1
|
Prasongtanakij S, Soontrapa K, Thumkeo D. The role of prostanoids in regulatory T cells and their implications in inflammatory diseases and cancers. Eur J Cell Biol 2025; 104:151482. [PMID: 40184828 DOI: 10.1016/j.ejcb.2025.151482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025] Open
Abstract
Regulatory T cells (Tregs) play an important role in the immune system through the regulation of immunological self-tolerance and homeostasis. Furthermore, increasing evidence suggests the potential contribution of Tregs beyond immunity in the process of repairing various injured tissues. Tregs are generally characterised by the constitutive expression of forkhead box protein 3 (FOXP3) transcription factor in the nucleus and high expression levels of CD25 and CTLA-4 on the cell surface. To date, a large number of molecules have been identified as key regulators of Treg differentiation and function. Among these molecules are prostanoids, which are multifaceted lipid mediators. Prostanoids are produced from arachidonic acid through the catalytic activity of the enzyme cyclooxygenase and exert their functions through the 9 cognate receptors, DP1-2, EP1-EP4, FP, IP and TP. We briefly review previous studies on the regulatory mechanism of Tregs and then discuss recent works on the modulatory role of prostanoids.
Collapse
Affiliation(s)
- Somsak Prasongtanakij
- Laboratory of Immunopharmacology, Kyoto University Graduate School of Medicine, Japan
| | - Kitipong Soontrapa
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Dean Thumkeo
- Laboratory of Immunopharmacology, Kyoto University Graduate School of Medicine, Japan; Center for Medical Education and Internationalization, Kyoto University Faculty of Medicine, Japan.
| |
Collapse
|
2
|
Zhu X, Meng L, Xu L, Hua Y, Feng J. Novel Therapeutic Target for ALI/ARDS: Forkhead Box Transcription Factors. Lung 2024; 202:513-522. [PMID: 39259274 DOI: 10.1007/s00408-024-00740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
ALI/ARDS can be a pulmonary manifestation of a systemic inflammatory response or a result of overexpression of the body's normal inflammatory response involving various effector cells, cytokines, and inflammatory mediators, which regulate the body's immune response through different signalling pathways. Forkhead box transcription factors are evolutionarily conserved transcription factors that play a crucial role in various cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism, and DNA damage response. Transcription factors control protein synthesis by regulating gene transcription levels, resulting in diverse biological outcomes. The Fox family plays a role in activating or inhibiting the expression of various molecules related to ALI/ARDS through phosphorylation, acetylation/deacetylation, and control of multiple signalling pathways. An in-depth analysis of the integrated Fox family's role in ALI/ARDS can aid in the development of potential diagnostic and therapeutic targets for the condition.
Collapse
Affiliation(s)
- Xi Zhu
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
| | - Leyuan Meng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Liqin Xu
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
| | - Yun Hua
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China
| | - Jian Feng
- Department of Respiratory and Critical Care Medicine, Respiratory Disease Key Laboratory of Nantong, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
3
|
Yang X, Zhu X, Sheng J, Fu Y, Nie D, You X, Chen Y, Yang X, Ling Q, Zhang H, Li X, Hu S. RNF213 promotes Treg cell differentiation by facilitating K63-linked ubiquitination and nuclear translocation of FOXO1. Nat Commun 2024; 15:5961. [PMID: 39013878 PMCID: PMC11252262 DOI: 10.1038/s41467-024-50392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in multiple sclerosis (MS) and in other neuroinflammatory autoimmune diseases. Ubiquitination is a posttranslational protein modification involved in regulating a variety of cellular processes, including CD4+ T cell differentiation and function. However, only a limited number of E3 ubiquitin ligases have been characterized in terms of their biological functions, particularly in CD4+ T cell differentiation and function. In this study, we found that the RING finger protein 213 (RNF213) specifically promoted regulatory T (Treg) cell differentiation in CD4+ T cells and attenuated autoimmune disease development in an FOXO1-dependent manner. Mechanistically, RNF213 interacts with Forkhead Box Protein O1 (FOXO1) and promotes nuclear translocation of FOXO1 by K63-linked ubiquitination. Notably, RNF213 expression in CD4+ T cells was induced by IFN-β and exerts a crucial role in the therapeutic efficacy of IFN-β for MS. Together, our study findings collectively emphasize the pivotal role of RNF213 in modulating adaptive immune responses. RNF213 holds potential as a promising therapeutic target for addressing disorders associated with Treg cells.
Collapse
MESH Headings
- Ubiquitination
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Cell Differentiation
- Animals
- Forkhead Box Protein O1/metabolism
- Forkhead Box Protein O1/genetics
- Mice
- Humans
- Interferon-beta/metabolism
- Mice, Inbred C57BL
- Cell Nucleus/metabolism
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/genetics
- Multiple Sclerosis/pathology
- Active Transport, Cell Nucleus
- Female
- Mice, Knockout
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- HEK293 Cells
Collapse
Affiliation(s)
- Xiaofan Yang
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaotong Zhu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junli Sheng
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yuling Fu
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Dingnai Nie
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong You
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yitian Chen
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaodan Yang
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Qiao Ling
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Huili Zhang
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
| | - Xiaomin Li
- Department of Respiratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Shengfeng Hu
- The Second Affiliated Hospital, The Second School of Clinical Medicine, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
5
|
Peng Z, Zhang H, Hu H. The Function of Ubiquitination in T-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:135-159. [PMID: 39546141 DOI: 10.1007/978-981-97-7288-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Thymus is an important primary lymphoid organ for T cell development. After T-lineage commitment, the early thymic progenitors (ETPs) develop into CD4-CD8- (DN), CD4+CD8+ (DP) and further CD4+ SP or CD8+ SP T cells. Under the help of thymic epithelial cells (TEC), dendritic cell (DC), macrophage, and B cells, ETPs undergo proliferation, T cell receptor (TCR) rearrangement, β-selection, positive selection, and negative selection, and thus leading to the generation of T cells that are diverse repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg under the help of TEC and DC. The regulation of T cell development is complicated. As a post-translational modification, ubiquitination regulates signal transduction in diverse biological processes. Ubiquitination functions in T cell development through regulating key signal pathway or maturation and function of related cells. In this review, the regulation of T cell development by ubiquitination is summarized and discussed.
Collapse
Affiliation(s)
- Zhengcan Peng
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
6
|
Rutkowska-Zapała M, Grabowska A, Lenart M, Kluczewska A, Szaflarska A, Kobylarz K, Pituch-Noworolska A, Siedlar M. Transcriptome profiling of regulatory T cells from children with transient hypogammaglobulinemia of infancy. Clin Exp Immunol 2023; 214:275-288. [PMID: 37936298 PMCID: PMC10719223 DOI: 10.1093/cei/uxad116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
Transient hypogammaglobulinemia of infancy (THI) is one of the most common forms of hypogammaglobulinemia in the early childhood. THI is usually associated with chronic, recurrent bacterial and viral infections, life-threatening in some cases, yet its pathogenesis is still largely unknown. As our previous findings indicated the possible role of Treg cells in the pathomechanism of THI, the aim of the current study was to investigate gene expression profile of Treg cells isolated from THI patients. The transcriptome-wide gene profiling was performed using microarray technology on THI patients in two time-points: during (THI-1), and in resolution phase (THI-2) of hypogammaglobulinemia. As a result, a total of 1086 genes were differentially expressed in THI-1 patients, when compared to THI-2 as well as control group. Among them, 931 were up- and 155 downregulated, and part of them encodes genes important for Treg lymphocyte biology and function, i.e. transcription factors/cofactors that regulate FOXP3 expression. Thus, we postulate that Treg cells isolated from THI patients during hypogammaglobulinemia display enhanced suppressor transcriptome signature. Treg expression profile of THI children after normalization of Ig levels largely resembles the results obtained in healthy control group, suggesting THI Treg transcriptome seems to return to that observed in healthy children. Taken together, we suggest that THI pathomechanism is associated not only with transiently elevated Treg cell numbers, but also with their enhanced regulatory/inhibitory functions. These findings expand our knowledge of human Treg cells and may be useful for the future diagnosis or management of THI.
Collapse
Affiliation(s)
- Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Agnieszka Grabowska
- Department of Medical Genetics, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Anna Kluczewska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Krzysztof Kobylarz
- Department of Anesthesiology and Intensive Care, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Anna Pituch-Noworolska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| |
Collapse
|
7
|
Zhang Z, Guo J, Jia R. Treg plasticity and human diseases. Inflamm Res 2023; 72:2181-2197. [PMID: 37878023 DOI: 10.1007/s00011-023-01808-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
INTRODUCTION As a subset of CD4+ T cells, regulatory T cells (Tregs) with the characteristic expression of transcription factor FOXP3 play a key role in maintaining self-tolerance and regulating immune responses. However, in some inflammatory circumstances, Tregs can express cytokines of other T help (Th) cells by internal reprogramming, which is called Treg plasticity. These reprogrammed Tregs with impaired suppressive ability contribute to the progression of diseases by secreting pro-inflammatory cytokines. However, in the tumor microenvironment (TME), such changes in phenotype rarely occur in Tregs, on the contrary, Tregs usually display a stronger suppressive function and inhibit anti-tumor immunity. It is important to understand the mechanisms of Treg plasticity in inflammatory diseases and cancers. OBJECTIVES In this review, we summarize the characteristics of different Th-like Tregs and discuss the potential mechanisms of these changes in phenotype. Furthermore, we summarize the Treg plasticity in human diseases and discuss the effects of these changes in phenotype on disease progression, as well as the potential application of drugs or reagents that regulate Treg plasticity in human diseases. CONCLUSIONS Treg plasticity is associated with inflammatory diseases and cancers. Regulating Treg plasticity is a promising direction for the treatment of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
8
|
Mohamed RA, Fakhr AE, Baioumy SA. Investigating Forkhead Box O Transcription Factor 1 Gene's Relation to Immunoglobulin E in House Dust Mite-Allergic Asthma Patients. Adv Respir Med 2023; 91:532-545. [PMID: 37987301 PMCID: PMC10660720 DOI: 10.3390/arm91060039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
House dust mite (HDM)-allergic asthma is an abnormal immune response to extrinsic aeroallergens found in human vicinities. Studying the role of the associated immunity biomarkers and their interplay helps in discovering novel therapeutic strategies that can be used in adjunct with effective long-term immunotherapy. This study investigates the total serum IgE, FoxO1, and Sirtuin 1 (SIRT1) gene expressions in HDM-allergic asthma patients. We enrolled 40 patients for each of the following three groups: an HV group of healthy volunteers and HDM/AA and HDM/SCIT groups of HDM-allergic asthma patients who did not and who did receive immunotherapy before recruitment in this study, respectively. The results elucidated that total IgE was strikingly elevated in the HDM/AA group and showed little decline in the HDM/SCIT group. Both FoxO1 and SIRT1 gene expressions showed the highest levels in the HDM/SCIT group. There was a negative correlation between total IgE and both FoxO1 and SIRT1 in the HDM/AA group while there was a positive correlation with SIRT1 in the HDM/SCIT group. In conclusion, the interplay of the three immunity biomarkers related to HDM-allergic asthma after the course of immunotherapy treatment suggests further, broader studies on the feasibility of their role as immunity biomarkers in the control and remission of HDM-allergic asthma.
Collapse
Affiliation(s)
- Rania A. Mohamed
- Department of Biology, Deanship of Educational Services, Qassim University, P.O. Box 5888, Unaizah 56219, Qassim, Saudi Arabia
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44519, Zagazig 44516, Egypt
| | - Ahmed ElSadek Fakhr
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, P.O. Box 44516, Zagazig 44519, Egypt; (A.E.F.); (S.A.B.)
- Laboratory Pathology and Blood Bank, International Medical Center, P.O. Box 21589, Jeddah 23214, Makkah, Saudi Arabia
| | - Shereen A. Baioumy
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, P.O. Box 44516, Zagazig 44519, Egypt; (A.E.F.); (S.A.B.)
| |
Collapse
|
9
|
Shao S, Zhou D, Feng J, Liu Y, Baturuhu, Yin H, Zhan D. Regulation of inflammation and immunity in sepsis by E3 ligases. Front Endocrinol (Lausanne) 2023; 14:1124334. [PMID: 37465127 PMCID: PMC10351979 DOI: 10.3389/fendo.2023.1124334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal infection-induced immune response. Despite significant advances in supportive care, sepsis remains a considerable therapeutic challenge and is the leading cause of death in the intensive care unit (ICU). Sepsis is characterized by initial hyper-inflammation and late immunosuppression. Therefore, immune-modulatory therapies have great potential for novel sepsis therapies. Ubiquitination is an essential post-translational protein modification, which has been known to be intimately involved in innate and adaptive immune responses. Several E3 ubiquitin ligases have been implicated in innate immune signaling and T-cell activation and differentiation. In this article, we review the current literature and discuss the role of E3 ligases in the regulation of immune response and their effects on the course of sepsis to provide insights into the prevention and therapy for sepsis.
Collapse
Affiliation(s)
- Shasha Shao
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Liu
- Obstetrics and Gynecology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baturuhu
- Department of Neurosurgery Intensive Care Unit (ICU), People’s Hospital of Bortala Mongol Autonomous Prefecture, Bole, China
| | - Huimei Yin
- Department of Emergency Medicine, People’s Hospital of Bortala Mongol Autonomous Prefecture, Bole, China
| | - Daqian Zhan
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Selli ME, Landmann JH, Terekhova M, Lattin J, Heard A, Hsu YS, Chang TC, Chang J, Warrington J, Ha H, Kingston N, Hogg G, Slade M, Berrien-Elliott MM, Foster M, Kersting-Schadek S, Gruszczynska A, DeNardo D, Fehniger TA, Artyomov M, Singh N. Costimulatory domains direct distinct fates of CAR-driven T-cell dysfunction. Blood 2023; 141:3153-3165. [PMID: 37130030 PMCID: PMC10356580 DOI: 10.1182/blood.2023020100] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023] Open
Abstract
T cells engineered to express chimeric antigen receptors (CARs) targeting CD19 have demonstrated impressive activity against relapsed or refractory B-cell cancers yet fail to induce durable remissions for nearly half of all patients treated. Enhancing the efficacy of this therapy requires detailed understanding of the molecular circuitry that restrains CAR-driven antitumor T-cell function. We developed and validated an in vitro model that drives T-cell dysfunction through chronic CAR activation and interrogated how CAR costimulatory domains, central components of CAR structure and function, contribute to T-cell failure. We found that chronic activation of CD28-based CARs results in activation of classical T-cell exhaustion programs and development of dysfunctional cells that bear the hallmarks of exhaustion. In contrast, 41BB-based CARs activate a divergent molecular program and direct differentiation of T cells into a novel cell state. Interrogation using CAR T cells from a patient with progressive lymphoma confirmed the activation of this novel program in a failing clinical product. Furthermore, we demonstrate that 41BB-dependent activation of the transcription factor FOXO3 is directly responsible for impairing CAR T-cell function. These findings identify that costimulatory domains are critical regulators of CAR-driven T-cell failure and that targeted interventions are required to overcome costimulation-dependent dysfunctional programs.
Collapse
Affiliation(s)
- Mehmet Emrah Selli
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| | - Jack H. Landmann
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| | - Marina Terekhova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - John Lattin
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| | - Amanda Heard
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| | - Yu-Sung Hsu
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| | - Tien-Ching Chang
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| | - Jufang Chang
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| | - John Warrington
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| | - Helen Ha
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| | - Natalie Kingston
- Division of Oncology, Section of Molecular Oncology, Washington University School of Medicine, St. Louis, MO
| | - Graham Hogg
- Division of Oncology, Section of Molecular Oncology, Washington University School of Medicine, St. Louis, MO
| | - Michael Slade
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| | - Melissa M. Berrien-Elliott
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| | - Mark Foster
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| | - Samantha Kersting-Schadek
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| | - Agata Gruszczynska
- Division of Oncology, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO
| | - David DeNardo
- Division of Oncology, Section of Molecular Oncology, Washington University School of Medicine, St. Louis, MO
| | - Todd A. Fehniger
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| | - Maxim Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Nathan Singh
- Division of Oncology, Section of Cellular Therapies, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
11
|
Wang P, Zhao J, Tan Y, Sheng J, He S, Chen Y, Nie D, You X, Luo J, Zhang Y, Hu S. RNF157 attenuates CD4 + T cell-mediated autoimmune response by promoting HDAC1 ubiquitination and degradation. Theranostics 2023; 13:3509-3523. [PMID: 37441600 PMCID: PMC10334825 DOI: 10.7150/thno.86307] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Background: CD4+ T cells play an important role in body development and homeostasis. Quantitative and functional changes in CD4+ T cells result in abnormal immune responses, which lead to inflammation, cancer, or autoimmune diseases, such as multiple sclerosis (MS). Ubiquitination plays an essential role in the differentiation and functioning of CD4+ T cells. However, the function of several E3 ubiquitin ligases in CD4+ T cell differentiation and T cell-mediated pathological diseases remains unclear. Methods: RNA sequencing data were analyzed to identify the E3 ubiquitin ligases that participate in the pathogenesis of MS. Furthermore, conditional knockout mice were generated. Specifically, flow cytometry, qPCR, western blot, CO-IP and cell transfer adoptive experiments were performed. Results: In this study, we identified The RING finger 157 (RNF157) as a vital regulator of CD4+ T cell differentiation; it promoted Th1 differentiation but attenuated Th17 differentiation and CCR4 and CXCR3 expressions in CD4+ T cells, thereby limiting experimental autoimmune encephalomyelitis development. Mechanistically, RNF157 in CD4+ T cells targeted HDAC1 for K48-linked ubiquitination and degradation. Notably, RNF157 expression was significantly decreased and showed a significant negative correlation with RORγt expression in patients with MS. Conclusions: Our study highlights the critical role of RNF157 in regulating CD4+ T cell functions in autoimmune diseases and suggests RNF157 as a potential target in adaptive immune responses against MS and other autoimmune disorders.
Collapse
Affiliation(s)
- Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Zhao
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunke Tan
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junli Sheng
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Shitong He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yitian Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Dingnai Nie
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong You
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jinmei Luo
- Department of Internal Medicine, Medical Intensive Care Unit and Division of Respiratory Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanling Zhang
- Experimental Center of Teaching and Scientific Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shengfeng Hu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Selli ME, Landmann JH, Terekhova M, Lattin J, Heard A, Hsu YS, Chang TC, Chang J, Warrington J, Ha H, Kingston N, Hogg G, Slade M, Berrien-Elliot MM, Foster M, Kersting-Schadek S, Gruszczynska A, DeNardo D, Fehniger TA, Artyomov M, Singh N. Costimulatory domains direct distinct fates of CAR-driven T cell dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525725. [PMID: 36747791 PMCID: PMC9901009 DOI: 10.1101/2023.01.26.525725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chimeric antigen receptor (CAR) engineered T cells often fail to enact effector functions after infusion into patients. Understanding the biological pathways that lead CAR T cells to failure is of critical importance in the design of more effective therapies. We developed and validated an in vitro model that drives T cell dysfunction through chronic CAR activation and interrogated how CAR costimulatory domains contribute to T cell failure. We found that dysfunctional CD28-based CARs targeting CD19 bear hallmarks of classical T cell exhaustion while dysfunctional 41BB-based CARs are phenotypically, transcriptionally and epigenetically distinct. We confirmed activation of this unique transcriptional program in CAR T cells that failed to control clinical disease. Further, we demonstrate that 41BB-dependent activation of the transcription factor FOXO3 is a significant contributor to this dysfunction and disruption of FOXO3 improves CAR T cell function. These findings identify that chronic activation of 41BB leads to novel state of T cell dysfunction that can be alleviated by genetic modification of FOXO3. Summary Chronic stimulation of CARs containing the 41BB costimulatory domain leads to a novel state of T cell dysfunction that is distinct from T cell exhaustion.
Collapse
|
13
|
Recent insights into the role of Akt in CD4 T-cell activation and differentiation: alternative splicing and beyond. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2023; 5:e00015. [PMID: 36710922 PMCID: PMC9869951 DOI: 10.1097/in9.0000000000000015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/03/2022] [Indexed: 01/31/2023]
Abstract
The activation and differentiation of CD4+ T cells is a complex process that is controlled by many factors. A critical component of the signaling pathway triggered following T-cell receptor (TCR) engagement is the serine threonine kinase Akt. Akt is involved in the control of many cellular processes including proliferation, metabolism, and differentiation of specific TH-cell subsets. Recent work has shown that, depending on the nature or strength of the TCR activation, Akt may activate different sets of substrates which then lead to differential cellular outcomes. Akt plays an important role in controlling the strength of the TCR signal and several recent studies have identified novel mechanisms including control of the expression of negative regulators of TCR signaling, and the influence on regulatory T cells (Treg) and TH17 differentiation. Many of these functions are mediated via control of the FoxO family of transcription factors, that play an important role in metabolism and Th cell differentiation. A theme that is emerging is that Akt does not function in the same way in all T-cell types. We highlight differences between CD4 and CD8 T cells as well as between Treg, TH17, and TFH cells. While Akt activity has been implicated in the control of alternative splicing in tumor cells, recent studies are emerging that indicate that similar functions may exist in CD4 T cells. In this mini review, we highlight some of the recent advances in these areas of Akt function that demonstrate the varied role that Akt plays in the function of CD4 T cells.
Collapse
|
14
|
Yu W, Li C, Zhang D, Li Z, Xia P, Liu X, Cai X, Yang P, Ling J, Zhang J, Zhang M, Yu P. Advances in T Cells Based on Inflammation in Metabolic Diseases. Cells 2022; 11:cells11223554. [PMID: 36428983 PMCID: PMC9688178 DOI: 10.3390/cells11223554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
With the increasing incidence of metabolic diseases year by year and their impact on the incidence of cardiovascular diseases, metabolic diseases have attracted great attention as a major health care problem, but there is still no effective treatment. Oxidative stress and inflammation are the main mechanisms leading to metabolic diseases. T cells are involved in the inflammatory response, which can also regulate the development of metabolic diseases, CD4+ T cells and CD8+ T cells are mainly responsible for the role. Th1 and Th17 differentiated from CD4+ T promote inflammation, while Th2 and Treg inhibit inflammation. CD8+ T cells also contribute to inflammation. The severity and duration of inflammatory reactions can also lead to different degrees of progression of metabolic diseases. Moreover, mTOR, PI3K-Akt, and AMPK signaling pathways play unique roles in the regulation of T cells, which provide a new direction for the treatment of metabolic diseases in the future. In this review, we will elaborate on the role of T cells in regulating inflammation in various metabolic diseases, the signaling pathways that regulate T cells in metabolic diseases, and the latest research progress.
Collapse
Affiliation(s)
- Wenlu Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330000, China
| | - Chunxiu Li
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330000, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Zhangwang Li
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Xia Cai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Pingping Yang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Jitao Ling
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Correspondence: (J.Z.); (P.Y.)
| | - Meiying Zhang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Correspondence: (J.Z.); (P.Y.)
| |
Collapse
|
15
|
de Candia P, Procaccini C, Russo C, Lepore MT, Matarese G. Regulatory T cells as metabolic sensors. Immunity 2022; 55:1981-1992. [PMID: 36351373 DOI: 10.1016/j.immuni.2022.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Compelling experimental evidence links immunity and metabolism. In this perspective, we propose forkhead-box-P3 (FoxP3)+CD4+CD25+ regulatory T (Treg) cells as key metabolic sensors controlling the immunological state in response to their intrinsic capacity to perceive nutritional changes. Treg cell high anabolic state in vivo, residency in metabolically crucial districts, and recirculation between lymphoid and non-lymphoid sites enable them to recognize the metabolic cues and adapt their intracellular metabolism and anti-inflammatory function at the paracrine and systemic levels. As privileged regulators at the interface between neuroendocrine and immune systems, the role of Treg cells in maintaining metabolic homeostasis makes these cells promising targets of therapeutic strategies aimed at restoring organismal homeostasis not only in autoimmune but also metabolic disorders.
Collapse
Affiliation(s)
- Paola de Candia
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Claudia Russo
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy.
| |
Collapse
|
16
|
Kohoutova K, Dočekal V, Ausserlechner MJ, Kaiser N, Tekel A, Mandal R, Horvath M, Obsilova V, Vesely J, Hagenbuchner J, Obsil T. Lengthening the Guanidine-Aryl Linker of Phenylpyrimidinylguanidines Increases Their Potency as Inhibitors of FOXO3-Induced Gene Transcription. ACS OMEGA 2022; 7:34632-34646. [PMID: 36188303 PMCID: PMC9521028 DOI: 10.1021/acsomega.2c04613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Increased FOXO3 nuclear localization is involved in neuroblastoma chemoresistance and tumor angiogenesis. Accordingly, FOXO3 inhibition is a promising strategy for boosting antitumor immune responses and suppressing FOXO3-mediated therapy resistance in cancer cells. However, no FOXO3 inhibitors are currently available for clinical use. Nevertheless, we have recently identified (4-propoxy)phenylpyrimidinylguanidine as a FOXO3 inhibitor in cancer cells in the low micromolar range. Here, we report the synthesis and structure-activity relationship study of a small library of its derivatives, some of which inhibit FOXO3-induced gene transcription in cancer cells in a submicromolar range and are thus 1 order of magnitude more potent than their parent compound. By NMR and molecular docking, we showed that these compounds differ in their interactions with the DNA-binding domain of FOXO3. These results may provide a foundation for further optimizing (4-propoxy)phenylpyrimidinylguanidine and developing therapeutics for inhibiting the activity of forkhead box (FOX) transcription factors and their interactions with other binding partners.
Collapse
Affiliation(s)
- Klara Kohoutova
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Vojtěch Dočekal
- Department
of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | | | - Nora Kaiser
- Department
of Pediatrics I, Medical University Innsbruck, Innrain 66, Innsbruck 6020, Austria
| | - Andrej Tekel
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Raju Mandal
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Matej Horvath
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Veronika Obsilova
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| | - Jan Vesely
- Department
of Organic Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
| | - Judith Hagenbuchner
- Department
of Pediatrics II, Medical University Innsbruck, Innrain 66, Innsbruck 6020, Austria
| | - Tomas Obsil
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Albertov 6, Prague 12843, Czech Republic
- Institute
of Physiology of the Czech Academy of Sciences, Laboratory of Structural
Biology of Signaling Proteins, Division
BIOCEV, Prumyslova 595, Vestec 25250, Czech Republic
| |
Collapse
|
17
|
Raugh A, Allard D, Bettini M. Nature vs. nurture: FOXP3, genetics, and tissue environment shape Treg function. Front Immunol 2022; 13:911151. [PMID: 36032083 PMCID: PMC9411801 DOI: 10.3389/fimmu.2022.911151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
The importance of regulatory T cells (Tregs) in preventing autoimmunity has been well established; however, the precise alterations in Treg function in autoimmune individuals and how underlying genetic associations impact the development and function of Tregs is still not well understood. Polygenetic susceptibly is a key driving factor in the development of autoimmunity, and many of the pathways implicated in genetic association studies point to a potential alteration or defect in regulatory T cell function. In this review transcriptomic control of Treg development and function is highlighted with a focus on how these pathways are altered during autoimmunity. In combination, observations from autoimmune mouse models and human patients now provide insights into epigenetic control of Treg function and stability. How tissue microenvironment influences Treg function, lineage stability, and functional plasticity is also explored. In conclusion, the current efficacy and future direction of Treg-based therapies for Type 1 Diabetes and other autoimmune diseases is discussed. In total, this review examines Treg function with focuses on genetic, epigenetic, and environmental mechanisms and how Treg functions are altered within the context of autoimmunity.
Collapse
Affiliation(s)
- Arielle Raugh
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Denise Allard
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Maria Bettini
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Maria Bettini,
| |
Collapse
|
18
|
Luu TT, Søndergaard JN, Peña-Pérez L, Kharazi S, Krstic A, Meinke S, Schmied L, Frengen N, Heshmati Y, Kierczak M, Bouderlique T, Wagner AK, Gustafsson C, Chambers BJ, Achour A, Kutter C, Höglund P, Månsson R, Kadri N. FOXO1 and FOXO3 Cooperatively Regulate Innate Lymphoid Cell Development. Front Immunol 2022; 13:854312. [PMID: 35757763 PMCID: PMC9218573 DOI: 10.3389/fimmu.2022.854312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Natural killer (NK) cells play roles in viral clearance and early surveillance against malignant transformation, yet our knowledge of the underlying mechanisms controlling their development and functions remain incomplete. To reveal cell fate-determining pathways in NK cell progenitors (NKP), we utilized an unbiased approach and generated comprehensive gene expression profiles of NK cell progenitors. We found that the NK cell program was gradually established in the CLP to preNKP and preNKP to rNKP transitions. In line with FOXO1 and FOXO3 being co-expressed through the NK developmental trajectory, the loss of both perturbed the establishment of the NK cell program and caused stalling in both NK cell development and maturation. In addition, we found that the combined loss of FOXO1 and FOXO3 caused specific changes to the composition of the non-cytotoxic innate lymphoid cell (ILC) subsets in bone marrow, spleen, and thymus. By combining transcriptome and chromatin profiling, we revealed that FOXO TFs ensure proper NK cell development at various lineage-commitment stages through orchestrating distinct molecular mechanisms. Combined FOXO1 and FOXO3 deficiency in common and innate lymphoid cell progenitors resulted in reduced expression of genes associated with NK cell development including ETS-1 and their downstream target genes. Lastly, we found that FOXO1 and FOXO3 controlled the survival of committed NK cells via gene regulation of IL-15Rβ (CD122) on rNKPs and bone marrow NK cells. Overall, we revealed that FOXO1 and FOXO3 function in a coordinated manner to regulate essential developmental genes at multiple stages during murine NK cell and ILC lineage commitment.
Collapse
Affiliation(s)
- Thuy T Luu
- Department of Medicine Huddinge, Huddinge, Karolinska Institute, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Jonas Nørskov Søndergaard
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Lucía Peña-Pérez
- Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Shabnam Kharazi
- Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Aleksandra Krstic
- Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Stephan Meinke
- Department of Medicine Huddinge, Huddinge, Karolinska Institute, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Laurent Schmied
- Department of Medicine Huddinge, Huddinge, Karolinska Institute, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Nicolai Frengen
- Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yaser Heshmati
- Department of Medicine Huddinge, Huddinge, Karolinska Institute, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Marcin Kierczak
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thibault Bouderlique
- Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Arnika Kathleen Wagner
- Department of Medicine Huddinge, Huddinge, Karolinska Institute, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Charlotte Gustafsson
- Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Benedict J Chambers
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine Huddinge, Huddinge, Karolinska Institute, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Nadir Kadri
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
19
|
Signaling pathway(s) of TNFR2 required for the immunoregulatory effect of CD4 +Foxp3 + regulatory T cells. Int Immunopharmacol 2022; 108:108823. [PMID: 35623290 DOI: 10.1016/j.intimp.2022.108823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
CD4+Foxp3+ regulatory T cells (Tregs), a subpopulation of CD4+ T cells, are engaged in maintaining the periphery tolerance and preventing autoimmunity. Recent studies showed that tumor necrosis factor receptor 2 (TNFR2) is preferentially expressed by Tregs and the expression of this receptor identifies the maximally suppressive Tregs. That is, TNFR2 is a liable phenotypic and functional surface marker of Tregs. Moreover, TNF activates and expands Tregs through TNFR2. However, it is very interesting which signaling pathway(s) of TNFR2 is required for the inhibitory effect of Tregs. Compelling evidence shows three TNFR2 signaling pathways in Tregs, including NF-κB, MAPK and PI3K-Akt pathways. Here, we summarize and discuss the latest progress in the studies on the downstream signaling pathways of TNF-TNFR2 for controlling Treg homeostasis, differentiation and proliferation.
Collapse
|
20
|
Jin K, Parreau S, Warrington KJ, Koster MJ, Berry GJ, Goronzy JJ, Weyand CM. Regulatory T Cells in Autoimmune Vasculitis. Front Immunol 2022; 13:844300. [PMID: 35296082 PMCID: PMC8918523 DOI: 10.3389/fimmu.2022.844300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Blood vessels are indispensable for host survival and are protected from inappropriate inflammation by immune privilege. This protection is lost in patients with autoimmune vasculitides, a heterogeneous group of diseases causing damage to arteries, arterioles, and capillaries. Vasculitis leads to vascular wall destruction and/or luminal occlusion, resulting in hemorrhage and tissue ischemia. Failure in the quantity and quality of immunosuppressive regulatory T cells (Treg) has been implicated in the breakdown of the vascular immune privilege. Emerging data suggest that Treg deficiencies are disease-specific, affecting distinct pathways in distinct vasculitides. Mechanistic studies have identified faulty CD8+ Tregs in Giant Cell Arteritis (GCA), a vasculitis of the aorta and the large aortic branch vessels. Specifically, aberrant signaling through the NOTCH4 receptor expressed on CD8+ Treg cells leads to rerouting of intracellular vesicle trafficking and failure in the release of immunosuppressive exosomes, ultimately boosting inflammatory attack to medium and large arteries. In Kawasaki’s disease, a medium vessel vasculitis targeting the coronary arteries, aberrant expression of miR-155 and dysregulated STAT5 signaling have been implicated in undermining CD4+ Treg function. Explorations of mechanisms leading to insufficient immunosuppression and uncontrolled vascular inflammation hold the promise to discover novel therapeutic interventions that could potentially restore the immune privilege of blood vessels and pave the way for urgently needed innovations in vasculitis management.
Collapse
Affiliation(s)
- Ke Jin
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
| | - Simon Parreau
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
| | - Kenneth J. Warrington
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
| | - Matthew J. Koster
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
| | - Gerald J. Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Jörg J. Goronzy
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Cornelia M. Weyand
- Department of Medicine, Mayo College of Medicine and Science, Rochester, MN, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Cornelia M. Weyand,
| |
Collapse
|
21
|
Musiol S, Alessandrini F, Jakwerth CA, Chaker AM, Schneider E, Guerth F, Schnautz B, Grosch J, Ghiordanescu I, Ullmann JT, Kau J, Plaschke M, Haak S, Buch T, Schmidt-Weber CB, Zissler UM. TGF-β1 Drives Inflammatory Th Cell But Not Treg Cell Compartment Upon Allergen Exposure. Front Immunol 2022; 12:763243. [PMID: 35069535 PMCID: PMC8777012 DOI: 10.3389/fimmu.2021.763243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
TGF-β1 is known to have a pro-inflammatory impact by inducing Th9 and Th17 cells, while it also induces anti-inflammatory Treg cells (Tregs). In the context of allergic airway inflammation (AAI) its dual role can be of critical importance in influencing the outcome of the disease. Here we demonstrate that TGF-β is a major player in AAI by driving effector T cells, while Tregs differentiate independently. Induction of experimental AAI and airway hyperreactivity in a mouse model with inducible genetic ablation of the gene encoding for TGFβ-receptor 2 (Tgfbr2) on CD4+T cells significantly reduced the disease phenotype. Further, it blocked the induction of pro-inflammatory T cell frequencies (Th2, Th9, Th17), but increased Treg cells. To translate these findings into a human clinically relevant context, Th2, Th9 and Treg cells were quantified both locally in induced sputum and systemically in blood of allergic rhinitis and asthma patients with or without allergen-specific immunotherapy (AIT). Natural allergen exposure induced local and systemic Th2, Th9, and reduced Tregs cells, while therapeutic allergen exposure by AIT suppressed Th2 and Th9 cell frequencies along with TGF-β and IL-9 secretion. Altogether, these findings support that neutralization of TGF-β represents a viable therapeutic option in allergy and asthma, not posing the risk of immune dysregulation by impacting Tregs cells.
Collapse
Affiliation(s)
- Stephanie Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Adam M Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany.,Department of Otorhinolaryngology, Klinikum rechts der Isar, TUM School of Medicine, Technical University Munich, Munich, Germany
| | - Evelyn Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Benjamin Schnautz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Johanna Grosch
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ileana Ghiordanescu
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Julia T Ullmann
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Josephine Kau
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Mirjam Plaschke
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefan Haak
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
22
|
Campe J, Ullrich E. T Helper Cell Lineage-Defining Transcription Factors: Potent Targets for Specific GVHD Therapy? Front Immunol 2022; 12:806529. [PMID: 35069590 PMCID: PMC8766661 DOI: 10.3389/fimmu.2021.806529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) represents a potent and potentially curative treatment for many hematopoietic malignancies and hematologic disorders in adults and children. The donor-derived immunity, elicited by the stem cell transplant, can prevent disease relapse but is also responsible for the induction of graft-versus-host disease (GVHD). The pathophysiology of acute GVHD is not completely understood yet. In general, acute GVHD is driven by the inflammatory and cytotoxic effect of alloreactive donor T cells. Since several experimental approaches indicate that CD4 T cells play an important role in initiation and progression of acute GVHD, the contribution of the different CD4 T helper (Th) cell subtypes in the pathomechanism and regulation of the disease is a central point of current research. Th lineages derive from naïve CD4 T cell progenitors and lineage commitment is initiated by the surrounding cytokine milieu and subsequent changes in the transcription factor (TF) profile. Each T cell subtype has its own effector characteristics, immunologic function, and lineage specific cytokine profile, leading to the association with different immune responses and diseases. Acute GVHD is thought to be mainly driven by the Th1/Th17 axis, whereas Treg cells are attributed to attenuate GVHD effects. As the differentiation of each Th subset highly depends on the specific composition of activating and repressing TFs, these present a potent target to alter the Th cell landscape towards a GVHD-ameliorating direction, e.g. by inhibiting Th1 and Th17 differentiation. The finding, that targeting of Th1 and Th17 differentiation appears more effective for GVHD-prevention than a strategy to inhibit Th1 and Th17 cytokines supports this concept. In this review, we shed light on the current advances of potent TF inhibitors to alter Th cell differentiation and consecutively attenuate GVHD. We will focus especially on preclinical studies and outcomes of TF inhibition in murine GVHD models. Finally, we will point out the possible impact of a Th cell subset-specific immune modulation in context of GVHD.
Collapse
Affiliation(s)
- Julia Campe
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung (DKTK)), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Liu J, Wang X, Deng Y, Yu X, Wang H, Li Z. Research Progress on the Role of Regulatory T Cell in Tumor Microenvironment in the Treatment of Breast Cancer. Front Oncol 2021; 11:766248. [PMID: 34868991 PMCID: PMC8636122 DOI: 10.3389/fonc.2021.766248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem comprised of cancer cells, stromal cells, and immune cells. Analysis of the composition of TME is essential to assess the prognosis of patients with breast cancer (BC) and the efficacy of different regimes. Treg plays a crucial role in the microenvironment of breast cancer subtypes, and its function contributes to the development and progression of BC by suppressing anti-tumor immunity directly or indirectly through multiple mechanisms. In addition, conventional treatments, such as anthracycline-based neoadjuvant chemotherapy, and neo-therapies, such as immune-checkpoint blockades, have a significant impact on the absence of Tregs in BC TME, thus gaining additional anti-tumor effect to some extent. Strikingly, Treg in BC TME revealed the predicted efficacy of some therapeutic strategies. All these results suggest that we can manipulate the abundance of Treg to achieve the ultimate effect of both conventional and novel treatments. In this review, we discuss new insights into the characteristics of Treg in BC TME, the impact of different regiments on Treg, and the possibilities of Treg as a predictive marker of efficacy for certain treatments.
Collapse
Affiliation(s)
- Jianyu Liu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuhan Deng
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Yu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongbin Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhigao Li
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
24
|
Virus-induced FoxO factor facilitates replication of human cytomegalovirus. Arch Virol 2021; 167:109-121. [PMID: 34751815 DOI: 10.1007/s00705-021-05279-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/06/2021] [Indexed: 10/19/2022]
Abstract
Recently, it was reported that the forkhead box O (FoxO) transcription factor promotes human cytomegalovirus (HCMV) replication via direct binding to the promoters of the major immediate-early (MIE) genes, but how the FoxO factor impacts HCMV replication remains unknown. Here, it is reported that FoxO1 expression is strongly induced by HCMV infection in cells of fibroblast origin. Suppression of the FoxO1 gene by specific RNA interference significantly inhibited HCMV growth and replication, but viral DNA synthesis was not affected considerably. Interestingly, depletion or overexpression of FoxO1 had a significant effect on the expression of viral early/late transcripts. FoxO1 was found to colocalize with the pUL44 protein subunit of viral replication compartments without direct association with DNA. This study highlights how FoxO enhances HCMV gene transcription and viral replication to promote infection.
Collapse
|
25
|
Gavali S, Liu J, Li X, Paolino M. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Int J Mol Sci 2021; 22:10800. [PMID: 34639141 PMCID: PMC8509743 DOI: 10.3390/ijms221910800] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of T-cell-based immunotherapy has remarkably transformed cancer patient treatment. Despite their success, the currently approved immunotherapeutic protocols still encounter limitations, cause toxicity, and give disparate patient outcomes. Thus, a deeper understanding of the molecular mechanisms of T-cell activation and inhibition is much needed to rationally expand targets and possibilities to improve immunotherapies. Protein ubiquitination downstream of immune signaling pathways is essential to fine-tune virtually all immune responses, in particular, the positive and negative regulation of T-cell activation. Numerous studies have demonstrated that deregulation of ubiquitin-dependent pathways can significantly alter T-cell activation and enhance antitumor responses. Consequently, researchers in academia and industry are actively developing technologies to selectively exploit ubiquitin-related enzymes for cancer therapeutics. In this review, we discuss the molecular and functional roles of ubiquitination in key T-cell activation and checkpoint inhibitory pathways to highlight the vast possibilities that targeting ubiquitination offers for advancing T-cell-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Magdalena Paolino
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, 17176 Solna, Sweden; (S.G.); (J.L.); (X.L.)
| |
Collapse
|
26
|
Nagata K, Nagase H, Okuzumi A, Nishiyama C. Delta Opioid Receptor Agonists Ameliorate Colonic Inflammation by Modulating Immune Responses. Front Immunol 2021; 12:730706. [PMID: 34630408 PMCID: PMC8493000 DOI: 10.3389/fimmu.2021.730706] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
The opioid receptors play important roles in the regulation of sense and emotions. Although it is recently revealed that opioid receptors are also expressed in various cells, but not restricted in the central nervous system, the effects of opioids on peripheral immune cells are largely unknown. In the current study, we evaluated the effect of opioids on immune system by using selective agonists for δ opioid receptor. Systemic administration of KNT-127 or intraperitoneal injection of YNT-2715 (a KNT-127-related compound that cannot pass through the blood-brain barrier) significantly alleviated the pathology of dextran sodium sulfate-induced colitis. In KNT-127-treated mice, the levels of an inflammatory cytokine IL-6 in the serum, and macrophages in the mesenteric lymph nodes (MLNs) were decreased in the progression stage, and those of regulatory T cells (Tregs) in the MLN were increased in the recovery stage. In vitro experiments revealed that KNT-127 inhibited the release of IL-6 and another inflammatory cytokine TNF-α from macrophages and accelerated the development of Tregs. Our study suggests that δ opioid agonists act directly on immune cells to improve the pathology of the colitis and can be candidates of immunomodulatory drugs.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Anti-Inflammatory Agents/pharmacology
- Colitis/chemically induced
- Colitis/immunology
- Colitis/metabolism
- Colitis/prevention & control
- Colon/drug effects
- Colon/immunology
- Colon/metabolism
- Dextran Sulfate
- Disease Models, Animal
- Female
- Interleukin-6/metabolism
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice, Inbred C57BL
- Morphinans/pharmacology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Mice
Collapse
Affiliation(s)
- Kazuki Nagata
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Advanced Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ayumi Okuzumi
- Global Science Campus, Tokyo University of Science, Tokyo, Japan
| | - Chiharu Nishiyama
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Advanced Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
27
|
Hatzioannou A, Boumpas A, Papadopoulou M, Papafragkos I, Varveri A, Alissafi T, Verginis P. Regulatory T Cells in Autoimmunity and Cancer: A Duplicitous Lifestyle. Front Immunol 2021; 12:731947. [PMID: 34539668 PMCID: PMC8446642 DOI: 10.3389/fimmu.2021.731947] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
Regulatory T (Treg) cells, possess a strategic role in the maintenance of immune homeostasis, and their function has been closely linked to development of diverse pathologies including autoimmunity and cancer. Comprehensive studies in various disease contexts revealed an increased plasticity as a characteristic of Treg cells. Although Treg cell plasticity comes in various flavors, the major categories enclose the loss of Foxp3 expression, which is the master regulator of Treg cell lineage, giving rise to “ex-Treg” cells and the “fragile” Treg cells in which FOXP3 expression is retained but accompanied by the engagement of an inflammatory program and attenuation of the suppressive activity. Treg cell plasticity possess a tremendous therapeutic potential either by inducing Treg cell de-stabilization to promote anti-tumor immunity, or re-enforcing Treg cell stability to attenuate chronic inflammation. Herein, we review the literature on the Treg cell plasticity with lessons learned in autoimmunity and cancer and discuss challenges and open questions with potential therapeutic implications.
Collapse
Affiliation(s)
- Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Athina Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Miranta Papadopoulou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Iosif Papafragkos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece.,Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Athina Varveri
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Themis Alissafi
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panayotis Verginis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece.,Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
28
|
Hyde M, Bagley J, Hinds PW, Tsichlis P, Iacomini J. Hyperlipidemia induced metabolic changes in regulatory T cells result in altered function. Eur J Immunol 2021; 51:2576-2589. [PMID: 34363211 DOI: 10.1002/eji.202049149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 11/12/2022]
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining self-tolerance and controlling inflammation. However, physiologically relevant conditions that alter Treg function and drive disease pathogenesis are poorly understood and few have been defined. We have previously shown that induction of hyperlipidemia in mice results in changes in Tregs that reduce their function. Here we set out to examine mechanisms by which hyperlipidemia alters Tregs. Using live-cell metabolic assays, we observed that induction of hyperlipidemia increases metabolism in Tregs but not conventional T cells. Increased metabolism resulted from preferential activation of the serine/threonine kinase Akt2 (PKBβ). Expression of a constitutively activated form of Akt2 in CD4 T cells was sufficient to increase glycolysis in Tregs and drive changes in Treg subsets. Induction of hyperlipidemia did not alter Treg metabolism in mice lacking Akt2. Activation of Akt2 was sufficient to drive production of inflammatory cytokines by Tregs. We suggest that hyperlipidemia alters Treg function through effects on metabolism via Akt2 activation thereby promoting plasticity and decreased function of FoxP3+ T cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michael Hyde
- Tufts University School of Medicine, and the Graduate School of Biomedical Sciences Boston, Boston, MA, 02111, USA.,Department of Immunology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210.,Program in Cell, Molecular and Developmental Biology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210
| | - Jessamyn Bagley
- Tufts University School of Medicine, and the Graduate School of Biomedical Sciences Boston, Boston, MA, 02111, USA.,Department of Immunology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210
| | - Philip W Hinds
- Tufts University School of Medicine, and the Graduate School of Biomedical Sciences Boston, Boston, MA, 02111, USA.,Program in Cell, Molecular and Developmental Biology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210.,Department of Developmental, Molecular and Chemical Biology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210
| | - Philip Tsichlis
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210
| | - John Iacomini
- Tufts University School of Medicine, and the Graduate School of Biomedical Sciences Boston, Boston, MA, 02111, USA.,Department of Immunology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210.,Program in Cell, Molecular and Developmental Biology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210
| |
Collapse
|
29
|
Dixon ML, Leavenworth JD, Leavenworth JW. Lineage Reprogramming of Effector Regulatory T Cells in Cancer. Front Immunol 2021; 12:717421. [PMID: 34394124 PMCID: PMC8355732 DOI: 10.3389/fimmu.2021.717421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Regulatory T-cells (Tregs) are important for maintaining self-tolerance and tissue homeostasis. The functional plasticity of Tregs is a key feature of this lineage, as it allows them to adapt to different microenvironments, adopt transcriptional programs reflective of their environments and tailor their suppressive capacity in a context-dependent fashion. Tregs, particularly effector Tregs (eTregs), are abundant in many types of tumors. However, the functional and transcriptional plasticity of eTregs in tumors remain largely to be explored. Although depletion or inhibition of systemic Tregs can enhance anti-tumor responses, autoimmune sequelae have diminished the enthusiasm for such approaches. A more effective approach should specifically target intratumoral Tregs or subvert local Treg-mediated suppression. This mini-review will discuss the reported mechanisms by which the stability and suppressive function of tumoral Tregs are modulated, with the focus on eTregs and a subset of eTregs, follicular regulatory T (TFR) cells, and how to harness this knowledge for the future development of new effective cancer immunotherapies that selectively target the tumor local response while sparing the systemic side effects.
Collapse
Affiliation(s)
- Michael L Dixon
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan D Leavenworth
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
30
|
Du J, Wang X, Tan G, Wei W, Zhou F, Liang Z, Li H, Yu H. Predisposition to Graves' disease and Graves' ophthalmopathy by genetic variants of IL2RA. J Mol Med (Berl) 2021; 99:1487-1495. [PMID: 34287665 DOI: 10.1007/s00109-021-02111-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/03/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022]
Abstract
Previous studies have identified that Th17/Treg cells were involved in the occurrence and development of Graves' disease (GD). This study aimed at clarifying the association between GD susceptibility and nine single nucleotide polymorphisms (SNPs) of Th17/Treg cell-related genes, including IL2RA, miR27a, miR182, and FoxO1. A two-stage association study was performed in 650 GD patients and 1300 healthy controls. PCR-RFLP assays, real-time PCR, and ELISA were performed. In the first stage, association analysis has identified that IL2RA/rs3118470 TT genotype (Pc = 0.027, OR = 1.688) and IL2RA/rs2104286 AA genotype (Pc = 0.027, OR = 1.658) has significantly increased frequencies in patients with GD than control subjects. In the second stage, the result of rs2104286 was consistent with the first-stage results (AA genotype: Pc = 0.006, OR = 1.618). The combined data showed that IL2RA/rs2104286 AA genotype had increased frequencies in patients with GD (Pc = 8.772 × 10-6, OR = 1.636). Stratification analysis also revealed that rs2104286 AA genotype was significantly associated with Graves' ophthalmopathy (GO) susceptibility (Pc = 9.150 × 10-4, OR = 1.851). Functional studies showed that carriers of the rs2104286 AA genotype had lower IL2RA mRNA expression than AG genotype carriers (P = 0.021). Cytokine analyses revealed that the rs2104286 AA genotype individuals had lower IL-10 levels (P = 0.015) and increased IL-17 levels than AG genotype carriers (P = 1.467 × 10-4). In conclusion, our findings suggested that IL2RA/rs2104286 was associated with GD and GO susceptibility in Southwest Chinese Han population, which may be involved in the occurrence of GD and GO by affecting the mRNA expression of IL2RA gene and the cytokine production. KEY MESSAGES: We identified that IL2RA/rs2104286 locus contributed to the predisposition of Graves' disease (GD) and Graves' ophthalmopathy (GO). Functional analyses suggested that IL2RA/rs2104286 may participate in the occurrence of GD and GO by affecting the mRNA expression of IL2RA and cytokine (IL-10 and IL-17) secretion. We found that IL2RA (rs3118470, rs7093069), miR27a/rs895819, miR182/rs76481776, and FoxO1 (rs2297626, rs17592236, rs9549241, rs12585277) loci polymorphisms were not associated with GD susceptibility.
Collapse
Affiliation(s)
- Juan Du
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Xin Wang
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Guiqin Tan
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Wenwen Wei
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Fangyu Zhou
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Zhongzhi Liang
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Hua Li
- Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Hongsong Yu
- School of Basic Medical Science, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
31
|
Blagih J, Hennequart M, Zani F. Tissue Nutrient Environments and Their Effect on Regulatory T Cell Biology. Front Immunol 2021; 12:637960. [PMID: 33868263 PMCID: PMC8050341 DOI: 10.3389/fimmu.2021.637960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Regulatory T cells (Tregs) are essential for mitigating inflammation. Tregs are found in nearly every tissue and play either beneficial or harmful roles in the host. The availability of various nutrients can either enhance or impair Treg function. Mitochondrial oxidative metabolism plays a major role in supporting Treg differentiation and fitness. While Tregs rely heavily on oxidation of fatty acids to support mitochondrial activity, they have found ways to adapt to different tissue types, such as tumors, to survive in competitive environments. In addition, metabolic by-products from commensal organisms in the gut also have a profound impact on Treg differentiation. In this review, we will focus on the core metabolic pathways engaged in Tregs, especially in the context of tissue nutrient environments, and how they can affect Treg function, stability and differentiation.
Collapse
Affiliation(s)
| | | | - Fabio Zani
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
32
|
Abstract
Akt kinases translate various external cues into intracellular signals that control cell survival, proliferation, metabolism and differentiation. This review discusses the requirement for Akt and its targets in determining the fate and function of T cells. We discuss the importance of Akt at various stages of T cell development including β-selection during which Akt fulfills the energy requirements of highly proliferative DN3 cells. Akt also plays an integral role in CD8 T cell biology where its regulation of Foxo transcription factors and mTORC1 metabolic activity controls effector versus memory CD8 T cell differentiation. Finally, Akt promotes the differentiation of naïve CD4 T cells into Th1, Th17 and Tfh cells but inhibits the development of Treg cells. We also highlight how modulating Akt in T cells is a promising avenue for enhancing cell-based cancer immunotherapy.
Collapse
|
33
|
Zhou X, Sun SC. Targeting ubiquitin signaling for cancer immunotherapy. Signal Transduct Target Ther 2021; 6:16. [PMID: 33436547 PMCID: PMC7804490 DOI: 10.1038/s41392-020-00421-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy has become an attractive approach of cancer treatment with tremendous success in treating various advanced malignancies. The development and clinical application of immune checkpoint inhibitors represent one of the most extraordinary accomplishments in cancer immunotherapy. In addition, considerable progress is being made in understanding the mechanism of antitumor immunity and characterizing novel targets for developing additional therapeutic approaches. One active area of investigation is protein ubiquitination, a post-translational mechanism of protein modification that regulates the function of diverse immune cells in antitumor immunity. Accumulating studies suggest that E3 ubiquitin ligases and deubiquitinases form a family of potential targets to be exploited for enhancing antitumor immunity in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Jafari D, Mousavi MJ, Keshavarz Shahbaz S, Jafarzadeh L, Tahmasebi S, Spoor J, Esmaeilzadeh A. E3 ubiquitin ligase Casitas B lineage lymphoma-b and its potential therapeutic implications for immunotherapy. Clin Exp Immunol 2021; 204:14-31. [PMID: 33306199 DOI: 10.1111/cei.13560] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
The distinction of self from non-self is crucial to prevent autoreactivity and ensure protection from infectious agents and tumors. Maintaining the balance between immunity and tolerance of immune cells is strongly controlled by several sophisticated regulatory mechanisms of the immune system. Among these, the E3 ligase ubiquitin Casitas B cell lymphoma-b (Cbl-b) is a newly identified component in the ubiquitin-dependent protein degradation system, which is thought to be an important negative regulator of immune cells. An update on the current knowledge and new concepts of the relevant immune homeostasis program co-ordinated by Cbl-b in different cell populations could pave the way for future immunomodulatory therapies of various diseases, such as autoimmune and allergic diseases, infections, cancers and other immunopathological conditions. In the present review, the latest findings are comprehensively summarized on the molecular structural basis of Cbl-b and the suppressive signaling mechanisms of Cbl-b in physiological and pathological immune responses, as well as its emerging potential therapeutic implications for immunotherapy in animal models and human diseases.
Collapse
Affiliation(s)
- D Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Immunotherapy Research and Technology Group, Zanjan University of Medical Sciences, Zanjan, Iran
| | - M J Mousavi
- Department of Hematology, Faculty of Allied medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Keshavarz Shahbaz
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - L Jafarzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Tahmasebi
- Department of Immunology, School of public health, Tehran University of Medical Sciences, Tehran, Iran
| | - J Spoor
- Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - A Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Immunotherapy Research and Technology Group, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
35
|
Xu S, Ma Y, Chen Y, Pan F. Role of Forkhead box O3a transcription factor in autoimmune diseases. Int Immunopharmacol 2021; 92:107338. [PMID: 33412391 DOI: 10.1016/j.intimp.2020.107338] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Forkhead box O3a (FOXO3a) transcription factor, the most important member of Forkhead box O family, is closely related to cell proliferation, apoptosis, autophagy, oxidative stress and aging. The downregulation of FOXO3a has been verified to be associated with the poor prognosis, severer malignancy and chemoresistance in several human cancers. The activity of FOXO3a mainly regulated by phosphorylation of protein kinase B. FOXO3a plays a vital role in promoting the apoptosis of immune cells. FOXO3a could also modulate the activation, differentiation and function of T cells, regulate the proliferation and function of B cells, and mediate dendritic cells tolerance and immunity. FOXO3a accommodates the immune response through targeting nuclear factor kappa-B and FOXP3, as well as regulating the expression of cytokines. Besides, FOXO3a participates in intercellular interactions. FOXO3a inhibits dendritic cells from producing interleukin-6, which inhibits B-cell lymphoma-2 (BCL-2) and BCL-XL expression, thereby sparing resting T cells from apoptosis and increasing the survival of antigen-stimulated T cells. Recently, plentiful evidences further illustrated the significance of FOXO3a in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, ankylosing spondylitis, myositis, multiple sclerosis, and systemic sclerosis. In this review, we focused on the biological function of FOXO3a and related signaling pathways regarding immune system, and summarized the potential role of FOXO3a in the pathogenesis, progress and therapeutic potential of autoimmune diseases.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
36
|
Regulation of Treg Functions by the Ubiquitin Pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:47-62. [PMID: 33523442 DOI: 10.1007/978-981-15-6407-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulatory T (Tregs) cells, required to maintain immune homeostasis, have significant power in disease outcomes. Treg dysfunction, predominantly characterized by the loss of the master transcription factor FoxP3 and the acquisition of Teff-like phenotypes, can promote autoimmunity as well as enhance anti-tumor immunity. As FoxP3 expression and stability are pinnacle for Treg suppressive functions, understanding the pathways that regulate FoxP3 is crucial to ascertain Treg-mediated therapies for autoimmune diseases and cancer. Mechanisms controlling FoxP3 expression and stability range from transcriptional to posttranslational, revealing multiple therapeutic opportunities. While many of the transcriptional pathways have been explored in detail, a recent surge in interest on the posttranslational mechanisms regulating FoxP3 has arisen. Particularly, the role of ubiquitination on Tregs both directly and indirectly involving FoxP3 has gained interest. Here, we summarize the current knowledge on ubiquitin-dependent, FoxP3-mediated control of Treg function as it pertains to human diseases.
Collapse
|
37
|
Regulatory T Cell Stability and Plasticity in Atherosclerosis. Cells 2020; 9:cells9122665. [PMID: 33322482 PMCID: PMC7764358 DOI: 10.3390/cells9122665] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Regulatory T cells (Tregs) express the lineage-defining transcription factor FoxP3 and play crucial roles in self-tolerance and immune homeostasis. Thymic tTregs are selected based on affinity for self-antigens and are stable under most conditions. Peripheral pTregs differentiate from conventional CD4 T cells under the influence of TGF-β and other cytokines and are less stable. Treg plasticity refers to their ability to inducibly express molecules characteristic of helper CD4 T cell lineages like T-helper (Th)1, Th2, Th17 or follicular helper T cells. Plastic Tregs retain FoxP3 and are thought to be specialized regulators for “their” lineage. Unstable Tregs lose FoxP3 and switch to become exTregs, which acquire pro-inflammatory T-helper cell programs. Atherosclerosis with systemic hyperlipidemia, hypercholesterolemia, inflammatory cytokines, and local hypoxia provides an environment that is likely conducive to Tregs switching to exTregs.
Collapse
|
38
|
Tang J, Tu S, Lin G, Guo H, Yan C, Liu Q, Huang L, Tang N, Xiao Y, Pope RM, Rajaram MVS, Amer AO, Ahmer BM, Gunn JS, Wozniak DJ, Tao L, Coppola V, Zhang L, Langdon WY, Torrelles JB, Lipkowitz S, Zhang J. Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia. J Exp Med 2020; 217:133674. [PMID: 31999304 PMCID: PMC7144527 DOI: 10.1084/jem.20182091] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/26/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Aberrant NLRP3 inflammasome activation contributes to the development of endotoxemia. The importance of negative regulation of NLRP3 inflammasomes remains poorly understood. Here, we show that the E3 ubiquitin ligase Cbl-b is essential for preventing endotoxemia induced by a sub-lethal dose of LPS via a caspase-11/NLRP3-dependent manner. Further studies show that NLRP3 undergoes both K63- and K48-linked polyubiquitination. Cbl-b binds to the K63-ubiquitin chains attached to the NLRP3 leucine-rich repeat domain (LRR) via its ubiquitin-associated region (UBA) and then targets NLRP3 at K496 for K48-linked ubiquitination and proteasome-mediated degradation. We also identify RNF125 as an additional E3 ubiquitin ligase that initiates K63-linked ubiquitination of the NLRP3 LRR domain. Therefore, NLRP3 is sequentially ubiquitinated by K63- and K48-linked ubiquitination, thus keeping the NLRP3 inflammasomes in check and restraining endotoxemia.
Collapse
Affiliation(s)
- Juan Tang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Sha Tu
- Department of Pathology, University of Iowa, Iowa City, IA.,Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Guoxin Lin
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH.,Department of Pathology, University of Iowa, Iowa City, IA.,Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hui Guo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH.,Department of Pathology, University of Iowa, Iowa City, IA
| | - Chengkai Yan
- Department of Pathology, University of Iowa, Iowa City, IA
| | - Qingjun Liu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Ling Huang
- Department of Pathology, University of Iowa, Iowa City, IA
| | - Na Tang
- Department of Pathology, University of Iowa, Iowa City, IA
| | - Yizhi Xiao
- Department of Pathology, University of Iowa, Iowa City, IA
| | - R Marshall Pope
- Proteomics Facility, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Brian M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - John S Gunn
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH
| | - Wallace Y Langdon
- School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Stanley Lipkowitz
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jian Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH.,Department of Pathology, University of Iowa, Iowa City, IA
| |
Collapse
|
39
|
Wang K, Fu W. Transcriptional regulation of Treg homeostasis and functional specification. Cell Mol Life Sci 2020; 77:4269-4287. [PMID: 32350553 PMCID: PMC7606275 DOI: 10.1007/s00018-020-03534-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
CD4+Foxp3+ regulatory T (Treg) cells are key players in keeping excessive inflammation in check. Mounting evidence has shown that Treg cells exert much more diverse functions in both immunological and non-immunological processes. The development, maintenance and functional specification of Treg cells are regulated by multilayered factors, including antigens and TCR signaling, cytokines, epigenetic modifiers and transcription factors (TFs). In the review, we will focus on TFs by summarizing their unique and redundant roles in Treg cells under physiological and pathophysiological conditions. We will also discuss the recent advances of Treg trajectories between lymphoid organs and non-lymphoid tissues. This review will provide an updated view of the newly identified TFs and new functions of known TFs in Treg biology.
Collapse
Affiliation(s)
- Ke Wang
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Wenxian Fu
- Pediatric Diabetes Research Center, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
40
|
Opejin A, Surnov A, Misulovin Z, Pherson M, Gross C, Iberg CA, Fallahee I, Bourque J, Dorsett D, Hawiger D. A Two-Step Process of Effector Programming Governs CD4 + T Cell Fate Determination Induced by Antigenic Activation in the Steady State. Cell Rep 2020; 33:108424. [PMID: 33238127 PMCID: PMC7714042 DOI: 10.1016/j.celrep.2020.108424] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/01/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Various processes induce and maintain immune tolerance, but effector T cells still arise under minimal perturbations of homeostasis through unclear mechanisms. We report that, contrary to the model postulating primarily tolerogenic mechanisms initiated under homeostatic conditions, effector programming is an integral part of T cell fate determination induced by antigenic activation in the steady state. This effector programming depends on a two-step process starting with induction of effector precursors that express Hopx and are imprinted with multiple instructions for their subsequent terminal effector differentiation. Such molecular circuits advancing specific terminal effector differentiation upon re-stimulation include programmed expression of interferon-γ, whose production then promotes expression of T-bet in the precursors. We further show that effector programming coincides with regulatory conversion among T cells sharing the same antigen specificity. However, conventional type 2 dendritic cells (cDC2) and T cell functions of mammalian target of rapamycin complex 1 (mTORC1) increase effector precursor induction while decreasing the proportion of T cells that can become peripheral Foxp3+ regulatory T (pTreg) cells. The mechanisms in the steady state that govern the formation of effector T cells with potentially autoimmune functions remain unclear. Opejin et al. reveal a two-step process starting with induction of effector precursors that express Hopx and are imprinted with multiple instructions for their subsequent terminal effector differentiation.
Collapse
Affiliation(s)
- Adeleye Opejin
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alexey Surnov
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Michelle Pherson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Cindy Gross
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ian Fallahee
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
41
|
Lang F, Rajaxavier J, Singh Y, Brucker SY, Salker MS. The Enigmatic Role of Serum & Glucocorticoid Inducible Kinase 1 in the Endometrium. Front Cell Dev Biol 2020; 8:556543. [PMID: 33195190 PMCID: PMC7609842 DOI: 10.3389/fcell.2020.556543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is subject to genetic up-regulation by diverse stimulators including glucocorticoids, mineralocorticoids, dehydration, ischemia, radiation and hyperosmotic shock. To become active, the expressed kinase requires phosphorylation, which is accomplished by PI3K/PDK1 and mTOR dependent signaling. SGK1 enhances the expression/activity of various transport proteins including Na+/K+-ATPase as well as ion-, glucose-, and amino acid- carriers in the plasma membrane. SGK1 can further up-regulate diverse ion channels, such as Na+-, Ca2+-, K+- and Cl- channels. SGK1 regulates expression/activity of a wide variety of transcription factors (such as FKHRL1/Foxo3a, β-catenin, NFκB and p53). SGK1 thus contributes to the regulation of transport, glycolysis, angiogenesis, cell survival, immune regulation, cell migration, tissue fibrosis and tissue calcification. In this review we summarized the current findings that SGK1 plays a crucial function in the regulation of endometrial function. Specifically, it plays a dual role in the regulation of endometrial receptivity necessary for implantation and, subsequently in pregnancy maintenance. Furthermore, fetal programming of blood pressure regulation requires maternal SGK1. Underlying mechanisms are, however, still ill-defined and there is a substantial need for additional information to fully understand the role of SGK1 in the orchestration of embryo implantation, embryo survival and fetal programming.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard-Karls University, Tübingen, Germany
| | - Janet Rajaxavier
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| | - Yogesh Singh
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University, Tübingen, Germany
| | - Sara Y. Brucker
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| | - Madhuri S. Salker
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| |
Collapse
|
42
|
BxPC-3-Derived Small Extracellular Vesicles Induce FOXP3+ Treg through ATM-AMPK-Sirtuins-Mediated FOXOs Nuclear Translocations. iScience 2020; 23:101431. [PMID: 32798974 PMCID: PMC7452591 DOI: 10.1016/j.isci.2020.101431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/27/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy in pancreatic ductal adenocarcinoma (PDAC) treatment faces serious challenges, due particularly to the poor immunogenicity. Cancer cell-derived small extracellular vesicles (sEVs) play important roles in damaging the immune system. However, the effects of pancreatic cancer-derived sEVs on T lymphocytes are unknown. Here we investigated changes in phenotypes and signal transduction pathways in sEVs-treated T lymphocytes. We identified the overexpression of immune checkpoint proteins PD-1, PD-L1, CTLA4, and Tim-3 and the enrichment of FOXP3+ Treg cluster in sEVs-treated T lymphocytes by CyTOF. Gene set enrichment analysis revealed that DNA damage response and metabolic pathways might be involved in sEVs-induced Tregs. ATM, AMPK, SIRT1, SIRT2, and SIRT6 were activated sequentially in sEVs-treated T lymphocytes and essential for sEVs-upregulated expressions of FOXO1A, FOXO3A, and FOXP3. Our study reveals the impact and mechanism of pancreatic cancer cell-derived sEVs on T lymphocytes and may provide insights into developing immunotherapy strategies for PDAC treatment. Human pancreatic cancer cells-derived sEVs induce Treg promotion DNA damage responses and metabolism are altered in sEVs-stimulated T lymphocytes ATM-AMPK-SIRT1/2/6-FOXO1A/3A axis plays a role in sEVs-induced Treg FOXO1A, FOXO3A, and FOXP3 are highly expressed in pancreatic cancer-involved lymph nodes
Collapse
|
43
|
Delacher M, Barra MM, Herzig Y, Eichelbaum K, Rafiee MR, Richards DM, Träger U, Hofer AC, Kazakov A, Braband KL, Gonzalez M, Wöhrl L, Schambeck K, Imbusch CD, Abramson J, Krijgsveld J, Feuerer M. Quantitative Proteomics Identifies TCF1 as a Negative Regulator of Foxp3 Expression in Conventional T Cells. iScience 2020; 23:101127. [PMID: 32422593 PMCID: PMC7229326 DOI: 10.1016/j.isci.2020.101127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells are important regulators of the immune system and have versatile functions for the homeostasis and repair of tissues. They express the forkhead box transcription factor Foxp3 as a lineage-defining protein. Negative regulators of Foxp3 expression are not well understood. Here, we generated double-stranded DNA probes complementary to the Foxp3 promoter sequence and performed a pull-down with nuclear protein in vitro, followed by elution of bound proteins and quantitative mass spectrometry. Of the Foxp3-promoter-binding transcription factors identified with this approach, one was T cell factor 1 (TCF1). Using viral over-expression, we identified TCF1 as a repressor of Foxp3 expression. In TCF1-deficient animals, increased levels of Foxp3intermediateCD25negative T cells were identified. CRISPR-Cas9 knockout studies in primary human and mouse conventional CD4 T (Tconv) cells revealed that TCF1 protects Tconv cells from inadvertent Foxp3 expression. Our data implicate a role of TCF1 in suppressing Foxp3 expression in activated T cells.
Collapse
Affiliation(s)
- Michael Delacher
- Chair for Immunology, Regensburg University, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Melanie M Barra
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yonatan Herzig
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 76100 Rehovot, Israel
| | - Katrin Eichelbaum
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Mahmoud-Reza Rafiee
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - David M Richards
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrike Träger
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ann-Cathrin Hofer
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alexander Kazakov
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Kathrin L Braband
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marina Gonzalez
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lukas Wöhrl
- Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Kathrin Schambeck
- Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Charles D Imbusch
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany; Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 76100 Rehovot, Israel
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Markus Feuerer
- Chair for Immunology, Regensburg University, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
44
|
Xie M, Wei J, Xu J. Inducers, Attractors and Modulators of CD4 + Treg Cells in Non-Small-Cell Lung Cancer. Front Immunol 2020; 11:676. [PMID: 32425930 PMCID: PMC7212357 DOI: 10.3389/fimmu.2020.00676] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated deaths worldwide, with non-small cell-lung cancer (NSCLC) accounting for approximately 80% of cases. Immune escape has been demonstrated to play a key role in the initiation and progression of NSCLC, although the underlying mechanisms are diverse and their puzzling nature is far from being understood. As a critical participant in immune escape, the CD4+ T cell subset of regulatory T (Treg) cells, with their immunosuppressive functions, has been implicated in the occurrence of many types of cancers. Additionally, therapies based on Treg blockade have benefited a portion of cancer patients, including those with NSCLC. Accumulating literature has noted high Treg infiltration in NSCLC tumor tissues, bone marrow, lymph nodes and/or blood; moreover, the tumor milieu is involved in regulating the proliferation, differentiation, recruitment and suppressive functions of Treg cells. Multifarious mechanisms by which CD4+ Treg cells are generated, attracted and modulated in the NSCLC milieu will be discussed in this review.
Collapse
Affiliation(s)
- Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jia Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| |
Collapse
|
45
|
The Regulatory Effects of mTOR Complexes in the Differentiation and Function of CD4 + T Cell Subsets. J Immunol Res 2020; 2020:3406032. [PMID: 32377533 PMCID: PMC7195637 DOI: 10.1155/2020/3406032] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023] Open
Abstract
T cells are an important part of the adaptive immune system and play critical roles in the elimination of various pathogens. T cells could differentiate into distinct cellular subsets under different extracellular signals and then play different roles in maintaining host homeostasis and defense. The mechanistic target of rapamycin (mTOR) is a conserved intracellular serine/threonine kinase which belongs to the phosphoinositide 3-kinase- (PI3K-) related kinase family. The mTOR signaling pathway is closely involved in a variety of cell biological processes, including cell growth and cell metabolism, by senses and integrates various environmental cues. Recent studies showed that mTOR including mTORC1 and mTORC2 is closely involved in the development of T cell subpopulations such as Th1, Th2, Th9, Th17, follicular helper T cells (Tfh), and Treg cells through distinctive pathways. We herein mainly focused on the recent progress in understanding the roles of mTOR in regulating the development and differentiation of CD4+ T cell subsets.
Collapse
|
46
|
Tuning T helper cell differentiation by ITK. Biochem Soc Trans 2020; 48:179-185. [PMID: 32049330 DOI: 10.1042/bst20190486] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/28/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022]
Abstract
CD4+ effector T cells effectuate T cell immune responses, producing cytokines to orchestrate the nature and type of immune responses. The non-receptor tyrosine kinase IL-2 inducible T cell kinase (ITK), a mediator of T cell Receptor signaling, plays a critical role in tuning the development of these effector cells. In this review we discussed the role that signals downstream of ITK, including the Ras/MAPK pathway, play in differentially controlling the differentiation of TH17, Foxp3+ T regulatory (Treg) cells, and Type 1 regulatory T (Tr1) cells, supporting a model of ITK signals controlling a decision point in the effector T cell differentiation process.
Collapse
|
47
|
Artham S, Verma A, Alwhaibi A, Adil MS, Manicassamy S, Munn DH, Somanath PR. Delayed Akt suppression in the lipopolysaccharide-induced acute lung injury promotes resolution that is associated with enhanced effector regulatory T cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L750-L761. [PMID: 32073894 DOI: 10.1152/ajplung.00251.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The adaptive immune response could play a major role in the resolution of lung injury. Although regulatory T cells (Tregs) have been implicated in promoting the resolution of lung injury, therapeutic strategies to enhance Treg quantity and activity at the site of injury need further exploration. In the current study, Akt inhibition using triciribine (TCBN), given 48 h after lipopolysaccharide (LPS) administration, increased Tregs-promoted resolution of acute lung injury (ALI). TCBN treatment enhanced the resolution of LPS-induced ALI on day 7 by reducing pulmonary edema and neutrophil activity associated with an increased number of CD4+/FoxP3+/CD103+ and CTLA4+ effector Tregs, specifically in the injured lungs and not in the spleen. Treatment of EL-4 T-lymphocytes with two Akt inhibitors (TCBN and MK-2206) for 72 h resulted in increased FoxP3 expression in vitro. On the other end, Treg-specific PTEN knockout (PTENTreg KO) mice that have a higher Akt activity in its Tregs exhibited a significant impairment in ALI resolution, increased edema, and neutrophil activity associated with a reduced number of CD4+/FoxP3+/CD103+ and CTLA4+ effector Tregs as compared with the control group. In conclusion, our study identifies a potential target for the treatment of late-stage ALI by promoting resolution through effector Treg-mediated suppression of inflammation.
Collapse
Affiliation(s)
- Sandeep Artham
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Arti Verma
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Abdulrahman Alwhaibi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Mir S Adil
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | | | - David H Munn
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia.,Vascular Biology Center, Augusta University, Augusta, Georgia.,Department of Medicine, Augusta University, Augusta, Georgia
| |
Collapse
|
48
|
Colamatteo A, Carbone F, Bruzzaniti S, Galgani M, Fusco C, Maniscalco GT, Di Rella F, de Candia P, De Rosa V. Molecular Mechanisms Controlling Foxp3 Expression in Health and Autoimmunity: From Epigenetic to Post-translational Regulation. Front Immunol 2020; 10:3136. [PMID: 32117202 PMCID: PMC7008726 DOI: 10.3389/fimmu.2019.03136] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of the transcription factor Forkhead box-p3 (Foxp3) has shed fundamental insights into the understanding of the molecular determinants leading to generation and maintenance of T regulatory (Treg) cells, a cell population with a key immunoregulatory role. Work over the past few years has shown that fine-tuned transcriptional and epigenetic events are required to ensure stable expression of Foxp3 in Treg cells. The equilibrium between phenotypic plasticity and stability of Treg cells is controlled at the molecular level by networks of transcription factors that bind regulatory sequences, such as enhancers and promoters, to regulate Foxp3 expression. Recent reports have suggested that specific modifications of DNA and histones are required for the establishment of the chromatin structure in conventional CD4+ T (Tconv) cells for their future differentiation into the Treg cell lineage. In this review, we discuss the molecular events that control Foxp3 gene expression and address the associated alterations observed in human diseases. Also, we explore how Foxp3 influences the gene expression programs in Treg cells and how unique properties of Treg cell subsets are defined by other transcription factors.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Mario Galgani
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.,Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Clorinda Fusco
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Giorgia Teresa Maniscalco
- Dipartimento di Neurologia, Centro Regionale Sclerosi Multipla, Azienda Ospedaliera "A. Cardarelli", Naples, Italy
| | - Francesca Di Rella
- Clinical and Experimental Senology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Naples, Italy
| | | | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto per L'Endocrinologia e L'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy.,Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
49
|
Salcher S, Spoden G, Huber JM, Golderer G, Lindner H, Ausserlechner MJ, Kiechl-Kohlendorfer U, Geiger K, Obexer P. Repaglinide Silences the FOXO3/Lumican Axis and Represses the Associated Metastatic Potential of Neuronal Cancer Cells. Cells 2019; 9:cells9010001. [PMID: 31861249 PMCID: PMC7017090 DOI: 10.3390/cells9010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
The transcription factor FOXO3 is associated with poor outcome in high-stage neuroblastoma (NB), as it facilitates chemoprotection and tumor angiogenesis. In other tumor entities, FOXO3 stimulates metastasis formation, one of the biggest challenges in the treatment of aggressive NB. However, the impact of FOXO3 on the metastatic potential of neuronal tumor cells remains largely unknown. In the present study, we uncover the small leucine-rich proteoglycan family member lumican (LUM) as a FOXO3-regulated gene that stimulates cellular migration in NB. By a drug-library screen we identified the small molecular weight compound repaglinide (RPG) as a putative FOXO3 inhibitor. Here, we verify that RPG binds to the FOXO3-DNA-binding-domain (DBD) and thereby silences the transcriptional activity of FOXO3. Consistent with the concept that the FOXO3/LUM axis enhances the migratory capacity of aggressive NB cells, we demonstrate that stable knockdown of LUM abrogates the FOXO3-mediated increase in cellular migration. Importantly, FOXO3 inhibition by RPG represses the binding of FOXO3 to the LUM promoter, inhibits FOXO3-mediated LUM RNA and protein expression, and efficiently abrogates FOXO3-triggered cellular “wound healing” as well as spheroid-based 3D-migration. Thus, silencing the FOXO3/LUM axis by the FDA-approved compound RPG represents a promising strategy for novel therapeutic interventions in NB and other FOXO3-dependent tumors.
Collapse
Affiliation(s)
- Stefan Salcher
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria; (S.S.); (G.S.); (J.M.H.); (K.G.)
| | - Gilles Spoden
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria; (S.S.); (G.S.); (J.M.H.); (K.G.)
| | - Julia M. Huber
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria; (S.S.); (G.S.); (J.M.H.); (K.G.)
| | - Georg Golderer
- Division of Biological Chemistry, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Herbert Lindner
- Division of Clinical Biochemistry, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | | | | | - Kathrin Geiger
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria; (S.S.); (G.S.); (J.M.H.); (K.G.)
| | - Petra Obexer
- Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria; (S.S.); (G.S.); (J.M.H.); (K.G.)
- Department of Pediatrics II, Medical University Innsbruck, 6020 Innsbruck, Austria;
- Correspondence: ; Tel.: +43-512-504-25439
| |
Collapse
|
50
|
Wang Y, Feng T, Duan S, Shi Y, Li S, Zhang X, Zhang L. miR-155 promotes fibroblast-like synoviocyte proliferation and inflammatory cytokine secretion in rheumatoid arthritis by targeting FOXO3a. Exp Ther Med 2019; 19:1288-1296. [PMID: 32010301 PMCID: PMC6966213 DOI: 10.3892/etm.2019.8330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to explore the expression and effects of microRNA (miR)-155 in synovial fibroblasts of patients with rheumatoid arthritis (RA). A total of 89 synovial tissues from RA patients and 49 control synovial tissues were collected, and the levels of miR-155 were measured by reverse transcription quantitative-PCR and western blotting. Fibroblast-like synoviocytes (FLS) were isolated from synovial tissues from the control group and were used to evaluate the roles of miR-155 and forkhead box protein O3a (FOXO3a). MTT assay was used to measure the proliferation of FLS. The expression of miR-155 in RA synovial tissues was significantly higher than that in the control group, but the expression of FOXO3a was significantly lower. In RA synovial tissues, miR-155 expression was negatively correlated with FOXO3a expression, but was positively correlated with the release of inflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α). A dual-luciferase reporter system showed that miR-155 inhibited the expression of FOXO3a in FLS cells. miR-155 also promoted secretion of the inflammatory cytokines IL-1β, IL-6 and TNF-α by FLS and proliferation of these cells by targeting FOXO3a.
Collapse
Affiliation(s)
- Yaxi Wang
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Tianying Feng
- Department of Medical Ultrasound, Bao'an Central Hospital of Shenzhen, Shenzhen, Guangdong 518102, P.R. China
| | - Shasha Duan
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Yilu Shi
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Shuling Li
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiaoshan Zhang
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Lei Zhang
- Department of Ultrasound, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|