1
|
Pfeuffer L, Siegert V, Frede J, Rieger L, Trozzo R, de Andrade Krätzig N, Ring S, Sarhadi S, Beck N, Niedermeier S, Abril-Gil M, Elbahloul M, Remke M, Steiger K, Eichner R, Jellusova J, Rad R, Bassermann F, Winter C, Ruland J, Buchner M. B-cell intrinsic RANK signaling cooperates with TCL1 to induce lineage-dependent B-cell transformation. Blood Cancer J 2024; 14:151. [PMID: 39198400 PMCID: PMC11358282 DOI: 10.1038/s41408-024-01123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
B-cell malignancies, such as chronic lymphocytic leukemia (CLL) and multiple myeloma (MM), remain incurable, with MM particularly prone to relapse. Our study introduces a novel mouse model with active RANK signaling and the TCL1 oncogene, displaying both CLL and MM phenotypes. In younger mice, TCL1 and RANK expression expands CLL-like B1-lymphocytes, while MM originates from B2-cells, becoming predominant in later stages and leading to severe disease progression and mortality. The induced MM mimics human disease, exhibiting features like clonal plasma cell expansion, paraproteinemia, anemia, and kidney and bone failure, as well as critical immunosurveillance strategies that promote a tumor-supportive microenvironment. This research elucidates the differential impacts of RANK activation in B1- and B2-cells and underscores the distinct roles of single versus combined oncogenes in B-cell malignancies. We also demonstrate that human MM cells express RANK and that inhibiting RANK signaling can reduce MM progression in a xenotransplantation model. Our study provides a rationale for further investigating the effects of RANK signaling in B-cell transformation and the shaping of a tumor-promoting microenvironment.
Collapse
Affiliation(s)
- Lisa Pfeuffer
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Viola Siegert
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Julia Frede
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Leonie Rieger
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Department of Medicine III, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Riccardo Trozzo
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
| | - Niklas de Andrade Krätzig
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
| | - Sandra Ring
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Shamim Sarhadi
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Nicole Beck
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Stefan Niedermeier
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Mar Abril-Gil
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Mohamed Elbahloul
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Department of Medicine III, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Marianne Remke
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Ruth Eichner
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Department of Medicine III, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Julia Jellusova
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Roland Rad
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Bassermann
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- Department of Medicine III, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Center for Cancer Research (BZKF), Munich, Germany
| | - Christof Winter
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Munich, 81675, Munich, Germany
| | - Maike Buchner
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Wang Y, Wu L, Van Kaer L. Role of canonical and noncanonical autophagy pathways in shaping the life journey of B cells. Front Immunol 2024; 15:1426204. [PMID: 39139569 PMCID: PMC11319164 DOI: 10.3389/fimmu.2024.1426204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Autophagy is a regulated intracellular catabolic process by which invading pathogens, damaged organelles, aggregated proteins, and other macromolecules are degraded in lysosomes. It has been widely appreciated that autophagic activity plays an important role in regulating the development, fate determination, and function of cells in the immune system, including B lymphocytes. Autophagy encompasses several distinct pathways that have been linked to B cell homeostasis and function. While B cell presentation of major histocompatibility complex (MHC) class II-restricted cytosolic antigens to T cells involves both macroautophagy and chaperone-mediated autophagy (CMA), plasma cells and memory B cells mainly rely on macroautophagy for their survival. Emerging evidence indicates that core autophagy factors also participate in processes related to yet clearly distinct from classical autophagy. These autophagy-related pathways, referred to as noncanonical autophagy or conjugation of ATG8 to single membranes (CASM), contribute to B cell homeostasis and functions, including MHC class II-restricted antigen presentation to T cells, germinal center formation, plasma cell differentiation, and recall responses. Dysregulation of B cell autophagy has been identified in several autoimmune and autoinflammatory diseases such as systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. In this review, we discuss recent advances in understanding the role of canonical and noncanonical autophagy in B cells, including B cell development and maturation, antigen processing and presentation, pathogen-specific antibody responses, cytokine secretion, and autoimmunity. Unraveling the molecular mechanisms of canonical and noncanonical autophagy in B cells will improve our understanding of B cell biology, with implications for the development of autophagy-based immunotherapies.
Collapse
Affiliation(s)
| | | | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
3
|
Bonato A, Chakraborty S, Bomben R, Canarutto G, Felician G, Martines C, Zucchetto A, Pozzo F, Vujovikj M, Polesel J, Chiarenza A, Del Principe MI, Del Poeta G, D'Arena G, Marasca R, Tafuri A, Laurenti L, Piazza S, Dimovski AJ, Gattei V, Efremov DG. NFKBIE mutations are selected by the tumor microenvironment and contribute to immune escape in chronic lymphocytic leukemia. Leukemia 2024; 38:1511-1521. [PMID: 38486128 PMCID: PMC11216988 DOI: 10.1038/s41375-024-02224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Loss-of-function mutations in NFKBIE, which encodes for the NF-κB inhibitor IκBε, are frequent in chronic lymphocytic leukemia (CLL) and certain other B-cell malignancies and have been associated with accelerated disease progression and inferior responses to chemotherapy. Using in vitro and in vivo murine models and primary patient samples, we now show that NFKBIE-mutated CLL cells are selected by microenvironmental signals that activate the NF-κB pathway and induce alterations within the tumor microenvironment that can allow for immune escape, including expansion of CD8+ T-cells with an exhausted phenotype and increased PD-L1 expression on the malignant B-cells. Consistent with the latter observations, we find increased expression of exhaustion markers on T-cells from patients with NFKBIE-mutated CLL. In addition, we show that NFKBIE-mutated murine CLL cells display selective resistance to ibrutinib and report inferior outcomes to ibrutinib treatment in NFKBIE-mutated CLL patients. These findings suggest that NFKBIE mutations can contribute to CLL progression through multiple mechanisms, including a bidirectional crosstalk with the microenvironment and reduced sensitivity to BTK inhibitor treatment.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Adenine/analogs & derivatives
- Adenine/pharmacology
- CD8-Positive T-Lymphocytes/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Mutation
- NF-kappa B/metabolism
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Tumor Escape/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Alice Bonato
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Supriya Chakraborty
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | - Giulia Canarutto
- Computational Biology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giulia Felician
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Claudio Martines
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | - Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | - Marija Vujovikj
- Research Center for Genetic Engineering and Biotechnology, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Jerry Polesel
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | | | | | - Giovanni Del Poeta
- Hematology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni D'Arena
- Hematology and Stem Cell Transplantation Unit, IRCCS Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Roberto Marasca
- Division of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Agostino Tafuri
- Division of Hematology, University Hospital Sant'Andrea, "Sapienza" University of Rome, Rome, Italy
| | - Luca Laurenti
- Hematology Unit, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Silvano Piazza
- Computational Biology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Aleksandar J Dimovski
- Research Center for Genetic Engineering and Biotechnology, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
- Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro Di Riferimento Oncologico, Aviano, Italy
| | - Dimitar G Efremov
- Molecular Hematology Unit, International Center for Genetic Engineering and Biotechnology, Trieste, Italy.
- Macedonian Academy of Sciences and Arts, Skopje, North Macedonia.
| |
Collapse
|
4
|
Zhang Y, Zhou X. Targeting regulated cell death (RCD) in hematological malignancies: Recent advances and therapeutic potential. Biomed Pharmacother 2024; 175:116667. [PMID: 38703504 DOI: 10.1016/j.biopha.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Regulated cell death (RCD) is a form of cell death that can be regulated by numerous biomacromolecules. Accumulating evidence suggests that dysregulated expression and altered localization of related proteins in RCD promote the development of cancer. Targeting subroutines of RCD with pharmacological small-molecule compounds is becoming a promising therapeutic avenue for anti-tumor treatment, especially in hematological malignancies. Herein, we summarize the aberrant mechanisms of apoptosis, necroptosis, pyroptosis, PANoptosis, and ferroptosis in hematological malignancies. In particular, we focus on the relationship between cell death and tumorigenesis, anti-tumor immunotherapy, and drug resistance in hematological malignancies. Furthermore, we discuss the emerging therapeutic strategies targeting different RCD subroutines. This review aims to summarize the significance and potential mechanisms of RCD in hematological malignancies, along with the development and utilization of pertinent therapeutic strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| |
Collapse
|
5
|
Hayakawa K, Zhou Y, Shinton SA. B-1 derived anti-Thy-1 B cells in old aged mice develop lymphoma/leukemia with high expression of CD11b and Hamp2 that different from TCL1 transgenic mice. Immun Ageing 2024; 21:22. [PMID: 38570827 PMCID: PMC10988983 DOI: 10.1186/s12979-024-00415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Human old aged unmutated chronic lymphocytic leukemia U-CLL are the TCL1+ZAP70+CD5+ B cells. Since CD5 makes the BCR signaling tolerance, ZAP70 increased in U-CLL not only TCL1+ alone. In mice, TCL1 (TCL1A) is the negative from neonate to old aged, as TC-. VH8-12/Vk21-5 is the anti-thymocyte/Thy-1 autoreactive ATA B cell. When ATA μκTg generation in mice, ATA B cells are the neonate generated CD5+ B cells in B-1, and in the middle age, CD5+ can be down or continuously CD5+, then, old aged CLL/lymphoma generation with increased CD11b in TC-ZAP70-CD5- or TC-ZAP70+CD5+. In this old aged TC-ATA B microarray analysis showed most similar to human CLL and U-CLL, and TC-ZAP70+CD5+ showed certain higher present as U-CLL. Original neonate ATA B cells showed with several genes down or further increase in old aged tumor, and old aged T-bet+CD11c+, CTNNB1hi, HMGBhi, CXCR4hi, DPP4hi and decreased miR181b. These old aged increased genes and down miR181b are similar to human CLL. Also, in old age ATA B cell tumor, high CD38++CD44++, increased Ki67+ AID+, and decreased CD180- miR15Olow are similar to U-CLL. In this old aged ATA B, increased TLR7,9 and Wnt10b. TC+Tg generated with ATAμκTg mice occurred middle age tumor as TC+ZAP70-CD5+ or TC+ZAP70+CD5+, with high NF-kB1, TLR4,6 and Wnt5b,6 without increased CD11b. Since neonatal state to age with TC+Tg continuously, middle age CLL/lymphoma generation is not similar to old aged generated, however, some increased in TC+ZAP70+ are similar to the old age TC- ATA B tumor. Then, TC- ATA B old age tumor showed some difference to human CLL. ATA B cells showed CD11b+CD22++, CD24 down, and hepcidin Hamp2++ with iron down. This mouse V8-12 similar to human V2-5, and V2-5 showed several cancers with macrophages/neutrophils generated hepcidin+ ironlow or some showed hepcidin- iron+ with tumor, and mouse V8-12 with different Vk19-17 generate MZ B cells strongly increased macrophage++ in old aged and generated intestine/colon tumor. Conclusion, neonate generated TC-ATA B1 cells in old aged tumor generation are CD11b+ in the leukemia CLL together with lymphoma cancer with hepcidin-related Hamp2++ in B-1 cell generation to control iron.
Collapse
Affiliation(s)
- Kyoko Hayakawa
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
| | - Yan Zhou
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - Susan A Shinton
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| |
Collapse
|
6
|
Flati I, Di Vito Nolfi M, Dall’Aglio F, Vecchiotti D, Verzella D, Alesse E, Capece D, Zazzeroni F. Molecular Mechanisms Underpinning Immunometabolic Reprogramming: How the Wind Changes during Cancer Progression. Genes (Basel) 2023; 14:1953. [PMID: 37895302 PMCID: PMC10606647 DOI: 10.3390/genes14101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolism and the immunological state are intimately intertwined, as defense responses are bioenergetically expensive. Metabolic homeostasis is a key requirement for the proper function of immune cell subsets, and the perturbation of the immune-metabolic balance is a recurrent event in many human diseases, including cancer, due to nutrient fluctuation, hypoxia and additional metabolic changes occurring in the tumor microenvironment (TME). Although much remains to be understood in the field of immunometabolism, here, we report the current knowledge on both physiological and cancer-associated metabolic profiles of immune cells, and the main molecular circuits involved in their regulation, highlighting similarities and differences, and emphasizing immune metabolic liabilities that could be exploited in cancer therapy to overcome immune resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (I.F.); (M.D.V.N.); (F.D.); (D.V.); (D.V.); (E.A.); (F.Z.)
| | | |
Collapse
|
7
|
Hacken ET, Yin S, Redd R, Sánchez MH, Clement K, Hoffmann GB, Regis FF, Witten E, Li S, Neuberg D, Pinello L, Livak KJ, Wu CJ. Loss-of-function lesions impact B-cell development and fitness but are insufficient to drive CLL in mouse models. Blood Adv 2023; 7:4514-4517. [PMID: 36477552 PMCID: PMC10425678 DOI: 10.1182/bloodadvances.2022009135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Elisa ten Hacken
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Shanye Yin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Robert Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - María Hernández Sánchez
- The Institute of Cancer Molecular and Cellular Biology–Cancer Research Center, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
- Departament of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, Madrid, Spain
| | - Kendell Clement
- Center for Cancer Research, and Center for Computational and Integrative Biology, Molecular Pathology Unit, Massachussetts General Hospital, Boston, MA
| | | | - Fara F. Regis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Elizabeth Witten
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Shuqiang Li
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Luca Pinello
- Center for Cancer Research, and Center for Computational and Integrative Biology, Molecular Pathology Unit, Massachussetts General Hospital, Boston, MA
| | - Kenneth J. Livak
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
8
|
Hing ZA, Walker JS, Whipp EC, Brinton L, Cannon M, Zhang P, Sher S, Cempre CB, Brown F, Smith PL, Agostinelli C, Pileri SA, Skinner JN, Williams K, Phillips H, Shaffer J, Beaver LP, Pan A, Shin K, Gregory CT, Ozer GH, Yilmaz SA, Harrington BK, Lehman AM, Yu L, Coppola V, Yan P, Scherle P, Wang M, Pitis P, Xu C, Vaddi K, Chen-Kiang S, Woyach J, Blachly JS, Alinari L, Yang Y, Byrd JC, Baiocchi RA, Blaser BW, Lapalombella R. Dysregulation of PRMT5 in chronic lymphocytic leukemia promotes progression with high risk of Richter's transformation. Nat Commun 2023; 14:97. [PMID: 36609611 PMCID: PMC9823097 DOI: 10.1038/s41467-022-35778-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023] Open
Abstract
Richter's Transformation (RT) is a poorly understood and fatal progression of chronic lymphocytic leukemia (CLL) manifesting histologically as diffuse large B-cell lymphoma. Protein arginine methyltransferase 5 (PRMT5) is implicated in lymphomagenesis, but its role in CLL or RT progression is unknown. We demonstrate herein that tumors uniformly overexpress PRMT5 in patients with progression to RT. Furthermore, mice with B-specific overexpression of hPRMT5 develop a B-lymphoid expansion with increased risk of death, and Eµ-PRMT5/TCL1 double transgenic mice develop a highly aggressive disease with transformation that histologically resembles RT; where large-scale transcriptional profiling identifies oncogenic pathways mediating PRMT5-driven disease progression. Lastly, we report the development of a SAM-competitive PRMT5 inhibitor, PRT382, with exclusive selectivity and optimal in vitro and in vivo activity compared to available PRMT5 inhibitors. Taken together, the discovery that PRMT5 drives oncogenic pathways promoting RT provides a compelling rationale for clinical investigation of PRMT5 inhibitors such as PRT382 in aggressive CLL/RT cases.
Collapse
Affiliation(s)
- Zachary A Hing
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Janek S Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ethan C Whipp
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Lindsey Brinton
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Matthew Cannon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Pu Zhang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Steven Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Casey B Cempre
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Fiona Brown
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Porsha L Smith
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano A Pileri
- European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
| | - Jordan N Skinner
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Katie Williams
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Hannah Phillips
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Jami Shaffer
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Larry P Beaver
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Alexander Pan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Kyle Shin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Charles T Gregory
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Gulcin H Ozer
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Selen A Yilmaz
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Bonnie K Harrington
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Amy M Lehman
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Pearlly Yan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Min Wang
- Prelude Therapeutics, Wilmington, DE, USA
| | | | - Chaoyi Xu
- Prelude Therapeutics, Wilmington, DE, USA
| | - Kris Vaddi
- Prelude Therapeutics, Wilmington, DE, USA
| | - Selina Chen-Kiang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jennifer Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - James S Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Yiping Yang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Bradley W Blaser
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Single-cell genomics identifies distinct B1 cell developmental pathways and reveals aging-related changes in the B-cell receptor repertoire. Cell Biosci 2022; 12:57. [PMID: 35526067 PMCID: PMC9080186 DOI: 10.1186/s13578-022-00795-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background B1 cells are self-renewing innate-like B lymphocytes that provide the first line of defense against pathogens. B1 cells primarily reside in the peritoneal cavity and are known to originate from various fetal tissues, yet their developmental pathways and the mechanisms underlying maintenance of B1 cells throughout adulthood remain unclear. Results We performed high-throughput single-cell analysis of the transcriptomes and B-cell receptor repertoires of peritoneal B cells of neonates, young adults, and elderly mice. Gene expression analysis of 31,718 peritoneal B cells showed that the neonate peritoneal cavity contained many B1 progenitors, and neonate B cell specific clustering revealed two trajectories of peritoneal B1 cell development, including pre-BCR dependent and pre-BCR independent pathways. We also detected profound age-related changes in B1 cell transcriptomes: clear difference in senescence genetic program was evident in differentially aged B1 cells, and we found an example that a B1 subset only present in the oldest mice was marked by expression of the fatty-acid receptor CD36. We also performed antibody gene sequencing of 15,967 peritoneal B cells from the three age groups and discovered that B1 cell aging was associated with clonal expansion and two B1 cell clones expanded in the aged mice had the same CDR-H3 sequence (AGDYDGYWYFDV) as a pathogenically linked cell type from a recent study of an atherosclerosis mouse model. Conclusions Beyond offering an unprecedent data resource to explore the cell-to-cell variation in B cells, our study has revealed that B1 precursor subsets are present in the neonate peritoneal cavity and dissected the developmental pathway of the precursor cells. Besides, this study has found the expression of CD36 on the B1 cells in the aged mice. And the single-cell B-cell receptor sequencing reveals B1 cell aging is associated with clonal expansion. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00795-6.
Collapse
|
11
|
Old and New Facts and Speculations on the Role of the B Cell Receptor in the Origin of Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:ijms232214249. [PMID: 36430731 PMCID: PMC9693457 DOI: 10.3390/ijms232214249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
The engagement of the B cell receptor (BcR) on the surface of leukemic cells represents a key event in chronic lymphocytic leukemia (CLL) since it can lead to the maintenance and expansion of the neoplastic clone. This notion was initially suggested by observations of the CLL BcR repertoire and of correlations existing between certain BcR features and the clinical outcomes of single patients. Based on these observations, tyrosine kinase inhibitors (TKIs), which block BcR signaling, have been introduced in therapy with the aim of inhibiting CLL cell clonal expansion and of controlling the disease. Indeed, the impressive results obtained with these compounds provided further proof of the role of BcR in CLL. In this article, the key steps that led to the determination of the role of BcR are reviewed, including the features of the CLL cell repertoire and the fine mechanisms causing BcR engagement and cell signaling. Furthermore, we discuss the biological effects of the engagement, which can lead to cell survival/proliferation or apoptosis depending on certain intrinsic cell characteristics and on signals that the micro-environment can deliver to the leukemic cells. In addition, consideration is given to alternative mechanisms promoting cell proliferation in the absence of BcR signaling, which can explain in part the incomplete effectiveness of TKI therapies. The role of the BcR in determining clonal evolution and disease progression is also described. Finally, we discuss possible models to explain the selection of a special BcR set during leukemogenesis. The BcR may deliver activation signals to the cells, which lead to their uncontrolled growth, with the possible collaboration of other still-undefined events which are capable of deregulating the normal physiological response of B cells to BcR-delivered stimuli.
Collapse
|
12
|
Merchand-Reyes G, Santhanam R, Robledo-Avila FH, Weigel C, Ruiz-Rosado JDD, Mo X, Partida-Sánchez S, Woyach JA, Oakes CC, Tridandapani S, Butchar JP. Disruption of Nurse-like Cell Differentiation as a Therapeutic Strategy for Chronic Lymphocytic Leukemia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1212-1223. [PMID: 35995507 PMCID: PMC9492647 DOI: 10.4049/jimmunol.2100931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/11/2022] [Indexed: 01/04/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia, but, despite advances in treatment, many patients still experience relapse. CLL cells depend on interactions with supportive cells, and nurse-like cells (NLCs) are the major such cell type. However, little is known about how NLCs develop. Here, we performed DNA methylation analysis of CLL patient-derived NLCs using the 850K Illumina array, comparing CD14+ cells at day 1 (monocytes) versus day 14 (NLCs). We found a strong loss of methylation in AP-1 transcription factor binding sites, which may be driven by MAPK signaling. Testing of individual MAPK pathways (MEK, p38, and JNK) revealed a strong dependence on MEK/ERK for NLC development, because treatment of patient samples with the MEK inhibitor trametinib dramatically reduced NLC development in vitro. Using the adoptive transfer Eµ-TCL1 mouse model of CLL, we found that MEK inhibition slowed CLL progression, leading to lower WBC counts and to significantly longer survival time. There were also lower numbers of mouse macrophages, particularly within the M2-like population. In summary, NLC development depends on MEK signaling, and inhibition of MEK leads to increased survival time in vivo. Hence, targeting the MEK/ERK pathway may be an effective treatment strategy for CLL.
Collapse
Affiliation(s)
| | - Ramasamy Santhanam
- Division of Hematology, The Ohio State University College of Medicine, Columbus, OH
| | | | - Christoph Weigel
- Division of Hematology, The Ohio State University College of Medicine, Columbus, OH
| | | | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University College of Medicine, Columbus, OH
| | | | - Jennifer A Woyach
- Division of Hematology, The Ohio State University College of Medicine, Columbus, OH
| | - Christopher C Oakes
- Division of Hematology, The Ohio State University College of Medicine, Columbus, OH
| | | | - Jonathan P Butchar
- Division of Hematology, The Ohio State University College of Medicine, Columbus, OH;
| |
Collapse
|
13
|
Shinton SA, Brill-Dashoff J, Hayakawa K. Pla2g2a promotes innate Th2-type immunity lymphocytes to increase B1a cells. Sci Rep 2022; 12:14899. [PMID: 36050343 PMCID: PMC9437038 DOI: 10.1038/s41598-022-18876-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Newborns require early generation of effective innate immunity as a primary physiological mechanism for survival. The neonatal Lin28+Let7– developmental pathway allows increased generation of Th2-type cells and B1a (B-1 B) cells compared to adult cells and long-term maintenance of these initially generated innate cells. For initial B1a cell growth from the neonatal to adult stage, Th2-type IL-5 production from ILC2s and NKT2 cells is important to increase B1a cells. The Th17 increase is dependent on extracellular bacteria, and increased bacteria leads to lower Th2-type generation. Secreted group IIA-phospholipase A2 (sPLA2-IIA) from the Pla2g2a gene can bind to gram-positive bacteria and degrade bacterial membranes, controlling microbiota in the intestine. BALB/c mice are Pla2g2a+, and express high numbers of Th2-type cells and B1a cells. C57BL/6 mice are Pla2g2a-deficient and distinct from the SLAM family, and exhibit fewer NKT2 cells and fewer B1a cells from the neonatal to adult stage. We found that loss of Pla2g2a in the BALB/c background decreased IL-5 from Th2-type ILC2s and NKT2s but increased bacterial-reactive NKT17 cells and MAIT cells, and decreased the number of early-generated B1a cells and MZ B cells and the CD4/CD8 T cell ratio. Low IL-5 by decreased Th2-type cells in Pla2g2a loss led to low early-generated B1a cell growth from the neonatal to adult stage. In anti-thymocyte/Thy-1 autoreactive μκ transgenic (ATAμκ Tg) Pla2g2a+ BALB/c background C.B17 mice generated NKT2 cells that continuously control CD1d+ B1 B cells through old aging and lost CD1d in B1 B cells generating strong B1 ATA B cell leukemia/lymphoma. Pla2g2a-deficient ATAμκTg C57BL/6 mice suppressed the initial B1a cell increase, with low/negative spontaneous leukemia/lymphoma generation. These data confirmed that the presence of Pla2g2a to control bacteria is important to allow the neonatal to adult stage. Pla2g2a promotes innate Th2-type immunity lymphocytes to increase early generated B1a cells.
Collapse
Affiliation(s)
- Susan A Shinton
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | | | - Kyoko Hayakawa
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
| |
Collapse
|
14
|
Kumánovics A, Sadighi Akha AA. Flow cytometry for B-cell subset analysis in immunodeficiencies. J Immunol Methods 2022; 509:113327. [DOI: 10.1016/j.jim.2022.113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
|
15
|
Rusyn L, Reinartz S, Nikiforov A, Mikhael N, Vom Stein A, Kohlhas V, Bloehdorn J, Stilgenbauer S, Lohneis P, Buettner R, Robrecht S, Fischer K, Pallasch C, Hallek M, Nguyen PH, Seeger-Nukpezah T. The scaffold protein NEDD9 is necessary for leukemia-cell migration and disease progression in a mouse model of chronic lymphocytic leukemia. Leukemia 2022; 36:1794-1805. [PMID: 35523865 PMCID: PMC9252910 DOI: 10.1038/s41375-022-01586-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
The scaffold protein NEDD9 is frequently upregulated and hyperphosphorylated in cancers, and is associated with poor clinical outcome. NEDD9 promotes B-cell adhesion, migration and chemotaxis, pivotal processes for malignant development. We show that global or B-cell-specific deletion of Nedd9 in chronic lymphocytic leukemia (CLL) mouse models delayed CLL development, markedly reduced disease burden and resulted in significant survival benefit. NEDD9 was required for efficient CLL cell homing, chemotaxis, migration and adhesion. In CLL patients, peripheral NEDD9 expression was associated with adhesion and migration signatures as well as leukocyte count. Additionally, CLL lymph nodes frequently expressed high NEDD9 levels, with a subset of patients showing NEDD9 expression enriched in the CLL proliferation centers. Blocking activity of prominent NEDD9 effectors, including AURKA and HDAC6, effectively reduced CLL cell migration and chemotaxis. Collectively, our study provides evidence for a functional role of NEDD9 in CLL pathogenesis that involves intrinsic defects in adhesion, migration and homing.
Collapse
Affiliation(s)
- Lisa Rusyn
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Sebastian Reinartz
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Anastasia Nikiforov
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Nelly Mikhael
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Alexander Vom Stein
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Viktoria Kohlhas
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | | | | | - Philipp Lohneis
- Hämatopathologie Lübeck, Reference Centre for Lymphnode Pathology and Haematopathology, Luebeck, Germany
| | | | - Sandra Robrecht
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Kirsten Fischer
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Christian Pallasch
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Michael Hallek
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Phuong-Hien Nguyen
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany. .,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany.
| | - Tamina Seeger-Nukpezah
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.
| |
Collapse
|
16
|
Muri J, Corak B, Matsushita M, Baes M, Kopf M. Peroxisomes Are Critical for the Development and Maintenance of B1 and Marginal Zone B Cells but Dispensable for Follicular B Cells and T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:839-850. [PMID: 35074867 DOI: 10.4049/jimmunol.2100518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022]
Abstract
Antioxidant systems maintain cellular redox (oxidation-reduction) homeostasis. In contrast with other key redox pathways, such as the thioredoxin system, glutathione, and NF-E2-related factor 2 (Nrf2), little is known about the function of the redox-sensitive organelle "peroxisome" in immune cells. In this study, we show that the absence of peroxisomes in conditional Pex5-deficient mice strikingly results in impaired homeostatic maintenance of innate-like B cells, namely, B1 and marginal zone B cells, which translates into a defective Ab response to Streptococcus pneumoniae Surprisingly, however, follicular B2 cell development, homeostatic maintenance, germinal center reactions, Ab production, class switching, and B cell memory formation were unaffected in Pex5-deficient animals. Similarly, T cell development and responses to viral infections also remained unaltered in the absence of Pex5 Thus, this study highlights the differential requirement of peroxisomes in distinct lymphocyte subtypes and may provide a rationale for specifically targeting peroxisomal metabolism in innate-like B cells in certain forms of B cell malignancies involving B1 cells.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland; and
| | - Basak Corak
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland; and
| | - Mai Matsushita
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland; and
| | - Myriam Baes
- Lab of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland; and
| |
Collapse
|
17
|
Broeren MGA, Wang JJ, Balzaretti G, Groenen PJTA, van Schaik BDC, Chataway T, Kaffa C, Bervoets S, Hebeda KM, Bounova G, Pruijn GJM, Gordon TP, De Vries N, Thurlings RM. Proteogenomic analysis of the autoreactive B cell repertoire in blood and tissues of patients with Sjögren's syndrome. Ann Rheum Dis 2022; 81:644-652. [PMID: 35144926 PMCID: PMC8995816 DOI: 10.1136/annrheumdis-2021-221604] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Objective To comparatively analyse the aberrant affinity maturation of the antinuclear and rheumatoid factor (RF) B cell repertoires in blood and tissues of patients with Sjögren’s syndrome (SjS) using an integrated omics workflow. Methods Peptide sequencing of anti-Ro60, anti-Ro52, anti-La and RF was combined with B cell repertoire analysis at the DNA, RNA and single cell level in blood B cell subsets, affected salivary gland and extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue (MALT) of patients with SjS. Results Affected tissues contained anti-Ro60, anti-Ro52, anti-La and RF clones as a small part of a polyclonal infiltrate. Anti-Ro60, anti-La and anti-Ro52 clones outnumbered RF clones. MALT lymphoma tissues contained monoclonal RF expansions. Autoreactive clones were not selected from a restricted repertoire in a circulating B cell subset. The antinuclear antibody (ANA) repertoires displayed similar antigen-dependent and immunoglobulin (Ig) G1-directed affinity maturation. RF clones displayed antigen-dependent, IgM-directed and more B cell receptor integrity-dependent affinity maturation. This coincided with extensive intra-clonal diversification in RF-derived lymphomas. Regeneration of clinical disease manifestations after rituximab coincided with large RF clones, which not necessarily belonged to the lymphoma clone, that displayed continuous affinity maturation and intra-clonal diversification. Conclusion The ANA and RF repertoires in patients with SjS display tissue-restricted, antigen-dependent and divergent affinity maturation. Affinity maturation of RF clones deviates further during RF clone derived lymphomagenesis and during regeneration of the autoreactive repertoire after temporary disruption by rituximab. These data give insight into the molecular mechanisms of autoreactive inflammation in SjS, assist MALT lymphoma diagnosis and allow tracking its response to rituximab.
Collapse
Affiliation(s)
- Mathijs G A Broeren
- Department of Rheumatology, Radboudumc, Nijmegen, The Netherlands.,Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Jing J Wang
- Department of Immunology, Flinders University, Adelaide, South Australia, Australia
| | - Giulia Balzaretti
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | | | - Barbera D C van Schaik
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Tim Chataway
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, South Australia, Australia
| | - Charlotte Kaffa
- Radboud Technology Center for Bioinformatics, Radboudumc, Nijmegen, The Netherlands
| | - Sander Bervoets
- Radboud Technology Center for Bioinformatics, Radboudumc, Nijmegen, The Netherlands
| | - Konnie M Hebeda
- Department of Pathology, Radboudumc, Nijmegen, The Netherlands
| | | | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Thomas P Gordon
- SA Pathology, Department of Immunology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Niek De Vries
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | | |
Collapse
|
18
|
Öztürk S, Paul Y, Afzal S, Gil-Farina I, Jauch A, Bruch PM, Kalter V, Hanna B, Arseni L, Roessner PM, Schmidt M, Stilgenbauer S, Dietrich S, Lichter P, Zapatka M, Seiffert M. Longitudinal analyses of CLL in mice identify leukemia-related clonal changes including a Myc gain predicting poor outcome in patients. Leukemia 2022; 36:464-475. [PMID: 34417556 PMCID: PMC8807396 DOI: 10.1038/s41375-021-01381-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy mainly occurring at an advanced age with no single major genetic driver. Transgenic expression of TCL1 in B cells leads after a long latency to a CLL-like disease in aged Eµ-TCL1 mice suggesting that TCL1 overexpression is not sufficient for full leukemic transformation. In search for secondary genetic events and to elucidate the clonal evolution of CLL, we performed whole exome and B-cell receptor sequencing of longitudinal leukemia samples of Eµ-TCL1 mice. We observed a B-cell receptor stereotypy, as described in patients, confirming that CLL is an antigen-driven disease. Deep sequencing showed that leukemia in Eµ-TCL1 mice is mostly monoclonal. Rare oligoclonality was associated with inability of tumors to develop disease upon adoptive transfer in mice. In addition, we identified clonal changes and a sequential acquisition of mutations with known relevance in CLL, which highlights the genetic similarities and therefore, suitability of the Eµ-TCL1 mouse model for progressive CLL. Among them, a recurrent gain of chromosome 15, where Myc is located, was identified in almost all tumors in Eµ-TCL1 mice. Interestingly, amplification of 8q24, the chromosomal region containing MYC in humans, was associated with worse outcome of patients with CLL.
Collapse
Affiliation(s)
- Selcen Öztürk
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yashna Paul
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Saira Afzal
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
- GeneWerk GmbH, Heidelberg, Germany
| | - Irene Gil-Farina
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
- GeneWerk GmbH, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Peter-Martin Bruch
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Verena Kalter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bola Hanna
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp M Roessner
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
- GeneWerk GmbH, Heidelberg, Germany
| | | | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
19
|
Iperi C, Bordron A, Dueymes M, Pers JO, Jamin C. Metabolic Program of Regulatory B Lymphocytes and Influence in the Control of Malignant and Autoimmune Situations. Front Immunol 2021; 12:735463. [PMID: 34650560 PMCID: PMC8505885 DOI: 10.3389/fimmu.2021.735463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Metabolic pathways have been studied for a while in eukaryotic cells. During glycolysis, glucose enters into the cells through the Glut1 transporter to be phosphorylated and metabolized generating ATP molecules. Immune cells can use additional pathways to adapt their energetic needs. The pentose phosphate pathway, the glutaminolysis, the fatty acid oxidation and the oxidative phosphorylation generate additional metabolites to respond to the physiological requirements. Specifically, in B lymphocytes, these pathways are activated to meet energetic demands in relation to their maturation status and their functional orientation (tolerance, effector or regulatory activities). These metabolic programs are differentially involved depending on the receptors and the co-activation molecules stimulated. Their induction may also vary according to the influence of the microenvironment, i.e. the presence of T cells, cytokines … promoting the expression of particular transcription factors that direct the energetic program and modulate the number of ATP molecule produced. The current review provides recent advances showing the underestimated influence of the metabolic pathways in the control of the B cell physiology, with a particular focus on the regulatory B cells, but also in the oncogenic and autoimmune evolution of the B cells.
Collapse
Affiliation(s)
| | - Anne Bordron
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | - Maryvonne Dueymes
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Service d'Odontologie, CHU de Brest, Brest, France
| | - Jacques-Olivier Pers
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Service d'Odontologie, CHU de Brest, Brest, France
| | - Christophe Jamin
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHU de Brest, Brest, France
| |
Collapse
|
20
|
Pieters T, T’Sas S, Vanhee S, Almeida A, Driege Y, Roels J, Van Loocke W, Daneels W, Baens M, Marchand A, Van Trimpont M, Matthijssens F, Morscio J, Lemeire K, Lintermans B, Reunes L, Chaltin P, Offner F, Van Dorpe J, Hochepied T, Berx G, Beyaert R, Staal J, Van Vlierberghe P, Goossens S. Cyclin D2 overexpression drives B1a-derived MCL-like lymphoma in mice. J Exp Med 2021; 218:e20202280. [PMID: 34406363 PMCID: PMC8377631 DOI: 10.1084/jem.20202280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B cell lymphoma with poor long-term overall survival. Currently, MCL research and development of potential cures is hampered by the lack of good in vivo models. MCL is characterized by recurrent translocations of CCND1 or CCND2, resulting in overexpression of the cell cycle regulators cyclin D1 or D2, respectively. Here, we show, for the first time, that hematopoiesis-specific activation of cyclin D2 is sufficient to drive murine MCL-like lymphoma development. Furthermore, we demonstrate that cyclin D2 overexpression can synergize with loss of p53 to form aggressive and transplantable MCL-like lymphomas. Strikingly, cyclin D2-driven lymphomas display transcriptional, immunophenotypic, and functional similarities with B1a B cells. These MCL-like lymphomas have B1a-specific B cell receptors (BCRs), show elevated BCR and NF-κB pathway activation, and display increased MALT1 protease activity. Finally, we provide preclinical evidence that inhibition of MALT1 protease activity, which is essential for the development of early life-derived B1a cells, can be an effective therapeutic strategy to treat MCL.
Collapse
MESH Headings
- Allografts
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cyclin D2/genetics
- Cyclin D2/metabolism
- Gene Expression Regulation, Neoplastic
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/pathology
- Mice, Inbred C57BL
- Mice, Transgenic
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Neoplastic Cells, Circulating
- Tumor Suppressor Protein p53/genetics
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Sara T’Sas
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Stijn Vanhee
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - André Almeida
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Yasmine Driege
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Willem Daneels
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Mathijs Baens
- Center for Innovation and Stimulation of Drug Discovery Leuven, Leuven, Belgium
| | - Arnaud Marchand
- Center for Innovation and Stimulation of Drug Discovery Leuven, Leuven, Belgium
| | - Maaike Van Trimpont
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Filip Matthijssens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Julie Morscio
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Kelly Lemeire
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Béatrice Lintermans
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Lindy Reunes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Patrick Chaltin
- Center for Innovation and Stimulation of Drug Discovery Leuven, Leuven, Belgium
- Center for Drug Design and Discovery, Catholic University of Leuven, Leuven, Belgium
| | - Fritz Offner
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Tino Hochepied
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geert Berx
- Cancer Research Institute Ghent, Ghent, Belgium
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Alankus B, Ecker V, Vahl N, Braun M, Weichert W, Macher-Göppinger S, Gehring T, Neumayer T, Zenz T, Buchner M, Ruland J. Pathological RANK signaling in B cells drives autoimmunity and chronic lymphocytic leukemia. J Exp Med 2021; 218:211464. [PMID: 33075129 PMCID: PMC7868734 DOI: 10.1084/jem.20200517] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/30/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022] Open
Abstract
Clinical evidence suggests alterations in receptor activator of NF-κB (RANK) signaling are key contributors to B cell autoimmunity and malignancy, but the pathophysiological consequences of aberrant B cell–intrinsic RANK signaling remain unknown. We generated mice that express a human lymphoma–derived, hyperactive RANKK240E variant in B lymphocytes in vivo. Forced RANK signaling disrupted B cell tolerance and induced a fully penetrant systemic lupus erythematosus–like disease in addition to the development of chronic lymphocytic leukemia (CLL). Importantly, RANKK240E transgenic CLL cells as well as CLL cells of independent murine and of human origin depend on microenvironmental RANK ligand (RANKL) for tumor cell survival. Consequently, inhibition of the RANKL–RANK axis with anti-RANKL antibodies killed murine and human CLL cells in vitro and in vivo. These results establish pathological B cell–intrinsic RANK signaling as a potential driver of autoimmunity and B cell malignancy, and they suggest the exploitation of clinically available anti-RANKL compounds for CLL treatment.
Collapse
Affiliation(s)
- Begüm Alankus
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Veronika Ecker
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Nathalie Vahl
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martina Braun
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany.,German Cancer Consortium, Heidelberg, Germany
| | | | - Torben Gehring
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tanja Neumayer
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Maike Buchner
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,German Cancer Consortium, Heidelberg, Germany
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,German Cancer Consortium, Heidelberg, Germany.,German Center for Infection Research, Munich, Germany
| |
Collapse
|
22
|
Abstract
B cells are central to the pathogenesis of multiple autoimmune diseases, through antigen presentation, cytokine secretion, and the production of autoantibodies. During development and differentiation, B cells undergo drastic changes in their physiology. It is emerging that these are accompanied by equally significant shifts in metabolic phenotype, which may themselves also drive and enforce the functional properties of the cell. The dysfunction of B cells during autoimmunity is characterised by the breaching of tolerogenic checkpoints, and there is developing evidence that the metabolic state of B cells may contribute to this. Determining the metabolic phenotype of B cells in autoimmunity is an area of active study, and is important because intervention by metabolism-altering therapeutic approaches may represent an attractive treatment target.
Collapse
Affiliation(s)
- Iwan G. A. Raza
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Alexander J. Clarke
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Perez-Chacon G, Zapata JM. The Traf2DNx BCL2-tg Mouse Model of Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma Recapitulates the Biased IGHV Gene Usage, Stereotypy, and Antigen-Specific HCDR3 Selection of Its Human Counterpart. Front Immunol 2021; 12:627602. [PMID: 33912159 PMCID: PMC8072112 DOI: 10.3389/fimmu.2021.627602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL)/Small lymphocytic lymphoma (SLL) is a heterogeneous disease consisting of at least two separate subtypes, based on the mutation status of the immunoglobulin heavy chain variable gene (IGHV) sequence. Exposure to antigens seems to play a role in malignant transformation and in the selection and expansion of more aggressive CLL clones. Furthermore, a biased usage of particular IGHV gene subgroups and the existence of stereotyped B-cell receptors (BCRs) are distinctive characteristics of human CLL. We have previously described that Traf2DN/BCL2 double-transgenic (tg, +/+) mice develop CLL/SLL with high incidence with aging. In this model, TNF-Receptor Associated Factor (TRAF)-2 deficiency cooperates with B cell lymphoma (BCL)-2 in promoting CLL/SLL in mice by specifically enforcing marginal zone (MZ) B cell differentiation and rendering B cells independent of BAFF for survival. In this report, we have performed the sequencing of the IGHV-D-J rearrangements of B cell clones from the Traf2DN/BCL2-tg+/+ mice with CLL/SLL. The results indicate that these mice develop oligoclonal and monoclonal B cell expansions. Allotransplantation of the oligoclonal populations into immunodeficient mice resulted in the preferential expansion of one of the parental clones. The analysis of the IGHV sequences indicated that 15% were mutated (M) and 85% unmutated (UM). Furthermore, while the Traf2DN/BCL2-tg-/- (wild-type), -/+ (BCL2 single-tg) and +/- (Traf2DNDN single-tg) littermates showed the expression of various IGHV gene subgroups, the CLL/SLL expanded clones from the Traf2DN/BCL2-tg+/+ (double-transgenic) mice showed a more restricted IGHV gene subgroup usage and an overrepresentation of particular IGHV genes. In addition, the HCDR3-encoded protein sequence indicates the existence of stereotyped immunoglobulin (Ig) in the BCRs and strong similarities with BCR recognizing autoantigens and pathogen-associated antigens. Altogether, these results highlight the remarkable similarities between the CLL/SLL developed by the Traf2DN/BCL2-tg+/+ mice and its human counterpart.
Collapse
Affiliation(s)
- Gema Perez-Chacon
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| | - Juan M Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Madrid, Spain
| |
Collapse
|
24
|
Wang B, Wu J, Huang Q, Yuan X, Yang Y, Jiang W, Wen Y, Tang L, Sun H. Comprehensive Analysis of Differentially Expressed lncRNA, circRNA and mRNA and Their ceRNA Networks in Mice With Severe Acute Pancreatitis. Front Genet 2021; 12:625846. [PMID: 33584827 PMCID: PMC7876390 DOI: 10.3389/fgene.2021.625846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022] Open
Abstract
Severe acute pancreatitis (SAP) is an acute digestive system disease with high morbidity mortality and hospitalization rate worldwide, due to various causes and unknown pathogenesis. In recent years, a large number of studies have confirmed that non-coding RNAs (ncRNAs) play an important role in many cellular processes and disease occurrence. However, the underlying mechanisms based on the function of ncRNAs, including long noncoding RNA (lncRNA) and circular RNA (circRNA), in SAP remain unclear. In this study, we performed high-throughput sequencing on the pancreatic tissues of three normal mice and three SAP mice for the first time to describe and analyze the expression profiles of ncRNAs, including lncRNA and circRNA. Our results identified that 49 lncRNAs, 56 circRNAs and 1,194 mRNAs were differentially expressed in the SAP group, compared with the control group. Furthermore, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed lncRNAs and circRNAs, and found that the functions of the parental genes are enriched in the calcium-regulated signaling pathway, NF-κB signaling pathway, autophagy and protein digestion and absorption processes, which are closely related to the central events in pathogenesis of SAP. We also constructed lncRNA/circRNA-miRNA-mRNA networks to further explore their underlying mechanism and possible relationships in SAP. We found that in the competitive endogenous RNA (ceRNA) networks, differentially expressed lncRNAs and circRNAs are mainly involved in the apoptosis pathway and calcium signal transduction pathway. In conclusion, we found that lncRNAs and circRNAs play an important role in the pathogenesis of SAP, which may provide new insights in further exploring the pathogenesis of SAP and seek new targets for SAP.
Collapse
Affiliation(s)
- Bing Wang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Jun Wu
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Qilin Huang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xiaohui Yuan
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yi Yang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Wen Jiang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Yi Wen
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China
| | - Lijun Tang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hongyu Sun
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China.,Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
25
|
Yang Y, Li X, Ma Z, Wang C, Yang Q, Byrne-Steele M, Hong R, Min Q, Zhou G, Cheng Y, Qin G, Youngyunpipatkul JV, Wing JB, Sakaguchi S, Toonstra C, Wang LX, Vilches-Moure JG, Wang D, Snyder MP, Wang JY, Han J, Herzenberg LA. CTLA-4 expression by B-1a B cells is essential for immune tolerance. Nat Commun 2021; 12:525. [PMID: 33483505 PMCID: PMC7822855 DOI: 10.1038/s41467-020-20874-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/17/2020] [Indexed: 01/11/2023] Open
Abstract
CTLA-4 is an important regulator of T-cell function. Here, we report that expression of this immune-regulator in mouse B-1a cells has a critical function in maintaining self-tolerance by regulating these early-developing B cells that express a repertoire enriched for auto-reactivity. Selective deletion of CTLA-4 from B cells results in mice that spontaneously develop autoantibodies, T follicular helper (Tfh) cells and germinal centers (GCs) in the spleen, and autoimmune pathology later in life. This impaired immune homeostasis results from B-1a cell dysfunction upon loss of CTLA-4. Therefore, CTLA-4-deficient B-1a cells up-regulate epigenetic and transcriptional activation programs and show increased self-replenishment. These activated cells further internalize surface IgM, differentiate into antigen-presenting cells and, when reconstituted in normal IgH-allotype congenic recipient mice, induce GCs and Tfh cells expressing a highly selected repertoire. These findings show that CTLA-4 regulation of B-1a cells is a crucial immune-regulatory mechanism.
Collapse
Affiliation(s)
- Yang Yang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Xiao Li
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
| | - Zhihai Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - Rongjian Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Min
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Gao Zhou
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
| | - Yong Cheng
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guang Qin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - James B Wing
- Laboratory of Human Immunology (Single Cell Immunology), World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Christian Toonstra
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Jose G Vilches-Moure
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Denong Wang
- Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Han
- iRepertoire Inc, Huntsville, AL, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Leonore A Herzenberg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
26
|
Zhao M, Yang C, Chai S, Yuan Y, Zhang J, Cao P, Wang Y, Xiao X, Wu K, Yan H, Liu J, Sun S. Curcumol and FTY720 synergistically induce apoptosis and differentiation in chronic myelomonocytic leukemia via multiple signaling pathways. Phytother Res 2020; 35:2157-2170. [PMID: 33274566 DOI: 10.1002/ptr.6968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Chronic myelomonocytic leukemia (CML) is a myeloid tumor characterized by MDS (myelodysplastic syndrome) and MPN (myeloproliferative neoplasms). Allogeneic hematopoietic stem cell transplantation, chemotherapy, interferon, and targeted therapy are the main treatment methods for CML. Tyrosine kinase inhibitors (TKIs) are also a treatment option, and patients are currently recommended to take these drugs throughout their lives to prevent CML recurrence. Therefore, there is a need to investigate and identify other potential chemotherapy drugs. Currently, research on CML treatment with a single drug has shown little progress. Fingolimod (FTY720), an FDA-approved drug used to treat relapsing multiple sclerosis, has also shown great potential in the treatment of lymphocytic leukemia. In our study, we find that FTY720 and curcumol have a significant inhibitory effect on K562 cells, K562/ADR cells, and CD34+ cells from CML patients. RNAseq data analysis shows that regulation of apoptosis and differentiation pathways are key pathways in this process. Besides, BCR/ABL-Jak2/STAT3 signaling, PI3K/Akt-Jnk signaling, and activation of BH3-only genes are involved in CML inhibition. In a K562 xenograft mouse model, therapy with curcumol and FTY720 led to significant inhibition of tumor growth and induction of apoptosis. To summarize, curcumol and FTY720 synergistically inhibit proliferation involved in differentiation and induce apoptosis in CML cells. Therefore, synergistic treatment with two drugs could be the next choice of treatment for CML.
Collapse
Affiliation(s)
- Mingri Zhao
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Chaoying Yang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Siyu Chai
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Yijun Yuan
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Pengfei Cao
- Xiangya Hospital, Central South University, Changsha, China
| | - Yanpeng Wang
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Kunlu Wu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Huiwen Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
27
|
Mechanisms of B Cell Receptor Activation and Responses to B Cell Receptor Inhibitors in B Cell Malignancies. Cancers (Basel) 2020; 12:cancers12061396. [PMID: 32481736 PMCID: PMC7352865 DOI: 10.3390/cancers12061396] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
The B cell receptor (BCR) pathway has been identified as a potential therapeutic target in a number of common B cell malignancies, including chronic lymphocytic leukemia, diffuse large B cell lymphoma, Burkitt lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone B cell lymphoma, and Waldenstrom's macroglobulinemia. This finding has resulted in the development of numerous drugs that target this pathway, including various inhibitors of the kinases BTK, PI3K, and SYK. Several of these drugs have been approved in recent years for clinical use, resulting in a profound change in the way these diseases are currently being treated. However, the response rates and durability of responses vary largely across the different disease entities, suggesting a different proportion of patients with an activated BCR pathway and different mechanisms of BCR pathway activation. Indeed, several antigen-dependent and antigen-independent mechanisms have recently been described and shown to result in the activation of distinct downstream signaling pathways. The purpose of this review is to provide an overview of the mechanisms responsible for the activation of the BCR pathway in different B cell malignancies and to correlate these mechanisms with clinical responses to treatment with BCR inhibitors.
Collapse
|
28
|
Kumar D, Romero Y, Schuck KN, Smalley H, Subedi B, Fleming SD. Drivers and regulators of humoral innate immune responses to infection and cancer. Mol Immunol 2020; 121:99-110. [PMID: 32199212 PMCID: PMC7207242 DOI: 10.1016/j.molimm.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
The complement cascade consists of cell bound and serum proteins acting together to protect the host from pathogens, remove cancerous cells and effectively links innate and adaptive immune responses. Despite its usefulness in microbial neutralization and clearance of cancerous cells, excessive complement activation causes an immune imbalance and tissue damage in the host. Hence, a series of complement regulatory proteins present at a higher concentration in blood plasma and on cell surfaces tightly regulate the cascade. The complement cascade can be initiated by B-1 B cell production of natural antibodies. Natural antibodies arise spontaneously without any known exogenous antigenic or microbial stimulus and protect against invading pathogens, clear apoptotic cells, provide tissue homeostasis, and modulate adaptive immune functions. Natural IgM antibodies recognize microbial and cancer antigens and serve as an activator of complement mediated lysis. This review will discuss advances in complement activation and regulation in bacterial and viral infections, and cancer. We will also explore the crosstalk of natural antibodies with bacterial populations and cancer.
Collapse
MESH Headings
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Apoptosis/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Bacterial Infections/immunology
- Complement Activation
- Complement System Proteins/immunology
- Complement System Proteins/metabolism
- Humans
- Immunity, Humoral
- Immunity, Innate
- Immunoglobulin M/immunology
- Immunoglobulin M/metabolism
- Neoplasms/immunology
- Receptors, Complement/immunology
- Receptors, Complement/metabolism
- Tumor Escape
- Virus Diseases/immunology
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yeni Romero
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Kaitlynn N Schuck
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Haley Smalley
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Bibek Subedi
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
29
|
Nfkbie-deficiency leads to increased susceptibility to develop B-cell lymphoproliferative disorders in aged mice. Blood Cancer J 2020; 10:38. [PMID: 32170099 PMCID: PMC7070037 DOI: 10.1038/s41408-020-0305-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant NF-κB activation is a hallmark of most B-cell malignancies. Recurrent inactivating somatic mutations in the NFKBIE gene, which encodes IκBε, an inhibitor of NF-κB-inducible activity, are reported in several B-cell malignancies with highest frequencies in chronic lymphocytic leukemia and primary mediastinal B-cell lymphoma, and account for a fraction of NF-κB pathway activation. The impact of NFKBIE deficiency on B-cell development and function remains, however, largely unknown. Here, we show that Nfkbie-deficient mice exhibit an amplification of marginal zone B cells and an expansion of B1 B-cell subsets. In germinal center (GC)-dependent immune response, Nfkbie deficiency triggers expansion of GC B-cells through increasing cell proliferation in a B-cell autonomous manner. We also show that Nfkbie deficiency results in hyperproliferation of a B1 B-cell subset and leads to increased NF-κB activation in these cells upon Toll-like receptor stimulation. Nfkbie deficiency cooperates with mutant MYD88 signaling and enhances B-cell proliferation in vitro. In aged mice, Nfkbie absence drives the development of an oligoclonal indolent B-cell lymphoproliferative disorders, resembling monoclonal B-cell lymphocytosis. Collectively, these findings shed light on an essential role of IκBε in finely tuning B-cell development and function.
Collapse
|
30
|
Honjo K, Won WJ, King RG, Ianov L, Crossman DK, Easlick JL, Shakhmatov MA, Khass M, Vale AM, Stephan RP, Li R, Davis RS. Fc Receptor-Like 6 (FCRL6) Discloses Progenitor B Cell Heterogeneity That Correlates With Pre-BCR Dependent and Independent Pathways of Natural Antibody Selection. Front Immunol 2020; 11:82. [PMID: 32117244 PMCID: PMC7033751 DOI: 10.3389/fimmu.2020.00082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/13/2020] [Indexed: 11/24/2022] Open
Abstract
B-1a cells produce "natural" antibodies (Abs) to neutralize pathogens and clear neo self-antigens, but the fundamental selection mechanisms that shape their polyreactive repertoires are poorly understood. Here, we identified a B cell progenitor subset defined by Fc receptor-like 6 (FCRL6) expression, harboring innate-like defense, migration, and differentiation properties conducive for natural Ab generation. Compared to FCRL6- pro B cells, the repressed mitotic, DNA damage repair, and signaling activity of FCRL6+ progenitors, yielded VH repertoires with biased distal Ighv segment accessibility, constrained diversity, and hydrophobic and charged CDR-H3 sequences. Beyond nascent autoreactivity, VH11 productivity, which predominates phosphatidylcholine-specific B-1a B cell receptors (BCRs), was higher for FCRL6+ cells as was pre-BCR formation, which was required for Myc induction and VH11, but not VH12, B-1a development. Thus, FCRL6 revealed unexpected heterogeneity in the developmental origins, regulation, and selection of natural Abs at the pre-BCR checkpoint with implications for autoimmunity and lymphoproliferative disorders.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antibodies/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphatidylcholines/immunology
- Phosphatidylcholines/metabolism
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Fc/genetics
- Receptors, Fc/immunology
- Receptors, Fc/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Woong-Jai Won
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rodney G. King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lara Ianov
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juliet L. Easlick
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mikhail A. Shakhmatov
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohamed Khass
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Genetic Engineering and Biotechnology Division, National Research Center, Cairo, Egypt
| | - Andre M. Vale
- Program in Immunobiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Robert P. Stephan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
31
|
Kikushige Y. Pathophysiology of chronic lymphocytic leukemia and human B1 cell development. Int J Hematol 2019; 111:634-641. [PMID: 31797231 DOI: 10.1007/s12185-019-02788-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022]
Abstract
Chronic lymphocytic leukemia (CLL), the most frequent type of leukemia in adults, is a lymphoproliferative disease characterized by the clonal expansion of mature CD5+ B cells in peripheral blood, bone marrow, and secondary lymphoid tissues. Over the past decade, substantial advances have been made in understanding the pathogenesis of CLL, including the identification of recurrent mutations, and clarification of clonal architectures, transcriptome analyses, and the multistep leukemogenic process. The biology of CLL is now better understood. The present review focuses on recent insights into CLL leukemogenesis, emphasizing the role of genetic lesions, and the multistep process initiating from very immature hematopoietic stem cells. Finally, we also review progress in the study of human B1 B cells, the putative normal counterparts of CLL cells.
Collapse
Affiliation(s)
- Yoshikane Kikushige
- Department of Medicine and Biosystemic Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
32
|
B1 and Marginal Zone B Cells but Not Follicular B2 Cells Require Gpx4 to Prevent Lipid Peroxidation and Ferroptosis. Cell Rep 2019; 29:2731-2744.e4. [DOI: 10.1016/j.celrep.2019.10.070] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
|
33
|
Ghosn E, Yoshimoto M, Nakauchi H, Weissman IL, Herzenberg LA. Hematopoietic stem cell-independent hematopoiesis and the origins of innate-like B lymphocytes. Development 2019; 146:146/15/dev170571. [PMID: 31371526 DOI: 10.1242/dev.170571] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current paradigm that a single long-term hematopoietic stem cell can regenerate all components of the mammalian immune system has been challenged by recent findings in mice. These findings show that adult tissue-resident macrophages and innate-like lymphocytes develop early in fetal hematopoiesis from progenitors that emerge prior to, and apparently independently of, conventional long-term hematopoietic stem cells. Here, we discuss these recent findings, which show that an early and distinct wave of hematopoiesis occurs for all major hematopoietic lineages. These data provide evidence that fetal hematopoietic progenitors not derived from the bona fide long-term hematopoietic stem cells give rise to tissue-resident immune cells that persist throughout adulthood. We also discuss recent insights into B lymphocyte development and attempt to synthesize seemingly contradictory recent findings on the origins of innate-like B-1a lymphocytes during fetal hematopoiesis.
Collapse
Affiliation(s)
- Eliver Ghosn
- Departments of Medicine and Pediatrics, Lowance Center for Human Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Momoko Yoshimoto
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leonore A Herzenberg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
34
|
Hayakawa K, Li YS, Shinton SA, Bandi SR, Formica AM, Brill-Dashoff J, Hardy RR. Crucial Role of Increased Arid3a at the Pre-B and Immature B Cell Stages for B1a Cell Generation. Front Immunol 2019; 10:457. [PMID: 30930899 PMCID: PMC6428705 DOI: 10.3389/fimmu.2019.00457] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/20/2019] [Indexed: 02/03/2023] Open
Abstract
The Lin28b+Let7− axis in fetal/neonatal development plays a role in promoting CD5+ B1a cell generation as a B-1 B cell developmental outcome. Here we identify the Let7 target, Arid3a, as a crucial molecular effector of the B-1 cell developmental program. Arid3a expression is increased at pro-B cell stage and markedly increased at pre-B and immature B cell stages in the fetal/neonatal liver B-1 development relative to that in the Lin28b−Let7+ adult bone marrow (BM) B-2 cell development. Analysis of B-lineage restricted Lin28b transgenic (Tg) mice, Arid3a knockout and Arid3a Tg mice, confirmed that increased Arid3a allows B cell generation without requiring surrogate light chain (SLC) associated pre-BCR stage, and prevents MHC class II cell expression at the pre-B and newly generated immature B cell stages, distinct from pre-BCR dependent B development with MHC class II in adult BM. Moreover, Arid3a plays a crucial role in supporting B1a cell generation. The increased Arid3a leads higher Myc and Bhlhe41, and lower Siglec-G and CD72 at the pre-B and immature B cell stages than normal adult BM, to allow BCR signaling induced B1a cell generation. Arid3a-deficiency selectively blocks the development of B1a cells, while having no detectable effect on CD5− B1b, MZ B, and FO B cell generation resembling B-2 development outcome. Conversely, enforced expression of Arid3a by transgene is sufficient to promote the development of B1a cells from adult BM. Under the environment change between birth to adult, altered BCR repertoire in increased B1a cells occurred generated from adult BM. However, crossed with B1a-restricted VH/D/J IgH knock-in mice allowed to confirm that SLC-unassociated B1a cell increase and CLL/lymphoma generation can occur in aged from Arid3a increased adult BM. These results confirmed that in fetal/neonatal normal mice, increased Arid3a at the pre-B cell and immature B cell stages is crucial for generating B1a cells together with the environment for self-ligand reactive BCR selection, B1a cell maintenance, and potential for development of CLL/Lymphoma in aged mice.
Collapse
Affiliation(s)
- Kyoko Hayakawa
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Yue-Sheng Li
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | | | | | | | | | | |
Collapse
|
35
|
Liu M, Sun Q, Wang J, Wei F, Yang L, Ren X. A new perspective: Exploring future therapeutic strategies for cancer by understanding the dual role of B lymphocytes in tumor immunity. Int J Cancer 2018; 144:2909-2917. [PMID: 30183084 DOI: 10.1002/ijc.31850] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022]
Abstract
Our previous understanding of the role of B lymphocytes in tumor immunity is its antitumor effects. However, further evidence indicates B lymphocytes can also promote tumorigenesis by modulating immune responses. Therefore, the increasingly complex role of B lymphocytes in tumor immunity may become an important factor in tumor immunotherapy. In this review, we describe the development of B cells in tumor microenvironments. We then focus on the most controversial issues of the biological functions of B lymphocytes. Finally, we nominate B cells as therapeutic targets, which should open broad perspectives for the development of their clinical applications.
Collapse
Affiliation(s)
- Min Liu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
36
|
Pal Singh S, de Bruijn MJW, de Almeida MP, Meijers RWJ, Nitschke L, Langerak AW, Pillai SY, Stadhouders R, Hendriks RW. Identification of Distinct Unmutated Chronic Lymphocytic Leukemia Subsets in Mice Based on Their T Cell Dependency. Front Immunol 2018; 9:1996. [PMID: 30271400 PMCID: PMC6146083 DOI: 10.3389/fimmu.2018.01996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/14/2018] [Indexed: 01/27/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) can be divided into prognostically distinct subsets with stereotyped or non-stereotyped, mutated or unmutated B cell receptors (BCRs). Individual subsets vary in antigen specificity and origin, but the impact of antigenic pressure on the CLL BCR repertoire remains unknown. Here, we employed IgH.TEμ mice that spontaneously develop CLL, expressing mostly unmutated BCRs of which ~35% harbor VH11-2/Vκ14-126 and recognize phosphatidylcholine. Proportions of VH11/Vκ14-expressing CLL were increased in the absence of functional germinal centers in IgH.TEμ mice deficient for CD40L or activation-induced cytidine deaminase. Conversely, in vivo T cell-dependent immunization decreased the proportions of VH11/Vκ14-expressing CLL. Furthermore, CLL onset was accelerated by enhanced BCR signaling in Siglec-G−/− mice or in mice expressing constitutively active Bruton's tyrosine kinase. Transcriptional profiling revealed that VH11 and non-VH11 CLL differed in the upregulation of specific pathways implicated in cell signaling and metabolism. Interestingly, principal component analyses using the 148 differentially expressed genes revealed that VH11 and non-VH11 CLL clustered with BCR-stimulated and anti-CD40-stimulated B cells, respectively. We identified an expression signature consisting of 13 genes that were differentially expressed in a larger panel of T cell-dependent non-VH11 CLL compared with T cell-independent VH11/Vκ14 or mutated IgH.TEμ CLL. Parallel differences in the expression of these 13 signature genes were observed between heterogeneous and stereotypic human unmutated CLL. Our findings provide evidence for two distinct unmutated CLL subsets with a specific transcriptional signature: one is T cell-independent and B-1 cell-derived while the other arises upon antigen stimulation in the context of T-cell help.
Collapse
Affiliation(s)
- Simar Pal Singh
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Post-graduate School Molecular Medicine, Erasmus MC, Rotterdam, Netherlands
| | | | | | | | - Lars Nitschke
- Department of Genetics, University of Erlangen, Erlangen, Germany
| | | | | | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
37
|
Hayakawa K, Formica AM, Nakao Y, Ichikawa D, Shinton SA, Brill-Dashoff J, Smith MR, Morse HC, Hardy RR. Early Generated B-1-Derived B Cells Have the Capacity To Progress To Become Mantle Cell Lymphoma-like Neoplasia in Aged Mice. THE JOURNAL OF IMMUNOLOGY 2018; 201:804-813. [PMID: 29898964 DOI: 10.4049/jimmunol.1800400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/16/2018] [Indexed: 11/19/2022]
Abstract
In mice, fetal/neonatal B-1 cell development generates murine CD5+ B cells (B1a) with autoreactivity. We analyzed B1a cells at the neonatal stage in a VH11/D/JH knock-in mouse line (VH11t) that generates an autoreactive antiphosphatidylcholine BCR. Our study revealed that antiphosphatidylcholine B1a cells develop in liver, mature in spleen, and distribute in intestine/colon, mesenteric lymph node (mLN), and body cavity as the outcome of B-1 cell development before B-2 cell development. Throughout life, self-renewing B-1 B1a cells circulate through intestine, mesenteric vessel, and blood. The body cavity-deposited B1a cells also remigrate. In old age, some B1a cells proceed to monoclonal B cell lymphocytosis. When neonatal B-1 B1a cells express an antithymocyte/Thy-1 autoreactivity (ATA) BCR transgene in the C.B17 mouse background, ATA B cells increase in PBL and strongly develop lymphomas in aging mice that feature splenomegaly and mLN hyperplasia with heightened expression of CD11b, IL-10, and activated Stat3. At the adult stage, ATA B cells were normally present in the mantle zone area, including in intestine. Furthermore, frequent association with mLN hyperplasia suggests the influence by intestinal microenvironment on lymphoma development. When cyclin D1 was overexpressed by the Eμ-cyclin D1 transgene, ATA B cells progressed to further diffused lymphoma in aged mice, including in various lymph nodes with accumulation of IgMhiIgDloCD5+CD23-CD43+ cells, resembling aggressive human mantle cell lymphoma. Thus, our findings reveal that early generated B cells, as an outcome of B-1 cell development, can progress to become lymphocytosis, lymphoma, and mantle cell lymphoma-like neoplasia in aged mice.
Collapse
Affiliation(s)
| | | | - Yuka Nakao
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Daiju Ichikawa
- Fox Chase Cancer Center, Philadelphia, PA 19111.,Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo 105-8512, Japan
| | | | | | - Mitchell R Smith
- Fox Chase Cancer Center, Philadelphia, PA 19111.,George Washington University Cancer Center, Washington, DC 20052; and
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | | |
Collapse
|
38
|
Alhakeem SS, McKenna MK, Oben KZ, Noothi SK, Rivas JR, Hildebrandt GC, Fleischman RA, Rangnekar VM, Muthusamy N, Bondada S. Chronic Lymphocytic Leukemia-Derived IL-10 Suppresses Antitumor Immunity. THE JOURNAL OF IMMUNOLOGY 2018; 200:4180-4189. [PMID: 29712773 PMCID: PMC6555426 DOI: 10.4049/jimmunol.1800241] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/06/2018] [Indexed: 12/21/2022]
Abstract
Chronic lymphocytic leukemia (CLL) patients progressively develop an immunosuppressive state. CLL patients have more plasma IL-10, an anti-inflammatory cytokine, than healthy controls. In vitro human CLL cells produce IL-10 in response to BCR cross-linking. We used the transgenic Eμ-T cell leukemia oncogene-1 (TCL1) mouse CLL model to study the role of IL-10 in CLL associated immunosuppression. Eμ-TCL mice spontaneously develop CLL because of a B cell-specific expression of the oncogene, TCL1. Eμ-TCL1 mouse CLL cells constitutively produce IL-10, which is further enhanced by BCR cross-linking, CLL-derived IL-10 did not directly affect survival of murine or human CLL cells in vitro. We tested the hypothesis that the CLL-derived IL-10 has a critical role in CLL disease in part by suppressing the host immune response to the CLL cells. In IL-10R-/- mice, wherein the host immune cells are unresponsive to IL-10-mediated suppressive effects, there was a significant reduction in CLL cell growth compared with wild type mice. IL-10 reduced the generation of effector CD4 and CD8 T cells. We also found that activation of BCR signaling regulated the production of IL-10 by both murine and human CLL cells. We identified the transcription factor, Sp1, as a novel regulator of IL-10 production by CLL cells and that it is regulated by BCR signaling via the Syk/MAPK pathway. Our results suggest that incorporation of IL-10 blocking agents may enhance current therapeutic regimens for CLL by potentiating host antitumor immune response.
Collapse
Affiliation(s)
- Sara S Alhakeem
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| | - Mary K McKenna
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| | - Karine Z Oben
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| | - Sunil K Noothi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536.,Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536
| | - Jacqueline R Rivas
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| | - Gerhard C Hildebrandt
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536.,Division of Hematology, Blood, and Marrow Transplantation, University of Kentucky, Lexington, KY 40536
| | - Roger A Fleischman
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536.,Division of Hematology, Blood, and Marrow Transplantation, University of Kentucky, Lexington, KY 40536
| | - Vivek M Rangnekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536.,Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536
| | - Natarajan Muthusamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; and.,Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Subbarao Bondada
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536; .,Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
39
|
Novel role of prostate apoptosis response-4 tumor suppressor in B-cell chronic lymphocytic leukemia. Blood 2018; 131:2943-2954. [PMID: 29695515 DOI: 10.1182/blood-2017-10-813931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/08/2018] [Indexed: 01/04/2023] Open
Abstract
Prostate apoptosis response-4 (Par-4), a proapoptotic tumor suppressor protein, is downregulated in many cancers including renal cell carcinoma, glioblastoma, endometrial, and breast cancer. Par-4 induces apoptosis selectively in various types of cancer cells but not normal cells. We found that chronic lymphocytic leukemia (CLL) cells from human patients and from Eµ-Tcl1 mice constitutively express Par-4 in greater amounts than normal B-1 or B-2 cells. Interestingly, knockdown of Par-4 in human CLL-derived Mec-1 cells results in a robust increase in p21/WAF1 expression and decreased growth due to delayed G1-to-S cell-cycle transition. Lack of Par-4 also increased the expression of p21 and delayed CLL growth in Eμ-Tcl1 mice. Par-4 expression in CLL cells required constitutively active B-cell receptor (BCR) signaling, as inhibition of BCR signaling with US Food and Drug Administration (FDA)-approved drugs caused a decrease in Par-4 messenger RNA and protein, and an increase in apoptosis. In particular, activities of Lyn, a Src family kinase, spleen tyrosine kinase, and Bruton tyrosine kinase are required for Par-4 expression in CLL cells, suggesting a novel regulation of Par-4 through BCR signaling. Together, these results suggest that Par-4 may play a novel progrowth rather than proapoptotic role in CLL and could be targeted to enhance the therapeutic effects of BCR-signaling inhibitors.
Collapse
|
40
|
Kreslavsky T, Wong JB, Fischer M, Skok JA, Busslinger M. Control of B-1a cell development by instructive BCR signaling. Curr Opin Immunol 2018; 51:24-31. [PMID: 29414528 PMCID: PMC5943138 DOI: 10.1016/j.coi.2018.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
B-1a cells remain one of the most enigmatic lymphocyte subsets. In this review, we discuss recent advances in our understanding of the development of these cells and their regulation by the transcription factors Bhlhe41 and Arid3a as well as by the RNA-binding protein Lin28b. A large body of literature supports an instructive role of BCR signaling in B-1a cell development and lineage commitment, which is initiated only after signaling from an autoreactive BCR. While both fetal and adult hematopoiesis can generate B-1a cells, the contribution of adult hematopoiesis to the B-1a cell compartment is low under physiological conditions. We discuss several models that can reconcile the instructive role of BCR signaling with this fetal bias in B-1a cell development.
Collapse
Affiliation(s)
- Taras Kreslavsky
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria.
| | - Jason B Wong
- Department of Pathology, New York Medical Center, New York University, New York, USA
| | - Maria Fischer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Jane A Skok
- Department of Pathology, New York Medical Center, New York University, New York, USA
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria.
| |
Collapse
|
41
|
Akhter R, Saleem S, Saha A, Biswas SC. The pro-apoptotic protein Bmf co-operates with Bim and Puma in neuron death induced by β-amyloid or NGF deprivation. Mol Cell Neurosci 2018; 88:249-257. [PMID: 29499358 DOI: 10.1016/j.mcn.2018.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 12/22/2022] Open
Abstract
The pro-apoptotic Bcl-2 homology 3 domain only (BH3-only) proteins are central regulators of cell death in various physiological and pathological conditions, including Alzheimer's disease (AD). Bcl-2 modifying factor (Bmf) is one such BH3-only protein that is implicated in various death paradigms such as anoikis, seizures, cancer and autoimmunity. It also co-operates with other BH3-only proteins such as Bim in various death paradigms. However, its role in neurodegeneration is under-investigated. Here, we report for the first time the essential role of Bmf and its co-operativity with direct activator BH3-only proteins Bim and Puma in neuron death induced by beta-amyloid (Aβ) toxicity or NGF deprivation. Oligomeric Aβ is main pathologic species in AD and NGF deprivation is relevant for both developmental as well as pathologic neuron death. We find that Bmf over-expression causes cell death and Bmf knockdown protects neurons against death evoked by Aβ or NGF deprivation. We also find that Bmf co-operates with other important BH3-only proteins such as Bim and Puma in neuron death induced by Aβ or NGF deprivation. Simultaneous knocking down of these molecules by their respective shRNAs provide enhanced protection against Aβ. Taken together, our results elucidate the essential role of Bmf and its co-operative effects with already known neuron death inducers, Bim and Puma, in neuron death evoked by Aβ treatment or NGF deprivation.
Collapse
Affiliation(s)
- Rumana Akhter
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Suraiya Saleem
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Akash Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
42
|
Clarke AJ, Riffelmacher T, Braas D, Cornall RJ, Simon AK. B1a B cells require autophagy for metabolic homeostasis and self-renewal. J Exp Med 2018; 215:399-413. [PMID: 29326381 PMCID: PMC5789411 DOI: 10.1084/jem.20170771] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/04/2017] [Accepted: 12/12/2017] [Indexed: 11/09/2022] Open
Abstract
Clarke et al. demonstrate that the innate-like B1 B cell subset has a distinct metabolic phenotype, characterized by high levels of glycolysis, pentose phosphate pathway, and TCA cycle activity, and depends on autophagy for metabolic homeostasis and self-renewal. Specific metabolic programs are activated by immune cells to fulfill their functional roles, which include adaptations to their microenvironment. B1 B cells are tissue-resident, innate-like B cells. They have many distinct properties, such as the capacity to self-renew and the ability to rapidly respond to a limited repertoire of epitopes. The metabolic pathways that support these functions are unknown. We show that B1 B cells are bioenergetically more active than B2 B cells, with higher rates of glycolysis and oxidative phosphorylation, and depend on glycolysis. They acquire exogenous fatty acids and store lipids in droplet form. Autophagy is differentially activated in B1a B cells, and deletion of the autophagy gene Atg7 leads to a selective loss of B1a B cells caused by a failure of self-renewal. Autophagy-deficient B1a B cells down-regulate critical metabolic genes and accumulate dysfunctional mitochondria. B1 B cells, therefore, have evolved a distinct metabolism adapted to their residence and specific functional properties.
Collapse
Affiliation(s)
- Alexander J Clarke
- Kennedy Institute of Rheumatology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | - Thomas Riffelmacher
- Kennedy Institute of Rheumatology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | - Daniel Braas
- Department of Molecular and Medical Pharmacology and UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA
| | - Richard J Cornall
- Nuffield Department of Medicine, Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, UK
| |
Collapse
|
43
|
King A, Li L, Wong DM, Liu R, Bamford R, Strasser A, Tarlinton DM, Heierhorst J. Dynein light chain regulates adaptive and innate B cell development by distinctive genetic mechanisms. PLoS Genet 2017; 13:e1007010. [PMID: 28922373 PMCID: PMC5619840 DOI: 10.1371/journal.pgen.1007010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/28/2017] [Accepted: 09/07/2017] [Indexed: 11/29/2022] Open
Abstract
Mechanistic differences in the development and function of adaptive, high-affinity antibody-producing B-2 cells and innate-like, “natural” antibody-producing B-1a cells remain poorly understood. Here we show that the multi-functional dynein light chain (DYNLL1/LC8) plays important roles in the establishment of B-1a cells in the peritoneal cavity and in the ongoing development of B-2 lymphoid cells in the bone marrow of mice. Epistasis analyses indicate that Dynll1 regulates B-1a and early B-2 cell development in a single, linear pathway with its direct transcriptional activator ASCIZ (ATMIN/ZNF822), and that the two genes also have complementary functions during late B-2 cell development. The B-2 cell defects caused by loss of DYNLL1 were associated with lower levels of the anti-apoptotic protein BCL-2, and could be supressed by deletion of pro-apoptotic BIM which is negatively regulated by both DYNLL1 and BCL-2. Defects in B cell development caused by loss of DYNLL1 could also be partially suppressed by a pre-arranged SWHELIgm-B cell receptor transgene. In contrast to the rescue of B-2 cell numbers, the B-1a cell deficiency in Dynll1-deleted mice could not be suppressed by the loss of Bim, and was further compounded by the SWHEL transgene. Conversely, oncogenic MYC expression, which is synthetic lethal with Dynll1 deletion in B-2 cells, did not further reduce B-1a cell numbers in Dynll1-defcient mice. Finally, we found that the ASCIZ-DYNLL1 axis was also required for the early-juvenile development of aggressive MYC-driven and p53-deficient B cell lymphomas. These results identify ASCIZ and DYNLL1 as the core of a transcriptional circuit that differentially regulates the development of the B-1a and B-2 B lymphoid cell lineages and plays a critical role in lymphomagenesis. Antibody-producing B cells can be segregated into two major populations: The better known conventional B-2 cells typically produce high-affinity and mono-specific antibodies, but only after they encounter a particular pathogen or in response to vaccines. In contrast, the B-1a cells constitutively produce lower-affinity broad-specificity “natural” antibodies that serve as a preemptive defense against a wide range of microbes. Here we reveal that the transcription factor ASCIZ and its target DYNLL1 are essential for mice to have a normally sized pool of B-1a cells in place shortly after birth. We show that these two factors function in a single linear pathway during the development of B-1a cells. This interaction represents a rare example where the activity of a transcription factor, in this case ASCIZ, can be explained by the effects of a single target gene, in this case Dynll1. While ASCIZ and DYNLL1 are also required for producing normal numbers of B-2 cells, we discovered that they regulate B-1a cells and B-2 cells by distinct genetic mechanisms. Finally, we found that ASCIZ also contributes to the early onset of B-1a B cell-derived lymphoid cancers in juvenile mice. The results provide insight into the development of an important cell population of the immune system.
Collapse
Affiliation(s)
- Ashleigh King
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
| | - Lingli Li
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
| | - David M. Wong
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Rui Liu
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Rebecca Bamford
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Andreas Strasser
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Jörg Heierhorst
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
- * E-mail:
| |
Collapse
|
44
|
Hayakawa K, Formica AM, Zhou Y, Ichikawa D, Asano M, Li YS, Shinton SA, Brill-Dashoff J, Núñez G, Hardy RR. NLR Nod1 signaling promotes survival of BCR-engaged mature B cells through up-regulated Nod1 as a positive outcome. J Exp Med 2017; 214:3067-3083. [PMID: 28878001 PMCID: PMC5626402 DOI: 10.1084/jem.20170497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/11/2017] [Accepted: 07/24/2017] [Indexed: 11/04/2022] Open
Abstract
The microenvironment, including microbial products, plays a role in mature B cell survival. Hayakawa et al. show that B cell antigen receptor ligand–mediated Nod1 up-regulation in vivo in B cell development leads to preferential mature B cell survival as a competitive survival, increasing the Nod1+ B cell pool with age. Although B cell development requires expression of the B cell antigen receptor (BCR), it remains unclear whether engagement of self-antigen provides a positive impact for most B cells. Here, we show that BCR engagement by self-ligand during development in vivo results in up-regulation of the Nod-like receptor member Nod1, which recognizes the products of intestinal commensal bacteria. In anti-thymocyte/Thy-1 autoreactive BCR knock-in mice lacking self–Thy-1 ligand, immunoglobulin light chain editing occurred, generating B cells with up-regulated Nod1, including follicular and marginal zone B cells with natural autoreactivity. This BCR editing with increased Nod1 resulted in preferential survival. In normal adult mice, most mature B cells are enriched for Nod1 up-regulated cells, and signaling through Nod1 promotes competitive survival of mature B cells. These findings demonstrate a role for microbial products in promoting survival of mature B cells through up-regulated Nod1, providing a positive effect of BCR engagement on development of most B cells.
Collapse
Affiliation(s)
| | | | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, PA
| | | | | | | | | | | | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | | |
Collapse
|
45
|
Coffre M, Koralov SB. miRNAs in B Cell Development and Lymphomagenesis. Trends Mol Med 2017; 23:721-736. [PMID: 28694140 DOI: 10.1016/j.molmed.2017.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022]
Abstract
B lymphocytes are essential for an efficient immune response against a variety of pathogens. A large fraction of hematologic malignancies is of B cell origin, suggesting that the development and activation of B cells need to be tightly regulated. In recent years, increasing evidence has emerged demonstrating that microRNAs (miRNAs) - a class of non-coding RNAs that control gene expression - are involved in the regulation of B cell development and function. We provide here an overview of the current knowledge on the role of miRNAs and their relevant targets in B cell development, B cell activation, and B cell malignant transformation.
Collapse
Affiliation(s)
- Maryaline Coffre
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
46
|
Ghamlouch H, Nguyen-Khac F, Bernard OA. Chronic lymphocytic leukaemia genomics and the precision medicine era. Br J Haematol 2017; 178:852-870. [DOI: 10.1111/bjh.14719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hussein Ghamlouch
- Institut National De La Santé Et De La Recherche Médicale (INSERM) U1170; Villejuif France
- Gustave Roussy; Villejuif France
- Université Paris Saclay; Paris France
- Equipe Labellisée Ligue Nationale Contre Le Cancer; Paris France
| | - Florence Nguyen-Khac
- INSERM U1138; Université Pierre et Marie Curie-Paris 6; Service d'Hématologie Biologique; Hôpital Pitié-Salpêtrière; APHP; Paris France
| | - Olivier A. Bernard
- Institut National De La Santé Et De La Recherche Médicale (INSERM) U1170; Villejuif France
- Gustave Roussy; Villejuif France
- Université Paris Saclay; Paris France
- Equipe Labellisée Ligue Nationale Contre Le Cancer; Paris France
| |
Collapse
|