL-1β release. Nuclease treatment, STING, and caspase-1 inhibition but not NLRP3 inhibition blocked leukocyte IL-1β release. After release, IL-1β stimulates IL-6 secretion from HAE. Therefore, infection alone does not increase IL-1β secretion by either cell type. Rather, bi-directional interactions between the SARS-CoV-2-infected epithelium and immune bystanders stimulates both IL-1β and IL-6, creating a pro-inflammatory cytokine circuit. Consistent with these observations, patient autopsy lungs show elevated myeloid inflammasome gene signatures in severe COVID-19.
Collapse
Affiliation(s)
- Katherine C Barnett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Takanori Asakura
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dingka Song
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaixin Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharon A Taft-Benz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haitao Guo
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuangshuang Yang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rodney C Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer F Loome
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Scott H Randell
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yu Leo Lei
- Department of Periodontics and Oral Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48104, USA; Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
41
|
Yamada T, Takaoka A. Innate immune recognition against SARS-CoV-2. Inflamm Regen 2023; 43:7. [PMID: 36703213 PMCID: PMC9879261 DOI: 10.1186/s41232-023-00259-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative virus of pandemic acute respiratory disease called coronavirus disease 2019 (COVID-19). Most of the infected individuals have asymptomatic or mild symptoms, but some patients show severe and critical systemic inflammation including tissue damage and multi-organ failures. Immune responses to the pathogen determine clinical course. In general, the activation of innate immune responses is mediated by host pattern-recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) as well as host damage-associated molecular patterns (DAMPs), which results in the activation of the downstream gene induction programs of types I and III interferons (IFNs) and proinflammatory cytokines for inducing antiviral activity. However, the excessive activation of these responses may lead to deleterious inflammation. Here, we review the recent advances in our understanding of innate immune responses to SARS-CoV-2 infection, particularly in terms of innate recognition and the subsequent inflammation underlying COVID-19 immunopathology.
Collapse
Affiliation(s)
- Taisho Yamada
- grid.39158.360000 0001 2173 7691Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido Japan ,grid.39158.360000 0001 2173 7691Molecular Medical Biochemistry Unit, Graduate School of Chemical Sciences and Engineering Hokkaido University, Sapporo, Hokkaido Japan
| | - Akinori Takaoka
- grid.39158.360000 0001 2173 7691Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido Japan ,grid.39158.360000 0001 2173 7691Molecular Medical Biochemistry Unit, Graduate School of Chemical Sciences and Engineering Hokkaido University, Sapporo, Hokkaido Japan
| |
Collapse
|
42
|
Abstract
Pyroptosis is a form of lytic, programmed cell death that functions as an innate immune effector mechanism to facilitate host defense against pathogenic microorganisms, including viruses. This type of proinflammatory cell death is orchestrated by proteolytic activation of human or mouse caspase-1, mouse caspase-11 and human caspase-4 and caspase-5 in response to infectious and inflammatory stimuli. Induction of pyroptosis requires either a canonical inflammasome responsible for caspase-1 activation or a noncanonical complex composed of caspase-11 in mice or caspase-4 or caspase-5 in humans. Recent studies have identified the pore-forming protein gasdermin D, a substrate of these inflammatory caspases, as an executioner of pyroptosis. The membrane pores formed by gasdermin D facilitate release of proinflammatory cytokines IL-1β and IL-18 and consequent biologic effects of these cytokines together with other released components. Pyroptosis, like other forms of programmed cell death, helps eliminate infected cells and thereby restricts the replicative niche, undermining survival and proliferation of intracellular pathogens. This includes viruses as well as bacteria, where ample evidence supports a critical role for inflammasome effector functions and cell death in host defense. Viruses have evolved their own mechanisms to modulate inflammasome signaling and pyroptosis. Here, we review the current literature regarding the role of pyroptosis in antiviral immune responses.
Collapse
Affiliation(s)
- Teneema Kuriakose
- Department of Immunology, St. Jude Children's Research Hospital, MS #351, 262 Danny Thomas Place, 38105-3678, Memphis, TN, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, MS #351, 262 Danny Thomas Place, 38105-3678, Memphis, TN, USA.
| |
Collapse
|
43
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
Thomas PG, Shubina M, Balachandran S. ZBP1/DAI-Dependent Cell Death Pathways in Influenza A Virus Immunity and Pathogenesis. Curr Top Microbiol Immunol 2023; 442:41-63. [PMID: 31970498 DOI: 10.1007/82_2019_190] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Influenza A viruses (IAV) are members of the Orthomyxoviridae family of negative-sense RNA viruses. The greatest diversity of IAV strains is found in aquatic birds, but a subset of strains infects other avian as well as mammalian species, including humans. In aquatic birds, infection is largely restricted to the gastrointestinal tract and spread is through feces, while in humans and other mammals, respiratory epithelial cells are the primary sites supporting productive replication and transmission. IAV triggers the death of most cell types in which it replicates, both in culture and in vivo. When well controlled, such cell death is considered an effective host defense mechanism that eliminates infected cells and limits virus spread. Unchecked or inopportune cell death also results in immunopathology. In this chapter, we discuss the impact of cell death in restricting virus spread, supporting the adaptive immune response and driving pathogenesis in the mammalian respiratory tract. Recent studies have begun to shed light on the signaling pathways underlying IAV-activated cell death. These pathways, initiated by the pathogen sensor protein ZBP1 (also called DAI and DLM1), cause infected cells to undergo apoptosis, necroptosis, and pyroptosis. We outline mechanisms of ZBP1-mediated cell death signaling following IAV infection.
Collapse
Affiliation(s)
- Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, MS 351, 262 Danny Thomas Place, 38105, Memphis, TN, USA.
| | - Maria Shubina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Room 224 Reimann Building, 333 Cottman Ave., 19111, Philadelphia, PA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Room 224 Reimann Building, 333 Cottman Ave., 19111, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Ou H, Fan Y, Guo X, Lao Z, Zhu M, Li G, Zhao L. Identifying key genes related to inflammasome in severe COVID-19 patients based on a joint model with random forest and artificial neural network. Front Cell Infect Microbiol 2023; 13:1139998. [PMID: 37113134 PMCID: PMC10126306 DOI: 10.3389/fcimb.2023.1139998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) has been spreading astonishingly and caused catastrophic losses worldwide. The high mortality of severe COVID-19 patients is an serious problem that needs to be solved urgently. However, the biomarkers and fundamental pathological mechanisms of severe COVID-19 are poorly understood. The aims of this study was to explore key genes related to inflammasome in severe COVID-19 and their potential molecular mechanisms using random forest and artificial neural network modeling. Methods Differentially expressed genes (DEGs) in severe COVID-19 were screened from GSE151764 and GSE183533 via comprehensive transcriptome Meta-analysis. Protein-protein interaction (PPI) networks and functional analyses were conducted to identify molecular mechanisms related to DEGs or DEGs associated with inflammasome (IADEGs), respectively. Five the most important IADEGs in severe COVID-19 were explored using random forest. Then, we put these five IADEGs into an artificial neural network to construct a novel diagnostic model for severe COVID-19 and verified its diagnostic efficacy in GSE205099. Results Using combining P value < 0.05, we obtained 192 DEGs, 40 of which are IADEGs. The GO enrichment analysis results indicated that 192 DEGs were mainly involved in T cell activation, MHC protein complex and immune receptor activity. The KEGG enrichment analysis results indicated that 192 GEGs were mainly involved in Th17 cell differentiation, IL-17 signaling pathway, mTOR signaling pathway and NOD-like receptor signaling pathway. In addition, the top GO terms of 40 IADEGs were involved in T cell activation, immune response-activating signal transduction, external side of plasma membrane and phosphatase binding. The KEGG enrichment analysis results indicated that IADEGs were mainly involved in FoxO signaling pathway, Toll-like receptor, JAK-STAT signaling pathway and Apoptosis. Then, five important IADEGs (AXL, MKI67, CDKN3, BCL2 and PTGS2) for severe COVID-19 were screened by random forest analysis. By building an artificial neural network model, we found that the AUC values of 5 important IADEGs were 0.972 and 0.844 in the train group (GSE151764 and GSE183533) and test group (GSE205099), respectively. Conclusion The five genes related to inflammasome, including AXL, MKI67, CDKN3, BCL2 and PTGS2, are important for severe COVID-19 patients, and these molecules are related to the activation of NLRP3 inflammasome. Furthermore, AXL, MKI67, CDKN3, BCL2 and PTGS2 as a marker combination could be used as potential markers to identify severe COVID-19 patients.
Collapse
Affiliation(s)
- Haiya Ou
- Department of Gastroenterology, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yaohua Fan
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxuan Guo
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zizhao Lao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- *Correspondence: Meiling Zhu, ; Geng Li, ; Lijun Zhao,
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Meiling Zhu, ; Geng Li, ; Lijun Zhao,
| | - Lijun Zhao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
- *Correspondence: Meiling Zhu, ; Geng Li, ; Lijun Zhao,
| |
Collapse
|
46
|
Ji S, Dai MY, Huang Y, Ren XC, Jiang ML, Qiao JP, Zhang WY, Xu YH, Shen JL, Zhang RQ, Fei GH. Influenza a virus triggers acute exacerbation of chronic obstructive pulmonary disease by increasing proinflammatory cytokines secretion via NLRP3 inflammasome activation. J Inflamm (Lond) 2022; 19:8. [PMID: 35739522 PMCID: PMC9219228 DOI: 10.1186/s12950-022-00305-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Background Influenza A virus (IAV) triggers acute exacerbation of chronic obstructive pulmonary disease (AECOPD), but the molecular mechanisms remain unclear. In this study, we investigated the role of IAV induced NLRP3 inflammasome activation to increase airway inflammation response in the progression of AECOPD. Methods Human bronchial epithelial cells were isolated and cultured from normal and COPD bronchial tissues and co-cultured with IAV. The NLRP3 inflammasome associated genes were identified using RNA sequencing, and the expressions of NLRP3 inflammasome components were measured using qRT-PCR and western blot after cells were transfected with siRNA and treated with MCC950. Moreover, IAV-induced COPD rat models were established to confirm the results; 37 AECOPD patients were included to measure the serum and bronchoalveolar lavage fluid (BALF) of interleukin (IL)-18 and IL-1β. Results Increased levels of NLRP3 inflammasome components were not seen until 6 h post-inoculation in normal cells. However, both cell groups reached peak NLRP3 level at 12 h post-inoculation and maintained it for up to 24 h. ASC, Caspase-1, IL-1β and IL-18 were also elevated in a similar time-dependent pattern in both cell groups. The mRNA and protein expression of the NLRP3 inflammasome components were decreased when COPD cells treated with siRNA and MCC950. In COPD rats, the NLRP3 inflammasome components were elevated by IAV. MCC950 alleviated lung damage, improved survival time, and reduced NLRP3 inflammasome components expression in COPD rats. Additionally, the serum and BALF levels of IL-1β and IL-18 were increased in AECOPD patients. Conclusions NLRP3 inflammasome is activated in COPD patients as a pre-existing condition that is further exacerbated by IAV infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-022-00305-y.
Collapse
|
47
|
Tao P, Ning Z, Zhou P, Xiao W, Wang G, Li S, Zhang G. H3N2 canine influenza virus NS1 protein inhibits canine NLRP3 inflammasome activation. Vet Immunol Immunopathol 2022; 252:110483. [PMID: 36088788 DOI: 10.1016/j.vetimm.2022.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/17/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
Inflammation is an innate immune response of the body against pathogens and other irritants. The NLRP3 (NACHT, LRR and PYD domains-containing protein 3) inflammasome is a major player in the inflammatory response against pathogenic microorganisms. In this study, we analyzed the relationship between the NLRP3 inflammasome and the influenza virus NS1 protein, which is involved in host immune escape. The canine influenza virus NS1 protein transcriptionally attenuated proinflammatory cytokines by inhibiting the nuclear factor-κB (NF-κB) activator. NS1 also directly interacted with NLRP3 and blocked ASC (Apoptosis-associated speck-like protein containing CARD) oligomerization, which deactivated the NLRP3 inflammasome. In addition, NS1 inhibited pro-caspase 1 cleavage into caspase-1, which prevents maturation of IL-1β and IL-18 from their respective precursors, eventually reducing the inflammatory response. Taken together, the influenza NS1 protein evades host immunity, and our findings provide a theoretical basis for the prevention and treatment of canine influenza.
Collapse
Affiliation(s)
- Pan Tao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Haida Animal Husbandry and Veterinary Research Institute Co., LTD., Guangzhou 511400, China; Animal Husbandry and Fisheries Research Center, Guangdong Haida Group Co., LTD., Guangzhou 511400, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weiqi Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Guiping Wang
- Guangdong Haida Animal Husbandry and Veterinary Research Institute Co., LTD., Guangzhou 511400, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
48
|
Otero AM, Antonson AM. At the crux of maternal immune activation: Viruses, microglia, microbes, and IL-17A. Immunol Rev 2022; 311:205-223. [PMID: 35979731 PMCID: PMC9804202 DOI: 10.1111/imr.13125] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammation during prenatal development can be detrimental to neurodevelopmental processes, increasing the risk of neuropsychiatric disorders. Prenatal exposure to maternal viral infection during pregnancy is a leading environmental risk factor for manifestation of these disorders. Preclinical animal models of maternal immune activation (MIA), established to investigate this link, have revealed common immune and microbial signaling pathways that link mother and fetus and set the tone for prenatal neurodevelopment. In particular, maternal intestinal T helper 17 cells, educated by endogenous microbes, appear to be key drivers of effector IL-17A signals capable of reaching the fetal brain and causing neuropathologies. Fetal microglial cells are particularly sensitive to maternally derived inflammatory and microbial signals, and they shift their functional phenotype in response to MIA. Resulting cortical malformations and miswired interneuron circuits cause aberrant offspring behaviors that recapitulate core symptoms of human neurodevelopmental disorders. Still, the popular use of "sterile" immunostimulants to initiate MIA has limited translation to the clinic, as these stimulants fail to capture biologically relevant innate and adaptive inflammatory sequelae induced by live pathogen infection. Thus, there is a need for more translatable MIA models, with a focus on relevant pathogens like seasonal influenza viruses.
Collapse
Affiliation(s)
- Ashley M. Otero
- Neuroscience ProgramUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Adrienne M. Antonson
- Department of Animal SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
49
|
Wallace HL, Russell RS. Promiscuous Inflammasomes: The False Dichotomy of RNA/DNA Virus-Induced Inflammasome Activation and Pyroptosis. Viruses 2022; 14:2113. [PMID: 36298668 PMCID: PMC9609106 DOI: 10.3390/v14102113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 07/30/2023] Open
Abstract
It is well-known that viruses activate various inflammasomes, which can initiate the programmed cell death pathway known as pyroptosis, subsequently leading to cell lysis and release of inflammatory cytokines IL-1β and IL-18. This pathway can be triggered by various sensors, including, but not limited to, NLRP3, AIM2, IFI16, RIG-I, and NLRC4. Many viruses are known either to activate or inhibit inflammasomes as a part of the innate immune response or as a mechanism of pathogenesis. Early research in the field of virus-induced pyroptosis suggested a dichotomy, with RNA viruses activating the NLRP3 inflammasome and DNA viruses activating the AIM2 inflammasome. More recent research has shown that this dichotomy may not be as distinct as once thought. It seems many viruses activate multiple inflammasome sensors. Here, we detail which viruses fit the dichotomy as well as many that appear to defy this clearly false dichotomy. It seems likely that most, if not all, viruses activate multiple inflammasome sensors, and future research should focus on expanding our understanding of inflammasome activation in a variety of tissue types as well as virus activation of multiple inflammasomes, challenging biases that stemmed from early literature in this field. Here, we review primarily research performed on human viruses but also include details regarding animal viruses whenever possible.
Collapse
|
50
|
Zhang M, Lu C, Su L, Long F, Yang X, Guo X, Song G, An T, Chen W, Chen J. Toosendanin activates caspase-1 and induces maturation of IL-1β to inhibit type 2 porcine reproductive and respiratory syndrome virus replication via an IFI16-dependent pathway. Vet Res 2022; 53:61. [PMID: 35906635 PMCID: PMC9334981 DOI: 10.1186/s13567-022-01077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent and endemic swine pathogen which causes significant economic losses in the global swine industry. Multiple vaccines have been developed to prevent PRRSV infection. However, they provide limited protection. Moreover, no effective therapeutic drugs are yet available. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV infection and transmission. Here we report that Toosendanin (TSN), a tetracyclic triterpene found in the bark or fruits of Melia toosendan Sieb. et Zucc., strongly suppressed type 2 PRRSV replication in vitro in Marc-145 cells and ex vivo in primary porcine alveolar macrophages (PAMs) at sub-micromolar concentrations. The results of transcriptomics revealed that TSN up-regulated the expression of IFI16 in Marc-145 cells. Furthermore, we found that IFI16 silencing enhanced the replication of PRRSV in Marc-145 cells and that the anti-PRRSV activity of TSN was dampened by IFI16 silencing, suggesting that the inhibition of TSN against PRRSV replication is IFI16-dependent. In addition, we showed that TSN activated caspase-1 and induced maturation of IL-1β in an IFI16-dependent pathway. To verify the role of IL-1β in PRRSV infection, we analyzed the effect of exogenous rmIL-1β on PRRSV replication, and the results showed that exogenous IL-1β significantly inhibited PRRSV replication in Marc-145 cells and PAMs in a dose-dependent manner. Altogether, our findings indicate that TSN significantly inhibits PRRSV replication at very low concentrations (EC50: 0.16–0.20 μM) and may provide opportunities for developing novel anti-PRRSV agents.
Collapse
Affiliation(s)
- Mingxin Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chunni Lu
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Monash University, Clayton, VIC, 3168, Australia
| | - Lizhan Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Feixiang Long
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xia Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofeng Guo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|