1
|
Serneels PJ, De Schutter JD, De Groef L, Moons L, Bergmans S. Oligodendroglial heterogeneity in health, disease, and recovery: deeper insights into myelin dynamics. Neural Regen Res 2025; 20:3179-3192. [PMID: 39665821 PMCID: PMC11881716 DOI: 10.4103/nrr.nrr-d-24-00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 12/13/2024] Open
Abstract
Decades of research asserted that the oligodendroglial lineage comprises two cell types: oligodendrocyte precursor cells and oligodendrocytes. However, recent studies employing single-cell RNA sequencing techniques have uncovered novel cell states, prompting a revision of the existing terminology. Going forward, the oligodendroglial lineage should be delineated into five distinct cell states: oligodendrocyte precursor cells, committed oligodendrocyte precursor cells, newly formed oligodendrocytes, myelin-forming oligodendrocytes, and mature oligodendrocytes. This new classification system enables a deeper understanding of the oligodendroglia in both physiological and pathological contexts. Adopting this uniform terminology will facilitate comparison and integration of data across studies. This, including the consolidation of findings from various demyelinating models, is essential to better understand the pathogenesis of demyelinating diseases. Additionally, comparing injury models across species with varying regenerative capacities can provide insights that may lead to new therapeutic strategies to overcome remyelination failure. Thus, by standardizing terminology and synthesizing data from diverse studies across different animal models, we can enhance our understanding of myelin pathology in central nervous system disorders such as multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis, all of which involve oligodendroglial and myelin dysfunction.
Collapse
Affiliation(s)
- Pieter-Jan Serneels
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Julie D. De Schutter
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Lies De Groef
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Cellular Communication & Neurodegeneration Research Group, Leuven, Belgium
| | - Lieve Moons
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Steven Bergmans
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| |
Collapse
|
2
|
Serrano-Regal MP, Camacho-Toledano C, Alonso-García I, Ortega MC, Machín-Díaz I, Lebrón-Galán R, García-Arocha J, Calahorra L, Nieto-Díaz M, Clemente D. Circulating myeloid-derived suppressor cell load and disease severity are associated to an enhanced oligodendroglial production in a murine model of multiple sclerosis. Neurobiol Dis 2025; 210:106919. [PMID: 40250717 DOI: 10.1016/j.nbd.2025.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025] Open
Abstract
Multiple sclerosis (MS) is a highly heterogeneous immune-mediated demyelinating disease. Myelin restoration is essential to prevent disability progression in MS patients. However, remyelinating therapies are failing in clinical trials, in part, due to the lack of biomarkers that classify the differing endogenous regenerative capacities of enrolled patients. In the experimental autoimmune encephalomyelitis (EAE) MS model, circulating monocytic myeloid-derived suppressor cells (M-MDSCs) are associated to milder disease courses, better recovery and less degree of tissue damage. Here, we show that disease severity affects the gradient of oligodendrocyte precursor cells (OPCs) present in mixed active-inactive lesions of MS patients, along with a positive correlation between M-MDSC density and OPC abundance. EAE disease severity negatively influences the density of total and newly generated OPCs found associated to the demyelinated lesions. In addition, disease severity also impacts the abundance of newly generated oligodendrocytes throughout the EAE disease course. Interestingly, circulating M-MDSCs at EAE onset and peak of the disease are directly associated to a higher density of newly generated oligodendrocytes in the demyelinated lesions. Our results set the basis for further studies on M-MDSCs as a promising new biomarker that identify a CNS prone to new oligodendrocyte generation in response to an inflammatory insult.
Collapse
Affiliation(s)
- Mari Paz Serrano-Regal
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Neuroimmune-Repair Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain
| | - Celia Camacho-Toledano
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Neuroimmune-Repair Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Avd. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Inmaculada Alonso-García
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Neuroimmune-Repair Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain
| | - María Cristina Ortega
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Neuroimmune-Repair Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Avd. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Isabel Machín-Díaz
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Neuroimmune-Repair Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Avd. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Rafael Lebrón-Galán
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Jénnifer García-Arocha
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Leticia Calahorra
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Neuroimmune-Repair Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain
| | - Manuel Nieto-Díaz
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Molecular Neuroprotection Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain
| | - Diego Clemente
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain; Neuroimmune-Repair Group, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM). Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Avd. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
3
|
Castranova D, Kenton MI, Kraus A, Dell CW, Park JS, Venero Galanternik M, Park G, Lumbantobing DN, Dye L, Marvel M, Iben J, Taimatsu K, Pham V, Willms RJ, Blevens L, Robertson TF, Hou Y, Huttenlocher A, Foley E, Parenti LR, Frazer JK, Narayan K, Weinstein BM. The axillary lymphoid organ is an external, experimentally accessible immune organ in the zebrafish. J Exp Med 2025; 222:e20241435. [PMID: 40167600 PMCID: PMC11960710 DOI: 10.1084/jem.20241435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Lymph nodes and other secondary lymphoid organs play critical roles in immune surveillance and immune activation in mammals, but the deep internal locations of these organs make it challenging to image and study them in living animals. Here, we describe a previously uncharacterized external immune organ in the zebrafish ideally suited for studying immune cell dynamics in vivo, the axillary lymphoid organ (ALO). This small, translucent organ has an outer cortex teeming with immune cells, an inner medulla with a mesh-like network of fibroblastic reticular cells along which immune cells migrate, and a network of lymphatic vessels draining to a large adjacent lymph sac. Noninvasive high-resolution imaging of transgenically marked immune cells can be carried out in ALOs of living animals, which are readily accessible to external treatment. This newly discovered tissue provides a superb model for dynamic live imaging of immune cells and their interaction with pathogens and surrounding tissues, including blood and lymphatic vessels.
Collapse
Affiliation(s)
- Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Madeleine I. Kenton
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Aurora Kraus
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Christopher W. Dell
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jong S. Park
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gilseung Park
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel N. Lumbantobing
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Louis Dye
- Microscopy and Imaging Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Miranda Marvel
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kiyohito Taimatsu
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Van Pham
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Reegan J. Willms
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Lucas Blevens
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Yiran Hou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Lynne R. Parenti
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - J. Kimble Frazer
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brant M. Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Tao Y, Wang S, Li X, Jin L, Liu C, Jiao K, Li X, Cheng Y, Xu K, Zhou X, Wei X. Identification of disulfidptosis-related genes and subgroups in spinal cord injury. Spinal Cord 2025; 63:306-318. [PMID: 40319145 DOI: 10.1038/s41393-025-01081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
STUDY DESIGN Bioinformatics analysis and experimental validation study. OBJECTIVES To investigate the role and expression patterns of disulfidptosis-related genes in spinal cord injury (SCI), identify potential pivotal genes, and explore possible therapeutic targets. SETTING Shanghai, China. METHODS Data acquisition and pre-processing: Screened 27 disulfidptosis-related genes based on literature and downloaded RNA-sequencing data of ASCI patients from GEO database (GSE151371); Identification of differentially expressed genes (DEGs): Used R package "limma" for differential gene expression analysis between ASCI samples and normal controls; Evaluating immune cell infiltration: Employed ssGSEA algorithm and CIBERSORT to determine immune cell abundance; Identification and functional verification of key genes: Intersected disulfidptosis-related genes with DEGs, and used machine learning techniques (Random Forest, Lasso, Support Vector Machine) to identify hub genes. Validated hub genes expression by real-time PCR; Construction of a diagnostic model: Developed a backpropagation neural network clinical prediction model based on hub genes and clinical features, and evaluated its performance using ROC curve. 6. Subcluster analysis: Performed consensus cluster analysis of ASCI samples and hub genes, and used GSVA to elucidate functional differences between subgroups. RESULTS Identified 7764 DEGs in ASCI, with GO and KEGG enrichment in inflammation and autophagy-related pathways; Found differences in immune cell infiltration between ASCI and control groups, and correlation between immune cells and DRGs; Determined seven hub genes (MYL6, NUBPL, CYFIP1, IQGAP1, FLNB, SLC7A11, CD2AP) through machine learning; Validated the expression of hub genes by qRT-PCR; Constructed a clinical diagnostic model with good predictive accuracy (overall dataset accuracy of 83.3%); Identified two subtypes of ASCI based on hub genes, with different immune infiltration and pathway activity. CONCLUSION Disulfidptosis is closely related to spinal cord injury. The identified hub genes and subtypes provide new insights for biomarker and therapeutic target research. The diagnostic model has potential for clinical application, but further studies are needed due to limitations such as small sample size. SPONSORSHIP This study was supported in part by the project of Youth Scientific and Technological Talents of PLA (2020QN06125), Changhong Talent Project in First affiliated hospital of Navy Medical University (Wei Xianzhao) and Basic Medical Research Project in First affiliated hospital of Navy Medical University (2023PY17). I want to reiterate that there is no prior publication of figures or tables and no conflict of interest in the submission of this manuscript. The graphical abstract is divided into two parts. The upper section sequentially illustrates the occurrence of disulfidptosis and changes in the immune microenvironment in the human body after SCI. The lower section displays the construction of a diagnostic model for SCI through the detection of changes in disulfidptosis-related genes, combined with patient clinical information.
Collapse
Affiliation(s)
- Ye Tao
- Naval Medical University, Shanghai, China
| | | | - Xiongfei Li
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Letian Jin
- Hangzhou Medical College, Hangzhou, China
| | - Chen Liu
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Kun Jiao
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Xiaoyu Li
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Yajun Cheng
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China
| | - Kehan Xu
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China.
| | - Xiaoyi Zhou
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China.
| | - Xianzhao Wei
- Department of Orthopaedic Surgery, Changhai Hospital, Shanghai, China.
| |
Collapse
|
5
|
Venanzi AW, McGee LD, Hackam AS. Evaluating the Evidence for Neuroprotective and Axonal Regenerative Activities of Different Inflammatory Cell Types After Optic Nerve Injury. Mol Neurobiol 2025; 62:6212-6227. [PMID: 39738875 PMCID: PMC11953096 DOI: 10.1007/s12035-024-04679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery. However, recent evidence indicates that certain inflammatory cell types and signaling pathways are protective after optic nerve injury and promote RGC survival and axonal regeneration. The objective of this review is to examine the evidence for diverse effects of inflammatory cell types on the retina and optic nerve after injury. Additionally, we highlight promising avenues for further research.
Collapse
Affiliation(s)
- Alexander W Venanzi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Laura D McGee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Cai Y, Lin Z, Shen X, Li M, Xing L, Yang T, Chen G. Effect of microglial Pd1 on glial scar formation after spinal cord injury in mice. J Biol Chem 2025; 301:108489. [PMID: 40209954 PMCID: PMC12133710 DOI: 10.1016/j.jbc.2025.108489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
The cross talk between microglia and astrocytes following spinal cord injury (SCI) greatly decides the prognosis. However, a comprehensive understanding of the molecular mechanisms by which microglia regulate astrocytic activity post-SCI is lacking. Programmed cell death protein 1 (Pdcd1, Pd1) plays a crucial role in modulating immune responses by exerting suppressive effects on microglia and peripheral immune cells within the central nervous system. Previous studies have shown the involvement of Pd1 in the pathogenesis of SCI; however, the role of microglial Pd1 in astrocytic activation and the following glial scar formation remains elusive. Here, we demonstrated that the pharmacological depletion of microglia using minocycline decreased the expression of tumor necrosis factor-alpha and interleukin-6 while concurrently increasing the expression of interleukin-10 following SCI, thereby facilitating motor function recovery in mice. We observed an increase in Pd1 expression in the injured spinal cord after SCI, with precise localization of Pd1 within microglia. Based on Pd1 knockout (KO) mice, we further revealed that Pd1 deficiency disrupted glial scar formation, leading to increased inflammation, impeded nerve regeneration, enlarged tissue damage, and compromised functional recovery following SCI. In vitro study showed that siRNA-mediated inhibition of Pd1 in microglia followed by lipopolysaccharide treatment significantly inhibited astrocyte migration and upregulated the secretion of tumor necrosis factor-alpha and CXCL9 from microglia, indicating that microglial Pd1 regulates glial scar formation through modulating the inflammatory microenvironment. Our study gains a new mechanistic insight into how microglial Pd1 decides the fate of SCI and promotes microglial Pd1 as a promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Yunyun Cai
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Zhihao Lin
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong, Jiangsu Province, China
| | - Xin Shen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Ming Li
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong, Jiangsu Province, China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China; Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong, Jiangsu Province, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
7
|
Salinas MD, Martínez CM, Roca FJ, García-Bernal D, Martínez-Morga M, Rodríguez-Madoz JR, Prósper F, Zapata AG, Moraleda JM, Martínez S, Valdor R. Chaperone-mediated autophagy sustains pericyte stemness necessary for brain tissue homeostasis. J Adv Res 2025:S2090-1232(25)00259-0. [PMID: 40286844 DOI: 10.1016/j.jare.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
INTRODUCTION Pericytes (PCs) are mural cells exhibiting some mesenchymal stem cell (MSC) properties and contribute to tissue regeneration after injury. We have previously shown that glioblastoma cancer cells induce in PCs, a pathogenic upregulation of chaperone-mediated autophagy (CMA) which modulates immune functions and MSC-like properties to support tumor growth. OBJECTIVES The aim of the study was to interrogate the role of CMA-regulated MSC properties in PCs in the context of tissue repair during inflammation triggered by a demyelinating injury. METHODS Studies of RNA-seq were done PCs with (WT) and without (LAMP-2A KO) CMA. Cell characterization related to stemness, lineage and morphology was done in WT and KO PCs. Secretome analysis and cell differentiation assay using the supernatants from CMA-efficient and deficient PCs cultures was done in mesenchymal cells. Inflammatory response of brain cells was assessed with WT and KO PCs secretome. To corroborate in vitro results, CMA modulation in response to inflammation in PCs and tissue repair markers were measured in the lesion areas of a demyelination mouse model and correlated with the tissue reparation after intravenous PC administration. An inflammatory mediator was used to study effects on PC-CMA activity. RESULTS We found that inflammatory mediators such as IFNγ downregulate CMA in PCs, suppressing PC stemness and promoting a pro-inflammatory secretome. Restoration of PC CMA activity during inflammation maintains PC MSC properties and induces an MSC-like proteome which decreases inflammation and promotes tissue repair. We identified secreted proteins involved in regenerative and protective processes, and therefore, necessary to restore brain tissue homeostasis after inflammation induced by a demyelinating injury. CONCLUSION we show that manipulation of CMA activity in host PCs could be a useful therapeutical approach in the context of brain inflammation, which might be extended to other diseases where the pericyte has a key role in response to inflammation.
Collapse
Affiliation(s)
- María Dolores Salinas
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia-Pascual Parrilla (IMIB), 30120 Murcia, Spain; Department of Biochemistry and Molecular Biology B, and Immunology, University of Murcia (UMU), 30120 Murcia, Spain; Cell Therapy and Hematopoietic Transplant Group, Faculty of Medicine, UMU, 30120 Murcia, Spain
| | | | - Francisco J Roca
- Department of Biochemistry and Molecular Biology B, and Immunology, University of Murcia (UMU), 30120 Murcia, Spain; Unit of Infectious Disease Pathology, Clinical Microbiology and Tropical Medicine, IMIB, 30120 Murcia, Spain
| | - David García-Bernal
- Department of Biochemistry and Molecular Biology B, and Immunology, University of Murcia (UMU), 30120 Murcia, Spain; Cell Therapy and Hematopoietic Transplant Group, Faculty of Medicine, UMU, 30120 Murcia, Spain; Virgen de la Arrixaca University Hospital, Hematopoietic Transplant Group, IMIB, 30120 Murcia, Spain
| | - Marta Martínez-Morga
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia-Pascual Parrilla (IMIB), 30120 Murcia, Spain; Cell Therapy and Hematopoietic Transplant Group, Faculty of Medicine, UMU, 30120 Murcia, Spain
| | - Juan R Rodríguez-Madoz
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, 31008 Pamplona, Navarra, Spain; Centro de investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Felipe Prósper
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, 31008 Pamplona, Navarra, Spain; Centro de investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain; Department of Dermatology and Cell Therapy, Clinica Universidad de Navarra (CUN), IdiSNA, 31008 Pamplona Navarra, Spain; Cancer Center Clinica Universidad de Navarra (CCUN), 31008 Pamplona, Navarra, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Jose María Moraleda
- Cell Therapy and Hematopoietic Transplant Group, Faculty of Medicine, UMU, 30120 Murcia, Spain; Virgen de la Arrixaca University Hospital, Hematopoietic Transplant Group, IMIB, 30120 Murcia, Spain
| | - Salvador Martínez
- Instituto de Neurociencias-Miguel Hernández University (UMH-CSIC), 03550, San Juan de Alicante, ISABIAL, CIBERSAM, Alicante, Spain
| | - Rut Valdor
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia-Pascual Parrilla (IMIB), 30120 Murcia, Spain; Department of Biochemistry and Molecular Biology B, and Immunology, University of Murcia (UMU), 30120 Murcia, Spain; Cell Therapy and Hematopoietic Transplant Group, Faculty of Medicine, UMU, 30120 Murcia, Spain.
| |
Collapse
|
8
|
Montilla A, Zabala A, Calvo I, Bosch-Juan M, Tomé-Velasco I, Mata P, Koster M, Sierra A, Kooistra SM, Soria FN, Eggen BJL, Fresnedo O, Fernández JA, Tepavcevic V, Matute C, Domercq M. Microglia regulate myelin clearance and cholesterol metabolism after demyelination via interferon regulatory factor 5. Cell Mol Life Sci 2025; 82:131. [PMID: 40137979 PMCID: PMC11947375 DOI: 10.1007/s00018-025-05648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 03/29/2025]
Abstract
Interferon regulatory factor 5 (IRF5) is a transcription factor that plays a role in orchestrating innate immune responses, particularly in response to viral infections. Notably, IRF5 has been identified as a microglia risk gene linked to multiple sclerosis (MS), but its specific role in MS pathogenesis remains unclear. Through the use of Irf5-/- mice, our study uncovers a non-canonical function of IRF5 in MS recovery. Irf5-/- mice exhibited increased damage in an experimental autoimmune encephalomyelitis (EAE) model and demonstrated impaired oligodendrocyte recruitment into the lesion core following lysolecithin-induced demyelination. Transcriptomic and lipidomic analyses revealed that IRF5 has a role in microglia-mediated myelin phagocytosis, lipid metabolism, and cholesterol homeostasis. Indeed, Irf5-/- microglia phagocytose myelin, but myelin debris is not adequately degraded, leading to an accumulation of lipid droplets, cholesterol esters, and cholesterol crystals within demyelinating lesions. This abnormal buildup can hinder remyelination processes. Importantly, treatments that promote cholesterol transport were found to reduce lipid droplet accumulation and mitigate the exacerbated damage in Irf5-/- mice with EAE. Altogether, our study identified the antiviral transcription factor IRF5 as a key transcriptional regulator of lipid degradation and cholesterol homeostasis and suggest that loss of IRF5 function leads to pathogenic lipid accumulation in microglia, thereby obstructing remyelination. These data and the fact that Irf5 polymorphisms are significantly associated with MS, highlight IRF5 as a potential therapeutic target to promote regenerative responses.
Collapse
Affiliation(s)
- Alejandro Montilla
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain.
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| | - Alazne Zabala
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Ibai Calvo
- Department of Physical Chemistry, Faculty of Sciences, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Marina Bosch-Juan
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Irene Tomé-Velasco
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Paloma Mata
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Mirjam Koster
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Ikerbasque Foundation, E-48009, Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Susanne M Kooistra
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Federico N Soria
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Ikerbasque Foundation, E-48009, Bilbao, Spain
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Olatz Fresnedo
- Lipids & Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - José Andrés Fernández
- Department of Physical Chemistry, Faculty of Sciences, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain
| | - Vanja Tepavcevic
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain.
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain.
| | - María Domercq
- Achucarro Basque Center for Neuroscience, E-48940, Leioa, Spain.
- Department of Neuroscience, University of the Basque Country UPV/EHU, E-48940, Leioa, Spain.
| |
Collapse
|
9
|
Bergner CG, van der Meer F, Franz J, Vakrakou A, Würfel T, Nessler S, Schäfer L, Nau-Gietz C, Winkler A, Lagumersindez-Denis N, Wrzos C, Damkou IA, Sergiou C, Schultz V, Knauer C, Metz I, Bahn E, Garea Rodriguez E, Merkler D, Simons M, Stadelmann C. BCAS1-positive oligodendrocytes enable efficient cortical remyelination in multiple sclerosis. Brain 2025; 148:908-920. [PMID: 39319704 PMCID: PMC11884765 DOI: 10.1093/brain/awae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 09/26/2024] Open
Abstract
Remyelination is a crucial regenerative process in demyelinating diseases, limiting persisting damage to the CNS. It restores saltatory nerve conduction and ensures trophic support of axons. In patients with multiple sclerosis, remyelination has been observed in both white and grey matter and found to be more efficient in the cortex. Brain-enriched myelin-associated protein 1 (BCAS1) identifies oligodendrocyte lineage cells in the stage of active myelin formation in development and regeneration. Other than in the white matter, BCAS1+ oligodendrocytes are maintained at high densities in the cortex throughout life. Here, we investigated cortical lesions in human biopsy and autopsy tissue from patients with multiple sclerosis in direct comparison to demyelinating mouse models and demonstrate that following a demyelinating insult BCAS1+ oligodendrocytes in remyelinating cortical lesions shift from a quiescent to an activated, internode-forming morphology co-expressing myelin-associated glycoprotein (MAG), necessary for axonal contact formation. Of note, activated BCAS1+ oligodendrocytes are found at early time points of experimental demyelination amidst ongoing inflammation. In human tissue, activated BCAS1+ oligodendrocytes correlate with the density of myeloid cells, further supporting their involvement in an immediate regenerative response. Furthermore, studying the microscopically normal appearing non demyelinated cortex in patients with chronic multiple sclerosis, we find a shift from quiescent BCAS1+ oligodendrocytes to mature, myelin-maintaining oligodendrocytes, suggesting oligodendrocyte differentiation and limited replenishment of BCAS1+ oligodendrocytes in long-standing disease. We also demonstrate that part of perineuronal satellite oligodendrocytes are BCAS1+ and contribute to remyelination in human and experimental cortical demyelination. In summary, our results provide evidence from human tissue and experimental models that BCAS1+ cells in the adult cortex represent a population of pre-differentiated oligodendrocytes that rapidly react after a demyelinating insult thus enabling immediate myelin regeneration. In addition, our data suggest that limited replenishment of BCAS1+ oligodendrocytes may contribute to the remyelination failure observed in the cortex in chronic multiple sclerosis.
Collapse
Affiliation(s)
- Caroline Gertrud Bergner
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
- Department of Neurology, University Hospital Leipzig, Leipzig 04103, Germany
| | - Franziska van der Meer
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Jonas Franz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Aigli Vakrakou
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
- Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Thea Würfel
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Stefan Nessler
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Lisa Schäfer
- Department of Neurology, University Hospital Leipzig, Leipzig 04103, Germany
| | - Cora Nau-Gietz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Anne Winkler
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | | | - Claudia Wrzos
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Ioanna Alkmini Damkou
- Institute of Neuronal Cell Biology, Technical University Munich, Munich 81377, Germany
| | - Christina Sergiou
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Verena Schultz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Carolin Knauer
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Imke Metz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Erik Bahn
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | | | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva 4 1211, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva 1205, Switzerland
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich 81377, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich 81377, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich 81377, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen 37075, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Network of Excitable Cells”(MBExC), University of Göttingen, Göttingen 37073, Germany
| |
Collapse
|
10
|
Kornberg MD, Calabresi PA. Multiple Sclerosis and Other Acquired Demyelinating Diseases of the Central Nervous System. Cold Spring Harb Perspect Biol 2025; 17:a041374. [PMID: 38806240 PMCID: PMC11875095 DOI: 10.1101/cshperspect.a041374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Acquired demyelinating diseases of the central nervous system (CNS) comprise inflammatory conditions, including multiple sclerosis (MS) and related diseases, as well as noninflammatory conditions caused by toxic, metabolic, infectious, traumatic, and neurodegenerative insults. Here, we review the spectrum of diseases producing acquired CNS demyelination before focusing on the prototypical example of MS, exploring the pathologic mechanisms leading to myelin injury in relapsing and progressive MS and summarizing the mechanisms and modulators of remyelination. We highlight the complex interplay between the immune system, oligodendrocytes and oligodendrocyte progenitor cells (OPCs), and other CNS glia cells such as microglia and astrocytes in the pathogenesis and clinical course of MS. Finally, we review emerging therapeutic strategies that exploit our growing understanding of disease mechanisms to limit progression and promote remyelination.
Collapse
Affiliation(s)
- Michael D Kornberg
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
11
|
Gupta SJ, Churchward MA, Todd KG, Winship IR. A dual role for pleiotrophin in modulating inflammation and myelination in the presence of chondroitin sulfate proteoglycans after nervous system injury. Front Cell Neurosci 2025; 19:1549433. [PMID: 40083634 PMCID: PMC11903471 DOI: 10.3389/fncel.2025.1549433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs), key components of the extracellular matrix and the glial scar that forms around central nervous system (CNS) injuries, are recognized for hindering neuronal regeneration. We previously demonstrated the potential of pleiotrophin (PTN) to induce neurite outgrowth even in the presence of inhibitory CSPGs. The effects of PTN on microglia and oligodendrocytes are not well described. Here, we examined how PTN administration alters the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes in the presence of CSPGs using in vitro cell culture model. Moreover, we explored the effects of PTN on the inflammatory activity of microglia with and without inflammatory stimulation (IFN-γ) in a CSPG-rich environment. The data showed that the CSPG matrix inhibited the differentiation of OPCs into mature oligodendrocytes. PTN induced dose-dependent differentiation of OPCs into mature oligodendrocytes, with an optimal effect at 10 nM PTN. Moreover, PTN modified the immunological response of microglia in the presence of CSPGs, with reduced proinflammatory activity that was further reduced by PTN administration, in contrast to the increased release of matrix metalloproteinases (MMP 9). However, when IFN-γ-activated microglia were treated with PTN, proinflammatory signaling was stimulated at higher PTN concentrations (10 nM and 100 nM). Overall, our results indicate that PTN can overcome the inhibitory effect of CSPGs on the differentiation of OPCs into oligodendrocytes and can modulate inflammation mediated by CSPGs from microglia. Collectively, these findings demonstrate that PTN can effectively counteract the inhibitory effects of CSPGs on the differentiation of OPCs into mature oligodendrocytes while also modulating microglial responses to reduce proinflammatory activity and increase MMP-9 release. Thus, PTN has great potential to improve remyelination and neuroprotective strategies in the treatment of demyelinating diseases or any injury.
Collapse
Affiliation(s)
- Somnath J. Gupta
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Matthew A. Churchward
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Biological Sciences, Concordia University of Edmonton, Edmonton, AB, Canada
| | - Kathryn G. Todd
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ian R. Winship
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Tang Y, Zhang L, Huang P, She Z, Luo S, Peng H, Chen Y, Luo J, Duan W, Xiao Y, Liu L, Liu L. Understanding the intricacies of cellular mechanisms in remyelination: The role of circadian rhythm. Neurochem Int 2025; 183:105929. [PMID: 39756585 DOI: 10.1016/j.neuint.2025.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis. Various studies have shown that the circadian rhythm regulates various cellular molecular mechanisms and signaling pathways involved in remyelination. The process of remyelination is primarily mediated by oligodendrocyte precursor cells (OPCs), oligodendrocytes, microglia, and astrocytes. OPCs are activated, proliferate, migrate, and ultimately differentiate into oligodendrocytes after demyelination, involving many key signaling pathway and regulatory factors. Activated microglia secretes important cytokines and chemokines, promoting OPC proliferation and differentiation, and phagocytoses myelin debris that inhibits remyelination. Astrocytes play a crucial role in supporting remyelination by secreting signals that promote remyelination or facilitate the phagocytosis of myelin debris by microglia. Additionally, cell-to-cell communication via gap junctions allows for intimate contact between astrocytes and oligodendrocytes, providing metabolic support for oligodendrocytes. Therefore, gaining a deeper understanding of the mechanisms and molecular pathways of the circadian rhythm at various stages of remyelination can help elucidate the fundamental characteristics of remyelination and provide insights into treating demyelinating disorders.
Collapse
Affiliation(s)
- Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| |
Collapse
|
13
|
Liu SS, Zha Z, Li C, Li CY, Wang L. The mechanism of exosomes of BMSCs modified with Bu Shen Yi Sui capsule in promoting remyelination via regulating miR-15b/Wnt signaling pathway-mediated differentiation of oligodendrocytes. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119283. [PMID: 39733800 DOI: 10.1016/j.jep.2024.119283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Bu Shen Yi Sui capsule (BSYS), a modified version of the classical Chinese medicine formula Liu Wei Di Huang pill, has demonstrated therapeutic efficacy in the treatment of multiple sclerosis (MS). Nevertheless, the precise mechanism through which BSYS facilitates remyelination remains to be elucidated. AIM OF THE STUDY This research investigates the role and potential mechanisms of BSYS-modified exosomes (exos) derived from bone marrow mesenchymal stem cells (BMSCs) in promoting remyelination in a cuprizone (CPZ)-induced demyelination model in mice. MATERIALS AND METHODS C57BL/6J mice were administered a 0.2% CPZ-containing diet for 5 weeks to induce demyelination, followed by treatment with exosomes derived from BMSC (BMSC-exos) and BSYS-modified BMSC exosomes (BSYS-BMSC-exos) twice weekly for 2 weeks. Body weight measurements were recorded, and motor function was evaluated using the rotarod test. Pathological changes in myelin and axons were assessed via Luxol fast blue (LFB) staining, transmission electron microscopy (TEM), and immunofluorescence (IF) staining. Oligodendrocyte proliferation, differentiation, and maturation were analyzed using IF double-staining, Western blot (WB), and real-time quantitative reverse transcription PCR (qRT-PCR). Additionally, microRNA (miRNA) sequencing and a luciferase reporter assay were conducted to verify miRNA binding to its target gene. Key markers of the Wnt/β-catenin signaling pathway were examined using WB and qRT-PCR. RESULTS BSYS-BMSC-exos treatment significantly increased both body weight and rotarod performance in CPZ mice. Moreover, BMSC-exos and BSYS-BMSC-exos reversed myelin loss and axonal damage. These treatments enhanced oligodendrocytes proliferation, differentiation, and maturation, with BSYS-BMSC-exos exhibiting a particularly pronounced effect on the expression of adenomatous polyposis coli clone CC1 (CC1), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG), and myelin basic protein (MBP). Sequencing and luciferase assays revealed that miR-15b-5p, enriched in BSYS-BMSC-exos, directly targets Wnt3a. Furthermore, BSYS-BMSC-exos elevated axis inhibition protein 2 (Axin2) expression while markedly reducing Wnt family member 3A (Wnt3a), phospho-glycogen synthase kinase-3β (p-GSK3β), β-catenin, and T-cell specific transcription factor 4/transcription factor 7-like 2 (TCF4/TCF7L2) levels. CONCLUSIONS The findings suggest that BSYS-BMSC-exos alleviate neurological deficits, enhance oligodendrocytes differentiation and maturation, and promote remyelination in CPZ mice. miR-15b-5p, enriched in BSYS-BMSC-exos, targets and downregulates Wnt3a, thereby inhibiting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Si-Si Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zheng Zha
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Chen Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chun-Yu Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Groh J, Simons M. White matter aging and its impact on brain function. Neuron 2025; 113:127-139. [PMID: 39541972 DOI: 10.1016/j.neuron.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Aging has a detrimental impact on white matter, resulting in reduced volume, compromised structural integrity of myelinated axons, and an increase in white matter hyperintensities. These changes are closely linked to cognitive decline and neurological disabilities. The deterioration of myelin and its diminished ability to regenerate as we age further contribute to the progression of neurodegenerative disorders. Understanding these changes is crucial for devising effective disease prevention strategies. Here, we will discuss the structural alterations in white matter that occur with aging and examine the cellular and molecular mechanisms driving these aging-related transformations. We highlight how the progressive disruption of white matter may initiate a self-perpetuating cycle of inflammation and neural damage.
Collapse
Affiliation(s)
- Janos Groh
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
15
|
Shriwash N, Aiman A, Singh P, Basir SF, Shamsi A, Shahid M, Dohare R, Islam A. Understanding the role of potential biomarkers in attenuating multiple sclerosis progression via multiomics and network-based approach. PLoS One 2024; 19:e0314428. [PMID: 39700118 DOI: 10.1371/journal.pone.0314428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a complex neurological disorder marked by neuroinflammation and demyelination. Understanding its molecular basis is vital for developing effective treatments. This study aims to elucidate the molecular progression of MS using multiomics and network-based approach. METHODS We procured differentially expressed genes in MS patients and healthy controls by accessing mRNA dataset from a publicly accessible database. The DEGs were subjected to a non-trait weighted gene co-expression network (WGCN) for hub DEGs identification. These hub DEGs were utilized for enrichment, protein-protein interaction network (PPIN), and feed-forward loop (FFL) analyses. RESULTS We identified 880 MS-associated DEGs. WGCN revealed a total of 122 hub DEGs of which most significant pathway, gene ontology (GO)-biological process (BP), GO-molecular function (MF) and GO-cellular compartment (CC) terms were assembly and cell surface presentation of N-methyl-D-aspartate (NMDA) receptors, regulation of catabolic process, NAD(P)H oxidase H2O2 forming activity, postsynaptic recycling endosome. The intersection of top 10 significant pathways, GO-BP, GO-MF, GO-CC terms, and PPIN top cluster genests identified STAT3 and CREB1 as key biomarkers. Based on essential centrality measures, CREB1 was retained as the final biomarker. Highest-order subnetwork FFL motif comprised one TF (KLF7), one miRNA (miR-328-3p), and one mRNA (CREB1) based on essential centrality measures. CONCLUSIONS This study provides insights into the roles of potential biomarkers in MS progression and offers a system-level view of its molecular landscape. Further experimental validation is needed to confirm these biomarkers' significance, which will lead to early diagnostic and therapeutic advancements.
Collapse
Affiliation(s)
- Nitesh Shriwash
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Okhla, New Delhi, India
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Okhla, New Delhi, India
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, Okhla, New Delhi, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Okhla, New Delhi, India
| | - Seemi Farhat Basir
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, Okhla, New Delhi, India
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Okhla, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Okhla, New Delhi, India
| |
Collapse
|
16
|
Zhu H, Hu E, Guo X, Yuan Z, Jiang H, Zhang W, Tang T, Wang Y, Li T. Promoting remyelination in central nervous system diseases: Potentials and prospects of natural products and herbal medicine. Pharmacol Res 2024; 210:107533. [PMID: 39617281 DOI: 10.1016/j.phrs.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Myelin damage is frequently associated with central nervous system (CNS) diseases and is a critical factor influencing neurological function and disease prognosis. Nevertheless, the majority of current treatments for the CNS concentrate on gray matter injury and repair strategies, while clinical interventions specifically targeting myelin repair remain unavailable. In recent years, natural products and herbal medicine have achieved considerable progress in the domain of myelin repair, given their remarkable curative effect and low toxic side effects, demonstrating significant therapeutic potential. In this review, we present a rather comprehensive account of the mechanisms underlying myelin formation, injury, and repair, with a particular emphasis on the interactions between oligodendrocytes and other glial cells. Furthermore, we summarize the natural products and herbal medicine currently employed in remyelination along with their mechanisms of action, highlighting the potential and challenges of certain natural compounds to enhance myelin repair. This review aims to facilitate the expedited development of innovative therapeutics derived from natural products and herbal medicine and furnish novel insights into myelin repair in the CNS.
Collapse
Affiliation(s)
- Haonan Zhu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - En Hu
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Xin Guo
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhiqiang Yuan
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Haoying Jiang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Tao Tang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Yang Wang
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China
| | - Teng Li
- Institute of Integrative Chinese Medicine, Department of Integrated Chinese Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang 330006, PR China.
| |
Collapse
|
17
|
Czopka T, Monk K, Peri F. Glial Cell Development and Function in the Zebrafish Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041350. [PMID: 38692835 PMCID: PMC11529855 DOI: 10.1101/cshperspect.a041350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Over the past decades the zebrafish has emerged as an excellent model organism with which to study the biology of all glial cell types in nervous system development, plasticity, and regeneration. In this review, which builds on the earlier work by Lyons and Talbot in 2015, we will summarize how the relative ease to manipulate the zebrafish genome and its suitability for intravital imaging have helped understand principles of glial cell biology with a focus on oligodendrocytes, microglia, and astrocytes. We will highlight recent findings on the diverse properties and functions of these glial cell types in the central nervous system and discuss open questions and future directions of the field.
Collapse
Affiliation(s)
- Tim Czopka
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Kelly Monk
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Francesca Peri
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
18
|
Gao R, Song SJ, Tian MY, Wang LB, Zhang Y, Li X. Myelin debris phagocytosis in demyelinating disease. Glia 2024; 72:1934-1954. [PMID: 39073200 DOI: 10.1002/glia.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Demyelinating diseases are often caused by a variety of triggers, including immune responses, viral infections, malnutrition, hypoxia, or genetic factors, all of which result in the loss of myelin in the nervous system. The accumulation of myelin debris at the lesion site leads to neuroinflammation and inhibits remyelination; therefore, it is crucial to promptly remove the myelin debris. Initially, Fc and complement receptors on cellular surfaces were the primary clearance receptors responsible for removing myelin debris. However, subsequent studies have unveiled the involvement of additional receptors, including Mac-2, TAM receptors, and the low-density lipoprotein receptor-related protein 1, in facilitating the removal process. In addition to microglia and macrophages, which serve as the primary effector cells in the disease phase, a variety of other cell types such as astrocytes, Schwann cells, and vascular endothelial cells have been demonstrated to engage in the phagocytosis of myelin debris. Furthermore, we have concluded that oligodendrocyte precursor cells, as myelination precursor cells, also exhibit this phagocytic capability. Moreover, our research group has innovatively identified the low-density lipoprotein receptor as a potential phagocytic receptor for myelin debris. In this article, we discuss the functional processes of various phagocytes in demyelinating diseases. We also highlight the alterations in signaling pathways triggered by phagocytosis, and provide a comprehensive overview of the various phagocytic receptors involved. Such insights are invaluable for pinpointing potential therapeutic strategies for the treatment of demyelinating diseases by targeting phagocytosis.
Collapse
Affiliation(s)
- Rui Gao
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng-Jiao Song
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng-Yuan Tian
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Li-Bin Wang
- Neurosurgery Department, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, Guangdong, China
| | - Yuan Zhang
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Li
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
19
|
Cucarian J, Raposo P, Vavrek R, Nguyen A, Nelson B, Monnier P, Torres-Espin A, Fenrich K, Fouad K. No impact of anti-inflammatory medication on inflammation-driven recovery following cervical spinal cord injury in rats. Exp Neurol 2024; 383:115039. [PMID: 39481514 DOI: 10.1016/j.expneurol.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Following spinal cord injury (SCI), inflammation is associated with the exacerbation of damage to spinal tissue. Consequently, managing inflammation during the acute and subacute phases is a common target in SCI treatment. However, inflammation may also induce potential benefits, including the stimulation of neuroplasticity and repair. This positive role of inflammation in spinal cord healing and functional recovery is not fully understood. To address this knowledge gap, we examined the effects of two common anti-inflammatory medications, Diphenhydramine and Methylprednisolone, on the efficacy of rehabilitative motor training on recovery from subacute cervical SCI in adult rats. Training depends critically on neuroplasticity thus if inflammation is a key regulator, we propose that anti-inflammatory drugs will reduce subsequent recovery. Both drugs were administered orally over one month, alongside task-specific reaching and grasping training. After treatment, no substantial changes in motor recovery or lesion size between the treated and control groups were observed. Treated animals also did not show any discernible changes in sensory function or anxiety-like behavior. Taken together, our data indicate that the prolonged use of these anti-inflammatory agents at commonly used doses did not profoundly impact recovery following an SCI. Therefore, considering earlier reports of the benefits of pro-inflammatory stimuli on plasticity, further studies in this area are imperative to elucidate the true impact of treating inflammation and its implications for recovery after spinal cord injuries.
Collapse
Affiliation(s)
- Jaison Cucarian
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
| | - Pamela Raposo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Romana Vavrek
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Antoinette Nguyen
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Brooklynn Nelson
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Philippe Monnier
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Abel Torres-Espin
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada; School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada; Department of Neurological Surgery and Brain and Spinal Injury Center (BASIC), Faculty of Medicine, University of California San Francisco, San Francisco, USA
| | - Keith Fenrich
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
20
|
McCray TJ, Bedford LM, Bissel SJ, Lamb BT. Trem2-deficiency aggravates and accelerates age-related myelin degeneration. Acta Neuropathol Commun 2024; 12:154. [PMID: 39300502 PMCID: PMC11411802 DOI: 10.1186/s40478-024-01855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 09/22/2024] Open
Abstract
Aging is the greatest known risk factor for most neurodegenerative diseases. Myelin degeneration is an early pathological indicator of these diseases and a normal part of aging; albeit, to a lesser extent. Despite this, little is known about the contribution of age-related myelin degeneration on neurodegenerative disease. Microglia participate in modulating white matter events from demyelination to remyelination, including regulation of (de)myelination by the microglial innate immune receptor triggering receptor expressed on myeloid cells 2 (TREM2). Here, we demonstrate Trem2-deficiency aggravates and accelerates age-related myelin degeneration in the striatum. We show TREM2 is necessary for remyelination by recruiting reparative glia and mediating signaling that promotes OPC differentiation/maturation. In response to demyelination, TREM2 is required for phagocytosis of large volumes of myelin debris. In addition to lysosomal regulation, we show TREM2 can modify the ER stress response, even prior to overt myelin debris, that prevents lipid accumulation and microglial dysfunction. These data support a role for Trem2-dependent interactions in age-related myelin degeneration and suggest a basis for how early dysfunctional microglia could contribute to disease pathology through insufficent repair, defective phagocytosis, and the ER stress response.
Collapse
Affiliation(s)
- Tyler J McCray
- Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Logan M Bedford
- Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Stephanie J Bissel
- Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
21
|
Sun Y, Sun W, Liu J, Zhang B, Zheng L, Zou W. The dual role of microglia in intracerebral hemorrhage. Behav Brain Res 2024; 473:115198. [PMID: 39128628 DOI: 10.1016/j.bbr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Intracerebral hemorrhage has the characteristics of high morbidity, disability and mortality, which has caused a heavy burden to families and society. Microglia are resident immune cells in the central nervous system, and their activation plays a dual role in tissue damage after intracerebral hemorrhage. The damage in cerebral hemorrhage is embodied in the following aspects: releasing inflammatory factors and inflammatory mediators, triggering programmed cell death, producing glutamate induced excitotoxicity, and destroying blood-brain barrier; The protective effect is reflected in the phagocytosis and clearance of harmful substances by microglia, and the secretion of anti-inflammatory and neurotrophic factors. This article summarizes the function of microglia and its dual regulatory mechanism in intracerebral hemorrhage. In the future, drugs, acupuncture and other clinical treatments can be used to intervene in the activation state of microglia, so as to reduce the harm of microglia.
Collapse
Affiliation(s)
- Yue Sun
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Wentao Sun
- Faculty of Chinese Medicine Sciense Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Jiawei Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Baiwen Zhang
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lei Zheng
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
22
|
Tiwari V, Prajapati B, Asare Y, Damkou A, Ji H, Liu L, Naser N, Gouna G, Leszczyńska KB, Mieczkowski J, Dichgans M, Wang Q, Kawaguchi R, Shi Z, Swarup V, Geschwind DH, Prinz M, Gokce O, Simons M. Innate immune training restores pro-reparative myeloid functions to promote remyelination in the aged central nervous system. Immunity 2024; 57:2173-2190.e8. [PMID: 39053462 DOI: 10.1016/j.immuni.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/21/2023] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
The reduced ability of the central nervous system to regenerate with increasing age limits functional recovery following demyelinating injury. Previous work has shown that myelin debris can overwhelm the metabolic capacity of microglia, thereby impeding tissue regeneration in aging, but the underlying mechanisms are unknown. In a model of demyelination, we found that a substantial number of genes that were not effectively activated in aged myeloid cells displayed epigenetic modifications associated with restricted chromatin accessibility. Ablation of two class I histone deacetylases in microglia was sufficient to restore the capacity of aged mice to remyelinate lesioned tissue. We used Bacillus Calmette-Guerin (BCG), a live-attenuated vaccine, to train the innate immune system and detected epigenetic reprogramming of brain-resident myeloid cells and functional restoration of myelin debris clearance and lesion recovery. Our results provide insight into aging-associated decline in myeloid function and how this decay can be prevented by innate immune reprogramming.
Collapse
Affiliation(s)
- Vini Tiwari
- Institute of Neuronal Cell Biology, Technical University Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Bharat Prajapati
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Yaw Asare
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Alkmini Damkou
- Institute of Neuronal Cell Biology, Technical University Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Hao Ji
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Lu Liu
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Nawraa Naser
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Garyfallia Gouna
- Institute of Neuronal Cell Biology, Technical University Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Katarzyna B Leszczyńska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02093 Warsaw, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02093 Warsaw, Poland; 3P-Medicine Laboratory, Medical University of Gdańsk, 80211 Gdańsk, Poland
| | - Martin Dichgans
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Qing Wang
- Departments of Neurology and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Riki Kawaguchi
- Departments of Neurology and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Daniel H Geschwind
- Departments of Neurology and Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Ozgun Gokce
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
23
|
Saldivia N, Heller G, Zelada D, Whitehair J, Venkat N, Konjeti A, Savitzky R, Samano S, Simchuk D, van Breemen R, Givogri MI, Bongarzone ER. Deficiency of galactosyl-ceramidase in adult oligodendrocytes worsens disease severity during chronic experimental allergic encephalomyelitis. Mol Ther 2024; 32:3163-3176. [PMID: 38937968 PMCID: PMC11403238 DOI: 10.1016/j.ymthe.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
Galactosyl-ceramidase (GALC) is a ubiquitous lysosomal enzyme crucial for the correct myelination of the mammalian nervous system during early postnatal development. However, the physiological consequence of GALC deficiency in the adult brain remains unknown. In this study, we found that mice with conditional ablation of GALC activity in post-myelinating oligodendrocytes were lethally sensitized when challenged with chronic experimental allergic encephalomyelitis (EAE), in contrast with the non-lethal dysmyelination observed in Galc-ablated mice without the EAE challenge. Mechanistically, we found strong inflammatory demyelination without remyelination and an impaired fusion of lysosomes and autophagosomes with accumulation of myelin debris after a transcription factor EB-dependent increase in the lysosomal autophagosome flux. These results indicate that the physiological impact of GALC deficiency is highly influenced by the cell context (oligodendroglial vs. global expression), the presence of inflammation, and the developmental time when it happens (pre-myelination vs. post-myelination). We conclude that Galc expression in adult oligodendrocytes is crucial for the maintenance of adult central myelin and to decrease vulnerability to additional demyelinating insults.
Collapse
Affiliation(s)
- Natalia Saldivia
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Gregory Heller
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Diego Zelada
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jason Whitehair
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nikhil Venkat
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ashna Konjeti
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Reina Savitzky
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shayla Samano
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel Simchuk
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
24
|
Zhai C, Wang Z, Cai J, Fang L, Li X, Jiang K, Shen Y, Wang Y, Xu X, Liu W, Wang T, Wu Q. Repeated trans-spinal magnetic stimulation promotes microglial phagocytosis of myelin debris after spinal cord injury through LRP-1. Exp Neurol 2024; 379:114844. [PMID: 38830500 DOI: 10.1016/j.expneurol.2024.114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Spinal cord injury (SCI) is a serious trauma of the central nervous system. The clearance of myelin debris is a critical step in the functional recovery following spinal cord injury (SCI). Recent studies have begun to reveal critical roles for professional phagocytes in the central nervous system, microglia, and their receptors in the control of myelin debris in neurodegenerative disease. Repeated trans-spinal magnetic stimulation (rTSMS) has been demonstrated as a noninvasive SCI treatment that enhances tissue repair and functional recovery. In this study, we investigated the role and molecular mechanism of rTSMS on microglial phagocytosis of myelin debris in a rat SCI model. In our studies, we found that rTSMS significantly promoted the motor function recovery of SCI rats associated with the inhibition the neuroinflammation and glia scar formation. Immunofluorescence results further showed that the rTSMS promotes the clearance of myelin debris by microglia in vivo and in vitro. Additionally, receptor-associated protein (RAP), a Low-density lipoprotein receptor-related protein-1 (LRP-1) inhibitor, could cancel the accelerated microglial phagocytosis of myelin debris after rTSMS in vitro experiments. Simultaneously, Elisa's results and western blotting respectively showed that rTSMS significantly decreased the levels of soluble LRP-1(sLRP-1) and the LRP-1 splicing enzyme of ADAM17. In conclusion, rTSMS could promote the clearance of myelin debris by microglia through LRP-1 to improve the functional recovery of SCI rats.
Collapse
Affiliation(s)
- Chenyuan Zhai
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zun Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Rehabilitation medicine department, School of Acupuncture and Tuina, School of Health and Rehabilitation, Nanjing university of Chinese medicine, Nanjing 210023, China
| | - Jili Cai
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lu Fang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiangzhe Li
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, China
| | - Kunmao Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xingjun Xu
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wentao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Qi Wu
- Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang 421000, China.
| |
Collapse
|
25
|
Liu H, Yi J, Zhang C, Li Y, Wang Q, Wang S, Dai S, Zheng Z, Jiang T, Gao P, Xue A, Huang Z, Kong F, Wang Y, He B, Guo X, Li Q, Chen J, Yin G, Zhao S. Macrophage GIT1 promotes oligodendrocyte precursor cell differentiation and remyelination after spinal cord injury. Glia 2024; 72:1674-1692. [PMID: 38899731 DOI: 10.1002/glia.24577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Spinal cord injury (SCI) can result in severe motor and sensory deficits, for which currently no effective cure exists. The pathological process underlying this injury is extremely complex and involves many cell types in the central nervous system. In this study, we have uncovered a novel function for macrophage G protein-coupled receptor kinase-interactor 1 (GIT1) in promoting remyelination and functional repair after SCI. Using GIT1flox/flox Lyz2-Cre (GIT1 CKO) mice, we identified that GIT1 deficiency in macrophages led to an increased generation of tumor necrosis factor-alpha (TNFα), reduced proportion of mature oligodendrocytes (mOLs), impaired remyelination, and compromised functional recovery in vivo. These effects in GIT1 CKO mice were reversed with the administration of soluble TNF inhibitor. Moreover, bone marrow transplantation from GIT1 CWT mice reversed adverse outcomes in GIT1 CKO mice, further indicating the role of macrophage GIT1 in modulating spinal cord injury repair. Our in vitro experiments showed that macrophage GIT1 plays a critical role in secreting TNFα and influences the differentiation of oligodendrocyte precursor cells (OPCs) after stimulation with myelin debris. Collectively, our data uncovered a new role of macrophage GIT1 in regulating the transformation of OPCs into mOLs, essential for functional remyelination after SCI, suggesting that macrophage GIT1 could be a promising treatment target of SCI.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiang Yi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Orthopedics, Yancheng Third People's Hospital, Yancheng, Jiangsu, China
| | - Chenxi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yin Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shenyu Wang
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Siming Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ziyang Zheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ao Xue
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenfei Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fanqi Kong
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yongxiang Wang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, China
| | - Baorong He
- Department of Spine Surgery, Honghui-hospital, Xi'an Jiaotong Uinversity, School of Medicine, Xi'an, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
26
|
Dey D, Tyagi S, Shrivastava V, Rani S, Sharma JB, Sinha S, Palanichamy JK, Seth P, Sen S. Using Human Fetal Neural Stem Cells to Elucidate the Role of the JAK-STAT Cell Signaling Pathway in Oligodendrocyte Differentiation In Vitro. Mol Neurobiol 2024; 61:5738-5753. [PMID: 38227271 DOI: 10.1007/s12035-024-03928-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
Oligodendrocytes (OL) are the myelinating cells of the central nervous system that mediate nerve conduction. Loss of oligodendrocytes results in demyelination, triggering neurological deficits. Developing a better understanding of the cell signaling pathways influencing OL development may aid in the development of therapeutic strategies. The primary focus of this study was to investigate and elucidate the cell signaling pathways implicated in the developmental maturation of oligodendrocytes using human fetal neural stem cells (hFNSCs)-derived primary OL and MO3.13 cell line. Successful differentiation into OL was established by examining morphological changes, increased expression of mature OL markers MBP, MOG and decreased expression of pre-OL markers CSPG4 and O4. Analyzing transcriptional datasets (using RNA sequencing) in pre-OL and mature OL derived from hFNSCs revealed the novel and critical involvement of the JAK-STAT cell signaling pathway in terminal OL maturation. The finding was validated in MO3.13 cell line whose differentiation was accompanied by upregulation of IL-6 and the transcription factor STAT3. Increased phosphorylated STAT3 (pY705) levels were demonstrated by western blotting in hFNSCs-derived primary OL as well as terminal maturation in MO3.13 cells, thus validating the involvement of the JAK-STAT pathway in OL maturation. Pharmacological suppression of STAT3 phosphorylation (confirmed by western blotting) was able to prevent the increase of MBP-positive cells as demonstrated by flow cytometry. These novel findings highlight the involvement of the JAK-STAT pathway in OL maturation and raise the possibility of using this as a therapeutic strategy in demyelinating diseases.
Collapse
Affiliation(s)
- Devanjan Dey
- Department of Biochemistry, All India Institute of Medical Sciences, Room No. 3027A, New Delhi, 110029, India
| | - Sagar Tyagi
- Department of Biochemistry, All India Institute of Medical Sciences, Room No. 3027A, New Delhi, 110029, India
| | - Vadanya Shrivastava
- Department of Biochemistry, All India Institute of Medical Sciences, Room No. 3027A, New Delhi, 110029, India
| | - Sweety Rani
- Department of Biochemistry, All India Institute of Medical Sciences, Room No. 3027A, New Delhi, 110029, India
| | - Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, Room No. 3027A, New Delhi, 110029, India
| | - Jayanth Kumar Palanichamy
- Department of Biochemistry, All India Institute of Medical Sciences, Room No. 3027A, New Delhi, 110029, India
| | - Pankaj Seth
- Department of Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Sudip Sen
- Department of Biochemistry, All India Institute of Medical Sciences, Room No. 3027A, New Delhi, 110029, India.
| |
Collapse
|
27
|
Castranova D, Kenton MI, Kraus A, Dell CW, Park JS, Galanternik MV, Park G, Lumbantobing DN, Dye L, Marvel M, Iben J, Taimatsu K, Pham V, Willms RJ, Blevens L, Robertson TF, Hou Y, Huttenlocher A, Foley E, Parenti LR, Frazer JK, Narayan K, Weinstein BM. The axillary lymphoid organ - an external, experimentally accessible immune organ in the zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605139. [PMID: 39091802 PMCID: PMC11291151 DOI: 10.1101/2024.07.25.605139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Lymph nodes and other secondary lymphoid organs play critical roles in immune surveillance and immune activation in mammals, but the deep internal locations of these organs make it challenging to image and study them in living animals. Here, we describe a previously uncharacterized external immune organ in the zebrafish ideally suited for studying immune cell dynamics in vivo, the axillary lymphoid organ (ALO). This small, translucent organ has an outer cortex teeming with immune cells, an inner medulla with a mesh-like network of fibroblastic reticular cells along which immune cells migrate, and a network of lymphatic vessels draining to a large adjacent lymph sac. Noninvasive high-resolution imaging of transgenically marked immune cells can be carried out in the lobes of living animals, and the ALO is readily accessible to external treatment. This newly discovered tissue provides a superb model for dynamic live imaging of immune cells and their interaction with pathogens and surrounding tissues, including blood and lymphatic vessels.
Collapse
Affiliation(s)
- Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Madeleine I. Kenton
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Aurora Kraus
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Christopher W. Dell
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jong S. Park
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Gilseung Park
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel N. Lumbantobing
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Louis Dye
- Microscopy and Imaging Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Miranda Marvel
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Kiyohito Taimatsu
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Van Pham
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Reegan J. Willms
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lucas Blevens
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Yiran Hou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lynne R. Parenti
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - J. Kimble Frazer
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Brant M. Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| |
Collapse
|
28
|
Ou Z, Cheng Y, Ma H, Chen K, Lin Q, Chen J, Guo R, Huang Z, Cheng Q, Alaeiilkhchi N, Zhu Q, Huang Z, Jiang H. miR-223 accelerates lipid droplets clearance in microglia following spinal cord injury by upregulating ABCA1. J Transl Med 2024; 22:659. [PMID: 39010173 PMCID: PMC11247820 DOI: 10.1186/s12967-024-05480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is characterized by extensive demyelination and inflammatory responses. Facilitating the clearance of lipid droplets (LDs) within microglia contributes to creating a microenvironment that favors neural recovery and provides essential materials for subsequent remyelination. Therefore, investigating MicroRNAs (miRNAs) that regulate lipid homeostasis after SCI and elucidating their potential mechanisms in promoting LDs clearance in microglia have become focal points of SCI research. METHODS We established a subacute C5 hemicontusion SCI model in mice and performed transcriptomic sequencing on the injury epicenter to identify differentially expressed genes and associated pathways. Confocal imaging was employed to observe LDs accumulation. Multi-omics analyses were conducted to identify differentially expressed mRNA and miRNA post-SCI. Pathway enrichment analysis and protein-protein interaction network construction were performed using bioinformatics methods, revealing miR-223-Abca1 as a crucial miRNA-mRNA pair in lipid metabolism regulation. BV2 microglia cell lines overexpressing miR-223 were engineered, and immunofluorescence staining, western blot, and other techniques were employed to assess LDs accumulation, relevant targets, and inflammatory factor expression, confirming its role in regulating lipid homeostasis in microglia. RESULTS Histopathological results of our hemicontusion SCI model confirmed LDs aggregation at the injury epicenter, predominantly within microglia. Our transcriptomic analysis during the subacute phase of SCI in mice implicated ATP-binding cassette transporter A1 (Abca1) as a pivotal gene in lipid homeostasis, cholesterol efflux and microglial activation. Integrative mRNA-miRNA multi-omics analysis highlighted the crucial role of miR-223 in the neuroinflammation process following SCI, potentially through the regulation of lipid metabolism via Abca1. In vitro experiments using BV2 cells overexpressing miR-223 demonstrated that elevated levels of miR-223 enhance ABCA1 expression in myelin debris and LPS-induced BV2 cells. This promotes myelin debris degradation and LDs clearance, and induces a shift toward an anti-inflammatory M2 phenotype. CONCLUSIONS In summary, our study unveils the critical regulatory role of miR-223 in lipid homeostasis following SCI. The mechanism by which this occurs involves the upregulation of ABCA1 expression, which facilitates LDs clearance and myelin debris degradation, consequently alleviating the lipid burden, and inhibiting inflammatory polarization of microglia. These findings suggest that strategies to enhance miR-223 expression and target ABCA1, thereby augmenting LDs clearance, may emerge as appealing new clinical targets for SCI treatment.
Collapse
Affiliation(s)
- Zhilin Ou
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yongquan Cheng
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hao Ma
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kai Chen
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiong Lin
- School of Anesthesiology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiayu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ruqin Guo
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qixian Cheng
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Nima Alaeiilkhchi
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, Vancouver, Canada
| | - Qingan Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zucheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Hui Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
29
|
Zveik O, Rechtman A, Ganz T, Vaknin-Dembinsky A. The interplay of inflammation and remyelination: rethinking MS treatment with a focus on oligodendrocyte progenitor cells. Mol Neurodegener 2024; 19:53. [PMID: 38997755 PMCID: PMC11245841 DOI: 10.1186/s13024-024-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) therapeutic goals have traditionally been dichotomized into two distinct avenues: immune-modulatory-centric interventions and pro-regenerative strategies. Oligodendrocyte progenitor cells (OPCs) were regarded for many years solely in concern to their potential to generate oligodendrocytes and myelin in the central nervous system (CNS). However, accumulating data elucidate the multifaceted roles of OPCs, including their immunomodulatory functions, positioning them as cardinal constituents of the CNS's immune landscape. MAIN BODY In this review, we will discuss how the two therapeutic approaches converge. We present a model by which (1) an inflammation is required for the appropriate pro-myelinating immune function of OPCs in the chronically inflamed CNS, and (2) the immune function of OPCs is crucial for their ability to differentiate and promote remyelination. This model highlights the reciprocal interactions between OPCs' pro-myelinating and immune-modulating functions. Additionally, we review the specific effects of anti- and pro-inflammatory interventions on OPCs, suggesting that immunosuppression adversely affects OPCs' differentiation and immune functions. CONCLUSION We suggest a multi-systemic therapeutic approach, which necessitates not a unidimensional focus but a harmonious balance between OPCs' pro-myelinating and immune-modulatory functions.
Collapse
Affiliation(s)
- Omri Zveik
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel
| | - Ariel Rechtman
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel
| | - Tal Ganz
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel
| | - Adi Vaknin-Dembinsky
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
- The Department of Neurology and Laboratory of Neuroimmunology, The Agnes-Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Ein-Kerem P.O.B. 12000, Jerusalem, 91120, Israel.
| |
Collapse
|
30
|
Huang Y, Hu R, Wu L, He K, Ma R. Immunoregulation of Glia after spinal cord injury: a bibliometric analysis. Front Immunol 2024; 15:1402349. [PMID: 38938572 PMCID: PMC11208308 DOI: 10.3389/fimmu.2024.1402349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
Objective Immunoregulation is a complex and critical process in the pathological process of spinal cord injury (SCI), which is regulated by various factors and plays an important role in the functional repair of SCI. This study aimed to explore the research hotspots and trends of glial cell immunoregulation after SCI from a bibliometric perspective. Methods Data on publications related to glial cell immunoregulation after SCI, published from 2004 to 2023, were obtained from the Web of Science Core Collection. Countries, institutions, authors, journals, and keywords in the topic were quantitatively analyzed using the R package "bibliometrix", VOSviewer, Citespace, and the Bibliometrics Online Analysis Platform. Results A total of 613 papers were included, with an average annual growth rate of 9.39%. The papers came from 36 countries, with the United States having the highest output, initiating collaborations with 27 countries. Nantong University was the most influential institution. We identified 3,177 authors, of whom Schwartz, m, of the Weizmann Institute of Science, was ranked first regarding both field-specific H-index (18) and average number of citations per document (151.44). Glia ranked first among journals with 2,574 total citations. The keywords "microglia," "activation," "macrophages," "astrocytes," and "neuroinflammation" represented recent hot topics and are expected to remain a focus of future research. Conclusion These findings strongly suggest that the immunomodulatory effects of microglia, astrocytes, and glial cell interactions may be critical in promoting nerve regeneration and repair after SCI. Research on the immunoregulation of glial cells after SCI is emerging, and there should be greater cooperation and communication between countries and institutions to promote the development of this field and benefit more SCI patients.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Wu
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kelin He
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruijie Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
- Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
31
|
Gu D, Xia Y, Ding Z, Qian J, Gu X, Bai H, Jiang M, Yao D. Inflammation in the Peripheral Nervous System after Injury. Biomedicines 2024; 12:1256. [PMID: 38927464 PMCID: PMC11201765 DOI: 10.3390/biomedicines12061256] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Nerve injury is a common condition that occurs as a result of trauma, iatrogenic injury, or long-lasting stimulation. Unlike the central nervous system (CNS), the peripheral nervous system (PNS) has a strong capacity for self-repair and regeneration. Peripheral nerve injury results in the degeneration of distal axons and myelin sheaths. Macrophages and Schwann cells (SCs) can phagocytose damaged cells. Wallerian degeneration (WD) makes the whole axon structure degenerate, creating a favorable regenerative environment for new axons. After nerve injury, macrophages, neutrophils and other cells are mobilized and recruited to the injury site to phagocytose necrotic cells and myelin debris. Pro-inflammatory and anti-inflammatory factors involved in the inflammatory response provide a favorable microenvironment for peripheral nerve regeneration and regulate the effects of inflammation on the body through relevant signaling pathways. Previously, inflammation was thought to be detrimental to the body, but further research has shown that appropriate inflammation promotes nerve regeneration, axon regeneration, and myelin formation. On the contrary, excessive inflammation can cause nerve tissue damage and pathological changes, and even lead to neurological diseases. Therefore, after nerve injury, various cells in the body interact with cytokines and chemokines to promote peripheral nerve repair and regeneration by inhibiting the negative effects of inflammation and harnessing the positive effects of inflammation in specific ways and at specific times. Understanding the interaction between neuroinflammation and nerve regeneration provides several therapeutic ideas to improve the inflammatory microenvironment and promote nerve regeneration.
Collapse
Affiliation(s)
- Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Yiming Xia
- Medical School, Nantong University, Nantong 226001, China
| | - Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Jiaxi Qian
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Xi Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China (H.B.)
| |
Collapse
|
32
|
Hummel R, Dorochow E, Zander S, Ritter K, Hahnefeld L, Gurke R, Tegeder I, Schäfer MKE. Valproic Acid Treatment after Traumatic Brain Injury in Mice Alleviates Neuronal Death and Inflammation in Association with Increased Plasma Lysophosphatidylcholines. Cells 2024; 13:734. [PMID: 38727269 PMCID: PMC11083124 DOI: 10.3390/cells13090734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
The histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Regina Hummel
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Erika Dorochow
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
| | - Sonja Zander
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Katharina Ritter
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
33
|
Huang HT, Wang CY, Ho CH, Tzeng SF. Interleukin-6 Inhibits Expression of miR-204-5p, a Regulator of Oligodendrocyte Differentiation: Involvement of miR-204-5p in the Prevention of Chemical-Induced Oligodendrocyte Impairment. Mol Neurobiol 2024; 61:1953-1968. [PMID: 37817030 DOI: 10.1007/s12035-023-03681-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Oligodendrocytes (OLs) form myelin sheaths around axons in the central nervous system (CNS) facilitate the propagation of action potentials. The studies have shown that the differentiation and maturation of OLs involve microRNA (miR) regulation. The recent findings have addressed that miR-204 regulates OL differentiation in culture. In this study, through in situ hybridization in combination with immunohistochemistry, we showed that microRNA-204-5p in the corpus callosum was mainly expressed in OLs immunoreactive with adenomatous polyposis coli (APC), an OL marker. We also found miR-204-5p expression in mature OLs was suppressed by the addition of interleukin-6 (IL-6). Moreover, IL-6-induced inhibition of miR-204-5p expression was blocked by the addition of the inhibitors specific for p38 mitogen-activated protein kinase (p38MAPK) or phosphatidylinositol 3-kinase (PI3K) pathway. We further utilized a rat model by feeding cuprizone (CPZ)-containing diet for 3 weeks to induce demyelination and gliosis in the corpus callosum, as well as the upregulation of IL-6 gene expression significantly. Despite that miR-204-5p expression in the corpus callosum was not altered after feeding by CPZ for 3 weeks, its expression was increased and IL-6 transcription was decreased in the corpus callosum of the recovery group that was fed by CPZ for the first 2 weeks and by the regular diet for one more week. Our data demonstrate that miR-204-5p expression in OLs declined under the influence of the inflamed microenvironment. The findings that an increase in miR-204-5p and declined IL-6 expression observed in the recovery group might be involved with OL repair in the corpus callosum, and also shed light on a potential role for miR-204-5p in OL homeostasis following the white matter injury.
Collapse
Affiliation(s)
- Hui-Ting Huang
- Department of Life Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yen Wang
- Department of Life Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hsin Ho
- Department of Life Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
34
|
Huang Z, Jordan JD, Zhang Q. Myelin Pathology in Alzheimer's Disease: Potential Therapeutic Opportunities. Aging Dis 2024; 15:698-713. [PMID: 37548935 PMCID: PMC10917545 DOI: 10.14336/ad.2023.0628] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory loss and cognitive decline. Despite significant efforts over several decades, our understanding of the pathophysiology of this disease is still incomplete. Myelin is a multi-layered membrane structure ensheathing neuronal axons, which is essential for the fast and effective propagation of action potentials along the axons. Recent studies highlight the critical involvement of myelin in memory consolidation and reveal its vulnerability in various pathological conditions. Notably, apart from the classic amyloid hypothesis, myelin degeneration has been proposed as another critical pathophysiological feature of AD, which could occur prior to the development of amyloid pathology. Here, we review recent works supporting the critical role of myelin in cognition and myelin pathology during AD progression, with a focus on the mechanisms underlying myelin degeneration in AD. We also discuss the complex intersections between myelin pathology and typical AD pathophysiology, as well as the therapeutic potential of pro-myelinating approaches for this disease. Overall, these findings implicate myelin degeneration as a critical contributor to AD-related cognitive deficits and support targeting myelin repair as a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| |
Collapse
|
35
|
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs Cambridge Institute of Science, Cambridge CB21 6GH, United Kingdom
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, CNRS, INSERM, Paris 75013, France
- Saint-Antoine Hospital, APHP, Paris 75012, France
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA
- University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
36
|
Xu Z, Wen C, Wang W. Role of MAPK and PI3K-Akt signaling pathways in cuprizone-induced demyelination and cognitive impairment in mice. Behav Brain Res 2024; 458:114755. [PMID: 37949321 DOI: 10.1016/j.bbr.2023.114755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
This study aimed to find the genes and signaling pathways underlying cuprizone-induced demyelination and cognitive impairments in mice. We used the cuprizone-exposed mice as an animal model of schizophrenia and assessed cognitive function in mice. Total RNA was extracted from mouse brain tissues for RNA sequencing. The DESeq2 R package was utilized to analyze the differentially expressed genes (DEGs). Functional and pathway enrichment analyses were performed simultaneously. We also constructed a protein-protein interaction (PPI) network to screen potential hub genes, and quantitative real-time polymerase chain reaction (qRT-PCR) was employed to validate the screened genes. After 6 weeks of cuprizone treatment, the cognitive function of mice was impaired. Compared to the controls, the cuprizone-exposed mice contained 351 DEGs, including 167 upregulated and 184 downregulated genes. Enrichment analysis showed that the DEGs were enriched in some biological processes involved in demyelination, including the MAPK pathway. Functional pathway analysis revealed that the DEGs were significantly enriched in the PI3K-Akt signaling pathway, which may be associated with cognitive impairments. MBP, IGF1, GFAP, PTPRC, CD14, CD68, ITGB2, LYN, TLR2, TLR4, VAV1, and PLEK were considered as potential hub genes. Except for MBP, all genes were upregulated in the cuprizone models, as verified by qRT-PCR. We suggest that the MAPK and PI3K-Akt signaling pathways may be associated with demyelination and cognitive impairments, respectively. GFAP and IGF-1 expression levels increased in cuprizone-exposed mice, suggesting that astrocytes may play a role in protecting the myelin sheath following treatment with cuprizone.
Collapse
Affiliation(s)
- Zhizhong Xu
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen, Fujian 361012, China.
| | - Chunyan Wen
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen, Fujian 361012, China
| | - Wenqiang Wang
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen, Fujian 361012, China
| |
Collapse
|
37
|
Mastrogiovanni M, Martínez-Navarro FJ, Bowman TV, Cayuela ML. Inflammation in Development and Aging: Insights from the Zebrafish Model. Int J Mol Sci 2024; 25:2145. [PMID: 38396822 PMCID: PMC10889087 DOI: 10.3390/ijms25042145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are an emergent animal model to study human diseases due to their significant genetic similarity to humans, swift development, and genetic manipulability. Their utility extends to the exploration of the involvement of inflammation in host defense, immune responses, and tissue regeneration. Additionally, the zebrafish model system facilitates prompt screening of chemical compounds that affect inflammation. This study explored the diverse roles of inflammatory pathways in zebrafish development and aging. Serving as a crucial model, zebrafish provides insights into the intricate interplay of inflammation in both developmental and aging contexts. The evidence presented suggests that the same inflammatory signaling pathways often play instructive or beneficial roles during embryogenesis and are associated with malignancies in adults.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Francisco Juan Martínez-Navarro
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
| | - Teresa V. Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - María L. Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| |
Collapse
|
38
|
Ancău M, Tanti GK, Butenschoen VM, Gempt J, Yakushev I, Nekolla S, Mühlau M, Scheunemann C, Heininger S, Löwe B, Löwe E, Baer S, Fischer J, Reiser J, Ayachit SS, Liesche-Starnecker F, Schlegel J, Matiasek K, Schifferer M, Kirschke JS, Misgeld T, Lueth T, Hemmer B. Validating a minipig model of reversible cerebral demyelination using human diagnostic modalities and electron microscopy. EBioMedicine 2024; 100:104982. [PMID: 38306899 PMCID: PMC10850420 DOI: 10.1016/j.ebiom.2024.104982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Inflammatory demyelinating diseases of the central nervous system, such as multiple sclerosis, are significant sources of morbidity in young adults despite therapeutic advances. Current murine models of remyelination have limited applicability due to the low white matter content of their brains, which restricts the spatial resolution of diagnostic imaging. Large animal models might be more suitable but pose significant technological, ethical and logistical challenges. METHODS We induced targeted cerebral demyelinating lesions by serially repeated injections of lysophosphatidylcholine in the minipig brain. Lesions were amenable to follow-up using the same clinical imaging modalities (3T magnetic resonance imaging, 11C-PIB positron emission tomography) and standard histopathology protocols as for human diagnostics (myelin, glia and neuronal cell markers), as well as electron microscopy (EM), to compare against biopsy data from two patients. FINDINGS We demonstrate controlled, clinically unapparent, reversible and multimodally trackable brain white matter demyelination in a large animal model. De-/remyelination dynamics were slower than reported for rodent models and paralleled by a degree of secondary axonal pathology. Regression modelling of ultrastructural parameters (g-ratio, axon thickness) predicted EM features of cerebral de- and remyelination in human data. INTERPRETATION We validated our minipig model of demyelinating brain diseases by employing human diagnostic tools and comparing it with biopsy data from patients with cerebral demyelination. FUNDING This work was supported by the DFG under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, ID 390857198) and TRR 274/1 2020, 408885537 (projects B03 and Z01).
Collapse
Affiliation(s)
- Mihai Ancău
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Neuronal Cell Biology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Goutam Kumar Tanti
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Vicki Marie Butenschoen
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany; Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Stephan Nekolla
- Department of Nuclear Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Mark Mühlau
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christian Scheunemann
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Sebastian Heininger
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Benjamin Löwe
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Erik Löwe
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Silke Baer
- Centre for Preclinical Research, Department of Veterinary Medicine, Technical University of Munich, Munich, Germany
| | - Johannes Fischer
- Centre for Preclinical Research, Department of Veterinary Medicine, Technical University of Munich, Munich, Germany
| | - Judith Reiser
- Centre for Preclinical Research, Department of Veterinary Medicine, Technical University of Munich, Munich, Germany
| | - Sai S Ayachit
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Germany
| | - Friederike Liesche-Starnecker
- Department of Neuropathology, Institute of Pathology, Technical University of Munich School of Medicine, Munich, Germany; Medical Faculty, Institute of Pathology and Molecular Diagnostics, University of Augsburg, Augsburg, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, Institute of Pathology, Technical University of Munich School of Medicine, Munich, Germany
| | - Kaspar Matiasek
- Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Martina Schifferer
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jan S Kirschke
- Department of Neuroradiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Germany
| | - Thomas Misgeld
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Institute of Neuronal Cell Biology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tim Lueth
- Institute of Micro Technology and Medical Device Technology, Technical University of Munich, Garching, Germany; Ergosurg GmbH, Ismaning, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
39
|
Luo W, Li Y, Zhao J, Niu R, Xiang C, Zhang M, Xiao C, Liu W, Gu R. CD44-targeting hyaluronic acid-selenium nanoparticles boost functional recovery following spinal cord injury. J Nanobiotechnology 2024; 22:37. [PMID: 38263204 PMCID: PMC10804833 DOI: 10.1186/s12951-024-02302-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Therapeutic strategies based on scavenging reactive oxygen species (ROS) and suppressing inflammatory cascades are effective in improving functional recovery after spinal cord injury (SCI). However, the lack of targeting nanoparticles (NPs) with powerful antioxidant and anti-inflammatory properties hampers the clinical translation of these strategies. Here, CD44-targeting hyaluronic acid-selenium (HA-Se) NPs were designed and prepared for scavenging ROS and suppressing inflammatory responses in the injured spinal cord, enhancing functional recovery. RESULTS The HA-Se NPs were easily prepared through direct reduction of seleninic acid in the presence of HA. The obtained HA-Se NPs exhibited a remarkable capacity to eliminate free radicals and CD44 receptor-facilitated internalization by astrocytes. Moreover, the HA-Se NPs effectively mitigated the secretion of proinflammatory cytokines (such as IL-1β, TNF-α, and IL-6) by microglia cells (BV2) upon lipopolysaccharide-induced inflammation. In vivo experiments confirmed that HA-Se NPs could effectively accumulate within the lesion site through CD44 targeting. As a result, HA-Se NPs demonstrated superior protection of axons and neurons within the injury site, leading to enhanced functional recovery in a rat model of SCI. CONCLUSIONS These results highlight the potential of CD44-targeting HA-Se NPs for SCI treatment.
Collapse
Affiliation(s)
- Wenqi Luo
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Yueying Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Jianhui Zhao
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Renrui Niu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chunyu Xiang
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Mingyu Zhang
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | - Rui Gu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
40
|
Baaklini CS, Ho MFS, Lange T, Hammond BP, Panda SP, Zirngibl M, Zia S, Himmelsbach K, Rana H, Phillips B, Antoszko D, Ibanga J, Lopez M, Lee KV, Keough MB, Caprariello AV, Kerr BJ, Plemel JR. Microglia promote remyelination independent of their role in clearing myelin debris. Cell Rep 2023; 42:113574. [PMID: 38100356 DOI: 10.1016/j.celrep.2023.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss. While therapies exist to slow MS progression, no treatment currently exists for remyelination. Remyelination, linked to reduced disability in MS, relies on microglia and monocyte-derived macrophages (MDMs). This study aims to understand the role of microglia during remyelination by lineage tracing and depleting them. Microglial lineage tracing reveals that both microglia and MDMs initially accumulate, but microglia later dominate the lesion. Microglia and MDMs engulf equal amounts of inhibitory myelin debris, but after microglial depletion, MDMs compensate by engulfing more myelin debris. Microglial depletion does, however, reduce the recruitment and proliferation of oligodendrocyte progenitor cells (OPCs) and impairs their subsequent differentiation and remyelination. These findings underscore the essential role of microglia during remyelination and offer insights for enhancing this process by understanding microglial regulation of remyelination.
Collapse
Affiliation(s)
- Charbel S Baaklini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Madelene F S Ho
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tristan Lange
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brady P Hammond
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Sharmistha P Panda
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Martin Zirngibl
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kassandre Himmelsbach
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Heli Rana
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Braxton Phillips
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daria Antoszko
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jeremies Ibanga
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mizuki Lopez
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kelly V Lee
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Michael B Keough
- Division of Neurosurgery, Department of Surgery, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, AB T2N 1N4, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
41
|
Li X, Ding Z, Liu K, Wang Q, Song L, Chai Z, Yu J, Ma D, Xiao B, Ma C. Astrocytic phagocytosis of myelin debris and reactive characteristics in vivo and in vitro. Biol Cell 2023; 115:e202300057. [PMID: 37851997 DOI: 10.1111/boc.202300057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND INFORMATION Persistent myelin debris can inhibit axonal regeneration, thereby hindering remyelination. Effective removal of myelin debris is essential to eliminate the interference of myelin debris in oligodendrocyte progenitor cell (OPC) activation, recruitment to demyelinating sites and/or differentiation into mature oligodendrocytes (OLs). In addition to microglia, it has been reported that astrocytic phagocytosis of myelin debris is a feature of early demyelination. RESULTS In the present study, astrocytes effectively phagocytized myelin debris in vitro and in vivo. On the 5th day after injecting myelin debris into the brain, astrocytes were enriched in the area injected with myelin debris compared with microglia, and their ability to engulf myelin debris was stronger than that of microglia. When exposed to myelin debris, astrocytes phagocytizing myelin debris triggered self-apoptosis, accompanied by the activation of NF-κB, down-regulation of Nrf2, and the increase of ciliary neurotrophic factor (CNTF) and basic fibroblast growth factor (bFGF). However, the activation of astrocytic NF-κB did not influence the inflammatory cytokines IL-1β, IL-6, and TNF-α, and the anti-inflammatory factor IL-10. The proliferation of astrocytes and mobilization of OPCs in the subventricular zone were elevated on the 5th day after intracerebral injection of myelin debris. CONCLUSIONS The results suggested that myelin phagocytosis of astrocytes should help improve the microenvironment and promote myelin regeneration by increasing CNTF and bFGF within the central nervous system. SIGNIFICANCE However, the molecular interaction of astrocytes acting as phagocytes remains to be further explored. Therefore, an improvement of astrocytes to phagocytize myelin debris may be a promising treatment measure to prevent demyelination and promote remyelination in MS and other diseases with prominent myelin injury.
Collapse
Affiliation(s)
- Xiaohui Li
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple, Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhibin Ding
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Kexin Liu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple, Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple, Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple, Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- The Key Laboratory of Nervous System Disease Prevention and Treatment under Health Commission of Shanxi Province, Sinopharm Tongmei General Hospital, Datong, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple, Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Dong Ma
- The Key Laboratory of Nervous System Disease Prevention and Treatment under Health Commission of Shanxi Province, Sinopharm Tongmei General Hospital, Datong, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cungen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple, Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| |
Collapse
|
42
|
Jauregui C, Blanco-Luquin I, Macías M, Roldan M, Caballero C, Pagola I, Mendioroz M, Jericó I. Exploring the Disease-Associated Microglia State in Amyotrophic Lateral Sclerosis. Biomedicines 2023; 11:2994. [PMID: 38001994 PMCID: PMC10669775 DOI: 10.3390/biomedicines11112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Neuroinflammation, and specifically microglia, plays an important but not-yet well-understood role in the pathophysiology of amyotrophic lateral sclerosis (ALS), constituting a potential therapeutic target for the disease. Recent studies have described the involvement of different microglial transcriptional patterns throughout neurodegenerative processes, identifying a new state of microglia: disease-associated microglia (DAM). The aim of this study is to investigate expression patterns of microglial-related genes in ALS spinal cord. METHODS We analyzed mRNA expression levels via RT-qPCR of several microglia-related genes in their homeostatic and DAM state in postmortem tissue (anterior horn of the spinal cord) from 20 subjects with ALS-TDP43 and 19 controls donors from the Navarrabiomed Biobank. RESULTS The expression levels of TREM2, MS4A, CD33, APOE and TYROBP were found to be elevated in the spinal cord from ALS subjects versus controls (p-value < 0.05). However, no statistically significant gene expression differences were observed for TMEM119, SPP1 and LPL. CONCLUSIONS This study suggests that a DAM-mediated inflammatory response is present in ALS, and TREM2 plays a significant role in immune function of microglia. It also supports the role of C33 and MS4A in the physiopathology of ALS.
Collapse
Affiliation(s)
- Carlota Jauregui
- Neurology Department, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Idoia Blanco-Luquin
- Neuroepigenetics Laboratory, Navarrabiomed, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Mónica Macías
- Neuroepigenetics Laboratory, Navarrabiomed, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Miren Roldan
- Neuroepigenetics Laboratory, Navarrabiomed, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Cristina Caballero
- Department of Pathology, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Inma Pagola
- Neurology Department, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
- Neuromuscular and Neuron Motor Diseases Research Group, Navarrabiomed, IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Maite Mendioroz
- Neurology Department, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
- Neuroepigenetics Laboratory, Navarrabiomed, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| | - Ivonne Jericó
- Neurology Department, Hospital Universitario de Navarra (HUN), IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
- Neuromuscular and Neuron Motor Diseases Research Group, Navarrabiomed, IdiSNA (Navarra Institute of Health Research), 31008 Pamplona, Spain
| |
Collapse
|
43
|
Nguyen LT, Aprico A, Nwoke E, Walsh AD, Blades F, Avneri R, Martin E, Zalc B, Kilpatrick TJ, Binder MD. Mertk-expressing microglia influence oligodendrogenesis and myelin modelling in the CNS. J Neuroinflammation 2023; 20:253. [PMID: 37926818 PMCID: PMC10626688 DOI: 10.1186/s12974-023-02921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Microglia, an immune cell found exclusively within the CNS, initially develop from haematopoietic stem cell precursors in the yolk sac and colonise all regions of the CNS early in development. Microglia have been demonstrated to play an important role in the development of oligodendrocytes, the myelin producing cells in the CNS, as well as in myelination. Mertk is a receptor expressed on microglia that mediates immunoregulatory functions, including myelin efferocytosis. FINDINGS Here we demonstrate an unexpected role for Mertk-expressing microglia in both oligodendrogenesis and myelination. The selective depletion of Mertk from microglia resulted in reduced oligodendrocyte production in early development and the generation of pathological myelin. During demyelination, mice deficient in microglial Mertk had thinner myelin and showed signs of impaired OPC differentiation. We established that Mertk signalling inhibition impairs oligodendrocyte repopulation in Xenopus tadpoles following demyelination. CONCLUSION These data highlight the importance of microglia in myelination and are the first to identify Mertk as a regulator of oligodendrogenesis and myelin ultrastructure.
Collapse
Affiliation(s)
- Linda T Nguyen
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, Australia
| | - Andrea Aprico
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Eze Nwoke
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
- Crux Biolabs, Bayswater, VIC, 3153, Australia
| | - Alexander D Walsh
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Farrah Blades
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
- Centre for Solar Biotechnology, Institute for Molecular Biosciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Raphael Avneri
- Inserm, CNRS, Institut du Cerveau, AP-HP Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
- Department of Molecular Biology, Ariel University, 40700, Ariel, Israel
| | - Elodie Martin
- Inserm, CNRS, Institut du Cerveau, AP-HP Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Bernard Zalc
- Inserm, CNRS, Institut du Cerveau, AP-HP Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Michele D Binder
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia.
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
44
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. Biomaterials 2023; 301:122210. [PMID: 37413842 PMCID: PMC10528716 DOI: 10.1016/j.biomaterials.2023.122210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over the chronic implantation period. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
45
|
Lu W, Wen J. H 2S-RhoA/ROCK Pathway and Glial Cells in Axonal Remyelination After Ischemic Stroke. Mol Neurobiol 2023; 60:5493-5504. [PMID: 37322287 DOI: 10.1007/s12035-023-03422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Ischemic stroke is one of the main reasons of disability and death. Stroke-induced functional deficits are mainly due to the secondary degeneration of the white matter characterized by axonal demyelination and injury of axon-glial integrity. Enhancement of the axonal regeneration and remyelination could promote the neural functional recovery. However, cerebral ischemia-induced activation of RhoA/Rho kinase (ROCK) pathway plays a crucial and harmful role in the process of axonal recovery and regeneration. Inhibition of this pathway could promote the axonal regeneration and remyelination. In addition, hydrogen sulfide (H2S) has the significant neuroprotective role during the recovery of ischemic stroke via inhibiting the inflammatory response and oxidative stress, regulating astrocyte function, promoting the differentiation of endogenous oligodendrocyte precursor cells (OPCs) to mature oligodendrocyte. Among all of these effects, promoting the formation of mature oligodendrocyte is a crucial part of axonal regeneration and remyelination. Furthermore, numerous studies have uncovered the crosstalk between astrocytes and oligodendrocyte, microglial cells and oligodendrocyte in the axonal remyelination following ischemic stroke. The purpose of this review was to discuss the relationship among H2S, RhoA/ROCK pathway, astrocytes, and microglial cells in the axonal remyelination following ischemic stroke to reveal new strategies for preventing and treating this devastating disease.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
46
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 242] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
47
|
Cheung G, Lin YC, Papadopoulos V. Translocator protein in the rise and fall of central nervous system neurons. Front Cell Neurosci 2023; 17:1210205. [PMID: 37416505 PMCID: PMC10322222 DOI: 10.3389/fncel.2023.1210205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Translocator protein (TSPO), a 18 kDa protein found in the outer mitochondrial membrane, has historically been associated with the transport of cholesterol in highly steroidogenic tissues though it is found in all cells throughout the mammalian body. TSPO has also been associated with molecular transport, oxidative stress, apoptosis, and energy metabolism. TSPO levels are typically low in the central nervous system (CNS), but a significant upregulation is observed in activated microglia during neuroinflammation. However, there are also a few specific regions that have been reported to have higher TSPO levels than the rest of the brain under normal conditions. These include the dentate gyrus of the hippocampus, the olfactory bulb, the subventricular zone, the choroid plexus, and the cerebellum. These areas are also all associated with adult neurogenesis, yet there is no explanation of TSPO's function in these cells. Current studies have investigated the role of TSPO in microglia during neuron degeneration, but TSPO's role in the rest of the neuron lifecycle remains to be elucidated. This review aims to discuss the known functions of TSPO and its potential role in the lifecycle of neurons within the CNS.
Collapse
|
48
|
Wu C, Shi L, Ma Y, Pan Y, Wang L, Chen S, Zhang Y, Wang J, Liu M, Guo Y. Construction and optimization of a coculture system of mouse brain microvascular endothelial cells and myelin debris. Neurosci Lett 2023:137345. [PMID: 37308055 DOI: 10.1016/j.neulet.2023.137345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Microvascular endothelial cells are a newly discovered cell type involved in the phagocytosis of myelin debris, which play a key role in the repair of spinal cord injuries. Several methods for the preparation of myelin debris and parameters for constructing a coculture system of microvascular endothelial cells and myelin debris are available, but no systematic studies have yet been conducted, which hinders further exploration of the mechanisms of demyelinating disease repair. Herein, we aimed to develop a standardized method for this process. Myelin debris of different sizes was obtained from the brains of C57BL/6 mice by stripping the brains under aseptic conditions, multiple grinding, gradient centrifugation, etc. Transmission electron microscopy and nanoparticle size analysis were used to characterize myelin debris. Microvascular endothelial cells were cultured on a matrix gel, and myelin debris of different sizes (fluorescently labeled using CFSE) was placed in coculture after forming a vascular-like structure. Subsequently, myelin debris of different concentrations was cocultured in the vascular-like structure, and phagocytosis of myelin debris by microvascular endothelial cells was detected using immunofluorescence staining and flow cytometry. We found that myelin debris could be successfuly obtained from the mouse brain with secondary grinding and other steps and cocultured with microvascular endothelial cells at a concentration of 2 mg/mL, which promoted the phagocytosis of microvascular endothelial cells. In conclusion, we provide a reference for the protocol of a coculture system of microvascular endothelial cells and myelin debris.
Collapse
Affiliation(s)
- Chengjie Wu
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Shi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Ma
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yalan Pan
- Laboratory of Chinese Medicine Nursing Intervention for Chronic Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lining Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sixian Chen
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Jianwei Wang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Mengmin Liu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yang Guo
- Department of Traumatology and Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China.
| |
Collapse
|
49
|
Ma J, Chen T, Wang R. Astragaloside IV ameliorates cognitive impairment and protects oligodendrocytes from antioxidative stress via regulation of the SIRT1/Nrf2 signaling pathway. Neurochem Int 2023; 167:105535. [PMID: 37209830 DOI: 10.1016/j.neuint.2023.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/22/2023]
Abstract
Subcortical ischemic vascular dementia (SIVD), which is caused by chronic cerebral hypoperfusion, is a common subtype of vascular dementia, accompanied by white matter damage and cognitive impairment. Currently, there are no effective treatments for this condition. Oxidative stress is a key factor in the pathogenesis of white matter damage. Astragaloside IV (AS-IV), one of the main active components of astragaloside, has antioxidant properties and promotes cognitive improvement; however, its effect on SIVD and its potential mechanism remain unknown. We aimed to clarify whether AS-IV had a protective effect against SIVD injury caused by right unilateral common carotid artery occlusion and the underlying mechanism. The results showed that AS-IV treatment improved cognitive function and white matter damage, inhibited oxidative stress and glial cells activation, and promoted the survival of mature oligodendrocytes after chronic cerebral hypoperfusion. Moreover, the protein expression levels of NQO1, HO-1, SIRT1 and Nrf2 were increased by AS-IV treatment. However, pre-treatment with EX-527, a SIRT1-specific inhibitor, eliminated the beneficial effects of AS-IV. These results demonstrate that AS-IV plays a neuroprotective role in SIVD by suppressing oxidative stress and increasing the number of mature oligodendrocytes via the modulation of SIRT1/Nrf2 signaling. Our results support AS-IV as a potential therapeutic agent for SIVD.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China
| | - Ting Chen
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China.
| | - Ranran Wang
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China.
| |
Collapse
|
50
|
Myatich A, Haque A, Sole C, Banik NL. Clemastine in remyelination and protection of neurons and skeletal muscle after spinal cord injury. Neural Regen Res 2023; 18:940-946. [PMID: 36254972 PMCID: PMC9827778 DOI: 10.4103/1673-5374.355749] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 11/05/2022] Open
Abstract
Spinal cord injuries affect nearly five to ten individuals per million every year. Spinal cord injury causes damage to the nerves, muscles, and the tissue surrounding the spinal cord. Depending on the severity, spinal injuries are linked to degeneration of axons and myelin, resulting in neuronal impairment and skeletal muscle weakness and atrophy. The protection of neurons and promotion of myelin regeneration during spinal cord injury is important for recovery of function following spinal cord injury. Current treatments have little to no effect on spinal cord injury and neurogenic muscle loss. Clemastine, an Food and Drug Administration-approved antihistamine drug, reduces inflammation, protects cells, promotes remyelination, and preserves myelin integrity. Recent clinical evidence suggests that clemastine can decrease the loss of axons after spinal cord injury, stimulating the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes that are capable of myelination. While clemastine can aid not only in the remyelination and preservation of myelin sheath integrity, it also protects neurons. However, its role in neurogenic muscle loss remains unclear. This review discusses the pathophysiology of spinal cord injury, and the role of clemastine in the protection of neurons, myelin, and axons as well as attenuation of skeletal muscle loss following spinal cord injury.
Collapse
Affiliation(s)
- Ali Myatich
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Christopher Sole
- Department of Health and Human Performance, The Citadel, Charleston, SC, USA
| | - Naren L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| |
Collapse
|