1
|
Wang Y, Zhang M, Zhang T, Zhang S, Ji F, Qin J, Li H, Jiao J. PD-L1/PD-1 checkpoint pathway regulates astrocyte morphogenesis and myelination during brain development. Mol Psychiatry 2025:10.1038/s41380-025-02969-3. [PMID: 40164696 DOI: 10.1038/s41380-025-02969-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Programmed cell death protein 1 (PD-1) and its primary ligand PD-L1 are integral components of a significant immune checkpoint pathway, widely recognized for its central role in cancer immunotherapy. However, emerging evidence highlights their broader involvement in both the central and peripheral nervous systems. In this study, we demonstrate that PD-L1/PD-1 signaling in astrocytes during mouse brain development regulates astrocyte maturation and morphogenesis via the MEK/ERK pathway by targeting the downstream effector cysteine and glycine rich protein 1 (CSRP1). This enhanced astrocyte morphological complexity results in increased end-foot coverage of blood vessels. Additionally, aberrant secretion of CSRP1 by astrocytes interacts with oligodendrocyte precursor cells (OPCs) membrane proteins annexin A1 (ANXA1) and annexin A2 (ANXA2), leading to the exclusion of migrating OPCs from blood vessels. This disruption in OPC migration and differentiation results in abnormal myelination and is associated with cognitive deficits in the mice. Our results provide critical insights into the function of PD-L1/PD-1 signaling in astrocyte-OPC interactions and underscore its relevance to glial cell development and pathogenesis in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yanyan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengtian Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyu Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shukui Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fen Ji
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Qin
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Li
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianwei Jiao
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Wu GL, Yen CE, Hsu WC, Yeh ML. Incorporation of cerium oxide nanoparticles into the micro-arc oxidation layer promotes bone formation and achieves structural integrity in magnesium orthopedic implants. Acta Biomater 2025; 191:80-97. [PMID: 39521312 DOI: 10.1016/j.actbio.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Biodegradable metals offer significant advantages by reducing the need for additional surgeries following bone fixation. These materials, with their optimal mechanical and degradable properties, also mitigate stress-shielding effects while promoting biological processes essential for healing. This study investigated the in vitro and in vivo biocompatibility of ZK60 magnesium alloy coated with a micro-arc oxidative layer incorporated with cerium oxide nanoparticles in orthopedic implants. The results demonstrated that the magnesium substrate undergoes gradual degradation, effectively eliminating long-term inflammation during bone formation. The micro-arc oxidative coating forms a dense ceramic layer, acting as a protective barrier that reduces corrosion rates and enhances the biocompatibility of the magnesium substrate. The incorporation of cerium oxide nanoparticles improves the tribological properties of the coating, refining degradation patterns and improving osteogenic characteristics. Furthermore, cerium oxide nanoparticles enhance bone reconstruction by facilitating appropriate interconnections between newly formed bone and native bone tissue. Consequently, cerium oxide nanoparticles contribute to favorable biosafety outcomes and exceptional bone remodeling capabilities by supporting bone healing and sustaining a prolonged degradation process, ultimately achieving dynamic equilibrium in bone formation. STATEMENT OF SIGNIFICANCE: This study comprehensively examined the incorporation of cerium oxide nanoparticles into biodegradable magnesium through a micro-arc oxidative process for use in orthopedic implants. This study conducted a comprehensive analysis involving material characterization, biodegradability testing, in vitro osteogenesis assays, and in vivo implantation, highlighting the potential benefits of the distinctive properties of cerium oxide nanoparticles. This research emphasizes the ability of cerium oxide nanoparticles to enhance the biodegradability of magnesium and facilitate remarkable bone regeneration, suggesting promising advantages for additive materials in orthopedic implants.
Collapse
Affiliation(s)
- Guan-Lin Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chin-En Yen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chien Hsu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Orthopedics, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Wang R, He X, Bai J, Su S, Zhou R, Gao S, Liu H, Zhou F. Cerium Oxide Nanoparticles-Reinforced GelMA Hydrogel Loading Bone Marrow Stem Cells with Osteogenic and Inflammatory Regulatory Capacity for Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67373-67384. [PMID: 39585753 DOI: 10.1021/acsami.4c15718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Effective bone defect repair has been a tough clinical challenge due to the complexity of the bone defect microenvironment. Hydrogels loaded with bone marrow mesenchymal stem cells (BMSCs) have been widely applied for bone regeneration. However, the low survival of BMSCs at the site of transplantation and lack of sufficient osteogenic induction capacity greatly limit their applications. In order to solve this puzzle, we fabricated gelatin methacryloyl (GelMA) hydrogels containing BMSCs with cerium oxide (CeO2) nanoparticles via photo-cross-linking to endow the composite hydrogel with osteogenic induction ability and immune induction ability. In vitro results demonstrated that the GelMA-CeO2-BMSC hydrogel presented with good biocompatibility and excellent osteogenic induction ability. In addition, the GelMA-CeO2-BMSC hydrogel could inhibit M1 polarization and promote M2 polarization, providing a good environment for the growth and osteogenic differentiation of BMSCs. Besides, the GelMA-CeO2-BMSC hydrogel was transplanted into critical-sized calvarial defects, and the results further confirmed its excellent bone regeneration capacity. In conclusion, the composite hydrogel provides a perspective for bone repair due to the remarkable potential for application in bone regeneration.
Collapse
Affiliation(s)
- Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
| | - Shilong Su
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
| | - Rubing Zhou
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100000, China
| | - Shan Gao
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing 100191, China
| |
Collapse
|
4
|
Ma Y, Wang Y, Tong S, Wang Y, Wang Z, Sui R, Yang K, Witte F, Yang S. Porous metal materials for applications in orthopedic field: A review on mechanisms in bone healing. J Orthop Translat 2024; 49:135-155. [PMID: 40226784 PMCID: PMC11993841 DOI: 10.1016/j.jot.2024.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 04/15/2025] Open
Abstract
Background Porous metal materials have been widely studied for applications in orthopedic field, owing to their excellent features and properties in bone healing. Porous metal materials with different compositions, manufacturing methods, and porosities have been developed. Whereas, the systematic mechanisms on how porous metal materials promote bone healing still remain unclear. Methods This review is concerned on the porous metal materials from three aspects with accounts of specific mechanisms, inflammatory regulation, angiogenesis and osteogenesis. We place great emphasis on different cells regulated by porous metal materials, including mesenchymal stem cells (MSCs), macrophages, endothelial cells (ECs), etc. Result The design of porous metal materials is diversified, with its varying pore sizes, porosity material types, modification methods and coatings help researchers create the most experimentally suitable and clinically effective scaffolds. Related signal pathways presented from different functions showed that porous metal materials could change the behavior of cells and the amount of cytokines, achieving good influence on osteogenesis. Conclusion This article summarizes the current progress achieved in the mechanism of porous metal materials promoting bone healing. By modulating the cellular behavior and physiological status of a spectrum of cellular constituents, such as macrophages, osteoblasts, and osteoclasts, porous metal materials are capable of activating different pathways and releasing regulatory factors, thus exerting pivotal influence on improving the bone healing effect. The translational potential of this article Porous metal materials play a vital role in the treatment of bone defects. Unfortunately, although an increasing number of studies have been concentrated on the effect of porous metal materials on osteogenesis-related cells, the comprehensive regulation of porous metal materials on the host cell functions during bone regeneration and the related intrinsic mechanisms remain unclear. This review summarizes different design methods for porous metal materials to fabricate the most suitable scaffolds for bone remodeling, and systematically reviews the corresponding mechanisms on inflammation, angiogenesis and osteogenesis of porous metal materials. This review can provide more theoretical framework and innovative optimization for the application of porous metal materials in orthopedics, dentistry, and other areas, thereby advancing their clinical utility and efficacy.
Collapse
Affiliation(s)
- Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yi Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Shuang Tong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuehan Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Zhuoya Wang
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Rongze Sui
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Frank Witte
- Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité Medical University, Assmannshauser Strasse 4–6, 14197, Berlin, Germany
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
5
|
Meng X, Wang WD, Li SR, Sun ZJ, Zhang L. Harnessing cerium-based biomaterials for the treatment of bone diseases. Acta Biomater 2024; 183:30-49. [PMID: 38849022 DOI: 10.1016/j.actbio.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Bone, an actively metabolic organ, undergoes constant remodeling throughout life. Disturbances in the bone microenvironment can be responsible for pathologically bone diseases such as periodontitis, osteoarthritis, rheumatoid arthritis and osteoporosis. Conventional bone tissue biomaterials are not adequately adapted to complex bone microenvironment. Therefore, there is an urgent clinical need to find an effective strategy to improve the status quo. In recent years, nanotechnology has caused a revolution in biomedicine. Cerium(III, IV) oxide, as an important member of metal oxide nanomaterials, has dual redox properties through reversible binding with oxygen atoms, which continuously cycle between Ce(III) and Ce(IV). Due to its special physicochemical properties, cerium(III, IV) oxide has received widespread attention as a versatile nanomaterial, especially in bone diseases. This review describes the characteristics of bone microenvironment. The enzyme-like properties and biosafety of cerium(III, IV) oxide are also emphasized. Meanwhile, we summarizes controllable synthesis of cerium(III, IV) oxide with different nanostructural morphologies. Following resolution of synthetic principles of cerium(III, IV) oxide, a variety of tailored cerium-based biomaterials have been widely developed, including bioactive glasses, scaffolds, nanomembranes, coatings, and nanocomposites. Furthermore, we highlight the latest advances in cerium-based biomaterials for inflammatory and metabolic bone diseases and bone-related tumors. Tailored cerium-based biomaterials have already demonstrated their value in disease prevention, diagnosis (imaging and biosensors) and treatment. Therefore, it is important to assist in bone disease management by clarifying tailored properties of cerium(III, IV) oxide in order to promote the use of cerium-based biomaterials in the future clinical setting. STATEMENT OF SIGNIFICANCE: In this review, we focused on the promising of cerium-based biomaterials for bone diseases. We reviewed the key role of bone microenvironment in bone diseases and the main biological activities of cerium(III, IV) oxide. By setting different synthesis conditions, cerium(III, IV) oxide nanostructures with different morphologies can be controlled. Meanwhile, tailored cerium-based biomaterials can serve as a versatile toolbox (e.g., bioactive glasses, scaffolds, nanofibrous membranes, coatings, and nanocomposites). Then, the latest research advances based on cerium-based biomaterials for the treatment of bone diseases were also highlighted. Most importantly, we analyzed the perspectives and challenges of cerium-based biomaterials. In future perspectives, this insight has given rise to a cascade of cerium-based biomaterial strategies, including disease prevention, diagnosis (imaging and biosensors) and treatment.
Collapse
Affiliation(s)
- Xiang Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China
| | - Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China
| | - Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China.
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan, 430079, PR China.
| |
Collapse
|
6
|
Singh I, Shakya K, Gupta P, Rani P, Kong I, Verma V, Balani K. Multifunctional 58S Bioactive Glass/Silver/Cerium Oxide-Based Biocomposites with Effective Antibacterial, Cytocompatibility, and Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18327-18343. [PMID: 38588343 DOI: 10.1021/acsami.3c17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
58S bioactive glass (BG) has effective biocompatibility and bioresorbable properties for bone tissue engineering; however, it has limitations regarding antibacterial, antioxidant, and mechanical properties. Therefore, we have developed BGAC biocomposites by reinforcing 58S BG with silver and ceria nanoparticles, which showed effective bactericidal properties by forming inhibited zones of 2.13 mm (against Escherichia coli) and 1.96 mm (against Staphylococcus aureus; evidenced by disc diffusion assay) and an increment in the antioxidant properties by 39.9%. Moreover, the elastic modulus, hardness, and fracture toughness were observed to be increased by ∼84.7% (∼51.9 GPa), ∼54.5% (∼3.4 GPa), and ∼160% (∼1.3 MPam1/2), whereas the specific wear rate was decreased by ∼55.2% (∼1.9 × 10-11 m3/Nm). X-ray diffraction, high-resolution transmission electron microscopy, and field emission scanning electron microscopy confirmed the fabrication of biocomposites and the uniform distribution of the nanomaterials in the BG matrix. The addition of silver nanoparticles in the 58S BG matrix (in BGA) increased mechanical properties by composite strengthening and bactericidal properties by damaging the cytoplasmic membrane of bacterial cells. The addition of nanoceria in 58S BG (BGC) increased the antioxidant properties by 44.5% (as evidenced by the 2,2-diphenyl-1-picrylhydrazyl assay). The resazurin reduction assay and MTT assay confirmed the effective cytocompatibility for BGAC biocomposites against mouse embryonic fibroblast cells (NIH3T3) and mouse bone marrow stromal cells. Overall, BGAC resulted in mechanical properties comparable to those of cancellous bone, and its effective antibacterial and cytocompatibility properties make it a good candidate for bone healing.
Collapse
Affiliation(s)
- Indrajeet Singh
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, Victoria 3552, Australia
| | - Kaushal Shakya
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Pankaj Gupta
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Pooja Rani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Ing Kong
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, Victoria 3552, Australia
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
7
|
Chen Z, Zhou X, Mo M, Hu X, Liu J, Chen L. Systematic review of the osteogenic effect of rare earth nanomaterials and the underlying mechanisms. J Nanobiotechnology 2024; 22:185. [PMID: 38627717 PMCID: PMC11020458 DOI: 10.1186/s12951-024-02442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaohe Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Atkinson I, Seciu-Grama AM, Serafim A, Petrescu S, Voicescu M, Anghel EM, Marinescu C, Mitran RA, Mocioiu OC, Cusu JP, Lincu D, Prelipcean AM, Craciunescu O. Bioinspired 3D scaffolds with antimicrobial, drug delivery, and osteogenic functions for bone regeneration. Drug Deliv Transl Res 2024; 14:1028-1047. [PMID: 37853275 DOI: 10.1007/s13346-023-01448-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
A major clinical challenge today is the large number of bone defects caused by diseases or trauma. The development of three-dimensional (3D) scaffolds with adequate properties is crucial for successful bone repair. In this study, we prepared biomimetic mesoporous bioactive glass (MBG)-based scaffolds with and without ceria addition (up to 3 mol %) to explore the biological structure and chemical composition of the marine sponge Spongia Agaricina (SA) as a sacrificial template. Micro-CT examination revealed that all scaffolds exhibited a highly porous structure with pore diameters primarily ranging from 143.5 μm to 213.5 μm, facilitating bone ingrowth. Additionally, smaller pores (< 75 μm), which are known to enhance osteogenesis, were observed. The undoped scaffold displayed the highest open porosity value of 90.83%. Cytotoxicity assessments demonstrated that all scaffolds were noncytotoxic and nongenotoxic toward osteoblast cells. Moreover, scaffolds with higher CeO2 content promoted osteogenic differentiation of dental pulp stem cells, stimulating calcium and osteocalcin secretion. The scaffolds also exhibited antimicrobial and antibiofilm effects against Staphylococcus aureus (S. aureus) as well as drug delivery ability. Our research findings indicated that the combination of MBG, natural biological structure, and the addition of Ce exhibited a synergistic effect on the structure and biological properties of scaffolds for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Irina Atkinson
- "Ilie Murgulescu" Institute of the Physical Chemistry of the Romanian Academy, 202, Spl. Independentei, Bucharest, 060021, Romania.
| | - Ana-Maria Seciu-Grama
- National Institute of Research and Development for Biological Sciences, 296, Spl. Independentei, Bucharest, 060031, Romania.
| | - Andrada Serafim
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Ghe. Polizu Street, Bucharest, 011601, Romania
| | - Simona Petrescu
- "Ilie Murgulescu" Institute of the Physical Chemistry of the Romanian Academy, 202, Spl. Independentei, Bucharest, 060021, Romania
| | - Mariana Voicescu
- "Ilie Murgulescu" Institute of the Physical Chemistry of the Romanian Academy, 202, Spl. Independentei, Bucharest, 060021, Romania
| | - Elena Maria Anghel
- "Ilie Murgulescu" Institute of the Physical Chemistry of the Romanian Academy, 202, Spl. Independentei, Bucharest, 060021, Romania
| | - Cornelia Marinescu
- "Ilie Murgulescu" Institute of the Physical Chemistry of the Romanian Academy, 202, Spl. Independentei, Bucharest, 060021, Romania
| | - Raul Augustin Mitran
- "Ilie Murgulescu" Institute of the Physical Chemistry of the Romanian Academy, 202, Spl. Independentei, Bucharest, 060021, Romania
| | - Oana Catalina Mocioiu
- "Ilie Murgulescu" Institute of the Physical Chemistry of the Romanian Academy, 202, Spl. Independentei, Bucharest, 060021, Romania
| | - Jeanina Pandele Cusu
- "Ilie Murgulescu" Institute of the Physical Chemistry of the Romanian Academy, 202, Spl. Independentei, Bucharest, 060021, Romania
| | - Daniel Lincu
- "Ilie Murgulescu" Institute of the Physical Chemistry of the Romanian Academy, 202, Spl. Independentei, Bucharest, 060021, Romania
| | - Ana-Maria Prelipcean
- National Institute of Research and Development for Biological Sciences, 296, Spl. Independentei, Bucharest, 060031, Romania
| | - Oana Craciunescu
- National Institute of Research and Development for Biological Sciences, 296, Spl. Independentei, Bucharest, 060031, Romania
| |
Collapse
|
9
|
Liu J, Zhou Z, Hou M, Xia X, Liu Y, Zhao Z, Wu Y, Deng Y, Zhang Y, He F, Xu Y, Zhu X. Capturing cerium ions via hydrogel microspheres promotes vascularization for bone regeneration. Mater Today Bio 2024; 25:100956. [PMID: 38322657 PMCID: PMC10844749 DOI: 10.1016/j.mtbio.2024.100956] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
The rational design of multifunctional biomaterials with hierarchical porous structure and on-demand biological activity is of great consequence for bone tissue engineering (BTE) in the contemporary world. The advanced combination of trace element cerium ions (Ce3+) with bone repair materials makes the composite material capable of promoting angiogenesis and enhancing osteoblast activity. Herein, a living and phosphorylated injectable porous hydrogel microsphere (P-GelMA-Ce@BMSCs) is constructed by microfluidic technology and coordination reaction with metal ion ligands while loaded with exogenous BMSCs. Exogenous stem cells can adhere to and proliferate on hydrogel microspheres, thus promoting cell-extracellular matrix (ECM) and cell-cell interactions. The active ingredient Ce3+ promotes the proliferation, osteogenic differentiation of rat BMSCs, and angiogenesis of endotheliocytes by promoting mineral deposition, osteogenic gene expression, and VEGF secretion. The enhancement of osteogenesis and improvement of angiogenesis of the P-GelMA-Ce scaffold is mainly associated with the activation of the Wnt/β-catenin pathway. This study could provide novel and meaningful insights for treating bone defects with biofunctional materials on the basis of metal ions.
Collapse
Affiliation(s)
- Junlin Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Zhangzhe Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Xiaowei Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Zhijian Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yubin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yaoge Deng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| |
Collapse
|
10
|
Harb SV, Kolanthai E, Pugazhendhi AS, Beatrice CA, Pinto LA, Neal CJ, Backes EH, Nunes AC, Selistre-de-Araújo HS, Costa LC, Coathup MJ, Seal S, Pessan LA. 3D printed bioabsorbable composite scaffolds of poly (lactic acid)-tricalcium phosphate-ceria with osteogenic property for bone regeneration. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100086. [PMID: 38213985 PMCID: PMC10776431 DOI: 10.1016/j.bbiosy.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024] Open
Abstract
The fabrication of customized implants by additive manufacturing has allowed continued development of the personalized medicine field. Herein, a 3D-printed bioabsorbable poly (lactic acid) (PLA)- β-tricalcium phosphate (TCP) (10 wt %) composite has been modified with CeO2 nanoparticles (CeNPs) (1, 5 and 10 wt %) for bone repair. The filaments were prepared by melt extrusion and used to print porous scaffolds. The nanocomposite scaffolds possessed precise structure with fine print resolution, a homogenous distribution of TCP and CeNP components, and mechanical properties appropriate for bone tissue engineering applications. Cell proliferation assays using osteoblast cultures confirmed the cytocompatibility of the composites. In addition, the presence of CeNPs enhanced the proliferation and differentiation of mesenchymal stem cells; thereby, increasing alkaline phosphatase (ALP) activity, calcium deposition and bone-related gene expression. Results from this study have shown that the 3D printed PLA-TCP-10%CeO2 composite scaffold could be used as an alternative polymeric implant for bone tissue engineering applications: avoiding additional/revision surgeries and accelerating the regenerative process.
Collapse
Affiliation(s)
- Samarah V. Harb
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | | | - Cesar A.G. Beatrice
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
| | - Leonardo A. Pinto
- Graduate Program in Materials Science and Engineering, Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Craig J. Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Eduardo H. Backes
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
| | - Ana C.C. Nunes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | | | - Lidiane C. Costa
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
| | - Melanie J. Coathup
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Luiz A. Pessan
- Department of Materials Engineering (DEMa), Federal University of Sao Carlos (UFSCar), São Carlos, SP, Brazil
| |
Collapse
|
11
|
Mostajeran H, Baheiraei N, Bagheri H. Effects of cerium-doped bioactive glass incorporation on an alginate/gelatin scaffold for bone tissue engineering: In vitro characterizations. Int J Biol Macromol 2024; 255:128094. [PMID: 37977466 DOI: 10.1016/j.ijbiomac.2023.128094] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Bioactive glasses (BGs) have been extensively employed in treating bone defects due to their capacity to bond and integrate with hard and soft tissues. To promote their characteristics, BGs are doped with therapeutic inorganic ions; Among these, Cerium (Ce) is of special attention because of its material and biological properties. This study aimed to investigate the effects of the addition of Ce to BG on the physicochemical and biological properties of the alginate/gelatin (Alg-Gel) scaffold compared with a similar scaffold that only contains BG45S5. The scaffolds were characterized for their biocompatibility using human bone marrow-derived mesenchymal stem cells (hBM-MSCs) by MTT analysis. The osteogenic differentiation of hBM-MSCs cultured on the scaffolds was assessed by evaluating the alkaline phosphatase (ALP) activity and the expression of osteogenic-related genes. Scanning electron microscopy of the prepared scaffolds showed an interconnected porous structure with an average diameter of 212-272 μm. The Young's modulus of the scaffolds significantly increased from 13 ± 0.82 MPa for Alg-Gel to 91 ± 1.76 MPa for Alg-Gel-BG/Ce. Ce doping improved the osteogenic differentiation of hBM-MSCs and ALP secretion compared to the other samples, even without adding an osteogenic differentiation medium. The obtained results demonstrated the biocompatibility and osteo-inductive potentials of the Alg-Gel-BG/Ce scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Hossein Mostajeran
- Department of Bio-Computing, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Department of Bio-Computing, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran; Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hamed Bagheri
- Department of Bio-Computing, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Chen X, Zhang L, Chai W, Tian P, Kim J, Ding J, Zhang H, Liu C, Wang D, Cui X, Pan H. Hypoxic Microenvironment Reconstruction with Synergistic Biofunctional Ions Promotes Diabetic Wound Healing. Adv Healthc Mater 2023; 12:e2301984. [PMID: 37740829 DOI: 10.1002/adhm.202301984] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Chronic hypoxia and ischemia make diabetic wounds non-healing. Cellular functions of diabetic chronic wounds are inhibited under a pathological environment. Therefore, this work develops a composite hydrogel system to promote diabetic wound healing. The composite hydrogel system consists of ε-poly-lysine (EPL), calcium peroxide (CP), and borosilicate glass (BG). The hydrogel supplies continuous dissolved oxygen molecules to the wound that can penetrate the skin tissue to restore normal cellular function and promote vascular regeneration. Biofunctional ions released from BGs can recruit more macrophages through neovascularization and modulate macrophage phenotypic transformation. Combining oxygen-mediated vascular regeneration and ion-mediated inflammatory regulation significantly accelerated diabetic wound healing. These findings indicate that this composite hydrogel system holds promise as a novel tissue engineering material.
Collapse
Affiliation(s)
- Xiaochen Chen
- School of materials science and engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Liyan Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Wenwen Chai
- School of materials science and engineering, Tongji University, Shanghai, 201804, P. R. China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Pengfei Tian
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jua Kim
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jingxin Ding
- School of materials science and engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Hao Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Chunyu Liu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Deping Wang
- School of materials science and engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Shenzhen Healthemes Biotechnology Co., Ltd, Shenzhen, 518071, P. R. China
| |
Collapse
|
13
|
Luo Y, Liu H, Zhang Y, Liu Y, Liu S, Liu X, Luo E. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci 2023; 11:7268-7295. [PMID: 37800407 DOI: 10.1039/d3bm01146a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In recent years, bone regeneration has emerged as a remarkable field that offers promising guidance for treating bone-related diseases, such as bone defects, bone infections, and osteosarcoma. Among various bone regeneration approaches, the metal ion-based strategy has surfaced as a prospective candidate approach owing to the extensive regulatory role of metal ions in bone metabolism and the diversity of corresponding delivery strategies. Various metal ions can promote bone regeneration through three primary strategies: balancing the effects of osteoblasts and osteoclasts, regulating the immune microenvironment, and promoting bone angiogenesis. In the meantime, the complex molecular mechanisms behind these strategies are being consistently explored. Moreover, the accelerated development of biomaterials broadens the prospect of metal ions applied to bone regeneration. This review highlights the potential of metal ions for bone regeneration and their underlying mechanisms. We propose that future investigations focus on refining the clinical utilization of metal ions using both mechanistic inquiry and materials engineering to bolster the clinical effectiveness of metal ion-based approaches for bone regeneration.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Emergency, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
14
|
Pan Q, Su W, Yao Y. Progress in microsphere-based scaffolds in bone/cartilage tissue engineering. Biomed Mater 2023; 18:062004. [PMID: 37751762 DOI: 10.1088/1748-605x/acfd78] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Bone/cartilage repair and regeneration have been popular and difficult issues in medical research. Tissue engineering is rapidly evolving to provide new solutions to this problem, and the key point is to design the appropriate scaffold biomaterial. In recent years, microsphere-based scaffolds have been considered suitable scaffold materials for bone/cartilage injury repair because microporous structures can form more internal space for better cell proliferation and other cellular activities, and these composite scaffolds can provide physical/chemical signals for neotissue formation with higher efficiency. This paper reviews the research progress of microsphere-based scaffolds in bone/chondral tissue engineering, briefly introduces types of microspheres made from polymer, inorganic and composite materials, discusses the preparation methods of microspheres and the exploration of suitable microsphere pore size in bone and cartilage tissue engineering, and finally details the application of microsphere-based scaffolds in biomimetic scaffolds, cell proliferation and drug delivery systems.
Collapse
Affiliation(s)
- Qian Pan
- Department of Joint Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Weixian Su
- Department of Joint Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Yongchang Yao
- Department of Joint Surgery, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| |
Collapse
|
15
|
Huang Y, Zhang M, Jin M, Ma T, Guo J, Zhai X, Du Y. Recent Advances on Cerium Oxide-Based Biomaterials: Toward the Next Generation of Intelligent Theranostics Platforms. Adv Healthc Mater 2023; 12:e2300748. [PMID: 37314429 DOI: 10.1002/adhm.202300748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Disease or organ damage due to unhealthy living habits, or accidents, is inevitable. Discovering an efficient strategy to address these problems is urgently needed in the clinic. In recent years, the biological applications of nanotechnology have received extensive attention. Among them, as a widely used rare earth oxide, cerium oxide (CeO2 ) has shown good application prospects in biomedical fields due to its attractive physical and chemical properties. Here, the enzyme-like mechanism of CeO2 is elucidated, and the latest research progress in the biomedical field is reviewed. At the nanoscale, Ce ions in CeO2 can be reversibly converted between +3 and +4. The conversion process is accompanied by the generation and elimination of oxygen vacancies, which give CeO2 the performance of dual redox properties. This property facilitates nano-CeO2 to catalyze the scavenging of excess free radicals in organisms, hence providing a possibility for the treatment of oxidative stress diseases such as diabetic foot, arthritis, degenerative neurological diseases, and cancer. In addition, relying on its excellent catalytic properties, customizable life-signaling factor detectors based on electrochemical techniques are developed. At the end of this review, an outlook on the opportunities and challenges of CeO2 in various fields is provided.
Collapse
Affiliation(s)
- Yongkang Huang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Mengzhen Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Mengdie Jin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tengfei Ma
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Jialiang Guo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Xinyun Zhai
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
16
|
Sotoudeh Bagha P, Kolanthai E, Wei F, Neal CJ, Kumar U, Braun G, Coathup M, Seal S, Razavi M. Ultrasound-Responsive Nanobubbles for Combined siRNA-Cerium Oxide Nanoparticle Delivery to Bone Cells. Pharmaceutics 2023; 15:2393. [PMID: 37896153 PMCID: PMC10609961 DOI: 10.3390/pharmaceutics15102393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to present an ultrasound-mediated nanobubble (NB)-based gene delivery system that could potentially be applied in the future to treat bone disorders such as osteoporosis. NBs are sensitive to ultrasound (US) and serve as a controlled-released carrier to deliver a mixture of Cathepsin K (CTSK) siRNA and cerium oxide nanoparticles (CeNPs). This platform aimed to reduce bone resorption via downregulating CTSK expression in osteoclasts and enhance bone formation via the antioxidant and osteogenic properties of CeNPs. CeNPs were synthesized and characterized using transmission electron microscopy and X-ray photoelectron spectroscopy. The mixture of CTSK siRNA and CeNPs was adsorbed to the surface of NBs using a sonication method. The release profiles of CTSK siRNA and CeNPs labeled with a fluorescent tag molecule were measured after low-intensity pulsed ultrasound (LIPUS) stimulation using fluorescent spectroscopy. The maximum release of CTSK siRNA and the CeNPs for 1 mg/mL of NB-(CTSK siRNA + CeNPs) was obtained at 2.5 nM and 1 µg/mL, respectively, 3 days after LIPUS stimulation. Then, Alizarin Red Staining (ARS) was applied to human bone marrow-derived mesenchymal stem cells (hMSC) and tartrate-resistant acid phosphatase (TRAP) staining was applied to human osteoclast precursors (OCP) to evaluate osteogenic promotion and osteoclastogenic inhibition effects. A higher mineralization and a lower number of osteoclasts were quantified for NB-(CTSK siRNA + CeNPs) versus control +RANKL with ARS (p < 0.001) and TRAP-positive staining (p < 0.01). This study provides a method for the delivery of gene silencing siRNA and CeNPs using a US-sensitive NB system that could potentially be used in vivo and in the treatment of bone fractures and disorders such as osteoporosis.
Collapse
Affiliation(s)
- Pedram Sotoudeh Bagha
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Fei Wei
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
| | - Craig J. Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Udit Kumar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Gillian Braun
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Melanie Coathup
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (E.K.); (C.J.N.); (U.K.); (S.S.)
| | - Mehdi Razavi
- BiionixTM (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.S.B.); (F.W.); (M.C.)
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
17
|
Babu B, Pawar S, Mittal A, Kolanthai E, Neal CJ, Coathup M, Seal S. Nanotechnology enabled radioprotectants to reduce space radiation-induced reactive oxidative species. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1896. [PMID: 37190884 DOI: 10.1002/wnan.1896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Interest in space exploration has seen substantial growth following recent launch and operation of modern space technologies. In particular, the possibility of travel beyond low earth orbit is seeing sustained support. However, future deep space travel requires addressing health concerns for crews under continuous, longer-term exposure to adverse environmental conditions. Among these challenges, radiation-induced health issues are a major concern. Their potential to induce chronic illness is further potentiated by the microgravity environment. While investigations into the physiological effects of space radiation are still under investigation, studies on model ionizing radiation conditions, in earth and micro-gravity conditions, can provide needed insight into relevant processes. Substantial formation of high, sustained reactive oxygen species (ROS) evolution during radiation exposure is a clear threat to physiological health of space travelers, producing indirect damage to various cell structures and requiring therapeutic address. Radioprotection toward the skeletal system components is essential to astronaut health, due to the high radio-absorption cross-section of bone mineral and local hematopoiesis. Nanotechnology can potentially function as radioprotectant and radiomitigating agents toward ROS and direct radiation damage. Nanoparticle compositions such as gold, silver, platinum, carbon-based materials, silica, transition metal dichalcogenides, and ceria have all shown potential as viable radioprotectants to mitigate space radiation effects with nanoceria further showing the ability to protect genetic material from oxidative damage in several studies. As research into space radiation-induced health problems develops, this review intends to provide insights into the nanomaterial design to ameliorate pathological effects from ionizing radiation exposure. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Balaashwin Babu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| | - Shreya Pawar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Agastya Mittal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Craig J Neal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Melanie Coathup
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- College of Medicine, Nanoscience Technology Center, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
18
|
Liu XL, Zhang CJ, Shi JJ, Ke QF, Ge YW, Zhu ZA, Guo YP. Nacre-mimetic cerium-doped nano-hydroxyapatite/chitosan layered composite scaffolds regulate bone regeneration via OPG/RANKL signaling pathway. J Nanobiotechnology 2023; 21:259. [PMID: 37550715 PMCID: PMC10408205 DOI: 10.1186/s12951-023-01988-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/07/2023] [Indexed: 08/09/2023] Open
Abstract
Autogenous bone grafting has long been considered the gold standard for treating critical bone defects. However, its use is plagued by numerous drawbacks, such as limited supply, donor site morbidity, and restricted use for giant-sized defects. For this reason, there is an increasing need for effective bone substitutes to treat these defects. Mollusk nacre is a natural structure with outstanding mechanical property due to its notable "brick-and-mortar" architecture. Inspired by the nacre architecture, our team designed and fabricated a nacre-mimetic cerium-doped layered nano-hydroxyapatite/chitosan layered composite scaffold (CeHA/CS). Hydroxyapatite can provide a certain strength to the material like a brick. And as a polymer material, chitosan can slow down the force when the material is impacted, like an adhesive. As seen in natural nacre, the combination of these inorganic and organic components results in remarkable tensile strength and fracture toughness. Cerium ions have been demonstrated exceptional anti-osteoclastogenesis capabilities. Our scaffold featured a distinct layered HA/CS composite structure with intervals ranging from 50 to 200 μm, which provided a conducive environment for human bone marrow mesenchymal stem cell (hBMSC) adhesion and proliferation, allowing for in situ growth of newly formed bone tissue. In vitro, Western-blot and qPCR analyses showed that the CeHA/CS layered composite scaffolds significantly promoted the osteogenic process by upregulating the expressions of osteogenic-related genes such as RUNX2, OCN, and COL1, while inhibiting osteoclast differentiation, as indicated by reduced TRAP-positive osteoclasts and decreased bone resorption. In vivo, calvarial defects in rats demonstrated that the layered CeHA/CS scaffolds significantly accelerated bone regeneration at the defect site, and immunofluorescence indicated a lowered RANKL/OPG ratio. Overall, our results demonstrate that CeHA/CS scaffolds offer a promising platform for bone regeneration in critical defect management, as they promote osteogenesis and inhibit osteoclast activation.
Collapse
Affiliation(s)
- Xiao-Liang Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chuan-Jian Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Jing-Jing Shi
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Yu-Wei Ge
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Zhen-An Zhu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
19
|
Jin J, Mangal U, Seo JY, Kim JY, Ryu JH, Lee YH, Lugtu C, Hwang G, Cha JY, Lee KJ, Yu HS, Kim KM, Jang S, Kwon JS, Choi SH. Cerium oxide nanozymes confer a cytoprotective and bio-friendly surface micro-environment to methacrylate based oro-facial prostheses. Biomaterials 2023; 296:122063. [PMID: 36848780 DOI: 10.1016/j.biomaterials.2023.122063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Poly-(methyl methacrylate) (PMMA) is the preferred biomaterial for orofacial prostheses used for the rehabilitation of naso-palatal defects. However, conventional PMMA has limitations determined by the complexity of the local microbiota and the friability of oral mucosa adjacent to these defects. Our purpose was to develop a new type of PMMA, i-PMMA, with good biocompatibility and better biological effects such as higher resistance to microbial adhesion of multiple species and enhanced antioxidant effect. The addition of cerium oxide nanoparticles to PMMA using a mesoporous nano-silica carrier and polybetaine conditioning, resulted in an increased release of cerium ions and enzyme mimetic activity, without tangible loss of mechanical properties. Ex vivo experiments confirmed these observations. In stressed human gingival fibroblasts, i-PMMA reduced the levels of reactive oxygen species and increased the expression of homeostasis-related proteins (PPARg, ATG5, LCI/III). Furthermore, i-PMMA increased the levels of expression of superoxide dismutase and mitogen-activated protein kinases (ERK and Akt), and cellular migration. Lastly, we demonstrated the biosafety of i-PMMA using two in vivo models: skin sensitization assay and oral mucosa irritation test, respectively. Therefore, i-PMMA offers a cytoprotective interface that prevents microbial adhesion and attenuates oxidative stress, thus supporting physiological recovery of the oral mucosa.
Collapse
Affiliation(s)
- Jie Jin
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young-Hee Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, 54907, Republic of Korea
| | - Cerjay Lugtu
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Jung-Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyung-Seog Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, 54907, Republic of Korea.
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
20
|
Tsamesidis I, Theocharidou A, Beketova A, Bousnaki M, Chatzimentor I, Pouroutzidou GK, Gkiliopoulos D, Kontonasaki E. Artemisinin Loaded Cerium-Doped Nanopowders Improved In Vitro the Biomineralization in Human Periodontal Ligament Cells. Pharmaceutics 2023; 15:pharmaceutics15020655. [PMID: 36839977 PMCID: PMC9962187 DOI: 10.3390/pharmaceutics15020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND A promising strategy to enhance bone regeneration is the use of bioactive materials doped with metallic ions with therapeutic effects and their combination with active substances and/or drugs. The aim of the present study was to investigate the osteogenic capacity of human periodontal ligament cells (hPDLCs) in culture with artemisinin (ART)-loaded Ce-doped calcium silicate nanopowders (NPs); Methods: Mesoporous silica, calcium-doped and calcium/cerium-doped silicate NPs were synthesized via a surfactant-assisted cooperative self-assembly process. Human periodontal ligament cells (hPDLCs) were isolated and tested for their osteogenic differentiation in the presence of ART-loaded and unloaded NPs through alkaline phosphatase (ALP) activity and Alizarine red S staining, while their antioxidant capacity was also evaluated; Results: ART promoted further the osteogenic differentiation of hPDLCs in the presence of Ce-doped NPs. Higher amounts of Ce in the ART-loaded NPs inversely affected the mineral deposition process by the hPDLCs. ART and Ce in the NPs have a synergistic role controlling the redox status and reducing ROS production from the hPDLCs; Conclusions: By monitoring the Ce amount and ART concentration, mesoporous NPs with optimum properties can be developed towards bone tissue regeneration demonstrating also potential application in periodontal tissue regeneration strategies.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: or
| | - Anna Theocharidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Beketova
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Bousnaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Iason Chatzimentor
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgia K. Pouroutzidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Laboratory of Advanced Materials and Devices (AMDeLab), School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Gkiliopoulos
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
21
|
Luo J, Zhu S, Tong Y, Zhang Y, Li Y, Cao L, Kong M, Luo M, Bi Q, Zhang Q. Cerium Oxide Nanoparticles Promote Osteoplastic Precursor Differentiation by Activating the Wnt Pathway. Biol Trace Elem Res 2023; 201:865-873. [PMID: 35230639 PMCID: PMC9849164 DOI: 10.1007/s12011-022-03168-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 01/22/2023]
Abstract
Osteoplastic precursors are critical for fracture repair and bone homeostasis maintenance. Cerium oxide nanoparticles (CeO2 NPs) can promote the osteogenic differentiation of mesenchymal stem cells and secrete vascular endothelial growth factors. However, little is known about its role in precursor osteoblasts; therefore, we further investigated the effect and mechanism of CeO2 NPs in precursor osteoblasts. Cell counting kit-8 analysis was utilized to detect the toxicity of CeO2 NPs on MC3T3-E1 mouse osteogenic precursor cells. Then, alizarin red S staining was employed to assess the degree of extracellular matrix mineralization, and quantitative real-time polymerase chain reaction analysis was performed to measure the levels of osteogenesis-related genes. To identify differentially expressed genes, mRNA-sequencing was performed. Subsequently, GO and KEGG analyses were deployed to identify the major downstream pathways, whereas Western blot was used for verification. CeO2 NPs significantly enhanced the ability of MC3T3-E1 precursor osteoblasts to enhance matrix mineralization and increased the expression of osteogenic genes such as runt-related transcription factor 2, collagen Iα1, and osteocalcin. Pathway analysis revealed that CeO2 NPs enhanced the nuclear translocation of β-catenin and activated the Wnt pathway by promoting family with sequence similarity 53 member B/simplet expression, while Western blot analysis indicated the same results. After using a Wnt pathway inhibitor (KYA1797K), the simulative effect of CeO2 NPs was abolished. This study revealed that CeO2 NPs promoted MC3T3-E1 precursor osteoblast differentiation by activating the Wnt pathway.
Collapse
Affiliation(s)
- Junchao Luo
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China, 325027
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, 481# Binwen Road, Hangzhou, 310000, Zhejiang, China
| | - Senbo Zhu
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China, 325027
| | - Yu Tong
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
| | - Yin Zhang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
- Bengbu Medical College, Bengbu, 233030, Anhui, China
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, 481# Binwen Road, Hangzhou, 310000, Zhejiang, China
| | - Yong Li
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
- Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Li Cao
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, 481# Binwen Road, Hangzhou, 310000, Zhejiang, China
| | - Mingxiang Kong
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, 481# Binwen Road, Hangzhou, 310000, Zhejiang, China
| | - Min Luo
- Dongyang Hospital of Traditional Chinese Medicine, Jinghua, 322199, Zhejiang, China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China, 325027
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, 481# Binwen Road, Hangzhou, 310000, Zhejiang, China
| | - Qiong Zhang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.
- Institute of Sports Medicine and Osteoarthropathy of Hangzhou Medical College, 481# Binwen Road, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
22
|
Hernández-Montes V, Buitrago-Sierra R, Echeverry-Rendón M, Santa-Marín JF. Ceria-based coatings on magnesium alloys for biomedical applications: a literature review. RSC Adv 2023; 13:1422-1433. [PMID: 36712919 PMCID: PMC9829028 DOI: 10.1039/d2ra06312c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Magnesium alloys are being studied for use in temporary orthopedic implants because of their mechanical properties, which are similar to those of human bone, and their good biocompatibility. However, their application is limited due to their rapid degradation, and early loss of their mechanical properties, decreasing the stability of the implant and its proper synchronization with tissue regeneration. In this regard, various surface coatings have been used to improve their biological, physico-chemical and biodegradation properties. Currently, one of the most explored strategies is using smart coatings because of their self-healing properties that can slow down the corrosion process of Mg and its alloys. Ceria-based materials show promise as coatings for these alloys. Their unique redox capacity not only provides Mg alloys with good self-healing properties but also interesting biological properties, which are described in this paper. Despite this, some problems and challenges related to the biocompatibility and application of these materials in coatings remain unsolved. In this article, a critical review is presented summarizing the most representative literature on ceria-based coatings on Mg alloys for their potential use as biomaterials. The results show that ceria is a versatile material that may be used in industrial and biomedical applications.
Collapse
Affiliation(s)
- V Hernández-Montes
- Universidad Nacional de Colombia. Sede Medellín. Facultad de Minas. Medellín, Colombia, Grupo de Tribología y Superficies Medellín Colombia
| | - R Buitrago-Sierra
- Instituto Tecnológico Metropolitano (ITM). Facultad de Ingenierías, Grupo de Materiales Avanzados y Energía (MATyER) Medellín Colombia
| | | | - J F Santa-Marín
- Universidad Nacional de Colombia. Sede Medellín. Facultad de Minas. Medellín, Colombia, Grupo de Tribología y Superficies Medellín Colombia
- Instituto Tecnológico Metropolitano (ITM). Facultad de Ingenierías, Grupo de Materiales Avanzados y Energía (MATyER) Medellín Colombia
| |
Collapse
|
23
|
Li S, Cui Y, Liu H, Tian Y, Wang G, Fan Y, Wang J, Wu D, Wang Y. Application of bioactive metal ions in the treatment of bone defects. J Mater Chem B 2022; 10:9369-9388. [PMID: 36378123 DOI: 10.1039/d2tb01684b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment of bone defects is an important problem in clinical practice. The rapid development of bone tissue engineering (BTE) may provide a new method for bone defect treatment. Metal ions have been widely studied in BTE and demonstrated a significant effect in promoting bone tissue growth. Different metal ions can be used to treat bone defects according to specific conditions, including promoting osteogenic activity, inhibiting osteoclast activity, promoting vascular growth, and exerting certain antibacterial effects. Multiple studies have confirmed that metal ions-modified composite scaffolds can effectively promote bone defect healing. By studying current extensive research on metal ions in the treatment of bone defects, this paper reviews the mechanism of metal ions in promoting bone tissue growth, analyzes the loading mode of metal ions, and lists some specific applications of metal ions in different types of bone defects. Finally, this paper summarizes the advantages and disadvantages of metal ions and analyzes the future research trend of metal ions in BTE. This article can provide some new strategies and methods for future research and applications of metal ions in the treatment of bone defects.
Collapse
Affiliation(s)
- Shaorong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yanbing Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| |
Collapse
|
24
|
Xing Y, Zhong X, Chen Z, Liu Q. Optimized osteogenesis of biological hydroxyapatite-based bone grafting materials by ion doping and osteoimmunomodulation. Biomed Mater Eng 2022; 34:195-213. [DOI: 10.3233/bme-221437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Biological hydroxyapatite (BHA)-based bone grafting materials have been widely used for bone regeneration in implant surgery. Much effort has been made in the improvement of their osteogenic property as it remains unsatisfactory for clinical use. Osteoimmunomodulation plays a significant role in bone regeneration, which is highly related to active inorganic ions. Therefore, attempts have been made to obtain osteoimmunomodulatory BHA-based bone grafting materials with optimized osteogenic property by ion doping. OBJECTIVE: To summarize and discuss the active inorganic ions doped into BHA and their effects on BHA-based bone grafting materials. METHOD: A literature search was performed in databases including Google Scholar, Web of Science and PubMed, with the elementary keywords of “ion doped” and “biological hydroxyapatite”, as well as several supplementary keywords. All document types were included in this search. The searching period and language were not limited and kept updated to 2022. RESULTS: A total of 32 articles were finally included, of which 32 discussed the physiochemical properties of BHA-based biomaterials, while 12 investigated their biological features in vitro, and only three examined their biological performance in vivo. Various ions were doped into BHA, including fluoride, zinc, magnesium and lithium. Such ions improved the biological performance of BHA-based biomaterials, which was attributed to their osteoimmunomodulatory effect. CONCLUSION: The doping of active inorganic ions is a reliable strategy to endow BHA-based biomaterials with osteoimmunomodulatory property and promote bone regeneration. Further studies are still in need to explore more ions and their effects in the crosstalk between the skeletal and immune systems.
Collapse
Affiliation(s)
| | | | | | - Quan Liu
- , Sun Yat-sen University, , China
| |
Collapse
|
25
|
Wei F, Neal CJ, Sakthivel TS, Fu Y, Omer M, Adhikary A, Ward S, Ta KM, Moxon S, Molinari M, Asiatico J, Kinzel M, Yarmolenko SN, San Cheong V, Orlovskaya N, Ghosh R, Seal S, Coathup M. A novel approach for the prevention of ionizing radiation-induced bone loss using a designer multifunctional cerium oxide nanozyme. Bioact Mater 2022; 21:547-565. [PMID: 36185749 PMCID: PMC9507991 DOI: 10.1016/j.bioactmat.2022.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
The disability, mortality and costs due to ionizing radiation (IR)-induced osteoporotic bone fractures are substantial and no effective therapy exists. Ionizing radiation increases cellular oxidative damage, causing an imbalance in bone turnover that is primarily driven via heightened activity of the bone-resorbing osteoclast. We demonstrate that rats exposed to sublethal levels of IR develop fragile, osteoporotic bone. At reactive surface sites, cerium ions have the ability to easily undergo redox cycling: drastically adjusting their electronic configurations and versatile catalytic activities. These properties make cerium oxide nanomaterials fascinating. We show that an engineered artificial nanozyme composed of cerium oxide, and designed to possess a higher fraction of trivalent (Ce3+) surface sites, mitigates the IR-induced loss in bone area, bone architecture, and strength. These investigations also demonstrate that our nanozyme furnishes several mechanistic avenues of protection and selectively targets highly damaging reactive oxygen species, protecting the rats against IR-induced DNA damage, cellular senescence, and elevated osteoclastic activity in vitro and in vivo. Further, we reveal that our nanozyme is a previously unreported key regulator of osteoclast formation derived from macrophages while also directly targeting bone progenitor cells, favoring new bone formation despite its exposure to harmful levels of IR in vitro. These findings open a new approach for the specific prevention of IR-induced bone loss using synthesis-mediated designer multifunctional nanomaterials.
Collapse
Key Words
- ALP, Alkaline phosphatase
- BMSC, Bone marrow derived mesenchymal stem cells
- Bone resorption
- Bone strength
- CAT, Catalase
- COLI, Collagen type I
- CTSK, Cathepsin K
- CTX-1, Cross-linked C-telopeptide of type I collagen
- CeONPs, Cerium oxide nanoparticles
- Cerium oxide
- DFT, Density functional theory
- DNA, Deoxyribonucleic acid
- EPR, Electron paramagnetic resonance
- FDA, Food and Drug Administration
- GPX, Glutathione peroxidase
- Gy, Gray
- HIF1α, Hypoxia-inducible factor 1 alpha
- IL-1β, Interleukin 1 beta
- IL-6, Interleukin 6
- IR, Ionizing radiation
- Ionizing radiation
- MNGC, Multinucleated giant cell
- Nanozyme
- OCN, Osteocalcin
- Osteoporosis
- RANKL, Receptor activator of nuclear factor kappa-Β ligand
- ROS, Reactive oxygen species
- SAED, Selected area electron diffraction
- SOD, Superoxide dismutase
- TRAP, Tartrate-resistant acid phosphatase
- XPS, X-ray photoelectron spectroscopy
Collapse
Affiliation(s)
- Fei Wei
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Craig J. Neal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | | | - Yifei Fu
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Mahmoud Omer
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI, MI, USA
| | - Samuel Ward
- Department of Chemistry, Oakland University, Rochester, MI, MI, USA
| | - Khoa Minh Ta
- School of Applied Sciences, Department of Chemical Sciences, University of Huddersfield, UK
| | - Samuel Moxon
- School of Applied Sciences, Department of Chemical Sciences, University of Huddersfield, UK
| | - Marco Molinari
- School of Applied Sciences, Department of Chemical Sciences, University of Huddersfield, UK
| | - Jackson Asiatico
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Michael Kinzel
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Sergey N. Yarmolenko
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A & T University, Greensboro, NC, USA
| | - Vee San Cheong
- Department of Automatic Control and Systems Engineering, Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, S1 3JD, UK
| | - Nina Orlovskaya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Corresponding author. Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
26
|
Xu S, Wu Q, He B, Rao J, Chow DHK, Xu J, Wang X, Sun Y, Ning C, Dai K. Interactive effects of cerium and copper to tune the microstructure of silicocarnotite bioceramics towards enhanced bioactivity and good biosafety. Biomaterials 2022; 288:121751. [PMID: 36031456 DOI: 10.1016/j.biomaterials.2022.121751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/09/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Endowing biomaterials with functional elements enhances their biological properties effectively. However, improving bioactivity and biosafety simultaneously is still highly desirable. Herein, cerium (Ce) and copper (Cu) are incorporated into silicocarnotite (CPS) to modulate the constitution and microstructure for degradability, bioactivity and biosafety regulation. Our results demonstrated that introducing Ce suppressed scaffold degradation, while, co-incorporation of both Ce and Cu accelerated degradability. Osteogenic effect of CPS in vitro was promoted by Ce and optimized by Cu, and Ce-induced angiogenic inhibition could be mitigated by cell coculture method and reversed by Ce-Cu co-incorporation. Ce enhanced osteogenic and angiogenic properties of CPS in a dose-dependent manner in vivo, and Cu-Ce coexistence exhibited optimal bioactivity and satisfactory biosafety. This work demonstrated that coculture in vitro was more appropriately reflecting the behavior of implanted biomaterials in vivo. Interactive effects of multi-metal elements were promising to enhance bioactivity and biosafety concurrently. The present work provided a promising biomaterial for bone repair and regeneration, and offered a comprehensive strategy to design new biomaterials which aimed at adjustable degradation behavior, and enhanced bioactivity and biosafety.
Collapse
Affiliation(s)
- Shunxiang Xu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, No. 100, Guilin Road, Xuhui District, Shanghai, 200234, PR China; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology Faculty of Medicine, The Chinese University of Hong Kong, No. 437, Ma Liu Shui, Shatin, New Territories, Hong Kong SAR, 999077, PR China
| | - Qiang Wu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, PR China
| | - Bo He
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, No. 100, Guilin Road, Xuhui District, Shanghai, 200234, PR China
| | - Jiancun Rao
- AIM Lab, Maryland NanoCenter, University of Maryland, MD, 20742, USA
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology Faculty of Medicine, The Chinese University of Hong Kong, No. 437, Ma Liu Shui, Shatin, New Territories, Hong Kong SAR, 999077, PR China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology Faculty of Medicine, The Chinese University of Hong Kong, No. 437, Ma Liu Shui, Shatin, New Territories, Hong Kong SAR, 999077, PR China
| | - Xin Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuchang District, Wuhan, 430071, PR China
| | - Ye Sun
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, PR China
| | - Congqin Ning
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, No. 100, Guilin Road, Xuhui District, Shanghai, 200234, PR China.
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, PR China.
| |
Collapse
|
27
|
Synthesis of Nanoceria with Varied Ratios of Ce 3+/Ce 4+ Utilizing Soluble Borate Glass. NANOMATERIALS 2022; 12:nano12142363. [PMID: 35889588 PMCID: PMC9323119 DOI: 10.3390/nano12142363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/10/2022]
Abstract
Mixed-valence cerium oxide nanoparticles (nanoceria) have been investigated with pronounced interest due to a wide range of biomedical and industrial applications that arises from its remarkable redox catalytic properties. However, there is no understanding of how to control the formation of these two types of nanoceria to obtain Ce3+/Ce4+ ratios required in various applications. In this work, using a soluble borate glass, nanoceria with specific ratios of Ce3+/Ce4+ are created and extracted via controlled glass-melting parameters. Glass embedded with nanoceria as well as nanoceria extracted from the glass were studied via XANES and fitted with the Multivariate Curve Resolution (MCR) technique to calculate the ratio of Ce3+/Ce4+. Results show that mixed-valence nanoceria with specific ratios are hermetically sealed within the glass for long durations. When the glass dissolves, the mixed-valence nanoceria are released, and the extracted nanoceria have unchanged Ce3+/Ce4+ ratios. Furthermore, TEM investigation on released nanoceria show that the nanoceria consist of several different structures. Although nanocrystal structures of Ce7O12, Ce11O20, and Ce2O3 contribute to the reduced state, a new quasi-stable phase of CeO1.66 has been observed as well.
Collapse
|
28
|
Wu X, Guo H, Jia Y, Wang Q, Wang J, Sun X, Wang J. Adipose mesenchymal stem cell-based tissue engineering mesh with sustained bFGF release to enhance tissue repair. Biomater Sci 2022; 10:3110-3121. [PMID: 35543346 DOI: 10.1039/d1bm01893k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pelvic organ prolapse (POP) harms the quality of life of elderly patients. Transvaginal polypropylene mesh repair for POP was a frequently reported complication and was banned by the FDA in 2019. New therapeutic strategies are urgently required, and tissue engineering technology could be a novel therapy. Here, we developed a tissue engineering mesh out of three components: silk fibroin (SF) knitted mesh loaded with basic fibroblast growth factor (bFGF) and adipose-derived stem cells (ADSCs). We used coaxial electrospinning technology to achieve local bFGF release to promote regeneration. Additionally, ADSCs were loaded to demonstrate their paracrine ability of immune regulation and angiogenesis. Meanwhile, knitted silk fibroin mesh provided mechanical support. In vitro, SF/bFGF/ADSC tissue engineering mesh can stably release bFGF and has good biocompatibility, promoting cell proliferation and extracellular matrix synthesis. Six months after the SF/bFGF/ADSC tissue engineering mesh was implanted in a SD rat model, extracellular matrix reorganization, angiogenesis, and immunomodulatory effect, as well as mechanical properties of the implanting position were improved. Hence, SF/bFGF/ADSC tissue engineering mesh could be regarded as a promising option with excellent collagen synthesis, low foreign body response, and early angiogenic ability, providing potential ideas for POP treatment.
Collapse
Affiliation(s)
- Xiaotong Wu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China. .,Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing, China
| | - Hong Guo
- Donghua University College of Textiles, Shanghai, China
| | - Yuanyuan Jia
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China. .,Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing, China
| | - Qing Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China. .,Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing, China
| | - Jiaqi Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China. .,Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing, China
| | - Xiuli Sun
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China. .,Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China. .,Beijing Key Laboratory of Female Pelvic Floor Disorders, Beijing, China
| |
Collapse
|
29
|
Zakhireh S, Barar J, Adibkia K, Beygi-Khosrowshahi Y, Fathi M, Omidain H, Omidi Y. Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration. Top Curr Chem (Cham) 2022; 380:13. [PMID: 35149879 DOI: 10.1007/s41061-022-00364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Captivating achievements in developing advanced hybrid biostructures through integrating natural biopolymers with inorganic materials (e.g., metals and metalloids) have paved the way towards the application of bioactive organometallic scaffolds (OMSs) in tissue engineering and regenerative medicine (TERM). Of various biopolymers, chitosan (CS) has been used widely for the development of bioactive OMSs, in large part due to its unique characteristics (e.g., biocompatibility, biodegradability, surface chemistry, and functionalization potential). In integration with inorganic elements, CS has been used to engineer advanced biomimetic matrices to accommodate both embedded cells and drug molecules and serve as scaffolds in TERM. The use of the CS-based OMSs is envisioned to provide a new pragmatic potential in TERM and even in precision medicine. In this review, we aim to elaborate on recent achievements in a variety of CS/metal, CS/metalloid hybrid scaffolds, and discuss their applications in TERM. We also provide comprehensive insights into the formulation, surface modification, characterization, biocompatibility, and cytotoxicity of different types of CS-based OMSs.
Collapse
Affiliation(s)
- Solmaz Zakhireh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidain
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
30
|
Natarajan D, Ye Z, Wang L, Ge L, Pathak JL. Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects. Bioeng Transl Med 2022; 7:e10262. [PMID: 35111954 PMCID: PMC8780931 DOI: 10.1002/btm2.10262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Bone grafts or prosthetic implant designing for clinical application is challenging due to the complexity of integrated physiological processes. The revolutionary advances of nanotechnology in the biomaterial field expedite and endorse the current unresolved complexity in functional bone graft and implant design. Rare earth (RE) materials are emerging biomaterials in tissue engineering due to their unique biocompatibility, fluorescence upconversion, antimicrobial, antioxidants, and anti-inflammatory properties. Researchers have developed various RE smart nano-biomaterials for bone tissue engineering and implantology applications in the past two decades. Furthermore, researchers have explored the molecular mechanisms of RE material-mediated tissue regeneration. Recent advances in biomedical applications of micro or nano-scale RE materials have provided a foundation for developing novel, cost-effective bone tissue engineering strategies. This review attempted to provide an overview of RE nanomaterials' technological innovations in bone tissue engineering and implantology and summarized the osteogenic, angiogenic, immunomodulatory, antioxidant, in vivo bone tissue imaging, and antimicrobial properties of various RE nanomaterials, as well as the molecular mechanisms involved in these biological events. Further, we extend to discuss the challenges and prospects of RE smart nano-biomaterials in the field of bone tissue engineering and implantology.
Collapse
Affiliation(s)
- Duraipandy Natarajan
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Liping Wang
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Linhu Ge
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Janak Lal Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| |
Collapse
|
31
|
Huang Y, Zhai X, Ma T, Zhang M, Pan H, Weijia Lu W, Zhao X, Sun T, Li Y, Shen J, Yan C, Du Y. Rare earth-based materials for bone regeneration: Breakthroughs and advantages. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Ren S, Zhou Y, Zheng K, Xu X, Yang J, Wang X, Miao L, Wei H, Xu Y. Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering. Bioact Mater 2022; 7:242-253. [PMID: 34466730 PMCID: PMC8379477 DOI: 10.1016/j.bioactmat.2021.05.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Bone regeneration is a crucial part in the treatment of periodontal tissue regeneration, in which new attempts come out along with the development of nanomaterials. Herein, the effect of cerium oxide nanoparticles (CeO2 NPs) on the cell behavior and function of human periodontal ligament stem cells (hPDLSCs) was investigated. Results of CCK-8 and cell cycle tests demonstrated that CeO2 NPs not only had good biocompatibility, but also promoted cell proliferation. Furthermore, the levels of alkaline phosphatase activity, mineralized nodule formation and expressions of osteogenic genes and proteins demonstrated CeO2 NPs could promote osteogenesis differentiation of hPDLSCs. Then we chose electrospinning to fabricate fibrous membranes containing CeO2 NPs. We showed that the composite membranes improved mechanical properties as well as realized release of CeO2 NPs. We then applied the composite membranes to in vivo study in rat cranial defect models. Micro-CT and histopathological evaluations revealed that nanofibrous membranes with CeO2 NPs further accelerated new bone formation. Those exciting results demonstrated that CeO2 NPs and porous membrane contributed to osteogenic ability, and CeO2 NPs contained electrospun membrane may be a promising candidate material for periodontal bone regeneration.
Collapse
Affiliation(s)
- Shuangshuang Ren
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yi Zhou
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Xuanwen Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Jie Yang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Leiying Miao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
33
|
Attia N, Rostom DM, Mashal M. The use of cerium oxide nanoparticles in liver disorders: A double-sided coin? Basic Clin Pharmacol Toxicol 2021; 130:349-363. [PMID: 34902883 DOI: 10.1111/bcpt.13700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/01/2022]
Abstract
Being recognized as the first antioxidant nanoparticles (NPs) proposed for medicine, cerium oxide nanoparticles (CeO2 NPs) have recently gained tremendous attention for their vast biomedical applications. Nevertheless, inconsistent reports of either medical benefits or toxicity have created an atmosphere of uncertainty hindering their clinical utilization. Like other nanoparticles advocated as a promising protective/therapeutic option, CeO2 NPs are sometimes questioned as a health threat. As CeO2 NPs tend to accumulate in the liver after intravenous injection, liver is known to represent the key tissue to test for their therapeutic/toxicological effects. However, more research evidence is still needed before any conclusions can be elicited about the mechanisms by which CeO2 NPs could be harmful or protective/therapeutic to the liver tissue. A proper understanding of such discrepancies is warranted to plan for further modifications to mitigate any side effects. Therefore, in this MiniReview, we tried to demonstrate the two sides of the same coin, CeO2 NPs, within the liver context. As well, we highlighted a few promising strategies by which the negatives of CeO2 NPs could be diminished while enhancing all the positives.
Collapse
Affiliation(s)
- N Attia
- Department of Basic Sciences, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gastiez, Spain
| | - D M Rostom
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - M Mashal
- The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gastiez, Spain
| |
Collapse
|
34
|
Lord MS, Berret JF, Singh S, Vinu A, Karakoti AS. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102342. [PMID: 34363314 DOI: 10.1002/smll.202102342] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Research on cerium oxide nanoparticles (nanoceria) has captivated the scientific community due to their unique physical and chemical properties, such as redox activity and oxygen buffering capacity, which made them available for many technical applications, including biomedical applications. The redox mimetic antioxidant properties of nanoceria have been effective in the treatment of many diseases caused by reactive oxygen species (ROS) and reactive nitrogen species. The mechanism of ROS scavenging activity of nanoceria is still elusive, and its redox activity is controversial due to mixed reports in the literature showing pro-oxidant and antioxidant activity. In light of its current research interest, it is critical to understand the behavior of nanoceria in the biological environment and provide answers to some of the critical and open issues. This review critically analyzes the status of research on the application of nanoceria to treat diseases caused by ROS. It reviews the proposed mechanism of action and shows the effect of surface coatings on its redox activity. It also discusses some of the crucial issues in deciphering the mechanism and redox activity of nanoceria and suggests areas of future research.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | | | - Sanjay Singh
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Ajay S Karakoti
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
35
|
Zhang Q, Xiao L, Xiao Y. Porous Nanomaterials Targeting Autophagy in Bone Regeneration. Pharmaceutics 2021; 13:1572. [PMID: 34683866 PMCID: PMC8540591 DOI: 10.3390/pharmaceutics13101572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
Porous nanomaterials (PNMs) are nanosized materials with specially designed porous structures that have been widely used in the bone tissue engineering field due to the fact of their excellent physical and chemical properties such as high porosity, high specific surface area, and ideal biodegradability. Currently, PNMs are mainly used in the following four aspects: (1) as an excellent cargo to deliver bone regenerative growth factors/drugs; (2) as a fluorescent material to trace cell differentiation and bone formation; (3) as a raw material to synthesize or modify tissue engineering scaffolds; (4) as a bio-active substance to regulate cell behavior. Recent advances in the interaction between nanomaterials and cells have revealed that autophagy, a cellular survival mechanism that regulates intracellular activity by degrading/recycling intracellular metabolites, providing energy/nutrients, clearing protein aggregates, destroying organelles, and destroying intracellular pathogens, is associated with the phagocytosis and clearance of nanomaterials as well as material-induced cell differentiation and stress. Autophagy regulates bone remodeling balance via directly participating in the differentiation of osteoclasts and osteoblasts. Moreover, autophagy can regulate bone regeneration by modulating immune cell response, thereby modulating the osteogenic microenvironment. Therefore, autophagy may serve as an effective target for nanomaterials to facilitate the bone regeneration process. Increasingly, studies have shown that PNMs can modulate autophagy to regulate bone regeneration in recent years. This paper summarizes the current advances on the main application of PNMs in bone regeneration, the critical role of autophagy in bone regeneration, and the mechanism of PNMs regulating bone regeneration by targeting autophagy.
Collapse
Affiliation(s)
- Qing Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China; (Q.Z.); (L.X.)
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, The Netherlands
| | - Lan Xiao
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China; (Q.Z.); (L.X.)
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Yin Xiao
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China; (Q.Z.); (L.X.)
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
36
|
Abstract
![]()
Bioactive glasses
(BGs) for biomedical applications are doped with
therapeutic inorganic ions (TIIs) in order to improve their performance
and reduce the side effects related to the surgical implant. Recent
literature in the field shows a rekindled interest toward rare earth
elements, in particular cerium, and their catalytic properties. Cerium-doped
bioactive glasses (Ce-BGs) differ in compositions, synthetic methods,
features, and in vitro assessment. This review provides
an overview on the recent development of Ce-BGs for biomedical applications
and on the evaluation of their bioactivity, cytocompatibility, antibacterial,
antioxidant, and osteogenic and angiogenic properties as a function
of their composition and physicochemical parameters.
Collapse
Affiliation(s)
- Alfonso Zambon
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Gianluca Malavasi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Annalisa Pallini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Francesca Fraulini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Gigliola Lusvardi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| |
Collapse
|
37
|
Shan J, Wang S, Xu H, Zhan H, Geng Z, Liang H, Dai M. Incorporation of cerium oxide into zirconia toughened alumina ceramic promotes osteogenic differentiation and osseointegration. J Biomater Appl 2021; 36:976-984. [PMID: 34496655 DOI: 10.1177/08853282211036535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Due to its high wear resistance and good biocompatibility, zirconia toughened alumina (ZTA) is an ideal material used as load-bearing implant. However, ZTA needs to be modified to overcome its bio-inert and thus improve osseointegration. Cerium oxide, which has been proved to be a bone-friendly ceramic, might be a desired material to enhance the bioactivity of ZTA. In this study, ZTA and cerium oxide doped ZTA (ZTAC) were prepared via sintering method. The in vitro study showed that the addition of cerium oxide promoted MC3T3-E1 cell adhesion and spreading through upregulating ITG α5 and ITG β1. In addition, the incorporation of cerium oxide enhanced cell proliferation, ALP activity, and ECM mineralization capacity. Moreover, the incorporation of cerium oxide promoted the expressions of osteogenesis related genes, such as ALP, Col-I, and OCN. The in vivo implantation test via a SD rat model showed that the incorporation of cerium oxide promoted new bone formation and bone-implant integration. In summary, this study provided a new strategy to fabricate bioactive ZTA implant for potential application in orthopedics field.
Collapse
Affiliation(s)
- Jing Shan
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Song Wang
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Huaen Xu
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Haibo Zhan
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hanqin Liang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Min Dai
- Department of Orthopedics, the First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
38
|
Gofman IV, Nikolaeva AL, Khripunov AK, Ivan’kova EM, Shabunin AS, Yakimansky AV, Romanov DP, Popov AL, Ermakov AM, Solomevich SO, Bychkovsky PM, Baranchikov AE, Ivanov VK. Bacterial Cellulose-Based Nanocomposites Containing Ceria and Their Use in the Process of Stem Cell Proliferation. Polymers (Basel) 2021; 13:polym13121999. [PMID: 34207191 PMCID: PMC8234971 DOI: 10.3390/polym13121999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
A technique for the fabrication of bacterial cellulose-based films with CeO2 nanofiller has been developed. The structural and morphological characteristics of the materials have been studied, their thermal and mechanical properties in dry and swollen states having been determined. The preparation methodology makes it possible to obtain composites with a uniform distribution of nanoparticles. The catalytic effect of ceria, regarding the thermal oxidative destruction of cellulose, has been confirmed by TGA and DTA methods. An increase in CeO2 content led to an increase in the elastic modulus (a 1.27-fold increase caused by the introduction of 5 wt.% of the nanofiller into the polymer) and strength of the films. This effect is explained by the formation of additional links between polymer macro-chains via the nanoparticles’ surface. The materials fabricated were characterized by a limited ability to swell in water. Swelling caused a 20- to 30-fold reduction in the stiffness of the material, the mechanical properties of the films in a swollen state remaining germane to their practical use. The application of the composite films in cell engineering as substrates for the stem cells’ proliferation has been studied. The increase in CeO2 content in the films enhanced the proliferative activity of embryonic mouse stem cells. The cells cultured on the scaffold containing 5 wt.% of ceria demonstrated increased cell survival and migration activity. An analysis of gene expression confirmed improved cultivation conditions on CeO2-containing scaffolds.
Collapse
Affiliation(s)
- Iosif V. Gofman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint Petersburg, Russia; (A.L.N.); (A.K.K.); (E.M.I.); (A.V.Y.)
- Correspondence:
| | - Alexandra L. Nikolaeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint Petersburg, Russia; (A.L.N.); (A.K.K.); (E.M.I.); (A.V.Y.)
| | - Albert K. Khripunov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint Petersburg, Russia; (A.L.N.); (A.K.K.); (E.M.I.); (A.V.Y.)
| | - Elena M. Ivan’kova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint Petersburg, Russia; (A.L.N.); (A.K.K.); (E.M.I.); (A.V.Y.)
| | - Anton S. Shabunin
- H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, Pushkin, 196603 Saint Petersburg, Russia;
| | - Alexander V. Yakimansky
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint Petersburg, Russia; (A.L.N.); (A.K.K.); (E.M.I.); (A.V.Y.)
- Institute of Chemistry, Saint Petersburg State University, 198504 Saint Petersburg, Russia
| | - Dmitriy P. Romanov
- Institute of Silicate Chemistry, Russian Academy of Sciences, 199034 Saint Petersburg, Russia;
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics, 142290 Pushchino, Russia; (A.L.P.); (A.M.E.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (A.E.B.); (V.K.I.)
| | - Artem M. Ermakov
- Institute of Theoretical and Experimental Biophysics, 142290 Pushchino, Russia; (A.L.P.); (A.M.E.)
| | - Sergey O. Solomevich
- Research Institute for Physical and Chemical Problems, Belarusian State University, 220030 Minsk, Belarus; (S.O.S.); (P.M.B.)
| | - Pavel M. Bychkovsky
- Research Institute for Physical and Chemical Problems, Belarusian State University, 220030 Minsk, Belarus; (S.O.S.); (P.M.B.)
| | - Alexander E. Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (A.E.B.); (V.K.I.)
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (A.E.B.); (V.K.I.)
| |
Collapse
|
39
|
Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomater Sci 2021; 9:4541-4567. [PMID: 34075945 DOI: 10.1039/d1bm00504a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of nanoparticles into bone tissue engineering strategies is beneficial to govern cell fate into osteogenesis and the regeneration of large bone defects. The present study explored the role of nanoparticles to advance osteogenesis with a focus on the cellular and molecular pathways involved. Pubmed, Pubmed Central, Embase, Scopus, and Science Direct databases were explored for those published articles relevant to the involvement of nanoparticles in osteogenic cellular pathways. As multifunctional compounds, nanoparticles contribute to scaffold-free and scaffold-based tissue engineering strategies to progress osteogenesis and bone regeneration. They regulate inflammatory responses and osteo/angio/osteoclastic signaling pathways to generate an osteogenic niche. Besides, nanoparticles interact with biomolecules, enhance their half-life and bioavailability. Nanoparticles are promising candidates to promote osteogenesis. However, the interaction of nanoparticles with the biological milieu is somewhat complicated, and more considerations are recommended on the employment of nanoparticles in clinical applications because of NP-induced toxicities.
Collapse
Affiliation(s)
- Azam Bozorgi
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Liu L, Gao X, Li X, Zhu G, Li N, Shi X, Wang Y. Calcium alendronate-coated composite scaffolds promote osteogenesis of ADSCs via integrin and FAK/ERK signalling pathways. J Mater Chem B 2021; 8:6912-6924. [PMID: 32432602 DOI: 10.1039/d0tb00571a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bioceramic-biopolymer composites have been used extensively as bone tissue engineering scaffolds due to their bioactive properties. However, composite scaffolds are insufficient in inducing osteogenic differentiation of stem cells. In this study, a strategy for the local delivery of bioactive factors by coating calcium alendronate (ALC) on the surface of composite scaffolds was systematically evaluated for the first time. The coated ALC not only displayed excellent cytocompatibility and cell adhesion properties but also resulted in the significant upregulation of osteogenic related gene expression, osteogenic related protein levels, alkaline phosphatase (ALP) activity and calcium deposition of ADSCs. Furthermore, our results suggested that the molecular mechanism of ADSC osteogenic differentiation induced by the constructed ALC may be related to the integrin binding and the activation of FAK/ERK signalling pathways. These findings suggested that ALC-coated composite scaffolds can serve as bone tissue engineering scaffolds, providing a simple and universal method to improve the osteogenic differentiation of ADSCs by calcium phosphate-containing composite materials.
Collapse
Affiliation(s)
- Lei Liu
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Li H, Xia P, Pan S, Qi Z, Fu C, Yu Z, Kong W, Chang Y, Wang K, Wu D, Yang X. The Advances of Ceria Nanoparticles for Biomedical Applications in Orthopaedics. Int J Nanomedicine 2020; 15:7199-7214. [PMID: 33061376 PMCID: PMC7535115 DOI: 10.2147/ijn.s270229] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The ongoing biomedical nanotechnology has intrigued increasingly intense interests in cerium oxide nanoparticles, ceria nanoparticles or nano-ceria (CeO2-NPs). Their remarkable vacancy-oxygen defect (VO) facilitates the redox process and catalytic activity. The verification has illustrated that CeO2-NPs, a nanozyme based on inorganic nanoparticles, can achieve the anti-inflammatory effect, cancer resistance, and angiogenesis. Also, they can well complement other materials in tissue engineering (TE). Pertinent to the properties of CeO2-NPs and the pragmatic biosynthesis methods, this review will emphasize the recent application of CeO2-NPs to orthopedic biomedicine, in particular, the bone tissue engineering (BTE). The presentation, assessment, and outlook of the orthopedic potential and shortcomings of CeO2-NPs in this review expect to provide reference values for the future research and development of therapeutic agents based on CeO2-NPs.
Collapse
Affiliation(s)
- Hongru Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Su Pan
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chuan Fu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Ziyuan Yu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Weijian Kong
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yuxin Chang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Kai Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Dankai Wu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
42
|
Popova NR, Popov AL, Ermakov AM, Reukov VV, Ivanov VK. Ceria-Containing Hybrid Multilayered Microcapsules for Enhanced Cellular Internalisation with High Radioprotection Efficiency. Molecules 2020; 25:E2957. [PMID: 32605031 PMCID: PMC7411955 DOI: 10.3390/molecules25132957] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022] Open
Abstract
Cerium oxide nanoparticles (nanoceria) are believed to be the most versatile nanozyme, showing great promise for biomedical applications. At the same time, the controlled intracellular delivery of nanoceria remains an unresolved problem. Here, we have demonstrated the radioprotective effect of polyelectrolyte microcapsules modified with cerium oxide nanoparticles, which provide controlled loading and intracellular release. The optimal (both safe and uptake efficient) concentrations of ceria-containing microcapsules for human mesenchymal stem cells range from 1:10 to 1:20 cell-to-capsules ratio. We have revealed the molecular mechanisms of nanoceria radioprotective action on mesenchymal stem cells by assessing the level of intracellular reactive oxygen species (ROS), as well as by a detailed 96-genes expression analysis, featuring genes responsible for oxidative stress, mitochondrial metabolism, apoptosis, inflammation etc. Hybrid ceria-containing microcapsules have been shown to provide an indirect genoprotective effect, reducing the number of cytogenetic damages in irradiated cells. These findings give new insight into cerium oxide nanoparticles' protective action for living beings against ionising radiation.
Collapse
Affiliation(s)
- N. R. Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; (N.R.P.); (A.L.P.); (A.M.E.)
| | - A. L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; (N.R.P.); (A.L.P.); (A.M.E.)
| | - A. M. Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; (N.R.P.); (A.L.P.); (A.M.E.)
| | - V. V. Reukov
- University of Georgia, 315 Dawson Hall, Athens, GA 30602, USA;
| | - V. K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
43
|
Yang Q, Yin H, Xu T, Zhu D, Yin J, Chen Y, Yu X, Gao J, Zhang C, Chen Y, Gao Y. Engineering 2D Mesoporous Silica@MXene-Integrated 3D-Printing Scaffolds for Combinatory Osteosarcoma Therapy and NO-Augmented Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906814. [PMID: 32108432 DOI: 10.1002/smll.201906814] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/19/2020] [Indexed: 06/10/2023]
Abstract
The rising concerns of the recurrence and bone deficiency in surgical treatment of malignant bone tumors have raised an urgent need of the advance of multifunctional therapeutic platforms for efficient tumor therapy and bone regeneration. Herein, the construction of a multifunctional biomaterial system is reported by the integration of 2D Nb2 C MXene wrapped with S-nitrosothiol (RSNO)-grafted mesoporous silica with 3D-printing bioactive glass (BG) scaffolds (MBS). The near infrared (NIR)-triggered photonic hyperthermia of MXene in the NIR-II biowindow and precisely controlled nitric oxide (NO) release are coordinated for multitarget ablation of bone tumors to enhance localized osteosarcoma treatment. The in situ formed phosphorus and calcium components degraded from BG scaffold promote bone-regeneration bioactivity, augmented by sufficient blood supply triggered by on-demand NO release. The tunable NO generation plays a crucial role in sequential adjuvant tumor ablation, combinatory promotion of coupled vascularization, and bone regeneration. This study demonstrates a combinatory osteosarcoma ablation and a full osseous regeneration as enabled by the implantation of MBS. The design of multifunctional scaffolds with the specific features of controllable NO release, highly efficient photothermal conversion, and stimulatory bone regeneration provides an intriguing biomaterial platform for the diversified treatment of bone tumors.
Collapse
Affiliation(s)
- Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Haohao Yin
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Tianming Xu
- Department of Orthopedics, No. 455 Hospital of PLA, The Second Military Medical University, Shanghai, 200052, P. R. China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Junhui Yin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Xiaowei Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| | - Yu Chen
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China
| |
Collapse
|
44
|
Yu W, Zhu Y, Li H, He Y. Injectable Quercetin-Loaded Hydrogel with Cartilage-Protection and Immunomodulatory Properties for Articular Cartilage Repair. ACS APPLIED BIO MATERIALS 2020; 3:761-771. [PMID: 35019280 DOI: 10.1021/acsabm.9b00673] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Articular cartilage plays an important role in human body. How to repair articular cartilage defects when they appear due to various factors has always been a major clinical challenge. Recently, studies have shown that slowing the degradation of cartilage extracellular matrix (ECM) and modulating the inflammatory response of the host thereby promoting cartilage tissue regeneration are important in the cartilage repair process. In this study, a drug-loaded injectable hydrogel was constructed for repairing articular cartilage. This hydrogel could not only maintain the phenotype of chondrocytes but also regulate the inflammatory response of the host. The injectable sodium alginate (SA)/bioglass (BG) hydrogel was mixed with the injectable thermal-responsive SA/agarose (AG)/quercetin (Que) hydrogel to obtain an injectable hydrogel containing both Que and BG (Que-BG hydrogel) for articular cartilage regeneration. The Que-BG hydrogel has a proper swelling ratio that can promote integration between the formed tissue and host tissue, and it allows Que to release slowly in situ to improve its bioavailability. The Que-BG hydrogel could upregulate SRY-box 9 (SOX9), aggrecan (ACAN), and collagen type II alpha 1 chain (COL2A1) of normal chondrocytes to maintain the normal chondrocyte phenotype. In addition, it could promote macrophage M2 polarization, reduce inflammation, and inhibit ECM degradation by downregulating the expression of inducible nitric oxide synthase (iNOS), matrix metalloproteinase-13 (MMP13), and matrix metalloproteinase-1 (MMP1) in degenerative chondrocytes. After injecting the Que-BG hydrogel into a rat cartilage defect model, the formed tissue was observed to be similar to the normal tissue and was highly integrated with the surrounding tissue. Therefore, the injectable Que-BG hydrogel improves Que bioavailability, maintains chondrocyte phenotype, inhibits ECM degradation, and reduces inflammatory response.
Collapse
Affiliation(s)
- Weihan Yu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233, China.,Department of Orthopedics, Shanghai General Hospital, Shanghai 200080, China
| | - Yanlun Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Haiyan Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Yaohua He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai 200233, China.,Department of Orthopedics, Shanghai Sixth People's Hospital, Jinshan Branch, Shanghai 201599, China
| |
Collapse
|
45
|
Chen L, Mou S, Li F, Zeng Y, Sun Y, Horch RE, Wei W, Wang Z, Sun J. Self-Assembled Human Adipose-Derived Stem Cell-Derived Extracellular Vesicle-Functionalized Biotin-Doped Polypyrrole Titanium with Long-Term Stability and Potential Osteoinductive Ability. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46183-46196. [PMID: 31718127 DOI: 10.1021/acsami.9b17015] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), containing proteins or microRNAs (miRNAs), possessing various biological activity and low immunogenicity, are considered promising for surface modification of bone grafts. However, the modification efficiency is not satisfied yet, resulting in compromised therapy effects. Here, we report a novel immobilized method by self-assembling biotinylated MSC-EVs onto the surface of biotin-doped polypyrrole titanium (Bio-Ppy-Ti) to improve its biofunctions in vitro and in vivo. Using this method, the amount of human adipose-derived stem cell-EVs (hASC-EVs) anchored onto the Bio-Ppy-Ti surface was 185-fold higher than that of pure Ti after ultrasonic concussion for 30 s and it remained stable on the Bio-Ppy-Ti surface for 14 days at 4 °C. Compared to pristine Ti, EV-Bio-Ppy-Ti exhibited enhanced cell compatibility and osteoinductivity for osteoblasts in vitro and anti-apoptosis ability in the ectopic bone formation mode. Gene chip analysis further demonstrated that several osteoinductive miRNAs were encapsulated in hASC-EVs, which may explain the high bone regeneration ability of EV-Bio-Ppy-Ti. Thus, this MSC-EV biotin-immobilized method appears to be highly efficient and long-term stable for bone graft bioactive modification, demonstrating its potential for clinical metal implants.
Collapse
Affiliation(s)
| | | | - Fangying Li
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application , Wuhan Textile University , Wuhan 430200 , China
| | | | | | - Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen , Friedrich Alexander University of Erlangen-Nuenberg, FAU , Schlossplatz 4 , Erlangen 91054 , Bavaria , Germany
| | - Wei Wei
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application , Wuhan Textile University , Wuhan 430200 , China
| | | | | |
Collapse
|
46
|
Khoshgozaran Roudbaneh SZ, Kahbasi S, Sohrabi MJ, Hasan A, Salihi A, Mirzaie A, Niyazmand A, Qadir Nanakali NM, Shekha MS, Aziz FM, Vaghar-Lahijani G, Keshtali AB, Ehsani E, Rasti B, Falahati M. Albumin binding, antioxidant and antibacterial effects of cerium oxide nanoparticles. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Abstract
Nanoparticulate materials displaying enzyme-like properties, so-called nanozymes, are explored as substitutes for natural enzymes in several industrial, energy-related, and biomedical applications. Outstanding high stability, enhanced catalytic activities, low cost, and availability at industrial scale are some of the fascinating features of nanozymes. Furthermore, nanozymes can also be equipped with the unique attributes of nanomaterials such as magnetic or optical properties. Due to the impressive development of nanozymes during the last decade, their potential in the context of tissue engineering and regenerative medicine also started to be explored. To highlight the progress, in this review, we discuss the two most representative nanozymes, namely, cerium- and iron-oxide nanomaterials, since they are the most widely studied. Special focus is placed on their applications ranging from cardioprotection to therapeutic angiogenesis, bone tissue engineering, and wound healing. Finally, current challenges and future directions are discussed.
Collapse
|
48
|
Xiang H, Wang Y, Chang H, Yang S, Tu M, Zhang X, Yu B. Cerium-containing α-calcium sulfate hemihydrate bone substitute promotes osteogenesis. J Biomater Appl 2019; 34:250-260. [PMID: 31088183 DOI: 10.1177/0885328219849712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haibo Xiang
- 1 Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Wang
- 1 Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Chang
- 1 Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shenyu Yang
- 2 Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Tu
- 2 Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianrong Zhang
- 3 Department of Orthopaedics, Chifeng Hospital, Inner Mongolia, China
| | - Bin Yu
- 1 Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|