1
|
Fortmann SD, Frey BF, Rosencrans RF, Adu-Rutledge Y, Ready V E, Kilchrist KV, Welner RS, Boulton ME, Saban DR, Grant MB. Prenatally derived macrophages support choroidal health and decline in age-related macular degeneration. J Exp Med 2025; 222:e20242007. [PMID: 40261298 PMCID: PMC12013653 DOI: 10.1084/jem.20242007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/02/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Hallmark findings in age-related macular degeneration (AMD) include the accumulation of extracellular lipid and vasodegeneration of the choriocapillaris. Choroidal inflammation has long been associated with AMD, but little is known about the immune landscape of the human choroid. Using 3D multiplex immunofluorescence, single-cell RNA sequencing, and flow cytometry, we unravel the cellular composition and spatial organization of the human choroid and the immune cells within it. We identify two populations of choroidal macrophages with distinct FOLR2 expression that account for the majority of myeloid cells. FOLR2+ macrophages predominate in the nondiseased eye, express lipid-handling machinery, uptake lipoprotein particles, and contain high amounts of lipid. In AMD, FOLR2+ macrophages are decreased in number and exhibit dysfunctional lipoprotein metabolism. In mice, FOLR2+ macrophages are negative for the postnatal fate-reporter Ms4a3, and their depletion causes an accelerated AMD-like phenotype. Our results show that prenatally derived resident macrophages decline in AMD and are implicated in multiple hallmark functions known to be compromised in the disease.
Collapse
Affiliation(s)
- Seth D. Fortmann
- Medical Scientist Training Program (MSTP), University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Department of Ophthalmology, UAB, Birmingham, AL, USA
| | - Blake F. Frey
- Medical Scientist Training Program (MSTP), University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Department of Pathology, UAB, Birmingham, AL, USA
| | - Robert F. Rosencrans
- Medical Scientist Training Program (MSTP), University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Department of Ophthalmology, UAB, Birmingham, AL, USA
| | | | - Edgar Ready V
- Department of Ophthalmology, UAB, Birmingham, AL, USA
| | | | - Robert S. Welner
- Division of Hematology/Oncology, Department of Medicine, UAB, Birmingham, AL, USA
| | | | - Daniel R. Saban
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | | |
Collapse
|
2
|
Das A, Bai CH, Chang JS, Huang YL, Wang FF, Hsu CY, Chen YC, Chao JCJ. Associations of dietary patterns with serum 25(OH) vitamin D and serum anemia related biomarkers among expectant mothers: A machine learning based approach. Int J Med Inform 2025; 199:105890. [PMID: 40153889 DOI: 10.1016/j.ijmedinf.2025.105890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Machine learning algorithms (MLA) gained prominence in nutritional epidemiology for analyzing dietary associations and uncovering intricate patterns within data. We explored dietary patterns associated with serum iron biomarkers and vitamin D among pregnant women, utilizing MLA to perform predictive analyses. METHODS The cross-sectional study utilized a secondary dataset from the Nationwide Nutrition and Health Survey in Taiwan, and 1,423 expectant mothers were recruited. Dietary patterns were predicted using K-means cluster analysis on semiquantitative food frequency data. Associations between serum biomarkers and dietary patterns were analyzed using binomial logistic regression, adjusting for sociodemographic and dietary variables. MLA including support vector machine, K-nearest neighbor, naive Bayes, random forest, and decision tree were applied to predict the accuracy of the dietary patterns in improving anemia-related biomarkers. RESULTS The K-means clustering identified two dietary patterns: LP + LA (low plant, low animal) and MP + LA (moderate plant, low animal). Logistic regression revealed that expectant mothers following the MP + LA pattern had a lower likelihood of low serum iron (OR = 0.45, 95 % CI 0.34-0.60) and ferritin (OR = 0.27, 95 % CI 0.21-0.36), but a higher likelihood of low 25(OH) vitamin D. MLA models demonstrated 70 %-76 % accuracy in identifying dietary pattern associated with improvement in serum iron and ferritin levels. CONCLUSIONS The MP + LA dietary pattern exhibits a positive association with serum iron biomarkers and a negative association with 25(OH) vitamin D. Machine learning models demonstrate comparable predictive accuracy, highlighting their utility in nutritional epidemiology for identifying dietary patterns and their relationships with biochemical markers.
Collapse
Affiliation(s)
- Arpita Das
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- Department of Public Health, School of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Fan-Fen Wang
- Department of Internal Medicine, Yangming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Chien-Yeh Hsu
- Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan; Master Program in Global Health and Health Security, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chun Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
| | - Jane C-J Chao
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan; Master Program in Global Health and Health Security, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Biswal VL, Yashwanth BS, Murthy PS. Dietary enhancement of coffee with folic acid: A nutritional approach. Food Chem 2025; 488:144881. [PMID: 40424742 DOI: 10.1016/j.foodchem.2025.144881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 05/01/2025] [Accepted: 05/21/2025] [Indexed: 05/29/2025]
Abstract
Folic acid deficiency is a critical public health concern that affects millions worldwide, particularly women of reproductive age, infants and others. The deficiency causes severe health consequences such as neural tube defects, homocysteine imbalance and megaloblastic anemia, often associated with cobalamin deficiency. Because of coffee's global popularity, it offers a promising platform for delivering folic acid. Adding folic acid to coffee could boost its nutritional value and provide synergistic health benefits, including helping to counteract coffee-related increases in homocysteine levels. However, the concept of folic acid-enriched coffee is relatively new and underexplored, necessitating further research to evaluate its efficacy, stability, and consumer acceptance. This review examines the potential of coffee as an innovative carrier for folic acid fortification, detailing the anticipated health benefits. It also discusses challenges in the fortification process, explores various encapsulation techniques, and considers potential health concerns related to excessive folic acid intake.
Collapse
Affiliation(s)
- Vijay Laxmi Biswal
- Department of Plantation Products, Spices and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Bevahalli Srinivasappa Yashwanth
- Department of Plantation Products, Spices and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; University of Mysore (UoM), Mysuru 570005, Karnataka, India.
| | - Pushpa Srinivas Murthy
- Department of Plantation Products, Spices and Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Sahane P, Puri N, Khairnar P, Phatale V, Shukla S, Priyadarshinee A, Srivastava S. Harnessing Folate Receptors: A Comprehensive Review on the Applications of Folate-Adorned Nanocarriers for the Management of Melanoma. ACS APPLIED BIO MATERIALS 2025; 8:3623-3656. [PMID: 40275606 DOI: 10.1021/acsabm.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The advancement in exclusively tailored therapeutic delivery systems has escalated a great deal of interest in targeted delivery to augment therapeutic efficacy and to lessen adverse effects. The targeted delivery approach promisingly helps to surmount the unmet clinical needs of conventional therapies, including chemoresistance, limited penetration, and side effects. In the case of melanoma, various receptors were overexpressed on the tumor site, among which folate receptor (FR) targeting is considered to be a progressive approach for managing melanoma. FRs are the macromolecules of the glycosyl phosphatidylinositol-attached protein that possess globular assembly with a greater affinity toward specific ligands. So, the functional ligands can be utilized to design targeted nanocarriers (NCs) that can effectively bind to overexpressed FRs. Hence, folate-adorned NCs (FNCs) offer various benefits such as site-specific targeting, cargo protection, and minimizing toxicity. This review focuses on the insights and implications of FRs, targeting FRs, and mechanisms, challenges, and advantages of FNCs. Further, the applications of various FNCs, such as liposomes, polymeric NCs, albumin nanoparticles, inorganic NCs, liquid crystalline nanoparticles, and nanogels, have been elaborated for melanoma therapy. Likewise, the potential of FNCs in immunotherapy, photodynamic therapy, chemotherapy, gene therapy, photothermal therapy, and tumor imaging has been exhaustively discussed. Furthermore, translational hurdles and potential solutions are discussed in detail. The present review is expected to give thoughtful ideas to researchers, industry stakeholders, and formulation scientists for the efficacious development of FNCs.
Collapse
Affiliation(s)
- Prajakta Sahane
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Niharika Puri
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Abhipsa Priyadarshinee
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| |
Collapse
|
5
|
Wu J, Bao Q, Wang X, Chen H, Chen X, Wen Y, Chen J. Research progress of co-delivery nanoparticle drug delivery systems in non-small cell lung cancer: A review. Colloids Surf B Biointerfaces 2025; 254:114795. [PMID: 40403441 DOI: 10.1016/j.colsurfb.2025.114795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/25/2025] [Accepted: 05/10/2025] [Indexed: 05/24/2025]
Abstract
Non-small cell lung cancer (NSCLC), as the most commonly diagnosed type of lung cancer, has long been a major focus for cancer drug researchers. Traditional chemotherapy has shown significant efficacy in patients initially diagnosed with NSCLC; however, with the emergence of drug resistance and notable toxic side effects, conventional and single-agent chemotherapy can no longer meet the treatment needs of patients. Nanomedicine systems have gained widespread attention among scholars due to their unique advantages, such as particle size, stable in vivo circulation, and multifunctional carrier materials. However, most single-drug delivery systems fail to meet the treatment expectations for NSCLC patients, prompting the active development of co-delivery nanomedicine systems in preclinical NSCLC research. These systems can utilize surface-modified carriers to co-deliver drugs, genes, photosensitizers, or sonosensitizers with different mechanisms of action. This approach not only achieves the synergistic effects of multiple drugs, multiple pathways, and the combination of chemotherapy with photodynamic/sonodynamic therapy but also, through the encapsulation of inorganic materials, allows for more controllable drug release under external forces such as magnetic fields. This further amplifies the synergistic effects between the drugs, and the results of these studies are significantly superior to those of single-drug treatments. In conclusion, this review summarizes the delivery strategies and the extended use of inorganic materials in the co-delivery of nanoparticles for NSCLC research in recent years, with the hope of providing reference for researchers' drug design strategies.
Collapse
Affiliation(s)
- Jiali Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Qiaohong Bao
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Hang Chen
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Xinmei Chen
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Yan Wen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, No.415, Fengyang Road, Shanghai 200003, China.
| | - Jianming Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
6
|
Li H, Wang W, Zhang F, Chen L, Miao F, Zhao H, Yang Z, Cai Z. Extracellular polymeric substance mediating nanoplastics-promoted short-term Porphyridium growth disrupts marine carbon and phosphorus migration. WATER RESEARCH 2025; 283:123860. [PMID: 40408988 DOI: 10.1016/j.watres.2025.123860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/27/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
The ecotoxicity of nanoplastics (NPs) on marine microalgae has been extensively explored recently, yet the mechanisms driving short-term growth improvement caused by NPs remain poorly understood. In the present study, we observed that a relatively high concentration (10 mg/L) of the green fluorescently labeled fresh polyamide-polymethyl methacrylate polymer blend (w/w 21:4) NPs beads (200 nm) significantly enhanced the cell density of Porphyridium cruentum (42.1 %) by alleviating reactive oxygen species generation, chlorophyll degradation, and photoinhibition. An increase in the sticky bounded exopolysaccharides (b-EPs) surrounding P. cruentum surface enhanced NP adsorption within five hours of exposure, with -CH3 bond in phospholipids/glycolipids and polysaccharides of b-EPs supporting the adsorption to mitigate photoinhibition. Increased free exopolysaccharides (EPs) removed inorganic and organic carbon and 48 % of dissolved organic matter (DOM), encapsulating NPs into sediments while cooperating with pH elevation. However, short-term growth promotion resulted in cell shading and phosphorous deficiency after 12 days of cultivation. Consequently, the photosynthesis-antenna proteins pathway and energy metabolites were downregulated, whereas the transmembrane transport and receptor activities of phosphate and calcium signal pathways were upregulated to maintain growth, achieving balance in the 1 mg/L group. The significantly upregulated steroid biosynthesis promoted the hydrophobicity of plasma membranes and reduced the permeability for water-soluble ions, exacerbating phosphorus deficiency. The downregulation of the Calvin cycle shifted the total carbon metabolism and carbon migration, reducing photosynthesis and respiration but accumulating starch to counteract cell shading and phosphorus deficiency. These findings provide novel insights into the mechanisms underlying the short-term growth stimulation and long-term potential toxic effects of NPs on marine microalgae, thus altering marine carbon and phosphorus cycles.
Collapse
Affiliation(s)
- Huankai Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wei Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Feng Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Leijian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfang Miao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China; Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
7
|
Flickinger KM, Mellado Fritz CA, Huggler KS, Wade GM, Chang GR, Fox KC, Simcox JA, Cantor JR. Cytosolic NADK is conditionally essential for folate-dependent nucleotide synthesis. Nat Metab 2025:10.1038/s42255-025-01272-3. [PMID: 40316835 DOI: 10.1038/s42255-025-01272-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/11/2025] [Indexed: 05/04/2025]
Abstract
Nicotinamide adenine dinucleotide kinase (NADK) catalyses the phosphorylation of NAD+ to produce NAD phosphate, the oxidized form of NADPH, a cofactor that serves a critical role in driving reductive metabolism. Cancer cells co-express two distinct NAD kinases that differ by localization (NADK, cytosol; NADK2, mitochondria). CRISPR screens performed across hundreds of cancer cell lines indicate that both are dispensable for growth in conventional culture media. By contrast, NADK deletion impaired cell growth in human plasma-like medium. Here we trace this conditional NADK dependence to the availability of folic acid. NADPH is the preferred cofactor of dihydrofolate reductase (DHFR), the enzyme that mediates metabolic activation of folic acid. We find that NADK is required for enabling cytosolic NADPH-driven DHFR activity sufficient to maintain folate-dependent nucleotide synthesis under low folic acid conditions. Our results reveal a basis for conditional NADK essentiality and suggest that folate availability determines whether DHFR activity can be sustained by alternative electron donors such as NADH.
Collapse
Affiliation(s)
- Kyle M Flickinger
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Carlos A Mellado Fritz
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kimberly S Huggler
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Gina M Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Gavin R Chang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathryn C Fox
- Flow Cytometry Laboratory, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith A Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason R Cantor
- Morgridge Institute for Research, Madison, WI, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Saraei P, Ghasemi M, Talebi A, Vafaeinezhad A, Saberzadeh J. Nutritional Strategies in Oncology: A Narrative Review of Advances in Folate-Targeted Therapeutic Approaches for Cancer Treatment. Nutr Cancer 2025:1-23. [PMID: 40295145 DOI: 10.1080/01635581.2025.2497096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
Folate, a water-soluble B vitamin crucial for DNA synthesis and repair, is internalized by cells through specific folate receptors (FRs), which are frequently overexpressed in various types of cancers. In this comprehensive study, we conducted a review of the literature from Google Scholar, PubMed, and Science Direct, focusing on research published between 1980 and 2024 to evaluate folate-targeted therapeutic strategies in oncology. Our study design involved a rigorous review of both preclinical and clinical research, emphasizing strategies such as folate-drug conjugates, antibody-drug conjugates, and folate-targeted nanoparticles. Key findings indicate that targeting FRs in cancers such as ovarian, breast, cervical, renal, and colorectal enhances drug delivery specificity to tumors, increases therapeutic efficacy, and decreases systemic toxicity compared to traditional chemotherapy. Several clinical trials reported improved progression-free survival and overall response rates among patients receiving folate-targeted therapies. In conclusion, our review highlights the significant potential of folate-targeted strategies in advancing precision oncology while these approaches provide substantial benefits in terms of efficacy and safety, further research is essential to refine drug design and expand clinical applications. Such initiatives will facilitate the development of more personalized cancer treatment protocols that maximize therapeutic outcomes while minimizing adverse effects.
Collapse
Affiliation(s)
- Pouya Saraei
- Student Research Committee, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Ghasemi
- Comprehensive Medical Research Center, Center for Basic Medical Sciences, Physiology Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Arefe Vafaeinezhad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Jamileh Saberzadeh
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Zhang Q, Zhang X, Liu K, Zhu Y, Nie X, Ma J, Sun P, Li Z, Gao Y, Liu S, Gao A, Zhang L, Gao P. Molecular basis of SLC19A1-mediated folate and cyclic dinucleotide transport. Nat Commun 2025; 16:3146. [PMID: 40175380 PMCID: PMC11965291 DOI: 10.1038/s41467-025-58378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025] Open
Abstract
The solute carrier protein SLC19A1 is crucial for transporting folate nutrients, antifolate chemotherapeutics, and more recently cyclic dinucleotides (CDNs) immune transmitters, influencing various physiological and pathological processes. While the inward-open state of human SLC19A1 (hSLC19A1) has been previously described, key aspects regarding its conformational dynamics, substrate selectivity, and precise mechanisms underlying CDNs transport remain elusive. Using an antibody-facilitated conformation screening strategy, we present cryo-electron microscopy structures of hSLC19A1 in its outward-open state with and without bound substrates, revealing detailed mechanisms of substrate recognition and conformational changes during transport. We identify both general and specific features for folate/antifolate recognition, including an SLC19A1-specific pocket for accommodating γ-carboxylate-modified antifolates. Intriguingly, CDNs bind as monomers within the canonical pocket of outward-open hSLC19A1, contrasting with dimeric binding in inward-open structures. Together with functional assays, these findings provide a framework for developing antifolate drugs and CDN-targeted therapies, advancing our understanding of SLC19A1's physiological and therapeutic functions.
Collapse
Affiliation(s)
- Qixiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xuyuan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kexin Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yalan Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaohua Nie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Junxiao Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Panpan Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaolong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yina Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Songqing Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ang Gao
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China.
- Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China.
| | - Liguo Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Pu Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
10
|
Li G, Cheng M, Lin Y, Ho Y, Lin G, Chiu C, Ho H. Downregulation of NAD Kinase Expression in β-Cells Contributes to the Aging-Associated Decline in Glucose-Stimulated Insulin Secretion. Aging Cell 2025; 24:e70037. [PMID: 40045495 PMCID: PMC11984695 DOI: 10.1111/acel.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 04/12/2025] Open
Abstract
Nicotinamide adenine dinucleotide kinase (NADK) is essential to the generation of nicotinamide adenine dinucleotide phosphate (NADP(H)), an important metabolic coupling factor involved in glucose-stimulated insulin secretion. In the present study, we showed that the expression of Nadk and Nadk2 transcripts and NADP(H) content were lower in islets of 80-week-old (aged) mice than those of 8-week-old (young) mice. This was associated with diminished oral glucose tolerance of old mice and the glucose-stimulated insulin secretion (GSIS) response of islets. Knockdown (KD) of Nadk or Nadk2 gene expression in NIT-1 cells impaired glucose-stimulated insulin secretion. Metabolomic analysis revealed that Nadk KD specifically affected purine metabolism in glucose-stimulated cells. The levels of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) were higher in KD cells than in the non-targeting control (NTC) cells. Phosphorylation of AMP-activated protein kinase (AMPK) was elevated in glucose-treated KD cells compared to that of NTC cells. Increased AICAR level and AMPKα phosphorylation were observed in the glucose-stimulated islets of the aged mice. Genetic and pharmacological inhibition of AMPK promoted glucose-stimulated insulin release by KD cells and the aged mouse islets. It is likely that NADK is modulatory to AMPK activation in pancreatic β-cells and to their GSIS response. Enhanced AICAR formation in KD cells was accompanied by significantly increased conversion from inosine monophosphate (IMP) in a tetrahydrofolate (THF)-dependent manner. Folate supplementation augmented the GSIS response of KD cells and aged mouse islets. Taken together, these findings suggest that the aging-associated decline in NADK expression may underlie the reduced insulin secretory capacity of pancreatic β-cells.
Collapse
Grants
- MOST 111-2634-F-182-001 Ministry of Education in Taiwan and the National Science and Technology Council, Taiwan
- EMRPD1K0441 Ministry of Education in Taiwan
- EMRPD1K0481 Ministry of Education in Taiwan
- EMRPD1L0421 Ministry of Education in Taiwan
- 110-2320-B-182-017-MY3 National Science and Technology Council
- 111-2320-B-182-011 National Science and Technology Council
- 112-2320-B-182-020-MY3 National Science and Technology Council
- 113-2320-B-182-018-MY3 National Science and Technology Council
- BMRP564 Chang Gung Memorial Hospital, Linkou
- BMRP819 Chang Gung Memorial Hospital, Linkou
- CLRPG3K0023 Chang Gung Memorial Hospital, Linkou
- CMRPD1J0263 Chang Gung Memorial Hospital, Linkou
- CMRPD1L0161 Chang Gung Memorial Hospital, Linkou
- CMRPD1L0162 Chang Gung Memorial Hospital, Linkou
- CMRPD1M0341 Chang Gung Memorial Hospital, Linkou
- CMRPD1M0342 Chang Gung Memorial Hospital, Linkou
- CMRPD1M0351 Chang Gung Memorial Hospital, Linkou
- CMRPD1M0352 Chang Gung Memorial Hospital, Linkou
- CMRPD1N0071 Chang Gung Memorial Hospital, Linkou
- CMRPD1N0151 Chang Gung Memorial Hospital, Linkou
- CMRPD1P0171 Chang Gung Memorial Hospital, Linkou
- CORPD1P0011 Chang Gung Memorial Hospital, Linkou
- CORPD1P0021 Chang Gung Memorial Hospital, Linkou
- National Science and Technology Council
- Chang Gung Memorial Hospital, Linkou
Collapse
Affiliation(s)
- Guan‐Jie Li
- Graduate Institute of Biomedical Sciences, College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Mei‐Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research CenterChang Gung UniversityTaoyuanTaiwan
- Clinical Metabolomics Core LaboratoryChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
- Department of Biomedical Sciences, College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Yu‐Ting Lin
- School of Physical Therapy, College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Yu‐Hsuan Ho
- Department of Biomedical Sciences, College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Gigin Lin
- Clinical Metabolomics Core LaboratoryChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
- Department of Medical Imaging and InterventionChang Gung Memorial Hospital at Linkou and Chang Gung UniversityTaoyuanTaiwan
- Department of Medical Imaging and Radiological SciencesChang Gung UniversityTaoyuanTaiwan
| | - Chih‐Yung Chiu
- Clinical Metabolomics Core LaboratoryChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
- Department of PediatricsChang Gung Memorial Hospital at Linkou, and Chang Gung UniversityTaoyuanTaiwan
- Department of PediatricsChang Gung Memorial Hospital at Keelung, and Chang Gung UniversityTaoyuanTaiwan
| | - Hung‐Yao Ho
- Graduate Institute of Biomedical Sciences, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Metabolomics Core Laboratory, Healthy Aging Research CenterChang Gung UniversityTaoyuanTaiwan
- Clinical Metabolomics Core LaboratoryChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
- Department of Medical Biotechnology and Laboratory Science, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Research Center for Emerging Viral InfectionsChang Gung UniversityTaoyuanTaiwan
| |
Collapse
|
11
|
Siatka T, Mát'uš M, Moravcová M, Harčárová P, Lomozová Z, Matoušová K, Suwanvecho C, Krčmová LK, Mladěnka P. Biological, dietetic and pharmacological properties of vitamin B 9. NPJ Sci Food 2025; 9:30. [PMID: 40075081 PMCID: PMC11904035 DOI: 10.1038/s41538-025-00396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Humans must obtain vitamin B9 (folate) from plant-based diet. The sources as well as the effect of food processing are discussed in detail. Industrial production, fortification and biofortification, kinetics, and physiological role in humans are described. As folate deficiency leads to several pathological states, current opinions toward prevention through fortification are discussed. Claimed risks of increased folate intake are mentioned as well as analytical ways for measurement of folate.
Collapse
Affiliation(s)
- Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Marek Mát'uš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232, Bratislava, Slovak Republic
| | - Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Patrícia Harčárová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Zuzana Lomozová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Chaweewan Suwanvecho
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic.
| |
Collapse
|
12
|
Nie J, Huang L, Shen Y, Pan H, Wang S, Zhao H, Gao P, Yang J, Huang X, Zeng S, Miao J. Methotrexate resistance and its regulatory mechanisms in pediatric tumors and beyond. Drug Resist Updat 2025; 81:101225. [PMID: 40088855 DOI: 10.1016/j.drup.2025.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Methotrexate (MTX) is a critical antimetabolite drug in treating various pediatric diseases, including acute lymphoblastic leukemia (ALL), non-Hodgkin lymphoma (NHL), brain tumors, osteosarcoma, inflammatory myofibroblastic tumor (IMT), juvenile scleroderma (JS), and juvenile idiopathic arthritis (JIA). MTX acts as a folate antagonist by inhibiting dihydrofolate reductase (DHFR), an enzyme essential for the synthesis of tetrahydrofolate. This disruption impairs DNA synthesis, repair, and cellular replication, particularly affecting rapidly dividing cells. Despite its efficacy, MTX resistance poses significant challenges, particularly in pediatric oncology, where it undermines the ability to achieve sustained therapeutic effects, resulting in reduced therapeutic efficacy and poor prognosis. The mechanisms of MTX resistance encompassed reduced enzyme activity pivotal for MTX metabolism, enhanced expression of efflux transporters, genetic variations, and alterations in signaling pathways. Multifaceted strategies have been explored to overcome MTX resistance. Combination therapies with ginger extract, gold nanoparticles, and arsenic trioxide (ATO) have been investigated to augment MTX's cytotoxic effects. Synergies with mTOR inhibitors and MDM2 inhibitors have demonstrated enhanced outcomes in ALL. In JIA, targeting ATP-binding cassette (ABC) transporters and modulating transforming growth factor‑β (TGF-β) signaling pathways have emerged as promising approaches. For osteosarcoma, emphasis on autophagy pathways and non-coding RNAs influencing chemotherapy sensitivity could enhance MTX effectiveness. This review delineates MTX's therapeutic roles, elucidates its resistance mechanisms, and discusses current and potential strategies for managing MTX resistance to bolster treatment effectiveness in pediatric tumors and other diseases. This knowledge base could underpin further research and development of personalized treatments to optimize MTX's clinical benefits.
Collapse
Affiliation(s)
- Jing Nie
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China
| | - Lantian Huang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Yan Shen
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongai Pan
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siwan Wang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Huawei Zhao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peng Gao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Jufei Yang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Xiaojun Huang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310059, China
| | - Su Zeng
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, Zhejiang 310058, China.
| | - Jing Miao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y, Shen B. Engineered mitochondria in diseases: mechanisms, strategies, and applications. Signal Transduct Target Ther 2025; 10:71. [PMID: 40025039 PMCID: PMC11873319 DOI: 10.1038/s41392-024-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Mitochondrial diseases represent one of the most prevalent and debilitating categories of hereditary disorders, characterized by significant genetic, biological, and clinical heterogeneity, which has driven the development of the field of engineered mitochondria. With the growing recognition of the pathogenic role of damaged mitochondria in aging, oxidative disorders, inflammatory diseases, and cancer, the application of engineered mitochondria has expanded to those non-hereditary contexts (sometimes referred to as mitochondria-related diseases). Due to their unique non-eukaryotic origins and endosymbiotic relationship, mitochondria are considered highly suitable for gene editing and intercellular transplantation, and remarkable progress has been achieved in two promising therapeutic strategies-mitochondrial gene editing and artificial mitochondrial transfer (collectively referred to as engineered mitochondria in this review) over the past two decades. Here, we provide a comprehensive review of the mechanisms and recent advancements in the development of engineered mitochondria for therapeutic applications, alongside a concise summary of potential clinical implications and supporting evidence from preclinical and clinical studies. Additionally, an emerging and potentially feasible approach involves ex vivo mitochondrial editing, followed by selection and transplantation, which holds the potential to overcome limitations such as reduced in vivo operability and the introduction of allogeneic mitochondrial heterogeneity, thereby broadening the applicability of engineered mitochondria.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Limin Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haibo Si
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuangang Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
14
|
Suprapti E, Hadju V, Ibrahim E, Indriasari R, Erika KA, Balqis B. Anemia: Etiology, Pathophysiology, Impact, and Prevention: A Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2025; 54:509-520. [PMID: 40330196 PMCID: PMC12051798 DOI: 10.18502/ijph.v54i3.18244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/16/2024] [Indexed: 05/08/2025]
Abstract
Background Anemia is a significant public health problem worldwide in rich and poor countries. Anemia among teenagers can be seriously almost entirely caused by a lack of substance iron, which is closely related to the level of severity of anemia. The most visible effect of anemia is a decline in achievement studying in school. This article briefly introduces anemia, etiology, pathophysiology, impact, and preventive measures. Methods Major databases, including Scopus, Pubmed, Proquest, Google Scholar, and Science Direct, were researched to obtain articles related to anemia in adolescent girls. The keywords used in the literature search were " anemia and teenage girls "and " anemia prevention. " The time frame of the articles obtained ranged from 2012 to 2023. Results Enhancement observed prevalence during several final years will cause prevalence to exceed the agreed target level. The most visible impact of anemia is a decline in achievement studying in school. Not only that, teenage women who suffer from anemia are at risk of experiencing anemia during pregnancy, which can hurt the growth and development of the fetus in Content. Apart from that, there is the potential to experience complications during pregnancy and childbirth. Conclusion Identifying and understanding the etiology of anemia is critical to developing effective prevention strategies with screening. An integrated approach to early prevention of anemia involves collaboration between the health, education, and community sectors.
Collapse
Affiliation(s)
- Eka Suprapti
- Doctoral Program, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia & Kurnia Jaya Persada University, Palopo, Indonesia
| | - Veni Hadju
- Department of Nutrition, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia
| | - Erniwati Ibrahim
- Department of Environmental Health, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia
| | - Rahayu Indriasari
- Department of Nutrition, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia
| | - Kadek Ayu Erika
- Department of Nursing, Faculty of Nursing, Hasanuddin University, Makassar, Indonesia
| | - Balqis Balqis
- Department of Health Administration and Policy, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
15
|
Auchynnikava T, Äärelä A, Moisio O, Liljenbäck H, Andriana P, Iqbal I, Laine T, Palani S, Lehtimäki J, Rajander J, Salo H, Airaksinen AJ, Virta P, Roivainen A. Biological Evaluation of Molecular Spherical Nucleic Acids: Targeting Tumors via a Hybridization-Based Folate Decoration. ACS OMEGA 2025; 10:6003-6014. [PMID: 39989783 PMCID: PMC11840764 DOI: 10.1021/acsomega.4c10047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 01/23/2025] [Indexed: 02/25/2025]
Abstract
Folate receptors (FRs), membrane-bound proteins that bind specifically to folate with high affinity, are overexpressed by various cancer types and are therefore used as targets for delivery of therapeutic agents. Molecular spherical nucleic acids (MSNAs) are dendritic formulations of oligonucleotides (ONs) that may have advantages over linear parent ONs with respect to delivery properties. Here, we assembled folate-decorated MSNAs, site-specifically radiolabeled them, and then biologically evaluated their effects in mice bearing HCC1954 breast cancer xenograft tumors. The biodistribution of intravenously administered 18F-radiolabeled MSNAs was monitored using positron emission tomography/computed tomography imaging. The results revealed higher accumulation of folate-decorated MSNAs in FR-expressing organs such as the liver, kidney, and spleen, as well as a higher tumor-to-muscle ratio than that observed for MSNAs without the folate decoration. However, the observed increase was statistically significant only for MSNA structures with a PO backbone. The observed selective uptake of folate-decorated MSNAs highlights their potential as targeted delivery vehicles for therapeutic and diagnostic agents in FR-overexpressing cancers.
Collapse
Affiliation(s)
- Tatsiana Auchynnikava
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Antti Äärelä
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
- Research
and Development, Orion Pharma, Turku FI-20380, Finland
| | - Olli Moisio
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Heidi Liljenbäck
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Turku
Center for Disease Modeling, University
of Turku, Turku FI-20520, Finland
| | - Putri Andriana
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Imran Iqbal
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Toni Laine
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Senthil Palani
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Jyrki Lehtimäki
- Research
and Development, Orion Pharma, Turku FI-20380, Finland
| | - Johan Rajander
- Turku
PET Centre, Accelerator Laboratory, Åbo
Akademi University, Turku FI-20520, Finland
| | - Harri Salo
- Research
and Development, Orion Pharma, Turku FI-20380, Finland
| | - Anu J. Airaksinen
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Pasi Virta
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Anne Roivainen
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Turku
Center for Disease Modeling, University
of Turku, Turku FI-20520, Finland
- InFLAMES
Research Flagship, University of Turku, Turku FI-20520, Finland
| |
Collapse
|
16
|
Keuter L, Fortmann M, Behrens M, Humpf HU. Alterations in the proteomes of HepG2 and IHKE cells inflicted by six selected mycotoxins. Arch Toxicol 2025; 99:701-715. [PMID: 39638853 PMCID: PMC11775057 DOI: 10.1007/s00204-024-03905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Toxic fungal secondary metabolites, referred to as mycotoxins, emerge in moldy food and feed and constitute a potent but often underestimated health threat for humans and animals. They are structurally diverse and can cause diseases after dietary intake even in low concentrations. To elucidate cellular responses and identify cellular targets of mycotoxins, a bottom-up proteomics approach was used. We investigated the effects of the mycotoxins aflatoxin B1, ochratoxin A, citrinin, deoxynivalenol, nivalenol and penitrem A on the human hepatoblastoma cell line HepG2 and of ochratoxin A and citrinin on the human kidney epithelial cell line IHKE. Incubations were carried out at sub-cytotoxic concentrations to monitor molecular effects before acute cell death mechanisms predominate. Through these experiments, we were able to detect specific cellular responses that point towards the mycotoxins' mode of action. Besides very well-described mechanisms like the ribotoxicity of the trichothecenes, we observed not yet described effects on different cellular mechanisms. For instance, trichothecenes lowered the apolipoprotein abundance and aflatoxin B1 affected proteins related to inflammation, ribogenesis and mitosis. Ochratoxin A and citrinin upregulated the minichromosomal maintenance complex and nucleotide synthesis in HepG2 and downregulated histones in IHKE. Penitrem A reduced enzyme levels of the sterol biosynthesis. These results will aid in the elucidation of the toxicodynamic properties of this highly relevant class of toxins.
Collapse
Affiliation(s)
- Lucas Keuter
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Marco Fortmann
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany.
| |
Collapse
|
17
|
Dlamini SN, Norris SA, Micklesfield LK. Associations between skeletal muscle mass and elevated blood pressure are independent of body fat: a cross-sectional study in young adult women of African ancestry. Br J Nutr 2025; 133:1-15. [PMID: 39817427 PMCID: PMC11946036 DOI: 10.1017/s0007114525000029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/06/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Although research on the relationship between lean body mass and blood pressure (BP) has been inconsistent, most studies reported that measures of lean body mass are associated with a higher risk of hypertension. We explored relationships between body composition (fat and skeletal muscle mass) and BP in 1162 young adult African women. Dual-energy X-ray absorptiometry-derived measures of whole-body, central and arm fat mass were associated with higher systolic and diastolic BP, while leg fat percentage was associated with lower systolic and diastolic BP. However, only the associations with diastolic BP remained after adjusting for appendicular skeletal muscle mass (ASM). ASM was associated with higher systolic and diastolic BP, before and after adjusting for whole-body fat percentage and visceral adipose tissue. While there was no overlap in targeted proteomics of BP and body composition, REN was lower in the elevated BP than the normal BP group and was inversely associated with diastolic BP (false rate discovery adjusted P< 0·050). Several proteins were positively associated with both visceral adipose tissue and ASM (LEP, FABP4, IL6 and GGH) and negatively associated with both visceral adipose tissue and ASM (ACAN, CELA3A, PLA2G1B and NCAM1). NOTCH3, ART3, COL1A1, DKK3, ENG, NPTXR, AMY2B and CNTN1 were associated with lower visceral adipose tissue only, and IGFBP1 was associated with lower ASM only. While the associations between body fat and BP were not independent of skeletal muscle mass, the associations between muscle mass and BP were independent of overall and central adiposity in young adult African women. Future interventions targeting muscle mass should also monitor BP in this population.
Collapse
Affiliation(s)
- Siphiwe N. Dlamini
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shane A. Norris
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Development and Health, University of Southampton, Southampton, UK
| | - Lisa K. Micklesfield
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
18
|
Rodríguez Silva J, Monsalves-Álvarez M, Sepúlveda C, Donoso-Barraza C, Troncoso R, Hirsch S. Folate induces stemness and increases oxygen consumption under glucose deprivation by notch-1 pathway activation in colorectal cancer cell. Mol Cell Biochem 2025; 480:505-519. [PMID: 38536555 DOI: 10.1007/s11010-024-04987-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/09/2024] [Indexed: 01/03/2025]
Abstract
Evidence for folate's protective effects on neural tube defects led the USA and Chile to start mandatory folic acid (FA) fortification programs, decreasing up to 50%. However, ∼30% of the population consuming fortified foods reach supraphysiologic serum levels. Although controversial, several epidemiological and clinical observations suggest that folate increases cancer risk, giving concern about the risks of FA supplementation. The Cancer stem cells (CSCs) model has been used to explain survival to anticancer therapies. The Notch-1 pathway plays a role in several cancers and is associated with the stemness process. Different studies show that modulation of metabolic pathways regulates stemness capacity in cancer. Supraphysiologic concentrations of FA increase the proliferation of HT-29 cells by Notch-1 activation. However, whether folate can induce a stemness-like phenotype in cancer is not known. We hypothesized that FA protects from glucose deprivation-induced cell death through Notch-1 activation. HT-29 cells were challenged with glucose deprivation at basal (20 nM) and supraphysiological (400 nM) FA and 5-MTHF concentrations. We analyzed changes in stemness-like gene expression, cell death and different energetic metabolic functions. Supraphysiological concentrations of FA increased stemness-like genes, and improved survival and oxygen consumption, inducing AMPK phosphorylation and HSP-70 protein expression. We evaluated the Notch-1 pathway using the DAPT and siRNA as inhibitors, decreasing the stemness-like gene expression and preventing the FA protection against glucose deprivation-induced cell death. Moreover, they decreased oxygen consumption and AMPK phosphorylation. These results suggest that FA protects against glucose deprivation. These effects were associated with AMPK activation, a critical metabolic mediator in nutrient consumption and availability that activates the Notch-1 pathway.
Collapse
Affiliation(s)
- Juan Rodríguez Silva
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
| | - Matías Monsalves-Álvarez
- Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Carlos Sepúlveda
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Camila Donoso-Barraza
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Sandra Hirsch
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
19
|
Cai K, Wang F, Shi HQ, Shen AN, Zhao R, Geng HR, Lu JQ, Gui YH, Shi Y, Zhao JY. Maternal folic acid over-supplementation impairs cardiac function in mice offspring by inhibiting SOD1 expression. Cardiovasc Res 2024; 120:2092-2103. [PMID: 39253986 DOI: 10.1093/cvr/cvae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 06/13/2024] [Indexed: 09/11/2024] Open
Abstract
AIMS Folic acid (FA) supplementation during pregnancy aims to protect foetal development. However, maternal over-supplementation of FA has been demonstrated to cause metabolic dysfunction and increase the risk of autism, retinoblastoma, and respiratory illness in the offspring. Moreover, FA supplementation reduces the risk of congenital heart disease. However, little is known about its possible adverse effects on cardiac health resulting from maternal over-supplementation. In this study, we assessed the detrimental effects of maternal FA over-supplementation on the cardiac health of the offspring. METHODS AND RESULTS Eight-week-old C57BL/6J pregnant mice were randomly divided into control and over-supplemented groups. The offspring cardiac function was assessed using echocardiography. Cardiac fibrosis was assessed in the left ventricular myocardium by histological analysis. Proteomic, protein, RNA, and DNA methylation analyses were performed by liquid chromatography-tandem mass spectrometry, western blotting, real-time quantitative PCR, and bisulfite sequencing, respectively. We found that maternal periconceptional FA over-supplementation impaired cardiac function with the decreased left ventricular ejection fraction in the offspring. Biochemical indices and tissue staining further confirmed impaired cardiac function in offspring caused by maternal FA over-supplementation. The combined proteomic, RNA expression, and DNA methylation analyses suggested that key genes involved in cardiac function were inhibited at the transcriptional level possibly due to increased DNA methylation. Among these, superoxide dismutase 1 was down-regulated, and reactive oxygen species (ROS) levels increased in the mouse heart. Inhibition of ROS generation using the antioxidant N-acetylcysteine rescued the impaired cardiac function resulting from maternal FA over-supplementation. CONCLUSIONS Our study revealed that over-supplementation with FA during mouse pregnancy is detrimental to cardiac function with the decreased left ventricular ejection fraction in the offspring and provides insights into the mechanisms underlying the association between maternal FA status and health outcomes in the offspring.
Collapse
MESH Headings
- Animals
- Pregnancy
- Female
- Folic Acid/pharmacology
- Mice, Inbred C57BL
- Ventricular Function, Left/drug effects
- Prenatal Exposure Delayed Effects
- DNA Methylation/drug effects
- Superoxide Dismutase-1/metabolism
- Superoxide Dismutase-1/genetics
- Fibrosis
- Dietary Supplements
- Stroke Volume/drug effects
- Male
- Maternal Nutritional Physiological Phenomena
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/chemically induced
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Dysfunction, Left/enzymology
- Ventricular Dysfunction, Left/pathology
- Oxidative Stress/drug effects
- Mice
- Proteomics
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
Collapse
Affiliation(s)
- Ke Cai
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
| | - Feng Wang
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Hai-Qun Shi
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - An-Na Shen
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Rui Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
| | - Hao-Ran Geng
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Jia-Quan Lu
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Yong-Hao Gui
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Yan Shi
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
| |
Collapse
|
20
|
Gomez P, García EV, Céspedes García ME, Furnus CC, Barrera AD. Expression patterns of folate metabolism-related enzymes in the bovine oviduct: estrous cycle-dependent modulation and responsiveness to folic acid. Theriogenology 2024; 230:233-242. [PMID: 39342825 DOI: 10.1016/j.theriogenology.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Folate metabolism is required for important biochemical processes that regulate cell functioning, but its role in female reproductive physiology in cattle during peri- and post-conceptional periods has not been thoroughly explored. Previous studies have shown the presence of folate in bovine oviductal fluid, as well as finely regulated gene expression of folate receptors and transporters in bovine oviduct epithelial cells (BOECs). Additionally, extracellular folic acid (FA) affects the transcriptional levels of genes important for the functioning of BOECs. However, it remains unknown whether the anatomical and cyclic features inherent to the oviduct affect regulation of folate metabolism. The present study aimed to characterize the gene expression pattern of folate cycle enzymes in BOECs from different anatomical regions during the estrous cycle and to determine the transcriptional response of these genes to increasing concentrations of exogenous FA. A first PCR screening showed the presence of transcripts encoding dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR), and methionine synthase (MTR) in bovine reproductive tissues (ovary, oviduct and uterus), with expression levels in oviductal tissues comparable to, or even higher than, those detected in ovarian and uterine tissues. Moreover, expression analysis through RT-qPCR in BOECs from the ampulla and isthmus during different stages of the estrous cycle demonstrated that folate metabolism-related enzymes exhibited cycle-dependent variations. In both anatomical regions, DHFR was upregulated during the preovulatory stage, while MTHFR and MTR exhibited increased expression levels during the postovulatory stage. Under in vitro culture conditions, ampullary and isthmic cells were cultured in the presence of 10, 50, and 100 μM FA for 24 h. Under these conditions, isthmus epithelial cells exhibited a unique transcriptional response to exogenous FA, showing a pronounced increase in MTR expression levels. Our results suggest that the expression of folate metabolism-related genes in BOECs is differentially regulated during the estrous cycle and may respond to exogenous levels of folate. This offers a new perspective on the transcriptional regulation of genes associated with the folate cycle in oviductal cells and provides groundwork for future studies on their functional and epigenetic implications within the oviductal microenvironment.
Collapse
Affiliation(s)
- Paula Gomez
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta (UCASAL), Campus Castañares, A4400EDD, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Elina Vanesa García
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta (UCASAL), Campus Castañares, A4400EDD, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Mario Exequiel Céspedes García
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta (UCASAL), Campus Castañares, A4400EDD, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cecilia Cristina Furnus
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; IGEVET- Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, B1904AMA, La Plata, Buenos Aires, Argentina
| | - Antonio Daniel Barrera
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias y Veterinarias, Universidad Católica de Salta (UCASAL), Campus Castañares, A4400EDD, Salta, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
21
|
Huré JB, Foucault L, Ghayad LM, Marie C, Vachoud N, Baudouin L, Azmani R, Ivljanin N, Arevalo-Nuevo A, Pigache M, Bouslama-Oueghlani L, Chemelle JA, Dronne MA, Terreux R, Hassan B, Gueyffier F, Raineteau O, Parras C. Pharmacogenomic screening identifies and repurposes leucovorin and dyclonine as pro-oligodendrogenic compounds in brain repair. Nat Commun 2024; 15:9837. [PMID: 39537633 PMCID: PMC11561360 DOI: 10.1038/s41467-024-54003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Oligodendrocytes are critical for CNS myelin formation and are involved in preterm-birth brain injury (PBI) and multiple sclerosis (MS), both of which lack effective treatments. We present a pharmacogenomic approach that identifies compounds with potent pro-oligodendrogenic activity, selected through a scoring strategy (OligoScore) based on their modulation of oligodendrogenic and (re)myelination-related transcriptional programs. Through in vitro neural and oligodendrocyte progenitor cell (OPC) cultures, ex vivo cerebellar explants, and in vivo mouse models of PBI and MS, we identify FDA-approved leucovorin and dyclonine as promising candidates. In a neonatal chronic hypoxia mouse model mimicking PBI, both compounds promote neural progenitor cell proliferation and oligodendroglial fate acquisition, with leucovorin further enhancing differentiation. In an adult MS model of focal de/remyelination, they improve lesion repair by promoting OPC differentiation while preserving the OPC pool. Additionally, they shift microglia from a pro-inflammatory to a pro-regenerative profile and enhance myelin debris clearance. These findings support the repurposing of leucovorin and dyclonine for clinical trials targeting myelin disorders, offering potential therapeutic avenues for PBI and MS.
Collapse
Affiliation(s)
- Jean-Baptiste Huré
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Louis Foucault
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Litsa Maria Ghayad
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Corentine Marie
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nicolas Vachoud
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Lucas Baudouin
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rihab Azmani
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Natalija Ivljanin
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Alvaro Arevalo-Nuevo
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Morgane Pigache
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Lamia Bouslama-Oueghlani
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Julie-Anne Chemelle
- Équipe ECMO, Laboratoire de Biologie Tissulaire et d'Ingénierie (LBTI), UMR5305, Lyon, France
| | - Marie-Aimée Dronne
- Claude Bernard University, UMR5558 Laboratoire de Biométrie et Biologie Evolutive, CNRS, Villeurbanne, France
| | - Raphaël Terreux
- Équipe ECMO, Laboratoire de Biologie Tissulaire et d'Ingénierie (LBTI), UMR5305, Lyon, France
| | - Bassem Hassan
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - François Gueyffier
- Claude Bernard University, UMR5558 Laboratoire de Biométrie et Biologie Evolutive, CNRS, Villeurbanne, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | - Carlos Parras
- Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
22
|
Odeh M, Sajrawi C, Majcher A, Zubedat S, Shaulov L, Radzishevsky A, Mizrahi L, Chung WK, Avital A, Hornemann T, Liebl DJ, Radzishevsky I, Wolosker H. A new type of blood-brain barrier aminoacidopathy underlies metabolic microcephaly associated with SLC1A4 mutations. Brain 2024; 147:3874-3889. [PMID: 38662784 PMCID: PMC11531853 DOI: 10.1093/brain/awae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 10/20/2024] Open
Abstract
Mutations in the SLC1A4 transporter lead to neurodevelopmental impairments, spastic tetraplegia, thin corpus callosum and microcephaly in children. SLC1A4 catalyses obligatory amino acid exchange between neutral amino acids, but the physiopathology of SLC1A4 disease mutations and progressive microcephaly remain unclear. Here, we examined the phenotype and metabolic profile of three Slc1a4 mouse models: a constitutive Slc1a4-knockout mouse; a knock-in mouse with the major human Slc1a4 mutation (Slc1a4-K256E); and a selective knockout of Slc1a4 in brain endothelial cells (Slc1a4tie2-cre). We show that Slc1a4 is a bona fideL-serine transporter at the blood-brain barrier (BBB) and that acute inhibition or deletion of Slc1a4 leads to a decrease in serine influx into the brain. This results in microcephaly associated with decreased L-serine content in the brain, accumulation of atypical and cytotoxic 1-deoxysphingolipids, neurodegeneration, synaptic and mitochondrial abnormalities and behavioural impairments. Prenatal and early postnatal oral administration of L-serine at levels that replenish the serine pool in the brain rescued the observed biochemical and behavioural changes. Administration of L-serine until the second postnatal week also normalized brain weight in Slc1a4-E256K mice. Our observations suggest that the transport of 'non-essential' amino acids from the blood through the BBB is at least as important as that of essential amino acids for brain metabolism and development. We propose that SLC1A4 mutations cause a BBB aminoacidopathy with deficits in serine import across the BBB, required for optimal brain growth, leading to a metabolic microcephaly, which may be amenable to treatment with L-serine.
Collapse
Affiliation(s)
- Maali Odeh
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| | - Clara Sajrawi
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| | - Adam Majcher
- Institute of Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Salman Zubedat
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel
| | - Lihi Shaulov
- Electron Microscopy Unit, B. Rappaport Faculty of Medicine, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| | | | | | - Wendy K Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Avi Avital
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Inna Radzishevsky
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
- Laura and Isaac Perlmutter Metabolomics Center, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| |
Collapse
|
23
|
Chung MY, Kim BH. Fatty acids and epigenetics in health and diseases. Food Sci Biotechnol 2024; 33:3153-3166. [PMID: 39328231 PMCID: PMC11422405 DOI: 10.1007/s10068-024-01664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024] Open
Abstract
Lipids are crucial for human health and reproduction and include diverse fatty acids (FAs), notably polyunsaturated FAs (PUFAs) and short-chain FAs (SCFAs) that are known for their health benefits. Bioactivities of PUFAs, including ω-6 and ω-3 FAs as well as SCFAs, have been widely studied in various tissues and diseases. Epigenetic regulation has been suggested as a significant mechanism affecting the progression of various diseases, including cancers and metabolic and inflammatory diseases. Epigenetics encompasses the reversible modulation of gene expression without altering the DNA sequence itself, mediated by mechanisms such as DNA methylation, histone acetylation, and chromatin remodeling. Bioactive FAs have been demonstrated to regulate gene expression via epigenetic modifications that are potentially important for modulating metabolic control and disease risk. This review paper discusses the evidence in support of bioactive FAs, including ω-6 and ω-3 FAs and SCFAs, eliciting various disease prevention via epigenetic regulation including methylation or acetylation. Graphical abstract
Collapse
Affiliation(s)
- Min-Yu Chung
- Department of Food and Nutrition, Gangseo University, Seoul, 07661 Republic of Korea
| | - Byung Hee Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
24
|
Qiu Y, Xie E, Xu H, Cheng H, Li G. One-carbon metabolism shapes T cell immunity in cancer. Trends Endocrinol Metab 2024; 35:967-980. [PMID: 38925992 DOI: 10.1016/j.tem.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
One-carbon metabolism (1CM), comprising folate metabolism and methionine metabolism, serves as an important mechanism for cellular energy provision and the production of vital signaling molecules, including single-carbon moieties. Its regulation is instrumental in sustaining the proliferation of cancer cells and facilitating metastasis; in addition, recent research has shed light on its impact on the efficacy of T cell-mediated immunotherapy. In this review, we consolidate current insights into how 1CM affects T cell activation, differentiation, and functionality. Furthermore, we delve into the strategies for modulating 1CM in both T cells and tumor cells to enhance the efficacy of adoptively transferred T cells, overcome metabolic challenges in the tumor microenvironment (TME), and maximize the benefits of T cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Yajing Qiu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Ermei Xie
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Haipeng Xu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fujian, 350011, China
| | - Hongcheng Cheng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
25
|
Mishra VK, Rodriguez-Lecompte JC, Ahmed M. Nanoparticles mediated folic acid enrichment. Food Chem 2024; 456:139964. [PMID: 38876059 DOI: 10.1016/j.foodchem.2024.139964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Folate is an essential component of many metabolic processes, and folate deficiency is known to cause various disorders. Folate and folic acid, a synthetic and chemically stable form of folate, enriched diet are typically used to overcome this deficiency. Folic acid and folate however, are susceptible to harsh environment and folates enrichment using nanoparticles is an intensively studied strategy in food industry. This review highlights the current methods and types of matrices utilized to develop folic acid/folate carrying nanoparticles. The folic acid/folate loaded nanoparticles prevent cargo degradation during gut absorption and under harsh food processing conditions including, high temperatures, UV light, and autoclaving. The data demonstrates that nanofortifcation of folates using proteins and biopolymers effectively enhances the bioavailability of the cargo. The encapsulation of folic acid in biopolymers by emulsion, spray drying and ionic gelation represent simplistic methods that can be easily scaled up with applications in food industry.
Collapse
Affiliation(s)
- Vineet Kumar Mishra
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
26
|
Li F, Qi JJ, Li LX, Yan TF. MTHFR C677T、MTHFR A1298C、MTRR A66G and MTR A2756G polymorphisms and male infertility risk: a systematic review and meta-analysis. Reprod Biol Endocrinol 2024; 22:133. [PMID: 39478547 PMCID: PMC11523872 DOI: 10.1186/s12958-024-01306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Epidemiological studies have reported that polymorphisms of folate-metabolizing genes have a significant impact on male infertility. However, the results of published studies have come to different conclusions. OBJECTIVE To determine an association between folate-metabolizing gene polymorphisms and the risk of male infertility. METHODS The meta-analysis was conducted according to the PRISMA 2020 statement. The protocol was registered with PROSPERO (CRD42023412251). Studies were searched from PubMed, Google Scholar, Embase, Scopus, and the Cochrane Library up to 24st October2023. Articles that satisfied the inclusion criteria were evaluated for their quality using the Newcastle-Ottawa Scale. Data were extracted from the eligible studies and were analyzed for pooled up odds ratio (OR) with 95% confidence interval (CI). Meta-analysis was conducted using STATA 12. RESULTS Forty-six case-control studies were included in the meta-analysis which comprised 20,639 participants. The pooled analysis revealed that the MTHFR C677T polymorphism was significantly associated with male infertility and abnormospermia.Three-fifths of the model showed there was a significant association between the MTR A2756G polymorphism and male infertility. Both MTHFR A1298C and MTRR A66G polymorphisms were not significantly associated with male fertility. Furthermore, subgroup analysis revealed a significant association between the MTHFR C677T polymorphism and male fertility in Asian countries. CONCLUSION This meta-analysis suggests that the MTHFR C677T and MTR A2756G polymorphisms may be a potential risk factor for male infertility.
Collapse
Affiliation(s)
- Feng Li
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, 570311, China
| | - Ju-Ju Qi
- The First Hospital of Shijiazhuang, Shijiazhuang, Heibei Province, 050011, China
| | - Li-Xin Li
- The First Hospital of Shijiazhuang, Shijiazhuang, Heibei Province, 050011, China
| | - Teng-Fei Yan
- Baoding No.1, Central Hospital, Baoding, Hebei Province, 071000, China.
| |
Collapse
|
27
|
Jiang T, Zhu F, Gao X, Wu X, Zhu W, Guo C. Naringenin loaded fucoidan/polyvinylpyrrolidone nanoparticles protect against folic acid induced acute kidney injury in vitro and in vivo. Colloids Surf B Biointerfaces 2024; 245:114343. [PMID: 39486374 DOI: 10.1016/j.colsurfb.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Acute kidney injury (AKI) is a common clinical problem with no effective treatment. Excessive folic acid (FA) induced kidney tubular injury is characterized by oxidative stress and inflammation, and is a common model of AKI. The excellent pharmacological activity of naringenin (NAR) makes it a potential agent for treating AKI, but its poor solubility limits its application. This study prepared NAR loaded nanoparticles (FU/PVP-NAR) using fucoidan (FU) and polyvinylpyrrolidone (PVP) as carriers, with a particle size of 23.96 ± 2.77 nm. In vitro studies showed that FU/PVP-NAR inhibited excessive FA induced proliferation inhibition, accumulation of reactive oxygen species (ROS), and disruption of mitochondrial membrane potential (MMP) of HK-2 cells. Further confirmed that FU/PVP-NAR inhibited FA induced DNA damage and Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation. In vivo studies showed that excessive FA induced AKI features in mice, such as elevated serum creatinine (SCr) and blood urea nitrogen (BUN) levels, accompanied by pathological damage to kidney tissues. The above AKI characteristics induced by FA were alleviated by FU/PVP-NAR. FU/PVP-NAR also inhibited the decrease in antioxidant enzyme levels in kidney tissues induced by FA. Furthermore, in vivo mechanism studies indicated that FU/PVP-NAR inhibited the release of inflammatory factors by inhibiting DNA damage-cGAS-STING pathway. In summary, this study provided the possibility for FU/PVP-NAR as a potential candidate drug for treating FA induced AKI.
Collapse
Affiliation(s)
- Tao Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feikai Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China.
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
28
|
Lv M, Liu B, Duan Y, Lin J, Dai L, Li Y, Yu J, Liao J, Zhang J, Duan Y. Engineered Biomimetic Nanovesicles Synergistically Remodel Folate-Nucleotide and γ-Aminobutyric Acid Metabolism to Overcome Sunitinib-Resistant Renal Cell Carcinoma. ACS NANO 2024; 18:27487-27502. [PMID: 39329191 DOI: 10.1021/acsnano.4c08055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Reprogramming of cellular metabolism in tumors promoted the epithelial-mesenchymal transition (EMT) process and established immune-suppressive tumor microenvironments (iTME), leading to drug resistance and tumor progression. Therefore, remodeling the cellular metabolism of tumor cells was a promising strategy to overcome drug-resistant tumors. Herein, CD276 and MTHFD2 were identified as a specific marker and a therapeutic target, respectively, for targeting sunitinib-resistant clear cell renal cell carcinoma (ccRCC) and its cancer stem cell (CSC) population. The blockade of MTHFD2 was confirmed to overcome drug resistance via remodeling of folate-nucleotide metabolism. Moreover, the manganese dioxide nanoparticle was proven here by a high-throughput metabolome to be capable of remodeling γ-aminobutyric acid (GABA) metabolism in tumor cells to reconstruct the iTME. Based on these findings, engineered CD276-CD133 dual-targeting biomimetic nanovesicle EMφ-siMTHFD2-MnO2@Suni was designed to overcome drug resistance and terminate tumor progression of ccRCC. Using ccRCC-bearing immune-humanized NPG model mice, EMφ-siMTHFD2-MnO2@Suni was observed to remodel folate-nucleotide and GABA metabolism to deactivate the EMT process and reconstruct the iTME thereby overcoming the drug resistance. In the incomplete-tumor-resection recurrence model and metastasis model, EMφ-siMTHFD2-MnO2@Suni reduced recurrence and metastasis in vivo. This work thus provided an innovative approach that held great potential in the treatment of drug-resistant ccRCC by remodeling cellular metabolism.
Collapse
Affiliation(s)
- Minchao Lv
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Bin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Yi Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Li Dai
- Department of Otolaryngology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Rd, Shanghai 200127, China
| | - Yuanyuan Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Jian Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Jinghan Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Jiali Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2200/25 Xietu Rd, Shanghai 200032, China
| |
Collapse
|
29
|
Flickinger KM, Wilson KM, Rossiter NJ, Hunger AL, Vishwasrao PV, Lee TD, Mellado Fritz CA, Richards RM, Hall MD, Cantor JR. Conditional lethality profiling reveals anticancer mechanisms of action and drug-nutrient interactions. SCIENCE ADVANCES 2024; 10:eadq3591. [PMID: 39365851 PMCID: PMC11451515 DOI: 10.1126/sciadv.adq3591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
Chemical screens across hundreds of cell lines have shown that the drug sensitivities of human cancers can vary by genotype or lineage. However, most drug discovery studies have relied on culture media that poorly reflect metabolite levels in human blood. Here, we perform drug screens in traditional and Human Plasma-Like Medium (HPLM). Sets of compounds that show conditional anticancer activity span different phases of global development and include non-oncology drugs. Comparisons of the synthetic and serum-derived components that comprise typical media trace sets of conditional phenotypes to nucleotide synthesis substrates. We also characterize a unique dual mechanism for brivudine, a compound approved for antiviral use. Brivudine selectively impairs cell growth in low folate conditions by targeting two enzymes involved in one-carbon metabolism. Cataloged gene essentiality data further suggest that conditional phenotypes for other compounds are linked to off-target effects. Our findings establish general strategies for identifying drug-nutrient interactions and mechanisms of action by exploiting conditional lethality in cancer cells.
Collapse
Affiliation(s)
- Kyle M. Flickinger
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Kelli M. Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Nicholas J. Rossiter
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrea L. Hunger
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Paresh V. Vishwasrao
- Division of Hematology, Oncology, and Bone Marrow Transplant, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Tobie D. Lee
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Carlos A. Mellado Fritz
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Rebecca M. Richards
- Division of Hematology, Oncology, and Bone Marrow Transplant, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Matthew D. Hall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Jason R. Cantor
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI 53792, USA
| |
Collapse
|
30
|
Blank HM, Hammer SE, Boatright L, Roberts C, Heyden KE, Nagarajan A, Tsuchiya M, Brun M, Johnson CD, Stover PJ, Sitcheran R, Kennedy BK, Adams LG, Kaeberlein M, Field MS, Threadgill DW, Andrews-Polymenis HL, Polymenis M. Late-life dietary folate restriction reduces biosynthesis without compromising healthspan in mice. Life Sci Alliance 2024; 7:e202402868. [PMID: 39043420 PMCID: PMC11266815 DOI: 10.26508/lsa.202402868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low-folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.
Collapse
Affiliation(s)
- Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Staci E Hammer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Laurel Boatright
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Courtney Roberts
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Katarina E Heyden
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Aravindh Nagarajan
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| | - Mitsuhiro Tsuchiya
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Marcel Brun
- Texas A&M Agrilife Research, Genomics and Bioinformatics Service, College Station, TX, USA
| | - Charles D Johnson
- Texas A&M Agrilife Research, Genomics and Bioinformatics Service, College Station, TX, USA
| | - Patrick J Stover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Institute for Advancing Health Through Agriculture, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - L Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M, College Station, TX, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Optispan, Inc., Seattle, WA, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - David W Threadgill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Department of Nutrition, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA
| | - Helene L Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
- Institute for Advancing Health Through Agriculture, Texas A&M University, College Station, TX, USA
| |
Collapse
|
31
|
Samaniego-Vaesken MDL, Morais-Moreno C, Carretero-Krug A, Puga AM, Montero-Bravo AM, Partearroyo T, Gregorio VM. Supplementation with Folic Acid or 5-Methyltetrahydrofolate and Prevention of Neural Tube Defects: An Evidence-Based Narrative Review. Nutrients 2024; 16:3154. [PMID: 39339754 PMCID: PMC11435031 DOI: 10.3390/nu16183154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Folic acid (FA), which in its chemical form is pteroylglutamic acid, is the fully oxidised, water-soluble, monoglutamic form of vitamin B9. This compound is part of the folate group but with higher bioavailability, and it is found in vitamin supplements and fortified foods and drugs. Folate metabolism is complex and associated with various metabolic pathways, all of which confer protection on the cell and allow its survival. Methods: We conducted a non-systematic search of articles published in English and Spanish including controlled trials, cohort studies, systematic re-views, and meta-analyses were included, as well as key studies in animal models related to pharmacokinetic studies. Search terms encompassed: "folic acid", "folates", "5-metyltetrahydrofolate", "5-MTHF", "neural tube defects", "supplementation", "fortification", AND "homocysteine" Results: A crucial role demonstrated for FA is to help prevent neural tube defects (NTDs). However, more studies are definitely still needed to establish 5-MTHF as a safe and effective therapeutic approach comparable with FA. Moreover, there is a lack of clinical studies that evaluate the efficacy of 5-MTHF supplementation in the prevention of NTDs. The present evidence-based narrative review discusses differences between FA and 5-MTHF in terms of structure, metabolism, bioavailability, clinical efficacy, and safety. Conclusions: Despite the potential value of 5-MTHF as an alternative to FA, clinical studies would be urgently needed to support the efficacy, dosage, timing, and/or safety of its use as a supplement.
Collapse
Affiliation(s)
- María de Lourdes Samaniego-Vaesken
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (M.d.L.S.-V.); (C.M.-M.); (A.C.-K.); (A.M.P.); (A.M.M.-B.); (T.P.)
- Instituto Universitario CEU Alimentación y Sociedad, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Carmen Morais-Moreno
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (M.d.L.S.-V.); (C.M.-M.); (A.C.-K.); (A.M.P.); (A.M.M.-B.); (T.P.)
| | - Alejandra Carretero-Krug
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (M.d.L.S.-V.); (C.M.-M.); (A.C.-K.); (A.M.P.); (A.M.M.-B.); (T.P.)
- Instituto Universitario CEU Alimentación y Sociedad, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Ana María Puga
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (M.d.L.S.-V.); (C.M.-M.); (A.C.-K.); (A.M.P.); (A.M.M.-B.); (T.P.)
- Instituto Universitario CEU Alimentación y Sociedad, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Ana María Montero-Bravo
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (M.d.L.S.-V.); (C.M.-M.); (A.C.-K.); (A.M.P.); (A.M.M.-B.); (T.P.)
- Instituto Universitario CEU Alimentación y Sociedad, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Teresa Partearroyo
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (M.d.L.S.-V.); (C.M.-M.); (A.C.-K.); (A.M.P.); (A.M.M.-B.); (T.P.)
- Instituto Universitario CEU Alimentación y Sociedad, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Varela-Moreiras Gregorio
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (M.d.L.S.-V.); (C.M.-M.); (A.C.-K.); (A.M.P.); (A.M.M.-B.); (T.P.)
- Instituto Universitario CEU Alimentación y Sociedad, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| |
Collapse
|
32
|
Verma S, Kumari V, Yangzom DK, Anamika F, Aggarwal K, Singh B, Jain R. Beyond the Gut: Exploring Cardiovascular Implications of Celiac Disease. Cardiol Rev 2024:00045415-990000000-00328. [PMID: 39254530 DOI: 10.1097/crd.0000000000000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Celiac disease (CD) is an autoimmune disorder that presents with gastrointestinal symptoms including diarrhea, weight loss, and abdominal bloating due to the inflammation in the small intestine. It has been associated with various extraintestinal manifestations, including mucocutaneous findings such as dermatitis herpetiformis, anemia, dental enamel defects, osteoporosis, and arthritis. Studies have revealed an increasing association between CD and cardiovascular diseases (CVDs), including atherosclerosis, cardiomyopathy, and arrhythmia. Chronic inflammation, nutritional deficiencies from malabsorption, endothelial dysfunction, thrombophilic autoantibodies, thrombocytosis, and protein C and S deficiency have been proposed as the probable mechanisms for the association between the 2 conditions. This article aims to provide a review of the pathophysiological mechanism of celiac disease causing various CVDs and to compare and contrast the existing studies suggesting both favorable and unfavorable CVD outcomes in patients with CD.
Collapse
Affiliation(s)
- Sakshi Verma
- From the Department of medicine, Government Medical College, Amritsar
| | - Verkha Kumari
- Department of medicine, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - De-Kee Yangzom
- Department of imaging, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Fnu Anamika
- Department of medicine, University College of Medical Sciences, New Delhi, India
| | - Kanishk Aggarwal
- Department of medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Bhupinder Singh
- Department of medicine, Icahn School of medicine at Mount Sinai, NYC Health + Hospital, Queens, NY
| | - Rohit Jain
- Department of medicine, Penn State Hershey Medical Center, PA
| |
Collapse
|
33
|
Luo H, Zheng Z, Xiong Y, Xu H, Xue Q, Sun C. Association between folate intake and radiographic progression, pain function scores in subjects with radiographic knee osteoarthritis: Data from the osteoarthritis initiative. Int J Rheum Dis 2024; 27:e15333. [PMID: 39246020 DOI: 10.1111/1756-185x.15333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Folate has an important role in the functioning of the musculoskeletal system, including modulation of inflammation, immunity, cartilage regeneration, prevention of osteoporosis, and maintenance of muscle strength, but evidence on the association between folate intake and knee pain, functional scores, and radiographic progression in patients with knee osteoarthritis (OA) is still limited. METHODOLOGY Our population-based cohort was extracted from the osteoarthritis initiative (OAI), focusing on individuals with prevalent radiographic knee OA (with a Kellgren-Lawrence score ≥2). Folate consumption was determined using the food frequency questionnaire. Data regarding the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores and radiographic readings were collected over 48 months. We analyzed the compiled data using generalized additive mixed models. RESULTS Our cohort consisted of 1472 OA patients (626 men and 846 women, mean [SD] age 62.35 [8.92]). At the 48-month follow-up, we observed a significant correlation between higher folate intake and a slower progression of knee pain and functional scores, as evidenced by a statistically significant decrease in the WOMAC total score, WOMAC pain subscale score, and WOMAC function/disability subscale score (p < .05). The fully adjusted models estimated a reduction of -0.028 points per 50 μg/1000 kcal of daily folate intake on the WOMAC pain subscale, -0.117 points on the WOMAC function subscale, and -0.160 points on the total WOMAC scale. Furthermore, our nonparametric fit analysis suggested that a higher intake of folate might decelerate the radiographic progression of OA. Stratified analyses indicated that an increase in folate consumption might particularly benefit men, older adults, overweight and obese individuals, and those with a higher dietary fiber intake. CONCLUSION Higher folate intake is correlated with improved knee function and reduced pain in patients with knee OA and might deter the radiographic progression of OA. The benefits appear to be more pronounced in men, older adults, overweight and obese individuals, and those with a higher dietary fiber intake.
Collapse
Affiliation(s)
- Huanhuan Luo
- Department of Nursing, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, P.R. China
- Graduate School of Peking Union Medical College, Beijing, P.R. China
| | - Zitian Zheng
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Peking University Third Hospital, Beijing, P.R. China
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Peking University Fifth School of Clinical Medicine, Beijing, P.R. China
| | - Yujun Xiong
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Huazhao Xu
- Hospital Administration Office, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Qingyun Xue
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Peking University Fifth School of Clinical Medicine, Beijing, P.R. China
| | - Chao Sun
- Department of Nursing, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, P.R. China
- Graduate School of Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
34
|
Mitra S, Guru RR, Jadhav S, Saurayi UU, Kumar R. From Awareness to Action: Addressing Folic Acid Supplementation in Western India Among Women of Reproductive Age. Cureus 2024; 16:e70173. [PMID: 39463510 PMCID: PMC11506234 DOI: 10.7759/cureus.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Background Folate, a vitamin B9, can be sourced naturally in the diet or the form of supplements. Studies highlight the prevention of neural tube abnormalities in women of reproductive age. To prevent these, low daily doses of FA (400-800 μg) are recommended for all women planning pregnancy, with higher doses for those with previous NTD-affected pregnancies. Folic acid supplementation lowers the risk of NTDs, other birth defects, and obstetrical complications. Methods The study explored awareness of and knowledge of folic acid supplements among women of childbearing age in Pune City, western Maharashtra, India. The cross-sectional survey was carried out at Symbiosis University Hospital and Research Centre (SUHRC), involving 300 female participants aged 16-44 years. The study utilized a structured questionnaire to evaluate participants' knowledge of folic acid supplements, their benefits, and usage patterns. Results Use as well as awareness of folic acid supplements was strongly associated with educational attainment. The awareness was low or none in participants who never attended school, and highest among the university graduates. The study included 300 women aged 16-45. About 43% of the study participants were between the ages of 23 and 29 years old; 57.7% were single, and 59.3% among them were university graduates. 59.7% of the study participants knew about folic acid supplements, but only 20% took them regularly. Knowledge about ideal timing and benefits was limited among them. 38% correctly identified prepregnancy as the ideal time to start. Only 18% knew it prevents neural tube defects, and 27% knew it could be obtained naturally. Conclusion The study highlights a lack of detailed knowledge about folic acid supplements among the study participants. Recommendations to enhance the supplement's intake include public health campaigns, enhanced healthcare provider education, easy-to-read informational materials, and strengthening government supplement programs to improve awareness and food fortification. Further research on consumption barriers for the supplement needs to be carried out.
Collapse
Affiliation(s)
- Subhodip Mitra
- Hospital Administration, All India Institute of Medical Sciences, Kalyani, Kalyani, IND
| | - Rashmi Ranjan Guru
- Hospital Administration, Symbiosis Institute of Health Sciences, Pune, IND
- Hospital Administration, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| | - Sammita Jadhav
- Health Sciences, Symbiosis Institute of Health Sciences, Pune, IND
| | - Usman U Saurayi
- Hospital and Healthcare Administration, Symbiosis Institute of Health Sciences, Pune, IND
| | - Rahul Kumar
- Hospital and Healthcare Administration, Symbiosis Institute of Health Sciences, Pune, IND
| |
Collapse
|
35
|
Sánchez-Ramírez E, Ung TPL, Stringari C, Aguilar-Arnal L. Emerging Functional Connections Between Metabolism and Epigenetic Remodeling in Neural Differentiation. Mol Neurobiol 2024; 61:6688-6707. [PMID: 38340204 PMCID: PMC11339152 DOI: 10.1007/s12035-024-04006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Stem cells possess extraordinary capacities for self-renewal and differentiation, making them highly valuable in regenerative medicine. Among these, neural stem cells (NSCs) play a fundamental role in neural development and repair processes. NSC characteristics and fate are intricately regulated by the microenvironment and intracellular signaling. Interestingly, metabolism plays a pivotal role in orchestrating the epigenome dynamics during neural differentiation, facilitating the transition from undifferentiated NSC to specialized neuronal and glial cell types. This intricate interplay between metabolism and the epigenome is essential for precisely regulating gene expression patterns and ensuring proper neural development. This review highlights the mechanisms behind metabolic regulation of NSC fate and their connections with epigenetic regulation to shape transcriptional programs of stemness and neural differentiation. A comprehensive understanding of these molecular gears appears fundamental for translational applications in regenerative medicine and personalized therapies for neurological conditions.
Collapse
Affiliation(s)
- Edgar Sánchez-Ramírez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
36
|
Lee HT, Lin CS, Liu CY, Chen P, Tsai CY, Wei YH. Mitochondrial Plasticity and Glucose Metabolic Alterations in Human Cancer under Oxidative Stress-From Viewpoints of Chronic Inflammation and Neutrophil Extracellular Traps (NETs). Int J Mol Sci 2024; 25:9458. [PMID: 39273403 PMCID: PMC11395599 DOI: 10.3390/ijms25179458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Oxidative stress elicited by reactive oxygen species (ROS) and chronic inflammation are involved both in deterring and the generation/progression of human cancers. Exogenous ROS can injure mitochondria and induce them to generate more endogenous mitochondrial ROS to further perpetuate the deteriorating condition in the affected cells. Dysfunction of these cancer mitochondria may possibly be offset by the Warburg effect, which is characterized by amplified glycolysis and metabolic reprogramming. ROS from neutrophil extracellular traps (NETs) are an essential element for neutrophils to defend against invading pathogens or to kill cancer cells. A chronic inflammation typically includes consecutive NET activation and tissue damage, as well as tissue repair, and together with NETs, ROS would participate in both the destruction and progression of cancers. This review discusses human mitochondrial plasticity and the glucose metabolic reprogramming of cancer cells confronting oxidative stress by the means of chronic inflammation and neutrophil extracellular traps (NETs).
Collapse
Affiliation(s)
- Hui-Ting Lee
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
| | - Chen-Sung Lin
- Division of Thoracic Surgery, Department of Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for General Education, Kainan University, Taoyuan City 338, Taiwan
| | - Chao-Yu Liu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Po Chen
- Cancer Free Biotech, Taipei 114, Taiwan
| | - Chang-Youh Tsai
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Clinical Trial Center, Division of Immunology & Rheumatology, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan
- Faculty of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yau-Huei Wei
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
37
|
Wei F, Liu S, Liu J, Sun Y, Allen AE, Reid MA, Locasale JW. Separation of reproductive decline from lifespan extension during methionine restriction. NATURE AGING 2024; 4:1089-1101. [PMID: 39060538 DOI: 10.1038/s43587-024-00674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Lifespan-extending interventions are generally thought to result in reduced fecundity. The generality of this principle and how it may extend to nutrition and metabolism is not understood. We considered dietary methionine restriction (MR), a lifespan-extending intervention linked to Mediterranean and plant-based diets. Using a chemically defined diet that we developed for Drosophila melanogaster, we surveyed the nutritional landscape in the background of MR and found that folic acid, a vitamin linked to one-carbon metabolism, notably was the lone nutrient that restored reproductive capacity while maintaining lifespan extension. In vivo isotope tracing, metabolomics and flux analysis identified the tricarboxylic cycle and redox coupling as major determinants of the MR-folic acid benefits, in part, as they related to sperm function. Together these findings suggest that dietary interventions optimized for longevity may be separable from adverse effects such as reproductive decline.
Collapse
Affiliation(s)
- Fangchao Wei
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Shiyu Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yudong Sun
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Annamarie E Allen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Reid
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
38
|
Ben-Hur S, Sernik S, Afar S, Kolpakova A, Politi Y, Gal L, Florentin A, Golani O, Sivan E, Dezorella N, Morgenstern D, Pietrokovski S, Schejter E, Yacobi-Sharon K, Arama E. Egg multivesicular bodies elicit an LC3-associated phagocytosis-like pathway to degrade paternal mitochondria after fertilization. Nat Commun 2024; 15:5715. [PMID: 38977659 PMCID: PMC11231261 DOI: 10.1038/s41467-024-50041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Mitochondria are maternally inherited, but the mechanisms underlying paternal mitochondrial elimination after fertilization are far less clear. Using Drosophila, we show that special egg-derived multivesicular body vesicles promote paternal mitochondrial elimination by activating an LC3-associated phagocytosis-like pathway, a cellular defense pathway commonly employed against invading microbes. Upon fertilization, these egg-derived vesicles form extended vesicular sheaths around the sperm flagellum, promoting degradation of the sperm mitochondrial derivative and plasma membrane. LC3-associated phagocytosis cascade of events, including recruitment of a Rubicon-based class III PI(3)K complex to the flagellum vesicular sheaths, its activation, and consequent recruitment of Atg8/LC3, are all required for paternal mitochondrial elimination. Finally, lysosomes fuse with strings of large vesicles derived from the flagellum vesicular sheaths and contain degrading fragments of the paternal mitochondrial derivative. Given reports showing that in some mammals, the paternal mitochondria are also decorated with Atg8/LC3 and surrounded by multivesicular bodies upon fertilization, our findings suggest that a similar pathway also mediates paternal mitochondrial elimination in other flagellated sperm-producing organisms.
Collapse
Affiliation(s)
- Sharon Ben-Hur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shoshana Sernik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Afar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alina Kolpakova
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Politi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nili Dezorella
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalised Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
39
|
Liu Y, Zhou C, Shen R, Wang A, Zhang T, Cao Z. Dietary folate intake and serum klotho levels in adults aged 40-79 years: a cross-sectional study from the national health and nutrition examination survey 2007-2016. Front Nutr 2024; 11:1420087. [PMID: 39040924 PMCID: PMC11260802 DOI: 10.3389/fnut.2024.1420087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Objective This study aims to explore the relationship between dietary folate intake and serum Klotho levels in adults from aged 40 to 79 years in the United States, seeking to elucidate the intricacies of their interaction. Methods Analyzing data from the National Health and Nutrition Examination Survey (NHANES) spanning 2007 to 2016. The survey research determined folate intake through a 24-h dietary recall and nutrient density modeling, and assessed Klotho levels using enzyme-linked immunosorbent assay (ELISA). The relationship between folate intake and Klotho levels was evaluated using weighted linear regression, and complemented by analysis via smoothed curve models for nuanced understanding. Results The study encompassed 10,278 participants, with an average age of 57.64 years, revealing a noteworthy positive correlation between dietary folate and serum Klotho levels. The regression coefficient stood at 0.11 (95% confidence interval, 0.05, 0.18) post-adjustment for various covariates. When dietary folate intake was categorized into quartiles, the second, third, and fourth quartiles exhibited statistically significant differences compared to the lowest quartile. This indicates that higher folate intake correlates with increased serum Klotho levels. These findings underscore the potential benefits of elevating folate intake to enhance serum Klotho levels. Stratified analysis indicated that this association was more pronounced among males aged 60 years or older and individuals with hypertension. Conclusion The findings suggest a significant correlation between increased dietary folate intake and elevated serum Klotho levels in adults aged 40-79 years. Hinting at the potential nutritional influences on the aging process and associated health conditions. This calls for further exploration into the mechanisms and broader implications of this association.
Collapse
Affiliation(s)
- Yang Liu
- Department of Medical Laboratory, Guihang 300 Hospital Affiliated to Zunyi Medical University, Guiyang, China
| | - Chunhuan Zhou
- Department of Medical Laboratory, Guihang 300 Hospital Affiliated to Zunyi Medical University, Guiyang, China
| | - Rongjun Shen
- Hospital Infection Control Department, Guihang 300 Hospital Affiliated to Zunyi Medical University, Guiyang, China
| | - Anxian Wang
- Department of Medical Laboratory, Guihang 300 Hospital Affiliated to Zunyi Medical University, Guiyang, China
| | - Tingting Zhang
- Department of Endocrinology, Guihang 300 Hospital Affiliated to Zunyi Medical University, Guiyang, China
| | - Zhengyuan Cao
- Department of Medical Laboratory, Guihang 300 Hospital Affiliated to Zunyi Medical University, Guiyang, China
| |
Collapse
|
40
|
Mantri A, Klümpen L, Seel W, Krawitz P, Stehle P, Weber B, Koban L, Plassmann H, Simon MC. Beneficial Effects of Synbiotics on the Gut Microbiome in Individuals with Low Fiber Intake: Secondary Analysis of a Double-Blind, Randomized Controlled Trial. Nutrients 2024; 16:2082. [PMID: 38999830 PMCID: PMC11243043 DOI: 10.3390/nu16132082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Insufficient dietary fiber intake can negatively affect the intestinal microbiome and, over time, may result in gut dysbiosis, thus potentially harming overall health. This randomized controlled trial aimed to improve the gut microbiome of individuals with low dietary fiber intake (<25 g/day) during a 7-week synbiotic intervention. The metabolically healthy male participants (n = 117, 32 ± 10 y, BMI 25.66 ± 3.1 kg/m2) were divided into two groups: one receiving a synbiotic supplement (Biotic Junior, MensSana AG, Forchtenberg, Germany) and the other a placebo, without altering their dietary habits or physical activity. These groups were further stratified by their dietary fiber intake into a low fiber group (LFG) and a high fiber group (HFG). Stool samples for microbiome analysis were collected before and after intervention. Statistical analysis was performed using linear mixed effects and partial least squares models. At baseline, the microbiomes of the LFG and HFG were partially separated. After seven weeks of intervention, the abundance of SCFA-producing microbes significantly increased in the LFG, which is known to improve gut health; however, this effect was less pronounced in the HFG. Beneficial effects on the gut microbiome in participants with low fiber intake may be achieved using synbiotics, demonstrating the importance of personalized synbiotics.
Collapse
Affiliation(s)
- Aakash Mantri
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, 53127 Bonn, Germany
| | - Linda Klümpen
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany
| | - Waldemar Seel
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, 53127 Bonn, Germany
| | - Peter Stehle
- Institute of Nutrition and Food Science, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, 53115 Bonn, Germany
- Center for Economics and Neuroscience, University of Bonn, 53113 Bonn, Germany
| | - Leonie Koban
- Lyon Neuroscience Research Center (CRNL), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Claude Bernard Lyon 1, 69500 Lyon, France
- Institut Européen d‘Administration des Affaires (INSEAD), 77300 Paris, France
- Control-Interoception-Attention Team, Paris Brain Institute (ICM), 75013 Paris, France
| | - Hilke Plassmann
- Lyon Neuroscience Research Center (CRNL), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Claude Bernard Lyon 1, 69500 Lyon, France
- Institut Européen d‘Administration des Affaires (INSEAD), 77300 Paris, France
| | - Marie-Christine Simon
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
41
|
Zhu H, Ye Z, Xu Z, Wei L. Transcriptomic Analysis Reveals the Effect of Urea on Metabolism of Nannochloropsis oceanica. Life (Basel) 2024; 14:797. [PMID: 39063552 PMCID: PMC11278182 DOI: 10.3390/life14070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The eukaryotic microalga Nannochloropsis oceanica represents a promising bioresource for the production of biofuels and pharmaceuticals. Urea, a crucial nutrient for the photosynthetic N. oceanica, stimulates the accumulation of substances such as lipids, which influence growth and physiology. However, the specific mechanisms by which N. oceanica responds and adapts to urea addition remain unknown. High-throughput mRNA sequencing and differential gene expression analysis under control and urea-added conditions revealed significant metabolic changes. This involved the differential expression of 2104 genes, with 1354 being upregulated and 750 downregulated, resulting in the reprogramming of crucial pathways such as carbon and nitrogen metabolism, photosynthesis, and lipid metabolism. The results specifically showed that genes associated with photosynthesis in N. oceanica were significantly downregulated, particularly those related to light-harvesting proteins. Interestingly, urea absorption and transport may depend not only on specialized transport channels such as urease but also on alternative transport channels such as the ABC transporter family and the CLC protein family. In addition, urea caused specific changes in carbon and lipid metabolism. Genes associated with the Calvin cycle and carbon concentration mechanisms were significantly upregulated. In lipid metabolism, the expression of genes associated with lipases and polyunsaturated fatty acid synthesis was highly activated. Furthermore, the expression of several genes involved in the tricarboxylic acid cycle and folate metabolism was enhanced, making important contributions to energy supply and the synthesis and modification of genes and macromolecules. Our observations indicate that N. oceanica actively and dynamically regulates the redistribution of carbon and nitrogen after urea addition, providing references for further research on the effects of urea on N. oceanica.
Collapse
Affiliation(s)
- Han Zhu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
- Hainan Observation and Research Station of Dongzhaigang Mangrove Wetland Ecosystem, Haikou 571129, China
- International Science and Technology Cooperation Laboratory for Marine Microalgae Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| | - Zhenli Ye
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zhengru Xu
- College of Foreign Language, Hainan Normal University, Haikou 571157, China
| | - Li Wei
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
- Hainan Observation and Research Station of Dongzhaigang Mangrove Wetland Ecosystem, Haikou 571129, China
- International Science and Technology Cooperation Laboratory for Marine Microalgae Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
42
|
Mantle D, Dewsbury M, Hargreaves IP. The Ubiquinone-Ubiquinol Redox Cycle and Its Clinical Consequences: An Overview. Int J Mol Sci 2024; 25:6765. [PMID: 38928470 PMCID: PMC11203502 DOI: 10.3390/ijms25126765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Coenzyme Q10 (CoQ10) plays a key role in many aspects of cellular metabolism. For CoQ10 to function normally, continual interconversion between its oxidised (ubiquinone) and reduced (ubiquinol) forms is required. Given the central importance of this ubiquinone-ubiquinol redox cycle, this article reviews what is currently known about this process and the implications for clinical practice. In mitochondria, ubiquinone is reduced to ubiquinol by Complex I or II, Complex III (the Q cycle) re-oxidises ubiquinol to ubiquinone, and extra-mitochondrial oxidoreductase enzymes participate in the ubiquinone-ubiquinol redox cycle. In clinical terms, the outcome of deficiencies in various components associated with the ubiquinone-ubiquinol redox cycle is reviewed, with a particular focus on the potential clinical benefits of CoQ10 and selenium co-supplementation.
Collapse
Affiliation(s)
| | - Mollie Dewsbury
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (M.D.); (I.P.H.)
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (M.D.); (I.P.H.)
| |
Collapse
|
43
|
Gehl M, Demmer U, Ermler U, Shima S. Mutational and structural studies of (βα) 8-barrel fold methylene-tetrahydropterin reductases utilizing a common catalytic mechanism. Protein Sci 2024; 33:e5018. [PMID: 38747406 PMCID: PMC11094777 DOI: 10.1002/pro.5018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Methylene-tetrahydropterin reductases catalyze the reduction of a methylene to a methyl group bound to a reduced pterin as C1 carrier in various one-carbon (C1) metabolisms. F420-dependent methylene-tetrahydromethanopterin (methylene-H4MPT) reductase (Mer) and the flavin-independent methylene-tetrahydrofolate (methylene-H4F) reductase (Mfr) use a ternary complex mechanism for the direct transfer of a hydride from F420H2 and NAD(P)H to the respective methylene group, whereas FAD-dependent methylene-H4F reductase (MTHFR) uses FAD as prosthetic group and a ping-pong mechanism to catalyze the reduction of methylene-H4F. A ternary complex structure and a thereof derived catalytic mechanism of MTHFR is available, while no ternary complex structures of Mfr or Mer are reported. Here, Mer from Methanocaldococcus jannaschii (jMer) was heterologously produced and the crystal structures of the enzyme with and without F420 were determined. A ternary complex of jMer was modeled on the basis of the jMer-F420 structure and the ternary complex structure of MTHFR by superimposing the polypeptide after fixing hydride-transferring atoms of the flavins on each other, and by the subsequent transfer of the methyl-tetrahydropterin from MTHFR to jMer. Mutational analysis of four functional amino acids, which are similarly positioned in the three reductase structures, indicated despite the insignificant sequence identity, a common catalytic mechanism with a 5-iminium cation of methylene-tetrahydropterin as intermediate protonated by a shared glutamate. According to structural, mutational and phylogenetic analysis, the evolution of the three reductases most likely proceeds via a convergent development although a divergent scenario requiring drastic structural changes of the common ancestor cannot be completely ruled out.
Collapse
Affiliation(s)
- Manuel Gehl
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Ulrike Demmer
- Max Planck Institute of BiophysicsFrankfurt am MainGermany
| | - Ulrich Ermler
- Max Planck Institute of BiophysicsFrankfurt am MainGermany
| | - Seigo Shima
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| |
Collapse
|
44
|
Sfakianoudis K, Zikopoulos A, Grigoriadis S, Seretis N, Maziotis E, Anifandis G, Xystra P, Kostoulas C, Giougli U, Pantos K, Simopoulou M, Georgiou I. The Role of One-Carbon Metabolism and Methyl Donors in Medically Assisted Reproduction: A Narrative Review of the Literature. Int J Mol Sci 2024; 25:4977. [PMID: 38732193 PMCID: PMC11084717 DOI: 10.3390/ijms25094977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
- Obstetrics and Gynecology, Royal Cornwall Hospital, Treliske, Truro TR1 3LJ, UK
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Nikolaos Seretis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - George Anifandis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41222 Larisa, Greece;
| | - Paraskevi Xystra
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Urania Giougli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| |
Collapse
|
45
|
Akwaa Harrison O, Ifie I, Nkwonta C, Dzandu BA, Gattor AO, Adimado EE, Odoi KK, Aziavor B, Saalia FK, Steiner-Asiedu M. Knowledge, awareness, and use of folic acid among women of childbearing age living in a peri-urban community in Ghana: a cross-sectional survey. BMC Pregnancy Childbirth 2024; 24:241. [PMID: 38580949 PMCID: PMC10996122 DOI: 10.1186/s12884-024-06408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Folic acid, a water-soluble B-complex vitamin, plays a crucial role in DNA synthesis and maintenance, making it particularly significant during reproduction. Its well-known ability to reduce the risk of congenital anomalies during the periconceptional period underscores its importance. The increased requirement for folate during pregnancy and lactation is essential to support the physiological changes of the mother and ensure optimal growth and development of the foetus and offspring. This study assessed the knowledge, awareness, and use of folic acid among pregnant and lactating women of reproductive age residing in Dodowa in the Shai Osu-Doku District, Accra, Ghana. METHODS The study was a cross-sectional design that involved 388 randomly selected participants (97 pregnant and 291 lactating women). Structured questionnaires were administered to gather information on the socioeconomic demographic characteristics, knowledge, awareness, and use of folic acid of the participants. Dietary intake was assessed using a food frequency questionnaire. The data were analysed using descriptive statistics and Pearson's chi-square analysis tests and are presented as frequencies and percentages, means, standard deviations, bar graphs, and pie charts. The significance of the results was determined at a 95% confidence interval. RESULTS The mean age of the participants was 31 ± 5.0 years. Among the study participants, 46.1% demonstrated knowledge of folic acid deficiency, while approximately 68.3% had a high awareness of folic acid supplementation. Approximately 75% of the participants indicated that they had not used folic acid supplements within the week, and 15.5% reported consuming folic acid-fortified food per week. CONCLUSIONS The women exhibited high awareness but poor knowledge regarding the usage of folic acid supplementation during pregnancy and lactation. Consequently, this lack of knowledge influenced the low use of folic acid supplements and low intake of folate-rich foods among pregnant and lactating mothers.
Collapse
Affiliation(s)
- Obed Akwaa Harrison
- Department of Nutrition and Food Science, University of Ghana, Legon, Accra, Ghana.
| | - Idolo Ifie
- Department of Food Science, University of Leeds, Leeds, England
| | - Chikere Nkwonta
- Department of Food Science, University of Leeds, Leeds, England
| | - Bennett Atta Dzandu
- Department of Nutrition and Food Science, University of Ghana, Legon, Accra, Ghana
| | - Albert Owusu Gattor
- Faculty of Chemistry and Pharmacy, Medicinal Chemistry II, University of Regensburg, Regensburg, Germany
| | | | - Kofi Kafui Odoi
- Institutional Care Division, Ghana Health Services, Accra, Ghana
| | | | - Firibu Kwesi Saalia
- Department of Food Process Engineering, University of Ghana, Legon, Accra, Ghana
| | | |
Collapse
|
46
|
Yan C, Li X, Zhang G, Bi J, Hao H, Hou H. AHL-differential quorum sensing regulation of amino acid metabolism in Hafnia alvei H4. Microbiol Spectr 2024; 12:e0068723. [PMID: 38391231 PMCID: PMC10986605 DOI: 10.1128/spectrum.00687-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
Quorum sensing (QS) regulation of functional metabolites is rarely reported but a common trait of some bacteria. In this study, we found that QS promoted the extracellular accumulation of glycine and serine while inhibiting the extracellular accumulation of methionine in Hafnia alvei H4. The correlation analysis of five QS signals with the above three QS-regulated amino acids suggested that these QS signals may have functional differences in amino acid regulation. The exogenous AHL add-back studies on genes involved in glycine, serine, and methionine metabolic pathway highlighted that N-octanoyl-l-homoserine lactone (C8-HSL) downregulated the expression of sdhC/fumA genes involved in the succinate to malate pathway, thereby reducing the metabolic flux of the tricarboxylic acid (TCA) cycle as an amino acid metabolism platform. Further in-depth research revealed that the QS system promoted the conversion of folate to tetrahydrofolate (THF) by positively regulating the expression of folA and folM, thus impairing the ability of folate to promote methionine accumulation. Moreover, folate positively regulated the expression of the QS signal synthesis gene luxI, promoting the synthesis of QS signals, which may further enhance the influence of the QS system on amino acid metabolism. These findings contribute to the understanding of amino acid metabolism regulated by QS and provide new perspectives for accurate control of metabolic regulation caused by QS.IMPORTANCEAs one of the important regulatory mechanisms of microorganisms, quorum sensing (QS) is involved in the regulation of various physiological activities. However, few studies on the regulation of amino acid metabolism by QS are available. This study demonstrated that the LuxI-type QS system of Hafnia alvei H4 was involved in the regulation of multiple amino acid metabolism, and different types of QS signals exhibited different roles in regulating amino acid metabolism. Additionally, the regulatory effects of the QS system on amino acid metabolism were investigated from two important cycles that influence the conversion of amino acids, including the TCA cycle and the folate cycle. These findings provide new ideas on the role of QS system in the regulation of amino acid metabolism in organisms.
Collapse
Affiliation(s)
- Congyang Yan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Xue Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Hongshun Hao
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| |
Collapse
|
47
|
Mangoni AA, Zinellu A. Transsulfuration and folate pathways in rheumatoid arthritis: A systematic review and meta-analysis. Eur J Clin Invest 2024; 54:e14158. [PMID: 38214126 DOI: 10.1111/eci.14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Metabolomic assessment of the transsulfuration and folic acid biochemical pathways could lead to the identification of promising biomarkers of nitric oxide dysregulation and oxidative stress in rheumatoid arthritis (RA). METHODS We conducted a systematic review and meta-analysis of transsulfuration (methionine, homocysteine, and cysteine) and folic acid (folic acid, vitamin B6 , and vitamin B12 ) metabolites in RA patients in remission and healthy controls. Electronic databases were searched from inception to 15 July 2023 for relevant articles. We assessed the risk of bias using the JBI checklist and the certainty of evidence using GRADE. RESULTS In 28 eligible studies, compared to controls, RA patients had significantly higher concentrations of homocysteine (standardized mean difference, SMD = 0.74, 95% CI 0.54-0.93, p < 0.001; low certainty of evidence) and methionine (SMD = 1.00, 95% CI 0.57-1.44, p < 0.001; low certainty) and lower concentrations of vitamin B6 (SMD = -6.62, 95% CI -9.65 to -3.60, p < 0.001; low certainty). By contrast, there were non-significant between-group differences in vitamin B12 and folic acid. In meta-regression and subgroup analysis, there were no associations between the effect size and several study and patient characteristics except for homocysteine (year of publication, C-reactive protein, triglycerides, and analytical method) and folic acid (biological matrix). CONCLUSIONS The results of our study suggest that homocysteine, methionine, and vitamin B6 are promising biomarkers to assess nitric oxide dysregulation and oxidative stress in RA. (PROSPERO registration number: CRD42023461081).
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
48
|
Socha MW, Flis W, Wartęga M. Epigenetic Genome Modifications during Pregnancy: The Impact of Essential Nutritional Supplements on DNA Methylation. Nutrients 2024; 16:678. [PMID: 38474806 PMCID: PMC10934520 DOI: 10.3390/nu16050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Pregnancy is an extremely stressful period in a pregnant woman's life. Currently, women's awareness of the proper course of pregnancy and its possible complications is constantly growing. Therefore, a significant percentage of women increasingly reach for various dietary supplements during gestation. Some of the most popular substances included in multi-ingredient supplements are folic acid and choline. Those substances are associated with positive effects on fetal intrauterine development and fewer possible pregnancy-associated complications. Recently, more and more attention has been paid to the impacts of specific environmental factors, such as diet, stress, physical activity, etc., on epigenetic modifications, understood as changes occurring in gene expression without the direct alteration of DNA sequences. Substances such as folic acid and choline may participate in epigenetic modifications by acting via a one-carbon cycle, leading to the methyl-group donor formation. Those nutrients may indirectly impact genome phenotype by influencing the process of DNA methylation. This review article presents the current state of knowledge on the use of folic acid and choline supplementation during pregnancy, taking into account their impacts on the maternal-fetal unit and possible pregnancy outcomes, and determining possible mechanisms of action, with particular emphasis on their possible impacts on epigenetic modifications.
Collapse
Affiliation(s)
- Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Wojciech Flis
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Mateusz Wartęga
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
49
|
Lyu R, Wu J, He Y, You Q, Qian Y, Jiang N, Cai Y, Chen D, Wu Z. Folate supports IL-25-induced tuft cell expansion following enteroviral infections. FASEB J 2024; 38:e23430. [PMID: 38243751 DOI: 10.1096/fj.202301928r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Intestinal tuft cells, a kind of epithelial immune cells, rapidly expand in response to pathogenic infections, which is associated with infection-induced interleukin 25 (IL-25) upregulation. However, the metabolic mechanism of IL-25-induced tuft cell expansion is largely unknown. Folate metabolism provides essential purine and methyl substrates for cell proliferation and differentiation. Thus, we aim to investigate the roles of folate metabolism playing in IL-25-induced tuft cell expansion by enteroviral infection and recombinant murine IL-25 (rmIL-25) protein-stimulated mouse models. At present, enteroviruses, such as EV71, CVA16, CVB3, and CVB4, upregulated IL-25 expression and induced tuft cell expansion in the intestinal tissues of mice. However, EV71 did not induce intestinal tuft cell expansion in IL-25-/- mice. Interestingly, compared to the mock group, folate was enriched in the intestinal tissues of both the EV71-infected group and the rmIL-25 protein-stimulated group. Moreover, folate metabolism supported IL-25-induced tuft cell expansion since both folate-depletion and anti-folate MTX-treated mice had a disrupted tuft cell expansion in response to rmIL-25 protein stimulation. In summary, our data suggested that folate metabolism supported intestinal tuft cell expansion in response to enterovirus-induced IL-25 expression, which provided a new insight into the mechanisms of tuft cell expansion from the perspective of folate metabolism.
Collapse
Affiliation(s)
- Ruining Lyu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Jing Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yating He
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Qiao You
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yurong Cai
- School of Life Science, Ningxia University, Yinchuan, China
| | - Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- School of Life Science, Ningxia University, Yinchuan, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
50
|
Abdelhalim KA. Short-chain fatty acids (SCFAs) from gastrointestinal disorders, metabolism, epigenetics, central nervous system to cancer - A mini-review. Chem Biol Interact 2024; 388:110851. [PMID: 38145797 DOI: 10.1016/j.cbi.2023.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Short-chain fatty acids (SCFAs), generated through microbial fermentation of dietary fibers and proteins in the gut, play a pivotal role in maintaining intestinal integrity, cellular function, and the immune response. SCFAs, including butyrate, acetate, and propionate, are absorbed in the colon or excreted through feces, contributing to essential physiological processes. Butyrate, a primary energy source for colonocytes, exhibits anti-inflammatory properties and regulates key pathways, such as nuclear factor-κB (NF-κB) inhibition. SCFAs' impact extends beyond the intestines, influencing the gut-brain axis, systemic circulation, and folate metabolism. A decline in colonic SCFAs has been linked to gastrointestinal diseases, emphasizing their clinical relevance, while their effects on immune checkpoints, such as ipilimumab, provide intriguing prospects for cancer therapy. This mini-review explores SCFAs' diverse roles, shedding light on their significance in health and potential implications for disease management. Understanding SCFAs' intricate mechanisms enhances our knowledge of their therapeutic potential and highlights their emerging importance in various physiological contexts.
Collapse
|