1
|
Thomas K, Rossaint J, Ludwig N, Mersmann S, Kötting N, Grenzheuser J, Schemmelmann L, Oguama M, Margraf A, Block H, Henke K, Hellenthal K, Mirakaj V, Gerke V, Hansen U, Gäher K, Engelhardt M, Roth J, Eble J, Hub E, Rot A, Alon R, Zarbock A. Alveolar epithelial and vascular CXCR2 mediates transcytosis of CXCL1 in inflamed lungs. Nat Commun 2025; 16:4846. [PMID: 40413164 PMCID: PMC12103508 DOI: 10.1038/s41467-025-60174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/16/2025] [Indexed: 05/27/2025] Open
Abstract
Pulmonary infections are characterized by neutrophil recruitment into the lung driven by chemokine ligands of CXCR2, which is expressed on neutrophils, but also present in non-hematopoietic lung cells, in which its role remains unclear. We hypothesize that CXCR2 in epithelial and endothelial cells contributes to neutrophil recruitment into the lung by modifying the availability of its cognate chemokines in lung alveoli. Using conditional endothelial and epithelial CXCR2 knockout mice, we demonstrate that selective CXCR2 deletion in either compartment impairs neutrophil recruitment into the lung during bacterial pneumonia and reduces bacterial clearance. We show that CXCR2 ablation in epithelial and endothelial cells compromises respective trans-epithelial and trans-endothelial transcytosis of alveolar CXCL1. Mechanistically, CXCR2-mediated CXCL1 endothelial and epithelial cell transcytosis requires the function of Bruton's tyrosine kinase in these cells. In conclusion, CXCR2 plays an important role in alveolar epithelial and endothelial cells, where it mediates cognate chemokine transcytosis, thus actively supporting their activities in neutrophil recruitment to the infected lungs.
Collapse
Affiliation(s)
- Katharina Thomas
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Nadine Ludwig
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sina Mersmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Niklas Kötting
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Julia Grenzheuser
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Lena Schemmelmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Marina Oguama
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Helena Block
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Katharina Henke
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Katharina Hellenthal
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Valbona Mirakaj
- Department of Anaesthesiology and Intensive Care Medicine, University Tübingen, Tübingen, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Uwe Hansen
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Karin Gäher
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Miguel Engelhardt
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Johannes Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Elin Hub
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ronen Alon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany.
| |
Collapse
|
2
|
Xing R, Liu R, Man Y, Liu C, Zhang Y, Gao H, Yang W. MAPK13 phosphorylates PHGDH and promotes its degradation via chaperone-mediated autophagy during liver injury. Cell Discov 2025; 11:15. [PMID: 39962071 PMCID: PMC11832932 DOI: 10.1038/s41421-024-00758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/29/2024] [Indexed: 02/20/2025] Open
Abstract
Drug-induced liver injury (DILI) is the leading cause of acute liver failure and poses a significant clinical challenge in both diagnosis and treatment. Serine synthesis pathway (SSP) links glycolysis to one-carbon cycle and plays an important role in cell homeostasis by regulating substance synthesis, redox homeostasis and gene expression. However, the regulatory mechanism of SSP in DILI remains unclear. Phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme in SSP. Here we show that during DILI, mitogen-activated protein kinase 13 (MAPK13) is activated and then phosphorylates PHGDH at serine 371 upon oxidative stress, which triggers PHGDH protein degradation via chaperone-mediated autophagy (CMA) pathway. PHGDH degradation suppresses SSP and glutathione production, thereby exacerbating DILI and cholestatic liver injury. Importantly, both MAPK13 inhibition and dietary serine supplementation ameliorates these liver injuries. Our finding demonstrates a unique regulatory mechanism of SSP, in which MAPK13 phosphorylates PHGDH and promotes its CMA degradation, establishes its critical role in DILI and cholestatic liver injury, and highlights the therapeutic potential of MAPK13 inhibitor or dietary serine to treat these liver injuries.
Collapse
Affiliation(s)
- Ru Xing
- Key Laboratory of Multi-cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruilong Liu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Yongxiao Man
- Key Laboratory of Multi-cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chen Liu
- Key Laboratory of Multi-cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yajuan Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Gao
- Key Laboratory of Multi-cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Yang
- Key Laboratory of Multi-cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zhang Y, Wu K, Mao D, Iberg CA, Yin-Declue H, Sun K, Wikfors HA, Keeler SP, Li M, Young D, Yantis J, Crouch EC, Chartock JR, Han Z, Byers DE, Brody SL, Romero AG, Holtzman MJ. A first-in-kind MAPK13 inhibitor that can correct stem cell reprogramming and post-injury disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608990. [PMID: 39229202 PMCID: PMC11370402 DOI: 10.1101/2024.08.21.608990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The stress kinase MAPK13 (aka p38δ-MAPK) is an attractive entry point for therapeutic intervention because it regulates the structural remodeling that can develop after epithelial barrier injury in the lung and likely other tissue sites. However, a selective, safe, and effective MAPK13 inhibitor is not yet available for experimental or clinical application. Here we identify a first-in-kind MAPK13 inhibitor using structure-based drug design combined with a screening funnel for cell safety and molecular specificity. This inhibitor (designated NuP-4) down-regulates basal-epithelial stem cell reprogramming, structural remodeling, and pathophysiology equivalently to Mapk13 gene-knockout in mouse and mouse organoid models of post-viral lung disease. This therapeutic benefit persists after stopping treatment as a sign of disease modification and attenuates key aspects of inflammation and remodeling as an indication of disease reversal. Similarly, NuP-4 treatment can directly control cytokine-stimulated growth, immune activation, and mucinous differentiation in human basal-cell organoids. The data thereby provide a new tool and potential fix for long-term stem cell reprogramming after viral injury and related conditions that require MAPK13 induction-activation.
Collapse
Affiliation(s)
- Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Courtney A Iberg
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Huiqing Yin-Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kelly Sun
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Hallie A Wikfors
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ming Li
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna Young
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Erika C Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joshua R Chartock
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Zhenfu Han
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur G Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- NuPeak Therapeutics Inc., St. Louis, MO 63105
| |
Collapse
|
4
|
Wu K, Zhang Y, Mao D, Iberg CA, Yin-Declue H, Sun K, Keeler SP, Wikfors HA, Young D, Yantis J, Austin SR, Byers DE, Brody SL, Crouch EC, Romero AG, Holtzman MJ. MAPK13 controls structural remodeling and disease after epithelial injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596863. [PMID: 38895360 PMCID: PMC11185504 DOI: 10.1101/2024.05.31.596863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
All living organisms are charged with repair after injury particularly at epithelial barrier sites, but in some cases this response leads instead to structural remodeling and long-term disease. Identifying the molecular and cellular control of this divergence is key to disease modification. In that regard, stress kinase control of epithelial stem cells is a rational entry point for study. Here we examine the potential for mitogen-activated protein kinase 13 (MAPK13) regulation of epithelial stem cells using models of respiratory viral injury and post-viral lung disease. We show that Mapk13 gene-knockout mice handle acute infectious illness as expected but are protected against structural remodeling manifest as basal-epithelial stem cell (basal-ESC) hyperplasia-metaplasia, immune activation, and mucinous differentiation. In corresponding cell models, Mapk13-deficiency directly attenuates basal-ESC growth and organoid formation. Extension to human studies shows marked induction/activation of basal-cell MAPK13 in clinical samples of comparable remodeling found in asthma and COPD. Here again, MAPK13 gene-knockdown inhibits human basal-ESC growth in culture. Together, the data identify MAPK13 as a control for structural remodeling and disease after epithelial injury and as a suitable target for down-regulation as a disease-modifying strategy.
Collapse
Affiliation(s)
- Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Courtney A. Iberg
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Huiqing Yin-Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kelly Sun
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P. Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Hallie A. Wikfors
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna Young
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephen R. Austin
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L. Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Erika C. Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur G. Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J. Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- NuPeak Therapeutics Inc., St. Louis, MO 63105
| |
Collapse
|
5
|
Marziali LN, Hwang Y, Palmisano M, Cuenda A, Sim FJ, Gonzalez A, Volsko C, Dutta R, Trapp BD, Wrabetz L, Feltri ML. p38γ MAPK delays myelination and remyelination and is abundant in multiple sclerosis lesions. Brain 2024; 147:1871-1886. [PMID: 38128553 PMCID: PMC11068213 DOI: 10.1093/brain/awad421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/05/2023] [Accepted: 11/12/2023] [Indexed: 12/23/2023] Open
Abstract
Multiple sclerosis is a chronic inflammatory disease in which disability results from the disruption of myelin and axons. During the initial stages of the disease, injured myelin is replaced by mature myelinating oligodendrocytes that differentiate from oligodendrocyte precursor cells. However, myelin repair fails in secondary and chronic progressive stages of the disease and with ageing, as the environment becomes progressively more hostile. This may be attributable to inhibitory molecules in the multiple sclerosis environment including activation of the p38MAPK family of kinases. We explored oligodendrocyte precursor cell differentiation and myelin repair using animals with conditional ablation of p38MAPKγ from oligodendrocyte precursors. We found that p38γMAPK ablation accelerated oligodendrocyte precursor cell differentiation and myelination. This resulted in an increase in both the total number of oligodendrocytes and the migration of progenitors ex vivo and faster remyelination in the cuprizone model of demyelination/remyelination. Consistent with its role as an inhibitor of myelination, p38γMAPK was significantly downregulated as oligodendrocyte precursor cells matured into oligodendrocytes. Notably, p38γMAPK was enriched in multiple sclerosis lesions from patients. Oligodendrocyte progenitors expressed high levels of p38γMAPK in areas of failed remyelination but did not express detectable levels of p38γMAPK in areas where remyelination was apparent. Our data suggest that p38γ could be targeted to improve myelin repair in multiple sclerosis.
Collapse
Affiliation(s)
- Leandro N Marziali
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Yoonchan Hwang
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Marilena Palmisano
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid 28049, Spain
| | - Fraser J Sim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Alberto Gonzalez
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Christina Volsko
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lawrence Wrabetz
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Maria L Feltri
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Università degli studi di Milano, Biometra department and IRCcs Carlo Besta, Milano 20133, Italy
| |
Collapse
|
6
|
Ganguly P, Macleod T, Wong C, Harland M, McGonagle D. Revisiting p38 Mitogen-Activated Protein Kinases (MAPK) in Inflammatory Arthritis: A Narrative of the Emergence of MAPK-Activated Protein Kinase Inhibitors (MK2i). Pharmaceuticals (Basel) 2023; 16:1286. [PMID: 37765094 PMCID: PMC10537904 DOI: 10.3390/ph16091286] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The p38 mitogen-activated protein kinase (p38-MAPK) is a crucial signaling pathway closely involved in several physiological and cellular functions, including cell cycle, apoptosis, gene expression, and responses to stress stimuli. It also plays a central role in inflammation and immunity. Owing to disparate p38-MAPK functions, it has thus far formed an elusive drug target with failed clinical trials in inflammatory diseases due to challenges including hepatotoxicity, cardiac toxicity, lack of efficacy, and tachyphylaxis, which is a brief initial improvement with rapid disease rebound. To overcome these limitations, downstream antagonism of the p38 pathway with a MAPK-activated protein kinase (MAPKAPK, also known as MK2) blockade has demonstrated the potential to abrogate inflammation without the prior recognized toxicities. Such MK2 inhibition (MK2i) is associated with robust suppression of key pro-inflammatory cytokines, including TNFα and IL-6 and others in experimental systems and in vitro. Considering this recent evidence regarding MK2i in inflammatory arthritis, we revisit the p38-MAPK pathway and discuss the literature encompassing the challenges of p38 inhibitors with a focus on this pathway. We then highlight how novel MK2i strategies, although encouraging in the pre-clinical arena, may either show evidence for efficacy or the lack of efficacy in emergent human trials data from different disease settings.
Collapse
Affiliation(s)
| | | | | | | | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK
| |
Collapse
|
7
|
Burciaga SD, Saavedra F, Fischer L, Johnstone K, Jensen ED. Protein kinase D3 conditional knockout impairs osteoclast formation and increases trabecular bone volume in male mice. Bone 2023; 172:116759. [PMID: 37044359 DOI: 10.1016/j.bone.2023.116759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Studies using kinase inhibitors have shown that the protein kinase D (PRKD) family of serine/threonine kinases are required for formation and function of osteoclasts in culture. However, the involvement of individual protein kinase D genes and their in vivo significance to skeletal dynamics remains unclear. In the current study we present data indicating that protein kinase D3 is the primary form of PRKD expressed in osteoclasts. We hypothesized that loss of PRKD3 would impair osteoclast formation, thereby decreasing bone resorption and increasing bone mass. Conditional knockout (cKO) of Prkd3 using a murine Cre/Lox system driven by cFms-Cre revealed that its loss in osteoclast-lineage cells reduced osteoclast differentiation and resorptive function in culture. Examination of the Prkd3 cKO mice showed that bone parameters were unaffected in the femur at 4 weeks of age, but consistent with our hypothesis, Prkd3 conditional knockout resulted in 18 % increased trabecular bone mass in male mice at 12 weeks and a similar increase at 6 months. These effects were not observed in female mice. As a further test of our hypothesis, we asked if Prkd3 cKO could protect against bone loss in a ligature-induced periodontal disease model but did not see any reduction in bone destruction in this system. Together, our data indicate that PRKD3 promotes osteoclastogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Samuel D Burciaga
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Flavia Saavedra
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Lori Fischer
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Karen Johnstone
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Eric D Jensen
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Veazey JM, Wong GS, Eliseeva SI, Smyth TR, Chapman TJ, Lim K, Kim M, Georas SN. Protein kinase D3 promotes neutrophil migration during viral infection. Immunol Cell Biol 2023; 101:130-141. [PMID: 36318273 PMCID: PMC10112008 DOI: 10.1111/imcb.12603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Protein kinase D (PKD) is a serine/threonine kinase family with three isoforms (PKD1-3) that are expressed in most cells and implicated in a wide array of signaling pathways, including cell growth, differentiation, transcription, secretion, polarization and actin turnover. Despite growing interest in PKD, relatively little is known about the role of PKD in immune responses. We recently published that inhibiting PKD limits proinflammatory cytokine secretion and leukocyte accumulation in mouse models of viral infection, and that PKD3 is highly expressed in the murine lung and immune cell populations. Here we focus on the immune-related phenotypes of PKD3 knockout mice. We report that PKD3 is necessary for maximal neutrophil accumulation in the lung following challenge with inhaled polyinosinic:polycytidylic acid, a double-stranded RNA, as well as following influenza A virus infection. Using reciprocal bone marrow chimeras, we found that PKD3 is required in the hematopoietic compartment for optimal neutrophil migration to the lung. Ex vivo transwell and chemokinesis assays confirmed that PKD3-/- neutrophils possess an intrinsic motility defect, partly because of reduced surface expression of CD18, which is critical for leukocyte migration. Finally, the peak of neutrophilia was significantly reduced in PKD3-/- mice after lethal influenza A virus infection. Together, these results demonstrate that PKD3 has an essential, and nonredundant, role in promoting neutrophil recruitment to the lung. A better understanding of the isoform-specific and cell type-specific activities of PKD has the potential to lead to novel therapeutics for respiratory illnesses.
Collapse
Affiliation(s)
- Janelle M Veazey
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Gordon S Wong
- Department of Medicine, Yale New Haven Health, Greenwich Hospital, Greenwich, CT, USA
- Department of Medicine, Pulmonary and Critical Care, University of Rochester, Rochester, NY, USA
| | - Sophia I Eliseeva
- Department of Medicine, Pulmonary and Critical Care, University of Rochester, Rochester, NY, USA
| | - Timothy R Smyth
- Department of Toxicology, University of North Caroline, Chapel Hill, NC, USA
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Timothy J Chapman
- Department of Medicine, Pulmonary and Critical Care, University of Rochester, Rochester, NY, USA
- Merck, Kenilworth, NJ, USA
| | - Kihong Lim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Steve N Georas
- Department of Medicine, Pulmonary and Critical Care, University of Rochester, Rochester, NY, USA
| |
Collapse
|
9
|
Zhu W, Zhang Y, Wang Y. Immunotherapy strategies and prospects for acute lung injury: Focus on immune cells and cytokines. Front Pharmacol 2022; 13:1103309. [PMID: 36618910 PMCID: PMC9815466 DOI: 10.3389/fphar.2022.1103309] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a disastrous condition, which can be caused by a wide range of diseases, such as pneumonia, sepsis, traumas, and the most recent, COVID-19. Even though we have gained an improved understanding of acute lung injury/acute respiratory distress syndrome pathogenesis and treatment mechanism, there is still no effective treatment for acute lung injury/acute respiratory distress syndrome, which is partly responsible for the unacceptable mortality rate. In the pathogenesis of acute lung injury, the inflammatory storm is the main pathological feature. More and more evidences show that immune cells and cytokines secreted by immune cells play an irreplaceable role in the pathogenesis of acute lung injury. Therefore, here we mainly reviewed the role of various immune cells in acute lung injury from the perspective of immunotherapy, and elaborated the crosstalk of immune cells and cytokines, aiming to provide novel ideas and targets for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Wenfang Zhu
- Department of Respiratory Medicine, Anhui Chest Hospital, Hefei, China
| | - Yiwen Zhang
- Department of Respiratory Medicine, Anhui Chest Hospital, Hefei, China,*Correspondence: Yiwen Zhang, ; Yinghong Wang,
| | - Yinghong Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,*Correspondence: Yiwen Zhang, ; Yinghong Wang,
| |
Collapse
|
10
|
Li X, Liu S, Rai KR, Zhou W, Wang S, Chi X, Guo G, Chen JL, Liu S. Initial activation of STAT2 induced by IAV infection is critical for innate antiviral immunity. Front Immunol 2022; 13:960544. [PMID: 36148221 PMCID: PMC9486978 DOI: 10.3389/fimmu.2022.960544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
STAT2 is an important transcription factor activated by interferons (IFNs) upon viral infection and plays a key role in antiviral responses. Interestingly, here we found that phosphorylation of STAT2 could be induced by several viruses at early infection stage, including influenza A virus (IAV), and such initial activation of STAT2 was independent of type I IFNs and JAK kinases. Furthermore, it was observed that the early activation of STAT2 during viral infection was mainly regulated by the RIG-I/MAVS-dependent pathway. Disruption of STAT2 phosphorylation at Tyr690 restrained antiviral response, as silencing STAT2 or blocking STAT2 Y690 phosphorylation suppressed the expression of several interferon-stimulated genes (ISGs), thereby facilitating viral replication. In vitro experiments using overexpression system or kinase inhibitors showed that several kinases including MAPK12 and Syk were involved in regulation of the early phosphorylation of STAT2 triggered by IAV infection. Moreover, when MAPK12 kinase was inhibited, expression of several ISGs was clearly decreased in cells infected with IAV at the early infection stage. Accordingly, inhibition of MAPK12 accelerated the replication of influenza virus in host. These results provide a better understanding of how initial activation of STAT2 and the early antiviral responses are induced by the viral infection.
Collapse
Affiliation(s)
- Xinxin Li
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siya Liu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kul Raj Rai
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenzhuo Zhou
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Wang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chi
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guijie Guo
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shasha Liu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Stefanoska K, Gajwani M, Tan ARP, Ahel HI, Asih PR, Volkerling A, Poljak A, Ittner A. Alzheimer's disease: Ablating single master site abolishes tau hyperphosphorylation. SCIENCE ADVANCES 2022; 8:eabl8809. [PMID: 35857446 PMCID: PMC9258953 DOI: 10.1126/sciadv.abl8809] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/23/2022] [Indexed: 05/22/2023]
Abstract
Hyperphosphorylation of the neuronal tau protein is a hallmark of neurodegenerative tauopathies such as Alzheimer's disease. A central unanswered question is why tau becomes progressively hyperphosphorylated. Here, we show that tau phosphorylation is governed by interdependence- a mechanistic link between initial site-specific and subsequent multi-site phosphorylation. Systematic assessment of site interdependence identified distinct residues (threonine-50, threonine-69, and threonine-181) as master sites that determine propagation of phosphorylation at multiple epitopes. CRISPR point mutation and expression of human tau in Alzheimer's mice showed that site interdependence governs physiologic and amyloid-associated multi-site phosphorylation and cognitive deficits, respectively. Combined targeting of master sites and p38α, the most central tau kinase linked to interdependence, synergistically ablated hyperphosphorylation. In summary, our work delineates how complex tau phosphorylation arises to inform therapeutic and biomarker design for tauopathies.
Collapse
Affiliation(s)
- Kristie Stefanoska
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Corresponding author. (A.I.); (K.S.)
| | - Mehul Gajwani
- Dementia Research Centre, Faculty of Health, Human and Medical Sciences, Macquarie University, Sydney, NSW, Australia
- Monash Biomedical Imaging, Monash University, Clayton,Victoria, Australia
| | - Amanda R. P. Tan
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Holly I. Ahel
- Department of Biomedical Sciences, Faculty of Health, Human and Medical Sciences, Macquarie University, Sydney, NSW, Australia
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Prita R. Asih
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Alexander Volkerling
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Arne Ittner
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Corresponding author. (A.I.); (K.S.)
| |
Collapse
|
12
|
Cai B, Yang L, Do Jung Y, Zhang Y, Liu X, Zhao P, Li J. PTEN: An Emerging Potential Target for Therapeutic Intervention in Respiratory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4512503. [PMID: 35814272 PMCID: PMC9262564 DOI: 10.1155/2022/4512503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a potent tumor suppressor that regulates several key cellular processes, including proliferation, survival, genomic integrity, migration, and invasion, via PI3K-dependent and independent mechanisms. A subtle decrease in PTEN levels or catalytic activity is implicated not only in cancer but also in a wide spectrum of other diseases, including various respiratory diseases. A systemic overview of the advances in the molecular and cellular mechanisms of PTEN involved in the initiation and progression of respiratory diseases may offer novel targets for the development of effective therapeutics for the treatment of respiratory diseases. In the present review, we highlight the novel findings emerging from current research on the role of PTEN expression and regulation in airway pathological conditions such as asthma/allergic airway inflammation, pulmonary hypertension (PAH), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and other acute lung injuries (ALI). Moreover, we discuss the clinical implications of PTEN alteration and recently suggested therapeutic possibilities for restoration of PTEN expression and function in respiratory diseases.
Collapse
Affiliation(s)
- Bangrong Cai
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liu Yang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinguang Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
| | - Peng Zhao
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
- Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
13
|
Hao Y, Wang Z, Wang X, Zhan W, Wu D. OGDH is involved in sepsis induced acute lung injury through the MAPK pathway. J Thorac Dis 2021; 13:5042-5054. [PMID: 34527342 PMCID: PMC8411135 DOI: 10.21037/jtd-21-948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/02/2021] [Indexed: 11/06/2022]
Abstract
Background Acute lung injury (ALI) induced by sepsis is a common cause of death in clinical practice, and there remains a lack of clinical effective treatment. Cecal ligation and puncture (CLP) is a classic animal model of sepsis, which can induce ALI. Studies have shown that in the lung injury cell model, OGDH (oxoglutarate dehydrogenase) transcription is up-regulated, which is a potential therapeutic target for acute pneumonia. The purpose of this study was to confirm the effects of OGDH on lung injury and inflammation in animal and cell models, and to explore its mechanism. Methods By analyzing the GSE16650 gene set, the upregulated OGDH gene was detected in the lung injury cell model. In a sepsis animal model established by CLP and a lung injury cell model, RT-PCR, immunohistochemistry, WB, and other techniques were used to verify the upregulation of OGDH expression, which was then was down-regulated with shRNA to confirm its relationship with ALI. Further, ELISA, RT-PCR, and WB were used to detect the effect of OGDH on the expression of pro-inflammatory factors including IL-1β, IL-6, IL-18, and TNF-α. The downstream pathway of OGDH was predicted using KEGG and GSEA tools and verified by WB and immunofluorescence. Results The results showed OGDH was highly expressed in a lung injury cell model and the lung tissue of ALI mice induced by CLP, and downregulation of OGDH alleviated sepsis induced ALI. In animal models and cell models, the expression of OGDH was positively correlated with the expression of pro-inflammatory factors. OGDH may act through the MAPK pathway. Conclusions Under the pathological condition of sepsis, OGDH amplifies the inflammatory response through the MAPK pathway, releases pro-inflammatory factors, and induces ALI.
Collapse
Affiliation(s)
- Yuewei Hao
- Department of Emergency, Shandong Second Provincial General Hospital, Jinan, China
| | - Zheng Wang
- Prehospital Emergency, Shandong Second Provincial General Hospital, Jinan, China
| | - Xinfang Wang
- Neonatal Intensive Care Unit, Shandong Second Provincial General Hospital, Jinan, China
| | - Wenming Zhan
- Department of Internal Medicine-Cardiovascular, Xishui People's Hospital, Xishui, China
| | - Dianshui Wu
- Department of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, China
| |
Collapse
|
14
|
Loza-Valdes A, Mayer AE, Kassouf T, Trujillo-Viera J, Schmitz W, Dziaczkowski F, Leitges M, Schlosser A, Sumara G. A phosphoproteomic approach reveals that PKD3 controls PKA-mediated glucose and tyrosine metabolism. Life Sci Alliance 2021; 4:4/8/e202000863. [PMID: 34145024 PMCID: PMC8321662 DOI: 10.26508/lsa.202000863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Protein kinase D3 (PKD3) regulates hepatic metabolism in a PKA-dependent manner and reveals many other putative PKD3 targets in the liver. Members of the protein kinase D (PKD) family (PKD1, 2, and 3) integrate hormonal and nutritional inputs to regulate complex cellular metabolism. Despite the fact that a number of functions have been annotated to particular PKDs, their molecular targets are relatively poorly explored. PKD3 promotes insulin sensitivity and suppresses lipogenesis in the liver of animals fed a high-fat diet. However, its substrates are largely unknown. Here we applied proteomic approaches to determine PKD3 targets. We identified more than 300 putative targets of PKD3. Furthermore, biochemical analysis revealed that PKD3 regulates cAMP-dependent PKA activity, a master regulator of the hepatic response to glucagon and fasting. PKA regulates glucose, lipid, and amino acid metabolism in the liver, by targeting key enzymes in the respective processes. Among them the PKA targets phenylalanine hydroxylase (PAH) catalyzes the conversion of phenylalanine to tyrosine. Consistently, we showed that PKD3 is activated by glucagon and promotes glucose and tyrosine levels in hepatocytes. Therefore, our data indicate that PKD3 might play a role in the hepatic response to glucagon.
Collapse
Affiliation(s)
- Angel Loza-Valdes
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alexander E Mayer
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Toufic Kassouf
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jonathan Trujillo-Viera
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Filip Dziaczkowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michael Leitges
- Tier 1, Canada Research Chair in Cell Signaling and Translational Medicine, Division of BioMedical Sciences/Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University of Newfoundland, Health Science Centre, St. Johns, Canada
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Grzegorz Sumara
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany .,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Modulation of Bovine Endometrial Cell Receptors and Signaling Pathways as a Nanotherapeutic Exploration against Dairy Cow Postpartum Endometritis. Animals (Basel) 2021; 11:ani11061516. [PMID: 34071093 PMCID: PMC8224678 DOI: 10.3390/ani11061516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The provision of updated information on the molecular pathogenesis of bovine endometritis with host-pathogen interactions and the possibility of exploring the cellular sensors mechanism in a nanotechnology-based drug delivery system against persistent endometritis were reported in this review. The mechanism of Gram-negative bacteria and their ligands has been vividly explored, with the paucity of research detail on Gram-positive bacteria in bovine endometritis. The function of cell receptors, biomolecules proteins, and sensors were reportedly essential in transferring signals into cell signaling pathways to induce immuno-inflammatory responses by elevating pro-inflammatory cytokines. Therefore, understanding endometrial cellular components and signaling mechanisms across pathogenesis are essential for nanotherapeutic exploration against bovine endometritis. The nanotherapeutic discovery that could inhibit infectious signals at the various cell receptors and signal transduction levels, interfering with transcription factors activation and pro-inflammatory cytokines and gene expression, significantly halts endometritis. Abstract In order to control and prevent bovine endometritis, there is a need to understand the molecular pathogenesis of the infectious disease. Bovine endometrium is usually invaded by a massive mobilization of microorganisms, especially bacteria, during postpartum dairy cows. Several reports have implicated the Gram-negative bacteria in the pathogenesis of bovine endometritis, with information dearth on the potentials of Gram-positive bacteria and their endotoxins. The invasive bacteria and their ligands pass through cellular receptors such as TLRs, NLRs, and biomolecular proteins of cells activate the specific receptors, which spontaneously stimulates cellular signaling pathways like MAPK, NF-kB and sequentially triggers upregulation of pro-inflammatory cytokines. The cascade of inflammatory induction involves a dual signaling pathway; the transcription factor NF-κB is released from its inhibitory molecule and can bind to various inflammatory genes promoter. The MAPK pathways are concomitantly activated, leading to specific phosphorylation of the NF-κB. The provision of detailed information on the molecular pathomechanism of bovine endometritis with the interaction between host endometrial cells and invasive bacteria in this review would widen the gap of exploring the potential of receptors and signal transduction pathways in nanotechnology-based drug delivery system. The nanotherapeutic discovery of endometrial cell receptors, signal transduction pathway, and cell biomolecules inhibitors could be developed for strategic inhibition of infectious signals at the various cell receptors and signal transduction levels, interfering on transcription factors activation and pro-inflammatory cytokines and genes expression, which may significantly protect endometrium against postpartum microbial invasion.
Collapse
|
16
|
Rossaint J, Thomas K, Mersmann S, Skupski J, Margraf A, Tekath T, Jouvene CC, Dalli J, Hidalgo A, Meuth SG, Soehnlein O, Zarbock A. Platelets orchestrate the resolution of pulmonary inflammation in mice by T reg cell repositioning and macrophage education. J Exp Med 2021; 218:212168. [PMID: 34014253 PMCID: PMC8142284 DOI: 10.1084/jem.20201353] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/29/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Beyond hemostasis, platelets actively participate in immune cell recruitment and host defense, yet their potential in the resolution of inflammatory processes remains unknown. Here, we demonstrate that platelets are recruited into the lung together with neutrophils during the onset of inflammation and alongside regulatory T (T reg) cells during the resolution phase. This partnering dichotomy is regulated by differential adhesion molecule expression during resolution. Mechanistically, intravascular platelets form aggregates with T reg cells, a prerequisite for their recruitment into the lung. This interaction relies on platelet activation by sCD40L and platelet P-selectin binding to PSGL-1 on T reg cells. Physical platelet–T reg cell interactions are necessary to modulate the transcriptome and instruct T reg cells to release the anti-inflammatory mediators IL-10 and TGFβ. Notably, the presence of platelet–T reg cell aggregates in the lung was also required for macrophage transcriptional reprogramming, polarization toward an anti-inflammatory phenotype, and effective resolution of pulmonary inflammation. Thus, platelets partner with successive immune cell subsets to orchestrate both the initiation and resolution of inflammation.
Collapse
Affiliation(s)
- Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Katharina Thomas
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sina Mersmann
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Jennifer Skupski
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Tobias Tekath
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Charlotte C Jouvene
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andres Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Sven G Meuth
- Clinic of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Institute for Cardiovascular Prevention, Ludwig-Maximillians-Universität München, Munich, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
17
|
Trujillo‐Viera J, El‐Merahbi R, Schmidt V, Karwen T, Loza‐Valdes A, Strohmeyer A, Reuter S, Noh M, Wit M, Hawro I, Mocek S, Fey C, Mayer AE, Löffler MC, Wilhelmi I, Metzger M, Ishikawa E, Yamasaki S, Rau M, Geier A, Hankir M, Seyfried F, Klingenspor M, Sumara G. Protein Kinase D2 drives chylomicron-mediated lipid transport in the intestine and promotes obesity. EMBO Mol Med 2021; 13:e13548. [PMID: 33949105 PMCID: PMC8103097 DOI: 10.15252/emmm.202013548] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are the most energy-dense components of the diet, and their overconsumption promotes obesity and diabetes. Dietary fat content has been linked to the lipid processing activity by the intestine and its overall capacity to absorb triglycerides (TG). However, the signaling cascades driving intestinal lipid absorption in response to elevated dietary fat are largely unknown. Here, we describe an unexpected role of the protein kinase D2 (PKD2) in lipid homeostasis. We demonstrate that PKD2 activity promotes chylomicron-mediated TG transfer in enterocytes. PKD2 increases chylomicron size to enhance the TG secretion on the basolateral side of the mouse and human enterocytes, which is associated with decreased abundance of APOA4. PKD2 activation in intestine also correlates positively with circulating TG in obese human patients. Importantly, deletion, inactivation, or inhibition of PKD2 ameliorates high-fat diet-induced obesity and diabetes and improves gut microbiota profile in mice. Taken together, our findings suggest that PKD2 represents a key signaling node promoting dietary fat absorption and may serve as an attractive target for the treatment of obesity.
Collapse
Affiliation(s)
- Jonathan Trujillo‐Viera
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Rabih El‐Merahbi
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Vanessa Schmidt
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Till Karwen
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Angel Loza‐Valdes
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Akim Strohmeyer
- Chair for Molecular Nutritional MedicineTechnical University of MunichTUM School of Life Sciences WeihenstephanFreisingGermany
- EKFZ ‐ Else Kröner‐Fresenius‐Center for Nutritional MedicineTechnical University of MunichMunichGermany
- ZIEL ‐ Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Saskia Reuter
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Minhee Noh
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Magdalena Wit
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Izabela Hawro
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Sabine Mocek
- Chair for Molecular Nutritional MedicineTechnical University of MunichTUM School of Life Sciences WeihenstephanFreisingGermany
- EKFZ ‐ Else Kröner‐Fresenius‐Center for Nutritional MedicineTechnical University of MunichMunichGermany
- ZIEL ‐ Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Christina Fey
- Fraunhofer Institute for Silicate Research (ISC)Translational Center Regenerative Therapies (TLC‐RT)WürzburgGermany
| | - Alexander E Mayer
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Mona C Löffler
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Ilka Wilhelmi
- Department of Experimental DiabetologyGerman Institute of Human Nutrition Potsdam‐RehbrueckeNuthetalGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Marco Metzger
- Fraunhofer Institute for Silicate Research (ISC)Translational Center Regenerative Therapies (TLC‐RT)WürzburgGermany
| | - Eri Ishikawa
- Molecular ImmunologyResearch Institute for Microbial Diseases (RIMD)Osaka UniversitySuitaJapan
- Molecular ImmunologyImmunology Frontier Research Center (IFReC)Osaka UniversitySuitaJapan
| | - Sho Yamasaki
- Molecular ImmunologyResearch Institute for Microbial Diseases (RIMD)Osaka UniversitySuitaJapan
- Molecular ImmunologyImmunology Frontier Research Center (IFReC)Osaka UniversitySuitaJapan
| | - Monika Rau
- Division of HepatologyUniversity Hospital WürzburgWürzburgGermany
| | - Andreas Geier
- Division of HepatologyUniversity Hospital WürzburgWürzburgGermany
| | - Mohammed Hankir
- Department of General, Visceral, Transplant, Vascular and Pediatric SurgeryUniversity Hospital WürzburgWürzburgGermany
| | - Florian Seyfried
- Department of General, Visceral, Transplant, Vascular and Pediatric SurgeryUniversity Hospital WürzburgWürzburgGermany
| | - Martin Klingenspor
- Chair for Molecular Nutritional MedicineTechnical University of MunichTUM School of Life Sciences WeihenstephanFreisingGermany
- EKFZ ‐ Else Kröner‐Fresenius‐Center for Nutritional MedicineTechnical University of MunichMunichGermany
- ZIEL ‐ Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Grzegorz Sumara
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| |
Collapse
|
18
|
Anton DB, Ducati RG, Timmers LFSM, Laufer S, Goettert MI. A Special View of What Was Almost Forgotten: p38δ MAPK. Cancers (Basel) 2021; 13:2077. [PMID: 33923030 PMCID: PMC8123357 DOI: 10.3390/cancers13092077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
The p38δ mitogen-activated protein kinase is an important signal transduction enzyme. p38δ has recently emerged as a drug target due to its tissue-specific expression patterns and its critical roles in regulation of cellular processes related to cancer and inflammatory diseases, such as cell proliferation, cell migration, apoptosis, and inflammatory responses. However, potent and specific p38δ inhibitors have not been defined so far. Moreover, in cancer disease, p38δ appears to act as a tumor suppressor or tumor promoter according to cancer and cell type studied. In this review, we outline the current understanding of p38δ roles in each cancer type, to define whether it is possible to delineate new cancer therapies based on small-molecule p38δ inhibitors. We also highlight recent advances made in the design of molecules with potential to inhibit p38 isoforms and discuss structural approaches to guide the search for p38δ inhibitors.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil; (D.B.A.); (R.G.D.); (L.F.S.M.T.)
| | - Rodrigo Gay Ducati
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil; (D.B.A.); (R.G.D.); (L.F.S.M.T.)
| | - Luís Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil; (D.B.A.); (R.G.D.); (L.F.S.M.T.)
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Márcia Inês Goettert
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil; (D.B.A.); (R.G.D.); (L.F.S.M.T.)
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, Rio Grande do Sul CEP 95914-014, Brazil
| |
Collapse
|
19
|
Prikas E, Ahel H, Stefanoska K, Asih PR, Volkerling A, Ittner LM, Ittner A. Interaction between the guanylate kinase domain of PSD-95 and the proline-rich region and microtubule binding repeats 2 and 3 of tau. Biochem Cell Biol 2021; 99:606-616. [PMID: 33794133 DOI: 10.1139/bcb-2020-0604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The microtubule-associated protein tau is a key factor in neurodegenerative proteinopathies and is predominantly found in the neuronal axon. However, somatodendritic localization of tau occurs for a subset of pathological and physiologic tau. Dendritic tau can localize to post-synapses where it interacts with proteins of the post-synaptic density (PSD) protein PSD-95, a membrane-associated guanylate kinase (MAGUK) scaffold factor for organization of protein complexes within the PSD, to mediate downstream signals. The sub-molecular details of this interaction, however, remain unclear. Here, we use interaction mapping in cultured cells to demonstrate that tau interacts with the guanylate kinase (GUK) domain in the C-terminal region of PSD-95. The PSD-95 GUK domain is required and sufficient for a complex with full-length human tau. Mapping the interaction of the MAGUK core on tau revealed the microtubule binding repeats 2 and 3 and the proline-rich region contribute to this interaction, while the N- and C-terminal regions of tau inhibit interaction. These results reveal intramolecular determinants of the protein complex of tau and PSD-95 and increase our understanding of tau interactions regulating neurotoxic signaling at the molecular level.
Collapse
Affiliation(s)
- Emmanuel Prikas
- Macquarie University, 7788, Sydney, New South Wales, Australia;
| | - Holly Ahel
- Macquarie University, 7788, Sydney, New South Wales, Australia;
| | | | | | | | - Lars M Ittner
- Macquarie University, 7788, Biomedical Sciences, Sydney, New South Wales, Australia;
| | - Arne Ittner
- Macquarie University, 7788, Biomedical Sciences, Sydney, New South Wales, Australia;
| |
Collapse
|
20
|
Li G, Xing Z, Wang W, Luo W, Ma Z, Wu Z, Chen H, Li Y, Wang C, Zeng F, Deng F. Adipose-specific knockout of Protein Kinase D1 suppresses de novo lipogenesis in mice via SREBP1c-dependent signaling. Exp Cell Res 2021; 401:112548. [PMID: 33675805 DOI: 10.1016/j.yexcr.2021.112548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022]
Abstract
Having healthy adipose tissue is essential for metabolic health, as excessive adipose tissue in the body can cause its dysregulation and driving chronic metabolic diseases. Protein kinase D1 (PKD1) is considered to be a key kinase in signal transduction, which regulates multiple cellular functions, but its physiological functions in adipose are still not fully understood. This study aimed at elucidating the function of adipocyte PKD1 on lipogenesis. From RNA-Sequencing data, we found that the fatty acid biosynthesis pathway in white adipose tissue lacking PKD1 was significantly affected. Critical rate-limiting enzymes for de novo lipogenesis in adipocytes, such as FASN, ACCα, and SCD1, were significantly repressed after deleting PKD1 in vivo and in vitro. Further studies revealed that blockade of PKD1 significantly increased phosphorylation of SREBP1c at serine 372 site. Co-immunoprecipitation analysis showed that PKD1 interacts with SREBP1c in vitro and in vivo. Importantly, overexpression of SREBP1c reversed the inhibition of FASN and ACCα expression caused by PKD1 silencing. Together, adipocyte PKD1 promotes de novo lipogenesis via SREBP1c-dependent manner in visceral white adipose tissue and might provide a new target for the development of anti-obesity therapies.
Collapse
Affiliation(s)
- Guihuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhe Xing
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenyang Wang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenyang Luo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zunya Ma
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhicong Wu
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hua Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuhao Li
- Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, Sydney, NSW, 2000, Australia; Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chunxia Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Fangyin Zeng
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China.
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
21
|
Cicuéndez B, Ruiz-Garrido I, Mora A, Sabio G. Stress kinases in the development of liver steatosis and hepatocellular carcinoma. Mol Metab 2021; 50:101190. [PMID: 33588102 PMCID: PMC8324677 DOI: 10.1016/j.molmet.2021.101190] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an important component of metabolic syndrome and one of the most prevalent liver diseases worldwide. This disorder is closely linked to hepatic insulin resistance, lipotoxicity, and inflammation. Although the mechanisms that cause steatosis and chronic liver injury in NAFLD remain unclear, a key component of this process is the activation of stress-activated kinases (SAPKs), including p38 and JNK in the liver and immune system. This review summarizes findings which indicate that the dysregulation of stress kinases plays a fundamental role in the development of steatosis and are important players in inducing liver fibrosis. To avoid the development of steatohepatitis and liver cancer, SAPK activity must be tightly regulated not only in the hepatocytes but also in other tissues, including cells of the immune system. Possible cellular mechanisms of SAPK actions are discussed. Hepatic JNK triggers steatosis and insulin resistance, decreasing lipid oxidation and ketogenesis in HFD-fed mice. Decreased liver expression of p38α/β in HFD increases lipogenesis. Hepatic p38γ/δ drive insulin resistance and inhibit autophagy, which may lead to steatosis. Macrophage p38α/β promote cytokine production and M1 polarization, leading to lipid accumulation in hepatocytes. Myeloid p38γ/δ contribute to cytokine production and neutrophil migration, protecting against steatosis, diabetes and NAFLD. JNK1 and p38γ induce HCC while p38α blocks it. However, deletion of hepatic JNK1/2 induces cholangiocarcinoma. SAPK are potential therapeutic target for metabolic disorders, steatohepatitis and liver cancer.
Collapse
Affiliation(s)
- Beatriz Cicuéndez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Irene Ruiz-Garrido
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
22
|
Abstract
Despite recent advances in the treatment of autoimmune and inflammatory diseases, unmet medical needs in some areas still exist. One of the main therapeutic approaches to alleviate dysregulated inflammation has been to target the activity of kinases that regulate production of inflammatory mediators. Small-molecule kinase inhibitors have the potential for broad efficacy, convenience and tissue penetrance, and thus often offer important advantages over biologics. However, designing kinase inhibitors with target selectivity and minimal off-target effects can be challenging. Nevertheless, immense progress has been made in advancing kinase inhibitors with desirable drug-like properties into the clinic, including inhibitors of JAKs, IRAK4, RIPKs, BTK, SYK and TPL2. This Review will address the latest discoveries around kinase inhibitors with an emphasis on clinically validated autoimmunity and inflammatory pathways.
Collapse
Affiliation(s)
- Ali A Zarrin
- Discovery Department, TRex Bio, South San Francisco, CA, USA.
| | - Katherine Bao
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| | | | - Domagoj Vucic
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| |
Collapse
|
23
|
Abstract
Obesity is a health condition that has reached pandemic levels and is implicated in the development and progression of type 2 diabetes mellitus, cancer and heart failure. A key characteristic of obesity is the activation of stress-activated protein kinases (SAPKs), such as the p38 and JNK stress kinases, in several organs, including adipose tissue, liver, skeletal muscle, immune organs and the central nervous system. The correct timing, intensity and duration of SAPK activation contributes to cellular metabolic adaptation. By contrast, uncontrolled SAPK activation has been proposed to contribute to the complications of obesity. The stress kinase signalling pathways have therefore been identified as potential targets for the development of novel therapeutic approaches for metabolic syndrome. The past few decades have seen intense research efforts to determine how these kinases are regulated in a cell-specific manner and to define their contribution to the development of obesity and insulin resistance. Several studies have uncovered new and unexpected functions of the non-classical members of both pathways. Here, we provide an overview of the role of SAPKs in metabolic control and highlight important discoveries in the field.
Collapse
Affiliation(s)
- Ivana Nikolic
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
24
|
Akbari G. Emerging roles of microRNAs in intestinal ischemia/reperfusion-induced injury: a review. J Physiol Biochem 2020; 76:525-537. [PMID: 33140255 DOI: 10.1007/s13105-020-00772-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Intestinal ischemia/reperfusion (II/R) injury is a serious pathological phenomenon in underlying hemorrhagic shock, trauma, strangulated intestinal obstruction, and acute mesenteric ischemia which associated with high morbidity and mortality. MicroRNAs (miRNAs, miRs) are endogenous non-coding RNAs that regulate post-transcriptionally target mRNA translation via degrading it and/or suppressing protein synthesis. This review discusses on the role of some miRNAs in underlying II/R injury. Some of these miRNAs can have protective action through agomiR or specific antagomiR, and others can have destructive effects in the basal level of II/R insult. Based on these literature reviews, II/R injury affects several miRNAs and their specific target genes. Some miRNAs upregulate under condition of II/R injury, and multiple miRNAs downregulate following II/R damage. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, Web of Science, and Scientific Information Database from 2000 to 2020. It is shown a correlation between changes in the expression of miRNAs and autophagy, inflammation, oxidative stress, apoptosis, and epithelial barrier function. Taken together, agomiR or antagomiR of some miRNAs can be considered as one new target for the research and development of innovative drugs to the prevention or treatment of II/R damage.
Collapse
Affiliation(s)
- Ghaidafeh Akbari
- Medicinal Plants Research Center, Department of Physiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
25
|
p38 MAPK Pathway in the Heart: New Insights in Health and Disease. Int J Mol Sci 2020; 21:ijms21197412. [PMID: 33049962 PMCID: PMC7582802 DOI: 10.3390/ijms21197412] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The p38 mitogen-activated kinase (MAPK) family controls cell adaptation to stress stimuli. p38 function has been studied in depth in relation to cardiac development and function. The first isoform demonstrated to play an important role in cardiac development was p38α; however, all p38 family members are now known to collaborate in different aspects of cardiomyocyte differentiation and growth. p38 family members have been proposed to have protective and deleterious actions in the stressed myocardium, with the outcome of their action in part dependent on the model system under study and the identity of the activated p38 family member. Most studies to date have been performed with inhibitors that are not isoform-specific, and, consequently, knowledge remains very limited about how the different p38s control cardiac physiology and respond to cardiac stress. In this review, we summarize the current understanding of the role of the p38 pathway in cardiac physiology and discuss recent advances in the field.
Collapse
|
26
|
Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI, Ittner A. Functions of p38 MAP Kinases in the Central Nervous System. Front Mol Neurosci 2020; 13:570586. [PMID: 33013322 PMCID: PMC7509416 DOI: 10.3389/fnmol.2020.570586] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases are a central component in signaling networks in a multitude of mammalian cell types. This review covers recent advances on specific functions of p38 MAP kinases in cells of the central nervous system. Unique and specific functions of the four mammalian p38 kinases are found in all major cell types in the brain. Mechanisms of p38 activation and downstream phosphorylation substrates in these different contexts are outlined and how they contribute to functions of p38 in physiological and under disease conditions. Results in different model organisms demonstrated that p38 kinases are involved in cognitive functions, including functions related to anxiety, addiction behavior, neurotoxicity, neurodegeneration, and decision making. Finally, the role of p38 kinases in psychiatric and neurological conditions and the current progress on therapeutic inhibitors targeting p38 kinases are covered and implicate p38 kinases in a multitude of CNS-related physiological and disease states.
Collapse
Affiliation(s)
- Prita R Asih
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emmanuel Prikas
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kristie Stefanoska
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amanda R P Tan
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Holly I Ahel
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
27
|
Ittner A, Asih PR, Tan ARP, Prikas E, Bertz J, Stefanoska K, Lin Y, Volkerling AM, Ke YD, Delerue F, Ittner LM. Reduction of advanced tau-mediated memory deficits by the MAP kinase p38γ. Acta Neuropathol 2020; 140:279-294. [PMID: 32725265 DOI: 10.1007/s00401-020-02191-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 01/12/2023]
Abstract
Hyperphosphorylation of the neuronal tau protein contributes to Alzheimer's disease (AD) by promoting tau pathology and neuronal and cognitive deficits. In contrast, we have previously shown that site-specific tau phosphorylation can inhibit toxic signals induced by amyloid-β (Aβ) in mouse models. The post-synaptic mitogen-activated protein (MAP) kinase p38γ mediates this site-specific phosphorylation on tau at Threonine-205 (T205). Using a gene therapeutic approach, we draw on this neuroprotective mechanism to improve memory in two Aβ-dependent mouse models of AD at stages when advanced memory deficits are present. Increasing activity of post-synaptic kinase p38γ that targets T205 in tau reduced memory deficits in symptomatic Aβ-induced AD models. Reconstitution experiments with wildtype human tau or phosphorylation-deficient tauT205A showed that T205 modification is critical for downstream effects of p38γ that prevent memory impairment in APP-transgenic mice. Furthermore, genome editing of the T205 codon in the murine Mapt gene showed that this single side chain in endogenous tau critically modulates memory deficits in APP-transgenic Alzheimer's mice. Ablating the protective effect of p38γ activity by genetic p38γ deletion in a tau transgenic mouse model that expresses non-pathogenic tau rendered tau toxic and resulted in impaired memory function in the absence of human Aβ. Thus, we propose that modulating neuronal p38γ activity serves as an intrinsic tau-dependent therapeutic approach to augment compromised cognition in advanced dementia.
Collapse
|
28
|
Kassouf T, Sumara G. Impact of Conventional and Atypical MAPKs on the Development of Metabolic Diseases. Biomolecules 2020; 10:biom10091256. [PMID: 32872540 PMCID: PMC7563211 DOI: 10.3390/biom10091256] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The family of mitogen-activated protein kinases (MAPKs) consists of fourteen members and has been implicated in regulation of virtually all cellular processes. MAPKs are divided into two groups, conventional and atypical MAPKs. Conventional MAPKs are further classified into four sub-families: extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK1, 2 and 3), p38 (α, β, γ, δ), and extracellular signal-regulated kinase 5 (ERK5). Four kinases, extracellular signal-regulated kinase 3, 4, and 7 (ERK3, 4 and 7) as well as Nemo-like kinase (NLK) build a group of atypical MAPKs, which are activated by different upstream mechanisms than conventional MAPKs. Early studies identified JNK1/2 and ERK1/2 as well as p38α as a central mediators of inflammation-evoked insulin resistance. These kinases have been also implicated in the development of obesity and diabetes. Recently, other members of conventional MAPKs emerged as important mediators of liver, skeletal muscle, adipose tissue, and pancreatic β-cell metabolism. Moreover, latest studies indicate that atypical members of MAPK family play a central role in the regulation of adipose tissue function. In this review, we summarize early studies on conventional MAPKs as well as recent findings implicating previously ignored members of the MAPK family. Finally, we discuss the therapeutic potential of drugs targeting specific members of the MAPK family.
Collapse
|
29
|
Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020; 9. [PMID: 32612808 PMCID: PMC7324945 DOI: 10.12688/f1000research.22092.1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.
Collapse
Affiliation(s)
- Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - John Silke
- The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
30
|
Kolczynska K, Loza-Valdes A, Hawro I, Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis 2020; 19:113. [PMID: 32466765 PMCID: PMC7257441 DOI: 10.1186/s12944-020-01286-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Protein kinase C (PKC) and Protein kinase D (PKD) isoforms can sense diacylglycerol (DAG) generated in the different cellular compartments in various physiological processes. DAG accumulates in multiple organs of the obese subjects, which leads to the disruption of metabolic homeostasis and the development of diabetes as well as associated diseases. Multiple studies proved that aberrant activation of PKCs and PKDs contributes to the development of metabolic diseases. DAG-sensing PKC and PKD isoforms play a crucial role in the regulation of metabolic homeostasis and therefore might serve as targets for the treatment of metabolic disorders such as obesity and diabetes.
Collapse
Affiliation(s)
- Katarzyna Kolczynska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Angel Loza-Valdes
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland.
| |
Collapse
|
31
|
Barrio L, Román-García S, Díaz-Mora E, Risco A, Jiménez-Saiz R, Carrasco YR, Cuenda A. B Cell Development and T-Dependent Antibody Response Are Regulated by p38γ and p38δ. Front Cell Dev Biol 2020; 8:189. [PMID: 32266269 PMCID: PMC7105866 DOI: 10.3389/fcell.2020.00189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/06/2020] [Indexed: 12/30/2022] Open
Abstract
p38MAP kinase (MAPK) signal transduction pathways are important regulators of inflammation and the immune response; their involvement in immune cell development and function is still largely unknown. Here we analysed the role of the p38 MAPK isoforms p38γ and p38δ in B cell differentiation in bone marrow (BM) and spleen, using mice lacking p38γ and p38δ, or conditional knockout mice that lack both p38γ and p38δ specifically in the B cell compartment. We found that the B cell differentiation programme in the BM was not affected in p38γ/δ-deficient mice. Moreover, these mice had reduced numbers of peripheral B cells as well as altered marginal zone B cell differentiation in the spleen. Expression of co-stimulatory proteins and activation markers in p38γ/δ-deficient B cells are diminished in response to B cell receptor (BCR) and CD40 stimulation; p38γ and p38δ were necessary for B cell proliferation induced by BCR and CD40 but not by TLR4 signaling. Furthermore, p38γ/δ-null mice produced significantly lower antibody responses to T-dependent antigens. Our results identify unreported functions for p38γ and p38δ in B cells and in the T-dependent humoral response; and show that the combined activity of these kinases is needed for peripheral B cell differentiation and function.
Collapse
Affiliation(s)
- Laura Barrio
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Sara Román-García
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Ester Díaz-Mora
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Ana Risco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
32
|
L-selectin shedding affects bacterial clearance in the lung: a new regulatory pathway for integrin outside-in signaling. Blood 2020; 134:1445-1457. [PMID: 31366620 DOI: 10.1182/blood.2019000685] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/24/2019] [Indexed: 02/08/2023] Open
Abstract
Pneumonia induced by Gram-negative bacteria is a common and serious disease associated with high morbidity and mortality. Elimination of bacterial pathogens relies on the recruitment and functions of neutrophils. The adhesion molecule L-selectin has recently been implicated in integrin activation in neutrophils (inside-out signaling). However, the molecular mechanism by which L-selectin participates in host defense against Klebsiella pneumoniae-induced pulmonary inflammation is unknown. We demonstrate that L-selectin-deficient mice are prone to pulmonary infection compared with wild-type controls. Mechanistically, L-selectin cleavage from the neutrophil surface triggered by integrin engagement is involved in neutrophil recruitment into the lung and bacterial clearance. Downstream of integrin ligation, the metalloproteinase A disintegrin and metalloproteinase 17 (ADAM17) sheds L-selectin from the neutrophil surface in an IRhom2-dependent manner. L-selectin cleavage enhances integrin-mediated outside-in signaling, resulting in increased neutrophil effector functions. Thus, we identify a novel regulatory mechanism in neutrophils required for an adequate immune response triggered by integrin engagement during K pneumoniae-induced pulmonary inflammation.
Collapse
|
33
|
Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020; 19:253-275. [PMID: 31969717 DOI: 10.1038/s41573-019-0054-z] [Citation(s) in RCA: 461] [Impact Index Per Article: 92.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
34
|
Overexpression of MALAT1 Relates to Lung Injury through Sponging miR-425 and Promoting Cell Apoptosis during ARDS. Can Respir J 2019; 2019:1871394. [PMID: 31871512 PMCID: PMC6913333 DOI: 10.1155/2019/1871394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/21/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury during which severe inflammatory responses induce cell apoptosis, necrosis, and fibrosis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a multiple function long noncoding RNA that was found overexpressed during acute lung injury. However, the roles of MALAT1 in ARDS patients are still unknown. Methods Total RNA was extracted from the plasma, plasma exosome, and peripheral blood mononuclear cells (PBMCs) from 65 ARDS patients and 36 healthy controls. The MALAT1 and six candidate miRNAs levels were detected by qRT-PCR. The interaction between MALAT1 and miR-425 was predicted using a bioinformatics tool and verified by dual luciferase assay. Exosomes from ARDS patients were cultured with A549 and HFL-1 cells to confirm the delivery of miR-425 by exosomes. Cell apoptosis and viability were determined by flow cytometry and MTT assay. Results We found MALAT1 was significantly increased in the ARDS patients' plasma and PBMCs. The MALAT1 level in PBMCs was negatively correlated with exosomal miR-425 level. MALAT1 interacted with miR-425 and protected phosphatase and tensin homolog (PTEN) expression in A549 and HFL-1 cells. Exosomes from ARDS patients delivered less miR-425 into A549 and HFL-1 cells and induced cell apoptosis via upregulating PTEN. Conclusion This study identified increased MALAT1 and decreased miR-425 in ARDS patients and unveiled their roles during the pathogenesis of ARDS.
Collapse
|
35
|
Mayer AE, Löffler MC, Loza Valdés AE, Schmitz W, El-Merahbi R, Viera JT, Erk M, Zhang T, Braun U, Heikenwalder M, Leitges M, Schulze A, Sumara G. The kinase PKD3 provides negative feedback on cholesterol and triglyceride synthesis by suppressing insulin signaling. Sci Signal 2019; 12:12/593/eaav9150. [PMID: 31387939 DOI: 10.1126/scisignal.aav9150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic activation of protein kinase C (PKC) isoforms by diacylglycerol (DAG) promotes insulin resistance and contributes to the development of type 2 diabetes (T2D). The closely related protein kinase D (PKD) isoforms act as effectors for DAG and PKC. Here, we showed that PKD3 was the predominant PKD isoform expressed in hepatocytes and was activated by lipid overload. PKD3 suppressed the activity of downstream insulin effectors including the kinase AKT and mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2). Hepatic deletion of PKD3 in mice improved insulin-induced glucose tolerance. However, increased insulin signaling in the absence of PKD3 promoted lipogenesis mediated by SREBP (sterol regulatory element-binding protein) and consequently increased triglyceride and cholesterol content in the livers of PKD3-deficient mice fed a high-fat diet. Conversely, hepatic-specific overexpression of a constitutively active PKD3 mutant suppressed insulin-induced signaling and caused insulin resistance. Our results indicate that PKD3 provides feedback on hepatic lipid production and suppresses insulin signaling. Therefore, manipulation of PKD3 activity could be used to decrease hepatic lipid content or improve hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Alexander E Mayer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Mona C Löffler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Angel E Loza Valdés
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Rabih El-Merahbi
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Jonathan Trujillo Viera
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Manuela Erk
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Thianzhou Zhang
- Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Ursula Braun
- Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Leitges
- Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Almut Schulze
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Grzegorz Sumara
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany. .,Nencki Institute of Experimental Biology, PAS, 02-093 Warsaw, Poland
| |
Collapse
|
36
|
Youssef I, Ricort JM. Deciphering the Role of Protein Kinase D1 (PKD1) in Cellular Proliferation. Mol Cancer Res 2019; 17:1961-1974. [PMID: 31311827 DOI: 10.1158/1541-7786.mcr-19-0125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/05/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022]
Abstract
Protein kinase D1 (PKD1) is a serine/threonine kinase that belongs to the calcium/calmodulin-dependent kinase family, and is involved in multiple mechanisms implicated in tumor progression such as cell motility, invasion, proliferation, protein transport, and apoptosis. While it is expressed in most tissues in the normal state, PKD1 expression may increase or decrease during tumorigenesis, and its role in proliferation is context-dependent and poorly understood. In this review, we present and discuss the current landscape of studies investigating the role of PKD1 in the proliferation of both cancerous and normal cells. Indeed, as a potential therapeutic target, deciphering whether PKD1 exerts a pro- or antiproliferative effect, and under what conditions, is of paramount importance.
Collapse
Affiliation(s)
- Ilige Youssef
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Jean-Marc Ricort
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France. .,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
37
|
Hamel-Côté G, Lapointe F, Véronneau S, Mayhue M, Rola-Pleszczynski M, Stankova J. Regulation of platelet-activating factor-mediated interleukin-6 promoter activation by the 48 kDa but not the 45 kDa isoform of protein tyrosine phosphatase non-receptor type 2. Cell Biosci 2019; 9:51. [PMID: 31289638 PMCID: PMC6593612 DOI: 10.1186/s13578-019-0316-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background An underlying state of inflammation is thought to be an important cause of cardiovascular disease. Among cells involved in the early steps of atherosclerosis, monocyte-derived dendritic cells (Mo-DCs) respond to inflammatory stimuli, including platelet-activating factor (PAF), by the induction of various cytokines, such as interleukin 6 (IL-6). PAF is a potent phospholipid mediator involved in both the onset and progression of atherosclerosis. It mediates its effects by binding to its cognate G-protein coupled receptor, PAFR. Activation of PAFR-induced signaling pathways is tightly coordinated to ensure specific cell responses. Results Here, we report that PAF stimulated the phosphatase activity of both the 45 and 48 kDa isoforms of the protein tyrosine phosphatase non-receptor type 2 (PTPN2). However, we found that only the 48 kDa PTPN2 isoform has a role in PAFR-induced signal transduction, leading to activation of the IL-6 promoter. In luciferase reporter assays, expression of the 48 kDa, but not the 45 kDa, PTPN2 isoform increased human IL-6 (hIL-6) promoter activity by 40% after PAF stimulation of HEK-293 cells, stably transfected with PAFR (HEK-PAFR). Our results suggest that the differential localization of the PTPN2 isoforms and the differences in PAF-induced phosphatase activation may contribute to the divergent modulation of PAF-induced IL-6 promoter activation. The involvement of PTPN2 in PAF-induced IL-6 expression was confirmed in immature Mo-DCs (iMo-DCs), using siRNAs targeting the two isoforms of PTPN2, where siRNAs against the 48 kDa PTPN2 significantly inhibited PAF-stimulated IL-6 mRNA expression. Pharmacological inhibition of several signaling pathways suggested a role for PTPN2 in early signaling events. Results obtained by Western blot confirmed that PTPN2 increased the activation of the PI3K/Akt pathway via the modulation of protein kinase D (PKD) activity. WT PKD expression counteracted the effect of PTPN2 on PAF-induced IL-6 promoter transactivation and phosphorylation of Akt. Using siRNAs targeting the individual isoforms of PTPN2, we confirmed that these pathways were also active in iMo-DCs. Conclusion Taken together, our data suggest that PTPN2, in an isoform-specific manner, could be involved in the positive regulation of PI3K/Akt activation, via the modulation of PKD activity, allowing for the maximal induction of PAF-stimulated IL-6 mRNA expression.
Collapse
Affiliation(s)
- Geneviève Hamel-Côté
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Fanny Lapointe
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Steeve Véronneau
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Marian Mayhue
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Marek Rola-Pleszczynski
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Jana Stankova
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| |
Collapse
|
38
|
Kiss A, Koppel AC, Murphy E, Sall M, Barlas M, Kissling G, Efimova T. Cell Type-Specific p38δ Targeting Reveals a Context-, Stage-, and Sex-Dependent Regulation of Skin Carcinogenesis. Int J Mol Sci 2019; 20:ijms20071532. [PMID: 30934690 PMCID: PMC6479675 DOI: 10.3390/ijms20071532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 12/14/2022] Open
Abstract
Activation and/or upregulated expression of p38δ are demonstrated in human skin malignancies including cutaneous squamous cell carcinoma, suggesting a role for p38δ in skin carcinogenesis. We previously reported that mice with germline deletion of the p38δ gene are significantly protected from chemical skin carcinogenesis. Here, we investigated the effects of cell-selective targeted ablation of p38δ in keratinocytes and in immune (myeloid) cells on skin tumor development in a two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical mouse skin carcinogenesis model. Conditional keratinocyte-specific p38δ ablation (p38δ-cKO∆K) did not influence the latency, incidence, or multiplicity of chemically-induced skin tumors, but led to increased tumor volume in females during the TPA promotion stage, and reduced malignant progression in males and females relative to their wild-type counterparts. In contrast, conditional myeloid cell-specific p38δ deletion (p38δ-cKO∆M) inhibited DMBA/TPA-induced skin tumorigenesis in male but not female mice. Thus, tumor onset was delayed, and tumor incidence, multiplicity, and volume were reduced in p38δ-cKO∆M males compared with control wild-type males. Moreover, the percentage of male mice with malignant tumors was decreased in the p38δ-cKO∆M group relative to their wild-type counterparts. Collectively, these results reveal that cell-specific p38δ targeting modifies susceptibility to chemical skin carcinogenesis in a context-, stage-, and sex-specific manner.
Collapse
Affiliation(s)
- Alexi Kiss
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
- The George Washington Cancer Center, 800 22nd Street NW, Science and Engineering Hall 8160, Washington, DC 20052, USA.
| | - Aaron C Koppel
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
| | - Emily Murphy
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave NW, Suite 2B-430, Washington, DC 20037, USA.
- Georgetown University School of Medicine, 3900 Reservoir Rd NW, Washington, DC 20007, USA.
| | - Maxwell Sall
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
| | - Meral Barlas
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
| | - Grace Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Tatiana Efimova
- Department of Anatomy & Cell Biology, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall 550, Washington, DC 20037, USA.
- The George Washington Cancer Center, 800 22nd Street NW, Science and Engineering Hall 8160, Washington, DC 20052, USA.
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave NW, Suite 2B-430, Washington, DC 20037, USA.
| |
Collapse
|
39
|
Ramadass M, Johnson JL, Marki A, Zhang J, Wolf D, Kiosses WB, Pestonjamasp K, Ley K, Catz SD. The trafficking protein JFC1 regulates Rac1-GTP localization at the uropod controlling neutrophil chemotaxis and in vivo migration. J Leukoc Biol 2019; 105:1209-1224. [PMID: 30748033 DOI: 10.1002/jlb.1vma0818-320r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 01/01/2023] Open
Abstract
Neutrophil chemotaxis is essential in responses to infection and underlies inflammation. In neutrophils, the small GTPase Rac1 has discrete functions at both the leading edge and in the retraction of the trailing structure at the cell's rear (uropod), but how Rac1 is regulated at the uropod is unknown. Here, we identified a mechanism mediated by the trafficking protein synaptotagmin-like 1 (SYTL1 or JFC1) that controls Rac1-GTP recycling from the uropod and promotes directional migration of neutrophils. JFC1-null neutrophils displayed defective polarization and impaired directional migration to N-formyl-methionine-leucyl-phenylalanine in vitro, but chemoattractant-induced actin remodeling, calcium signaling and Erk activation were normal in these cells. Defective chemotaxis was not explained by impaired azurophilic granule exocytosis associated with JFC1 deficiency. Mechanistically, we show that active Rac1 localizes at dynamic vesicles where endogenous JFC1 colocalizes with Rac1-GTP. Super-resolution microscopy (STORM) analysis shows adjacent distribution of JFC1 and Rac1-GTP, which increases upon activation. JFC1 interacts with Rac1-GTP in a Rab27a-independent manner to regulate Rac1-GTP trafficking. JFC1-null cells exhibited Rac1-GTP accumulation at the uropod and increased tail length, and Rac1-GTP uropod accumulation was recapitulated by inhibition of ROCK or by interference with microtubule remodeling. In vivo, neutrophil dynamic studies in mixed bone marrow chimeric mice show that JFC1-/- neutrophils are unable to move directionally toward the source of the chemoattractant, supporting the notion that JFC1 deficiency results in defective neutrophil migration. Our results suggest that defective Rac1-GTP recycling from the uropod affects directionality and highlight JFC1-mediated Rac1 trafficking as a potential target to regulate chemotaxis in inflammation and immunity.
Collapse
Affiliation(s)
- Mahalakshmi Ramadass
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Alex Marki
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jinzhong Zhang
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Dennis Wolf
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - William B Kiosses
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Kersi Pestonjamasp
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| |
Collapse
|
40
|
Löffler MC, Mayer AE, Trujillo Viera J, Loza Valdes A, El-Merahbi R, Ade CP, Karwen T, Schmitz W, Slotta A, Erk M, Janaki-Raman S, Matesanz N, Torres JL, Marcos M, Sabio G, Eilers M, Schulze A, Sumara G. Protein kinase D1 deletion in adipocytes enhances energy dissipation and protects against adiposity. EMBO J 2018; 37:e99182. [PMID: 30389661 PMCID: PMC6236335 DOI: 10.15252/embj.201899182] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022] Open
Abstract
Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others activates G protein-coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector, which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the β3-adrenergic receptor (ADRB3) in a CCAAT/enhancer binding protein (C/EBP)-α- and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, depletion of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.
Collapse
Affiliation(s)
- Mona C Löffler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Alexander E Mayer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Jonathan Trujillo Viera
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Angel Loza Valdes
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Rabih El-Merahbi
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Carsten P Ade
- Biocenter, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Till Karwen
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Biocenter, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Anja Slotta
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Manuela Erk
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Sudha Janaki-Raman
- Biocenter, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Nuria Matesanz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jorge L Torres
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Martin Eilers
- Biocenter, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Almut Schulze
- Biocenter, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Grzegorz Sumara
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Stefanoska K, Bertz J, Volkerling AM, van der Hoven J, Ittner LM, Ittner A. Neuronal MAP kinase p38α inhibits c-Jun N-terminal kinase to modulate anxiety-related behaviour. Sci Rep 2018; 8:14296. [PMID: 30250211 PMCID: PMC6155170 DOI: 10.1038/s41598-018-32592-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Modulation of behavioural responses by neuronal signalling pathways remains incompletely understood. Signalling via mitogen-activated protein (MAP) kinase cascades regulates multiple neuronal functions. Here, we show that neuronal p38α, a MAP kinase of the p38 kinase family, has a critical and specific role in modulating anxiety-related behaviour in mice. Neuron-specific p38α-knockout mice show increased levels of anxiety in behaviour tests, yet no other behavioural, cognitive or motor deficits. Using CRISPR-mediated deletion of p38α in cells, we show that p38α inhibits c-Jun N-terminal kinase (JNK) activity, a function that is specific to p38α over other p38 kinases. Consistently, brains of neuron-specific p38α-knockout mice show increased JNK activity. Inhibiting JNK using a specific blood-brain barrier-permeable inhibitor reduces JNK activity in brains of p38α-knockout mice to physiological levels and reverts anxiety behaviour. Thus, our results suggest that neuronal p38α negatively regulates JNK activity that is required for specific modulation of anxiety-related behaviour.
Collapse
Affiliation(s)
- Kristie Stefanoska
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Josefine Bertz
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alexander M Volkerling
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Julia van der Hoven
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.,Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Arne Ittner
- Dementia Research Unit, School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
42
|
Hu Y, Tao X, Han X, Xu L, Yin L, Sun H, Qi Y, Xu Y, Peng J. MicroRNA-351-5p aggravates intestinal ischaemia/reperfusion injury through the targeting of MAPK13 and Sirtuin-6. Br J Pharmacol 2018; 175:3594-3609. [PMID: 29952043 PMCID: PMC6086990 DOI: 10.1111/bph.14428] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Intestinal ischaemia-reperfusion (II/R) injury is a serious clinical problem. Here we have investigated novel mechanisms and new drug targets in II/R injury by searching for microRNAs regulating such injury. EXPERIMENTAL APPROACH We used hypoxia/reoxygenation (H/R) of IEC-6 cell cultures and models of II/R models in rats and mice. Microarray assays were used to identify target miRNAs from rat intestinal. Real-time PCR, Western blot and dual luciferase reporter assays, and agomir and antagomir in vitro and in vivo were used to assess the effects of the target miRNA on II/R injury. KEY RESULTS The miR-351-5p was differentially expressed in our models and it targeted MAPK13 and sirtuin-6. This miRNA reduced levels of sirtuin-6 and AMP-activated protein kinase phosphorylation, and activated forkhead box O3 (FoxO3α) phosphorylation to cause oxidative stress. Also, miR-351-5p markedly reduced MAPK13 level, activated polycystic kidney disease 1/NF-κB signal and increased NF-κB (p65). Moreover, miR-351-5p up-regulated levels of Bcl2-associated X, cytochrome c, apoptotic peptidase activating factor 1, cleaved-caspase 3 and cleaved-caspase 9 by reducing sirtuin-6 levels to promote apoptosis. In addition, miR-351-5p mimic in IEC-6 cells and agomir in mice aggravated these effects, and miR-351-5p inhibitor and antagomir in mice alleviated these actions. CONCLUSIONS AND IMPLICATIONS Our data showed that miR-351-5p aggravated II/R injury by promoting intestinal mucosal oxidative stress, inflammation and apoptosis by targeting MAPK13 and sirtuin-6.These data provide new insights into the mechanisms regulating II/R injury, and of miR-351-5p could be considered as a novel therapeutic target for such injury.
Collapse
Affiliation(s)
- Yupeng Hu
- College of PharmacyDalian Medical UniversityDalianChina
| | - Xufeng Tao
- College of PharmacyDalian Medical UniversityDalianChina
| | - Xu Han
- College of PharmacyDalian Medical UniversityDalianChina
| | - Lina Xu
- College of PharmacyDalian Medical UniversityDalianChina
| | - Lianhong Yin
- College of PharmacyDalian Medical UniversityDalianChina
| | - Huijun Sun
- College of PharmacyDalian Medical UniversityDalianChina
| | - Yan Qi
- College of PharmacyDalian Medical UniversityDalianChina
| | - Youwei Xu
- College of PharmacyDalian Medical UniversityDalianChina
| | - Jinyong Peng
- College of PharmacyDalian Medical UniversityDalianChina
| |
Collapse
|
43
|
Margraf A, Volmering S, Skupski J, Van Marck V, Makrigiannis AP, Block H, Zarbock A. The ITIM Domain-Containing NK Receptor Ly49Q Impacts Pulmonary Infection by Mediating Neutrophil Functions. THE JOURNAL OF IMMUNOLOGY 2018; 200:4085-4093. [PMID: 29712775 DOI: 10.4049/jimmunol.1701084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/02/2018] [Indexed: 01/13/2023]
Abstract
Pulmonary infection is a frequent pathology associated with excessive neutrophil infiltration. Ly49Q, an ITIM domain-bearing receptor expressed on different leukocytes, has been recently reported to impact neutrophil migration and polarization. Utilizing a murine model of Klebsiella pneumoniae-induced pulmonary infection in combination with additional in vivo and in vitro assays, we show that Ly49Q is critically involved in different steps of the leukocyte adhesion cascade. Ly49Q deficiency is associated with a reduced rolling velocity, impaired crawling capacity, and diminished transmigration. We show that overactivation of the neutrophil β2 integrins Mac-1 and LFA-1 is responsible for increased adhesion and reduced neutrophil transmigration, resulting in a strongly impaired immune defense against pulmonary infection. Structure function analysis in vitro and in vivo demonstrated that different domains of Ly49Q are important for its function. In summary, Ly49Q regulates integrin activation and neutrophil recruitment and is required for an adequate immune response in pulmonary infection.
Collapse
Affiliation(s)
- Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster 48149, Germany
| | - Stephanie Volmering
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster 48149, Germany
| | - Jennifer Skupski
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster 48149, Germany
| | - Veerle Van Marck
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, University of Muenster, Muenster 48149, Germany; and
| | - Andrew P Makrigiannis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Helena Block
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster 48149, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster 48149, Germany;
| |
Collapse
|
44
|
Wille C, Eiseler T, Langenberger ST, Richter J, Mizuno K, Radermacher P, Knippschild U, Huber-Lang M, Seufferlein T, Paschke S. PKD regulates actin polymerization, neutrophil deformability, and transendothelial migration in response to fMLP and trauma. J Leukoc Biol 2018; 104:615-630. [PMID: 29656400 DOI: 10.1002/jlb.4a0617-251rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are important mediators of the innate immune defense and of the host response to a physical trauma. Because aberrant infiltration of injured sites by neutrophils was shown to cause adverse effects after trauma, we investigated how neutrophil infiltration could be modulated at the cellular level. Our data indicate that protein kinase D (PKD) is a vital regulator of neutrophil transmigration. PKD phosphorylates the Cofilin-phosphatase Slingshot-2L (SSH-2L). SSH-2L in turn dynamically regulates Cofilin activity and actin polymerization in response to a chemotactic stimulus for neutrophils, for example, fMLP. Here, we show that inhibition of PKD by two specific small molecule inhibitors results in broad, unrestricted activation of Cofilin and strongly increases the F-actin content of neutrophils even under basal conditions. This phenotype correlates with a significantly impaired neutrophil deformability as determined by optical stretcher analysis. Consequently, inhibition of PKD impaired chemotaxis as shown by reduced extravasation of neutrophils. Consequently, we demonstrate that transendothelial passage of both, neutrophil-like NB4 cells and primary PMNs recovered from a hemorrhagic shock trauma model was significantly reduced. Thus, inhibition of PKD may represent a promising modulator of the neutrophil response to trauma.
Collapse
Affiliation(s)
- Christoph Wille
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | | | - Julia Richter
- Department of General and Visceral Surgery, Ulm University, Ulm, Germany
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital, Ulm, Germany
| | | | - Stephan Paschke
- Department of General and Visceral Surgery, Ulm University, Ulm, Germany
| |
Collapse
|
45
|
Risco A, Martin-Serrano MA, Barber DF, Cuenda A. p38γ and p38δ Are Involved in T Lymphocyte Development. Front Immunol 2018; 9:65. [PMID: 29434594 PMCID: PMC5796910 DOI: 10.3389/fimmu.2018.00065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/10/2018] [Indexed: 01/27/2023] Open
Abstract
p38 mitogen-activated protein kinase (MAPK) signal transduction pathways are essential regulators of the immune response. Particularly, p38γ and p38δ regulate many immune cell functions such as cytokine production, migration, or T cell activation; however, their involvement in immune cell development is largely unknown. Here, we analysed the role of p38 MAPK isoforms p38γ and p38δ in T cell differentiation in the thymus and in lymph nodes, using mice deficient in p38γ, p38δ, or in both. We found that the T cell differentiation program in the thymus was affected at different stages in p38γ-, p38δ-, and p38γ/δ-deficient mice, and also peripheral T cell homaeostasis was compromised. Particularly, p38δ deletion affects different stages of early CD4−CD8− double-negative thymocyte development, whereas lack of p38γ favours thymocyte positive selection from CD4+CD8+ double-positive to CD4+ or CD8+ single-positive cells. Our results identify unreported functions for p38γ and p38δ in T cells.
Collapse
Affiliation(s)
- Ana Risco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Miguel A Martin-Serrano
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
46
|
Stefanoska K, Volkerling A, Bertz J, Poljak A, Ke YD, Ittner LM, Ittner A. An N-terminal motif unique to primate tau enables differential protein-protein interactions. J Biol Chem 2018; 293:3710-3719. [PMID: 29382714 DOI: 10.1074/jbc.ra118.001784] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/25/2018] [Indexed: 01/05/2023] Open
Abstract
Compared with other mammalian species, humans are particularly susceptible to tau-mediated neurodegenerative disorders. Differential interactions of the tau protein with other proteins are critical for mediating tau's physiological functions as well as tau-associated pathological processes. Primate tau harbors an 11-amino acid-long motif in its N-terminal region (residues 18-28), which is not present in non-primate species and whose function is unknown. Here, we used deletion mutagenesis to remove this sequence region from the longest human tau isoform, followed by glutathione S-transferase (GST) pulldown assays paired with isobaric tags for relative and absolute quantitation (iTRAQ) multiplex labeling, a quantitative method to measure protein abundance by mass spectrometry. Using this method, we found that the primate-specific N-terminal tau motif differentially mediates interactions with neuronal proteins. Among these binding partners are proteins involved in synaptic transmission (synapsin-1 and synaptotagmin-1) and signaling proteins of the 14-3-3 family. Furthermore, we identified an interaction of tau with a member of the annexin family (annexin A5) that was linked to the 11-residue motif. These results suggest that primate Tau has evolved specific residues that differentially regulate protein-protein interactions compared with tau proteins from other non-primate mammalian species. Our findings provide in vitro insights into tau's interactions with other proteins that may be relevant to human disease.
Collapse
Affiliation(s)
| | | | - Josefine Bertz
- From the Dementia Research Unit, School of Medical Sciences
| | - Anne Poljak
- the Bioanalytical Mass Spectrometry Facility, and
| | - Yazi D Ke
- the Motor Neuron Disease Unit, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales 2052 and
| | - Lars M Ittner
- From the Dementia Research Unit, School of Medical Sciences, .,Neuroscience Australia, Sydney, New South Wales 2031, Australia
| | - Arne Ittner
- From the Dementia Research Unit, School of Medical Sciences
| |
Collapse
|
47
|
Liu JF, Ma QY, Zhu RN, Cheng MJ, Bao CT, Gu JM, Sun CJ, Langford PR, Han WY, Lei LC. An anti-Propionibacterium acnes antibody shows heterologous resistance to an Actinobacillus pleuropneumoniae infection independent of neutrophils in mice. Immunol Res 2017; 65:1124-1129. [PMID: 28929313 DOI: 10.1007/s12026-017-8954-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Porcine contagious pleuropneumonia is a highly fatal respiratory disease that is caused by Actinobacillus pleuropneumoniae (APP) and results in tremendous economic losses for the pig breeding industry worldwide. Previous studies have demonstrated that Propionibacterium acnes (PA) could effectively prevent APP infection in mice and pigs. The humoral immune response played a primary role during this process and anti-PA antibody could mediate macrophages to kill the bacteria. However, the role of neutrophils in this process is currently unknown. In this study, mice were injected with cyclophosphamide to deplete neutrophils and then passively immunized with anti-PA serum or negative serum. Mice were subsequently challenged with APP serotype 1. The results showed that the mice exhibited less bacterial colonization, less lung damage, and a high survival rate, which were immunized with the anti-PA antibody whether neutrophils were depleted or not. Worse still, the presence of neutrophils increased the damage to the mice after challenge. These results suggest that the activity of the anti-PA antibody against APP infection was independent of neutrophils. These findings have important significance for understanding the mechanisms of humoral immunity conferred by heterologous immunization and lay a good foundation for preventing APP infection.
Collapse
Affiliation(s)
- Jian-Fang Liu
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, People's Republic of China
| | - Qiu-Yue Ma
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, People's Republic of China
| | - Ri-Ning Zhu
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, People's Republic of China
| | - Meng-Jun Cheng
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, People's Republic of China
| | - Chun-Tong Bao
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, People's Republic of China
| | - Jing-Min Gu
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, People's Republic of China
| | - Chang-Jiang Sun
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, People's Republic of China
| | - Paul Richard Langford
- Section of Paediatrics, Imperial College London, St. Mary's Campus, London, W2 1PG, UK
| | - Wen-Yu Han
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, People's Republic of China
| | - Lian-Cheng Lei
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, People's Republic of China.
| |
Collapse
|
48
|
Wada M, Canals D, Adada M, Coant N, Salama MF, Helke KL, Arthur JS, Shroyer KR, Kitatani K, Obeid LM, Hannun YA. P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment. Oncogene 2017; 36:6649-6657. [PMID: 28783172 PMCID: PMC5746050 DOI: 10.1038/onc.2017.274] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022]
Abstract
The protein p38 mitogen-activated protein kinase delta isoform (p38δ) is a poorly studied member of the MAPK family. Data analysis from The Cancer Genome Atlas (TCGA) database revealed that p38δ is highly expressed in all types of human breast cancers. Using a human breast cancer tissue array, we confirmed elevation in cancer tissue. The breast cancer mouse model, MMTV-PyMT (PyMT), developed breast tumors with lung metastasis; however, mice deleted in p38δ (PyMT/p38δ−/−) exhibited delayed primary tumor formation and highly reduced lung metastatic burden. At the cellular level, we demonstrate that targeting of p38δ in breast cancer cells, MCF-7 and MDA-MB-231 resulted in a reduced rate of cell proliferation. Additionally, cells lacking p38δ also displayed an increased cell-matrix adhesion and reduced cell detachment. This effect on cell adhesion was molecularly supported by the regulation of the focal adhesion kinase (FAK) by p38δ in the human breast cell lines. These studies define a previously unappreciated role for p38δ in breast cancer development and evolution by regulating tumor growth and altering metastatic properties.
Collapse
Affiliation(s)
- M Wada
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - D Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - M Adada
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - N Coant
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - M F Salama
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Faculty of Veterinary Medicine, Department of Biochemistry, Mansoura University, Mansoura, Egypt
| | - K L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - J S Arthur
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - K R Shroyer
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - K Kitatani
- Tohoku Medical Megabank Organization and Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - L M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.,Northport VA Medical Center, Northport, NY, USA
| | - Y A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
49
|
Ittner A, Chua SW, Bertz J, Volkerling A, van der Hoven J, Gladbach A, Przybyla M, Bi M, van Hummel A, Stevens CH, Ippati S, Suh LS, Macmillan A, Sutherland G, Kril JJ, Silva APG, Mackay JP, Poljak A, Delerue F, Ke YD, Ittner LM. Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer's mice. Science 2017; 354:904-908. [PMID: 27856911 DOI: 10.1126/science.aah6205] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/09/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022]
Abstract
Amyloid-β (Aβ) toxicity in Alzheimer's disease (AD) is considered to be mediated by phosphorylated tau protein. In contrast, we found that, at least in early disease, site-specific phosphorylation of tau inhibited Aβ toxicity. This specific tau phosphorylation was mediated by the neuronal p38 mitogen-activated protein kinase p38γ and interfered with postsynaptic excitotoxic signaling complexes engaged by Aβ. Accordingly, depletion of p38γ exacerbated neuronal circuit aberrations, cognitive deficits, and premature lethality in a mouse model of AD, whereas increasing the activity of p38γ abolished these deficits. Furthermore, mimicking site-specific tau phosphorylation alleviated Aβ-induced neuronal death and offered protection from excitotoxicity. Our work provides insights into postsynaptic processes in AD pathogenesis and challenges a purely pathogenic role of tau phosphorylation in neuronal toxicity.
Collapse
Affiliation(s)
- Arne Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.
| | - Sook Wern Chua
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Josefine Bertz
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Alexander Volkerling
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Julia van der Hoven
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Amadeus Gladbach
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Magdalena Przybyla
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Mian Bi
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Annika van Hummel
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.,Motor Neuron Disease Unit, School of Medical Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Claire H Stevens
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Stefania Ippati
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Lisa S Suh
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.,Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Alexander Macmillan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Greg Sutherland
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Jillian J Kril
- Discipline of Pathology, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Ana P G Silva
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Anne Poljak
- Biomedical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Fabien Delerue
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia.,Transgenic Animal Unit, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Yazi D Ke
- Motor Neuron Disease Unit, School of Medical Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia. .,Transgenic Animal Unit, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia.,Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
| |
Collapse
|
50
|
Cuenda A, Sanz-Ezquerro JJ. p38γ and p38δ: From Spectators to Key Physiological Players. Trends Biochem Sci 2017; 42:431-442. [PMID: 28473179 DOI: 10.1016/j.tibs.2017.02.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/14/2017] [Accepted: 02/22/2017] [Indexed: 12/20/2022]
Abstract
Although the physiological roles of p38γ and p38δ signalling pathways are largely unknown, new genetic and pharmacological tools are providing groundbreaking information on the function of these two stress-activated protein kinases. Recent studies show the importance of p38γ and p38δ in the regulation of processes as diverse as cytokine production, protein synthesis, exocytosis, cell migration, gene expression, and neuron activity, which have an acute impact on the development of pathologies related to inflammation, diabetes, neurodegeneration, and cancer. These recent breakthroughs are resolving some of the questions that have long been asked regarding the function of p38γ and p38δ in biology and pathology.
Collapse
Affiliation(s)
- Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Juan José Sanz-Ezquerro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|