1
|
Szlachetko JA, Hofmann-Vega F, Budeus B, Schröder LJ, Dumitru CA, Schmidt M, Deuss E, Vollmer S, Hanschmann EM, Busch M, Kehrmann J, Lang S, Dünker N, Hussain T, Brandau S. Tumor cells that resist neutrophil anticancer cytotoxicity acquire a prometastatic and innate immune escape phenotype. Cell Mol Immunol 2025; 22:527-540. [PMID: 40155451 PMCID: PMC12041228 DOI: 10.1038/s41423-025-01283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/16/2025] [Indexed: 04/01/2025] Open
Abstract
In the tumor host, neutrophils may exhibit protumor or antitumor activity. It is hypothesized that in response to host-derived or therapy-induced factors, neutrophils adopt diverse functional states to ultimately execute these differential functions. Here, we provide an alternative scenario in which the response of an individual tumor cell population determines the overall protumor versus antitumor outcome of neutrophil‒tumor interactions. Experimentally, we show that human neutrophils, which are sequentially stimulated with bacteria and secreted factors from tumor cells, kill a certain proportion of tumor target cells. However, the majority of the tumor cells remained resistant to this neutrophil-mediated killing and underwent a functional, phenotypic and transcriptomic switch that was reminiscent of partial epithelial‒to-mesenchymal transition. This cell biological switch was associated with physical escape from NK-mediated killing and resulted in enhanced metastasis to the lymph nodes in a preclinical orthotopic mouse model. Mechanistically, we identified the antimicrobial neutrophil granule proteins neutrophil elastase (NE) and matrix metalloprotease-9 (MMP-9) as the molecular mediators of this functional switch. We validated these data in patients with head and neck cancer and identified bacterially colonized intratumoral niches that were enriched for mesenchymal tumor cells and neutrophils expressing NE and MMP-9. Our data reveal the parallel execution of tumor cytotoxic and prometastatic activity by activated neutrophils and identify NE and MMP-9 as mediators of lymph node metastasis. The identified mechanism explains the functional dichotomy of tumor-associated neutrophils at the level of the tumor target cell response and has implications for superinfected cancers and the dysbiotic tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Bettina Budeus
- Institute of Cell Biology, University Hospital Essen, Essen, 45147, Germany
| | - Lara-Jasmin Schröder
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
- Institute of Pathology, Medical School Hannover, Hannover, 30625, Germany
| | - Claudia Alexandra Dumitru
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
- Department of Neurosurgery, Otto-von-Guericke University, Magdeburg, 39106, Germany
| | - Mathias Schmidt
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
| | - Eric Deuss
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
| | - Sebastian Vollmer
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
| | - Eva-Maria Hanschmann
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
| | - Maike Busch
- Institute of Anatomy II, Department of Neuroanatomy, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, Medical Faculty, Essen, 45147, Germany
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, Essen, 45147, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, Medical Faculty, Essen, 45147, Germany
| | - Timon Hussain
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany
- Department of Otorhinolaryngology, Klinikum rechts der Isar, Technical University Munich, Munich, 81675, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, Essen, 45147, Germany.
- German Cancer Consortium, DKTK, Partner Site Essen-Düsseldorf, Essen, 45147, Germany.
| |
Collapse
|
2
|
Rincon JC, Wang D, Polcz VE, Barrios EL, Dirain ML, Ungaro RF, Nacionales DC, Zeumer-Spataro L, Xiao F, Efron PA, Moldawer LL, Cai G, Larson SD. Innate immune training in the neonatal response to sepsis. Mol Med 2025; 31:159. [PMID: 40307728 PMCID: PMC12042443 DOI: 10.1186/s10020-025-01179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Neonates, especially those born prematurely, are highly vulnerable to infection-induced mortality. Numerous observational and immunological studies in newborns have shown that live attenuated vaccines have beneficial, non-specific effects (NSEs) against secondary infections to unrelated pathogens. These beneficial effects have been attributed to trained immunity, and emergency granulopoiesis plays an essential role. However, trained immunity has been shown to affect multiple myeloid subsets and how trained immunity influences the host protective response is still undefined. Here we show that Bacillus-Calmette-Guérin (BCG) vaccination improves survival to polymicrobial sepsis by simultaneously reprogramming broad aspects of myelopoiesis. Specifically, BCG vaccination expands multiple myeloid subsets, including the lineage (Lin)-Sca- 1+c-kit+ (LSK) and granulocytic-macrophage progenitors (GMPs), and increases CD11b+Gr1+ cell number, as well as their oxidative metabolism and capacity to stimulate T-cell proliferation in response to sepsis. Single-cell RNA sequencing of neonatal splenocytes suggests that BCG-vaccination changes the broad transcriptional landscape of multiple myeloid subsets. The result is the maturation of various neutrophil and monocyte subsets, stimulation of antimicrobial processes, and suppression of inflammatory pathways and myeloid-derived suppressor cell transcription. These findings reveal that BCG administration early after birth fundamentally reorganizes the myeloid landscape to benefit the subsequent response to polymicrobial infection.
Collapse
Affiliation(s)
- Jaimar C Rincon
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA.
- Division of Pediatric Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Dayuan Wang
- Department of Biostatistics, University of Florida Colleges of Medicine and Public Health and Health Sciences, Gainesville, FL, USA
| | - Valerie E Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Evan L Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Marvin L Dirain
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Ricardo F Ungaro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Dina C Nacionales
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Leilani Zeumer-Spataro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Feifei Xiao
- Department of Biostatistics, University of Florida Colleges of Medicine and Public Health and Health Sciences, Gainesville, FL, USA
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Guoshuai Cai
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
- Department of Biostatistics, University of Florida Colleges of Medicine and Public Health and Health Sciences, Gainesville, FL, USA
| | - Shawn D Larson
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
- Division of Pediatric Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
3
|
Cai W, Fan T, Xiao C, Deng Z, Liu Y, Li C, He J. Neutrophils in cancer: At the crucial crossroads of anti-tumor and pro-tumor. Cancer Commun (Lond) 2025. [PMID: 40296668 DOI: 10.1002/cac2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Neutrophils are important components of the immune system and play a key role in defending against pathogenic infections and responding to inflammatory cues, including cancer. Their dysregulation indicates potential disease risk factors. However, their functional importance in disease progression has often been underestimated due to their short half-life, especially as there is limited information on the role of intratumoral neutrophils. Recent studies on their prominent role in cancer have led to a paradigm shift in our understanding of the functional diversity of neutrophils. These studies highlight that neutrophils have emerged as key components of the tumor microenvironment, where they can play a dual role in promoting and suppressing cancer. Moreover, several approaches to therapeutically target neutrophils have emerged, and clinical trials are investigating their efficacy. In this review, we discussed the involvement of neutrophils in cancer initiation and progression. We summarized recent advances in therapeutic strategies targeting neutrophils and, most importantly, suggested future research directions that could facilitate the manipulation of neutrophils for therapeutic purposes in cancer patients.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
4
|
Lee J, Jin BR, Cho J. Spatiotemporal regulation of neutrophil heterogeneity in health and disease. Hum Mol Genet 2025:ddaf008. [PMID: 40287830 DOI: 10.1093/hmg/ddaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 01/08/2025] [Indexed: 04/29/2025] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and are indispensable for innate immunity. They are short-lived, terminally differentiated cells. However, mounting evidence indicates that neutrophils are heterogeneous in health and disease: they are young or aged in a steady state, while their heterogeneity becomes more diverse in disease conditions, such as cancer, sepsis, and thromboinflammation. Although the presence of distinct neutrophil subsets is well recognized, it is not fully understood how neutrophils have functional and phenotypic heterogeneity and what mechanisms control it. This review will focus on our current understanding of the molecular basis for neutrophil heterogeneity in pathophysiological conditions. In addition, we will discuss the possibility of targeting a specific subset of neutrophils to attenuate inflammation and tissue damage without compromising innate immune responses.
Collapse
Affiliation(s)
- Jingu Lee
- Division of Hematology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Bo-Ram Jin
- Division of Hematology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| |
Collapse
|
5
|
Chen X, Chen B, Zhao H. Role of Neutrophils in Anti-Tumor Activity: Characteristics and Mechanisms of Action. Cancers (Basel) 2025; 17:1298. [PMID: 40282474 PMCID: PMC12025517 DOI: 10.3390/cancers17081298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
As one of the leading components in the immune system, neutrophils in the tumor microenvironment (TME) have received considerable attention in recent years. The tumor-killing effects of neutrophils in a variety of tumors have been reported. However, the functions of neutrophils in tumors remain to be completely elucidated, and both anti-tumor and tumor-promotion activities have been reported. This review focuses on the characteristics of neutrophils and their mechanisms of action in the TME, with an emphasis on their anti-tumor activity, including reactive oxygen species (ROS)-induced tumor killing, cytotoxic T lymphocytes (CTLs)-induced tumor killing, trogocytosis, cytotoxic enzymes, and trained immunity. Furthermore, the possible targets and methods of tumor treatment regimens for neutrophils are explored, with the aim of exploring the use of neutrophils in the future as a potential anti-tumor treatment strategy.
Collapse
Affiliation(s)
- Xin Chen
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an 710032, China;
| | - Bingdi Chen
- The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an 710032, China;
| |
Collapse
|
6
|
Angell CD, Sun SH, Lapurga G, Benner B, Quiroga D, Savardekar H, DiVincenzo MJ, Abood D, Stiff A, Duggan M, Handley D, Nagle E, Harrison Howard J, Shah H, Kendra KL, Carson WE. A comparison of myeloid-derived suppressor cell populations in patients with ulcerated vs non-ulcerated melanoma receiving immune checkpoint blockade. Melanoma Res 2025; 35:102-108. [PMID: 39883562 PMCID: PMC11867852 DOI: 10.1097/cmr.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) are expanded in cancer patients, have an intrinsic immunosuppressive function, and thus may play a role in resistance to immunotherapy. Ulceration of the melanoma primary is associated with more aggressive disease and is an independent prognostic factor for melanoma-specific survival. However, the underlying factors contributing to this more aggressive phenotype are not completely understood. The current study aims to correlate changes in circulating MDSC during immunotherapy in patients with ulcerated vs non-ulcerated melanoma primary tumors. Longitudinal changes in levels of circulating MDSCs were analyzed via flow cytometry in melanoma patients receiving immune checkpoint inhibitors (ICIs) and stratified by ulceration status. Following the initiation of therapy, the percentage of total MDSCs increased significantly in patients with both ulcerated ( P = 0.003) and non-ulcerated ( P < 0.001) tumors. When MDSCs were stratified by subset, the proportion of granulocytic MDSC (PMN-MDSC) decreased in patients with non-ulcerated tumors ( P = 0.023), while the proportion remained stable in patients with ulcerated tumors ( P = 0.121). The reduction in the proportion PMN-MDSC in non-ulcerated patients coincided with a statistically significant increase in the proportion of CD14 + /CD15 + MDSC ( P = 0.008), resulting in a greater proportion of CD14 + /CD15 + MDSC in non-ulcerated patients as compared to ulcerated melanoma patients following two infusions of ICIs (27.3 ± 19.2% vs 16.1 ± 19.2%; P = 0.008). The trajectories of the MDSC populations described here provide insight into the altered tumor microenvironment in ulcerated melanoma and highlight key changes in a cell population that could contribute to immunotherapy resistance.
Collapse
Affiliation(s)
- Colin D Angell
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Steven H Sun
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, Ohio
| | - Gabriella Lapurga
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Brooke Benner
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Dionisia Quiroga
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | | | | | - David Abood
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Andrew Stiff
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Megan Duggan
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Demond Handley
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Erin Nagle
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - J Harrison Howard
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Hiral Shah
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Kari L Kendra
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - William E Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
7
|
Caronni N, La Terza F, Frosio L, Ostuni R. IL-1β + macrophages and the control of pathogenic inflammation in cancer. Trends Immunol 2025:S1471-4906(25)00059-6. [PMID: 40169292 DOI: 10.1016/j.it.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025]
Abstract
While highlighting the complexity and heterogeneity of tumor immune microenvironments, the application of single-cell analyses in human cancers has identified recurrent subsets of tumor-associated macrophages (TAMs). Among these, interleukin (IL)-1β+ TAMs - cells with high levels of expression of inflammatory response and tissue repair genes, but with limited capacity to stimulate cytotoxic immunity - are emerging as key drivers of pathogenic inflammation in cancer. In this review we discuss recent literature defining the phenotypical, molecular, and functional properties of IL-1β+ TAMs, as well as their temporal dynamics and spatial organization. Elucidating the biology of these cells across tumor initiation, progression, metastasis, and therapy could inform the design and interpretation of clinical trials targeting IL-1β and/or other inflammatory factors in cancer immunotherapy.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Frosio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Wang C, Yang M, Zhong Y, Cao K, Wang X, Zhang C, Wang Y, He M, Lu J, Zhang G, Huang Y, Liu H. Immunosuppressive JAG2 + tumor-associated neutrophils hamper PD-1 blockade response in ovarian cancer by mediating the differentiation of effector regulatory T cells. Cancer Commun (Lond) 2025. [PMID: 40120139 DOI: 10.1002/cac2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Tumor-associated neutrophils (TANs) play a critical role in modulating immune responses and exhibit significant heterogeneity. Our previous study demonstrated that jagged canonical Notch ligand 2 (JAG2)+ TANs were associated with an immunosuppressive microenvironment in high-grade serous ovarian cancer (HGSOC), but the underlying mechanism remains unclear. This study aimed to elucidate the role of JAG2+ TANs in tumor immunosuppressive microenvironment in HGSOC. METHODS HGSOC samples were collected, with 274 samples constituting two independent cohorts (training and validation cohorts) and an additional 30 samples utilized to establish patient-derived tumor organoids (PDTOs). We characterized the number and phenotype of JAG2+ TANs by multiplex immunohistochemistry, flow cytometry, and single-cell RNA sequencing (scRNA-seq). We investigated the biological functions of JAG2 in immune evasion using in vitro co-culture systems, flow cytometry, tumor-bearing mouse models, and PDTOs. RESULTS JAG2+ TANs expressed elevated levels of immunosuppressive molecules, including programmed cell death ligand 1 and CD14, and had independent prognostic value for the overall survival of patients with HGSOC. scRNA-seq analysis revealed that JAG2+ TANs exhibited a terminally mature phenotype. The infiltration of JAG2+ TANs was positively correlated with the abundance of effector regulatory T cells (eTregs). Interaction with JAG2+ TANs skewed CD4+ T cells towards an eTreg phenotype, a process that was suppressed by the Notch inhibitor LY3039478 and induced by recombinant Jagged2. Furthermore, we demonstrated that JAG2+ TANs enhanced Notch signaling activation, ultimately promoting recombination signal binding protein for immunoglobulin kappa J region (RBPJ)-induced differentiation of naïve CD4+ T cells into eTregs. Clinically, JAG2+ TANs could serve as a biomarker for assessing immunotherapy resistance in various solid tumors. Pharmacological targeting of Notch signaling with LY3039478 or JAG2 neutralization antibodies enhanced the efficacy of programmed cell death protein 1 (PD-1) monoclonal antibodies (mAbs) in both xenograft and PDTO models. CONCLUSIONS The emergence of JAG2+ TANs is crucial for the differentiation of eTregs, which triggers immune evasion and resistance to anti-PD-1 therapy. Inhibiting Notch signaling with LY3039478 or JAG2 neutralization antibodies may overcome this anti-PD-1 resistance in HGSOC.
Collapse
Affiliation(s)
- Chenyang Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Moran Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Yujing Zhong
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Kankan Cao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Xueling Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Chen Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Yiying Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Mengdi He
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Jiaqi Lu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Guodong Zhang
- Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| | - Yan Huang
- Department of Gynecologic Oncology, Shanghai Cancer Center, Fudan University, Shanghai, P. R. China
| | - Haiou Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
9
|
Ingelshed K, Melssen MM, Spiegelberg D. Protocol for in vivo immune cell analysis in subcutaneous murine tumor models using advanced flow cytometry. STAR Protoc 2025; 6:103505. [PMID: 39823235 PMCID: PMC11786769 DOI: 10.1016/j.xpro.2024.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 01/19/2025] Open
Abstract
Here, we present a protocol for guiding tissue preparation and flow cytometric analysis in subcutaneous murine tumor models and secondary lymphoid organs. We describe steps for dissociating tumors, spleens, and lymph nodes to obtain single-cell suspensions. We then detail procedures for immune cell staining and analysis and gating strategies including the use of fluorescence-minus-one controls (FMOs). This approach provides valuable insights into the impact of cancer therapies on the tumor and systemic immune response. For complete details on the use and execution of this protocol, please refer to Ingelshed et al.1.
Collapse
Affiliation(s)
- Katrine Ingelshed
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden.
| | - Marit M Melssen
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden.
| | - Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; Department of Surgical Sciences, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
10
|
Guo R, Xie X, Ren Q, Liew PX. New insights on extramedullary granulopoiesis and neutrophil heterogeneity in the spleen and its importance in disease. J Leukoc Biol 2025; 117:qiae220. [PMID: 39514106 DOI: 10.1093/jleuko/qiae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
Neutrophils are traditionally viewed as uncomplicated exterminators that arrive quickly at sites of infection, kill pathogens, and then expire. However, recent studies employing modern transcriptomics coupled with novel imaging modalities have discovered that neutrophils exhibit significant heterogeneity within organs and have complex functional roles ranging from tissue homeostasis to cancer and chronic pathologies. This has revised the view that neutrophils are simplistic butchers, and there has been a resurgent interest in neutrophils. The spleen was described as a granulopoietic organ more than 4 decades ago, and studies indicate that neutrophils are briefly retained in the spleen before returning to circulation after proliferation. Transcriptomic studies have discovered that splenic neutrophils are heterogeneous and distinct compared with those in blood. This suggests that a unique hematopoietic niche exists in the splenic microenvironment, i.e., capable of programming neutrophils in the spleen. During severe systemic inflammation with an increased need of neutrophils, the spleen can adapt by producing neutrophils through emergency granulopoiesis. In this review, we describe the structure and microanatomy of the spleen and examine how cells within the splenic microenvironment help to regulate splenic granulopoiesis. A focus is placed on exploring the increase in splenic granulopoiesis to meet host needs during infection and inflammation. Emerging technologies such as single-cell RNA sequencing, which provide valuable insight into splenic neutrophil development and heterogeneity, are also discussed. Finally, we examine how tumors subvert this natural pathway in the spleen to generate granulocytic suppressor cells to promote tumor growth.
Collapse
Affiliation(s)
- Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Xuemei Xie
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, United States
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin 300020, China
- Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences, 288 Nanjing Road, Heping District, Tianjin 300020, China
| | - Pei Xiong Liew
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, United States
- Department of Cellular Biology and Anatomy, Augusta University, 1434 Laney Walker Blvd, Augusta, GA 30912, United States
| |
Collapse
|
11
|
Sui D, Song Y, Deng Y. Combination therapy with lipid prodrug liposomes reshapes disease-associated neutrophils to promote the cancer-immunity cycle. J Nanobiotechnology 2025; 23:132. [PMID: 39987076 PMCID: PMC11846314 DOI: 10.1186/s12951-025-03179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025] Open
Abstract
Neutrophils play a critical role in the cancer-immunity cycle and are associated with poor clinical outcomes. Recent research has primarily focused on the targeted delivery, phenotypic reversal, and reprogramming of tumor-associated neutrophils, while the impact of disease-associated neutrophils (DANs) on antitumor therapy remains understudied. Since liposomes, as drug delivery carriers, possess excellent biocompatibility and stability, making them particularly suitable for combination therapy, we optimized the formulation of asymmetrically branched polyethylene glycol-modified mitomycin C lipid prodrug liposomes (PEG2,5 K@MLP-L) and prepared hyaluronic acid and sialic acid ester stearate-co-modified dexamethasone palmitate liposomes (HA*SAS@DXP-L) to study DANs in normal, obese, aged, and septic mice. An increase in mitochondria and lysosomes in Ly-6G+CXCR2high DANs accelerated drug clearance, reduced CD3+CD8+ T cell activity in tumor-draining lymph nodes, and decreased CD8+ T cell infiltration in tumors. As the proportion of DANs increased, the efficacy of PEG2,5 K@MLP-L decreased. Combination therapy with PEG2,5 K@MLP-L and HA*SAS@DXP-L can reshape DANs, promote the cancer-immunity cycle, and enhance treatment efficacy. This study identifies key characteristics and functions of DANs and presents a promising strategy for improving clinical outcomes.
Collapse
Affiliation(s)
- Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang, 110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang, 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang, 110016, China.
| |
Collapse
|
12
|
Nishinakamura H, Shinya S, Irie T, Sakihama S, Naito T, Watanabe K, Sugiyama D, Tamiya M, Yoshida T, Hase T, Yoshida T, Karube K, Koyama S, Nishikawa H. Coactivation of innate immune suppressive cells induces acquired resistance against combined TLR agonism and PD-1 blockade. Sci Transl Med 2025; 17:eadk3160. [PMID: 39937883 DOI: 10.1126/scitranslmed.adk3160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025]
Abstract
Immune checkpoint blockade therapy has been successfully applied in clinical settings as a standard therapy for many cancer types, but its clinical efficacy is restricted to patients with immunologically hot tumors. Various strategies to modify the tumor microenvironment (TME), such as Toll-like receptor (TLR) agonists that can stimulate innate immunity, have been explored but have not been successful. Here, we show a mechanism of acquired resistance to combination treatment consisting of an agonist for multiple TLRs, OK-432 (Picibanil), and programmed cell death protein 1 (PD-1) blockade. Adding the TLR agonist failed to convert the TME from immunogenically cold to hot and did not augment antitumor immunity, particularly CD8+ T cell responses, in multiple animal models. The failure was attributed to the coactivation of innate suppressive cells, such as polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) expressing CXCR2, through high CXCL1 production by macrophages in the TME upon OK-432 treatment. A triple combination treatment with OK-432, PD-1 blockade, and a CXCR2 neutralizing antibody overcame the resistance induced by PMN-MDSCs, resulting in a stronger antitumor effect than that of any dual combinations or single treatments. The accumulation of PMN-MDSCs was similarly observed in the pleural effusions of patients with lung cancer after OK-432 administration. We propose that successful combination cancer immunotherapy intended to stimulate innate antitumor immunity requires modulation of unwanted activation of innate immune suppressive cells, including PMN-MDSCs.
Collapse
Affiliation(s)
- Hitomi Nishinakamura
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Sayoko Shinya
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
- Discovery and Research, Ono Pharmaceutical Co. Ltd., Osaka, 618-8585, Japan
| | - Takuma Irie
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Shugo Sakihama
- Laboratory of Hemato-Immunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara, 903-0125, Japan
| | - Takeo Naito
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Keisuke Watanabe
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Motohiro Tamiya
- Respiratory Medicine, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takao Yoshida
- Discovery and Research, Ono Pharmaceutical Co. Ltd., Osaka, 618-8585, Japan
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunobiology (CCII), Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Bi W, Li X, Jiang Y, Gao T, Zhao H, Han Q, Zhang J. Tumor-derived exosomes induce neutrophil infiltration and reprogramming to promote T-cell exhaustion in hepatocellular carcinoma. Theranostics 2025; 15:2852-2869. [PMID: 40083930 PMCID: PMC11898284 DOI: 10.7150/thno.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/22/2025] [Indexed: 03/16/2025] Open
Abstract
Rationale: High neutrophil infiltration in hepatocellular carcinoma (HCC) is associated with a poor prognosis in patients with HCC. Tumor-derived exosomes (TDEs) have been proven to be important in the reprogramming of tumor-associated neutrophils (TANs), but the roles and mechanisms have not been fully clarified. Methods: The roles of HCC-exosome-reprogrammed neutrophils on tumor progression were evaluated in the DEN/CCl4-induced HCC mouse model by blocking neutrophil infiltration, depleting neutrophil, and neutrophil adoptive transfer. Transcriptome sequencing and flow cytometry were performed to investigate the effects of HCC exosomes on the phenotype and function of neutrophils. The mobilization and apoptosis of neutrophils were evaluated by the Transwell experiment and Annexin V/7-AAD staining, respectively. Moreover, we detected the effects of HCC-exosome-reprogrammed neutrophils on T cells by flow cytometry. Next, we used the NF-κB pathway inhibitor JSH-23 and miR-362-5p inhibitor or mimic to determine the molecular mechanisms. Lastly, we constructed the miR-362-5p sponge to validate its targeted therapeutic potential. Results: We found that HCC exosomes induced neutrophil infiltration and T-cell exhaustion in the livers of DEN/CCl4-induced HCC mice and promoted tumor progression. Blocking neutrophil infiltration and depleting neutrophils diminished these promotive effects of HCC exosomes. In addition, HCC exosome-reprogrammed neutrophils display proinflammatory and protumor phenotypes, and can directly induce T-cell exhaustion in vitro. The transfer of HCC exosome-reprogrammed neutrophils exacerbated tumor progression and induced T-cell exhaustion, as evidenced by the downregulation of IFN-γ and TNF-α, and the upregulation of PD-1 and Tim3 in T cells. Mechanistically, we found that HCC exosomes upregulate the expression of miR-362-5p in neutrophils and activate the NF-κB signaling pathway by targeting CYLD, promoting the survival and recruitment of neutrophils. In HCC mice, blocking miR-362-5p suppressed neutrophil infiltration, attenuated T-cell exhaustion, and suppressed HCC progression. Conclusions: This study clarified the roles of HCC exosomes on neutrophil infiltration and reprogramming and identified a potential target miR-362-5p for HCC treatment.
Collapse
Affiliation(s)
- Wenchao Bi
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xue Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tongtong Gao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
14
|
Castillo JG, Fernandez S, Campbell T, Gonzalez-Ventura D, Williams J, Ybarra J, Hernandez NF, Wells E, Portnoy DA, DuPage M. Cellular mechanisms underlying beneficial versus detrimental effects of bacterial antitumor immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.15.580555. [PMID: 39975413 PMCID: PMC11838217 DOI: 10.1101/2024.02.15.580555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Bacteria engineered to express tumor antigens as a cancer vaccine have yielded mixed results. Here, we utilized an attenuated strain of Listeria monocytogenes ( ΔactA, Lm ) that does not express tumor antigen to explore the immunological response to Listeria itself in the context of intravenous (IV), intratumoral (IT), or a combination of IV+IT administration into tumor-bearing mice. Unexpectedly, we found that Lm persisted in tumors of immune competent mice, regardless of the administration route. While IT Lm alone led to the recruitment of immunosuppressive immune cells that promoted tumor growth, IV Lm followed by IT Lm controlled tumor growth. IV Lm vaccination generated a pool of anti- Lm cytotoxic CD8 T cells that killed Lm -infected non-tumor cells to control tumor growth both indirectly, by limiting cancer cell proliferation, and directly, by enhancing tumor-specific T cell responses. Our findings reveal a differential impact of IT Lm administration on tumor progression that depends on the presence of anti- Lm CD8 T cells, which alone are sufficient to promote therapeutic efficacy.
Collapse
|
15
|
Wu XQ, Ying F, Chung KPS, Leung CON, Leung RWH, So KKH, Lei MML, Chau WK, Tong M, Yu J, Wei D, Tai WCS, Ma S, Lu YY, Lee TKW. Intestinal Akkermansia muciniphila complements the efficacy of PD1 therapy in MAFLD-related hepatocellular carcinoma. Cell Rep Med 2025; 6:101900. [PMID: 39798567 PMCID: PMC11866522 DOI: 10.1016/j.xcrm.2024.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025]
Abstract
Immune checkpoint inhibitors are not effective for metabolic dysfunction-associated fatty liver disease (MAFLD)-hepatocellular carcinoma (HCC) patients, and identifying the key gut microbiota that contributes to immune resistance in these patients is crucial. Analysis using 16S rRNA sequencing reveals a decrease in Akkermansia muciniphila (Akk) during MAFLD-promoted HCC development. Administration of Akk ameliorates liver steatosis and effectively attenuates the tumor growth in orthotopic MAFLD-HCC mouse models. Akk repairs the intestinal lining, with a decrease in the serum lipopolysaccharide (LPS) and bile acid metabolites, along with decrease in the populations of monocytic myeloid-derived suppressor cells (m-MDSCs) and M2 macrophages. Akk in combination with PD1 treatment exerts maximal growth-suppressive effect in multiple MAFLD-HCC mouse models with increased infiltration and activation of T cells. Clinically, low Akk levels are correlated with PD1 resistance and poor progression-free survival. In conclusion, Akk is involved in the immune resistance of MAFLD-HCC and serves as a predictive biomarker for PD1 response in HCC.
Collapse
Affiliation(s)
- Xue Qian Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Fan Ying
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Katherine Po Sin Chung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Carmen Oi Ning Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Rainbow Wing Hei Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Karl Kam Hei So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martina Mang Leng Lei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wing Ki Chau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Man Tong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Wei
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China
| | - Yin Ying Lu
- Comprehensive Liver Cancer Center, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
16
|
LI X, ZHOU J, ZHAO C, ZHANG Y. [Research Progress of Tumor-associated Neutrophils
in the Occurrence and Development of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2025; 28:55-62. [PMID: 39988440 PMCID: PMC11848648 DOI: 10.3779/j.issn.1009-3419.2025.101.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Indexed: 02/25/2025]
Abstract
Lung cancer is the malignant tumor with the highest mortality rate worldwide. The tumor microenvironment (TME) is a key factor in the progression of lung cancer, composed of tumor cells, signaling molecules, fibroblasts, immune cells, etc. Among them, tumor associated neutrophil (TAN), as an important component of immune cells in the TME, plays multiple roles in tumor cell proliferation, invasion, angiogenesis, and metastasis due to its aberrant function, and is closely associated with poor prognosis. However, there are limited researches on the mechanism of TAN in lung cancer. This review aims to provide more scientific basis for studying the therapeutic targets of lung cancer and developing new drugs by elucidating the different subtypes of TAN and their mechanisms of action in the occurrence and development of lung cancer.
.
Collapse
|
17
|
Ng M, Cerezo-Wallis D, Ng LG, Hidalgo A. Adaptations of neutrophils in cancer. Immunity 2025; 58:40-58. [PMID: 39813993 DOI: 10.1016/j.immuni.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
There is a renewed interest in neutrophil biology, largely instigated by their prominence in cancer. From an immunologist's perspective, a conceptual breakthrough is the realization that prototypical inflammatory, cytotoxic leukocytes can be tamed to promote the survival and growth of other cells. This has sparked interest in defining the biological principles and molecular mechanisms driving the adaptation of neutrophils to cancer. Yet, many questions remain: is this adaptation mediated by reprogramming mature neutrophils inside the tumoral mass, or rather by rewiring granulopoiesis in the bone marrow? Why, in some instances, are neutrophils beneficial and in others detrimental to cancer? How many different functional programs can be induced in neutrophils by tumors, and is this dependent on the type of tumor? This review summarizes what we know about these questions and discusses therapeutic strategies based on our incipient knowledge of how neutrophils adapt to cancer.
Collapse
Affiliation(s)
- Melissa Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore.
| | - Daniela Cerezo-Wallis
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Eruslanov E, Nefedova Y, Gabrilovich DI. The heterogeneity of neutrophils in cancer and its implication for therapeutic targeting. Nat Immunol 2025; 26:17-28. [PMID: 39747431 PMCID: PMC12055240 DOI: 10.1038/s41590-024-02029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Neutrophils have a pivotal role in safeguarding the host against pathogens and facilitating tissue remodeling. They possess a large array of tools essential for executing these functions. Neutrophils have a critical role in cancer, where they are largely associated with negative clinical outcome and resistance to therapy. However, the specific role of neutrophils in cancer is complex and controversial, owing to their high functional diversity and acute sensitivity to the microenvironment. In this Perspective, we discuss the accumulated evidence that suggests that the functional diversity of neutrophils can be ascribed to two principal functional states, each with distinct characteristics: classically activated neutrophils and pathologically activated immunosuppressive myeloid-derived suppressor cells. We discuss how the antimicrobial factors in neutrophils can contribute to tumor progression and the fundamental mechanisms that govern the pathologically activated myeloid-derived suppressor cells. These functional states play divergent roles in cancer and thus require separate consideration in therapeutic targeting.
Collapse
Affiliation(s)
- Evgeniy Eruslanov
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
19
|
DU N, Wan H, Guo H, Zhang X, Wu X. [Myeloid-derived suppressor cells as important factors and potential targets for breast cancer progression]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:785-795. [PMID: 39686697 PMCID: PMC11736353 DOI: 10.3724/zdxbyxb-2024-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Recurrence and metastasis remain the leading cause of death in breast cancer patients due to the lack of effective treatment. A microenvironment suitable for cancer cell growth, referred to as pre-metastatic niche (PMN), is formed in distant organs before metastasis occurs. Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of immature myeloid cells with immunosuppressive effects. They can expand in large numbers in breast cancer patients and participate in the formation of PMN. MDSCs can remodel the extracellular matrix of pulmonary vascular endothelial cells and recruit cancer stem cells to promote the lung metastasis of breast cancer. Furthermore, MDSCs facilitate immune evasion of breast cancer cells to impact the efficacy of immunotherapy. It is proposed that MDSCs represent a potential therapeutic target for the inhibition of recurrence and metastasis in breast cancer. Therapeutic strategies targeting MDSCs have shown promising efficacy in preclinical studies and clinical trials. This review presents a summary of the principal factors involved in the recruitment and activation of MDSCs during the formation of PMN, and outlines MDSCs functions such as immunosuppression and the current targeted therapies against MDSCs, aiming to provide new ideas for the treatment of distant metastases in breast cancer.
Collapse
Affiliation(s)
- Nannan DU
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China.
| | - Hua Wan
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Hailing Guo
- Department of Orthopaedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xukuan Zhang
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xueqing Wu
- Breast Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China.
| |
Collapse
|
20
|
Zhao J, Wu D, Liu J, Zhang Y, Li C, Zhao W, Cao P, Wu S, Li M, Li W, Liu Y, Huang Y, Cao Y, Sun Y, Yang E, Ji N, Yang J, Chen J. Disease-specific suppressive granulocytes participate in glioma progression. Cell Rep 2024; 43:115014. [PMID: 39630582 DOI: 10.1016/j.celrep.2024.115014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma represents one of the most aggressive cancers, characterized by severely limited therapeutic options. Despite extensive investigations into this brain malignancy, cellular and molecular components governing its immunosuppressive microenvironment remain incompletely understood. Here, we identify a distinct neutrophil subpopulation, termed disease-specific suppressive granulocytes (DSSGs), present in human glioblastoma and lower-grade gliomas. DSSGs exhibit the concurrent expression of multiple immunosuppressive and immunomodulatory signals, and their abundance strongly correlates with glioma grades and poor clinical outcomes. Genetic disruption of neutrophil recruitment in immunocompetent mouse models of gliomas, achieved through Cxcl1 knockout in glioma cells or host-specific Cxcr2 deletion or diphtheria toxin A-mediated neutrophil depletion, can significantly enhance antitumor immunity and prolong survival. Further, we reveal that the skull bone marrow and meninges can be the primary sources of neutrophils and DSSGs in human and mouse glioma tumors. These findings demonstrate a critical mechanism underlying the establishment of the immunosuppressive microenvironment in gliomas.
Collapse
Affiliation(s)
- Jiarui Zhao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Di Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Jiaqi Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | | | - Penghui Cao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Shixuan Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Mengyuan Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Wenlong Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yiwen Sun
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Peking University Third Hospital Cancer Center, Beijing 100191, China.
| | - Jian Chen
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
21
|
Masui H, Kawada K, Obama K. Neutrophil and Colorectal Cancer. Int J Mol Sci 2024; 26:6. [PMID: 39795864 PMCID: PMC11720084 DOI: 10.3390/ijms26010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Colorectal cancer (CRC) is often associated with metastasis and recurrence and is the leading cause of cancer-related mortality. In the progression of CRC, recent studies have highlighted the critical role of neutrophils, particularly tumor-associated neutrophils (TANs). TANs have both tumor-promoting and tumor-suppressing activities, contributing to metastasis, immunosuppression, angiogenesis, and epithelial-to-mesenchymal transition. Tumor-promoting TANs promote tumor growth by releasing proteases, reactive oxygen species, and cytokines, whereas tumor-suppressing TANs enhance immune responses by activating T cells and natural killer cells. Understanding the mechanisms underlying TAN mobilization, plasticity, and their role in the tumor microenvironment has revealed potential therapeutic targets. This review provides a comprehensive overview of TAN biology in CRC and discusses both the tumor-promoting and tumor-suppressing functions of neutrophils. Novel therapeutic approaches targeting TANs, such as chemokine receptor antagonists, aim to modulate neutrophil reprogramming and offer promising avenues for improving treatment outcomes of CRC.
Collapse
Affiliation(s)
- Hideyuki Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
- Department of Surgery, Hirakata Kohsai Hospital, Osaka 573-0153, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
- Department of Surgery, Kurashiki Central Hospital, Okayama 710-8602, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.M.); (K.O.)
| |
Collapse
|
22
|
Bhardwaj V, Yang ZZ, Jalali S, Villasboas JC, Mudappathi R, Wang J, Mukherjee P, Paludo J, Tang X, Kim HJ, Krull JE, Wenzl K, Novak AJ, Mondello P, Ansell SM. Expanded tumor-associated polymorphonuclear myeloid-derived suppressor cells in Waldenstrom macroglobulinemia display immune suppressive activity. Blood Cancer J 2024; 14:217. [PMID: 39695096 DOI: 10.1038/s41408-024-01173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 12/20/2024] Open
Abstract
The role of the bone marrow (BM) microenvironment in regulating the antitumor immune response in Waldenstrom macroglobulinemia (WM) remains poorly understood. Here we transcriptionally and phenotypically profiled non-malignant (CD19- CD138-) BM cells from WM patients with a focus on myeloid derived suppressive cells (MDSCs) to provide a deeper understanding of their role in WM. We found that HLA-DRlowCD11b+CD33+ MDSCs were significantly increased in WM patients as compared to normal controls, with an expansion of predominantly polymorphonuclear (PMN)-MDSCs. Single-cell immunogenomic profiling of WM MDSCs identified an immune-suppressive gene signature with upregulated inflammatory pathways associated with interferon and tumor necrosis factor (TNF) signaling. Gene signatures associated with an inflammatory and immune suppressive environment were predominately expressed in PMN-MDSCs. In vitro, WM PMN-MDSCs demonstrated robust T-cell suppression and their viability and expansion was notably enhanced by granulocyte colony stimulating factor (G-CSF) and TNFα. Furthermore, BM malignant B-cells attracted PMN-MDSCs to a greater degree than monocytic MDSCs. Collectively, these data suggest that malignant WM B cells actively recruit PMN-MDSCs which promote an immunosuppressive BM microenvironment through a direct T cell inhibition, while release of G-CSF/TNFα in the microenvironment further promotes PMN-MDSC expansion and in turn immune suppression. Targeting PMN-MDSCs may therefore represent a potential therapeutic strategy in patients with WM.
Collapse
Affiliation(s)
- Vaishali Bhardwaj
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Zhi-Zhang Yang
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Shahrzad Jalali
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Jose C Villasboas
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Rekha Mudappathi
- Department of Quantitative Health Sciences and Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Junwen Wang
- Department of Quantitative Health Sciences and Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | - Jonas Paludo
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Xinyi Tang
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Hyo Jin Kim
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Jordan E Krull
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Kerstin Wenzl
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA
| | - Patrizia Mondello
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA.
| | - Stephen M Ansell
- Division of Hematology and Internal Medicine Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
Sant'Ana AN, Dias CK, Nunes VBS, Farias MG, Alegretti AP, Portela P, Calvache ET, Meirelles MF, Daudt LE, Michalowski MB, Paz AA, Figueiró F. Prognostic value of myeloid-derived suppressor-like cells in acute myeloid leukemia: insights from immunophenotyping and clinical correlations. Immunol Res 2024; 73:11. [PMID: 39673675 DOI: 10.1007/s12026-024-09558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population that acts on both innate and adaptive immunity, fostering immune escape in tumors and contributing to cancer progression. Despite the lack of definitive markers for immunophenotyping MDSCs, particularly the polymorphonuclear (PMN-MDSC) subset, these cells seem to play a crucial role in acute myeloid leukemia (AML) patients' prognosis. Additionally, the maturation stage of MDSCs remains a subject of debate and is largely unknown within the AML context. In this study, we conducted a retrospective analysis of flow cytometry immunophenotyping data obtained at the diagnosis of AML patients. We explored how the enrichment of neutrophil maturation stages, the frequency of PMN-MDSC-like cells and monocytic MDSC-like population (M-MDSC-like), and the ratios of MDSC-like cells to T lymphocytes correlate with relevant prognostic indicators. Our findings revealed that CD45+CD33lowHLA-DR-CD36+ PMN-MDSC-like cells and mature CD13+CD11b+CD10+ neutrophils correlate poor survival in AML patients. Furthermore, PMN-MDSC-like cells, and their ratio to T lymphocytes, are elevated in patients with adverse-risk stratification. Similarly, the M-MDSC-like population is increased in FLT3-ITD mutation carrier patients. Notably, we observed confirmational evidence of CD36 relevance in the AML context, which has emerged recently as a potential marker for PMN-MDSCs. Our study highlights significant findings associating increased MDSC-like subsets and poor prognostic factors in AML.
Collapse
MESH Headings
- Humans
- Myeloid-Derived Suppressor Cells/immunology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Immunophenotyping
- Prognosis
- Female
- Male
- Middle Aged
- Adult
- Aged
- Neutrophils/immunology
- Retrospective Studies
- Flow Cytometry
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Antigens, CD/metabolism
- Aged, 80 and over
- T-Lymphocytes/immunology
- Young Adult
- Mutation
Collapse
Affiliation(s)
- Alexia N Sant'Ana
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Camila K Dias
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Vitória B S Nunes
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Mariela G Farias
- Unidade de Hematologia e Citometria de Fluxo, Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Ana P Alegretti
- Setor de Inovação, Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Pâmela Portela
- Unidade de Hematologia e Citometria de Fluxo, Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Ebellins T Calvache
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Maria F Meirelles
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Liane E Daudt
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Gradução em Saúde da Criança e do Adolescente, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Mariana B Michalowski
- Programa de Pós-Gradução em Saúde da Criança e do Adolescente, UFRGS, Porto Alegre, RS, 90035-003, Brazil
- Serviço de Oncologia Pediátrica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Alessandra A Paz
- Serviço de Hematologia Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-903, Brazil
| | - Fabrício Figueiró
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
24
|
Horn LA, Lind H, Fousek K, Qin H, Rajabian N, Angstadt S, Hsiao-Sanchez N, Medina-Enriquez MM, Kelly MD, Allen CT, Hammoudeh SM, Weigert R, Maeda DY, Zebala JA, Palena C. Inhibition of the chemokine receptors CXCR1 and CXCR2 synergizes with docetaxel for effective tumor control and remodeling of the immune microenvironment of HPV-negative head and neck cancer models. J Exp Clin Cancer Res 2024; 43:318. [PMID: 39639338 PMCID: PMC11619435 DOI: 10.1186/s13046-024-03240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Relapsed head and neck squamous cell carcinoma (HNSCC) unrelated to HPV infection carries a poor prognosis. Novel approaches are needed to improve the clinical outcome and prolong survival in this patient population which has poor long-term responses to immune checkpoint blockade. This study evaluated the chemokine receptors CXCR1 and CXCR2 as potential novel targets for the treatment of HPV-negative HNSCC. METHODS Expression of IL-8, CXCR1, and CXCR2 was investigated in HNSCC tissues and human cell line models. Inhibition of CXCR1/2 with the clinical stage, small molecule inhibitor, SX-682, was evaluated in vitro and in vivo using human xenografts and murine models of HNSCC, both as a monotherapy and in combination with the taxane chemotherapy, docetaxel. RESULTS High levels of IL-8, CXCR1, and CXCR2 expression were observed in HPV-negative compared to HPV-positive HNSCC tumors or cell lines. Treatment of HPV-negative HNSCC cell lines in vitro with SX-682 sensitized the tumor cells to the cytotoxic activity of docetaxel. In vivo, treatment of HNSCC xenograft models with the combination of SX-682 plus docetaxel led to strong anti-tumor control resulting in tumor cures. This phenomenon was associated with an increase of microRNA-200c and a decreased expression of its target, tubulin beta-3, a protein involved in resistance to microtubule-targeting chemotherapies. In vivo treatment of a murine syngeneic model of HNSCC with SX-682 plus docetaxel led to potent anti-tumor efficacy through a simultaneous decrease in suppressive CXCR2+ polymorphonuclear, myeloid-derived suppressor cells and an increase in cytotoxic CD8+ T cells in the combination therapy treated tumors compared to controls. CONCLUSIONS This study reports, for the first time, mechanistic findings through which the combination of CXCR1/2 inhibition and docetaxel chemotherapy exhibits synergy in models of HPV-negative HNSCC. These findings provide rationale for the use of this novel combination approach to treat HPV-negative HNSCC patients and for future combination studies of CXCR1/2 inhibition, docetaxel, and immune-based therapies.
Collapse
Affiliation(s)
- Lucas A Horn
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hanne Lind
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristen Fousek
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haiyan Qin
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nika Rajabian
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shantel Angstadt
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Hsiao-Sanchez
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miriam M Medina-Enriquez
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marcus D Kelly
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah M Hammoudeh
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Claudia Palena
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Rahal Z, Liu Y, Peng F, Yang S, Jamal MA, Sharma M, Moreno H, Damania AV, Wong MC, Ross MC, Sinjab A, Zhou T, Chen M, Reischle IT, Feng J, Chukwuocha C, Tang E, Abaya C, Lim JK, Leung CH, Lin HY, Deboever N, Lee JJ, Sepesi B, Gibbons DL, Wargo JA, Fujimoto J, Wang L, Petrosino JF, Ajami NJ, Jenq RR, Moghaddam SJ, Cascone T, Hoffman K, Kadara H. Inflammation Mediated by Gut Microbiome Alterations Promotes Lung Cancer Development and an Immunosuppressed Tumor Microenvironment. Cancer Immunol Res 2024; 12:1736-1752. [PMID: 39269772 PMCID: PMC11614694 DOI: 10.1158/2326-6066.cir-24-0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Accumulating evidence indicates that the gut microbiome influences cancer progression and therapy. We recently showed that progressive changes in gut microbial diversity and composition are closely coupled with tobacco-associated lung adenocarcinoma in a human-relevant mouse model. Furthermore, we demonstrated that the loss of the antimicrobial protein Lcn2 in these mice exacerbates protumor inflammatory phenotypes while further reducing microbial diversity. Yet, how gut microbiome alterations impinge on lung adenocarcinoma development remains poorly understood. In this study, we investigated the role of gut microbiome changes in lung adenocarcinoma development using fecal microbiota transfer and delineated a pathway by which gut microbiome alterations incurred by loss of Lcn2 fostered the proliferation of proinflammatory bacteria of the genus Alistipes, triggering gut inflammation. This inflammation propagated systemically, exerting immunosuppression within the tumor microenvironment, augmenting tumor growth through an IL6-dependent mechanism and dampening response to immunotherapy. Corroborating our preclinical findings, we found that patients with lung adenocarcinoma with a higher relative abundance of Alistipes species in the gut showed diminished response to neoadjuvant immunotherapy. These insights reveal the role of microbiome-induced inflammation in lung adenocarcinoma and present new potential targets for interception and therapy.
Collapse
Affiliation(s)
- Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuejiang Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sujuan Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed A. Jamal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manvi Sharma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah Moreno
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ashish V. Damania
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Platform for Innovative Microbiome and Translational Research (PRIME-TR), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew C. Wong
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Platform for Innovative Microbiome and Translational Research (PRIME-TR), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew C. Ross
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tieling Zhou
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minyue Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| | - Inti Tarifa Reischle
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiping Feng
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chidera Chukwuocha
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth Tang
- Department of Physics, University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Camille Abaya
- Department of Biology, Trinity University, San Antonio, TX, USA
| | - Jamie K Lim
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, John Hopkins University, Baltimore, MD, USA
| | - Cheuk Hong Leung
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather Y. Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathaniel Deboever
- Department of Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, USA
| | - Jack J. Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Departments of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L. Gibbons
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A. Wargo
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Platform for Innovative Microbiome and Translational Research (PRIME-TR), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junya Fujimoto
- Clinical Research Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Linghua Wang
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Nadim J Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Departments of Platform for Innovative Microbiome and Translational Research (PRIME-TR), The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert R. Jenq
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyed Javad Moghaddam
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Cascone
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristi Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| |
Collapse
|
26
|
Rabas N, Ferreira RMM, Di Blasio S, Malanchi I. Cancer-induced systemic pre-conditioning of distant organs: building a niche for metastatic cells. Nat Rev Cancer 2024; 24:829-849. [PMID: 39390247 DOI: 10.1038/s41568-024-00752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/12/2024]
Abstract
From their early genesis, tumour cells integrate with the surrounding normal cells to form an abnormal structure that is tightly integrated with the host organism via blood and lymphatic vessels and even neural associations. Using these connections, emerging cancers send a plethora of mediators that efficiently perturb the entire organism and induce changes in distant tissues. These perturbations serendipitously favour early metastatic establishment by promoting a more favourable tissue environment (niche) that supports the persistence of disseminated tumour cells within a foreign tissue. Because the establishment of early metastatic niches represents a key limiting step for metastasis, the creation of a more suitable pre-conditioned tissue strongly enhances metastatic success. In this Review, we provide an updated view of the mechanisms and mediators of primary tumours described so far that induce a pro-metastatic conditioning of distant organs, which favours early metastatic niche formation. We reflect on the nature of cancer-induced systemic conditioning, considering that non-cancer-dependent perturbations of tissue homeostasis are also able to trigger pro-metastatic conditioning. We argue that a more holistic view of the processes catalysing metastatic progression is needed to identify preventive or therapeutic opportunities.
Collapse
Affiliation(s)
- Nicolas Rabas
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Rute M M Ferreira
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Stefania Di Blasio
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
27
|
Liu QQ, Li HZ, Li SX, Bao Y, Wang TC, Hu C, Xiao YD. CD36-mediated accumulation of MDSCs exerts abscopal immunosuppressive responses in hepatocellular carcinoma after insufficient microwave ablation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167493. [PMID: 39233261 DOI: 10.1016/j.bbadis.2024.167493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The immune landscape of distant unablated tumors following insufficient microwave ablation (iMWA) in hepatocellular carcinoma (HCC) remains to be clarified. The objective of this study is to define the abscopal immune landscape in distant unablated tumor before and after iMWA for HCC. Two treatment-naive patients were recruited for tumor tissue sampling, of each with two HCC lesions. Tumor samples were obtained at before and after microwave ablation in distant unablated sites for single-cell RNA sequencing (scRNA-seq). Mouse model with bilateral hepatoma tumors were developed, and distant unablated tumors were analyzed using multicolor immunofluorescence, RNA sequencing and flow cytometry. The scRNA-seq revealed that a reduced proportion of CD8+ T cells and an increased proportion of myeloid-derived suppressor cells (MDSCs) were observed in the distant unablated tumor microenvironment (TME). A notable disruption was observed in the lipid metabolism of tumor-associated immune cells, accompanied by an upregulated expression of CD36 in tumor-infiltrating immune cells in distant unablated tumor. The administration of a CD36 inhibitor has been demonstrated to ameliorate the adverse effects induced by iMWA, primarily by reinstating the anti-tumor responses of T cells in distant unablated tumor. These findings explain the recurrence and progression of tumors after iMWA and provide a new target of immunotherapy for HCC.
Collapse
Affiliation(s)
- Qing-Qing Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Hui-Zhou Li
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China.
| | - Shu-Xian Li
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Yan Bao
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Tian-Cheng Wang
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Chao Hu
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Yu-Dong Xiao
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
28
|
Akkari L, Amit I, Bronte V, Fridlender ZG, Gabrilovich DI, Ginhoux F, Hedrick CC, Ostrand-Rosenberg S. Defining myeloid-derived suppressor cells. Nat Rev Immunol 2024; 24:850-857. [PMID: 38969773 DOI: 10.1038/s41577-024-01062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Affiliation(s)
- Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | | | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France.
- Paris-Saclay University, Paris, France.
| | - Catherine C Hedrick
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA.
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Suzanne Ostrand-Rosenberg
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
29
|
Van Roy Z, Kak G, Korshoj LE, Menousek JP, Heim CE, Fallet RW, Campbell JR, Geary CR, Liu B, Gorantla S, Poluektova LY, Duan B, Campbell WS, Thorell WE, Kielian T. Single-cell profiling reveals a conserved role for hypoxia-inducible factor signaling during human craniotomy infection. Cell Rep Med 2024; 5:101790. [PMID: 39426374 PMCID: PMC11604514 DOI: 10.1016/j.xcrm.2024.101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/16/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Neurosurgeries complicated by infection are associated with prolonged treatment and significant morbidity. Craniotomy is a common neurosurgical procedure; however, the cellular and molecular signatures associated with craniotomy infection in human subjects are unknown. A retrospective study of over 2,500 craniotomies reveals diverse patient demographics, pathogen identity, and surgical landscapes associated with infection. Leukocyte profiling in patient tissues from craniotomy infection characterizes a predominance of granulocytic myeloid-derived suppressor cells that may arise from transmigrated blood neutrophils, based on single-cell RNA sequencing (scRNA-seq) trajectory analysis. Single-cell transcriptomic analysis identifies metabolic shifts in tissue leukocytes, including a conserved hypoxia-inducible factor (HIF) signature. The importance of HIF signaling was validated using a mouse model of Staphylococcus aureus craniotomy infection, where HIF inhibition increases chemokine production and leukocyte recruitment, exacerbating tissue pathology. These findings establish conserved metabolic and transcriptional signatures that may represent promising future therapeutic targets for human craniotomy infection in the face of increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gunjan Kak
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lee E Korshoj
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joseph P Menousek
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cortney E Heim
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rachel W Fallet
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James R Campbell
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carol R Geary
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bo Liu
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - W Scott Campbell
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - William E Thorell
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
30
|
Lin C, Herlihy SE, Li M, Deng H, Kim R, Bernabei L, Rosenwasser M, Gabrilovich DI, Vogl DT, Nefedova Y. Neutrophil extracellular traps promote tumor chemoresistance to anthracyclines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622533. [PMID: 39605505 PMCID: PMC11601256 DOI: 10.1101/2024.11.07.622533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The microenvironment plays an important role in promoting tumor cell chemoresistance, but the mechanisms responsible for this effect are not clear. Here, using models of multiple myeloma (MM) and solid cancers, we demonstrate a novel mechanism mediated by neutrophils, a major cell population in the bone marrow (BM), that protects cancer cells from chemotherapeutics. We show that in response to tumor-derived soluble factors, BM neutrophils release their DNA in the form of neutrophil extracellular traps (NETs). Cell-free DNA derived from NETs is then taken up by tumor cells via endocytosis and localizes to the cytoplasm. We found that both NETs and cell-free DNA taken up by tumor cells can bind anthracyclines, leading to tumor cell resistance to this class of chemotherapeutic agents. Targeting cell-free DNA with Pulmozyme or blocking NET formation with a PAD4 inhibitor abrogates the chemoprotective effect of neutrophils and restores sensitivity of tumor cells to anthracyclines.
Collapse
|
31
|
Gao J, Liu J, Lu J, Zhang X, Zhang W, Li Q, Cai J, Li M, Gan Y, Tang Y, Wu S. SKAP1 Expression in Cancer Cells Enhances Colon Tumor Growth and Impairs Cytotoxic Immunity by Promoting Neutrophil Extracellular Trap Formation via the NFATc1/CXCL8 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403430. [PMID: 39269257 PMCID: PMC11538704 DOI: 10.1002/advs.202403430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/15/2024] [Indexed: 09/15/2024]
Abstract
The mechanisms underlying the development and progression of colon cancer are not fully understood. Herein, Src kinase associated phosphoprotein 1 (SKAP1), an immune cell adaptor, is identified as a novel colon cancer-related gene. SKAP1 expression is significantly increased in colon cancer cells. High SKAP1 levels are independently predictive of poor survival in patients with colon cancer. Notably, SKAP1 expression in colon cancer cells exerted a significant tumor-promoting effect in vivo rather than in vitro. Screening of tumor-infiltrating immune cells revealed the involvement of neutrophils in SKAP1-induced colon tumor promotion. Enhanced formation of neutrophil extracellular traps (NETs) is found to be a key downstream event that contributed to the pro-tumor role of SKAP1. In colon cancer cells, SKAP1 increased the expression of C-X-C motif chemokine ligand 8 (CXCL8) via nuclear factor of activated T cells c1 (NFATc1). The blockade of CXCL8 or NFATc1 largely attenuated neutrophil infiltration, NET formation, and tumor promotion induced by SKAP1. Furthermore, inhibiting SKAP1-induced NET significantly enhanced the antitumor efficiency of adoptive natural killer cell therapy in colon tumor models. In conclusion, SKAP1 significantly promotes colon cancer growth via the cancer cell/neutrophil NFATc1/CXCL8/NET axis, suggesting that SKAP1 is a potential target for colon cancer therapy.
Collapse
Affiliation(s)
- Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Jun Liu
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Jilin Lu
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Xiaofei Zhang
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Qian Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Jiayi Cai
- Clinical Research UnitRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Mengjun Li
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Yu Gan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200032China
| | - Yifan Tang
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| | - Shuangjie Wu
- Department of General SurgeryHuashan Hospital (Hongqiao Campus)Fudan UniversityShanghai201107China
| |
Collapse
|
32
|
Poschel DB, Klement JD, Merting AD, Lu C, Zhao Y, Yang D, Xiao W, Zhu H, Rajeshwari P, Toscano M, Jones K, Barrett A, Bollag RJ, Fallon PG, Shi H, Liu K. PD-L1 restrains PD-1 +Nrp1 lo Treg cells to suppress inflammation-driven colorectal tumorigenesis. Cell Rep 2024; 43:114819. [PMID: 39368087 PMCID: PMC11574783 DOI: 10.1016/j.celrep.2024.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/18/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024] Open
Abstract
T cells function not only as an essential component of host cancer immunosurveillance but also as a regulator of colonic inflammation, a process that promotes colorectal cancer. Programmed death-ligand 1 (PD-L1) is a T cell-negative regulator, but its role in regulation of T cell functions in the context of colorectal cancer is unknown. We report that global deletion of Cd274 results in increased colonic inflammation, PD-1+ T cells, and inflammation-driven colorectal tumorigenesis in mice. Single-cell RNA sequencing (scRNA-seq) analysis revealed that PD-L1 suppresses subpopulations of programmed cell death protein 1 (PD-1)+Nrp1lo regulatory T (Treg) cells and interleukin (IL) 6+ neutrophils in colorectal tumor. Treg cells produce transforming growth factor (TGF) β to recruit IL6+ neutrophils. Neutrophils produce IL6 to inhibit activation of tumor-specific cytotoxic T lymphocytes (CTLs) and primary CTLs. Accordingly, IL6 blockade immunotherapy increases CTL activation and suppresses colon tumor growth in vivo. Our findings determine that PD-L1 restrains PD-1+Nrp1loTGFβ+ Treg cells to suppress IL6+ neutrophil tumor recruitment to sustain CTL activation to control inflammation-driven colorectal tumorigenesis.
Collapse
Affiliation(s)
- Dakota B Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Alyssa D Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Wei Xiao
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | | | | | - Kimya Jones
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Amanda Barrett
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Roni J Bollag
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA.
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
33
|
Calì B, Troiani M, Bressan S, Attanasio G, Merler S, Moscarda V, Mosole S, Ricci E, Guo C, Yuan W, Gallagher L, Lundberg A, Bernett I, Figueiredo I, Arzola RA, Abreut EB, D'Ambrosio M, Bancaro N, Brina D, Zumerle S, Pasquini E, Maddalena M, Lai P, Colucci M, Pernigoni N, Rinaldi A, Minardi D, Morlacco A, Moro FD, Sabbadin M, Galuppini F, Fassan M, Rüschoff JH, Moch H, Rescigno P, Francini E, Saieva C, Modesti M, Theurillat JP, Gillessen S, Wilgenbus P, Graf C, Ruf W, de Bono J, Alimonti A. Coagulation factor X promotes resistance to androgen-deprivation therapy in prostate cancer. Cancer Cell 2024; 42:1676-1692.e11. [PMID: 39303726 DOI: 10.1016/j.ccell.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Although hypercoagulability is commonly associated with malignancies, whether coagulation factors directly affect tumor cell proliferation remains unclear. Herein, by performing single-cell RNA sequencing (scRNA-seq) of the prostate tumor microenvironment (TME) of mouse models of castration-resistant prostate cancer (CRPC), we report that immunosuppressive neutrophils (PMN-MDSCs) are a key extra-hepatic source of coagulation factor X (FX). FX activation within the TME enhances androgen-independent tumor growth by activating the protease-activated receptor 2 (PAR2) and the phosphorylation of ERK1/2 in tumor cells. Genetic and pharmacological inhibition of factor Xa (FXa) antagonizes the oncogenic activity of PMN-MDSCs, reduces tumor progression, and synergizes with enzalutamide therapy. Intriguingly, F10high PMN-MDSCs express the surface marker CD84 and CD84 ligation enhances F10 expression. Elevated levels of FX, CD84, and PAR2 in prostate tumors associate with worse survival in CRPC patients. This study provides evidence that FXa directly promotes cancer and highlights additional targets for PMN-MDSCs for cancer therapies.
Collapse
Affiliation(s)
- Bianca Calì
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Martina Troiani
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Silvia Bressan
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | - Giuseppe Attanasio
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Sara Merler
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Section of Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Viola Moscarda
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Section of Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Simone Mosole
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Elena Ricci
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Christina Guo
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Wei Yuan
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Lewis Gallagher
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Arian Lundberg
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Ilona Bernett
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Ines Figueiredo
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Rydell Alvarez Arzola
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Department of Immunoregulation, Immunology and Immunotherapy Division, Center of Molecular Immunology, La Habana 3GGH+C9G, Cuba
| | - Ernesto Bermudez Abreut
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Department of Immunoregulation, Immunology and Immunotherapy Division, Center of Molecular Immunology, La Habana 3GGH+C9G, Cuba
| | - Mariantonietta D'Ambrosio
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Nicolò Bancaro
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Daniela Brina
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Sara Zumerle
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, University of Padova, 35121 Padova, Italy
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Martino Maddalena
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Ping Lai
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Manuel Colucci
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Nicolò Pernigoni
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Davide Minardi
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Alessandro Morlacco
- Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Fabrizio Dal Moro
- Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Marianna Sabbadin
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Francesca Galuppini
- Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Jan Hendrik Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | | | - Edoardo Francini
- Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Calogero Saieva
- Cancer Risk Factors and Lifestyle Epidemiology Unit - ISPRO, 50139 Florence, Italy
| | - Mikol Modesti
- Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Silke Gillessen
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland
| | - Petra Wilgenbus
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Johann de Bono
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, University of Padova, 35121 Padova, Italy; Department of Health Sciences and Technology (D-HEST) ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
34
|
Qian J, Ma C, Waterbury QT, Zhi X, Moon CS, Tu R, Kobayashi H, Wu F, Zheng B, Zeng Y, Zheng H, Ochiai Y, White RA, Harle DW, LaBella JS, Zamechek LB, Hu LZ, Moy RH, Han AS, Daugherty B, Lederman S, Wang TC. A CXCR4 partial agonist improves immunotherapy by targeting polymorphonuclear myeloid-derived suppressor cells and cancer-driven granulopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617228. [PMID: 39416177 PMCID: PMC11482799 DOI: 10.1101/2024.10.09.617228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that potently impair immunotherapy responses. The chemokine receptor CXCR4, a central regulator of hematopoiesis, represents an attractive PMN-MDSC target1. Here, we fused a secreted CXCR4 partial agonist TFF2 to mouse serum albumin (MSA) and demonstrated that TFF2-MSA peptide synergized with anti-PD-1 to induce tumor regression or eradication, inhibited distant metastases, and prolonged survival in multiple gastric cancer (GC) models. Using histidine decarboxylase (Hdc)-GFP transgenic mice to track PMN-MDSC in vivo , we found TFF2-MSA selectively reduced the immunosuppressive Hdc-GFP + CXCR4 hi tumor PMN-MDSCs while preserving proinflammatory neutrophils, thereby boosting CD8 + T cell-mediated anti-tumor response together with anti-PD-1. Furthermore, TFF2-MSA systemically reduced PMN-MDSCs and bone marrow granulopoiesis. In contrast, CXCR4 antagonism plus anti-PD-1 failed to provide a similar therapeutic benefit. In GC patients, expanded PMN-MDSCs containing a prominent CXCR4 + LOX-1 + subset are inversely correlated with the TFF2 level and CD8 + T cells in circulation. Collectively, our studies introduce a strategy of using CXCR4 partial agonism to restore anti-PD-1 sensitivity in GC by targeting PMN-MDSCs and granulopoiesis.
Collapse
|
35
|
Wang X, Ma S, Twardowski P, Lau C, Chan YS, Wong K, Xiao S, Wang J, Wu X, Frankel P, Wilson TG, Synold TW, Presant C, Dorff T, Yu J, Sadava D, Chen S. Reduction of myeloid-derived suppressor cells in prostate cancer murine models and patients following white button mushroom treatment. Clin Transl Med 2024; 14:e70048. [PMID: 39390760 PMCID: PMC11467013 DOI: 10.1002/ctm2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND In a previously reported Phase I trial, we observed therapy-associated declines in circulating myeloid-derived suppressor cells (MDSCs) with the administration of white button mushroom (WBM) tablets in prostate cancer (PCa) patients. These observations led us to hypothesise that WBM could mitigate PCa progression by suppressing MDSCs. METHODS We performed bidirectional translational research to examine the immunomodulatory effects of WBM consumption in both syngeneic murine PCa models and patients with PCa participating in an ongoing randomised Phase II trial (NCT04519879). RESULTS In murine models, WBM treatment significantly suppressed tumour growth with a reduction in both the number and function of MDSCs, which in turn promoted antitumour immune responses mediated by T cells and natural killer (NK) cells. In patients, after consumption of WBM tablets for 3 months, we observed a decline in circulating polymorphonuclear MDSCs (PMN-MDSCs), along with an increase in cytotoxic CD8+ T and NK cells. Furthermore, single immune cell profiling of peripheral blood from WBM-treated patients showed suppressed STAT3/IRF1 and TGFβ signalling in circulating PMN-MDSCs. Subclusters of PMN-MDSCs presented transcriptional profiles associated with responsiveness to fungi, neutrophil chemotaxis, leukocyte aggregation, and regulation of inflammatory response. Finally, in mouse models of PCa, we found that WBM consumption enhanced the anticancer activity of anti-PD-1 antibodies, indicating that WBM may be used as an adjuvant therapy with immune checkpoint inhibitors. CONCLUSION Our results from PCa murine models and patients provide mechanistic insights into the immunomodulatory effects of WBM and provide a scientific foundation for WBM as a nutraceutical intervention to delay or prevent PCa progression. HIGHLIGHTS White button mushroom (WBM) treatment resulted in a reduction in pro-tumoural MDSCs, notably polymorphonuclear MDSCs (PMN-MDSCs), along with activation of anti-tumoural T and NK cells. Human single immune cell gene expression profiling shed light on the molecular alterations induced by WBM, specifically on PMN-MDSCs. A proof-of-concept study combining WBM with PD-1 blockade in murine models revealed an additive effect on tumour regression and survival outcomes, highlighting the clinical relevance of WBM in cancer management.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Cancer Biology & Molecular MedicineBeckman Research Institute, City of HopeDuarteCaliforniaUSA
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell TransplantationCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Przemyslaw Twardowski
- Department of Urology and Urologic OncologyProvidence Saint John's Cancer InstituteSanta MonicaCaliforniaUSA
| | - Clayton Lau
- Department of SurgeryCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Yin S. Chan
- Department of Cancer Biology & Molecular MedicineBeckman Research Institute, City of HopeDuarteCaliforniaUSA
| | - Kelly Wong
- Department of Cancer Biology & Molecular MedicineBeckman Research Institute, City of HopeDuarteCaliforniaUSA
| | - Sai Xiao
- Department of Hematology and Hematopoietic Cell TransplantationCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jinhui Wang
- Integrative Genomics CoreBeckman Research Institute, City of HopeMonroviaCaliforniaUSA
| | - Xiwei Wu
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of HopeDuarteCaliforniaUSA
| | - Paul Frankel
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of HopeDuarteCaliforniaUSA
| | - Timothy G. Wilson
- Department of Urology and Urologic OncologyProvidence Saint John's Cancer InstituteSanta MonicaCaliforniaUSA
| | - Timothy W Synold
- Department of Medical Oncology & Therapeutics ResearchCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Cary Presant
- Department of Medical Oncology & Therapeutics ResearchCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Tanya Dorff
- Department of Medical Oncology & Therapeutics ResearchCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell TransplantationCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - David Sadava
- Department of Cancer Biology & Molecular MedicineBeckman Research Institute, City of HopeDuarteCaliforniaUSA
| | - Shiuan Chen
- Department of Cancer Biology & Molecular MedicineBeckman Research Institute, City of HopeDuarteCaliforniaUSA
| |
Collapse
|
36
|
Ghosh S, Zanoni I. The Dark Knight: Functional Reprogramming of Neutrophils in the Pathogenesis of Colitis-Associated Cancer. Cancer Immunol Res 2024; 12:1311-1319. [PMID: 39270036 PMCID: PMC11444878 DOI: 10.1158/2326-6066.cir-23-0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/05/2024] [Accepted: 07/17/2024] [Indexed: 09/15/2024]
Abstract
Neutrophils are the primary myeloid cells that are recruited to inflamed tissues, and they are key players during colitis, being also present within the tumor microenvironment during the initiation and growth of colon cancer. Neutrophils fundamentally serve to protect the host against microorganism invasion, but during cancer development, they can become protumoral and lead to tumor initiation, growth, and eventually, metastasis-hence, playing a dichotomic role for the host. Protumoral neutrophils in cancer patients can be immunosuppressive and serve as markers for disease progression but their characteristics are not fully defined. In this review, we explore the current knowledge on how neutrophils in the gut fluctuate between an inflammatory or immunosuppressive state and how they contribute to tumor development. We describe neutrophils' antitumoral and protumoral effects during inflammatory bowel diseases and highlight their capacity to provoke the advent of inflammation-driven colorectal cancer. We present the functional ambivalence of the neutrophil populations within the colon tumor microenvironment, which can be potentially exploited to establish therapies that will prevent, or even reverse, inflammation-dependent colon cancer incidence in high-risk patients.
Collapse
Affiliation(s)
- Sreya Ghosh
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology and Division of Gastroenterology, Boston, 02115, USA
| |
Collapse
|
37
|
Lemaitre L, Adeniji N, Suresh A, Reguram R, Zhang J, Park J, Reddy A, Trevino AE, Mayer AT, Deutzmann A, Hansen AS, Tong L, Arjunan V, Kambham N, Visser BC, Dua MM, Bonham CA, Kothary N, D'Angio HB, Preska R, Rosen Y, Zou J, Charu V, Felsher DW, Dhanasekaran R. Spatial analysis reveals targetable macrophage-mediated mechanisms of immune evasion in hepatocellular carcinoma minimal residual disease. NATURE CANCER 2024; 5:1534-1556. [PMID: 39304772 DOI: 10.1038/s43018-024-00828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Hepatocellular carcinoma (HCC) frequently recurs from minimal residual disease (MRD), which persists after therapy. Here, we identified mechanisms of persistence of residual tumor cells using post-chemoembolization human HCC (n = 108 patients, 1.07 million cells) and a transgenic mouse model of MRD. Through single-cell high-plex cytometric imaging, we identified a spatial neighborhood within which PD-L1 + M2-like macrophages interact with stem-like tumor cells, correlating with CD8+ T cell exhaustion and poor survival. Further, through spatial transcriptomics of residual HCC, we showed that macrophage-derived TGFβ1 mediates the persistence of stem-like tumor cells. Last, we demonstrate that combined blockade of Pdl1 and Tgfβ excluded immunosuppressive macrophages, recruited activated CD8+ T cells and eliminated residual stem-like tumor cells in two mouse models: a transgenic model of MRD and a syngeneic orthotopic model of doxorubicin-resistant HCC. Thus, our spatial analyses reveal that PD-L1+ macrophages sustain MRD by activating the TGFβ pathway in stem-like cancer cells and targeting this interaction may prevent HCC recurrence from MRD.
Collapse
Affiliation(s)
- Lea Lemaitre
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Nia Adeniji
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Akanksha Suresh
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Reshma Reguram
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Josephine Zhang
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Jangho Park
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Amit Reddy
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | | | | | - Anja Deutzmann
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA
| | - Aida S Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ling Tong
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA
| | - Vinodhini Arjunan
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Neeraja Kambham
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Monica M Dua
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - C Andrew Bonham
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Nishita Kothary
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | | | - Yanay Rosen
- Department of Biomedical Data Science and Computer Science, Stanford University, Stanford, CA, USA
| | - James Zou
- Department of Biomedical Data Science and Computer Science, Stanford University, Stanford, CA, USA
| | - Vivek Charu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
38
|
Li NY, Zhang W, Haensel D, Jussila AR, Pan C, Gaddam S, Plevritis SK, Oro AE. Basal-to-inflammatory transition and tumor resistance via crosstalk with a pro-inflammatory stromal niche. Nat Commun 2024; 15:8134. [PMID: 39289380 PMCID: PMC11408617 DOI: 10.1038/s41467-024-52394-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Cancer-associated inflammation is a double-edged sword possessing both pro- and anti-tumor properties through ill-defined tumor-immune dynamics. While we previously identified a carcinoma tumor-intrinsic resistance pathway, basal-to-squamous cell carcinoma transition, here, employing a multipronged single-cell and spatial-omics approach, we identify an inflammation and therapy-enriched tumor state we term basal-to-inflammatory transition. Basal-to-inflammatory transition signature correlates with poor overall patient survival in many epithelial tumors. Basal-to-squamous cell carcinoma transition and basal-to-inflammatory transition occur in adjacent but distinct regions of a single tumor: basal-to-squamous cell carcinoma transition arises within the core tumor nodule, while basal-to-inflammatory transition emerges from a specialized inflammatory environment defined by a tumor-associated TREM1 myeloid signature. TREM1 myeloid-derived cytokines IL1 and OSM induce basal-to-inflammatory transition in vitro and in vivo through NF-κB, lowering sensitivity of patient basal cell carcinoma explant tumors to Smoothened inhibitor treatment. This work deepens our knowledge of the heterogeneous local tumor microenvironment and nominates basal-to-inflammatory transition as a drug-resistant but targetable tumor state driven by a specialized inflammatory microenvironment.
Collapse
Affiliation(s)
- Nancy Yanzhe Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Weiruo Zhang
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Haensel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna R Jussila
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cory Pan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
39
|
Deng Y, Shi M, Yi L, Naveed Khan M, Xia Z, Li X. Eliminating a barrier: Aiming at VISTA, reversing MDSC-mediated T cell suppression in the tumor microenvironment. Heliyon 2024; 10:e37060. [PMID: 39286218 PMCID: PMC11402941 DOI: 10.1016/j.heliyon.2024.e37060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment by producing remarkable clinical outcomes for patients with various cancer types. However, only a subset of patients benefits from immunotherapeutic interventions due to the primary and acquired resistance to ICIs. Myeloid-derived suppressor cells (MDSCs) play a crucial role in creating an immunosuppressive tumor microenvironment (TME) and contribute to resistance to immunotherapy. V-domain Ig suppressor of T cell activation (VISTA), a negative immune checkpoint protein highly expressed on MDSCs, presents a promising target for overcoming resistance to current ICIs. This article provides an overview of the evidence supporting VISTA's role in regulating MDSCs in shaping the TME, thus offering insights into how to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Yayuan Deng
- The First College of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Mengjia Shi
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Yi
- The First College of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Muhammad Naveed Khan
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Western(Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biomedicine Industry Park, No. 28 Gaoxin Avenue, High-tech Zone, Chongqing, 401329, China
| |
Collapse
|
40
|
Zeng W, Liu H, Mao Y, Jiang S, Yi H, Zhang Z, Wang M, Zong Z. Myeloid‑derived suppressor cells: Key immunosuppressive regulators and therapeutic targets in colorectal cancer (Review). Int J Oncol 2024; 65:85. [PMID: 39054950 PMCID: PMC11299769 DOI: 10.3892/ijo.2024.5673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Globally, colorectal cancer (CRC) is the third most common type of cancer. CRC has no apparent symptoms in the early stages of disease, and most patients receive a confirmed diagnosis in the middle or late disease stages. The incidence of CRC continues to increase, and the affected population tends to be younger. Therefore, determining how to achieve an early CRC diagnosis and treatment has become a top priority for prolonging patient survival. Myeloid‑derived suppressor cells (MDSCs) are a group of bone marrow‑derived immuno‑negative regulatory cells that are divided into two subpopulations, polymorphonuclear‑MDSCs and monocytic‑MDSCs, based on their phenotypic similarities to neutrophils and monocytes, respectively. These cells can inhibit the immune response and promote cancer cell metastasis in the tumour microenvironment (TME). A large aggregation of MDSCs in the TME is often a marker of cancer and a poor prognosis in inflammatory diseases of the intestine (such as colonic adenoma and ulcerative colitis). In the present review, the phenotypic classification of MDSCs in the CRC microenvironment are first discussed. Then, the amplification, role and metastatic mechanism of MDSCs in the CRC TME are described, focusing on genes, gene modifications, proteins and the intestinal microenvironment. Finally, the progress in CRC‑targeted therapies that aim to modulate the quantity, function and structure of MDSCs are summarized in the hope of identifying potential screening markers for CRC and improving CRC prognosis and therapeutic options.
Collapse
Affiliation(s)
- Wenjuan Zeng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haohan Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuanhao Mao
- Fuzhou Medical College, Nanchang University, Fuzhou, Jiangxi 330006, P.R. China
| | - Shihao Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hao Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zitong Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghui Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
41
|
Nicolini A, Ferrari P. Involvement of tumor immune microenvironment metabolic reprogramming in colorectal cancer progression, immune escape, and response to immunotherapy. Front Immunol 2024; 15:1353787. [PMID: 39119332 PMCID: PMC11306065 DOI: 10.3389/fimmu.2024.1353787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 08/10/2024] Open
Abstract
Metabolic reprogramming is a k`ey hallmark of tumors, developed in response to hypoxia and nutrient deficiency during tumor progression. In both cancer and immune cells, there is a metabolic shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, also known as the Warburg effect, which then leads to lactate acidification, increased lipid synthesis, and glutaminolysis. This reprogramming facilitates tumor immune evasion and, within the tumor microenvironment (TME), cancer and immune cells collaborate to create a suppressive tumor immune microenvironment (TIME). The growing interest in the metabolic reprogramming of the TME, particularly its significance in colorectal cancer (CRC)-one of the most prevalent cancers-has prompted us to explore this topic. CRC exhibits abnormal glycolysis, glutaminolysis, and increased lipid synthesis. Acidosis in CRC cells hampers the activity of anti-tumor immune cells and inhibits the phagocytosis of tumor-associated macrophages (TAMs), while nutrient deficiency promotes the development of regulatory T cells (Tregs) and M2-like macrophages. In CRC cells, activation of G-protein coupled receptor 81 (GPR81) signaling leads to overexpression of programmed death-ligand 1 (PD-L1) and reduces the antigen presentation capability of dendritic cells. Moreover, the genetic and epigenetic cell phenotype, along with the microbiota, significantly influence CRC metabolic reprogramming. Activating RAS mutations and overexpression of epidermal growth factor receptor (EGFR) occur in approximately 50% and 80% of patients, respectively, stimulating glycolysis and increasing levels of hypoxia-inducible factor 1 alpha (HIF-1α) and MYC proteins. Certain bacteria produce short-chain fatty acids (SCFAs), which activate CD8+ cells and genes involved in antigen processing and presentation, while other mechanisms support pro-tumor activities. The use of immune checkpoint inhibitors (ICIs) in selected CRC patients has shown promise, and the combination of these with drugs that inhibit aerobic glycolysis is currently being intensively researched to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
42
|
Miao S, Rodriguez BL, Gibbons DL. The Multifaceted Role of Neutrophils in NSCLC in the Era of Immune Checkpoint Inhibitors. Cancers (Basel) 2024; 16:2507. [PMID: 39061147 PMCID: PMC11274601 DOI: 10.3390/cancers16142507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer is the most common cause of cancer-related death in both males and females in the U.S. and non-small-cell lung cancer (NSCLC) accounts for 85%. Although the use of first- or second-line immune checkpoint inhibitors (ICIs) exhibits remarkable clinical benefits, resistance to ICIs develops over time and dampens the efficacy of ICIs in patients. Tumor-associated neutrophils (TANs) have an important role in modulating the tumor microenvironment (TME) and tumor immune response. The major challenge in the field is to characterize the TANs in NSCLC TME and understand the link between TAN-related immunosuppression with ICI treatment response. In this review, we summarize the current studies of neutrophil interaction with malignant cells, T-cells, and other components in the TME. Ongoing clinical trials are aimed at utilizing reagents that have putative effects on tumor-associated neutrophils, in combination with ICI. Elevated neutrophil populations and neutrophil-associated factors could be potential therapeutic targets to enhance anti-PD1 treatment in NSCLC.
Collapse
Affiliation(s)
- Shucheng Miao
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
- The University of Texas MD Anderson Cancer Center, UTHealth at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Bertha Leticia Rodriguez
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
| | - Don L. Gibbons
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
- The University of Texas MD Anderson Cancer Center, UTHealth at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
43
|
Jing ZQ, Luo ZQ, Chen SR, Sun ZJ. Heterogeneity of myeloid cells in common cancers: Single cell insights and targeting strategies. Int Immunopharmacol 2024; 134:112253. [PMID: 38735257 DOI: 10.1016/j.intimp.2024.112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Tumor microenvironment (TME), is characterized by a complex and heterogenous composition involving a substantial population of immune cells. Myeloid cells comprising over half of the solid tumor mass, are undoubtedly one of the most prominent cell populations associated with tumors. Studies have unambiguously established that myeloid cells play a key role in tumor development, including immune suppression, pro-inflammation, promote tumor metastasis and angiogenesis, for example, tumor-associated macrophages promote tumor progression in a variety of common tumors, including lung cancer, through direct or indirect interactions with the TME. However, due to previous technological constraints, research on myeloid cells often tended to be conducted as studies with low throughput and limited resolution. For example, the conventional categorization of macrophages into M1-like and M2-like subsets based solely on their anti-tumor and pro-tumor roles has disregarded their continuum of states, resulting in an inadequate analysis of the high heterogeneity characterizing myeloid cells. The widespread adoption of single-cell RNA sequencing (scRNA-seq) in tumor immunology has propelled researchers into a new realm of understanding, leading to the establishment of novel subsets and targets. In this review, the origin of myeloid cells in high-incidence cancers, the functions of myeloid cell subsets examined through traditional and single-cell perspectives, as well as specific targeting strategies, are comprehensively outlined. As a result of this endeavor, we will gain a better understanding of myeloid cell heterogeneity, as well as contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Zhi-Qian Jing
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Zhi-Qi Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Si-Rui Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
44
|
Yao M, Cao Y, He J, Dong R, Liu G, Chen Y, Wang J, Zhou J. Single-cell transcriptomic analysis reveals heterogeneous features of myeloid-derived suppressor cells in newborns. Front Immunol 2024; 15:1367230. [PMID: 38919617 PMCID: PMC11196393 DOI: 10.3389/fimmu.2024.1367230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
The transitory emergence of myeloid-derived suppressor cells (MDSCs) in infants is important for the homeostasis of the immune system in early life. The composition and functional heterogeneity of MDSCs in newborns remain elusive, hampering the understanding of the importance of MDSCs in neonates. In this study, we unraveled the maturation trajectory of polymorphonuclear (PMN)-MDSCs from the peripheral blood of human newborns by performing single-cell RNA sequencing. Results indicated that neonatal PMN-MDSCs differentiated from self-renewal progenitors, antimicrobial PMN-MDSCs, and immunosuppressive PMN-MDSCs to late PMN-MDSCs with reduced antimicrobial capacity. We also established a simple framework to distinguish these distinct stages by CD177 and CXCR2. Importantly, preterm newborns displayed a reduced abundance of classical PMN-MDSCs but increased late PMN-MDSCs, consistent with their higher susceptibility to infections and inflammation. Furthermore, newborn PMN-MDSCs were distinct from those from cancer patients, which displayed minimum expression of genes about antimicrobial capacity. This study indicates that the heterogeneity of PMN-MDSCs is associated with the maturity of human newborns.
Collapse
Affiliation(s)
- Meng Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yingjiao Cao
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Juan He
- Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rui Dong
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gaoyu Liu
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingying Chen
- Department of Clinical Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jun Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
45
|
McGinnis CS, Miao Z, Superville D, Yao W, Goga A, Reticker-Flynn NE, Winkler J, Satpathy AT. The temporal progression of lung immune remodeling during breast cancer metastasis. Cancer Cell 2024; 42:1018-1031.e6. [PMID: 38821060 PMCID: PMC11255555 DOI: 10.1016/j.ccell.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 03/23/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Tumor metastasis requires systemic remodeling of distant organ microenvironments that impacts immune cell phenotypes, population structure, and intercellular communication. However, our understanding of immune phenotypic dynamics in the metastatic niche remains incomplete. Here, we longitudinally assayed lung immune transcriptional profiles in the polyomavirus middle T antigen (PyMT) and 4T1 metastatic breast cancer models from primary tumorigenesis, through pre-metastatic niche formation, to the final stages of metastatic outgrowth at single-cell resolution. Computational analyses of these data revealed a TLR-NFκB inflammatory program enacted by both peripherally derived and tissue-resident myeloid cells that correlated with pre-metastatic niche formation and mirrored CD14+ "activated" myeloid cells in the primary tumor. Moreover, we observed that primary tumor and metastatic niche natural killer (NK) cells are differentially regulated in mice and human patient samples, with the metastatic niche featuring elevated cytotoxic NK cell proportions. Finally, we identified cell-type-specific dynamic regulation of IGF1 and CCL6 signaling during metastatic progression that represents anti-metastatic immunotherapy candidate pathways.
Collapse
Affiliation(s)
- Christopher S McGinnis
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Zhuang Miao
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Daphne Superville
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA; Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Winnie Yao
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Andrei Goga
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA; Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | | | - Juliane Winkler
- Center for Cancer Research, Medical University of Vienna, Vienna 1090, Austria.
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA.
| |
Collapse
|
46
|
Luenstedt J, Hoping F, Feuerstein R, Mauerer B, Berlin C, Rapp J, Marx L, Reichardt W, von Elverfeldt D, Ruess DA, Plundrich D, Laessle C, Jud A, Neeff HP, Holzner PA, Fichtner-Feigl S, Kesselring R. Partial hepatectomy accelerates colorectal metastasis by priming an inflammatory premetastatic niche in the liver. Front Immunol 2024; 15:1388272. [PMID: 38919609 PMCID: PMC11196966 DOI: 10.3389/fimmu.2024.1388272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Background Resection of colorectal liver metastasis is the standard of care for patients with Stage IV CRC. Despite undoubtedly improving the overall survival of patients, pHx for colorectal liver metastasis frequently leads to disease recurrence. The contribution of this procedure to metastatic colorectal cancer at a molecular level is poorly understood. We designed a mouse model of orthograde metastatic colorectal cancer (CRC) to investigate the effect of partial hepatectomy (pHx) on tumor progression. Methods CRC organoids were implanted into the cecal walls of wild type mice, and animals were screened for liver metastasis. At the time of metastasis, 1/3 partial hepatectomy was performed and the tumor burden was assessed longitudinally using MRI. After euthanasia, different tissues were analyzed for immunological and transcriptional changes using FACS, qPCR, RNA sequencing, and immunohistochemistry. Results Mice that underwent pHx presented significant liver hypertrophy and an increased overall metastatic load compared with SHAM operated mice in MRI. Elevation in the metastatic volume was defined by an increase in de novo liver metastasis without any effect on the growth of each metastasis. Concordantly, the livers of pHx mice were characterized by neutrophil and bacterial infiltration, inflammatory response, extracellular remodeling, and an increased abundance of tight junctions, resulting in the formation of a premetastatic niche, thus facilitating metastatic seeding. Conclusions Regenerative pathways following pHx accelerate colorectal metastasis to the liver by priming a premetastatic niche.
Collapse
Affiliation(s)
- Jost Luenstedt
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Hoping
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Reinhild Feuerstein
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Bernhard Mauerer
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher Berlin
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian Rapp
- Eye Center, University Medical Center Freiburg, Freiburg, Germany
- Department of Medicine I, University Medical Center Freiburg, Freiburg, Germany
| | - Lisa Marx
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Wilfried Reichardt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dorothea Plundrich
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Claudia Laessle
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Andreas Jud
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Hannes Philipp Neeff
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Philipp Anton Holzner
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
| | - Stefan Fichtner-Feigl
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebecca Kesselring
- Department of General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
47
|
Chen Y, Li H, Zhou J. Early life vaccination reprograms the metabolism and function of myeloid cells in neonates. Immunology 2024; 172:252-268. [PMID: 38424694 DOI: 10.1111/imm.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Vaccination after birth provides protection against pathogen infection and immune related disorders in healthy children. The detailed effects of vaccination on neonatal immunity, however, remain largely unknown. Here, we reported that vaccination using Bacillus Calmette-Guérin (BCG) diminished the immunosuppressive function of myeloid-derived suppressor cells in neonatal mice, an immature myeloid population. A combination of single-cell transcriptome, metabolite profiling, and functional analysis demonstrated that upregulation of mTOR/HIF1a signalling and the enhanced glycolysis explained the effects of BCG on neonatal myeloid cells. Pharmalogical inhibition of glycolysis or mTOR signalling efficiently rescued the effects of BCG on neonatal myeloid cells. These observations suggest that BCG facilitates the maturation of myeloid cells in early life, which may contribute to its beneficial effects against immune disorders later in life.
Collapse
Affiliation(s)
- Yingying Chen
- Institute of Pediatric Health and Disease, Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Clinical Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Hui Li
- Institute of Pediatric Health and Disease, Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Zhou
- Institute of Pediatric Health and Disease, Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
48
|
Jiang B, Zhang W, Zhang X, Sun Y. Targeting senescent cells to reshape the tumor microenvironment and improve anticancer efficacy. Semin Cancer Biol 2024; 101:58-73. [PMID: 38810814 DOI: 10.1016/j.semcancer.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Cancer is daunting pathology with remarkable breadth and scope, spanning genetics, epigenetics, proteomics, metalobomics and cell biology. Cellular senescence represents a stress-induced and essentially irreversible cell fate associated with aging and various age-related diseases, including malignancies. Senescent cells are characterized of morphologic alterations and metabolic reprogramming, and develop a highly active secretome termed as the senescence-associated secretory phenotype (SASP). Since the first discovery, senescence has been understood as an important barrier to tumor progression, as its induction in pre-neoplastic cells limits carcinogenesis. Paradoxically, senescent cells arising in the tumor microenvironment (TME) contribute to tumor progression, including augmented therapeutic resistance. In this article, we define typical forms of senescent cells commonly observed within the TME and how senescent cells functionally remodel their surrounding niche, affect immune responses and promote cancer evolution. Furthermore, we highlight the recently emerging pipelines of senotherapies particularly senolytics, which can selectively deplete senescent cells from affected organs in vivo and impede tumor progression by restoring therapeutic responses and securing anticancer efficacies. Together, co-targeting cancer cells and their normal but senescent counterparts in the TME holds the potential to achieve increased therapeutic benefits and restrained disease relapse in future clinical oncology.
Collapse
Affiliation(s)
- Birong Jiang
- School of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Wei Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Shanghai 200124, China
| | - Yu Sun
- School of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong 264003, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; Department of Medicine and VAPSHCS, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
49
|
Jolly KJ, Zhang F. IVT-mRNA reprogramming of myeloid cells for cancer immunotherapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:247-288. [PMID: 39034054 DOI: 10.1016/bs.apha.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In the past decade, in vitro transcribed messenger RNAs (IVT-mRNAs) have emerged as promising therapeutic molecules. The clinical success of COVID-19 mRNA vaccines developed by Pfizer-BioNTech and Moderna, have demonstrated that IVT-mRNAs can be safely and successfully used in a clinical setting, and efforts are underway to develop IVT-mRNAs for therapeutic applications. Current applications of mRNA-based therapy have been focused on (1) mRNA vaccines for infectious diseases and cancer treatment; (2) protein replacement therapy; (3) gene editing therapy; and (4) cell-reprogramming therapies. Due to the recent clinical progress of cell-based immunotherapies, the last direction-the use of IVT-mRNAs as a therapeutic approach to program immune cells for the treatment of cancer has received extensive attention from the cancer immunotherapy field. Myeloid cells are important components of our immune system, and they play critical roles in mediating disease progression and regulating immunity against diseases. In this chapter, we discussed the progress of using IVT-mRNAs as a therapeutic approach to program myeloid cells against cancer and other immune-related diseases. Towards this direction, we first reviewed the pharmacology of IVT-mRNAs and the biology of myeloid cells as well as myeloid cell-targeting therapeutics. We then presented a few cases of current IVT-mRNA-based approaches to target and reprogram myeloid cells for disease treatment and discussed the advantages and limitations of these approaches. Finally, we presented our considerations in designing mRNA-based approaches to target myeloid cells for disease treatment.
Collapse
Affiliation(s)
- Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
50
|
Chen Y, Li H, Zhu L, Yang Q, Zhou J. β-Glucan Subverts the Function of Myeloid Cells in Neonates. J Immunol Res 2024; 2024:2765001. [PMID: 38774603 PMCID: PMC11108693 DOI: 10.1155/2024/2765001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
β-Glucan is the main component of the cell wall of pathogen-associated molecular patterns (PAMPs) including various yeast, fungi, or certain bacteria. Previous reports demonstrated that β-glucan was widely investigated as a potent immunomodulators to stimulate innate and adaptive immune responses, which indicated that it could be recommended as an effective adjuvant in immunotherapy. However, the detailed effects of β-glucan on neonatal immunity are still largely unknown. Here, we found that β-glucan did not affect the frequencies and numbers of myeloid cells in the spleen and bone marrow from neonates. Functional assay revealed that β-glucan from neonates compromised the immunosuppressive function of immature myeloid cells, which were myeloid-derived suppressor cells (MDSCs). Flow cytometry or gene expression analysis revealed that β-glucan-derived polymorphonuclear (PMN)-MDSCs produced lower level of reactive oxygen species (ROS) and arginase-1 (Arg1) in neonatal mice. Furthermore, β-glucan administration significantly decreased the frequency and ROS level of PMN-MDSCs in vitro. These observations suggest that β-glucan facilitates the maturation of myeloid cells in early life, which may contribute to its beneficial effects against immune disorders later in life.
Collapse
Affiliation(s)
- Yingying Chen
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China
- Department of Clinical Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong 510120, China
| | - Hui Li
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lin Zhu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Quan Yang
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jie Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|