1
|
Rezaee M, Kheiri F, Faraji F, Azad Armaki S, Baharlou R, Nafissi N. T-helper Transcription Factor Profiling in Peripheral Blood Mononuclear Cells: A Non-invasive Approach to Predicting Disease Stage in Breast Cancer. Biochem Genet 2025:10.1007/s10528-025-11133-z. [PMID: 40380039 DOI: 10.1007/s10528-025-11133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
Breast cancer remains a leading cause of mortality among women, highlighting the need for improved diagnostic and treatment approaches. This study aims to analyze the expression levels of key immunologic factors in the peripheral blood mononuclear cell (PBMC) population of breast cancer patients and assess their relationship with various disease characteristics. A total of 48 treatment-naive breast cancer patients were enrolled, with blood samples collected prior to surgery for PBMC isolation. Gene expression of Foxp3, RORγt, GATA3, and T-bet was measured using quantitative real-time PCR. Gene expressions of Foxp3, RORγt, and GATA3 were significantly elevated in breast cancer patients compared to controls. Logistic regression revealed a strong association between elevated RORγt levels and larger tumor sizes. Subgroup analysis indicated that Foxp3 related to lymphovascular invasion (LVI), RORγt correlated with lymph node involvement and tumor size, GATA3 was associated with tumor size alone, and T-bet was linked to disease stage. ROC analysis demonstrated T-bet and Foxp3 as sensitive indicators for disease stage, while RORγt was notable for lymph node involvement. The study indicates that T-helper cell-related transcription factors in PBMCs reflect important clinical characteristics of breast cancer, supporting the role of T cell immune responses in disease progression. PBMCs emerge as a promising and accessible resource for diagnostic information in breast cancer.
Collapse
Affiliation(s)
- Maryam Rezaee
- Department of Surgery, Breast Health and Cancer Department, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kheiri
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | | | - Rasoul Baharlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, 3513138111, Semnan, Iran.
| | - Nahid Nafissi
- Department of Breast Diseases Surgery, Breast Health and Cancer Research Center, Iran University of Medical Science, Shahid Hemmat Highway, 1449614535, Tehran, Iran.
| |
Collapse
|
2
|
Veltkamp SHC, Voorneveld PW. The Cell-Specific Effects of JAK1 Inhibitors in Ulcerative Colitis. J Clin Med 2025; 14:608. [PMID: 39860613 PMCID: PMC11766026 DOI: 10.3390/jcm14020608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
JAK1 inhibitors have become an important addition to the therapeutic options for ulcerative colitis (UC), targeting key inflammatory pathways mediated by cytokines such as the IL-6 family, interferons, IL-2 family, IL-10 family, and G-CSF. However, not all patients respond equally, and chronic inflammation persists in a subset of individuals. The variability in treatment response may reflect the heterogeneity of UC. Immune cells, epithelial cells, and stromal cells may have distinct contributions to disease pathogenesis. While JAK inhibitors were originally designed to target immune cells, their impact on non-immune cell types, such as epithelial and stromal cells, remains poorly understood. Investigating the mechanisms through which JAK1 inhibitors affect these diverse cellular populations and identifying the factors underlying differential responses is crucial to optimizing outcomes. This review explores the roles of immune, epithelial, and stromal cells in response to JAK1 inhibition and discusses potential strategies to improve treatment precision, such as predicting responders and identifying complementary therapeutic targets.
Collapse
Affiliation(s)
| | - Philip W. Voorneveld
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
3
|
Wu Y, Jiao J, Wu S, Jiang J. Strategies for the enhancement of IL-21 mediated antitumor activity in solid tumors. Cytokine 2024; 184:156787. [PMID: 39467483 DOI: 10.1016/j.cyto.2024.156787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Solid tumors significantly impact global health, necessitating enhanced prevention, early diagnosis, and treatment approaches. Tumor immunotherapy, notably through programmed cell death protein 1 (PD-1) and programmed cell death-ligand 1 (PD-L1), offers new hope to patients with advanced tumors, although many still do not benefit. Interleukin-21 (IL-21), a cytokine produced by certain immune cells, performs various biological functions by activating the JAK/STAT signaling pathway. Currently, recombinant IL-21 demonstrates promising antitumor activity and acceptable toxicity in several clinical trials. However, challenges such as side effects, off-target reactions, and a short half-life limit the effectiveness of cytokine-based immunotherapies. Therefore, researching enhanced IL-21 treatment strategies in solid tumors is crucial. Integrating IL-21 with various treatment modalities, including immune checkpoint inhibitors, additional cytokines, vaccines, or radiotherapy, is essential for improving response rates and prolonging patient survival. This review explores the specific mechanisms of IL-21 in prevalent high-incidence tumors, examines improved strategies for IL-21 in solid tumors, and aims to provide a theoretical basis for developing targeted treatment strategies.
Collapse
Affiliation(s)
- You Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Jing Jiao
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China; Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
4
|
Anvar MT, Rashidan K, Arsam N, Rasouli-Saravani A, Yadegari H, Ahmadi A, Asgari Z, Vanan AG, Ghorbaninezhad F, Tahmasebi S. Th17 cell function in cancers: immunosuppressive agents or anti-tumor allies? Cancer Cell Int 2024; 24:355. [PMID: 39465401 PMCID: PMC11514949 DOI: 10.1186/s12935-024-03525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
T helper (Th) 17 cells, a distinct subset of Th lymphocytes, are known for their prominent interleukin (IL)-17 production and other pro-inflammatory cytokines. These cells exhibit remarkable plasticity, allowing them to exhibit different phenotypes in the cancer microenvironment. This adaptability enables Th17 cells to promote tumor progression by immunosuppressive activities and angiogenesis, but also mediate anti-tumor immune responses through employing immune cells in tumor setting or even by directly converting toward Th1 phenotype and producing interferon-gamma (IFN-γ). This dual role of Th17 cells in cancer makes it a double-edged sword in encountering cancer. In this review, we aim to elucidate the complexities of Th17 cell function in cancer by summarizing recent studies and, ultimately, to design novel therapeutic strategies, especially targeting Th17 cells in the tumor milieu, which could pave the way for more effective cancer treatments.
Collapse
Affiliation(s)
- Milad Taghizadeh Anvar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimiya Rashidan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Arsam
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Yadegari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Asgari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani Vanan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farid Ghorbaninezhad
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Nie Q, Xu P, Liu J, Wang Y, Huang Q, You R, Liu Y, Li L, Lu Y. Enhanced SERS detection of the colorectal cancer biomarker utilizing a two-dimensional silver substrate. Colloids Surf B Biointerfaces 2024; 245:114317. [PMID: 39413486 DOI: 10.1016/j.colsurfb.2024.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
To improve the sensitivity, accuracy and specificity of the assay, a two-dimensional silver substrate with EF=5.85×108 was first synthesized as a SERS substrate, on the surface of which DSP molecules were modified to form a DSP-antibody coupling through the activation of two N-hydroxy succinimide (NHS) esters to capture TNF-α. Subsequently, aptamerized silver-coated gold nanospheres (Au@TFMBA@Ag) were synthesized as Surface-Enhanced Raman Scattering (SERS) recognition probes. These probes were employed to create a sandwich structure for the quantitative detection of Tumor Necrosis Factor-alpha (TNF-α), utilizing the SERS signal intensity at 1374 cm-1. Quantitative detection of TNF-α was successfully accomplished within the concentration range of 10-4 to 10-10 mg·mL-1. Clinical serum samples were collected and subjected to testing. Significance analysis, conducted through the T-test (p < 0.0001), unequivocally showed the method's ability to differentiate between sera from normal individuals and those diagnosed with colon cancer.
Collapse
Affiliation(s)
- Qingling Nie
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysts, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Peipei Xu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysts, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jiajia Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysts, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yanhanzhuo Wang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysts, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Qian Huang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysts, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysts, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Yunzhen Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysts, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Lizhi Li
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China.
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysts, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
6
|
Wang Z, Chang Y, Sun H, Li Y, Tang T. Advances in molecular mechanisms of inflammatory bowel disease‑associated colorectal cancer (Review). Oncol Lett 2024; 27:257. [PMID: 38646499 PMCID: PMC11027113 DOI: 10.3892/ol.2024.14390] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
The link between inflammation and cancer is well documented and colonic inflammation caused by inflammatory bowel disease (IBD) is thought to be a high-risk factor for the development of colorectal cancer (CRC). The complex crosstalk between epithelial and inflammatory cells is thought to underlie the progression from inflammation to cancer. The present review collates and summarises recent advances in the understanding of the pathogenesis of IBD-associated CRC (IBD-CRC), including the oncogenic mechanisms of the main inflammatory signalling pathways and genetic alterations induced by oxidative stress during colonic inflammation, and discusses the crosstalk between the tumour microenvironment, intestinal flora and host immune factors during inflammatory oncogenesis in colitis-associated CRC. In addition, the therapeutic implications of anti-inflammatory therapy for IBD-CRC were discussed, intending to provide new insight into improve clinical practice.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Haibo Sun
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
7
|
Isvoranu G, Chiritoiu-Butnaru M. Therapeutic potential of interleukin-21 in cancer. Front Immunol 2024; 15:1369743. [PMID: 38638431 PMCID: PMC11024325 DOI: 10.3389/fimmu.2024.1369743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
Interleukin-21 (IL-21) is an immunostimulatory cytokine which belongs to the common gamma-chain family of cytokines. It plays an import role in the development, differentiation, proliferation, and activation of immune cells, in particular T and natural killer (NK) cells. Since its discovery in 2000, IL-21 has been shown to regulate both adaptive and immune responses associates with key role in antiviral and antitumor responses. Recent advances indicate IL-21 as a promising target for cancer treatment and encouraging results were obtained in preclinical studies which investigated the potency of IL-21 alone or in combination with other therapies, including monoclonal antibodies, checkpoint inhibitory molecules, oncolytic virotherapy, and adoptive cell transfer. Furthermore, IL-21 showed antitumor effects in the treatment of patients with advanced cancer, with minimal side effects in several clinical trials. In the present review, we will outline the recent progress in IL-21 research, highlighting the potential of IL-21 based therapy as single agent or in combination with other drugs to enhance cancer treatment efficiency.
Collapse
Affiliation(s)
- Gheorghita Isvoranu
- Department of Animal Husbandry,” Victor Babeș” National Institute of Pathology, Bucharest, Romania
| | - Marioara Chiritoiu-Butnaru
- Department of Molecular and Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
8
|
Koh CH, Kim BS, Kang CY, Chung Y, Seo H. IL-17 and IL-21: Their Immunobiology and Therapeutic Potentials. Immune Netw 2024; 24:e2. [PMID: 38455465 PMCID: PMC10917578 DOI: 10.4110/in.2024.24.e2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 03/09/2024] Open
Abstract
Studies over the last 2 decades have identified IL-17 and IL-21 as key cytokines in the modulation of a wide range of immune responses. IL-17 serves as a critical defender against bacterial and fungal pathogens, while maintaining symbiotic relationships with commensal microbiota. However, alterations in its levels can lead to chronic inflammation and autoimmunity. IL-21, on the other hand, bridges the adaptive and innate immune responses, and its imbalance is implicated in autoimmune diseases and cancer, highlighting its important role in both health and disease. Delving into the intricacies of these cytokines not only opens new avenues for understanding the immune system, but also promises innovative advances in the development of therapeutic strategies for numerous diseases. In this review, we will discuss an updated view of the immunobiology and therapeutic potential of IL-17 and IL-21.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Chang-Yuil Kang
- Research & Development Center, Cellid Co., Ltd., Seoul 08826, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyungseok Seo
- Laboratory of Cell & Gene Therapy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
9
|
Song K. Current Development Status of Cytokines for Cancer Immunotherapy. Biomol Ther (Seoul) 2024; 32:13-24. [PMID: 38148550 PMCID: PMC10762268 DOI: 10.4062/biomolther.2023.196] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023] Open
Abstract
Cytokines influence the overall cancer immune cycle by triggering tumor antigen expression, antigen presenting, immune cell priming and activation, effector immune cell recruitment and infiltration to cancer, and cancer killing in the tumor microenvironment (TME). Therefore, cytokines have been considered potential anti-cancer immunotherapy, and cytokine-based anti-cancer therapies continue to be an active area of research and development in the field of cancer immunotherapy, with ongoing clinical trials exploring new strategies to improve efficacy and safety. In this review, we examine past and present clinical developments for major anticancer cytokines, including interleukins (IL-2, IL-15, IL-12, IL-21), interferons, TGF-beta, and GM-CSF. We identify the current status and changes in the technology platform being applied to cytokine-based immune anti-cancer therapeutics. Through this, we discuss the opportunities and challenges of cytokine-based immune anti-cancer treatments in the current immunotherapy market and suggest development directions to enhance the clinical use of cytokines as immuno-anticancer drugs in the future.
Collapse
Affiliation(s)
- Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Republic of Korea
| |
Collapse
|
10
|
Pastwińska J, Karwaciak I, Karaś K, Bachorz RA, Ratajewski M. RORγT agonists as immune modulators in anticancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189021. [PMID: 37951483 DOI: 10.1016/j.bbcan.2023.189021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
RORγT is a transcription factor that directs the development of Th17 lymphocytes and other IL-17-expressing cells (e.g., Tc17 and ILC3 cells). These cells are involved in the body's defense against pathogenic bacteria and fungi, but they also participate in maintaining the proinflammatory environment in some autoimmune diseases and play a role in the immune system's response to cancer. Similar to other members of the nuclear receptor superfamily, the activity of RORγT is regulated by low-molecular-weight ligands. Therefore, extensive efforts have been dedicated to identifying inverse agonists that diminish the activity of this receptor and subsequently inhibit the development of autoimmune diseases. Unfortunately, in the pursuit of an ideal inverse agonist, the development of agonists has been overlooked. It is important to remember that these types of compounds, by stimulating lymphocytes expressing RORγT (Th17 and Tc17), can enhance the immune system's response to tumors. In this review, we present recent advancements in the biology of RORγT agonists and their potential application in anticancer therapy.
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Rafał A Bachorz
- Laboratory of Molecular Modeling, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland.
| |
Collapse
|
11
|
Maryam S, Krukiewicz K, Haq IU, Khan AA, Yahya G, Cavalu S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J Clin Med 2023; 12:jcm12093127. [PMID: 37176567 PMCID: PMC10179696 DOI: 10.3390/jcm12093127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Awal Ayaz Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
12
|
Shahini A, Shahini A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J Cell Commun Signal 2023; 17:55-74. [PMID: 36112307 PMCID: PMC10030733 DOI: 10.1007/s12079-022-00695-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is considered a chronic inflammatory and multifactorial disease of the gastrointestinal tract. Crohn's disease (CD) and ulcerative colitis (UC) are two types of chronic IBD. Although there is no accurate information about IBD pathophysiology, evidence suggests that various factors, including the gut microbiome, environment, genetics, lifestyle, and a dysregulated immune system, may increase susceptibility to IBD. Moreover, inflammatory mediators such as interleukin-6 (IL-6) are involved in the immunopathogenesis of IBDs. IL-6 contributes to T helper 17 (Th17) differentiation, mediating further destructive inflammatory responses in CD and UC. Moreover, Th1-mediated responses participate in IBD, and the antiapoptotic IL-6/IL-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3) signals are responsible for preserving Th1 cells in the site of inflammation. It has been revealed that fecal bacteria isolated from UC-active and UC-remission patients stimulate the hyperproduction of several cytokines, such as IL-6, tumor necrosis factor-α (TNF-α), IL-10, and IL-12. Given the importance of the IL-6/IL-6R axis, various therapeutic options exist for controlling or treating IBD. Therefore, alternative therapeutic approaches such as modulating the gut microbiome could be beneficial due to the failure of the target therapies so far. This review article summarizes IBD immunopathogenesis focusing on the IL-6/IL-6R axis and discusses available therapeutic approaches based on the gut microbiome alteration and IL-6/IL-6R axis targeting and treatment failure.
Collapse
Affiliation(s)
- Arshia Shahini
- Department of Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Spencer J, Bemark M. Human intestinal B cells in inflammatory diseases. Nat Rev Gastroenterol Hepatol 2023; 20:254-265. [PMID: 36849542 DOI: 10.1038/s41575-023-00755-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
The intestinal lumen contains an abundance of bacteria, viruses and fungi alongside ingested material that shape the chronically active intestinal immune system from early life to maintain the integrity of the gut epithelial barrier. In health, the response is intricately balanced to provide active protection against pathogen invasion whilst tolerating food and avoiding inflammation. B cells are central to achieving this protection. Their activation and maturation generates the body's largest plasma cell population that secretes IgA, and the niches they provide support systemic immune cell specialization. For example, the gut supports the development and maturation of a splenic B cell subset - the marginal zone B cells. In addition, cells such as the T follicular helper cells, which are enriched in many autoinflammatory diseases, are intrinsically associated with the germinal centre microenvironment that is more abundant in the gut than in any other tissue in health. In this Review, we discuss intestinal B cells and their role when a loss of homeostasis results in intestinal and systemic inflammatory diseases.
Collapse
Affiliation(s)
- Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, UK.
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Xin J. Critical signaling pathways governing colitis-associated colorectal cancer: Signaling, therapeutic implications, and challenges. Dig Liver Dis 2023; 55:169-177. [PMID: 36002360 DOI: 10.1016/j.dld.2022.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023]
Abstract
Long-term colitis in people with inflammatory bowel disease (IBD) may lead to colon cancer called colitis-associated colorectal cancer (CAC). Since the advent of preclinical prototypes of CAC, various immunological messaging cascades have been identified as implicated in developing this disease. The toll-like receptor (TLR)s, Janus kinase (JAK)-signal transducer and activator of transcription (STAT), Nuclear factor-kappa B (NF-κB), mammalian target of rapamycin complex (mTOR), autophagy, and oxidative stress are only a few of the molecular mechanisms that have been recognized as major components to CAC progression. These pathways may also represent attractive medicinal candidates for the prevention and management of CAC. CAC signaling mechanisms at the molecular level and how their dysregulation may cause illness are summarized in this comprehensive overview.
Collapse
Affiliation(s)
- Jiang Xin
- Department of Gastrointestinal Surgery, The Third People's hospital of Qingdao, 266000, China.
| |
Collapse
|
15
|
Gerlach K, Popp V, Wirtz S, Al-Saifi R, Gonzalez Acera M, Atreya R, Dregelies T, Vieth M, Fichtner-Feigl S, McKenzie ANJ, Rosenbauer F, Weigmann B, Neurath MF. PU.1-driven Th9 Cells Promote Colorectal Cancer in Experimental Colitis Models Through Il-6 Effects in Intestinal Epithelial Cells. J Crohns Colitis 2022; 16:1893-1910. [PMID: 35793807 DOI: 10.1093/ecco-jcc/jjac097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Colorectal cancer [CRC] is one of the most frequent malignancies, but the molecular mechanisms driving cancer growth are incompletely understood. We characterised the roles of the cytokine IL-9 and Th9 cells in regulating CRC development. METHODS CRC patient samples and samples from AOM/DSS treated mice were analysed for expression of IL-9, CD3, and PU.1 by FACS analysis and immunohistochemistry. IL-9 citrine reporter mice, IL-9 knockout mice, and PU.1 and GATA3 CD4-Cre conditional knockout mice were studied in the AOM/DSS model. DNA minicircles or hyper-IL-6 were used for overexpression of cytokines in vivo. Effects of IL-6 and IL-9 were determined in organoid and T cell cultures. Claudin2/3 expression was studied by western blotting and bacterial translocation by FISH. RESULTS We uncovered a significant expansion of IL-9- and PU.1-expressing mucosal Th9 cells in CRC patients, with particularly high levels in patients with colitis-associated neoplasias. PU.1+ Th9 cells accumulated in experimental colorectal neoplasias. Deficiency of IL-9 or inactivation of PU.1 in T cells led to impaired tumour growth in vivo, suggesting a protumoral role of Th9 cells. In contrast, GATA3 inactivation did not affect Th9-mediated tumour growth. Mechanistically, IL-9 controls claudin2/3 expression and T cell-derived IL-6 production in colorectal tumours. IL-6 abrogated the anti-proliferative effects of IL-9 in epithelial organoids in vivo. IL-9-producing Th9 cells expand in CRC and control IL-6 production by T cells. CONCLUSIONS IL-9 is a crucial regulator of tumour growth in colitis-associated neoplasias and emerges as potential target for therapy.
Collapse
Affiliation(s)
- Katharina Gerlach
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Vanessa Popp
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ragheed Al-Saifi
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Miguel Gonzalez Acera
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie [DZI], Erlangen, University of Erlangen-Nuremberg, Germany
| | - Theresa Dregelies
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Fichtner-Feigl
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Andrew N J McKenzie
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Frank Rosenbauer
- Laboratory of Molecular Stem Cell Biology, University of Münster, Münster, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie [DZI], Erlangen, University of Erlangen-Nuremberg, Germany
| |
Collapse
|
16
|
Di Grazia A, Di Fusco D, Franzè E, Colella M, Strimpakos G, Salvatori S, Formica V, Laudisi F, Maresca C, Colantoni A, Ortenzi A, Stolfi C, Monteleone I, Monteleone G. Hepcidin Upregulation in Colorectal Cancer Associates with Accumulation of Regulatory Macrophages and Epithelial-Mesenchymal Transition and Correlates with Progression of the Disease. Cancers (Basel) 2022; 14:5294. [PMID: 36358713 PMCID: PMC9658525 DOI: 10.3390/cancers14215294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Advanced, metastatic colorectal cancer (CRC) is associated with high rate of mortality because of its poor responsiveness to chemotherapy/immunotherapy. Recent studies have shown that hepcidin, a peptide hormone produced mainly by hepatocytes, is expressed by and enhances the growth of tumor cells. We here assessed whether hepcidin expression helps identify subsets of CRC with advanced and aggressive course. By integrating results of in vitro/ex vivo studies with data of bioinformatics databases, we initially showed that hepcidin RNA and protein expression was more pronounced in tissue samples taken from the tumor area, as compared to the macroscopically unaffected, adjacent, colonic mucosa of CRC patients. The induction of hepcidin in the colonic epithelial cell line HCEC-1ct by interleukin (IL)-6, IL-21 and IL-23 occurred via a Stat3-dependent mechanism and, in primary CRC cells, hepcidin co-localized with active Stat3. In CRC tissue, hepcidin content correlated mainly with macrophage accumulation and IL-10 and CD206 expression, two markers of regulatory macrophages. Consistently, both IL-10 and CD206 were up-regulated by hepcidin in blood mononuclear cells. The highest levels of hepcidin were found in metastatic CRC and survival analysis showed that high expression of hepcidin associated with poor prognosis. Moreover, hepcidin expression correlated with markers of epithelial-to-mesenchymal transition and the silencing of hepcidin in CRC cells reduced epithelial-to-mesenchymal transition markers. These findings indicate that hepcidin is markedly induced in the advanced stages of CRC and suggest that it could serve as a prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Antonio Di Grazia
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marco Colella
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology (IBBC), National Council of Research (CNR), 00146 Rome, Italy
| | - Silvia Salvatori
- Gastroenterology Unit, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Vincenzo Formica
- Medical Oncology Unit, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Gastroenterology Unit, Fondazione Policlinico “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
17
|
Dong M, Liu H, Cao T, Li L, Sun Z, Qiu Y, Wang D. Huoxiang Zhengqi alleviates azoxymethane/dextran sulfate sodium-induced colitis-associated cancer by regulating Nrf2/NF-κB/NLRP3 signaling. Front Pharmacol 2022; 13:1002269. [PMID: 36339623 PMCID: PMC9634060 DOI: 10.3389/fphar.2022.1002269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
Colitis-associated cancer (CAC) is a subtype of inflammatory bowel disease (IBD)-associated colorectal cancer. Huoxiang Zhengqi (HXZQ) is a classical Chinese herbal medicine and has been used to treat intestinal disorders, however, anti-CAC effects and underlying mechanisms of HXZQ have not been reported. An azoxymethane/dextran sulfate sodium-induced CAC mice model was used to investigate the anti-CAC effect of HXZQ. HXZQ significantly reduced colonic inflammation, suppressed the size and number of tumors, and reduced the levels of pro-inflammatory cytokines (interleukin [IL]-1α, IL-1β, IL-6, IL-17A, IL-21, IL-23, granulocyte macrophage-colony stimulating factor, and tumor necrosis factor-α) and oxidative stress markers (reactive oxygen species and malondialdehyde), and increased the levels of anti-inflammatory cytokines (IL-10 and IL-27) in CAC mice. Intestinal microbiota and serum metabolomics analyses indicated that HXZQ altered the gut microbial composition and the abundance of 29 serum metabolites in CAC mice. Additionally, HXZQ activated the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) signaling pathway and increased the levels of antioxidants such as catalase (CAT), heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductases-1 (NQO-1), and superoxide dismutase-1 (SOD-1). HXZQ inhibited the activation of the nuclear factor kappa-B (NF-κB) signaling pathway and decreased the expression of NLR family pyrin domain containing 3 (NLRP3) by inhibiting the phosphorylation of inhibitor of nuclear factor kappa-B (IκB), inhibitor of nuclear factor kappa-B kinase (IKK), and NF-κB. In conclusion, HXZQ alleviated CAC in mice by modulating the intestinal microbiota and metabolism, activating Nrf2-mediated antioxidant response, and inhibiting NF-κB-mediated NLRP3 inflammasome activation against inflammation. The present data provide a reference for the use of HXZQ as a therapeutic or combination agent for clinical CAC treatment.
Collapse
Affiliation(s)
- Mingyuan Dong
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Honghan Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Tianjiao Cao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lanzhou Li
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education ford Eible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Zhen Sun
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education ford Eible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
18
|
Balouchi-Anaraki S, Mohammadsadeghi S, Norouzian M, Rasolmali R, Talei AR, Mehdipour F, Ghaderi A. Expression of Interleukin-21 and Interleukin-21 receptor in lymphocytes derived from tumor-draining lymph nodes of breast cancer. Breast Dis 2022; 41:373-382. [PMID: 36189580 DOI: 10.3233/bd-220013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Interleukin-21 (IL-21) is produced by various cell types inducing positive and negative effects in immunity against tumors. OBJECTIVE To investigate the expression of IL-21 by CD4+T and IL-21 receptor (IL-21R) by B lymphocytes isolated from breast-tumor draining lymph nodes (TDLNs). METHODS Fresh lymph node samples were obtained from 45 patients with breast cancer. To assess IL-21 expression, mononuclear cells were briefly stimulated whereas IL-21R expression was assessed in unstimulated B cells. Cells were stained with antibodies for CD4, IL-21, CD19 and IL-21R and acquired by flow cytometry. RESULTS The frequency of IL-21+CD4+T cells did not show significant association with disease parameters. However, the geometric mean fluorescence intensity (gMFI) of IL-21 in CD4+T cells was significantly lower in patients with grade III tumor than grade I + II (P = 0.042). In non-involved LNs, the intensity of IL-21 was significantly higher in patients with stage II compared with stage III (P = 0.038) and correlated negatively with the number of involved LNs. The frequency of IL-21R+CD19+B cells was significantly higher in grade III than grade I + II (P = 0.037). CONCLUSION The higher intensity of IL-21 in CD4+T cells showed association with good prognosticators in breast cancer and warrants further investigation of the role played by IL-21 in immunity against breast cancer.
Collapse
Affiliation(s)
- Sima Balouchi-Anaraki
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Mohammadsadeghi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Norouzian
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Laboratory Sciences, School of Allied Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Rasolmali
- Department of Pathology, Shiraz Central Hospital, Shiraz, Iran
| | - Abdol-Rasoul Talei
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Mehdipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Krieg C, Weber LM, Fosso B, Marzano M, Hardiman G, Olcina MM, Domingo E, El Aidy S, Mallah K, Robinson MD, Guglietta S. Complement downregulation promotes an inflammatory signature that renders colorectal cancer susceptible to immunotherapy. J Immunother Cancer 2022; 10:e004717. [PMID: 36137652 PMCID: PMC9511657 DOI: 10.1136/jitc-2022-004717] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND AIMS The role of inflammatory immune responses in colorectal cancer (CRC) development and response to therapy is a matter of intense debate. While inflammation is a known driver of CRC, inflammatory immune infiltrates are a positive prognostic factor in CRC and predispose to response to immune checkpoint blockade (ICB) therapy. Unfortunately, over 85% of CRC cases are primarily unresponsive to ICB due to the absence of an immune infiltrate, and even the cases that show an initial immune infiltration can become refractory to ICB. The identification of therapy supportive immune responses in the field has been partially hindered by the sparsity of suitable mouse models to recapitulate the human disease. In this study, we aimed to understand how the dysregulation of the complement anaphylatoxin C3a receptor (C3aR), observed in subsets of patients with CRC, affects the immune responses, the development of CRC, and response to ICB therapy. METHODS We use a comprehensive approach encompassing analysis of publicly available human CRC datasets, inflammation-driven and newly generated spontaneous mouse models of CRC, and multiplatform high-dimensional analysis of immune responses using microbiota sequencing, RNA sequencing, and mass cytometry. RESULTS We found that patients' regulation of the complement C3aR is associated with epigenetic modifications. Specifically, downregulation of C3ar1 in human CRC promotes a tumor microenvironment characterized by the accumulation of innate and adaptive immune cells that support antitumor immunity. In addition, in vivo studies in our newly generated mouse model revealed that the lack of C3a in the colon activates a microbiota-mediated proinflammatory program which promotes the development of tumors with an immune signature that renders them responsive to the ICB therapy. CONCLUSIONS Our findings reveal that C3aR may act as a previously unrecognized checkpoint to enhance antitumor immunity in CRC. C3aR can thus be exploited to overcome ICB resistance in a larger group of patients with CRC.
Collapse
Affiliation(s)
- Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center Charleston, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lukas M Weber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Bruno Fosso
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Marinella Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Gary Hardiman
- School of Biological Sciences and Institute for Global Food Security, Queens University of Belfast, Belfast, UK
| | - Monica M Olcina
- Institute of Radiation Oncology, Medical Research Council Oxford Institute for Radiation Oncology, Oxford, UK
| | - Enric Domingo
- Institute of Radiation Oncology, Medical Research Council Oxford Institute for Radiation Oncology, Oxford, UK
| | - Sahar El Aidy
- Host-microbe Metabolic Interactions, Microbiology, University of Groningen, Groningen, The Netherlands
| | - Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Silvia Guglietta
- Hollings Cancer Center Charleston, Medical University of South Carolina, Charleston, South Carolina, USA
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
20
|
Bhat AA, Nisar S, Singh M, Ashraf B, Masoodi T, Prasad CP, Sharma A, Maacha S, Karedath T, Hashem S, Yasin SB, Bagga P, Reddy R, Frennaux MP, Uddin S, Dhawan P, Haris M, Macha MA. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun (Lond) 2022; 42:689-715. [PMID: 35791509 PMCID: PMC9395317 DOI: 10.1002/cac2.12295] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 04/24/2022] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is a predominant life-threatening cancer, with liver and peritoneal metastases as the primary causes of death. Intestinal inflammation, a known CRC risk factor, nurtures a local inflammatory environment enriched with tumor cells, endothelial cells, immune cells, cancer-associated fibroblasts, immunosuppressive cells, and secretory growth factors. The complex interactions of aberrantly expressed cytokines, chemokines, growth factors, and matrix-remodeling enzymes promote CRC pathogenesis and evoke systemic responses that affect disease outcomes. Mounting evidence suggests that these cytokines and chemokines play a role in the progression of CRC through immunosuppression and modulation of the tumor microenvironment, which is partly achieved by the recruitment of immunosuppressive cells. These cells impart features such as cancer stem cell-like properties, drug resistance, invasion, and formation of the premetastatic niche in distant organs, promoting metastasis and aggressive CRC growth. A deeper understanding of the cytokine- and chemokine-mediated signaling networks that link tumor progression and metastasis will provide insights into the mechanistic details of disease aggressiveness and facilitate the development of novel therapeutics for CRC. Here, we summarized the current knowledge of cytokine- and chemokine-mediated crosstalk in the inflammatory tumor microenvironment, which drives immunosuppression, resistance to therapeutics, and metastasis during CRC progression. We also outlined the potential of this crosstalk as a novel therapeutic target for CRC. The major cytokine/chemokine pathways involved in cancer immunotherapy are also discussed in this review.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Mayank Singh
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Bazella Ashraf
- Department of BiotechnologySchool of Life SciencesCentral University of KashmirGanderbalJammu & Kashmir191201India
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Chandra P. Prasad
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Atul Sharma
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Selma Maacha
- Division of Translational MedicineResearch BranchSidra MedicineDoha26999Qatar
| | | | - Sheema Hashem
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Syed Besina Yasin
- Department of PathologySher‐I‐Kashmir Institute of Medical SciencesSrinagarJammu & Kashmir190011India
| | - Puneet Bagga
- Department of Diagnostic ImagingSt. Jude Children's Research HospitalMemphisTN38105USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision MedicineDepartment of RadiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104USA
| | | | - Shahab Uddin
- Translational Research InstituteHamad Medical CorporationDoha3050Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
- Laboratory Animal Research CenterQatar UniversityDoha2713Qatar
| | - Muzafar A. Macha
- Watson‐Crick Centre for Molecular MedicineIslamic University of Science and TechnologyAwantiporaJammu & Kashmir192122India
| |
Collapse
|
21
|
The Role of Inflammatory Cytokines in the Pathogenesis of Colorectal Carcinoma—Recent Findings and Review. Biomedicines 2022; 10:biomedicines10071670. [PMID: 35884974 PMCID: PMC9312930 DOI: 10.3390/biomedicines10071670] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The inflammatory process plays a significant role in the development of colon cancer (CRC). Intestinal cytokine networks are critical mediators of tissue homeostasis and inflammation but also impact carcinogenesis at all stages of the disease. Recent studies suggest that inflammation is of greater importance in the serrated pathway than in the adenoma-carcinoma pathway. Interleukins have gained the most attention due to their potential role in CRC pathogenesis and promising results of clinical trials. Malignant transformation is associated with the pro-tumorigenic and anti-tumorigenic cytokines. The harmony between proinflammatory and anti-inflammatory factors is crucial to maintaining homeostasis. Immune cells in the tumor microenvironment modulate immune sensitivity and facilitate cancer escape from immune surveillance. Therefore, clarifying the role of underlying cytokine pathways and the effects of their modulation may be an important step to improve the effectiveness of cancer immunotherapy.
Collapse
|
22
|
Leite-Gomes E, Dias AM, Azevedo CM, Santos-Pereira B, Magalhães M, Garrido M, Amorim R, Lago P, Marcos-Pinto R, Pinho SS. Bringing to Light the Risk of Colorectal Cancer in Inflammatory Bowel Disease: Mucosal Glycosylation as a Key Player. Inflamm Bowel Dis 2022; 28:947-962. [PMID: 34849933 DOI: 10.1093/ibd/izab291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Colitis-associated cancer is a major complication of inflammatory bowel disease remaining an important clinical challenge in terms of diagnosis, screening, and prognosis. Inflammation is a driving factor both in inflammatory bowel disease and cancer, but the mechanism underlying the transition from colon inflammation to cancer remains to be defined. Dysregulation of mucosal glycosylation has been described as a key regulatory mechanism associated both with colon inflammation and colorectal cancer development. In this review, we discuss the major molecular mechanisms of colitis-associated cancer pathogenesis, highlighting the role of glycans expressed at gut epithelial cells, at lamina propria T cells, and in serum proteins in the regulation of intestinal inflammation and its progression to colon cancer, further discussing its potential clinical and therapeutic applications.
Collapse
Affiliation(s)
- Eduarda Leite-Gomes
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana M Dias
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Mariana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Mónica Garrido
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Rita Amorim
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Pediatrics Department, Centro Hospitalar e Universitário São João, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Lago
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Ricardo Marcos-Pinto
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Centre for Research in Health Technologies and Information Systems, University of Porto, Portugal
| | - Salomé S Pinho
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Vaghari-Tabari M, Targhazeh N, Moein S, Qujeq D, Alemi F, Majidina M, Younesi S, Asemi Z, Yousefi B. From inflammatory bowel disease to colorectal cancer: what's the role of miRNAs? Cancer Cell Int 2022; 22:146. [PMID: 35410210 PMCID: PMC8996392 DOI: 10.1186/s12935-022-02557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic inflammatory disease with relapse and remission periods. Ulcerative colitis and Crohn's disease are two major forms of the disease. IBD imposes a lot of sufferings on the patient and has many consequences; however, the most important is the increased risk of colorectal cancer, especially in patients with Ulcerative colitis. This risk is increased with increasing the duration of disease, thus preventing the progression of IBD to cancer is very important. Therefore, it is necessary to know the details of events contributed to the progression of IBD to cancer. In recent years, the importance of miRNAs as small molecules with 20-22 nucleotides has been recognized in pathophysiology of many diseases, in which IBD and colorectal cancer have not been excluded. As a result, the effectiveness of these small molecules as therapeutic target is hopefully confirmed. This paper has reviewed the related studies and findings about the role of miRNAs in the course of events that promote the progression of IBD to colorectal carcinoma, as well as a review about the effectiveness of some of these miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Forough Alemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidina
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Tamburini B, La Manna MP, La Barbera L, Mohammadnezhad L, Badami GD, Shekarkar Azgomi M, Dieli F, Caccamo N. Immunity and Nutrition: The Right Balance in Inflammatory Bowel Disease. Cells 2022; 11:cells11030455. [PMID: 35159265 PMCID: PMC8834599 DOI: 10.3390/cells11030455] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an increasingly urgent medical problem that strongly impairs quality of life for patients. A global rise in incidence has been observed over the last few decades, with the highest incidence rates recorded in North America and Europe. Still, an increased incidence has been reported in the last ten years in newly industrialized countries in Asia, including China and India, both with more than one billion inhabitants. These data underline that IBD is an urgent global health problem. In addition, it is estimated that between 20% and 30% of IBD patients will develop colorectal cancer (CRC) within their lifetime and CRC mortality is approximately 50% amongst IBD patients. Although the exact etiology of IBD is still being defined, it is thought to be due to a complex interaction between many factors, including defects in the innate and adaptive immune system; microbial dysbiosis, i.e., abnormal levels of, or abnormal response to, the gastrointestinal microbiome; a genetic predisposition; and several environmental factors. At present, however, it is not fully understood which of these factors are the initiators of inflammation and which are compounders. The purpose of this review is to analyze the complex balance that exists between these elements to maintain intestinal homeostasis and prevent IBD or limit adverse effects on people’s health.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Marco Pio La Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
- Correspondence:
| | - Lidia La Barbera
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Piazza delle Cliniche, 2, 90110 Palermo, Italy;
| | - Leila Mohammadnezhad
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Giusto Davide Badami
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Nadia Caccamo
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|
25
|
Ong CY, Abdalkareem EA, Khoo BY. Functional roles of cytokines in infectious disease associated colorectal carcinogenesis. Mol Biol Rep 2022; 49:1529-1535. [PMID: 34981335 DOI: 10.1007/s11033-021-07006-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Infection processes induce various soluble factors that are carcinogens in humans; therefore, research into the soluble factors of chronic disease released from cells that have been infected with parasites is warranted. Parasitic infections in host cells release high levels of IFNγ. Studies have hypothesised that parasitosis-associated carcinogenesis might be analogous to colorectal cancers developed from inflammatory bowel diseases, whereby various cytokines and chemokines are secreted during chronic inflammation. IL-18 and IL-21 are other factors that might be involved in the development of colorectal cancer in schistosomiasis patients and patients with other infections. IL-21 has profound effects on tumour growth and immunosurveillance of colitis-associated tumourigenesis, thereby emphasising its involvement in the pathogenesis of colorectal cancer. The prominent role of IL-21 in antitumour effects greatly depends on the enhanced cytolytic activity of NK cells and the pathogenic role of IL-21, which is often associated with enhanced risks of cancer and chronic inflammatory processes. As IL-15 is also related to chronic disease, it is believed to also play a role in the antitumour effect of colorectal carcinogenesis. IL-15 generates and maintains long-term CD8+ T cell immunity against T. gondii to control the infection of intracellular pathogens. The lack of IL-15 in mice contributes to the downregulation of the IFNγ-producing CD4+ T cell response against acute T. gondii infection. IL-15 induces hyperplasia and supports the progressive growth of colon cancer via multiple functions. The limited role of IL-15 in the development of NK and CD8+ T cells suggests that there may be other cytokines compensating for the loss of the IL-15 gene.
Collapse
Affiliation(s)
- Ching Yi Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, H53, Jalan Inovasi, 11800, Gelugor, Penang, Malaysia
| | - Eshtiyag Abdalla Abdalkareem
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, H53, Jalan Inovasi, 11800, Gelugor, Penang, Malaysia.,Tropical Medicine Research Institute (TMRI), 1304, El-Gaser Street, Khartoum, Sudan
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, H53, Jalan Inovasi, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
26
|
The Role of Interleukins in the Pathogenesis of Dermatological Immune-Mediated Diseases. Adv Ther 2022; 39:4474-4508. [PMID: 35997892 PMCID: PMC9395905 DOI: 10.1007/s12325-022-02241-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 01/30/2023]
Abstract
Autoimmune inflammatory diseases are primarily characterized by deregulated expression of cytokines, which drive pathogenesis of these diseases. A number of approved and experimental therapies utilize monoclonal antibodies against cytokine proteins. Cytokines can be classified into different families including the interleukins, which are secreted and act on leukocytes, the tumor necrosis factor (TNF) family, as well as chemokine proteins. In this review article, we focus on the interleukin family of cytokines, of which 39 members have been identified to this date. We outline the role of each of these interleukins in the immune system, and various dermatological inflammatory diseases with a focused discussion on the pathogenesis of psoriasis and atopic dermatitis. In addition, we describe the roles of various interleukins in psychiatric, cardiovascular, and gastrointestinal comorbidities. Finally, we review clinical efficacy and safety data from emerging late-phase anti-interleukin therapies under development for psoriasis and atopic dermatitis. Collectively, additional fundamental and clinical research remains necessary to fully elucidate the roles of various interleukin proteins in the pathogenesis of inflammatory dermatologic diseases, and treatment outcomes in patients.
Collapse
|
27
|
Porter RJ, Arends MJ, Churchhouse AMD, Din S. Inflammatory Bowel Disease-Associated Colorectal Cancer: Translational Risks from Mechanisms to Medicines. J Crohns Colitis 2021; 15:2131-2141. [PMID: 34111282 PMCID: PMC8684457 DOI: 10.1093/ecco-jcc/jjab102] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cumulative impact of chronic inflammation in patients with inflammatory bowel diseases predisposes to the development of inflammatory bowel disease-associated colorectal cancer [IBD-CRC]. Inflammation can induce mutagenesis, and the relapsing-remitting nature of this inflammation, together with epithelial regeneration, may exert selective pressure accelerating carcinogenesis. The molecular pathogenesis of IBD-CRC, termed the 'inflammation-dysplasia-carcinoma' sequence, is well described. However, the immunopathogenesis of IBD-CRC is less well understood. The impact of novel immunosuppressive therapies, which aim to achieve deep remission, is mostly unknown. Therefore, this timely review summarizes the clinical context of IBD-CRC, outlines the molecular and immunological basis of disease pathogenesis, and considers the impact of novel biological therapies.
Collapse
Affiliation(s)
- Ross J Porter
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, UK
- NHS Lothian Edinburgh IBD Unit, Western General Hospital, UK
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, Institute of Cancer & Genetics, Western General Hospital, University of Edinburgh, UK
| | | | - Shahida Din
- NHS Lothian Edinburgh IBD Unit, Western General Hospital, UK
| |
Collapse
|
28
|
Kazemi M, Peymani M. Expression of Th17 axis as a biomarker panel in diagnosis and prognosis of colorectal cancer. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
KDP, a Lactobacilli Product from Kimchi, Enhances Mucosal Immunity by Increasing Secretory IgA in Mice and Exhibits Antimicrobial Activity. Nutrients 2021; 13:nu13113936. [PMID: 34836191 PMCID: PMC8618749 DOI: 10.3390/nu13113936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
The potential of KDP, a lactic acid bacterial strain of Lactobacillus sakei, to enhance the production of mucosal specific immunoglobulin A (IgA) in mice and thereby enhance gut mucosal immunity was examined. KDP is composed of dead cells isolated from the Korean traditional food kimchi. Female BALB/c mice orally received 0.25 mg KDP once daily for 5 weeks and were co-administrated ovalbumin (OVA) for negative control and cholera toxin for positive control. Mice administered KDP exhibited increased secretory IgA (sIgA) contents in the small intestine, Peyer’s patches, serum, colon, and lungs as examined by ELISA. KDP also significantly increased the gene expression of Bcl-6, IL-10, IL-12p40, IL-21, and STAT4. In addition, KDP acted as a potent antioxidant, as indicated by its significant inhibitory effects in the range of 16.5–59.4% for DPPH, nitric oxide, maximum total antioxidant capacity, and maximum reducing power. Finally, KDP exhibited potent antimicrobial activity as evidenced by a significant decrease in the growth of 7 samples of gram-negative and gram-positive bacteria and Candida albicans. KDP’s adjuvant effect is shown to be comparable to that of cholera toxin. We conclude that KDP can significantly enhance the intestine’s secretory immunity to OVA, as well as act as a potent antioxidant and antimicrobial agent. These results suggest that orally administered KDP should be studied in clinical trials for antigen-specific IgA production.
Collapse
|
30
|
Asao H. Interleukin-21 in Viral Infections. Int J Mol Sci 2021; 22:ijms22179521. [PMID: 34502427 PMCID: PMC8430989 DOI: 10.3390/ijms22179521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-21 is a cytokine that affects the differentiation and function of lymphoid and myeloid cells and regulates both innate and adaptive immune responses. In addition to regulating the immune response to tumor and viral infections, IL-21 also has a profound effect on the development of autoimmune and inflammatory diseases. IL-21 is produced mainly from CD4+ T cells-in particular, follicular helper T (Tfh) cells-which have a great influence on the regulation of antibody production. It is also an important cytokine for the activation of CD8+ T cells, and its role in recovering the function of CD8+ T cells exhausted by chronic microbial infections and cancer has been clarified. Thus, IL-21 plays an extremely important role in viral infections, especially chronic viral infections. In this review, I will introduce the findings to date on how IL-21 is involved in some typical viral infections and the potential of treating viral diseases with IL-21.
Collapse
Affiliation(s)
- Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata City 990-9585, Japan
| |
Collapse
|
31
|
Santiago-López L, Hernández-Mendoza A, Vallejo-Cordoba B, Wall-Medrano A, González-Córdova AF. Th17 immune response in inflammatory bowel disease: Future roles and opportunities for lactic acid bacteria and bioactive compounds released in fermented milk. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Zhao Y, Luan H, Jiang H, Xu Y, Wu X, Zhang Y, Li R. Gegen Qinlian decoction relieved DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell homeostasis via suppressing IL-6/JAK2/STAT3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153519. [PMID: 33640781 DOI: 10.1016/j.phymed.2021.153519] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Gegen Qinlian decoction (GQ) is a traditional Chinese herbal prescription that has been widely used for the treatment of bacterial dysentery and enteric typhoid fever. Recently, GQ has been clinically reported to be a potential candidate for the treatment of ulcerative colitis (UC). However, the immunoregulatory function of GQ in the treatment of UC has not been fully elucidated. PURPOSE This study focused on the role of immune imbalance in the pathogenesis of UC and the immunomodulatory effect of GQ in the treatment of UC. METHODS The UC model was established by treating female mice with 3.0% dextran sulfate sodium (DSS) for 7 days, and GQ was orally administered at dosages of 1.5 and 7.5 g/kg/day. Inflammatory factors were detected by ELISA and qRT-PCR. Treg and Th17 cell dysregulation was analyzed by qRT-PCR, immunohistochemistry and flow cytometry. Proteins related to IL-6/JAK2/STAT3 signaling were detected by western blotting. RESULTS GQ significantly alleviated the symptoms of UC mice and suppressed the activity of myeloperoxidase (MPO). Furthermore, the production of proinflammatory factors, such as IL-1β, TNF-α and IL-6, was dramatically reduced after GQ administration. Furthermore, GQ improved the infiltration of Treg and Th17 cells into the colons and decreased the expression of inflammatory factors, such as TGF-β1 and IL-17. The frequencies of Treg and Th17 cells in the Peyer's patches and spleen were reduced by GQ administration; however, GQ had no significant regulatory effect on normal mice. The western blotting results showed that GQ markedly suppressed the phosphorylation of JAK2 and STAT3 and decreased the transcription function of phosphorylated STAT3. CONCLUSIONS Taken together, these results indicated that GQ alleviated DSS-induced UC by suppressing IL-6/JAK2/STAT3 signaling to restore Treg and Th17 cell homeostasis in colonic tissue.
Collapse
Affiliation(s)
- Yaxing Zhao
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Haofan Luan
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Hua Jiang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Yingmei Xu
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiaojun Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China.
| | - Ruiyan Li
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China.
| |
Collapse
|
33
|
Stolfi C, Pallone F, Macdonald TT, Monteleone G. Interleukin-21 in cancer immunotherapy: Friend or foe? Oncoimmunology 2021; 1:351-354. [PMID: 22737612 PMCID: PMC3382872 DOI: 10.4161/onci.19122] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Interleukin (IL)-21, a cytokine produced by activated conventional CD4+ T lymphocytes and Natural Killer T cells, drives anti-tumor immunity in the skin and kidney. However IL-21 is also pro-inflammatory in many tissues and promotes colitis-associated colon cancer. Understanding the biology of IL-21 in these different situations is needed to ensure maximal therapeutic benefit.
Collapse
Affiliation(s)
- Carmine Stolfi
- Department of Internal Medicine; University of Tor Vergata; Rome, Italy
| | | | | | | |
Collapse
|
34
|
Kesselring R, Jauch D, Fichtner-Feigl S. Interleukin 21 impairs tumor immunosurveillance of colitis-associated colorectal cancer. Oncoimmunology 2021; 1:537-538. [PMID: 22754778 PMCID: PMC3382907 DOI: 10.4161/onci.19407] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The pathogenesis of colitis-associated colorectal cancer is strongly influenced by immune cells, cytokines and other immune mediators present in the inflamed colon. Current research has emerged that T helper cell associated cytokines play a prominent role in tumor growth. In our recent manuscript we have revealed that the Th17 associated cytokine IL-21 prominently influences tumor development and immunosurveillance of colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Rebecca Kesselring
- Laboratory of Chronic Immunopathology; Department of Surgery; University Medical Center Regensburg; Regensburg, Germany
| | | | | |
Collapse
|
35
|
Di Grazia A, Marafini I, Pedini G, Di Fusco D, Laudisi F, Dinallo V, Rosina E, Stolfi C, Franzè E, Sileri P, Sica G, Monteleone G, Bagni C, Monteleone I. The Fragile X Mental Retardation Protein Regulates RIPK1 and Colorectal Cancer Resistance to Necroptosis. Cell Mol Gastroenterol Hepatol 2020; 11:639-658. [PMID: 33091622 PMCID: PMC7806864 DOI: 10.1016/j.jcmgh.2020.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS The fragile X mental retardation protein (FMRP) affects multiple steps of the mRNA metabolism during brain development and in different neoplastic processes. However, the contribution of FMRP in colon carcinogenesis has not been investigated. METHODS FMR1 mRNA transcript and FMRP protein expression were analyzed in human colon samples derived from patients with sporadic colorectal cancer (CRC) and healthy subjects. We used a well-established mouse model of sporadic CRC induced by azoxymethane to determine the possible role of FMRP in CRC. To address whether FMRP controls cancer cell survival, we analyzed cell death pathway in CRC human epithelial cell lines and in patient-derived colon cancer organoids in presence or absence of a specific FMR1 antisense oligonucleotide or siRNA. RESULTS We document a significant increase of FMRP in human CRC relative to non-tumor tissues. Next, using an inducible mouse model of CRC, we observed a reduction of colonic tumor incidence and size in the Fmr1 knockout mice. The abrogation of FMRP induced spontaneous cell death in human CRC cell lines activating the necroptotic pathway. Indeed, specific immunoprecipitation experiments on human cell lines and CRC samples indicated that FMRP binds receptor-interacting protein kinase 1 (RIPK1) mRNA, suggesting that FMRP acts as a regulator of necroptosis pathway through the surveillance of RIPK1 mRNA metabolism. Treatment of human CRC cell lines and patient-derived colon cancer organoids with the FMR1 antisense resulted in up-regulation of RIPK1. CONCLUSIONS Altogether, these data support a role for FMRP in controlling RIPK1 expression and necroptotic activation in CRC.
Collapse
Affiliation(s)
- Antonio Di Grazia
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Eleonora Rosina
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Pierpaolo Sileri
- Department of Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - Giuseppe Sica
- Department of Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy; Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy.
| |
Collapse
|
36
|
Gao J, Cao H, Zhang Q, Wang B. The effect of intermittent hypoxia and fecal microbiota of OSAS on genes associated with colorectal cancer. Sleep Breath 2020; 25:1075-1087. [PMID: 33029691 PMCID: PMC8195781 DOI: 10.1007/s11325-020-02204-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022]
Abstract
Purpose Colorectal cancer (CRC) is one of the common causes of cancer death worldwide. Obstructive sleep apnea syndrome (OSAS), sharing many risk factors in common with CRC, is prevalent among CRC patients. OSAS may promote the CRC development independently but the mechanism is still unknown. Intermittent hypoxia (IH) is one of the characteristics of OSAS, and hypoxia may influence the genes associated with CRC. Intestinal microbiota plays important role in CRC carcinogenesis, and OSAS patients have been shown to have intestinal microbiota dysbiosis. We hypothesized that IH and intestinal microbiota dysbiosis may be involved for CRC in patients with OSAS. Methods We established precancerous cell models of CRC with Immorto-Min colonic epithelial (IMCE) cells. First, the cells were exposed to IH in a special chamber for 4 h, 8 h, and 12 h. Feces from 6 patients with OSAS and 6 healthy controls were collected and made into sterile fecal fluid for incubation with IMCE cells for 12 h. The cells were then exposed to IH for 4 h, 8 h, and 12 h. After IH exposure, the expressions of genes and inflammation cytokines associated with CRC, such as β-catenin, STAT3, HIF-1α, IL-6, TNF-α, c-myc, and cyclinD1, were tested. Results IH activated the expression of HIF-1α and STAT3 both in mRNA and protein level (HIF-1α: P = 0.015 for mRNA level, P = 0.027 for protein level; STAT3: P = 0.023 for mRNA level, P = 0.023 for protein level), and promoted p-STAT3 shifting to the nucleus (P = 0.023). The mRNA of β-catenin (P = 0.022) and cyclinD1 (P = 0.023) was elevated, but there was no change for the β-catenin protein in the nucleus. Gut microbiota of OSAS patients promoted the expression of STAT3 (protein level: 0 h: P = 0.037; 4 h: P = 0.046; 8 h: P = 0.049; 12 h: P = 0.037), promoted p-STAT3 (4 h: P = 0.049; 8 h: P = 0.046; 12 h: P = 0.046) shifting to the nucleus, and also elevated the expression of IL-6 and TNF-α in mRNA level at 4 h (IL-6: P = 0.037, TNF-α: P = 0.037) and 8 h (IL-6: P = 0.037, TNF-α: P = 0.037). The protein of β-catenin in the nucleus was not affected by IH and gut microbiota from OSAS. Conclusions Our study demonstrated that IH and gut microbiota of patients with OSAS activated HIF-1α expression and STAT3 pathway in IMCE cells, with no influence on β-catenin pathway, which suggested that IH, STAT3 pathway, chronic inflammation, and intestinal microbiota dysbiosis may be involved in CRC carcinogenesis correlated with OSAS These findings must be interpreted cautiously and further research is necessary to clarify the causative steps in CRC development.
Collapse
Affiliation(s)
- Jia Gao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, No.154, Anshan Road, Heping District, Tianjin, China.
| |
Collapse
|
37
|
Chabab G, Barjon C, Bonnefoy N, Lafont V. Pro-tumor γδ T Cells in Human Cancer: Polarization, Mechanisms of Action, and Implications for Therapy. Front Immunol 2020; 11:2186. [PMID: 33042132 PMCID: PMC7524881 DOI: 10.3389/fimmu.2020.02186] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor immune microenvironment contributes to tumor initiation, progression and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of γ and δ chains (γδ T cells) are of particular interest. Indeed, γδ T cells contribute to the immune response against many cancers, notably through their powerful effector functions that lead to the elimination of tumor cells and the recruitment of other immune cells. However, their presence in the tumor microenvironment has been associated with poor prognosis in various solid cancers (breast, colon and pancreatic cancer), suggesting that γδ T cells also display pro-tumor activities. In this review, we outline the current evidences of γδ T cell pro-tumor functions in human cancer. We also discuss the factors that favor γδ T cell polarization toward a pro-tumoral phenotype, the characteristics and functions of such cells, and the impact of pro-tumor subsets on γδ T cell-based therapies.
Collapse
Affiliation(s)
- Ghita Chabab
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Clément Barjon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Nathalie Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Virginie Lafont
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
38
|
Li T, Wang C, Liu Y, Li B, Zhang W, Wang L, Yu M, Zhao X, Du J, Zhang J, Dong Z, Jiang T, Xie R, Ma R, Fang S, Zhou J, Shi J. Neutrophil Extracellular Traps Induce Intestinal Damage and Thrombotic Tendency in Inflammatory Bowel Disease. J Crohns Colitis 2020; 14:240-253. [PMID: 31325355 DOI: 10.1093/ecco-jcc/jjz132] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Despite the presence of neutrophil extracellular traps [NETs] in inflamed colon having been confirmed, the role of NETs, especially the circulating NETs, in the progression and thrombotic tendency of inflammatory bowel disease [IBD] remains elusive. We extended our previous study to prove that NETs constitute a central component in the progression and prothrombotic state of IBD. METHODS In all 48 consecutive patients with IBD were studied. Acute colitis was induced by the treatment of C57BL/6 mice with 3.5% dextran sulphate sodium [DSS] in drinking water for 6 days. Peripheral blood neutrophils and sera were collected from IBD patients and murine colitis models. Exposed phosphatidylserine [PS] was analysed with flow cytometry and confocal microscopy. Procoagulant activity was evaluated using clotting time, purified coagulation complex, and fibrin formation assays. RESULTS We observed higher plasma NET levels and presence of NETs in colon tissue in patients with active IBD. More importantly, NETs were induced in mice with DSS colitis, and inhibition of NET release attenuated colitis as well as colitis-associated tumorigenesis. NET degradation through DNase administration decreased cytokine levels during DSS-induced colitis. In addition, DNase treatment also significantly attenuated the accelerated thrombus formation and platelet activation observed in DSS-induced colitis. NETs triggered PS-positive microparticle release and PS exposure on platelets and endothelial cells partially through TLR2 and TLR4, converting them to a procoagulant phenotype. CONCLUSIONS NETs exacerbate colon tissue damage and drive thrombotic tendency during active IBD. Strategies directed against NET formation may offer a potential therapeutic approach for the treatment of IBD.
Collapse
Affiliation(s)
- Tao Li
- Department of Hematology, the First Hospital, Harbin Medical University, Nangang District, Harbin, PR, China.,Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang, China
| | - Chunxu Wang
- Department of Hematology, the First Hospital, Harbin Medical University, Nangang District, Harbin, PR, China
| | - Yingmiao Liu
- Department of Stomatology of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Baorong Li
- Department of Stomatology of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Wujian Zhang
- Department of General Surgery of the First Hospital, Harbin Medical University, Heilongjiang, China
| | - Lixiu Wang
- Department of Cardiology of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Muxin Yu
- Department of Hematology, the First Hospital, Harbin Medical University, Nangang District, Harbin, PR, China
| | - Xinyi Zhao
- Department of Cardiology of the Second Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Jingwen Du
- Department of Hematology, the First Hospital, Harbin Medical University, Nangang District, Harbin, PR, China
| | - Jinming Zhang
- Department of Gastroenterology of the Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Zengxiang Dong
- Department of Cardiology of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Tao Jiang
- Department of General Surgery of the First Hospital, Harbin Medical University, Heilongjiang, China
| | - Rui Xie
- Department of Oncology of The Third Hospital, Harbin Medical University, Heilongjiang, China
| | - Ruishuang Ma
- Department of Oncology of The Third Hospital, Harbin Medical University, Heilongjiang, China
| | - Shaohong Fang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Heilongjiang, China
| | - Jin Zhou
- Department of Hematology, the First Hospital, Harbin Medical University, Nangang District, Harbin, PR, China
| | - Jialan Shi
- Department of Hematology, the First Hospital, Harbin Medical University, Nangang District, Harbin, PR, China.,Medicine Departments of Surgery, Brigham and Women's Hospital, VA Boston Healthcare System and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Chabab G, Bonnefoy N, Lafont V. IL-21 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1240:73-82. [PMID: 32060889 DOI: 10.1007/978-3-030-38315-2_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IL-21 is an immunomodulatory cytokine produced by natural killer (NK) cells and T cells that has pleiotropic roles in immune and nonimmune cells. IL-21 can modulate innate and specific immunity activities. It is a potent stimulator of T and natural killer cell-mediated antitumor immunity but also has pro-inflammatory functions in many tissues and is involved in oncogenesis. It is important to understand IL-21 biology in these different situations to ensure the maximal benefit of therapeutic strategies targeting this cytokine. This chapter summarizes IL-21 characteristics and signaling, its role in immune system components, and its use in cancer immunotherapies.
Collapse
Affiliation(s)
- Ghita Chabab
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Nathalie Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Virginie Lafont
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
| |
Collapse
|
40
|
Jinushi M, Baghdadi M. Role of Innate Immunity in Cancers and Antitumor Response. CANCER IMMUNOLOGY 2020:11-28. [DOI: 10.1007/978-3-030-30845-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Solaymani-Mohammadi S, Eckmann L, Singer SM. Interleukin (IL)-21 in Inflammation and Immunity During Parasitic Diseases. Front Cell Infect Microbiol 2019; 9:401. [PMID: 31867283 PMCID: PMC6904299 DOI: 10.3389/fcimb.2019.00401] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
Parasitic diseases cause significant morbidity and mortality in the developing and underdeveloped countries. No efficacious vaccines are available against most parasitic diseases and there is a critical need for developing novel vaccine strategies for care. IL-21 is a pleiotropic cytokine whose functions in protection and immunopathology during parasitic diseases have been explored in limited ways. IL-21 and its cognate receptor, IL-21R, are highly expressed in parasitized organs of infected humans as well in murine models of the human parasitic diseases. Prior studies have indicated the ability of the IL-21/IL-21R signaling axis to regulate the effector functions (e.g., cytokine production) of T cell subsets by enhancing the expression of T-bet and STAT4 in human T cells, resulting in an augmented production of IFN-γ. Mice deficient for either IL-21 (Il21−/−) or IL-21R (Il21r−/−) showed significantly reduced inflammatory responses following parasitic infections as compared with their WT counterparts. Targeting the IL-21/IL-21R signaling axis may provide a novel approach for the development of new therapeutic agents for the prevention of parasite-induced immunopathology and tissue destruction.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, United States
| |
Collapse
|
42
|
Interleukin 21 Receptor/Ligand Interaction Is Linked to Disease Progression in Pancreatic Cancer. Cells 2019; 8:cells8091104. [PMID: 31540511 PMCID: PMC6770770 DOI: 10.3390/cells8091104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) displays a marked fibro-inflammatory microenvironment in which infiltrated immune cells fail to eliminate the tumor cells and often—rather paradoxically—promote tumor progression. Of special interest are tumor-promoting T cells that assume a Th17-like phenotype because their presence in PDAC tissue is associated with a poor prognosis. In that context, the role of IL-21, a major cytokine released by Th17-like cells, was assessed. In all tissue samples (n = 264) IL-21+ immune cells were detected by immunohistochemistry and high density of those cells was associated with poor prognosis. In the majority of patients (221/264), tumor cells expressed the receptor for IL-21 (IL-21R) and also a downstream target of IL-21, Blimp-1 (199/264). Blimp-1 expression closely correlated with IL-21R expression and multivariate analysis revealed that expression of both IL-21R and Blimp-1 was associated with shorter survival time of the patients. In vitro data using pancreatic tumor cells lines provided a possible explanation: IL-21 activated ERK and STAT3 pathways and upregulated Blimp-1. Moreover, IL-21 increased invasion of tumor cell lines in a Blimp-1-dependent manner. As an in vivo correlate, an avian xenograft model was used. Here again Blimp-1 expression was significantly upregulated in IL-21 stimulated tumor cells. In summary, our data showed an association of IL-21+ immune cell infiltration and IL-21 receptor expression in PDAC with poor survival, most likely due to an IL-21-mediated promotion of tumor cell invasion and enhanced colony formation, supporting the notion of the tumor-promoting abilities of the tumor microenvironment.
Collapse
|
43
|
Chen F, Li Z, Deng C, Yan H. Integration analysis for novel lncRNA markers predicting tumor recurrence in human colon adenocarcinoma. J Transl Med 2019; 17:299. [PMID: 31470869 PMCID: PMC6717325 DOI: 10.1186/s12967-019-2049-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/25/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Numerous evidence has suggested that long non-coding RNA (lncRNA) acts an important role in tumor biology. This study focuses on the identification of novel prognostic lncRNA biomarkers predicting tumor recurrence in human colon adenocarcinoma. METHODS We obtained the research data from The Cancer Genome Atlas (TCGA) database. The interaction among different expressed lncRNA, miRNA and mRNA markers between colon adenocarcinoma patients with and without tumor recurrence were verified with miRcode, starBase and miRTarBase databases. We established the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network based on the verified association between the selected markers. We performed the functional enrichment analysis to obtain better understanding of the selected lncRNAs. Then we use multivariate logistic regression to identify the prognostic lncRNA markers with covariates. We also generated a nomogram predicting tumor recurrence risk based on the identified lncRNA biomarkers and clinical covariates. RESULTS We included 12,727 lncRNA, 1881 miRNA and 47,761 mRNA profiling and clinical features for 113 colon adenocarcinoma patients obtained from the TCGA database. After filtration, we used 37 specific lncRNAs, 60 miRNAs and 148 mRNAs in the ceRNA network analysis. We identified five lncRNAs as prognostic lncRNA markers predicting tumor recurrence in colon adenocarcinoma, in which four of them were identified for the first time. Finally, we generated a nomogram illustrating the association between the identified lncRNAs and the tumor recurrence risk in colon adenocarcinoma. CONCLUSIONS The four newly identified lncRNA biomarkers might be potential prognostic biomarkers predicting tumor recurrence in colon adenocarcinoma. We recommend that further clinical and fundamental researches be conducted on the identified lncRNA markers.
Collapse
Affiliation(s)
- Fangyao Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta Xilu Road, Xi’an, 710061 Shaanxi China
| | - Zhe Li
- First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta Xilu Road, Xi’an, 710061 Shaanxi China
| | - Changyu Deng
- Department of Preventive Medicine, Shantou University Medical College, 22 Xinling Road, Jinping District, Shantou, 515041 Guangdong China
| | - Hong Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta Xilu Road, Xi’an, 710061 Shaanxi China
| |
Collapse
|
44
|
Araki A, Jin L, Nara H, Takeda Y, Nemoto N, Gazi MY, Asao H. IL-21 Enhances the Development of Colitis-Associated Colon Cancer: Possible Involvement of Activation-Induced Cytidine Deaminase Expression. THE JOURNAL OF IMMUNOLOGY 2019; 202:3326-3333. [DOI: 10.4049/jimmunol.1800550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
|
45
|
Cancer testis antigen 55 deficiency attenuates colitis-associated colorectal cancer by inhibiting NF-κB signaling. Cell Death Dis 2019; 10:304. [PMID: 30944312 PMCID: PMC6447546 DOI: 10.1038/s41419-019-1537-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
Colitis-associated cancer (CAC), a prototype of inflammation-associated cancer, is one of the most common gastrointestinal tumors. As a potential cancer testis antigen (CT antigen), cancer testis antigen 55 (CT55) is expressed in different tumors and normal testes. However, its role in CAC remains unknown. Here, we identified CT55 as a new potent promoter of CAC. We discovered that Ct55 deficiency alleviated inflammatory responses, decreased cell proliferation and colitis-associated tumorigenesis in an azoxymethane/dextran sulfate sodium (AOM/DSS) mouse model. Mechanistically, CT55 acts as an accelerator of tumor necrosis factor (TNF)-α-induced nuclear factor-κB (NF-κB) signaling. Upon stimulation with TNF-α, CT55 interacts with the IκB kinase (IKK) complex, which increases the phosphorylation of IKKα/β and activates IKK–p65 signaling, while knockout of CT55 blocks IKK–p65 signaling. Notably, inhibition of IKK abolished the positive effect of CT55 on NF-κB activation. Collectively, our findings strongly indicate that CT55 deficiency suppresses the development of CAC and that the CT55-TNF-α-induced NF-κB axis may represent a promising target for CAC therapy.
Collapse
|
46
|
Solaymani-Mohammadi S, Berzofsky JA. Interleukin 21 collaborates with interferon-γ for the optimal expression of interferon-stimulated genes and enhances protection against enteric microbial infection. PLoS Pathog 2019; 15:e1007614. [PMID: 30818341 PMCID: PMC6413951 DOI: 10.1371/journal.ppat.1007614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/12/2019] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
Abstract
The mucosal surface of the intestinal tract represents a major entry route for many microbes. Despite recent progress in the understanding of the IL-21/IL-21R signaling axis in the generation of germinal center B cells, the roles played by this signaling pathway in the context of enteric microbial infections is not well-understood. Here, we demonstrate that Il21r-/- mice are more susceptible to colonic microbial infection, and in the process discovered that the IL-21/IL-21R signaling axis surprisingly collaborates with the IFN-γ/IFN-γR signaling pathway to enhance the expression of interferon-stimulated genes (ISGs) required for protection, via amplifying activation of STAT1 in mucosal CD4+ T cells in a murine model of Citrobacter rodentium colitis. As expected, conditional deletion of STAT3 in CD4+ T cells indicated that STAT3 also contributed importantly to host defense against C. rodentium infection in the colon. However, the collaboration between IL-21 and IFN-γ to enhance the phosphorylation of STAT1 and upregulate ISGs was independent of STAT3. Unveiling this previously unreported crosstalk between these two cytokine networks and their downstream genes induced will provide insight into the development of novel therapeutic targets for colonic infections, inflammatory bowel disease, and promotion of mucosal vaccine efficacy.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (SSM); (JAB)
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail: (SSM); (JAB)
| |
Collapse
|
47
|
Defective IgA response to atypical intestinal commensals in IL-21 receptor deficiency reshapes immune cell homeostasis and mucosal immunity. Mucosal Immunol 2019; 12:85-96. [PMID: 30087442 PMCID: PMC6301133 DOI: 10.1038/s41385-018-0056-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/31/2018] [Indexed: 02/04/2023]
Abstract
Despite studies indicating the effects of IL-21 signaling in intestinal inflammation, its roles in intestinal homeostasis and infection are not yet clear. Here, we report potent effects of commensal microbiota on the phenotypic manifestations of IL-21 receptor deficiency. IL-21 is produced highly in the small intestine and appears to be critical for mounting an IgA response against atypical commensals such as segmented filamentous bacteria and Helicobacter, but not to the majority of commensals. In the presence of these atypical commensals, IL-21R-deficient mice exhibit reduced numbers of germinal center and IgA+ B cells and expression of activation-induced cytidine deaminase in Peyer's patches as well as a significant decrease in small intestine IgA+ plasmablasts and plasma cells, leading to higher bacterial burdens and subsequent expansion of Th17 and Treg cells. These microbiota-mediated secondary changes in turn enhance T cell responses to an oral antigen and strikingly dampen Citrobacter rodentium-induced immunopathology, demonstrating a complex interplay between IL-21-mediated mucosal immunity, microbiota, and pathogens.
Collapse
|
48
|
Girardi B, Principi M, Pricci M, Giorgio F, Iannone A, Losurdo G, Ierardi E, Di Leo A, Barone M. Chemoprevention of inflammation-related colorectal cancer by silymarin-, acetyl-11-keto-beta-boswellic acid-, curcumin- and maltodextrin-enriched dietetic formulation in animal model. Carcinogenesis 2018; 39:1274-1282. [PMID: 30084990 DOI: 10.1093/carcin/bgy104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
On the basis of preliminary in vitro experience, we assessed whether an enriched nutritional formulation with estrogen receptor (ER)-beta agonist and anti-inflammatory properties may prevent inflammation-associated colorectal cancer (CRC) in an animal model. Study sample enclosed 110 C57BL/6J male mice. Forty underwent dietary supplement safety assessment (20 standard diet and 20 enriched formulation). Seventy were treated with azoxymethane (AOM)/dextran sulfate sodium and divided into two groups: 35 received standard diet and 35 enriched formulation (curcumin, boswellic acids, silymarin and maltodextrins). Miniature colonoscopy demonstrated colitis and solid lesion development in five mice/group 100 days after first AOM injection. Mice were killed after 10 days. In each group, four subgroups received intraperitoneal bromodeoxyuridine (BrdU) injection at 24th/48th/72nd/96th hour before killing. Anti-inflammatory effect and chemoprevention were evaluated by lesion number/size, histological inflammation/dysplasia/neoplasia assessment, pro-inflammatory cytokine messenger RNA (mRNA), ER-beta/ER-alpha/BrdU immunohistochemistry and TUNEL immunofluorescence. Standard formulation assumption was associated with colon shortening compared with enriched one (P = 0.04), which reduced solid lesion number and size (P < 0.001 for both), histological inflammation score (P = 0.04), pro-inflammatory cytokine mRNA expression (P < 0.001), number of low-grade dysplasia (LGD; P = 0.03) and high-grade dysplasia (P < 0.001) areas. CRC was observed in 69.6% in standard and 23.5% in enriched formulation assuming animals (P < 0.001). Enriched formulation induced lower ER-alpha expression in CRC (P < 0.001) and higher ER-beta expression in LGD (P < 0.001) being associated to higher epithelial turnover (BrdU; P<0.001) in normal mucosa and increased apoptosis in LGD and CRC (P < 0.001 for both). Our results are promising for a successful anti-inflammatory and chemopreventive effect of enriched formulation in CRC arising from inflamed tissue.
Collapse
Affiliation(s)
| | - Mariabeatrice Principi
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | | | | | - Andrea Iannone
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Losurdo
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Enzo Ierardi
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Alfredo Di Leo
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Michele Barone
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
49
|
Zheng X, Zhou Y, Yi X, Chen C, Wen C, Ye G, Li X, Tang L, Zhang X, Yang F, Liu G, Li Y, Hou J. IL-21 receptor signaling is essential for control of hepatocellular carcinoma growth and immunological memory for tumor challenge. Oncoimmunology 2018; 7:e1500673. [PMID: 30524894 DOI: 10.1080/2162402x.2018.1500673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a typical inflammation-associated cancer. IL-21 regulates both innate and adaptive immune responses and has key roles in antitumor and antiviral responses. However, the role of IL-21 in HCC development is poorly defined. In the current study, we explored the role of IL-21R signaling in HCC growth by using IL-21R knockout mice and HCC mouse models. We discovered that IL-21R signaling deficiency promoted HCC growth in tumor-bearing mice. We showed that IL-21R deletion reduced T cells infiltration and activation as well as their function but increased the accumulation of myeloid-derived suppressor cells in tumor tissues to enhance HCC growth. Furthermore, loss of IL-21R signaling in tumor-bearing mice resulted in an imbalance of the systemic immune system characterized by decreased antitumor immune cells and increased immunosuppressive cells in the spleen and lymph nodes. In addition, we revealed that IL-21R signaling is critical for the expansion of antitumor immune cells in the memory immune response to tumor rechallenge. Finally, we showed that the transcriptional levels of IL-21 in the peritumoral region and IL-21R within the tumor are associated with survival and recurrence of HCC patients. In conclusion, our study demonstrates that IL-21R signaling is essential for controlling the development of HCC and immunological memory response to tumor challenge.
Collapse
Affiliation(s)
- Xinchun Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Yi
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengcong Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guofu Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyi Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuqiang Yang
- Liver Disease Research Center, The 458th Hospital of PLA, Guangzhou, China
| | - Guangze Liu
- Liver Disease Research Center, The 458th Hospital of PLA, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
Hashemi Goradel N, Heidarzadeh S, Jahangiri S, Farhood B, Mortezaee K, Khanlarkhani N, Negahdari B. Fusobacterium nucleatumand colorectal cancer: A mechanistic overview. J Cell Physiol 2018; 234:2337-2344. [DOI: 10.1002/jcp.27250] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/24/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical BiotechnologySchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehran Iran
| | - Siamak Heidarzadeh
- Department of Microbiology and VirologyZanjan University of Medical SciencesZanjan Iran
| | - Samira Jahangiri
- Department of Bacteriology and VirologySchool of Medicine, Shiraz University of Medical SciencesShiraz Iran
| | - Bagher Farhood
- Department of Medical Physics and RadiologyFaculty of Paramedical Sciences, Kashan University of Medical SciencesKashan Iran
| | - Keywan Mortezaee
- Department of AnatomySchool of Medicine, Kurdistan University of Medical SciencesSanandaj Iran
| | - Neda Khanlarkhani
- Department of AnatomySchool of Medicine, Tehran University of Medical SciencesTehran Iran
| | - Babak Negahdari
- Department of Medical BiotechnologySchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehran Iran
| |
Collapse
|