1
|
Ge J, Xu X. The Expression of Programmed Cell Death Ligand-1 and its Relationship with Infiltration, Metastasis and Prognosis in Cervical Squamous Cell Carcinoma. Reprod Sci 2025; 32:1676-1684. [PMID: 39884999 DOI: 10.1007/s43032-024-01784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 12/24/2024] [Indexed: 02/01/2025]
Abstract
Cervical cancer (CC) represents a major gynecologic health problem. Respecting the role of programmed cell death ligand-1 (PDL-1) in cancer prognosis, we investigated its relationship with cervical squamous cell carcinoma (CSCC) invasion, metastasis and prognosis. A total of 184 CSCC patients were retrospectively selected, with normal paracarcinoma tissues as the Control group. PDL-1 expression was assessed, and its relationship with CSCC prognosis and clinical value on predicting CSCC invasion/metastasis and poor prognosis were determined. PDL-1 was up-regulated in CSCC. CSCC patients at International Federation of Gynecology and Obstetrics stage II/III, and with lymph node metastasis (LNM), parauterine/vascular infiltration, and history of sexually transmitted diseases exhibited up-regulated PDL-1. The areas under the curve of PDL-1 on predicting the invasion and metastasis/poor prognosis of CSCC patients were 0.930 (95%Cl: 0.883-0.962)/0.935 (95%Cl: 0.886-0.967), with cut-off values of 23.27/24.86 (86.76%/80.95% sensitivity, 95.69%/92.68% specificity). The CSCC patients with highly-expressed PDL-1 showed increased cumulative incidence of poor prognosis. Additionally, occurence of vascular infiltration/LNM, and up-regulated PDL-1 were independent risk factors for poor prognosis in CSCC patients. Briefly, PDL-1 expression rised in CSCC. High PDL-1 expression might promote tumor infiltration and LNM, while close monitoring of its expression contributed to evaluating prognosis of CSCC patients.
Collapse
Affiliation(s)
- Juyan Ge
- Department of Pathology, Lianyungang No.2 People's Hospital, Lianyungang, China
| | - Xiujuan Xu
- Department of Radiation Oncology, Lianyungang No.2 People's Hospital, Lianyungang, China.
| |
Collapse
|
2
|
Wang P, Zhu P, Li ZY, Zhao YL, Mao FY, Peng LS, Luo SL, Luo P, Liu YG, Chen M, Zhuang Y. Expression, regulation, function and clinical significance of B7-H6 on neutrophils in human gastric cancer. Neoplasia 2025; 62:101149. [PMID: 40054066 PMCID: PMC11930213 DOI: 10.1016/j.neo.2025.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025]
Abstract
Neutrophils are conspicuous components of gastric cancer (GC) tumors, increasing with tumor progression and poor patient survival. However, the phenotype, regulation, function and clinical relevance of neutrophils in human GC are presently unknown. We used flow cytometry analyses to examine levels and phenotype of neutrophils in samples from 50 patients with GC. Kaplan-Meier plots for patient survival were performed using the log-rank test, and multivariate analysis of prognostic factors for patient survival was performed using the Cox proportional hazards model. Neutrophils were isolated, stimulated and/or cultured for regulation and function assays. We found that GC patients showed a significantly higher neutrophil infiltration in tumors, and that neutrophil infiltration was positively associated with tumor progression but negatively correlated with patient survival. Most tumor-infiltrating neutrophils showed an activated CD54+ phenotype and expressed high level B7-H6. Tumor tissue culture supernatants from GC patients inhibited neutrophil apoptosis and induced the expression of CD54 and B7-H6 on neutrophils in time-dependent and dose-dependent manners. Intratumoral CD54+ neutrophils and B7-H6+ neutrophils positively correlated with increased G-CSF detection ex vivo; and in vitro both G-CSF and tumor-derived G-CSF induced the expression of CD54 and B7-H6 on neutrophils via NF-κB signaling pathway activation. Furthermore, blockade of B7-H6 promoted the apoptosis of tumor-infiltrating and tumor-conditioned neutrophils, and shortened their lifespan. Importantly, intratumoral B7-H6+ neutrophils increased with tumor progression and predicted poor patient survival. Our results illuminate a novel mechanism of B7-H6 expression on tumor-activated neutrophils in GC, and also suggest B7-H6+ neutrophils would be novel potential biomarkers in GC.
Collapse
Affiliation(s)
- Pan Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China; Department of Gastroenterology, The 940 Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Peng Zhu
- Department of Gastroenterology, Suining First People's Hospital, Suining, Sichuan, China
| | - Zheng-Yan Li
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yong-Liang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fang-Yuan Mao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Liu-Sheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Shou-Lu Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Yu-Gang Liu
- Department of Laboratory Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Mao Chen
- Department of Neurology, XinQiao Hospital, Third Military Medical University, Chongqing, China.
| | - Yuan Zhuang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China; Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| |
Collapse
|
3
|
Fournier L, Arras P, Pekar L, Kolmar H, Zielonka S, Toleikis L, Becker S. Enhancing NK cell-mediated tumor killing of B7-H6 + cells with bispecific antibodies targeting allosteric sites of NKp30. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200917. [PMID: 39811682 PMCID: PMC11730255 DOI: 10.1016/j.omton.2024.200917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/09/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
In this work, we report the discovery and engineering of allosteric variable domains of the heavy chain (VHHs) derived from camelid immunization targeting NKp30, an activating receptor on natural killer (NK) cells. The aim was to enhance NK cell-mediated killing capacities by identifying VHHs that do not compete with the natural ligand of NKp30:B7-H6, thereby maximizing the recognition of B7-H6+ tumor cells. By relying on the DuoBody technology, bispecific therapeutic antibodies were engineered, creating a panel of bispecific antibodies against NKp30xEGFR (cetuximab moiety) or NKp30xHER2 (trastuzumab moiety), called natural killer cell engagers (NKCEs). These NKCEs were assessed for their killing capacities on B7-H6-expressing tumor cells. The results demonstrated an enhancement in NK killing capacities for both EGFR-expressing (HeLa) and HER2-expressing (SK-BR-3) cells, indicating the significance of the natural NKp30/B7-H6 axis in tumor recognition by the immune system. Notably, engineering NKCEs to allow natural recognition of B7-H6 was found to be more effective in promoting NKCE-mediated killing of B7-H6+ tumor cells via enhancement of cytokine release. This study highlights the potential of an enhanced-targeting approach, wherein tumor cell surface antigens are targeted while still enabling the natural recognition of the activating ligand (B7-H6) by the immune cells.
Collapse
Affiliation(s)
- Léxane Fournier
- Early Protein Supply and Characterization, Merck Healthcare KGaA, 64293 Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paul Arras
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Lukas Pekar
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64283 Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Lars Toleikis
- Early Protein Supply and Characterization, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Stefan Becker
- Early Protein Supply and Characterization, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| |
Collapse
|
4
|
Mariuzza RA, Singh P, Karade SS, Shahid S, Sharma VK. Recognition of Self and Viral Ligands by NK Cell Receptors. Immunol Rev 2025; 329:e13435. [PMID: 39748148 PMCID: PMC11695704 DOI: 10.1111/imr.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Natural killer (NK) cells are essential elements of the innate immune response against tumors and viral infections. NK cell activation is governed by NK cell receptors that recognize both cellular (self) and viral (non-self) ligands, including MHC, MHC-related, and non-MHC molecules. These diverse receptors belong to two distinct structural families, the C-type lectin superfamily and the immunoglobulin superfamily. NK receptors include Ly49s, KIRs, LILRs, and NKG2A/CD94, which bind MHC class I (MHC-I) molecules, and NKG2D, which binds MHC-I paralogs such MICA and ULBP. Other NK receptors recognize tumor-associated antigens (NKp30, NKp44, NKp46), cell-cell adhesion proteins (KLRG1, CD96), or genetically coupled C-type lectin-like ligands (NKp65, NKR-P1). Additionally, cytomegaloviruses have evolved various immunoevasins, such as m157, m12, and UL18, which bind NK receptors and act as decoys to enable virus-infected cells to escape NK cell-mediated lysis. We review the remarkable progress made in the past 25 years in determining structures of representatives of most known NK receptors bound to MHC, MHC-like, and non-MHC ligands. Together, these structures reveal the multiplicity of solutions NK receptors have developed to recognize these molecules, and thereby mediate crucial interactions for regulating NK cytolytic activity by self and viral ligands.
Collapse
Affiliation(s)
- Roy A. Mariuzza
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Pragya Singh
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- College of Natural and Mathematical SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Sharanbasappa S. Karade
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Salman Shahid
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| | - Vijay Kumar Sharma
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMarylandUSA
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
5
|
Fernández‐Quintero ML, Guarnera E, Musil D, Pekar L, Sellmann C, Freire F, Sousa RL, Santos SP, Freitas MC, Bandeiras TM, Silva MMS, Loeffler JR, Ward AB, Harwardt J, Zielonka S, Evers A. On the humanization of VHHs: Prospective case studies, experimental and computational characterization of structural determinants for functionality. Protein Sci 2024; 33:e5176. [PMID: 39422475 PMCID: PMC11487682 DOI: 10.1002/pro.5176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The humanization of camelid-derived variable domain heavy chain antibodies (VHHs) poses challenges including immunogenicity, stability, and potential reduction of affinity. Critical to this process are complementarity-determining regions (CDRs), Vernier and Hallmark residues, shaping the three-dimensional fold and influencing VHH structure and function. Additionally, the presence of non-canonical disulfide bonds further contributes to conformational stability and antigen binding. In this study, we systematically humanized two camelid-derived VHHs targeting the natural cytotoxicity receptor NKp30. Key structural positions in Vernier and Hallmark regions were exchanged with residues from the most similar human germline sequences. The resulting variants were characterized for binding affinities, yield, and purity. Structural binding modes were elucidated through crystal structure determination and AlphaFold2 predictions, providing insights into differences in binding affinity. Comparative structural and molecular dynamics characterizations of selected variants were performed to rationalize their functional properties and elucidate the role of specific sequence motifs in antigen binding. Furthermore, systematic analyses of next-generation sequencing (NGS) and Protein Data Bank (PDB) data was conducted, shedding light on the functional significance of Hallmark motifs and non-canonical disulfide bonds in VHHs in general. Overall, this study provides valuable insights into the structural determinants governing the functional properties of VHHs, offering a roadmap for their rational design, humanization, and optimization for therapeutic applications.
Collapse
Affiliation(s)
- Monica L. Fernández‐Quintero
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Enrico Guarnera
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| | - Djordje Musil
- Structural Biology and BiophysicsMerck Healthcare KGaADarmstadtGermany
| | - Lukas Pekar
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| | - Carolin Sellmann
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| | - Filipe Freire
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | - Raquel L. Sousa
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | - Sandra P. Santos
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | - Micael C. Freitas
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | | | | | - Johannes R. Loeffler
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Julia Harwardt
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| | - Stefan Zielonka
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
- Institute for Organic Chemistry and BiochemistryTechnical University of DarmstadtDarmstadtGermany
| | - Andreas Evers
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| |
Collapse
|
6
|
Lee S, Kim JH, Jang IH, Jo S, Lee SY, Oh SC, Kim SM, Kong L, Ko J, Kim TD. Harnessing B7-H6 for Anticancer Immunotherapy: Expression, Pathways, and Therapeutic Strategies. Int J Mol Sci 2024; 25:10326. [PMID: 39408655 PMCID: PMC11476788 DOI: 10.3390/ijms251910326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer therapies have evolved from traditional chemotherapy to more precise molecular-targeted immunotherapies, which have been associated with improved side effects and outcomes. These modern strategies rely on cancer-specific biomarkers that differentiate malignant from normal cells. The B7 family of immune checkpoint molecules is crucial for cancer immune evasion and a prime therapeutic target. B7-H6, a recently identified member of the B7 family, has emerged as a promising therapeutic target. Unlike other B7 proteins, B7-H6 is not expressed in healthy tissues but is upregulated in several cancers. It binds to NKp30, activating natural killer (NK) cells and triggering immune responses against cancer cells. This review explores the expression of B7-H6 in different cancers, the factors that regulate its expression, and its intrinsic and extrinsic pathways. Additionally, we discuss potential anticancer therapies targeting B7-H6, highlighting its significance in advancing precision medicine. Understanding the role of B7-H6 in cancer immunity may inform the development of appropriate therapies that exploit its cancer-specific expression.
Collapse
Affiliation(s)
- Sunyoung Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Ji Hyun Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - In-Hwan Jang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Seona Jo
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Soo Yun Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Se-Chan Oh
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Seok-Min Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
| | - Lingzu Kong
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Tae-Don Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (S.L.); (J.H.K.); (I.-H.J.); (S.J.); (S.Y.L.); (S.-C.O.); (S.-M.K.); (L.K.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
7
|
Lopez DC, Fabian KP, Padget MR, Robbins YL, Kowalczyk JT, Lassoued W, Pastor DM, Allen CT, Gallia GL, Gulley JL, Hodge JW, London NR. Chordoma cancer stem cell subpopulation characterization may guide targeted immunotherapy approaches to reduce disease recurrence. Front Oncol 2024; 14:1376622. [PMID: 38741774 PMCID: PMC11089222 DOI: 10.3389/fonc.2024.1376622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Cancer stem cells (CSCs), a group of tumor-initiating and tumor-maintaining cells, may be major players in the treatment resistance and recurrence distinctive of chordoma. Characterizing CSCs is crucial to better targeting this subpopulation. Methods Using flow cytometry, six chordoma cell lines were evaluated for CSC composition. In vitro, cell lines were stained for B7H6, HER2, MICA-B, ULBP1, EGFR, and PD-L1 surface markers. Eighteen resected chordomas were stained using a multispectral immunofluorescence (mIF) antibody panel to identify CSCs in vivo. HALO software was used for quantitative CSC density and spatial analysis. Results In vitro, chordoma CSCs express more B7H6, MICA-B, and ULBP1, assessed by percent positivity and mean fluorescence intensity (MFI), as compared to non-CSCs in all cell lines. PD- L1 percent positivity is increased by >20% in CSCs compared to non-CSCs in all cell lines except CH22. In vivo, CSCs comprise 1.39% of chordoma cells and most are PD-L1+ (75.18%). A spatial analysis suggests that chordoma CSCs cluster at an average distance of 71.51 mm (SD 73.40 mm) from stroma. Discussion To our knowledge, this study is the first to identify individual chordoma CSCs and describe their surface phenotypes using in vitro and in vivo methods. PD-L1 is overexpressed on CSCs in chordoma human cell lines and operative tumor samples. Similarly, potential immunotherapeutic targets on CSCs, including B7H6, MICA-B, ULBP1, EGFR, and HER2 are overexpressed across cell lines. Targeting these markers may have a preferential role in combating CSCs, an aggressive subpopulation likely consequential to chordoma's high recurrence rate.
Collapse
Affiliation(s)
- Diana C. Lopez
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kellsye P. Fabian
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Michelle R. Padget
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yvette L. Robbins
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Joshua T. Kowalczyk
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Wiem Lassoued
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Danielle M. Pastor
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clint T. Allen
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gary L. Gallia
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Johns Hopkins University School of Medicine;, Baltimore, MD, United States
| | - James L. Gulley
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - James W. Hodge
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Nyall R. London
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Johns Hopkins University School of Medicine;, Baltimore, MD, United States
| |
Collapse
|
8
|
Rahimi A, Malakoutikhah Z, Rahimmanesh I, Ferns GA, Nedaeinia R, Ishaghi SMM, Dana N, Haghjooy Javanmard S. The nexus of natural killer cells and melanoma tumor microenvironment: crosstalk, chemotherapeutic potential, and innovative NK cell-based therapeutic strategies. Cancer Cell Int 2023; 23:312. [PMID: 38057843 DOI: 10.1186/s12935-023-03134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
The metastasis of melanoma cells to regional lymph nodes and distant sites is an important contributor to cancer-related morbidity and mortality among patients with melanoma. This intricate process entails dynamic interactions involving tumor cells, cellular constituents, and non-cellular elements within the microenvironment. Moreover, both microenvironmental and systemic factors regulate the metastatic progression. Central to immunosurveillance for tumor cells are natural killer (NK) cells, prominent effectors of the innate immune system with potent antitumor and antimetastatic capabilities. Recognizing their pivotal role, contemporary immunotherapeutic strategies are actively integrating NK cells to combat metastatic tumors. Thus, a meticulous exploration of the interplay between metastatic melanoma and NK cells along the metastatic cascade is important. Given the critical involvement of NK cells within the melanoma tumor microenvironment, this comprehensive review illuminates the intricate relationship between components of the melanoma tumor microenvironment and NK cells, delineating their multifaceted roles. By shedding light on these critical aspects, this review advocates for a deeper understanding of NK cell dynamics within the melanoma context, driving forward transformative strategies to combat this cancer.
Collapse
Affiliation(s)
- Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Janes ME, Kinlein A, Flajnik MF, Du Pasquier L, Ohta Y. Genomic view of the origins of cell-mediated immunity. Immunogenetics 2023; 75:479-493. [PMID: 37735270 PMCID: PMC11019866 DOI: 10.1007/s00251-023-01319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023]
Abstract
NKp30 is an activating natural killer cell receptor (NKR) with a single-exon variable (VJ)-type immunoglobulin superfamily (IgSF) domain. Such VJ-IgSF domains predate the emergence of the antigen receptors (immunoglobulin and T cell receptor), which possess the same domain but undergo gene rearrangement. NCR3, the gene encoding NKp30, is present in jawed vertebrates from sharks to mammals; thus, unlike most NKR that are highly divergent among vertebrate taxa, NKp30 is uniquely conserved. We previously hypothesized that an ancestral NCR3 gene was encoded in the proto-major histocompatibility complex (MHC), the region where many immune-related genes have accumulated. Herein, we searched in silico databases to identify NCR3 paralogues and examined their genomic locations. We found a paralogue, NCR3H, in many vertebrates but was lost in mammals. Additionally, we identified a set of voltage-gated sodium channel beta (SCNB) genes as NCR3-distantly-related genes. Like NCR3, both NCR3H and SCNB proteins contain a single VJ-IgSF domain followed by a transmembrane region. These genes map to MHC paralogous regions, originally described in an invertebrate, along with genes encoding cell adhesion molecules involved in NK cell recognition networks. Other genes having no obvious relationship to immunity also map to these paralogous regions. These gene complexes were traced to several invertebrates, suggesting that the foundation of these cellular networks emerged before the genome-wide duplications in early gnathostome history. Here, we propose that this ancestral region was involved in cell-mediated immunity prior to the emergence of adaptive immunity and that NCR3 piggybacked onto this primordial complex, heralding the emergence of vertebrate NK cell/T cells.
Collapse
Affiliation(s)
- Morgan E Janes
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA
| | - Allison Kinlein
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA
| | - Louis Du Pasquier
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
10
|
Song C, Liu W, Jiang G, He Z, Wang R, Wang X, Chen R, Mao W, Zhu S. Identification and validation of a novel NK cells-related signature to predict prognosis and immune microenvironment in LUAD. Immunobiology 2023; 228:152751. [PMID: 37774597 DOI: 10.1016/j.imbio.2023.152751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND The prevalence and fatality rates of lung cancer are experiencing a rapid escalation. Natural Killer (NK) cells have been established to have a crucial role in both tumor initiation and progression. Nevertheless, uncertainties persist regarding their precise implications in the prognosis of LUAD. METHODS The data were obtained from reputable sources, such as the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) database, and our internally generated sequencing data. Utilizing the TCGA data as a background, we selected intersecting genes, validated by cluster analysis, to establish a Cox model and validated it using the GEO datasets. Furthermore, we conducted extensive analyses to investigate the significance of potential biomarkers in relation to immune cell infiltration, single-cell data, differential gene expression, and drug sensitivity. RESULTS 67 immune-related genes associated with NK cells (NK-IRGs) were identified in the TCGA datasets, whose research potential was demonstrated by cluster analysis. A prognostic signature was identified utilizing the univariate and multivariate Cox model, resulting in the identification of five genes, which was validated using GEO datasets. Additionally, the nomogram's calibration curve demonstrated exceptional concordance between the projected and actual survival rates. Subsequent investigations uncovered that this prognostic signature demonstrated its independence as a risk factor. Notably, in the low-risk group, NK cells exhibited elevated levels of immune checkpoint molecules, indicating heightened sensitivity to immune therapy. These findings highlight the potential of utilizing this signature as a valuable tool in the selection of patients who could benefit from targeted immune interventions.
Collapse
Affiliation(s)
- Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Guanyu Jiang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Ruixin Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Xiaokun Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Ruo Chen
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| | - Shaojin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.
| |
Collapse
|
11
|
Zielonka S, Krah S, Arras P, Lipinski B, Zimmermann J, Boje AS, Klausz K, Peipp M, Pekar L. Affinity Maturation of the Natural Ligand (B7-H6) for Natural Cytotoxicity Receptor NKp30 by Yeast Surface Display. Methods Mol Biol 2023; 2681:231-248. [PMID: 37405651 DOI: 10.1007/978-1-0716-3279-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
In recent years, the development of bispecific antibodies (bsAbs) has experienced tremendous progress for disease treatment, and consequently, a plethora of bsAbs is currently scrutinized in clinical trials. Besides antibody scaffolds, multifunctional molecules referred to as immunoligands have been developed. These molecules typically harbor a natural ligand entity for the engagement of a specific receptor, while binding to the additional antigen is facilitated by an antibody-derived paratope. Immunoligands can be exploited to conditionally activate immune cells, e.g., natural killer (NK) cells, in the presence of tumor cells, ultimately causing target-dependent tumor cell lysis. However, many ligands naturally show only moderate affinities toward their cognate receptor, potentially hampering killing capacities of immunoligands. Herein, we provide protocols for yeast surface display-based affinity maturation of B7-H6, the natural ligand of NK cell-activating receptor NKp30.
Collapse
Affiliation(s)
- Stefan Zielonka
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Paul Arras
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
| | - Britta Lipinski
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jasmin Zimmermann
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Ammelie Svea Boje
- Stem Cell Transplantation and Immunotherapy, Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Katja Klausz
- Stem Cell Transplantation and Immunotherapy, Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Peipp
- Stem Cell Transplantation and Immunotherapy, Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies (PEAT), Merck Healthcare KGaA, Darmstadt, Germany.
| |
Collapse
|
12
|
Zhang W, Auguste A, Liao X, Walterskirchen C, Bauer K, Lin YH, Yang L, Sayedian F, Fabits M, Bergmann M, Binder C, Corrales L, Vogt AB, Hudson LJ, Barnes MP, Bisht A, Giragossian C, Voynov V, Adam PJ, Hipp S. A Novel B7-H6-Targeted IgG-Like T Cell-Engaging Antibody for the Treatment of Gastrointestinal Tumors. Clin Cancer Res 2022; 28:5190-5201. [PMID: 36166004 PMCID: PMC9713360 DOI: 10.1158/1078-0432.ccr-22-2108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Advanced-stage gastrointestinal cancers represent a high unmet need requiring new effective therapies. We investigated the antitumor activity of a novel T cell-engaging antibody (B7-H6/CD3 ITE) targeting B7-H6, a tumor-associated antigen that is expressed in gastrointestinal tumors. EXPERIMENTAL DESIGN Membrane proteomics and IHC analysis identified B7-H6 as a tumor-associated antigen in gastrointestinal tumor tissues with no to very little expression in normal tissues. The antitumor activity and mode of action of B7-H6/CD3 ITE was evaluated in in vitro coculture assays, in humanized mouse tumor models, and in colorectal cancer precision cut tumor slice cultures. RESULTS B7-H6 expression was detected in 98% of colorectal cancer, 77% of gastric cancer, and 63% of pancreatic cancer tissue samples. B7-H6/CD3 ITE-mediated redirection of T cells toward B7-H6-positive tumor cells resulted in B7-H6-dependent lysis of tumor cells, activation and proliferation of T cells, and cytokine secretion in in vitro coculture assays, and infiltration of T cells into tumor tissues associated with tumor regression in in vivo colorectal cancer models. In primary patient-derived colorectal cancer precision-cut tumor slice cultures, treatment with B7-H6/CD3 ITE elicited cytokine secretion by endogenous tumor-infiltrating immune cells. Combination with anti-PD-1 further enhanced the activity of the B7-H6/CD3 ITE. CONCLUSION These data highlight the potential of the B7-H6/CD3 ITE to induce T cell-redirected lysis of tumor cells and recruitment of T cells into noninflamed tumor tissues, leading to antitumor activity in in vitro, in vivo, and human tumor slice cultures, which supports further evaluation in a clinical study.
Collapse
Affiliation(s)
- Wei Zhang
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | - Aurélie Auguste
- Boehringer Ingelheim Pharma, GmbH & Co KG, Translational Medicine and Clinical Pharmacology, Biberach an der Riß, Germany
| | - Xiaoyun Liao
- Boehringer Ingelheim Pharmaceuticals, Inc., Oncology Translational Science, Ridgefield, Connecticut
| | | | - Kathrin Bauer
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Yu-Hsi Lin
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | - Ling Yang
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut
| | | | - Markus Fabits
- Medical University of Vienna, Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Vienna, Austria
| | - Michael Bergmann
- Medical University of Vienna, Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Vienna, Austria
| | - Carina Binder
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Leticia Corrales
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Anne B. Vogt
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | | | | | - Arnima Bisht
- Oxford BioTherapeutics, Inc., San Jose, California
| | - Craig Giragossian
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Vladimir Voynov
- Boehringer Ingelheim Pharmaceuticals, Inc., Biotherapeutics Discovery, Ridgefield, Connecticut
| | - Paul J. Adam
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Susanne Hipp
- Boehringer Ingelheim Pharmaceuticals, Inc., Cancer Immunology & Immune Modulation, Ridgefield, Connecticut.,Boehringer Ingelheim Pharmaceuticals, Inc., Translational Medicine and Clinical Pharmacology, Ridgefield, Connecticut.,Corresponding Author: Susanne Hipp, Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, P.O. Box 368, Ridgefield, CT 06877-0368. Phone: 203-798-4567; E-mail:
| |
Collapse
|
13
|
Klausz K, Pekar L, Boje AS, Gehlert CL, Krohn S, Gupta T, Xiao Y, Krah S, Zaynagetdinov R, Lipinski B, Toleikis L, Poetzsch S, Rabinovich B, Peipp M, Zielonka S. Multifunctional NK Cell–Engaging Antibodies Targeting EGFR and NKp30 Elicit Efficient Tumor Cell Killing and Proinflammatory Cytokine Release. THE JOURNAL OF IMMUNOLOGY 2022; 209:1724-1735. [DOI: 10.4049/jimmunol.2100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/23/2022] [Indexed: 01/04/2023]
Abstract
Abstract
In this work, we have generated novel Fc-comprising NK cell engagers (NKCEs) that bridge human NKp30 on NK cells to human epidermal growth factor receptor (EGFR) on tumor cells. Camelid-derived VHH single-domain Abs specific for human NKp30 and a humanized Fab derived from the EGFR-specific therapeutic Ab cetuximab were used as binding arms. By combining camelid immunization with yeast surface display, we were able to isolate a diverse panel of NKp30-specific VHHs against different epitopes on NKp30. Intriguingly, NKCEs built with VHHs that compete for binding to NKp30 with B7-H6, the natural ligand of NKp30, were significantly more potent in eliciting tumor cell lysis of EGFR-positive tumor cells than NKCEs harboring VHHs that target different epitopes on NKp30 from B7-H6. We demonstrate that the NKCEs can be further improved with respect to killing capabilities by concomitant engagement of FcγRIIIa and that soluble B7-H6 does not impede cytolytic capacities of all scrutinized NKCEs at significantly higher B7-H6 concentrations than observed in cancer patients. Moreover, we show that physiological processes requiring interactions between membrane-bound B7-H6 and NKp30 on NK cells are unaffected by noncompeting NKCEs still eliciting tumor cell killing at low picomolar concentrations. Ultimately, the NKCEs generated in this study were significantly more potent in eliciting NK cell–mediated tumor cell lysis than cetuximab and elicited a robust release of proinflammatory cytokines, both features which might be beneficial for antitumor therapy.
Collapse
Affiliation(s)
- Katja Klausz
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Lukas Pekar
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Ammelie Svea Boje
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Carina Lynn Gehlert
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Steffen Krohn
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Tushar Gupta
- ‡Protein Engineering and Antibody Technologies, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Yanping Xiao
- §Department of Oncology and Immuno-oncology, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Simon Krah
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Rinat Zaynagetdinov
- §Department of Oncology and Immuno-oncology, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Britta Lipinski
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
- ¶Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany; and
| | - Lars Toleikis
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Sven Poetzsch
- ‖Strategic Innovation, Merck Healthcare KGaA, Darmstadt, Germany
| | - Brian Rabinovich
- §Department of Oncology and Immuno-oncology, EMD Serono Research & Development Institute, Inc., Billerica, MA
| | - Matthias Peipp
- *Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian Albrechts University Kiel, Kiel, Germany
| | - Stefan Zielonka
- †Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
- ¶Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany; and
| |
Collapse
|
14
|
Niang DGM, Gaba FM, Diouf A, Hendricks J, Diallo RN, Niang MDS, Mbengue B, Dieye A. Galectin-3 as a biomarker in breast neoplasms: Mechanisms and applications in patient care. J Leukoc Biol 2022; 112:1041-1052. [PMID: 36125083 DOI: 10.1002/jlb.5mr0822-673r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Galectin-3 is a member of the lectin family encoded by the LGALS3 gene on chromosome 14. It is secreted by a wide range of immune cells and mammary tumor cells. Through its activity on the tumor microenvironment, in particular on tumor-infiltrating leukocytes, galectin-3 improves the proliferation, survival, and colonizing ability of mammary neoplastic cells. Consequently, galectin-3 expression in the tumor microenvironment could worsen therapeutic outcomes of breast neoplasms and become a biomarker and a therapeutic target in combined immunotherapy in breast neoplasms. There is a limited amount of information that is available on galectin-3 in breast cancer in Africa. In this review, we analyze how galectin-3 influences the tumor microenvironment and its potential as a biomarker and therapeutic target in breast neoplasms. We aim to emphasize the significance of investigating galectin-3 in breast neoplasms in Africa based on the results of studies conducted elsewhere.
Collapse
Affiliation(s)
- Doudou Georges Massar Niang
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Folly Mawulolo Gaba
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Adame Diouf
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Jacobus Hendricks
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga, Limpopo province, South Africa
| | - Rokhaya Ndiaye Diallo
- Division of Human Genetics, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Maguette Deme Sylla Niang
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Babacar Mbengue
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Alioune Dieye
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| |
Collapse
|
15
|
Park A, Yang Y, Lee Y, Jung H, Kim TD, Noh JY, Lee S, Yoon SR. Aurantii Fructus Immaturus enhances natural killer cytolytic activity and anticancer efficacy in vitro and in vivo. Front Med (Lausanne) 2022; 9:973681. [PMID: 36059847 PMCID: PMC9433751 DOI: 10.3389/fmed.2022.973681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Aurantii Fructus Immaturus (AFI), extensively used in traditional herbal medicine, is known to have diverse physiological effects against various diseases, including obesity, diabetes, and cardiovascular disease. However, the effects of AFI on the immune system, especially natural killer (NK) cells, remain largely unknown. We aimed to investigate the effect of AFI on NK cell activity in vitro and in vivo and to elucidate the underlying mechanisms. Further, we verified the anticancer efficacy of AFI in a mouse lung metastasis model, underscoring the therapeutic potential of AFI in cancer therapy. Our results revealed that AFI significantly enhanced the cytolytic activity of NK cells in a dose-dependent manner, accompanied by an increase in the expression of NK cell-activating receptors, especially NKp30 and NKp46. AFI treatment also increased the expression of cytolytic granules, including granzyme B and perforin. Furthermore, the expression of CD107a, a degranulation marker, was increased upon treatment with AFI. A signaling study using western blot analysis demonstrated that the phosphorylation of extracellular signal-regulated kinase (ERK) was involved in increasing the NK cell activity following AFI treatment. In the in vivo study performed in mice, oral administration of AFI markedly enhanced the cytotoxic activity of spleen mononuclear cells against YAC-1 cells, which was accompanied by NKp46 upregulation. In addition, we confirmed that cancer metastasis was inhibited in a mouse cancer metastasis model, established using the mouse melanoma B16F10 cell line, by the administration of AFI in vivo. Collectively, these results indicate that AFI enhances NK cell-mediated cytotoxicity in vitro and in vivo via activation of the ERK signaling pathway and suggest that AFI could be a potential supplement for cancer immunotherapy.
Collapse
Affiliation(s)
- Arum Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yunjeong Yang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Pharmacology, College of Pharmacy, Chungnam University, Daejeon, South Korea
| | - Yunhee Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Pharmacology, College of Pharmacy, Chungnam University, Daejeon, South Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seungjin Lee
- Department of Pharmacology, College of Pharmacy, Chungnam University, Daejeon, South Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- *Correspondence: Suk Ran Yoon,
| |
Collapse
|
16
|
Dong R, Zhang Y, Xiao H, Zeng X. Engineering γδ T Cells: Recognizing and Activating on Their Own Way. Front Immunol 2022; 13:889051. [PMID: 35603176 PMCID: PMC9120431 DOI: 10.3389/fimmu.2022.889051] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Adoptive cell therapy (ACT) with engineered T cells has emerged as a promising strategy for the treatment of malignant tumors. Among them, there is great interest in engineered γδ T cells for ACT. With both adaptive and innate immune characteristics, γδ T cells can be activated by γδ TCRs to recognize antigens in a MHC-independent manner, or by NK receptors to recognize stress-induced molecules. The dual recognition system enables γδ T cells with unique activation and cytotoxicity profiles, which should be considered for the design of engineered γδ T cells. However, the current designs of engineered γδ T cells mostly follow the strategies that used in αβ T cells, but not making good use of the specific characteristics of γδ T cells. Therefore, it is no surprising that current engineered γδ T cells in preclinical or clinical trials have limited efficacy. In this review, we summarized the patterns of antigen recognition of γδ T cells and the features of signaling pathways for the functions of γδ T cells. This review will additionally discuss current progress in engineered γδ T cells and provide insights in the design of engineered γδ T cells based on their specific characteristics.
Collapse
Affiliation(s)
- Ruoyu Dong
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Vaněk O, Kalousková B, Abreu C, Nejadebrahim S, Skořepa O. Natural killer cell-based strategies for immunotherapy of cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:91-133. [PMID: 35305726 DOI: 10.1016/bs.apcsb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells are a family of lymphocytes with a natural ability to kill infected, harmed, or malignantly transformed cells. As these cells are part of the innate immunity, the cytotoxic mechanisms are activated upon recognizing specific patterns without prior antigen sensitization. This recognition is crucial for NK cell function in the maintenance of homeostasis and immunosurveillance. NK cells not only act directly toward malignant cells but also participate in the complex immune response by producing cytokines or cross-talk with other immune cells. Cancer may be seen as a break of all immune defenses when malignant cells escape the immunity and invade surrounding tissues creating a microenvironment supporting tumor progression. This process may be reverted by intervening immune response with immunotherapy, which may restore immune recognition. NK cells are important effector cells for immunotherapy. They may be used for adoptive cell transfer, genetically modified with chimeric antigen receptors, or triggered with appropriate antibodies and other antibody-fragment-based recombinant therapeutic proteins tailored specifically for NK cell engagement. NK cell receptors, responsible for target recognition and activation of cytotoxic response, could also be targeted in immunotherapy, for example, by various bi-, tri-, or multi-specific fusion proteins designed to bridge the gap between tumor markers present on target cells and activation receptors expressed on NK cells. However, this kind of immunoactive therapeutics may be developed only with a deep functional and structural knowledge of NK cell receptor: ligand interactions. This review describes the recent developments in the fascinating protein-engineering field of NK cell immunotherapeutics.
Collapse
Affiliation(s)
- Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shiva Nejadebrahim
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Bulter SE, Brog RA, Chang CH, Sentman CL, Huang YH, Ackerman ME. Engineering a natural ligand-based CAR: directed evolution of the stress-receptor NKp30. Cancer Immunol Immunother 2022; 71:165-176. [PMID: 34046711 PMCID: PMC8626535 DOI: 10.1007/s00262-021-02971-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023]
Abstract
B7H6, a stress-induced ligand which binds to the NK cell receptor NKp30, has recently emerged as a promising candidate for immunotherapy due to its tumor-specific expression on a broad array of human tumors. NKp30 can function as a chimeric antigen receptor (CAR) extracellular domain but exhibits weak binding with a fast on and off rate to B7H6 compared to the TZ47 anti-B7H6 single-chain variable fragment (scFv). Here, directed evolution using yeast display was employed to isolate novel NKp30 variants that bind to B7H6 with higher affinity compared to the native receptor but retain its fast association and dissociation profile. Two variants, CC3 and CC5, were selected for further characterization and were expressed as soluble Fc-fusion proteins and CARs containing CD28 and CD3ς intracellular domains. We observed that Fc-fusion protein forms of NKp30 and its variants were better able to bind tumor cells expressing low levels of B7H6 than TZ47, and that the novel variants generally exhibited improved in vitro tumor cell killing relative to NKp30. Interestingly, CAR T cells expressing the engineered variants produced unique cytokine signatures in response to multiple tumor types expressing B7H6 compared to both NKp30 and TZ47. These findings suggest that natural CAR receptors can be fine-tuned to produce more desirable signaling outputs while maintaining evolutionary advantages in ligand recognition relative to scFvs.
Collapse
Affiliation(s)
- Savannah E. Bulter
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Rachel A. Brog
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Cheryl H. Chang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Charles L. Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yina H. Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,Thayer School of Engineering, Dartmouth College, Hanover, NH, USA,Corresponding author: Margaret E. Ackerman, Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH 03755 USA, (ph) 603 646 9922,
| |
Collapse
|
19
|
Kalousková B, Skořepa O, Cmunt D, Abreu C, Krejčová K, Bláha J, Sieglová I, Král V, Fábry M, Pola R, Pechar M, Vaněk O. Tumor Marker B7-H6 Bound to the Coiled Coil Peptide-Polymer Conjugate Enables Targeted Therapy by Activating Human Natural Killer Cells. Biomedicines 2021; 9:biomedicines9111597. [PMID: 34829829 PMCID: PMC8615638 DOI: 10.3390/biomedicines9111597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/02/2023] Open
Abstract
Targeted cancer immunotherapy is a promising tool for restoring immune surveillance and eradicating cancer cells. Hydrophilic polymers modified with coiled coil peptide tags can be used as universal carriers designed for cell-specific delivery of such biologically active proteins. Here, we describe the preparation of pHPMA-based copolymer conjugated with immunologically active protein B7-H6 via complementary coiled coil VAALEKE (peptide E) and VAALKEK (peptide K) sequences. Receptor B7-H6 was described as a binding partner of NKp30, and its expression has been proven for various tumor cell lines. The binding of B7-H6 to NKp30 activates NK cells and results in Fas ligand or granzyme-mediated apoptosis of target tumor cells. In this work, we optimized the expression of coiled coil tagged B7-H6, its ability to bind activating receptor NKp30 has been confirmed by isothermal titration calorimetry, and the binding stoichiometry of prepared chimeric biopolymer has been characterized by analytical ultracentrifugation. Furthermore, this coiled coil B7-H6-loaded polymer conjugate activates NK cells in vitro and, in combination with coiled coil scFv, enables their targeting towards a model tumor cell line. Prepared chimeric biopolymer represents a promising precursor for targeted cancer immunotherapy by activating the cytotoxic activity of natural killer cells.
Collapse
Affiliation(s)
- Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Denis Cmunt
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Kateřina Krejčová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Jan Bláha
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
| | - Irena Sieglová
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (I.S.); (V.K.); (M.F.)
| | - Vlastimil Král
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (I.S.); (V.K.); (M.F.)
| | - Milan Fábry
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (I.S.); (V.K.); (M.F.)
| | - Robert Pola
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic; (R.P.); (M.P.)
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 16206 Prague, Czech Republic; (R.P.); (M.P.)
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague, Czech Republic; (B.K.); (O.S.); (D.C.); (C.A.); (K.K.); (J.B.)
- Correspondence:
| |
Collapse
|
20
|
Bolandi N, Derakhshani A, Hemmat N, Baghbanzadeh A, Asadzadeh Z, Afrashteh Nour M, Brunetti O, Bernardini R, Silvestris N, Baradaran B. The Positive and Negative Immunoregulatory Role of B7 Family: Promising Novel Targets in Gastric Cancer Treatment. Int J Mol Sci 2021; 22:ijms221910719. [PMID: 34639059 PMCID: PMC8509619 DOI: 10.3390/ijms221910719] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC), with a heterogeneous nature, is the third leading cause of death worldwide. Over the past few decades, stable reductions in the incidence of GC have been observed. However, due to the poor response to common treatments and late diagnosis, this cancer is still considered one of the lethal cancers. Emerging methods such as immunotherapy with immune checkpoint inhibitors (ICIs) have transformed the landscape of treatment for GC patients. There are presently eleven known members of the B7 family as immune checkpoint molecules: B7-1 (CD80), B7-2 (CD86), B7-H1 (PD-L1, CD274), B7-DC (PDCD1LG2, PD-L2, CD273), B7-H2 (B7RP1, ICOS-L, CD275), B7-H3 (CD276), B7-H4 (B7x, B7S1, Vtcn1), B7-H5 (VISTA, Gi24, DD1α, Dies1 SISP1), B7-H6 (NCR3LG1), B7-H7 (HHLA2), and Ig-like domain-containing receptor 2 (ILDR2). Interaction of the B7 family of immune-regulatory ligands with the corresponding receptors resulted in the induction and inhibition of T cell responses by sending co-stimulatory and co-inhibitory signals, respectively. Manipulation of the signals provided by the B7 family has significant potential in the management of GC.
Collapse
Affiliation(s)
- Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95100 Catania, Italy;
| | - Nicola Silvestris
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran; (N.B.); (A.D.); (N.H.); (A.B.); (Z.A.); (M.A.N.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-3371440 (B.B.); Fax: +98-413-3371311 (B.B.)
| |
Collapse
|
21
|
Adoptive NK Cell Therapy: A Promising Treatment Prospect for Metastatic Melanoma. Cancers (Basel) 2021; 13:cancers13184722. [PMID: 34572949 PMCID: PMC8471577 DOI: 10.3390/cancers13184722] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The incidence of metastatic melanoma has been increasing over the past years with current therapies showing limited efficacy to cure the disease. Therefore, other options are being investigated, such as adoptive cell therapy (ACT) where activated immune cells are infused into a patient to attack melanoma. Natural killer (NK) cells are part of the innate immune system and extremely suitable for this kind of therapy since they show minimal toxicities in the clinical setting. In this review, we focus on current strategies for NK cell therapy and the development of new approaches that hold great promise for the treatment of advanced melanoma. Abstract Adoptive cell therapy (ACT) represents a promising alternative approach for patients with treatment-resistant metastatic melanoma. Lately, tumor infiltrating lymphocyte (TIL) therapy and chimeric antigen receptor (CAR)-T cell therapy have shown improved clinical outcome, compared to conventional chemotherapy or immunotherapy. Nevertheless, they are limited by immune escape of the tumor, cytokine release syndrome, and manufacturing challenges of autologous therapies. Conversely, the clinical use of Natural Killer (NK) cells has demonstrated a favorable clinical safety profile with minimal toxicities, providing an encouraging treatment alternative. Unlike T cells, NK cells are activated, amongst other mechanisms, by the downregulation of HLA class I molecules, thereby overcoming the hurdle of tumor immune escape. However, impairment of NK cell function has been observed in melanoma patients, resulting in deteriorated natural defense. To overcome this limitation, “activated” autologous or allogeneic NK cells have been infused into melanoma patients in early clinical trials, showing encouraging clinical benefit. Furthermore, as several NK cell-based therapeutics are being developed for different cancers, an emerging variety of approaches to increase migration and infiltration of adoptively transferred NK cells towards solid tumors is under preclinical investigation. These developments point to adoptive NK cell therapy as a highly promising treatment for metastatic melanoma in the future.
Collapse
|
22
|
Dowlati A, Chan T. Pursuing Immunotherapeutic Targets in SCLC. J Thorac Oncol 2021; 16:1056-1057. [PMID: 34154789 DOI: 10.1016/j.jtho.2021.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Afshin Dowlati
- University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| | - Timothy Chan
- Center for Immunotherapy & Precision Immuno-Oncology, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
23
|
Guo R, Liu G, Li C, Liu X, Xu Y, Yang W, Wang F. B7 homolog 6 promotes the progression of cervical cancer. Exp Ther Med 2021; 22:774. [PMID: 34055073 PMCID: PMC8145428 DOI: 10.3892/etm.2021.10206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
B7 homolog 6 (B7-H6) was recently discovered to act as a co-stimulatory molecule. In particular, the expression of B7-H6 has been found to play an important biological role in several types of tumors. The aim of the present study was to determine the role of B7-H6 in cervical cancer. Immunohistochemistry was used to analyze the expression levels of B7-H6 in cervical precancerous and cancerous tissues. Furthermore, the expression of B7-H6 was knocked down in HeLa cells using short hairpin RNA and the effects of B7-H6 on HeLa cell proliferation, migration and invasion were determined using Cell Counting Kit-8, colony formation, wound healing and Transwell invasion assays, respectively. In addition, flow cytometry was used to analyze the levels of cell apoptosis and the cell cycle distribution. The results of the immunohistochemical staining revealed that the expression levels of B7-H6 were upregulated in cervical lesions. Furthermore, the expression levels of B7-H6 were positively associated with the clinical stage of the cervical lesions. B7-H6 knockdown suppressed the invasive, migratory and proliferative abilities of HeLa cells, and promoted G1 cell cycle arrest and apoptosis. In conclusion, the findings of the present study suggested that B7-H6 may serve as a novel oncogene and may hold promise as a potential therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Ruimeng Guo
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Guoyan Liu
- Department of Gynecology, The General Hospital of Tianjin Medical University, Tianjin 300053, P.R. China
| | - Changying Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xuejing Liu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yanying Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Weina Yang
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Fang Wang
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
24
|
Descalzi-Montoya D, Montel RA, Smith K, Dziopa E, Darwich A, Yang Z, Bitsaktsis C, Korngold R, Sabatino D. Synthetic Antibody Mimics Based on Cancer-Targeting Immunostimulatory Peptides. Chembiochem 2021; 22:1589-1596. [PMID: 32964656 PMCID: PMC8191480 DOI: 10.1002/cbic.202000407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/16/2020] [Indexed: 11/08/2022]
Abstract
De novo cancer-targeting immunostimulatory peptides have been designed and developed as synthetic antibody mimics. A series of bifunctional peptides incorporating NKp30-binding and NK-cell-activating domains were synthesized as linear dimers and then extended into branching trimeric peptides by the incorporation of GRP78-targeting and tumor-cell-binding sequences. A selected trimeric peptide from this small set of peptides displayed binding capabilities on GRP78+ HepG2 and A549 target cells. Cell binding diminished in the presence of an anti-GRP78 peptide blocker, thus suggesting GRP78-binding dependence. Similarly, the selected trimeric peptide was also found to exhibit NK cell binding in an NKp30-dependent manner, which translated into NK cell activation as indicated by cytokine secretion. In co-culture, fluorescence microscopy revealed that the target GFP-expressing A549 cells were visibly associated with the effector NK cells when pre-activated with lead trimeric peptide. Accordingly, A549 cells were found to be compromised, as evidenced by the loss of GFP signal and notable detection of early-/late-stage apoptosis. Investigation of the immunological markers related to toxicity revealed detectable secretion of pro-inflammatory cytokines and chemokines, including IFN-γ, TNF-α, and IL-8. Furthermore, administration of peptide-activated NK cells into A549-tumor-bearing mice resulted in a consistent decrease in tumor growth when compared to the untreated control group. Taken together, the identification of a lead trimeric peptide capable of targeting and activating NK cells' immunotoxicity directly towards GRP78+ /B7H6- tumors provides a novel proof-of-concept for the development of cancer-targeting immunostimulatory peptide ligands that mimic antibody-targeting and -activating functions related to cancer immunotherapy applications.
Collapse
MESH Headings
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Animals
- Antibodies/chemistry
- Antibodies/immunology
- Cell Line, Tumor
- Cytokines/metabolism
- Endoplasmic Reticulum Chaperone BiP/immunology
- Female
- Humans
- Immunotherapy/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation/drug effects
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasms/drug therapy
- Neoplasms/pathology
- Peptides/chemical synthesis
- Peptides/chemistry
- Peptides/pharmacology
- Peptides/therapeutic use
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Dante Descalzi-Montoya
- Center for Discovery and Innovation, Hackensack-Meridian Health, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Rachel A Montel
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Keith Smith
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Eugenia Dziopa
- Center for Discovery and Innovation, Hackensack-Meridian Health, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Andrieh Darwich
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Zheng Yang
- Center for Discovery and Innovation, Hackensack-Meridian Health, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Constantine Bitsaktsis
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | - Robert Korngold
- Center for Discovery and Innovation, Hackensack-Meridian Health, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - David Sabatino
- Department of Biological Sciences and Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA
| |
Collapse
|
25
|
Baragaño Raneros A, Rodriguez RM, Bernardo Flórez A, Palomo P, Colado E, Minguela A, Suárez Álvarez B, López-Larrea C. Bromodomain protein BRD4 is an epigenetic activator of B7-H6 expression in acute myeloid leukemia. Oncoimmunology 2021; 10:1897294. [PMID: 33796404 PMCID: PMC8007156 DOI: 10.1080/2162402x.2021.1897294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
B7-H6, a ligand for the NK activating receptor NKp30, has been identified as a biomarker of poor prognosis in several solid cancers. However, little is known about the role of B7-H6 and the mechanisms that control its expression in acute myeloid leukemia (AML). Epigenome modulation, including epigenomic reader dysregulation, is one of the hallmarks of AML. Bromodomain-containing protein 4 (BRD4), the best-known member of the BET family of epigenetic readers, is overexpressed in AML cells and regulates the transcription of genes involved in the pathogenesis of AML, as MYC oncogene. Here, we analyze the role of BRD4 in regulating B7-H6 in AML cells. Results demonstrated that the specific inhibition of BRD4 drastically reduces the expression of B7-H6 in AML cells. Histone acetylation mediated by CBP30/P300 facilitates the binding of BRD4 to the B7-H6 promoter, which recruits the P-TEFb elongation factor that phosphorylates RNA polymerase II, thereby activating B7-H6 transcription. BRD4 also co-bounded with JMJD6 at the distal enhancer of the B7-H6 gene. Metabolic modulation with metformin modifies the acetylation pattern in the B7-H6 promoter, impairing BRD4 binding, thereby inhibiting B7-H6 expression. B7-H6 knockdown induces the apoptosis in HEL-R cell line. Moreover, a high level of B7-H6 expression in AML patients is related to increased BRD4 levels, myelodysplastic-derived AML, and del5q, the two latter being associated with poor prognosis. Our data show that BRD4 is a positive regulator of the pro-tumorigenic molecule B7-H6 and that the blockage of the B7-H6 is a potential therapeutic target for the treatment of AML.
Collapse
Affiliation(s)
- Aroa Baragaño Raneros
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Ramon M Rodriguez
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Aida Bernardo Flórez
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Pilar Palomo
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
- Department of Hematology, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Enrique Colado
- Department of Hematology, Hospital Universitario Central De Asturias, Oviedo, Spain
- Department of Laboratory Medicine, Hospital Universitario Central De Asturias, Oviedo, Spain
| | - Alfredo Minguela
- Immunology Service, Instituto Murciano De Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen De La Arrixaca, Murcia, Spain
| | - Beatriz Suárez Álvarez
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
| | - Carlos López-Larrea
- Translation Immunology Laboratory, Instituto De Investigación Biosanitaria Del Principado De Asturias-ISPA, Oviedo, Spain
- Department of Immunology, Hospital Universitario Central De Asturias, Oviedo, Spain
| |
Collapse
|
26
|
Kinlein A, Janes ME, Kincer J, Almeida T, Matz H, Sui J, Criscitiello MF, Flajnik MF, Ohta Y. Analysis of shark NCR3 family genes reveals primordial features of vertebrate NKp30. Immunogenetics 2021; 73:333-348. [PMID: 33742259 DOI: 10.1007/s00251-021-01209-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Natural killer (NK) cells play major roles in innate immunity against viruses and cancer. Natural killer receptors (NKR) expressed by NK cells recognize foreign- or self-ligands on infected and transformed cells as well as healthy cells. NKR genes are the most rapidly evolving loci in vertebrates, and it is generally difficult to detect orthologues in different taxa. The unique exception is NKp30, an activating NKR in mammals that binds to the self-ligand B7H6. The NKp30-encoding gene, NCR3, has been found in most vertebrates including sharks, the oldest vertebrates with human-type adaptive immunity. NCR3 has a special, non-rearranging VJ-type immunoglobulin superfamily (IgSF) domain that predates the emergence of the rearranging antigen receptors. Herein we show that NCR3 loci are linked to the shark major histocompatibility complex (MHC), proving NCR3's primordial association with the MHC. We identified eight subtypes of differentially expressed highly divergent shark NCR3 family genes. Using in situ hybridization, we detected one subtype, NS344823, to be expressed by predominantly single cells outside of splenic B cell zones. The expression by non-B cells was also confirmed by PCR in peripheral blood lymphocytes. Surprisingly, high expression of NS344823 was detected in the thymic cortex, demonstrating NS344823 expression in developing T cells. Finally, we show for the first time that shark T cells are found as single cells or in small clusters in the splenic red pulp, also unassociated with the large B cell follicles we previously identified.
Collapse
Affiliation(s)
- Allison Kinlein
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Morgan E Janes
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Jacob Kincer
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Tereza Almeida
- Centro de Investigacão Em Biodiversidade E Recursos Genéticos, CIBIO-InBIO, Campus Agrário de Vairão, Universidade Do Porto, Vairão, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade Do Porto, Porto, Portugal
| | - Hanover Matz
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Jianxin Sui
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Michael F Criscitiello
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, 21201, USA.
| |
Collapse
|
27
|
Qiu H, Gao S, Sun Z, Wang J. Dual role of B7-H6 as a novel prognostic marker in hepatocellular carcinoma. APMIS 2020; 129:105-117. [PMID: 33220098 DOI: 10.1111/apm.13099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022]
Abstract
B7 homolog 6 (B7-H6), a new member of the B7 family, is identified as an activating ligand for cytotoxicity triggering receptor 3 (NKp30) expressing on natural killer cells. The purpose of this study was to investigate the clinical significance of B7-H6 in hepatocellular carcinoma (HCC). We evaluated B7-H6 expression by immunohistochemistry in a cohort of 90 HCC tumors with clinical follow-up, the potential relationship between the B7-H6 expression and the clinicopathological characteristics of HCC patients was also analyzed. Stable B7-H6 knockdown in hepatoma cell line was established to explore the function and mechanism of B7-H6 in HCC. This study showed that high expression of B7-H6 was significantly associated with smaller tumor size, single tumor number in HCC, but no significant association was found between B7-H6 overexpression and other clinicopathological parameters. Moreover, Kaplan-Meier survival analysis showed that high expression of B7-H6 was significantly correlated with better survival of HCC patients. Knockdown of B7-H6 inhibited tumor cell proliferation and induced cell apoptosis. However, it also impaired the sensitivity of tumor cells to NK-mediated lysis together with significantly decreased degranulation and IFN-γ release of NK cells. These results indicated that B7-H6 has a dual role in HCC. It could be an independent indicator for better survival of HCC and maybe a potential target for future cancer treatment.
Collapse
Affiliation(s)
- Hao Qiu
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| | - Shangshang Gao
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| | - Ziling Sun
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| | - Jiamin Wang
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, China
| |
Collapse
|
28
|
Pekar L, Klausz K, Busch M, Valldorf B, Kolmar H, Wesch D, Oberg HH, Krohn S, Boje AS, Gehlert CL, Toleikis L, Krah S, Gupta T, Rabinovich B, Zielonka S, Peipp M. Affinity Maturation of B7-H6 Translates into Enhanced NK Cell-Mediated Tumor Cell Lysis and Improved Proinflammatory Cytokine Release of Bispecific Immunoligands via NKp30 Engagement. THE JOURNAL OF IMMUNOLOGY 2020; 206:225-236. [PMID: 33268483 DOI: 10.4049/jimmunol.2001004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Activating NK cell receptors represent promising target structures to elicit potent antitumor immune responses. In this study, novel immunoligands were generated that bridge the activating NK cell receptor NKp30 on NK cells with epidermal growth factor receptor (EGFR) on tumor cells in a bispecific IgG-like format based on affinity-optimized versions of B7-H6 and the Fab arm derived from cetuximab. To enhance NKp30 binding, the solitary N-terminal IgV domain of B7-H6 (ΔB7-H6) was affinity matured by an evolutionary library approach combined with yeast surface display. Biochemical and functional characterization of 36 of these novel ΔB7-H6-derived NK cell engagers revealed an up to 45-fold-enhanced affinity for NKp30 and significantly improved NK cell-mediated, EGFR-dependent killing of tumor cells compared with the NK cell engager based on the wild-type ΔB7-H6 domain. In this regard, potencies (EC50 killing) of the best immunoligands were substantially improved by up to 87-fold. Moreover, release of IFN-γ and TNF-α was significantly increased. Importantly, equipment of the ΔB7-H6-based NK cell engagers with a human IgG1 Fc part competent in Fc receptor binding resulted in an almost 10-fold superior killing of EGFR-overexpressing tumor cells compared with molecules either triggering FcγRIIIa or NKp30. Additionally, INF-γ and TNF-α release was increased compared with molecules solely triggering FcγRIIIa, including the clinically approved Ab cetuximab. Thus, incorporating affinity-matured ligands for NK cell-activating receptors might represent an effective strategy for the generation of potent novel therapeutic agents with unique effector functions in cancer immunotherapy.
Collapse
Affiliation(s)
- Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany.,Discovery Pharmacology, Merck KGaA, D-64293 Darmstadt, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Michael Busch
- Discovery Pharmacology, Merck KGaA, D-64293 Darmstadt, Germany
| | - Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, D-64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany; and
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany; and
| | - Steffen Krohn
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Ammelie Svea Boje
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Carina Lynn Gehlert
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany
| | - Tushar Gupta
- Department of Immuno-oncology, EMD Serono Research & Development Institute Inc., Billerica, MA 01821
| | - Brian Rabinovich
- Department of Immuno-oncology, EMD Serono Research & Development Institute Inc., Billerica, MA 01821
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, D-64293 Darmstadt, Germany;
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany;
| |
Collapse
|
29
|
Banu N, Riera-Leal A, Haramati J, Ortiz-Lazareno PC, Panikar SS, Bastidas-Ramirez BE, Gutierrez-Silerio GY, Solorzano-Ibarra F, Tellez-Bañuelos MC, Gutierrez-Franco J, Bueno-Topete MR, Pereira-Suarez AL, Del Toro-Arreola S. B7-H6, an immunoligand for the natural killer cell activating receptor NKp30, reveals inhibitory effects on cell proliferation and migration, but not apoptosis, in cervical cancer derived-cell lines. BMC Cancer 2020; 20:1083. [PMID: 33172426 PMCID: PMC7654602 DOI: 10.1186/s12885-020-07608-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/31/2020] [Indexed: 12/20/2022] Open
Abstract
Background Although great progress has been made in treatment regimens, cervical cancer remains as one of the most common cancer in women worldwide. Studies focusing on molecules that regulate carcinogenesis may provide potential therapeutic strategies for cervical cancer. B7-H6, an activating immunoligand expressed by several tumor cells, is known to activate NK cell-mediated cytotoxicity once engaged with its natural receptor NKp30. However, the opposite, that is, the effects in the tumor cell triggered by B7-H6 after interacting with NKp30 has not yet been well explored. Methods In this study, we evaluated the surface expression of B7-H6 by flow cytometry. Later, we stimulated B7-H6 positive cervical cancer derived-cell lines (HeLa and SiHa) with recombinant soluble NKp30 (sNKp30) protein and evaluated biological effects using the impedance RTCA system for cell proliferation, the scratch method for cell migration, and flow cytometry for apoptosis. Cellular localization of B7-H6 was determined using confocal microscopy. Results Notably, we observed that the addition of sNKp30 to the cervical cancer cell lines decreased tumor cell proliferation and migration rate, but had no effect on apoptosis. We also found that B7-H6 is selectively maintained in tumor cell lines, and that efforts to sort and purify B7-H6 negative or positive cells were futile, as negative cells, when cultured, regained the expression of B7-H6 and B7-H6 positive cells, when sorted and cultivated, lost a percentage of B7-H6 expression. Conclusions Our results suggest that B7-H6 has an important, as of yet undescribed, role in the biology of the cervical tumor cells themselves, suggesting that this protein might be a promising target for anti-tumor therapy in the future.
Collapse
Affiliation(s)
- Nehla Banu
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico.,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Annie Riera-Leal
- Institute for Regenerative Cures, Department of Dermatology, University of California-Davis, Davis, USA
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Sandeep Surendra Panikar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Blanca Estela Bastidas-Ramirez
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico
| | - Gloria Yareli Gutierrez-Silerio
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico.,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Fabiola Solorzano-Ibarra
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico
| | - Martha Cecilia Tellez-Bañuelos
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jorge Gutierrez-Franco
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico
| | - Ana Laura Pereira-Suarez
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, Mexico. .,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Mexico.
| |
Collapse
|
30
|
Anti-fouling SERS-based immunosensor for point-of-care detection of the B7–H6 tumor biomarker in cervical cancer patient serum. Anal Chim Acta 2020; 1138:110-122. [DOI: 10.1016/j.aca.2020.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
|
31
|
Pinheiro PF, Justino GC, Marques MM. NKp30 - A prospective target for new cancer immunotherapy strategies. Br J Pharmacol 2020; 177:4563-4580. [PMID: 32737988 PMCID: PMC7520444 DOI: 10.1111/bph.15222] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are an important arm of the innate immune system. They constitutively express the NKp30 receptor. NKp30-mediated responses are triggered by the binding of specific ligands e.g. tumour cell-derived B7-H6 and involve the secretion of cytotoxic mediators including TNF-α, IFN-γ, perforins and granzymes. The latter two constitute a target cell-directed response that is critical in the process of immunosurveillance. The structure of NKp30 is presented, focusing on the ligand-binding site, on the ligand-induced structural changes and on the experimental data available correlating structure and binding affinity. The translation of NKp30 structural changes to disease progression is also reviewed. NKp30 role in immunotherapy has been explored in chimeric antigen receptor T-cell (CAR-T) therapy. However, antibodies or small ligands targeting NKp30 have not yet been developed. The data reviewed herein unveil the key structural aspects that must be considered for drug design in order to develop novel immunotherapy approaches.
Collapse
Affiliation(s)
- Pedro F. Pinheiro
- Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| | - Gonçalo C. Justino
- Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| | - M. Matilde Marques
- Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
- Departamento de Engenharia Química, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| |
Collapse
|
32
|
Obajdin J, Davies DM, Maher J. Engineering of chimeric natural killer cell receptors to develop precision adoptive immunotherapies for cancer. Clin Exp Immunol 2020; 202:11-27. [PMID: 32544282 PMCID: PMC7488126 DOI: 10.1111/cei.13478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are innate immune effectors which play a crucial role in recognizing and eliminating virally infected and cancerous cells. They effectively distinguish between healthy and distressed self through the integration of signals delivered by germline‐encoded activating and inhibitory cell surface receptors. The frequent up‐regulation of stress markers on genetically unstable cancer cells has prompted the development of novel immunotherapies that exploit such innate receptors. One prominent example entails the development of chimeric antigen receptors (CAR) that detect cell surface ligands bound by NK receptors, coupling this engagement to the delivery of tailored immune activating signals. Here, we review strategies to engineer CARs in which specificity is conferred by natural killer group 2D (NKG2D) or other NK receptor types. Multiple preclinical studies have demonstrated the remarkable ability of chimeric NK receptor‐targeted T cells and NK cells to effectively and specifically eliminate cancer cells and to reject established tumour burdens. Importantly, such systems act not only acutely but, in some cases, they also incite immunological memory. Moreover, CARs targeted with the NKG2D ligand binding domain have also been shown to disrupt the tumour microenvironment, through the targeting of suppressive T regulatory cells, myeloid‐derived suppressor cells and tumour vasculature. Collectively, these findings have led to the initiation of early‐phase clinical trials evaluating both autologous and allogeneic NKG2D‐targeted CAR T cells in the haematological and solid tumour settings.
Collapse
Affiliation(s)
- J Obajdin
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - D M Davies
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - J Maher
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, UK.,Department of Immunology, Eastbourne Hospital, Eastbourne, UK.,Leucid Bio Ltd, Guy's Hospital, London, UK
| |
Collapse
|
33
|
Natural Killer Cell Activation Receptor NKp30 Oligomerization Depends on Its N-Glycosylation. Cancers (Basel) 2020; 12:cancers12071998. [PMID: 32708305 PMCID: PMC7409301 DOI: 10.3390/cancers12071998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022] Open
Abstract
NKp30 is one of the main human natural killer (NK) cell activating receptors used in directed immunotherapy. The oligomerization of the NKp30 ligand binding domain depends on the length of the C-terminal stalk region, but our structural knowledge of NKp30 oligomerization and its role in signal transduction remains limited. Moreover, ligand binding of NKp30 is affected by the presence and type of N-glycosylation. In this study, we assessed whether NKp30 oligomerization depends on its N-glycosylation. Our results show that NKp30 forms oligomers when expressed in HEK293S GnTI- cell lines with simple N-glycans. However, NKp30 was detected only as monomers after enzymatic deglycosylation. Furthermore, we characterized the interaction between NKp30 and its best-studied cognate ligand, B7-H6, with respect to glycosylation and oligomerization, and we solved the crystal structure of this complex with glycosylated NKp30, revealing a new glycosylation-induced mode of NKp30 dimerization. Overall, this study provides new insights into the structural basis of NKp30 oligomerization and explains how the stalk region and glycosylation of NKp30 affect its ligand affinity. This furthers our understanding of the molecular mechanisms involved in NK cell activation, which is crucial for the successful design of novel NK cell-based targeted immunotherapeutics.
Collapse
|
34
|
Zhang X, Xie W, Wang Z, Song S, Qin Y, Zhang F, Chen F, Cai L. Expression of a novel immune checkpoint B7-H6 ligand in human small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:589. [PMID: 32566616 PMCID: PMC7290544 DOI: 10.21037/atm-20-2548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background B7-H6 is a novel co-stimulatory ligand that is detected in most malignancies. However, the significance of B7-H6 in small cell lung cancer (SCLC) remains unknown. Methods B7-H6 expression was analyzed by immunohistochemistry (IHC) in 103 collected SCLC samples, and its association with clinicopathological characteristics and prognosis was analyzed. The 2-year survival rates were also investigated. Results B7-H6-positive staining was detected in 58 (56.31%) SCLC cases, and found to be localized mainly in the intracellular space of SCLC. Weak staining in lung tissues was observed in 4 (8%) cases. B7-H6 positive staining was significantly related to tumor-node-metastasis stage (P=0.028), age (P=0.001), and distant metastasis (P=0.033), whereas there was no association with smoking status, sex, mass size, limited-stage SCLC/extensive-stage SCLC, Karnofsky performance status, or nodal metastasis status. The 2-year survival rates showed that there were more patients whose survival was shorter than 2 years in the B7-H6-positive group compared with the B7-H6-negative group (P=0.042). Conclusions Our findings suggest that B7-H6 is involved in early-stage SCLC and could serve as an early marker to predict human SCLC progression and distant metastasis. B7-H6 may be a valuable therapeutic target with potential clinical applications in the future.
Collapse
Affiliation(s)
- Xiuqin Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Weiguo Xie
- Department of Respiratory Medicine, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Zhiqiang Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Shu Song
- Department of Pathology Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Yan Qin
- Department of Pathology Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Fang Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Fangfang Chen
- Department of Respiratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Liming Cai
- Department of Respiratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| |
Collapse
|
35
|
Preferential Expression of B7-H6 in Glioma Stem-Like Cells Enhances Tumor Cell Proliferation via the c-Myc/RNMT Axis. J Immunol Res 2020; 2020:2328675. [PMID: 32322592 PMCID: PMC7165331 DOI: 10.1155/2020/2328675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
B7 homologue 6 (B7-H6), a newly identified member of the B7 costimulatory molecule family, is not only a crucial regulator of NK cell-mediated immune responses through binding to NKp30 but also has clinical implications due to its abnormal expression in human cancers. Here, we show that B7-H6 expression is abnormally upregulated in glioma tissue and that B7-H6 is coexpressed with stem cell marker Sox2. Intriguingly, B7-H6 was rarely detected on the surface of glioma cell lines but was abundantly expressed in glioma stem-like cells (GSLCs) that were derived from the glioma cell lines in vitro. Surprisingly, B7-H6 was the only one that was preferentially expressed in the GSLCs among the B7 family members. Functionally, knockdown of B7-H6 in GSLCs by siRNAs led to the inhibition of cell proliferation, with decrease in the expression of the oncogene Myc as well as inactivation of PI3K/Akt and ERK/MAPK signaling pathways. Moreover, we determined that three genes CBL (Casitas B-Lineage Lymphoma Proto-Oncogene), CCNT1 (Cyclin T1), and RNMT (RNA guanine-7 methyltransferase) were coexpressed with B7-H6 and c-myc in glioma tissue samples from the TCGA database and found, however that only RNMT expression was inhibited by the knockdown of B7-H6 expression in the GSLCs, suggesting the involvement of RNMT in the B7-H6/c-myc axis. Extending this to 293T cells, we observed that knocking out of B7-H6 with CRISPR-Cas9 system also suppressed cell proliferation. Thus, our findings suggest B7-H6 as a potential molecule for glioma stem cell targeted immunotherapy.
Collapse
|
36
|
Hu Y, Zeng T, Xiao Z, Hu Q, Li Y, Tan X, Yue H, Wang W, Tan H, Zou J. Immunological role and underlying mechanisms of B7-H6 in tumorigenesis. Clin Chim Acta 2020; 502:191-198. [PMID: 31904350 DOI: 10.1016/j.cca.2019.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
B7 homolog 6 (B7-H6) has been identified as involved in tumorigenesis. Elucidating its role and potential mechanism of action is essential for understanding tumorigenesis and the potential development of an effective clinical strategy. Abnormal overexpression of B7-H6 in various types of tumors was reported to be linked with poor prognosis. B7-H6 suppresses the initiation of the "caspase cascade" and induces anti-apoptosis by STAT3 pathway activation to provoke tumorigenesis. B7-H6 facilitates tumor proliferation and cell cycle progression by regulating apoptosis suppressors. B7-H6 induces cellular cytotoxicity, secretion of TNF-α and IFN-γ and B7-H6-specific BiTE triggers T cells to accelerate tumorigenesis. B7-H6 induces abnormal immunological progression by HER2-scFv mediated ADCC and NKp30 immune escape to promote tumorigenesis. B7-H6 promotes tumorigenesis via apoptosis inhibition, proliferation and immunological progression. B7-H6 may a valuable potential biomarker and therapeutic strategy for diagnostics, prognostics and treatment in cancer.
Collapse
Affiliation(s)
- Yuxuan Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Zheng Xiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Qihao Hu
- Cardiothoracic Surgery, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Yukun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiongjin Tan
- The Second Department of Orthopaedic, 922 Hospital of PLA, Hengyang, Hunan 410011, PR China
| | - Haiyan Yue
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Department of Pathology, The Central Hospital of Shaoyang, Shaoyang, Hunan 422000, PR China
| | - Wensong Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Hui Tan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
37
|
Imbert C, Olive D. γδ T Cells in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1273:91-104. [PMID: 33119877 DOI: 10.1007/978-3-030-49270-0_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gamma delta (γδ) T cells which combine both innate and adaptive potential have extraordinary properties. Indeed, their strong cytotoxic and pro-inflammatory activity allows them to kill a broad range of tumor cells. Several studies have demonstrated that γδ T cells are an important component of tumor-infiltrated lymphocytes in patients affected by different types of cancer. Tumor-infiltrating γδ T cells are also considered as a good prognostic marker in many studies, though the presence of these cells is associated with poor prognosis in breast and colon cancers. The tumor microenvironment seems to drive γδ T-cell differentiation toward a tumor-promoting or a tumor-controlling phenotype, which suggests that some tumor microenvironments can limit the effectiveness of γδ T cells.The major γδ T-cell subsets in human are the Vγ9Vδ2 T cells that are specifically activated by phosphoantigens. This unique antigenic activation process operates in a framework that requires the expression of butyrophilin 3A (BTN3A) molecules. Interestingly, there is some evidence that BTN3A expression may be regulated by the tumor microenvironment. Given their strong antitumoral potential, Vγ9Vδ2 T cells are used in therapeutic approaches either by ex vivo culture and amplification, and then adoptive transfer to patients or by direct stimulation to propagate in vivo. These strategies have demonstrated promising initial results, but greater potency is needed. Combining Vγ9Vδ2 T-cell immunotherapy with systemic approaches to restore antitumor immune response in tumor microenvironment may improve efficacy.In this chapter, we first review the basic features of γδ T cells and their roles in the tumor microenvironment and then analyze the advances about the understanding of these cells' activation in tumors and why this represent unique challenges for therapeutics, and finally we discuss γδ T-cell-based therapeutic strategies and future perspectives of their development.
Collapse
Affiliation(s)
- Caroline Imbert
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity and Cancer, Institut Paoli Calmettes, Aix Marseille Université, Marseille, France.,Immunomonitoring Platform, Institut Paoli Calmettes, Marseille, France
| | - Daniel Olive
- Inserm, U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Immunity and Cancer, Institut Paoli Calmettes, Aix Marseille Université, Marseille, France. .,Immunomonitoring Platform, Institut Paoli Calmettes, Marseille, France.
| |
Collapse
|
38
|
Hosseini SH, Sharafkandi N, Seyfizadeh N, Hemmatzadeh M, Marofi F, Shomali N, Karimi M, Mohammadi H. Progression or suppression: Two sides of the innate lymphoid cells in cancer. J Cell Biochem 2019; 121:2739-2755. [PMID: 31680296 DOI: 10.1002/jcb.29503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022]
Abstract
Innate lymphoid cells (ILCs) as key players in innate immunity have been shown to be significantly associated with inflammation, lymphoid neogenesis, tissue remodeling, mucosal immunity and lately have been considered a remarkable nominee for either tumor-promoting or tumor-inhibiting functions. This dual role of ILCs, which is driven by intrinsic and extrinsic factors like plasticity of ILCs and the tumor microenvironment, respectively, has aroused interest in ILCs subsets in past decade. So far, numerous studies in the cancer field have revealed ILCs to be key players in the initiation, progression and inhibition of tumors, therefore providing valuable insights into therapeutic approaches to utilize the immune system against cancer. Herein, the most recent achievements regarding ILCs subsets including new classifications, their transcription factors, markers, cytokine release and mechanisms that led to either progression or inhibition of many tumors have been evaluated. Additionally, the available data regarding ILCs in most prevalent cancers and new therapeutic approaches are summarized.
Collapse
Affiliation(s)
- S Haleh Hosseini
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Narges Seyfizadeh
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
39
|
West SM, Deng XA. Considering B7-CD28 as a family through sequence and structure. Exp Biol Med (Maywood) 2019; 244:1577-1583. [PMID: 31208204 DOI: 10.1177/1535370219855970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
With the emergence of immuno-oncology, new therapeutic agents that modulate immune activation and regulation are being used to treat cancer patients with durable response. It is well known that following T-cell receptor (TCR) activation, many co-receptors can augment or suppress the TCR signal, and therapeutically targeting these co-receptors has proven effective. The B7-CD28 family is comprised of such immune-regulatory receptors, and antibodies against its members programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have revolutionized cancer treatment. These therapies promote an immune response against tumor cells, which demonstrated better long-term survival and tolerability compared to traditional cancer treatments. In this review we describe the history of the expanding B7-CD28 family, and by comparison of sequence and structure reveal that it is a non-traditional family. The family has grown to include proteins that share low sequence identity, generally grouped by regulation of immune response, which utilize the common immunoglobulin fold. This low level of commonality has provided additional challenges to the drug discovery process as the mechanisms and therapeutic potency between family members can vary greatly. Impact statement Immunotherapy as a field has dramatically expanded in the last decade in the area of oncology with efficacy demonstrated by PD-1, PD-L1, and CTLA-4 blockade. With all three “checkpoint blockade” receptors being in the B7-CD28 family, there has been increased interest in targeting other members in this family due to redundancy in immune regulation, i.e., the combination of therapeutic agents targeting multiple co-inhibitory receptors may yield additional antitumor efficacy. Therefore significant resources are being dedicated to developing additional B7-CD28 treatment options.
Collapse
Affiliation(s)
- Sean M West
- Bristol-Myers Squibb (BMS), Redwood City, CA 94063, USA
| | - Xiaodi A Deng
- Bristol-Myers Squibb (BMS), Redwood City, CA 94063, USA
| |
Collapse
|
40
|
Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, Pende D, Falco M, Pessino A, Muccio L, De Maria A, Marcenaro E, Moretta L, Sivori S. An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Front Immunol 2019; 10:1415. [PMID: 31316503 PMCID: PMC6611392 DOI: 10.3389/fimmu.2019.01415] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The "missing-self" theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs).
Collapse
Affiliation(s)
- Massimo Vitale
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Daniela Pende
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annamaria Pessino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Dipartimento di Scienze della Salute (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
41
|
Barrow AD, Martin CJ, Colonna M. The Natural Cytotoxicity Receptors in Health and Disease. Front Immunol 2019; 10:909. [PMID: 31134055 PMCID: PMC6514059 DOI: 10.3389/fimmu.2019.00909] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
The Natural Cytotoxicity Receptors (NCRs), NKp46, NKp44, and NKp30, were some of the first human activating Natural Killer (NK) cell receptors involved in the non-MHC-restricted recognition of tumor cells to be cloned over 20 years ago. Since this time many host- and pathogen-encoded ligands have been proposed to bind the NCRs and regulate the cytotoxic and cytokine-secreting functions of tissue NK cells. This diverse set of NCR ligands can manifest on the surface of tumor or virus-infected cells or can be secreted extracellularly, suggesting a remarkable NCR polyfunctionality that regulates the activity of NK cells in different tissue compartments during steady state or inflammation. Moreover, the NCRs can also be expressed by other innate and adaptive immune cell subsets under certain tissue conditions potentially conferring NK recognition programs to these cells. Here we review NCR biology in health and disease with particular reference to how this important class of receptors regulates the functions of tissue NK cells as well as confer NK cell recognition patterns to other innate and adaptive lymphocyte subsets. Finally, we highlight how NCR biology is being harnessed for novel therapeutic interventions particularly for enhanced tumor surveillance.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Claudia Jane Martin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
42
|
Abstract
Natural Killer (NK) cells are innate immune lymphocytes that are important for early and effective immune responses against infections and cancer. The antitumor immunity mediated by NK cells can be exerted through several direct or indirect “immunosurveillance” mechanisms that control tumor growth and prevent the rapid dissemination of metastatic tumors. NK cells express an array of activating and inhibitory receptors that enable them to recognize and bind non-self as well as self-ligands expressed on the surface of malignant or virally infected cells. The family of Natural Cytotoxicity Receptors (NCRs) comprises three activating receptors; NKp30, NKp44, and NKp46 that are important for the stimulation of NK cell effector functions. This review summarizes the mechanisms of antitumor immunity mediated by natural killer cells with focus on the role of the family of the NCRs and their tumor associated ligands.
Collapse
|
43
|
Podojil JR, Chiang MY, Ifergan I, Copeland R, Liu LN, Maloveste S, Langermann S, Liebenson D, Balabanov R, Chi H, Chen L, Vignali DAA, Miller SD. B7-H4 Modulates Regulatory CD4 + T Cell Induction and Function via Ligation of a Semaphorin 3a/Plexin A4/Neuropilin-1 Complex. THE JOURNAL OF IMMUNOLOGY 2018; 201:897-907. [PMID: 29898965 DOI: 10.4049/jimmunol.1700811] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 05/21/2018] [Indexed: 11/19/2022]
Abstract
The potent immune regulatory function of an agonistic B7-H4-Ig fusion protein (B7-H4Ig) has been demonstrated in multiple experimental autoimmune models; however, the identity of a functional B7-H4 receptor remained unknown. The biological activity of B7-H4 is associated with decreased inflammatory CD4+ T cell responses as supported by a correlation between B7-H4-expressing tumor-associated macrophages and Foxp3+ T cells within the tumor microenvironment. Recent data indicate that members of the semaphorin (Sema)/plexin/neuropilin (Nrp) family of proteins both positively and negatively modulate immune cell function. In this study, we show that B7-H4 binds the soluble Sema family member Sema3a. Additionally, B7-H4Ig-induced inhibition of inflammatory CD4+ T cell responses is lost in both Sema3a functional mutant mice and mice lacking Nrp-1 expression in Foxp3+ T cells. These findings indicate that B7-H4Ig binds to Sema3a, which acts as a functional bridge to stimulate an Nrp-1/Plexin A4 heterodimer to form a functional immunoregulatory receptor complex resulting in increased levels of phosphorylated PTEN and enhanced regulatory CD4+ T cell number and function.
Collapse
Affiliation(s)
- Joseph R Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Ming-Yi Chiang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | | | | | | | | | | | | | - Hongbo Chi
- Immunology Department, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15262; and.,Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611;
| |
Collapse
|
44
|
Gacerez AT, Hua CK, Ackerman ME, Sentman CL. Chimeric antigen receptors with human scFvs preferentially induce T cell anti-tumor activity against tumors with high B7H6 expression. Cancer Immunol Immunother 2018; 67:749-759. [PMID: 29453518 PMCID: PMC11028385 DOI: 10.1007/s00262-018-2124-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/06/2018] [Indexed: 01/21/2023]
Abstract
B7H6 is emerging as a promising tumor antigen that is known to be expressed on a wide array of tumors and is reported to stimulate anti-tumor responses from the immune system. As such, B7H6 presents a good target for tumor-specific immunotherapies. B7H6-specific chimeric antigen receptors (CAR) based on a murine antibody showed successful targeting and elimination of tumors expressing B7H6. However, mouse single chain variable fragments (scFvs) have the potential to induce host anti-CAR responses that may limit efficacy, so human scFvs specific for B7H6 were selected by yeast surface display. In this study, we validate the functionality of these human scFvs when formatted into chimeric antigen receptors. The data indicate that T cells expressing these B7H6-specific human scFvs as CARs induced potent anti-tumor activity in vitro and in vivo against tumors expressing high amounts of B7H6. Importantly, these human scFv-based CARs are sensitive to changes in B7H6 expression which may potentially spare non-tumor cells that express B7H6 and provides the foundation for future clinical development.
Collapse
Affiliation(s)
- Albert T Gacerez
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
- Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Casey K Hua
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, 03756, USA.
- Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
| |
Collapse
|
45
|
Li SS, Ogbomo H, Mansour MK, Xiang RF, Szabo L, Munro F, Mukherjee P, Mariuzza RA, Amrein M, Vyas JM, Robbins SM, Mody CH. Identification of the fungal ligand triggering cytotoxic PRR-mediated NK cell killing of Cryptococcus and Candida. Nat Commun 2018; 9:751. [PMID: 29467448 PMCID: PMC5821813 DOI: 10.1038/s41467-018-03014-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
Natural killer (NK) cells use the activating receptor NKp30 as a microbial pattern-recognition receptor to recognize, activate cytolytic pathways, and directly kill the fungi Cryptococcus neoformans and Candida albicans. However, the fungal pathogen-associated molecular pattern (PAMP) that triggers NKp30-mediated killing remains to be identified. Here we show that β-1,3-glucan, a component of the fungal cell wall, binds to NKp30. We further demonstrate that β-1,3-glucan stimulates granule convergence and polarization, as shown by live cell imaging. Through Src Family Kinase signaling, β-1,3-glucan increases expression and clustering of NKp30 at the microbial and NK cell synapse to induce perforin release for fungal cytotoxicity. Rather than blocking the interaction between fungi and NK cells, soluble β-1,3-glucan enhances fungal killing and restores defective cryptococcal killing by NK cells from HIV-positive individuals, implicating β-1,3-glucan to be both an activating ligand and a soluble PAMP that shapes NK cell host immunity. Natural killer (NK) cells has been show to mediate fungi killing via the activating receptor NKp30, but the fungal target for NKp30 is still unclear. Here the authors show, using atomic force microscopy and live cell imaging, that β-1,3-glucan is expressed by Cryptococcus neoformans and Candida albicans and responsible for NKp30-mediated NK killing.
Collapse
Affiliation(s)
- Shu Shun Li
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada.,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| | - Henry Ogbomo
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada.,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| | - Michael K Mansour
- Department of Medicine Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Richard F Xiang
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada.,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| | - Lian Szabo
- Department of Medicine, University of Calgary, Calgary, T2N 4N1, Canada
| | - Fay Munro
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, T2N 4N1, Canada
| | - Priyanka Mukherjee
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, T2N 4N1, Canada
| | - Roy A Mariuzza
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Matthias Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, T2N 4N1, Canada
| | - Jatin M Vyas
- Department of Medicine Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Stephen M Robbins
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada.,Southern Alberta Cancer Research Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | - Christopher H Mody
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada. .,The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, T2N 4N1, Canada. .,Department of Medicine, University of Calgary, Calgary, T2N 4N1, Canada.
| |
Collapse
|
46
|
Hua CK, Gacerez AT, Sentman CL, Ackerman ME. Development of unique cytotoxic chimeric antigen receptors based on human scFv targeting B7H6. Protein Eng Des Sel 2017; 30:713-721. [PMID: 29040754 DOI: 10.1093/protein/gzx051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/30/2017] [Indexed: 11/14/2022] Open
Abstract
As a stress-inducible natural killer (NK) cell ligand, B7H6 plays a role in innate tumor immunosurveillance and is a fairly tumor selective marker expressed on a variety of solid and hematologic cancer cells. Here, we describe the isolation and characterization of a new family of single chain fragment variable (scFv) molecules targeting the human B7H6 ligand. Through directed evolution of a yeast surface displayed non-immune human-derived scFv library, eight candidates comprising a single family of clones differing by up to four amino acid mutations and exhibiting nM avidities for soluble B7H6-Ig were isolated. A representative clone re-formatted as an scFv-CH1-Fc molecule demonstrated specific binding to both B7H6-Ig and native membrane-bound B7H6 on tumor cell lines with a binding avidity comparable to the previously characterized B7H6-targeting antibody, TZ47. Furthermore, these clones recognized an epitope distinct from that of TZ47 and the natural NK cell ligand NKp30, and demonstrated specific activity against B7H6-expressing tumor cells when expressed as a chimeric antigen receptor (CAR) in T cells.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antibodies, Neoplasm/biosynthesis
- Antibodies, Neoplasm/chemistry
- Antibodies, Neoplasm/genetics
- B7 Antigens/chemistry
- B7 Antigens/genetics
- B7 Antigens/immunology
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Cell Line, Tumor
- Cell Surface Display Techniques
- Cytotoxicity, Immunologic
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Gene Expression
- HEK293 Cells
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Mice
- Models, Molecular
- Mutant Chimeric Proteins/chemistry
- Mutant Chimeric Proteins/genetics
- Mutant Chimeric Proteins/immunology
- Mutation
- Natural Cytotoxicity Triggering Receptor 3/chemistry
- Natural Cytotoxicity Triggering Receptor 3/genetics
- Natural Cytotoxicity Triggering Receptor 3/immunology
- Protein Binding
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Single-Chain Antibodies/biosynthesis
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/genetics
Collapse
Affiliation(s)
- Casey K Hua
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH 03755, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr, Lebanon, NH 03756, USA
| | - Albert T Gacerez
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr, Lebanon, NH 03756, USA
- Center for Synthetic Immunity, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr, Lebanon, NH 03756, USA
| | - Charles L Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr, Lebanon, NH 03756, USA
- Center for Synthetic Immunity, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr, Lebanon, NH 03756, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover, NH 03755, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr, Lebanon, NH 03756, USA
| |
Collapse
|
47
|
Abstract
B7-H6 is a ligand of NKp30, which is an activating receptor of natural killer (NK) cells. High expression of B7-H6 is found in certain types of tumor cells, such as lymphoma, leukemia and gastric carcinoma. The expression of B7-H6 can be induced by inflammatory stress in healthy cells. The expression of B7-H6 is significantly correlated with distant metastasis status and post-operative prognosis in cancer patients. The effectiveness of B7-H6 modified antitumor immunotherapy strategies had been verified in tumor-bearing mice, which opened a new door to targeted therapy. In this review, we will focus on the recent development on the roles of B7-H6 in tumor immunity, as well as mechanisms involved in the regulation of B7-H6 expression.
Collapse
|
48
|
Gutierrez-Franco J, Hernandez-Gutierrez R, Bueno-Topete MR, Haramati J, Navarro-Hernandez RE, Escarra-Senmarti M, Vega-Magaña N, Del Toro-Arreola A, Pereira-Suarez AL, Del Toro-Arreola S. Characterization of B7H6, an endogenous ligand for the NK cell activating receptor NKp30, reveals the identity of two different soluble isoforms during normal human pregnancy. Immunobiology 2017; 223:57-63. [PMID: 29055565 DOI: 10.1016/j.imbio.2017.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/28/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
B7H6, an endogenous ligand expressed on tumor cell surfaces, triggers NKp30-mediated activation of human NK cells. In contrast, the release of soluble B7H6 has been proposed as a novel mechanism by which tumors might evade NK cell-mediated recognition. Since NK cells are critical for the maintenance of early pregnancy, it is not illogical that soluble B7H6 might also be an important factor in directing NK cell activity during normal pregnancy. Thus, this study was focused on the characterization of soluble B7H6 during the development of normal pregnancy. Serum samples were obtained from healthy pregnant women who were experiencing their second pregnancies (n=36). Additionally, 17 of these pregnant participants were longitudinally studied for the presence of B7H6 during their second and third trimesters. Age-matched healthy non-pregnant women served as controls (n=30). The presence of soluble B7H6 was revealed by Western blotting. A further characterization was performed using an immunoproteomic approach based on 2DE-Western blotting combined with MALDI-MS. The results show that sera from all pregnant women were characterized by the presence of two novel isoforms of B7H6, both with lower MW than the reported of 51kDa. These isoforms were either a heavy (∼37kDa) or a light isoform (∼30kDa) and were mutually exclusive. N-glycosylation did not completely explain the different molecular weights exhibited by the two isoforms, as was demonstrated by enzymatic deglycosylation with PNGase F. The confirmation of the identity and molecular mass of each isoform indicates that B7H6, while maintaining the C- and N-termini, is most likely released during pregnancy by a mechanism distinct from proteolytic cleavage. We found that both isoforms, but mainly the heavier B7H6, were released via exosomes; and that the lighter isoform was also released in an exosome-free manner that was not observed in the heavy isoform samples. In conclusion, we find that soluble B7H6 is constitutively expressed during pregnancy and that, moreover, the soluble B7H6 is present in two new isoforms, which are released by exosomal and exosome-free mechanisms.
Collapse
Affiliation(s)
- Jorge Gutierrez-Franco
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Rodolfo Hernandez-Gutierrez
- Laboratorio en Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Guadalajara, Jalisco, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Rosa Elena Navarro-Hernandez
- Instituto de Investigación en Reumatología y del Sistema Musculo Esquelético, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Marta Escarra-Senmarti
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Natali Vega-Magaña
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alicia Del Toro-Arreola
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ana Laura Pereira-Suarez
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
49
|
Barrow AD, Colonna M. Tailoring Natural Killer cell immunotherapy to the tumour microenvironment. Semin Immunol 2017; 31:30-36. [PMID: 28935344 DOI: 10.1016/j.smim.2017.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells are cytotoxic and cytokine-secreting cells that can mediate potent anti-tumour activity. Accumulating evidence indicates that NK cell functions are severely compromised within the confines of the tumour microenvironment thus impairing the efficacy and development of NK cell-based therapies. Here we review the various cellular and molecular pathways that tumours have supplanted to evade NK cell surveillance. We highlight novel strategies designed to alleviate or circumvent the immunosuppressive conditions of the tumour microenvironment in order to emancipate NK cell function and stifle the inexorable growth and metastasis of malignant cells.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
50
|
Charpak-Amikam Y, Kubsch T, Seidel E, Oiknine-Djian E, Cavaletto N, Yamin R, Schmiedel D, Wolf D, Gribaudo G, Messerle M, Cicin-Sain L, Mandelboim O. Human cytomegalovirus escapes immune recognition by NK cells through the downregulation of B7-H6 by the viral genes US18 and US20. Sci Rep 2017; 7:8661. [PMID: 28819195 PMCID: PMC5561058 DOI: 10.1038/s41598-017-08866-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a major human pathogen, causing serious diseases in immunocompromised populations and congenially infected neonates. One of the main immune cells acting against the virus are Natural Killer (NK) cells. Killing by NK cells is mediated by a small family of activating receptors such as NKp30 that interact with the cellular ligand B7-H6. The outcome of B7-H6-NKp30 interaction was, so far, mainly studied with regard to NK recognition and killing of tumors. Here, we demonstrated that the expression of B7-H6 is upregulated following HCMV infection and that HCMV uses two of its genes: US18 and US20, to interfere with B7-H6 surface expression, in a mechanism involving endosomal degradation, in order to evade NK cell recognition.
Collapse
Affiliation(s)
- Yoav Charpak-Amikam
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Tobias Kubsch
- Department for Vaccinology/Immune Aging and Chronic Infection, HZI, 38124, Braunschweig, Germany
| | - Einat Seidel
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Noemi Cavaletto
- Department of Life Sciences and Systems Biology, University of Turin, 10123, Turin, Italy
| | - Rachel Yamin
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel.,Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Dominik Schmiedel
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Dana Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123, Turin, Italy
| | - Martin Messerle
- Institute for Virology, Medical School Hannover, 30625, Hannover, Germany
| | - Luka Cicin-Sain
- Department for Vaccinology/Immune Aging and Chronic Infection, HZI, 38124, Braunschweig, Germany.,Institute for Virology, Medical School Hannover, 30625, Hannover, Germany
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel.
| |
Collapse
|