1
|
Zhu J, Chen Z, Dong B. Functional hydrogels for accelerated wound healing: advances in conductive hydrogels and self-powered electrical stimulation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-32. [PMID: 40227875 DOI: 10.1080/09205063.2025.2486858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025]
Abstract
Compared to traditional dressings, hydrogel dressings not only protect the wound surface and prevent bacterial infection but also possess excellent moisturizing properties, which can provide an optimal moist environment for wound healing, and exhibit good biocompatibility, making them considered the best wound treatment materials. This review focuses on the research status and application progress of various functional hydrogel dressings, such as hemostatic, antimicrobial, anti-inflammatory, antioxidant, and conductive hydrogels. It proposes the combination of conductive hydrogels with flexible solar cells to form self-powered devices. Compared to traditional externally powered devices, this approach can reduce carbon footprints by utilizing clean energy, aligning with carbon neutrality policy requirements. Additionally, it eliminates the need for frequent battery replacement or power connections, effectively saving labor and operational costs. Self-powered devices can convert solar energy into electrical energy, which is conducted to the wound site through hydrogels, generating continuous electrical stimulation (ES). This electrical stimulation guides the directional migration of keratinocytes and fibroblasts toward the center of the wound; activates the MAPK/ERK signaling pathway to accelerate the cell cycle process, and upregulates the expression of vascular endothelial growth factor, thereby inducing endothelial cell proliferation and lumen formation. These multiple mechanisms work synergistically to promote wound healing. Finally, the review provides an outlook on the emergence and applications of multifunctional hydrogels and stimuli-responsive hydrogels, highlighting common challenges in the future development of hydrogels, such as weak mechanical strength and poor long-term stability, as well as feasible solutions to these issues.
Collapse
Affiliation(s)
- Junyi Zhu
- School of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Zesheng Chen
- School of Materials Science and Engineering, Hubei University, Wuhan, China
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Binghai Dong
- School of Materials Science and Engineering, Hubei University, Wuhan, China
| |
Collapse
|
2
|
Yan L, Zhao Z, Liu Y, Hosseini SH, Li C, Huang Y, Saeb MR, Xiao H, Seidi F. The inverse electron demand diels-alder (IEDDA): A facile bioorthogonal click reaction for development of injectable polysaccharide-based hydrogels for biomedical applications. Carbohydr Polym 2025; 352:123142. [PMID: 39843051 DOI: 10.1016/j.carbpol.2024.123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025]
Abstract
The inverse electron demand Diels-Alder (IEDDA) cycloaddition between tetrazines and strained dienophiles is recognized as a fast and specific reaction. The integrating tetrazines and strained dienophiles onto the backbone of polysaccharides yield appropriate water-soluble precursors for IEDDA cycloaddition. Due to the high specificity of the IEDDA reaction and its outstanding cytocompatibility, a range of cargos (live cells, peptides and pharmaceuticals) can be effectively encapsulated in polysaccharide solutions throughout the hydrogel formation. Within a few minutes, the interaction of aqueous solutions of tetrazine-polysaccharides with polysaccharide derivatives of dienophiles can form the hydrogel. The gelation time can be regulated by the structure of tetrazine/dienophile, degree of substitution, concentration of polysaccharide solutions, and temperature. The hydrogels are utilized in the fields of tissue engineering, cancer treatment, and wound healing. The embedding of stimuli-responsive functionalities within the hydrogel's architecture enhances the precision of its application for designated targets. This review begins by elucidating the principles of IEDDA and identifying the primary factors that influence the rate of cycloaddition. Subsequently, we discuss various strategies for integrating the reactants of IEDDA onto polysaccharides. Finally, the approaches for the fabrication of the relevant injectable hydrogels, their specific characteristics, and their implementation in different biomedical applications are elaborated.
Collapse
Affiliation(s)
- Linying Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenzhen Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Senthilkumar D, Don TM, Liao YJ, Kuo CY. The art of biodegradable polymer design for the treatments against osteomyelitis. Int J Biol Macromol 2025; 285:138347. [PMID: 39638180 DOI: 10.1016/j.ijbiomac.2024.138347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Osteomyelitis arises from the incomplete treatment of the external wounds in the healing process, while bacterial infections persist within the bone marrow, leading to abscess formation. Osteomyelitis treatments generally involve three main aspects: rapid bactericidal action, sustained bacteriostasis, and induction of bone regeneration. However, current treatment methods, which often combine surgical debridement with long-term high-dose intravenous antibiotic administration or poly(methyl methacrylate) (PMMA) beads antibiotic therapy, suffer from significant drawbacks and limitations. In an era focused on environmental protection and sustainability, there is potential for biodegradable polymers to replace non-degradable plastic materials to reduce environmental pollution and achieve sustainable development in resources, society, and the economy. With this in mind, this review aims to explore the concept and design of applying various natural biodegradable polymers like gelatin, chitosan, cellulose, etc., and synthetic biodegradable polymers like polylactic acid, poly(lactic-co-glycolic) acid, polycaprolactone, etc. for osteomyelitis treatment, including (1) replacing PMMA with biodegradable polymer beads, (2) biodegradable polymer coatings on medical implants, (3) injectable biodegradable polymer hydrogels, and (4) biodegradable polymers as scaffolds for osteogenic cell growth. This article contributes to understanding and advancing biodegradable polymer applications in biomedicine through a comprehensive review and discussion of these four aspects.
Collapse
Affiliation(s)
- Dhayanithi Senthilkumar
- International Graduate Program of Energy and Optoelectronic Materials Program (EOMP), National Taipei University of Technology, Taipei City 10608, Taiwan; Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City 10608, Taiwan
| | - Trong-Ming Don
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City 25137, Taiwan.
| | - Yu-Jie Liao
- International Graduate Program of Energy and Optoelectronic Materials Program (EOMP), National Taipei University of Technology, Taipei City 10608, Taiwan
| | - Chih-Yu Kuo
- International Graduate Program of Energy and Optoelectronic Materials Program (EOMP), National Taipei University of Technology, Taipei City 10608, Taiwan; Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei City 10608, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei, Taiwan.
| |
Collapse
|
4
|
Jiang W, Li J, Li H. Association between the composite dietary antioxidant index and all-cause mortality in individuals with osteoarthritis via NHANES data. Sci Rep 2024; 14:30387. [PMID: 39639118 PMCID: PMC11621459 DOI: 10.1038/s41598-024-81871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
The impact of antioxidant intake on the prognosis of osteoarthritis (OA) patients remains unclear. The aim of this study was to investigate the relationship between the composite dietary antioxidant index (CDAI) and all-cause mortality in OA patients. A total of 35,590 participants with OA from the National Health and Nutrition Examination Survey (1999-2020) were included in this study. We analysed the associations between the CDAI and the risk of all-cause mortality in OA patients via a multivariate Cox regression model. Restricted cubic spline regression was used to investigate the dose-response associations between the CDAI and mortality. We also conducted stratified analyses and interaction tests to explore underlying effect modification. After multivariable adjustment, each one-unit increase in the CDAI was associated with a 2.1% reduction in the risk of mortality. Compared with those in the low CDAI group, the multivariate-adjusted hazard ratios (HRs) for mortality for patients in the high CDAI group were lower [Model 1 (HR 0.648, 95% CI 0.557-0.754), Model 2 (HR 0.739, 95% CI 0.627-0.871), and Model 3 (HR 0.788, 95% CI 0.661-0.941)]. We observed a negative nonlinear relationship between the CDAI and all-cause mortality (P < 0.05). Stratification analyses and interaction tests confirmed the robustness of the results. We found a negative nonlinear relationship between the CDAI and all-cause mortality in OA patients. A higher CDAI was significantly associated with a lower risk of mortality. These results highlight the potential advantages of monitoring and evaluating the CDAI status in preventing mortality among patients with OA.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, 157th West Fifth Road, Xi'an, 710004, Shaanxi, China
| | - Jie Li
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, 157th West Fifth Road, Xi'an, 710004, Shaanxi, China
| | - Haopeng Li
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, 157th West Fifth Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
5
|
Shaygani H, Mofrad YM, Demneh SMR, Hafezi S, Almasi-Jaf A, Shamloo A. Cartilage and bone injectable hydrogels: A review of injectability methods and treatment strategies for repair in tissue engineering. Int J Biol Macromol 2024; 282:136689. [PMID: 39447779 DOI: 10.1016/j.ijbiomac.2024.136689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cartilage and bone are crucial tissues causing disability in the elderly population, often requiring prolonged treatment and surgical intervention due to limited regenerative capacity. Injectable hydrogels that closely mimic the extracellular matrix (ECM) of native hard tissue have attracted attention due to their minimally invasive application and ability to conform to irregular defect sites. These hydrogels facilitate key biological processes such as cell migration, chondrogenesis in cartilage repair, osteoinduction, angiogenesis, osteoconduction, and mineralization in bone repair. This review analyzes in-vitro and in-vivo biomedical databases over the past decade to identify advancements in hydrogel formulations, crosslinking mechanisms, and biomaterial selection for cartilage and bone tissue engineering. The review emphasizes the effectiveness of injectable hydrogels as carriers for cells, growth factors, and drugs, offering additional therapeutic benefits. The relevance of these findings is discussed in the context of their potential to serve as a robust alternative to current surgical and non-surgical treatments. This review also examines the advantages of injectable hydrogels, such as ease of administration, reduced patient recovery time, and enhanced bioactivity, thereby emphasizing their potential in clinical applications for cartilage and bone regeneration with emphasis on addressing the shortcomings of current treatments.
Collapse
Affiliation(s)
- Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Yasaman Mozhdehbakhsh Mofrad
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran; School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Mohammadhossein Rezaei Demneh
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Shayesteh Hafezi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Aram Almasi-Jaf
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
6
|
Pablos JL, Lozano D, Manzano M, Vallet-Regí M. Regenerative medicine: Hydrogels and mesoporous silica nanoparticles. Mater Today Bio 2024; 29:101342. [PMID: 39649249 PMCID: PMC11625165 DOI: 10.1016/j.mtbio.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024] Open
Abstract
Hydrogels, that are crosslinked polymer networks, can absorb huge quantities of water and/or biological fluids. Their physical properties, such as elasticity and soft tissue, together with their biocompatibility and biodegradability, closely resemble living tissues. The versatility of hydrogels has fuelled their application in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Their combination with nanoparticles, specifically with Mesoporous Silica Nanoparticles (MSNs), have elevated these composites to the next level, since MSNs could improve the hydrogel mechanical properties, their ability to encapsulate and controlled release great amounts of different therapeutic agents, and their responsiveness to a variety of external and internal stimuli. In this review, the main features of both MSNs and hydrogels are introduced, followed by the discussion of different hydrogels-MSNs structures and an overview of their use in different applications, such as drug delivery technologies and tissue engineering.
Collapse
Affiliation(s)
- Jesús L. Pablos
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Daniel Lozano
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red, CIBER-BBN, Madrid, Spain
| | - Miguel Manzano
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red, CIBER-BBN, Madrid, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red, CIBER-BBN, Madrid, Spain
| |
Collapse
|
7
|
Zhang M, Ye Q, Zhu Z, Shi S, Xu C, Xie R, Li Y. Hyaluronic Acid-Based Dynamic Hydrogels for Cartilage Repair and Regeneration. Gels 2024; 10:703. [PMID: 39590059 PMCID: PMC11594165 DOI: 10.3390/gels10110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Hyaluronic acid (HA), an important natural polysaccharide and meanwhile, an essential component of extracellular matrix (ECM), has been widely used in tissue repair and regeneration due to its high biocompatibility, biodegradation, and bioactivity, and the versatile chemical groups for modification. Specially, HA-based dynamic hydrogels, compared with the conventional hydrogels, offer an adaptable network and biomimetic microenvironment to optimize tissue repair and the regeneration process with a striking resemblance to ECM. Herein, this review comprehensively summarizes the recent advances of HA-based dynamic hydrogels and focuses on their applications in articular cartilage repair. First, the fabrication methods and advantages of HA dynamic hydrogels are presented. Then, the applications of HA dynamic hydrogels in cartilage repair are illustrated from the perspective of cell-free and cell-encapsulated and/or bioactive molecules (drugs, factors, and ions). Finally, the current challenges and prospective directions are outlined.
Collapse
Affiliation(s)
- Mingshuo Zhang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Qianwen Ye
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Zebo Zhu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Shuanglian Shi
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Chunming Xu
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| | - Yumei Li
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
8
|
He F, Wu H, He B, Han Z, Chen J, Huang L. Antioxidant hydrogels for the treatment of osteoarthritis: mechanisms and recent advances. Front Pharmacol 2024; 15:1488036. [PMID: 39525636 PMCID: PMC11543442 DOI: 10.3389/fphar.2024.1488036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Articular cartilage has limited self-healing ability, resulting in injuries often evolving into osteoarthritis (OA), which poses a significant challenge in the medical field. Although some treatments exist to reduce pain and damage, there is a lack of effective means to promote cartilage regeneration. Reactive Oxygen Species (ROS) have been found to increase significantly in the OA micro-environment. They play a key role in biological systems by participating in cell signaling and maintaining cellular homeostasis. Abnormal ROS expression, caused by internal and external stimuli and tissue damage, leads to elevated levels of oxidative stress, inflammatory responses, cell damage, and impaired tissue repair. To prevent excessive ROS accumulation at injury sites, biological materials can be engineered to respond to the damaged microenvironment, release active components in an orderly manner, regulate ROS levels, reduce oxidative stress, and promote tissue regeneration. Hydrogels have garnered significant attention due to their excellent biocompatibility, tunable physicochemical properties, and drug delivery capabilities. Numerous antioxidant hydrogels have been developed and proven effective in alleviating oxidative stress. This paper discusses a comprehensive treatment strategy that combines antioxidant hydrogels with existing treatments for OA and explores the potential applications of antioxidant hydrogels in cartilage tissue engineering.
Collapse
Affiliation(s)
- Feng He
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Hongwei Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Bin He
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Zun Han
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Jiayi Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Lei Huang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
9
|
Boretti G, Amirfallah A, Edmunds KJ, Hamzehpour H, Sigurjónsson ÓE. Advancing Cartilage Tissue Engineering: A Review of 3D Bioprinting Approaches and Bioink Properties. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39381849 DOI: 10.1089/ten.teb.2024.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Articular cartilage is crucial in human physiology, and its degeneration poses a significant public health challenge. While recent advancements in 3D bioprinting and tissue engineering show promise for cartilage regeneration, there remains a gap between research findings and clinical application. This review critically examines the mechanical and biological properties of hyaline cartilage, along with current 3D manufacturing methods and analysis techniques. Moreover, we provide a quantitative synthesis of bioink properties used in cartilage tissue engineering. After screening 181 initial works, 33 studies using extrusion bioprinting were analyzed and synthesized, presenting results that indicate the main materials, cells, and methods utilized for mechanical and biological evaluation. Altogether, this review motivates the standardization of mechanical analyses and biomaterial assessments of 3D bioprinted constructs to clarify their chondrogenic potential.
Collapse
Affiliation(s)
- Gabriele Boretti
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland
| | - Arsalan Amirfallah
- The Blood Bank, Landspitali, The National University Hospital of Iceland, Reykjavík, Iceland
| | - Kyle J Edmunds
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland
| | - Helena Hamzehpour
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Ólafur E Sigurjónsson
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland
- The Blood Bank, Landspitali, The National University Hospital of Iceland, Reykjavík, Iceland
| |
Collapse
|
10
|
Boretti G, Baldursson HE, Buonarrivo L, Simonsson S, Brynjólfsson S, Gargiulo P, Sigurjónsson ÓE. Mechanical and Biological Characterization of Ionic and Photo-Crosslinking Effects on Gelatin-Based Hydrogel for Cartilage Tissue Engineering Applications. Polymers (Basel) 2024; 16:2741. [PMID: 39408454 PMCID: PMC11479120 DOI: 10.3390/polym16192741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Articular cartilage degeneration poses a significant public health challenge; techniques such as 3D bioprinting are being explored for its regeneration in vitro. Gelatin-based hydrogels represent one of the most promising biopolymers used in cartilage tissue engineering, especially for its collagen composition and tunable mechanical properties. However, there are no standard protocols that define process parameters such as the crosslinking method to apply. To this aim, a reproducible study was conducted for exploring the influence of different crosslinking methods on 3D bioprinted gelatin structures. This study assessed mechanical properties and cell viability in relation to various crosslinking techniques, revealing promising results particularly for dual (photo + ionic) crosslinking methods, which achieved high cell viability and tunable stiffness. These findings offer new insights into the effects of crosslinking methods on 3D bioprinted gelatin for cartilage applications. For example, ionic and photo-crosslinking methods provide softer materials, with photo-crosslinking supporting cell stretching and diffusion, while ionic crosslinking preserves a spherical stem cell morphology. On the other hand, dual crosslinking provides a stiffer, optimized solution for creating stable cartilage-like constructs. The results of this study offer a new perspective on the standardization of gelatin for cartilage bioprinting, bridging the gap between research and clinical applications.
Collapse
Affiliation(s)
- Gabriele Boretti
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavik, Iceland
| | - Hafsteinn Esjar Baldursson
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
| | - Luca Buonarrivo
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
| | - Stina Simonsson
- Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, 102 Reykjavik, Iceland;
| | - Paolo Gargiulo
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavik, Iceland
| | - Ólafur Eysteinn Sigurjónsson
- School of Science and Engineering, Reykjavik University, 102 Reykjavik, Iceland; (H.E.B.); (L.B.); (P.G.); (Ó.E.S.)
- The Blood Bank, Landspitali—The National University Hospital of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
11
|
Pu M, Cao H, Zhang H, Wang T, Li Y, Xiao S, Gu Z. ROS-responsive hydrogels: from design and additive manufacturing to biomedical applications. MATERIALS HORIZONS 2024; 11:3721-3746. [PMID: 38894682 DOI: 10.1039/d4mh00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hydrogels with intricate 3D networks and high hydrophilicity have qualities resembling those of biological tissues, making them ideal candidates for use as smart biomedical materials. Reactive oxygen species (ROS) responsive hydrogels are an innovative class of smart hydrogels, and are cross-linked by ROS-responsive modules through covalent interactions, coordination interactions, or supramolecular interactions. Due to the introduction of ROS response modules, this class of hydrogels exhibits a sensitive response to the oxidative stress microenvironment existing in organisms. Simultaneously, due to the modularity of the ROS-responsive structure, ROS-responsive hydrogels can be manufactured on a large scale through additive manufacturing. This review will delve into the design, fabrication, and applications of ROS-responsive hydrogels. The main goal is to clarify the chemical principles that govern the response mechanism of these hydrogels, further providing new perspectives and methods for designing responsive hydrogel materials.
Collapse
Affiliation(s)
- Minju Pu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| |
Collapse
|
12
|
Terriac L, Helesbeux JJ, Maugars Y, Guicheux J, Tibbitt MW, Delplace V. Boronate Ester Hydrogels for Biomedical Applications: Challenges and Opportunities. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:6674-6695. [PMID: 39070669 PMCID: PMC11270748 DOI: 10.1021/acs.chemmater.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/30/2024]
Abstract
Boronate ester (BE) hydrogels are increasingly used for biomedical applications. The dynamic nature of these molecular networks enables bond rearrangement, which is associated with viscoelasticity, injectability, printability, and self-healing, among other properties. BEs are also sensitive to pH, redox reactions, and the presence of sugars, which is useful for the design of stimuli-responsive materials. Together, BE hydrogels are interesting scaffolds for use in drug delivery, 3D cell culture, and biofabrication. However, designing stable BE hydrogels at physiological pH (≈7.4) remains a challenge, which is hindering their development and biomedical application. In this context, advanced chemical insights into BE chemistry are being used to design new molecular solutions for material fabrication. This review article summarizes the state of the art in BE hydrogel design for biomedical applications with a focus on the materials chemistry of this class of materials. First, we discuss updated knowledge in BE chemistry including details on the molecular mechanisms associated with BE formation and breakage. Then, we discuss BE hydrogel formation at physiological pH, with an overview of the main systems reported to date along with new perspectives. A last section covers several prominent biomedical applications of BE hydrogels, including drug delivery, 3D cell culture, and bioprinting, with critical insights on the design relevance, limitations and potential.
Collapse
Affiliation(s)
- Léa Terriac
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | | | - Yves Maugars
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Jérôme Guicheux
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Mark W. Tibbitt
- Macromolecular
Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Vianney Delplace
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
13
|
Zhang H, Zhou Z, Zhang F, Wan C. Hydrogel-Based 3D Bioprinting Technology for Articular Cartilage Regenerative Engineering. Gels 2024; 10:430. [PMID: 39057453 PMCID: PMC11276275 DOI: 10.3390/gels10070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Articular cartilage is an avascular tissue with very limited capacity of self-regeneration. Trauma or injury-related defects, inflammation, or aging in articular cartilage can induce progressive degenerative joint diseases such as osteoarthritis. There are significant clinical demands for the development of effective therapeutic approaches to promote articular cartilage repair or regeneration. The current treatment modalities used for the repair of cartilage lesions mainly include cell-based therapy, small molecules, surgical approaches, and tissue engineering. However, these approaches remain unsatisfactory. With the advent of three-dimensional (3D) bioprinting technology, tissue engineering provides an opportunity to repair articular cartilage defects or degeneration through the construction of organized, living structures composed of biomaterials, chondrogenic cells, and bioactive factors. The bioprinted cartilage-like structures can mimic native articular cartilage, as opposed to traditional approaches, by allowing excellent control of chondrogenic cell distribution and the modulation of biomechanical and biochemical properties with high precision. This review focuses on various hydrogels, including natural and synthetic hydrogels, and their current developments as bioinks in 3D bioprinting for cartilage tissue engineering. In addition, the challenges and prospects of these hydrogels in cartilage tissue engineering applications are also discussed.
Collapse
Affiliation(s)
- Hongji Zhang
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Zheyuan Zhou
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Fengjie Zhang
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Chao Wan
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
14
|
Zhang W, Zheng L, Yan Y, Shi W. Facile Preparation of Multifunctional Hydrogels with Sustained Resveratrol Release Ability for Bone Tissue Regeneration. Gels 2024; 10:429. [PMID: 39057452 PMCID: PMC11275495 DOI: 10.3390/gels10070429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Injectable hydrogels show great promise for bone tissue engineering applications due to their high biocompatibility and drug delivery capabilities. The bone defects in osteoporosis are usually characterized by an oxidative and inflammatory microenvironment that impairs the regeneration capability of bone tissues. To attenuate the reactive oxygen species (ROS) and promote bone regeneration, an anti-oxidative hydrogel with osteogenic capacity was developed in this study. The poorly water soluble, natural antioxidant, resveratrol, was encapsulated in thiolated Pluronic F-127 micelles with over 50-times-enhanced solubility. The injectable hydrogel was facilely formed because of the new thioester bond between the free thiol group in modified F-127 and the arylate group in hyaluronic acid (HA)-acrylate. The resveratrol-loaded hydrogel showed good viscoelastic properties and in vitro stability and was cyto-compatible with bone-marrow-derived mesenchymal stem cells (BMSCs). The hydrogel allowed for a sustained release of resveratrol for at least two weeks and effectively enhanced the osteogenic differentiation of BMSCs by the up-regulation of osteogenic markers, including ALP, OCN, RUNX-2, and COL1. Moreover, the hydrogel exhibited anti-oxidative and anti-inflammatory abilities through the scavenging of intracellular ROS in RAW264.7 cells and inhibiting the gene expression and secretion of pro-inflammatory cytokines TNF-α and IL-1β under LPS exposure. In summary, the results suggest that our multifunctional hydrogel loaded with resveratrol bearing osteogenic, anti-oxidative, and anti-inflammatory actions is easily prepared and represents a promising resveratrol delivery platform for the repair of osteoporotic bone defects.
Collapse
Affiliation(s)
- Wenhai Zhang
- Orthopedic Department, Tianjin Hospital, Tianjin 300211, China
| | - Li Zheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Yi Yan
- Healthcare Security Office & Biomedical Engineering Lab, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
15
|
Sreepadmanabh M, Arun AB, Bhattacharjee T. Design approaches for 3D cell culture and 3D bioprinting platforms. BIOPHYSICS REVIEWS 2024; 5:021304. [PMID: 38765221 PMCID: PMC11101206 DOI: 10.1063/5.0188268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
The natural habitat of most cells consists of complex and disordered 3D microenvironments with spatiotemporally dynamic material properties. However, prevalent methods of in vitro culture study cells under poorly biomimetic 2D confinement or homogeneous conditions that often neglect critical topographical cues and mechanical stimuli. It has also become increasingly apparent that cells in a 3D conformation exhibit dramatically altered morphological and phenotypical states. In response, efforts toward designing biomaterial platforms for 3D cell culture have taken centerstage over the past few decades. Herein, we present a broad overview of biomaterials for 3D cell culture and 3D bioprinting, spanning both monolithic and granular systems. We first critically evaluate conventional monolithic hydrogel networks, with an emphasis on specific experimental requirements. Building on this, we document the recent emergence of microgel-based 3D growth media as a promising biomaterial platform enabling interrogation of cells within porous and granular scaffolds. We also explore how jammed microgel systems have been leveraged to spatially design and manipulate cellular structures using 3D bioprinting. The advent of these techniques heralds an unprecedented ability to experimentally model complex physiological niches, with important implications for tissue bioengineering and biomedical applications.
Collapse
Affiliation(s)
- M Sreepadmanabh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Ashitha B. Arun
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Tapomoy Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| |
Collapse
|
16
|
Salehiamin M, Ghoraishizadeh S, Habibpour A, Tafreshi S, Abolhasani MM, Shemiranykia Z, Sefat KK, Esmaeili J. Simultaneous usage of sulforaphane nanoemulsion and tannic acid in ternary chitosan/gelatin/PEG hydrogel for knee cartilage tissue engineering: In vitro and in vivo study. Int J Biol Macromol 2024; 271:132692. [PMID: 38806085 DOI: 10.1016/j.ijbiomac.2024.132692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
The therapeutic potential of tissue engineering in addressing articular cartilage defects has been a focal point of research for numerous years. Despite its promising outlook, a persistent challenge within this domain is the lack of sufficient functional integration between engineered and natural tissues. This study introduces a novel approach that employs a combination of sulforaphane (SFN) nanoemulsion and tannic acid to enhance cartilage tissue engineering and promote tissue integration in a rat knee cartilage defect model. To substantiate our hypothesis, we conducted a series of in vitro and in vivo experiments. The SFN nanoemulsion was characterized using DLS, zeta potential, and TEM analyses. Subsequently, it was incorporated into a ternary polymer hydrogel composed of chitosan, gelatin, and polyethylene glycol. We evaluated the hydrogel with (H-SFN) and without (H) the SFN nanoemulsion through a comprehensive set of physicochemical, mechanical, and biological analyses. For the in vivo study, nine male Wistar rats were divided into three groups: no implant (Ctrl), H, and H-SFN. After inducing a cartilage defect, the affected area was treated with tannic acid and subsequently implanted with the hydrogels. Four weeks post-implantation, the harvested cartilage underwent histological examination employing H&E, safranin O/fast green, alcian blue, and immunohistochemistry staining techniques. Our results revealed that the SFN nanodroplets had an average diameter of 75 nm and a surface charge of -11.58 mV. Moreover, degradation, swelling rates, hydrophilicity, and elasticity features of the hydrogel incorporating SFN were improved. Histopathological analysis indicated a higher production of GAGs and collagen in the H-SFN group. Furthermore, the H-SFN group exhibited superior cartilage regeneration and tissue integration compared to the Ctrl and H groups. In conclusion, the findings of this study suggest the importance of considering cell protective properties in the fabrication of scaffolds for knee cartilage defects, emphasizing the potential significance of the proposed SFN nanoemulsion and tannic acid approach in advancing the field of cartilage tissue engineering.
Collapse
Affiliation(s)
- Mehdi Salehiamin
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Tissue Engineering Center, TISSUEHUB CO., Tehran, Iran
| | | | - Ava Habibpour
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sadaf Tafreshi
- Hygienics Department, Biomedical Engineering, Tehran Medical Sciences Islamic Azad University, Tehran, Iran; Materials Department, Biomedical Engineering, Materials and Energy Research Institute, Karaj, Iran
| | - Mohammad Mahdi Abolhasani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials & Energy Research Center (MERC), Karaj, Iran
| | | | - Karim Kaveh Sefat
- Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Javad Esmaeili
- Tissue Engineering Center, TISSUEHUB CO., Tehran, Iran; Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran.
| |
Collapse
|
17
|
Gholamali I, Vu TT, Jo SH, Park SH, Lim KT. Exploring the Progress of Hyaluronic Acid Hydrogels: Synthesis, Characteristics, and Wide-Ranging Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2439. [PMID: 38793505 PMCID: PMC11123044 DOI: 10.3390/ma17102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
This comprehensive review delves into the world of hyaluronic acid (HA) hydrogels, exploring their creation, characteristics, research methodologies, and uses. HA hydrogels stand out among natural polysaccharides due to their distinct features. Their exceptional biocompatibility makes them a top choice for diverse biomedical purposes, with a great ability to coexist harmoniously with living cells and tissues. Furthermore, their biodegradability permits their gradual breakdown by bodily enzymes, enabling the creation of temporary frameworks for tissue engineering endeavors. Additionally, since HA is a vital component of the extracellular matrix (ECM) in numerous tissues, HA hydrogels can replicate the ECM's structure and functions. This mimicry is pivotal in tissue engineering applications by providing an ideal setting for cellular growth and maturation. Various cross-linking techniques like chemical, physical, enzymatic, and hybrid methods impact the mechanical strength, swelling capacity, and degradation speed of the hydrogels. Assessment tools such as rheological analysis, electron microscopy, spectroscopy, swelling tests, and degradation studies are employed to examine their attributes. HA-based hydrogels feature prominently in tissue engineering, drug distribution, wound recovery, ophthalmology, and cartilage mending. Crafting HA hydrogels enables the production of biomaterials with sought-after qualities, offering avenues for advancements in the realm of biomedicine.
Collapse
Affiliation(s)
- Iman Gholamali
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
| | - Trung Thang Vu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sung-Han Jo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.G.); (S.-H.J.)
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Kwon Taek Lim
- Institute of Display Semiconductor Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
18
|
Shi W, Jang S, Kuss MA, Alimi OA, Liu B, Palik J, Tan L, Krishnan MA, Jin Y, Yu C, Duan B. Digital Light Processing 4D Printing of Poloxamer Micelles for Facile Fabrication of Multifunctional Biocompatible Hydrogels as Tailored Wearable Sensors. ACS NANO 2024; 18:7580-7595. [PMID: 38422400 DOI: 10.1021/acsnano.3c12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The lack of both digital light processing (DLP) compatible and biocompatible photopolymers, along with inappropriate material properties required for wearable sensor applications, substantially hinders the employment of DLP 3D printing in the fabrication of multifunctional hydrogels. Herein, we discovered and implemented a photoreactive poloxamer derivative, Pluronic F-127 diacrylate, which overcomes these limitations and is optimized to achieve DLP 3D printed micelle-based hydrogels with high structural complexity, resolution, and precision. In addition, the dehydrated hydrogels exhibit a shape-memory effect and are conformally attached to the geometry of the detection point after rehydration, which implies the 4D printing characteristic of the fabrication process and is beneficial for the storage and application of the device. The excellent cytocompatibility and in vivo biocompatibility further strengthen the potential application of the poloxamer micelle-based hydrogels as a platform for multifunctional wearable systems. After processing them with a lithium chloride (LiCl) solution, multifunctional conductive ionic hydrogels with antifreezing and antiswelling properties along with good transparency and water retention are easily prepared. As capacitive flexible sensors, the DLP 3D printed micelle-based hydrogel devices exhibit excellent sensitivity, cycling stability, and durability in detecting multimodal deformations. Moreover, the DLP 3D printed conductive hydrogels are successfully applied as real-time human motion and tactile sensors with satisfactory sensing performances even in a -20 °C low-temperature environment.
Collapse
Affiliation(s)
- Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Seonmin Jang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Olawale A Alimi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bo Liu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jayden Palik
- Department of Mechanical & Materials Engineering, University of Nebraska, Lincoln, Lincoln, Nebraska 68588, United States
| | - Li Tan
- Department of Mechanical & Materials Engineering, University of Nebraska, Lincoln, Lincoln, Nebraska 68588, United States
| | - Mena Asha Krishnan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Mechanical & Materials Engineering, University of Nebraska, Lincoln, Lincoln, Nebraska 68588, United States
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
19
|
Chen X, Yang M, Zhou Z, Sun J, Meng X, Huang Y, Zhu W, Zhu S, He N, Zhu X, Han X, Liu H. An Anti-Oxidative Bioink for Cartilage Tissue Engineering Applications. J Funct Biomater 2024; 15:37. [PMID: 38391890 PMCID: PMC10889144 DOI: 10.3390/jfb15020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Since chondrocytes are highly vulnerable to oxidative stress, an anti-oxidative bioink combined with 3D bioprinting may facilitate its applications in cartilage tissue engineering. We developed an anti-oxidative bioink with methacrylate-modified rutin (RTMA) as an additional bioactive component and glycidyl methacrylate silk fibroin as a biomaterial component. Bioink containing 0% RTMA was used as the control sample. Compared with hydrogel samples produced with the control bioink, solidified anti-oxidative bioinks displayed a similar porous microstructure, which is suitable for cell adhesion and migration, and the transportation of nutrients and wastes. Among photo-cured samples prepared with anti-oxidative bioinks and the control bioink, the sample containing 1 mg/mL of RTMA (RTMA-1) showed good degradation, promising mechanical properties, and the best cytocompatibility, and it was selected for further investigation. Based on the results of 3D bioprinting tests, the RTMA-1 bioink exhibited good printability and high shape fidelity. The results demonstrated that RTMA-1 reduced intracellular oxidative stress in encapsulated chondrocytes under H2O2 stimulation, which results from upregulation of COLII and AGG and downregulation of MMP13 and MMP1. By using in vitro and in vivo tests, our data suggest that the RTMA-1 bioink significantly enhanced the regeneration and maturation of cartilage tissue compared to the control bioink, indicating that this anti-oxidative bioink can be used for 3D bioprinting and cartilage tissue engineering applications in the future.
Collapse
Affiliation(s)
- Xin Chen
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Mengni Yang
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, China
| | - Jingjing Sun
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiaolin Meng
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuting Huang
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Wenxiang Zhu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Shuai Zhu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Ning He
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Xiaolong Zhu
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Xiaoxiao Han
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
20
|
Zheng L, Shi W, Liu B, Duan B, Sorgen P. Evaluation of Tyrosine Kinase Inhibitors Loaded Injectable Hydrogels for Improving Connexin43 Gap Junction Intercellular Communication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1985-1998. [PMID: 38175743 PMCID: PMC11061860 DOI: 10.1021/acsami.3c10923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Myocardial infarction (MI) is one of the leading causes of death in the developed world, and the loss of cardiomyocytes plays a critical role in the pathogenesis of heart failure. Implicated in this process is a decrease in gap junction intercellular communication due to remodeling of Connexin43 (Cx43). We previously identified that intraperitoneal injection of the Pyk2 inhibitor PF4618433 reduced infarct size, maintained Cx43 at the intercalated disc in left ventricle hypertrophic myocytes, and improved cardiac function in an MI animal model of heart failure. With the emergence of injectable hydrogels as a therapeutic toward the regeneration of cardiac tissue after MI, here, we provide proof of concept that the release of tyrosine kinase inhibitors from hydrogels could have beneficial effects on cardiomyocytes. We developed an injectable hydrogel consisting of thiolated hyaluronic acid and P123-maleimide micelles that can incorporate PF4618433 as well as the Src inhibitor Saracatinib and achieved sustained release (of note, Src activates Pyk2). Using neonatal rat ventricular myocytes in the presence of a phorbol ester, endothelin-1, or phenylephrine to stimulate cardiac hypertrophy, the release of PF4618433 from the hydrogel had the same ability to decrease Cx43 tyrosine phosphorylation and maintain Cx43 localization at the plasma membrane as when directly added to the growth media. Additional beneficial effects included decreases in apoptosis, the hypertrophic marker atrial natriuretic peptide (ANP), and serine kinases upregulated in hypertrophy. Finally, the presence of both PF4618433 and Saracatinib further decreased the level of ANP and apoptosis than each inhibitor alone, suggesting that a combinatorial approach may be most beneficial. These findings provide the groundwork to test if tyrosine kinase inhibitor release from hydrogels will have a beneficial effect in an animal model of MI-induced heart failure.
Collapse
Affiliation(s)
- Li Zheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bo Liu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
21
|
Yao MX, Zhang YF, Liu W, Wang HC, Ren C, Zhang YQ, Shi TL, Chen W. Cartilage tissue healing and regeneration based on biocompatible materials: a systematic review and bibliometric analysis from 1993 to 2022. Front Pharmacol 2024; 14:1276849. [PMID: 38239192 PMCID: PMC10794889 DOI: 10.3389/fphar.2023.1276849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/20/2023] [Indexed: 01/22/2024] Open
Abstract
Cartilage, a type of connective tissue, plays a crucial role in supporting and cushioning the body, and damages or diseases affecting cartilage may result in pain and impaired joint function. In this regard, biocompatible materials are used in cartilage tissue healing and regeneration as scaffolds for new tissue growth, barriers to prevent infection and reduce inflammation, and deliver drugs or growth factors to the injury site. In this article, we perform a comprehensive bibliometric analysis of literature on cartilage tissue healing and regeneration based on biocompatible materials, including an overview of current research, identifying the most influential articles and authors, discussing prevailing topics and trends in this field, and summarizing future research directions.
Collapse
Affiliation(s)
- Meng-Xuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yi-Fan Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Liu
- Department of Pharmacy, Cangzhou People’s Hospital, Cangzhou, China
| | - Hai-Cheng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Chuan Ren
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yu-Qin Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Tai-Long Shi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| |
Collapse
|
22
|
Barcena AJR, Dhal K, Patel P, Ravi P, Kundu S, Tappa K. Current Biomedical Applications of 3D-Printed Hydrogels. Gels 2023; 10:8. [PMID: 38275845 PMCID: PMC10815850 DOI: 10.3390/gels10010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Three-dimensional (3D) printing, also known as additive manufacturing, has revolutionized the production of physical 3D objects by transforming computer-aided design models into layered structures, eliminating the need for traditional molding or machining techniques. In recent years, hydrogels have emerged as an ideal 3D printing feedstock material for the fabrication of hydrated constructs that replicate the extracellular matrix found in endogenous tissues. Hydrogels have seen significant advancements since their first use as contact lenses in the biomedical field. These advancements have led to the development of complex 3D-printed structures that include a wide variety of organic and inorganic materials, cells, and bioactive substances. The most commonly used 3D printing techniques to fabricate hydrogel scaffolds are material extrusion, material jetting, and vat photopolymerization, but novel methods that can enhance the resolution and structural complexity of printed constructs have also emerged. The biomedical applications of hydrogels can be broadly classified into four categories-tissue engineering and regenerative medicine, 3D cell culture and disease modeling, drug screening and toxicity testing, and novel devices and drug delivery systems. Despite the recent advancements in their biomedical applications, a number of challenges still need to be addressed to maximize the use of hydrogels for 3D printing. These challenges include improving resolution and structural complexity, optimizing cell viability and function, improving cost efficiency and accessibility, and addressing ethical and regulatory concerns for clinical translation.
Collapse
Affiliation(s)
- Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Kashish Dhal
- Department of Mechanical & Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.D.); (P.P.)
| | - Parimal Patel
- Department of Mechanical & Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.D.); (P.P.)
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Suprateek Kundu
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
Tang Y, Zhang K, Zhou H, Zhang C, Liu Z, Chen H, Li H, Chen K. Transplantation of active nucleus pulposus cells with a keep-charging hydrogel microsphere system to rescue intervertebral disc degeneration. J Nanobiotechnology 2023; 21:453. [PMID: 38017517 PMCID: PMC10683266 DOI: 10.1186/s12951-023-02226-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Cell transplantation has been demonstrated as a promising approach in tissue regeneration. However, the reactive oxygen species (ROS) accumulation and inflammation condition establish a harsh microenvironment in degenerated tissue, which makes the transplanted cells difficult to survive. METHODS In this study, we constructed a keep-charging hydrogel microsphere system to enable cells actively proliferate and function in the degenerated intervertebral disc. Specifically, we combined Mg2+ to histidine-functionalized hyaluronic acid (HA-His-Mg2+) through coordination reaction, which was further intercrossed with GelMA to construct a double-network hydrogel microsphere (GelMA/HA-His-Mg2+, GHHM) with microfluidic methods. In vitro, the GHHM loaded with nucleus pulposus cells (GHHM@NPCs) was further tested for its ability to promote NPCs proliferation and anti-inflammatory properties. In vivo, the ability of GHHM@NPCs to promote regeneration of NP tissue and rescue intervertebral disc degeneration (IVDD) was evaluated by the rat intervertebral disc acupuncture model. RESULTS The GHHM significantly enhanced NPCs adhesion and proliferation, providing an ideal platform for the NPCs to grow on. The loaded NPCs were kept active in the degenerative intervertebral disc microenvironment as charged by the Mg2+ in GHHM microspheres to effectively support the loaded NPCs to reply against the ROS-induced inflammation and senescence. Moreover, we observed that GHHM@NPCs effectively alleviated nucleus pulposus degeneration and promoted its regeneration in the rat IVDD model. CONCLUSION In conclusion, we constructed a keep charging system with a double-network hydrogel microsphere as a framework and Mg2+ as a cell activity enhancer, which effectively maintains NPCs active to fight against the harsh microenvironment in the degenerative intervertebral disc. The GHHM@NPCs system provides a promising approach for IVDD management.
Collapse
Affiliation(s)
- Yingchuang Tang
- Department of Orthopedic, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Kai Zhang
- Department of Orthopedic, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hongyou Zhou
- Department of Orthopedic, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Chenchen Zhang
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zixiang Liu
- Department of Orthopedic, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hao Chen
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, People's Republic of China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China.
| | - Hanwen Li
- Department of Orthopedic, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.
| | - Kangwu Chen
- Department of Orthopedic, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
24
|
Patrocinio D, Galván-Chacón V, Gómez-Blanco JC, Miguel SP, Loureiro J, Ribeiro MP, Coutinho P, Pagador JB, Sanchez-Margallo FM. Biopolymers for Tissue Engineering: Crosslinking, Printing Techniques, and Applications. Gels 2023; 9:890. [PMID: 37998980 PMCID: PMC10670821 DOI: 10.3390/gels9110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Currently, tissue engineering has been dedicated to the development of 3D structures through bioprinting techniques that aim to obtain personalized, dynamic, and complex hydrogel 3D structures. Among the different materials used for the fabrication of such structures, proteins and polysaccharides are the main biological compounds (biopolymers) selected for the bioink formulation. These biomaterials obtained from natural sources are commonly compatible with tissues and cells (biocompatibility), friendly with biological digestion processes (biodegradability), and provide specific macromolecular structural and mechanical properties (biomimicry). However, the rheological behaviors of these natural-based bioinks constitute the main challenge of the cell-laden printing process (bioprinting). For this reason, bioprinting usually requires chemical modifications and/or inter-macromolecular crosslinking. In this sense, a comprehensive analysis describing these biopolymers (natural proteins and polysaccharides)-based bioinks, their modifications, and their stimuli-responsive nature is performed. This manuscript is organized into three sections: (1) tissue engineering application, (2) crosslinking, and (3) bioprinting techniques, analyzing the current challenges and strengths of biopolymers in bioprinting. In conclusion, all hydrogels try to resemble extracellular matrix properties for bioprinted structures while maintaining good printability and stability during the printing process.
Collapse
Affiliation(s)
- David Patrocinio
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - Victor Galván-Chacón
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - J. Carlos Gómez-Blanco
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - Sonia P. Miguel
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Jorge Loureiro
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
| | - Maximiano P. Ribeiro
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - J. Blas Pagador
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
- CIBER CV, Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares, 28029 Madrid, Spain;
| | - Francisco M. Sanchez-Margallo
- CIBER CV, Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares, 28029 Madrid, Spain;
- Scientific Direction, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| |
Collapse
|
25
|
Jiang Y, Hao M, Jiang F, Li J, Yang K, Li C, Ma L, Liu S, Kou X, Shi S, Ding X, Zhang X, Tang J. Lyophilized apoptotic vesicle-encapsulated adhesive hydrogel sponge as a rapid hemostat for traumatic hemorrhage in coagulopathy. J Nanobiotechnology 2023; 21:407. [PMID: 37924105 PMCID: PMC10623807 DOI: 10.1186/s12951-023-02128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/24/2023] [Indexed: 11/06/2023] Open
Abstract
Rapid hemostasis of uncontrolled bleeding following traumatic injuries, especially accompanied by coagulopathies, remains a significant clinical challenge. Extracellular vesicles (EVs) show therapeutic effects for fast clotting. However, low yield, specific storage conditions, and lack of proper carriers have hindered EVs' clinical application. Herein, we establish an optimized procedure method to generate lyophilized mesenchymal stem cell-derived apoptotic vesicles (apoVs) with adhesive hydrogel sponge to show superior procoagulant activity for traumatic hemorrhage. Mechanistically, apoVs' procoagulant ability stems from their high tissue factor (TF) and phosphatidylserine (PS) expression independent of hemocytes and circulating procoagulant microparticles (cMPs). Their stable hemostatic capability was maintained after 2-month room temperature storage. Subsequently, we mixed apoVs with both phenylboronic acid grafted oxidized hyaluronic acid (PBA-HA) and poly(vinyl alcohol) (PVA) simultaneously, followed by lyophilization to construct a novel apoV-encapsulated hydrogel sponge (apoV-HS). Compared to commercial hemostats, apoV-HS exhibits rapid procoagulant ability in liver-laceration and femoral artery hemorrhage in rat and rabbit models of coagulopathies. The combination of high productivity, physiological stability, injectability, plasticity, excellent adhesivity, biocompatibility, and rapid coagulant property indicates that apoV-HS is a promising therapeutic approach for heavy hemorrhage in civilian and military populations.
Collapse
Affiliation(s)
- Yexiang Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Meng Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Fenglin Jiang
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiwu Li
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, 410000, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Key Laboratory of Digital Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China
| | - Can Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Lan Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| | - Xin Ding
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, NHC Key Laboratory of Digital Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, China.
| | - Jianxia Tang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|
26
|
Yang X, Liu P, Zhang Y, Lu J, Zhao H. Bioprinting-Enabled Biomaterials: A Cutting-Edge Strategy for Future Osteoarthritis Therapy. Int J Nanomedicine 2023; 18:6213-6232. [PMID: 37933298 PMCID: PMC10625743 DOI: 10.2147/ijn.s432468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Bioprinting is an advanced technology that allows for the precise placement of cells and biomaterials in a controlled manner, making significant contributions in regenerative medicine. Notably, bioprinting-enabled biomaterials have found extensive application as drug delivery systems (DDS) in the treatment of osteoarthritis (OA). Despite the widespread utilization of these biomaterials, there has been limited comprehensive research summarizing the recent advances in this area. Therefore, this review aims to explore the noteworthy developments and challenges associated with utilizing bioprinting-enabled biomaterials as effective DDS for the treatment of OA. To begin, we provide an overview of the complex pathophysiology of OA, highlighting the shortcomings of current treatment modalities. Following this, we conduct a detailed examination of various bioprinting technologies and discuss the wide range of biomaterials employed in DDS applications for OA therapy. Finally, by placing emphasis on their transformative potential, we discuss the incorporation of crucial cellular components such as chondrocytes and mesenchymal stem cells into bioprinted constructs, which play a pivotal role in promoting tissue regeneration and repair.
Collapse
Affiliation(s)
- Xinquan Yang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| | - Peilong Liu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| | - Yan Zhang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| | - Jun Lu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| |
Collapse
|
27
|
Tong X, Chen J, Wang R, Hou D, Wu G, Liu C, Pathak JL. The Paracrine Effect of Hyaluronic Acid-Treated Endothelial Cells Promotes BMP-2-Mediated Osteogenesis. Bioengineering (Basel) 2023; 10:1227. [PMID: 37892957 PMCID: PMC10604672 DOI: 10.3390/bioengineering10101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/30/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The combination of hyaluronic acid (HA) and BMP-2 has been reported to promote bone regeneration. However, the interaction of endothelial cells and bone marrow mesenchymal stem cells (BMSCs) during HA + BMP-2 treatment is not fully understood. This study aimed to analyze the direct effect of HA, as well as the paracrine effect of HA-treated endothelial cells, on the BMP-2-mediated osteogenic differentiation of BMSCs. The angiogenic differentiation potential of HA at different molecular weights and different concentrations was tested. The direct effect of HA, as well as the indirect effect of HA-treated human umbilical cord endothelial cells (HUVECs, i.e., conditioned medium (CM)-based co-culture) on the BMP-2-mediated osteogenic differentiation of BMSCs was analyzed using alkaline phosphatase (ALP) staining and activity, alizarin red S (ARS) staining, and RT-qPCR of osteogenic markers. Angiogenic differentiation markers were also analyzed in HUVECs after treatment with HA + BMP-2. The bone regeneration potential of BMP-2 and HA + BMP-2 was analyzed in a rat ectopic model. We found that 1600 kDa HA at 300 µg/mL promoted tube formation by HUVECs in vitro and upregulated the mRNA expression of the angiogenic markers CD31, VEGF, and bFGF. HA inhibited, but conditioned medium from HA-treated HUVECs promoted, the BMP-2-mediated osteogenic differentiation of BMSCs, as indicated by the results of ALP staining and activity, ARS staining, and the mRNA expression of the osteogenic markers RUNX-2, ALP, COLI, and OPN. HA + BMP-2 (50 ng/mL) upregulated the expression of the angiogenesis-related genes VEGF and bFGF in HUVECs and bone regeneration in vivo compared to BMP-2 treatment. In conclusion, the paracrine effect of hyaluronic acid-treated endothelial cells promotes BMP-2-mediated osteogenesis, suggesting the application potential of HA + BMP-2 in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaojie Tong
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510182, China; (X.T.); (J.C.); (R.W.); (D.H.)
| | - Jin Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510182, China; (X.T.); (J.C.); (R.W.); (D.H.)
| | - Renqin Wang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510182, China; (X.T.); (J.C.); (R.W.); (D.H.)
| | - Dan Hou
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510182, China; (X.T.); (J.C.); (R.W.); (D.H.)
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science, Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands;
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Chang Liu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510182, China; (X.T.); (J.C.); (R.W.); (D.H.)
| | - Janak Lal Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510182, China; (X.T.); (J.C.); (R.W.); (D.H.)
| |
Collapse
|
28
|
Shi W, Mirza S, Kuss M, Liu B, Hartin A, Wan S, Kong Y, Mohapatra B, Krishnan M, Band H, Band V, Duan B. Embedded Bioprinting of Breast Tumor Cells and Organoids Using Low-Concentration Collagen-Based Bioinks. Adv Healthc Mater 2023; 12:e2300905. [PMID: 37422447 PMCID: PMC10592394 DOI: 10.1002/adhm.202300905] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Bioinks for 3D bioprinting of tumor models should not only meet printability requirements but also accurately maintain and support phenotypes of tumor surrounding cells to recapitulate key tumor hallmarks. Collagen is a major extracellular matrix protein for solid tumors, but low viscosity of collagen solution has made 3D bioprinted cancer models challenging. This work produces embedded, bioprinted breast cancer cells and tumor organoid models using low-concentration collagen I based bioinks. The biocompatible and physically crosslinked silk fibroin hydrogel is used to generate the support bath for the embedded 3D printing. The composition of the collagen I based bioink is optimized with a thermoresponsive hyaluronic acid-based polymer to maintain the phenotypes of both the noninvasive epithelial and invasive breast cancer cells, as well as cancer-associated fibroblasts. Mouse breast tumor organoids are bioprinted using optimized collagen bioink to mimic in vivo tumor morphology. A vascularized tumor model is also created using a similar strategy, with significantly enhanced vasculature formation under hypoxia. This study shows the great potential of embedded bioprinted breast tumor models utilizing a low-concentration collagen-based bioink for advancing the understanding of tumor cell biology and facilitating drug discovery research.
Collapse
Affiliation(s)
- Wen Shi
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Sameer Mirza
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of ChemistryCollege of ScienceUnited Arab Emirates UniversityAbu DhabiUnited Arab Emirates
| | - Mitchell Kuss
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bo Liu
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Andrew Hartin
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Shibiao Wan
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Yunfan Kong
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bhopal Mohapatra
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mena Krishnan
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Hamid Band
- Eppley InstituteUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Vimla Band
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of SurgeryUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical EngineeringUniversity of Nebraska–LincolnLincolnNE68588USA
| |
Collapse
|
29
|
Yang Z, Wang B, Liu W, Li X, Liang K, Fan Z, Li JJ, Niu Y, He Z, Li H, Wang D, Lin J, Du Y, Lin J, Xing D. In situ self-assembled organoid for osteochondral tissue regeneration with dual functional units. Bioact Mater 2023; 27:200-215. [PMID: 37096194 PMCID: PMC10121637 DOI: 10.1016/j.bioactmat.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 04/26/2023] Open
Abstract
The regeneration of hierarchical osteochondral units is challenging due to difficulties in inducing spatial, directional and controllable differentiation of mesenchymal stem cells (MSCs) into cartilage and bone compartments. Emerging organoid technology offers new opportunities for osteochondral regeneration. In this study, we developed gelatin-based microcryogels customized using hyaluronic acid (HA) and hydroxyapatite (HYP), respectively for inducing cartilage and bone regeneration (denoted as CH-Microcryogels and OS-Microcryogels) through in vivo self-assembly into osteochondral organoids. The customized microcryogels showed good cytocompatibility and induced chondrogenic and osteogenic differentiation of MSCs, while also demonstrating the ability to self-assemble into osteochondral organoids with no delamination in the biphasic cartilage-bone structure. Analysis by mRNA-seq showed that CH-Microcryogels promoted chondrogenic differentiation and inhibited inflammation, while OS-Microcryogels facilitated osteogenic differentiation and suppressed the immune response, by regulating specific signaling pathways. Finally, the in vivo engraftment of pre-differentiated customized microcryogels into canine osteochondral defects resulted in the spontaneous assembly of an osteochondral unit, inducing simultaneous regeneration of both articular cartilage and subchondral bone. In conclusion, this novel approach for generating self-assembling osteochondral organoids utilizing tailor-made microcryogels presents a highly promising avenue for advancing the field of tissue engineering.
Collapse
Affiliation(s)
- Zhen Yang
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Bin Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, 10081, China
| | - Xiaoke Li
- Department of Orthopedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, 030001, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Zejun Fan
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, Australia
| | - Yudi Niu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Zihao He
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Hui Li
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Jianhao Lin
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Dan Xing
- Arthritis Clinical and Research Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| |
Collapse
|
30
|
Sprott H, Fleck C. Hyaluronic Acid in Rheumatology. Pharmaceutics 2023; 15:2247. [PMID: 37765216 PMCID: PMC10537104 DOI: 10.3390/pharmaceutics15092247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Hyaluronic acid (HA), also known as hyaluronan, is an anionic glycosaminoglycan widely distributed throughout various tissues of the human body. It stands out from other glycosaminoglycans as it lacks sulfation and can attain considerable size: the average human synovial HA molecule weighs about 7 million Dalton (Da), equivalent to roughly 20,000 disaccharide monomers; although some sources report a lower range of 3-4 million Da. In recent years, HA has garnered significant attention in the field of rheumatology due to its involvement in joint lubrication, cartilage maintenance, and modulation of inflammatory and/or immune responses. This review aims to provide a comprehensive overview of HA's involvement in rheumatology, covering its physiology, pharmacology, therapeutic applications, and potential future directions for enhancing patient outcomes. Nevertheless, the use of HA therapy in rheumatology remains controversial with conflicting evidence regarding its efficacy and safety. In conclusion, HA represents a promising therapeutic option to improve joint function and alleviate inflammation and pain.
Collapse
Affiliation(s)
- Haiko Sprott
- Medical Faculty, University of Zurich (UZH), CH-8006 Zurich, Switzerland
- Arztpraxis Hottingen, CH-8032 Zurich, Switzerland
| | | |
Collapse
|
31
|
Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Adv Healthc Mater 2023; 12:e2203148. [PMID: 36802199 PMCID: PMC10330013 DOI: 10.1002/adhm.202203148] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Gelatin is a widely utilized bioprinting biomaterial due to its cell-adhesive and enzymatically cleavable properties, which improve cell adhesion and growth. Gelatin is often covalently cross-linked to stabilize bioprinted structures, yet the covalently cross-linked matrix is unable to recapitulate the dynamic microenvironment of the natural extracellular matrix (ECM), thereby limiting the functions of bioprinted cells. To some extent, a double network bioink can provide a more ECM-mimetic, bioprinted niche for cell growth. More recently, gelatin matrices are being designed using reversible cross-linking methods that can emulate the dynamic mechanical properties of the ECM. This review analyzes the progress in developing gelatin bioink formulations for 3D cell culture, and critically analyzes the bioprinting and cross-linking techniques, with a focus on strategies to optimize the functions of bioprinted cells. This review discusses new cross-linking chemistries that recapitulate the viscoelastic, stress-relaxing microenvironment of the ECM, and enable advanced cell functions, yet are less explored in engineering the gelatin bioink. Finally, this work presents the perspective on the areas of future research and argues that the next generation of gelatin bioinks should be designed by considering cell-matrix interactions, and bioprinted constructs should be validated against currently established 3D cell culture standards to achieve improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
| | - Tanveer A. Tabish
- Cardiovascular Division, Radcliff Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Pakistan
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State, Hershey, PA 16802, USA
- Department of Medical Oncology, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
- Health Research Institute, Michigan Technological University, Houghton, MI, 49931 USA
| |
Collapse
|
32
|
Zhang Z, Liu Y, Tao X, Du P, Enkhbat M, Lim KS, Wang H, Wang PY. Engineering Cell Microenvironment Using Nanopattern-Derived Multicellular Spheroids and Photo-Crosslinked Gelatin/Hyaluronan Hydrogels. Polymers (Basel) 2023; 15:polym15081925. [PMID: 37112072 PMCID: PMC10144125 DOI: 10.3390/polym15081925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Cell cultures of dispersed cells within hydrogels depict the interaction of the cell-extracellular matrix (ECM) in 3D, while the coculture of different cells within spheroids combines both the effects of cell-cell and cell-ECM interactions. In this study, the cell co-spheroids of human bone mesenchymal stem cells/human umbilical vein endothelial cells (HBMSC/HUVECs) are prepared with the assistance of a nanopattern, named colloidal self-assembled patterns (cSAPs), which is superior to low-adhesion surfaces. A phenol-modified gelatin/hyaluronan (Gel-Ph/HA-Ph) hydrogel is used to encapsulate the multicellular spheroids and the constructs are photo-crosslinked using blue light. The results show that Gel-Ph/HA-Ph hydrogels with a 5%-to-0.3% ratio have the best properties. Cells in HBMSC/HUVEC co-spheroids are more favorable for osteogenic differentiation (Runx2, ALP, Col1a1 and OPN) and vascular network formation (CD31+ cells) compared to HBMSC spheroids. In a subcutaneous nude mouse model, the HBMSC/HUVEC co-spheroids showed better performance than HBMSC spheroids in angiogenesis and the development of blood vessels. Overall, this study paves a new way for using nanopatterns, cell coculturing and hydrogel technology for the generation and application of multicellular spheroids.
Collapse
Affiliation(s)
- Zhen Zhang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Myagmartsend Enkhbat
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, Sydney, NSW 2052, Australia
| | - Huaiyu Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
33
|
Zhang W, Kuss M, Yan Y, Shi W. Dynamic Alginate Hydrogel as an Antioxidative Bioink for Bioprinting. Gels 2023; 9:gels9040312. [PMID: 37102924 PMCID: PMC10137987 DOI: 10.3390/gels9040312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
3D bioprinting holds great potential for use in tissue engineering to treat degenerative joint disorders, such as osteoarthritis. However, there is a lack of multifunctional bioinks that can not only support cell growth and differentiation, but also offer protection to cells against injuries caused by the elevated oxidative stress; this conditions is a common characteristic of the microenvironment of the osteoarthritis disease. To mitigate oxidative stress-induced cellular phenotype change and malfunction, an anti-oxidative bioink derived from an alginate dynamic hydrogel was developed in this study. The alginate dynamic hydrogel gelated quickly via the dynamic covalent bond between the phenylboronic acid modified alginate (Alg-PBA) and poly (vinyl alcohol) (PVA). It presented good self-healing and shear-thinning abilities because of the dynamic feature. The dynamic hydrogel supported long-term growth of mouse fibroblasts after stabilization with a secondary ionic crosslinking between introduced calcium ions and the carboxylate group in the alginate backbone. In addition, the dynamic hydrogel showed good printability, resulting in the fabrication of scaffolds with cylindrical and grid structures with good structural fidelity. Encapsulated mouse chondrocytes maintained high viability for at least 7 days in the bioprinted hydrogel after ionic crosslinking. Most importantly, in vitro studies implied that the bioprinted scaffold could reduce the intracellular oxidative stress for embedded chondrocytes under H2O2 exposure; it could also protect the chondrocytes from H2O2-induced downregulation of extracellular matrix (ECM) relevant anabolic genes (ACAN and COL2) and upregulation of a catabolic gene (MMP13). In summary, the results suggest that the dynamic alginate hydrogel can be applied as a versatile bioink for the fabrication of 3D bioprinted scaffolds with an innate antioxidative ability; this technique is expected to improve the regenerative efficacy of cartilage tissues for the treatment of joint disorders.
Collapse
Affiliation(s)
- Wenhai Zhang
- Orthopedic Department, Tianjin Hospital, Tianjin 300211, China
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yi Yan
- Healthcare Security Office, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
34
|
Berdiaki A, Neagu M, Spyridaki I, Kuskov A, Perez S, Nikitovic D. Hyaluronan and Reactive Oxygen Species Signaling—Novel Cues from the Matrix? Antioxidants (Basel) 2023; 12:antiox12040824. [PMID: 37107200 PMCID: PMC10135151 DOI: 10.3390/antiox12040824] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG) localized to the cell surface and the tissue extracellular matrix (ECM). It is composed of disaccharides containing glucuronic acid and N-acetylglucosamine, is synthesized by the HA synthase (HAS) enzymes and is degraded by hyaluronidase (HYAL) or reactive oxygen and nitrogen species (ROS/RNS) actions. HA is deposited as a high molecular weight (HMW) polymer and degraded to low molecular weight (LMW) fragments and oligosaccharides. HA affects biological functions by interacting with HA-binding proteins (hyaladherins). HMW HA is anti-inflammatory, immunosuppressive, and antiangiogenic, whereas LMW HA has pro-inflammatory, pro-angiogenetic, and oncogenic effects. ROS/RNS naturally degrade HMW HA, albeit at enhanced levels during tissue injury and inflammatory processes. Thus, the degradation of endothelial glycocalyx HA by increased ROS challenges vascular integrity and can initiate several disease progressions. Conversely, HA exerts a vital role in wound healing through ROS-mediated HA modifications, which affect the innate immune system. The normal turnover of HA protects against matrix rigidification. Insufficient turnover leads to increased tissue rigidity, leading to tissue dysfunction. Both endogenous and exogenous HMW HA have a scavenging capacity against ROS. The interactions of ROS/RNS with HA are more complex than presently perceived and present an important research topic.
Collapse
|
35
|
Liu L, Zhang W, Liu T, Tan Y, Chen C, Zhao J, Geng H, Ma C. The physiological metabolite α-ketoglutarate ameliorates osteoarthritis by regulating mitophagy and oxidative stress. Redox Biol 2023; 62:102663. [PMID: 36924682 PMCID: PMC10026041 DOI: 10.1016/j.redox.2023.102663] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Osteoarthritis (OA) is an age-related metabolic disease. Low-grade inflammation and oxidative stress are the last common pathway of OA. α-ketoglutarate (α-KG) is an essential physiological metabolite from the mitochondrial tricarboxylic acid (TCA) cycle, with multiple functions, including anti-inflammation and antioxidation, and exhibits decreased serum levels with age. Herein, we aimed to investigate the effect and mechanism of α-KG on OA. We first quantified the α-KG levels in human cartilage tissue and osteoarthritic chondrocytes induced by IL-1β. Besides, IL-1β-induced osteoarthritic chondrocytes were treated with different concentrations of α-KG. Chondrocyte proliferation and apoptosis, synthesis and degradation of extracellular matrix, and inflammation mediators were analyzed. RNA sequencing was used to explore the mechanism of α-KG, and mitophagy and oxidative stress levels were further detected. These results were verified in an anterior cruciate ligament transection (ACLT) induced age-related OA rat model. We found that α-KG content decreased by 31.32% in damaged medial cartilage than in normal lateral cartilage and by 36.85% in IL-1β-induced human osteoarthritic chondrocytes compared to control. α-KG supplementation reversed IL-1β-induced chondrocyte proliferation inhibition and apoptosis, increased the transcriptomic and proteinic expression of ACAN and COL2A1 in vivo and in vitro, but inhibited the expression of MMP13, ADAMTS5, IL-6, and TNF-α. In mechanism, α-KG promoted mitophagy and inhibited ROS generation, and these effects could be prevented by Mdivi-1 (a mitophagy inhibitor). Overall, α-KG content decreased in human OA cartilage and IL-1β-induced osteoarthritic chondrocytes. Moreover, α-KG supplementation could alleviate osteoarthritic phenotype by regulating mitophagy and oxidative stress, suggesting its potential as a therapeutic target to ameliorate OA.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wanying Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Tanghao Liu
- Department of Orthopedics, The First Affiliated Hospital of Jishou University, Jishou, 416000, China
| | - Yangfan Tan
- Department of Orthopedics, The First Affiliated Hospital of Jishou University, Jishou, 416000, China
| | - Cheng Chen
- Department of Orthopedics, The Affiliated 926 Hospital of Kunming University of Science and Technology, Kaiyuan, China
| | - Jun Zhao
- Department of Orthopedics, The First Affiliated Hospital of Jishou University, Jishou, 416000, China.
| | - Huan Geng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Chi Ma
- Department of Orthopedics, The First Affiliated Hospital of Jishou University, Jishou, 416000, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
36
|
Duan WL, Zhang LN, Bohara R, Martin-Saldaña S, Yang F, Zhao YY, Xie Y, Bu YZ, Pandit A. Adhesive hydrogels in osteoarthritis: from design to application. Mil Med Res 2023; 10:4. [PMID: 36710340 PMCID: PMC9885614 DOI: 10.1186/s40779-022-00439-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/31/2022] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis (OA) is the most common type of degenerative joint disease which affects 7% of the global population and more than 500 million people worldwide. One research frontier is the development of hydrogels for OA treatment, which operate either as functional scaffolds of tissue engineering or as delivery vehicles of functional additives. Both approaches address the big challenge: establishing stable integration of such delivery systems or implants. Adhesive hydrogels provide possible solutions to this challenge. However, few studies have described the current advances in using adhesive hydrogel for OA treatment. This review summarizes the commonly used hydrogels with their adhesion mechanisms and components. Additionally, recognizing that OA is a complex disease involving different biological mechanisms, the bioactive therapeutic strategies are also presented. By presenting the adhesive hydrogels in an interdisciplinary way, including both the fields of chemistry and biology, this review will attempt to provide a comprehensive insight for designing novel bioadhesive systems for OA therapy.
Collapse
Affiliation(s)
- Wang-Lin Duan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li-Ning Zhang
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| | - Sergio Martin-Saldaña
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Yang Zhao
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yong Xie
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China. .,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China.
| | - Ya-Zhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland.
| |
Collapse
|
37
|
Application of Hydrogels as Three-Dimensional Bioprinting Ink for Tissue Engineering. Gels 2023; 9:gels9020088. [PMID: 36826258 PMCID: PMC9956898 DOI: 10.3390/gels9020088] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
The use of three-dimensional bioprinting technology combined with the principle of tissue engineering is important for the construction of tissue or organ regeneration microenvironments. As a three-dimensional bioprinting ink, hydrogels need to be highly printable and provide a stiff and cell-friendly microenvironment. At present, hydrogels are used as bioprinting inks in tissue engineering. However, there is still a lack of summary of the latest 3D printing technology and the properties of hydrogel materials. In this paper, the materials commonly used as hydrogel bioinks; the advanced technologies including inkjet bioprinting, extrusion bioprinting, laser-assisted bioprinting, stereolithography bioprinting, suspension bioprinting, and digital 3D bioprinting technologies; printing characterization including printability and fidelity; biological properties, and the application fields of bioprinting hydrogels in bone tissue engineering, skin tissue engineering, cardiovascular tissue engineering are reviewed, and the current problems and future directions are prospected.
Collapse
|
38
|
Guo X, Xi L, Yu M, Fan Z, Wang W, Ju A, Liang Z, Zhou G, Ren W. Regeneration of articular cartilage defects: Therapeutic strategies and perspectives. J Tissue Eng 2023; 14:20417314231164765. [PMID: 37025158 PMCID: PMC10071204 DOI: 10.1177/20417314231164765] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Articular cartilage (AC), a bone-to-bone protective device made of up to 80% water and populated by only one cell type (i.e. chondrocyte), has limited capacity for regeneration and self-repair after being damaged because of its low cell density, alymphatic and avascular nature. Resulting repair of cartilage defects, such as osteoarthritis (OA), is highly challenging in clinical treatment. Fortunately, the development of tissue engineering provides a promising method for growing cells in cartilage regeneration and repair by using hydrogels or the porous scaffolds. In this paper, we review the therapeutic strategies for AC defects, including current treatment methods, engineering/regenerative strategies, recent advances in biomaterials, and present emphasize on the perspectives of gene regulation and therapy of noncoding RNAs (ncRNAs), such as circular RNA (circRNA) and microRNA (miRNA).
Collapse
Affiliation(s)
- Xueqiang Guo
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Lingling Xi
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Mengyuan Yu
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Weiyun Wang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Andong Ju
- Abdominal Surgical Oncology, Xinxiang
Central Hospital, Institute of the Fourth Affiliated Hospital of Xinxiang Medical
University, Xinxiang, China
| | - Zhuo Liang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Guangdong Zhou
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
- Guangdong Zhou, Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639
Shanghai Manufacturing Bureau Road, Shanghai 200011, China.
| | - Wenjie Ren
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Wenjie Ren, Institute of Regenerative
Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical
University, 601 Jinsui Avenue, Hongqi District, Xinxiang 453003, Henan, China.
| |
Collapse
|
39
|
Liu M, Huang Y, Tao C, Yang W, Chen J, Zhu L, Pan T, Narain R, Nan K, Chen Y. Self-Healing Alginate Hydrogel Formed by Dynamic Benzoxaborolate Chemistry Protects Retinal Pigment Epithelium Cells against Oxidative Damage. Gels 2022; 9:gels9010024. [PMID: 36661792 PMCID: PMC9857501 DOI: 10.3390/gels9010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is considered as a major factor causing retinal pigment epithelium (RPE) dysfunction and finally leading to retinal diseases such as age-related macular degeneration (AMD). Developing hydrogels for RPE cell delivery, especially those with antioxidant feature, is emerging as a promising approach for AMD treatment. Herein, a readily prepared antioxidant alginate-based hydrogel was developed to serve as a cytoprotective agent for RPE cells against oxidative damage. Alg-BOB was synthesized via conjugation of benzoxaborole (BOB) to the polysaccharide backbone. Hydrogels were formed through self-crosslinking of Alg-BOB based on benzoxaborole-diol complexation. The resulting hydrogel showed porous micro-structure, pH dependent mechanical strength and excellent self-healing, remolding, and injectable properties. Moreover, the hydrogel exhibited excellent cytocompatibility and could efficiently scavenge reactive oxygen species (ROS) to achieve an enhanced viability of ARPE-19 cells under oxidative condition. Altogether, our study reveals that the antioxidant Alg-BOB hydrogel represents an eligible candidate for RPE delivery and AMD treatment.
Collapse
Affiliation(s)
- Minhua Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Yate Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Chunwen Tao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Weijia Yang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Junrong Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Li Zhu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Tonghe Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada
- Correspondence: (R.N.); (K.N.); (Y.C.)
| | - Kaihui Nan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Correspondence: (R.N.); (K.N.); (Y.C.)
| | - Yangjun Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Correspondence: (R.N.); (K.N.); (Y.C.)
| |
Collapse
|
40
|
Grieco M, Ursini O, Palamà IE, Gigli G, Moroni L, Cortese B. HYDRHA: Hydrogels of hyaluronic acid. New biomedical approaches in cancer, neurodegenerative diseases, and tissue engineering. Mater Today Bio 2022; 17:100453. [PMID: 36254248 PMCID: PMC9568881 DOI: 10.1016/j.mtbio.2022.100453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/30/2022] Open
Abstract
In the last decade, hyaluronic acid (HA) has attracted an ever-growing interest in the biomedical engineering field as a biocompatible, biodegradable, and chemically versatile molecule. In fact, HA is a major component of the extracellular matrix (ECM) and is essential for the maintenance of cellular homeostasis and crosstalk. Innovative experimental strategies in vitro and in vivo using three-dimensional (3D) HA systems have been increasingly reported in studies of diseases, replacement of tissue and organ damage, repairing wounds, and encapsulating stem cells for tissue regeneration. The present work aims to give an overview and comparison of recent work carried out on HA systems showing advantages, limitations, and their complementarity, for a comprehensive characterization of their use. A special attention is paid to the use of HA in three important areas: cancer, diseases of the central nervous system (CNS), and tissue regeneration, discussing the most innovative experimental strategies. Finally, perspectives within and beyond these research fields are discussed.
Collapse
Affiliation(s)
- Maddalena Grieco
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
| | - Ornella Ursini
- National Research Council-Nanotechnology Institute (CNR Nanotec), 00185, Rome, Italy
| | - Ilaria Elena Palamà
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
| | - Giuseppe Gigli
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
- Department of Mathematics and Physics “Ennio De Giorgi” University of Salento, Via Arnesano, 73100, Lecce, Italy
| | - Lorenzo Moroni
- National Research Council-Nanotechnology Institute (CNR Nanotec), 73100, Lecce, Italy
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, the Netherlands
| | - Barbara Cortese
- National Research Council-Nanotechnology Institute (CNR Nanotec), 00185, Rome, Italy
| |
Collapse
|
41
|
Jin P, Liu L, Chen X, Cheng L, Zhang W, Zhong G. Applications and prospects of different functional hydrogels in meniscus repair. Front Bioeng Biotechnol 2022; 10:1082499. [PMID: 36568293 PMCID: PMC9773848 DOI: 10.3389/fbioe.2022.1082499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
The meniscus is a kind of fibrous cartilage structure that serves as a cushion in the knee joint to alleviate the mechanical load. It is commonly injured, but it cannot heal spontaneously. Traditional meniscectomy is not currently recommended as this treatment tends to cause osteoarthritis. Due to their good biocompatibility and versatile regulation, hydrogels are emerging biomaterials in tissue engineering. Hydrogels are excellent candidates in meniscus rehabilitation and regeneration because they are fine-tunable, easily modified, and capable of delivering exogenous drugs, cells, proteins, and cytokines. Various hydrogels have been reported to work well in meniscus-damaged animals, but few hydrogels are effective in the clinic, indicating that hydrogels possess many overlooked problems. In this review, we summarize the applications and problems of hydrogels in extrinsic substance delivery, meniscus rehabilitation, and meniscus regeneration. This study will provide theoretical guidance for new therapeutic strategies for meniscus repair.
Collapse
Affiliation(s)
- Pan Jin
- Health Science Center, Yangtze University, Jingzhou, China,Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China,*Correspondence: Pan Jin, ; Gang Zhong,
| | - Lei Liu
- Articular Surgery, The Second Nanning People’s Hospital (Third Affiliated Hospital of Guangxi Medical University), Nanning, China
| | - Xichi Chen
- Health Science Center, Yangtze University, Jingzhou, China
| | - Lin Cheng
- Health Science Center, Yangtze University, Jingzhou, China
| | - Weining Zhang
- Health Science Center, Yangtze University, Jingzhou, China
| | - Gang Zhong
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Pan Jin, ; Gang Zhong,
| |
Collapse
|
42
|
Mesenchymal Stromal Cells Laden in Hydrogels for Osteoarthritis Cartilage Regeneration: A Systematic Review from In Vitro Studies to Clinical Applications. Cells 2022; 11:cells11243969. [PMID: 36552733 PMCID: PMC9777087 DOI: 10.3390/cells11243969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
This systematic review is focused on the main characteristics of the hydrogels used for embedding the mesenchymal stromal cells (MSCs) in in vitro/ex vivo studies, in vivo OA models and clinical trials for favoring cartilage regeneration in osteoarthritis (OA). PubMED and Embase databases were used to select the papers that were submitted to a public reference manager Rayyan Systematic Review Screening Software. A total of 42 studies were considered eligible: 25 articles concerned in vitro studies, 2 in vitro and ex vivo ones, 5 in vitro and in vivo ones, 8 in vivo ones and 2 clinical trials. Some in vitro studies evidenced a rheological characterization of the hydrogels and description of the crosslinking methods. Only 37.5% of the studies considered at the same time chondrogenic, fibrotic and hypertrophic markers. Ex vivo studies focused on hydrogel adhesion properties and the modification of MSC-laden hydrogels subjected to compression tests. In vivo studies evidenced the effect of cell-laden hydrogels in OA animal models or defined the chondrogenic potentiality of the cells in subcutaneous implantation models. Clinical studies confirmed the positive impact of these treatments on patients with OA. To speed the translation to the clinical use of cell-laden hydrogels, further studies on hydrogel characteristics, injection modalities, chemo-attractant properties and adhesion strength are needed.
Collapse
|
43
|
Wang M, Deng Z, Guo Y, Xu P. Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering. Mater Today Bio 2022; 17:100495. [PMID: 36420054 PMCID: PMC9676212 DOI: 10.1016/j.mtbio.2022.100495] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/14/2022] Open
Abstract
Damage to cartilage tissues is often difficult to repair owing to chronic inflammation and a lack of bioactive factors. Therefore, developing bioactive materials, such as hydrogels acting as extracellular matrix mimics, that can inhibit the inflammatory microenvironment and promote cartilage repair is crucial. Hyaluronic acid, which exists in cartilage and synovial fluid, has been extensively investigated for cartilage tissue engineering because of its promotion of cell adhesion and proliferation, regulation of inflammation, and enhancement of cartilage regeneration. However, hyaluronic acid-based hydrogels have poor degradation rates and unfavorable mechanical properties, limiting their application in cartilage tissue engineering. Recently, various multifunctional hyaluronic acid-based hydrogels, including alkenyl, aldehyde, thiolated, phenolized, hydrazide, and host–guest group-modified hydrogels, have been extensively studied for use in cartilage tissue engineering. In this review, we summarize the recent progress in the multifunctional design of hyaluronic acid-based hydrogels and their application in cartilage tissue engineering. Moreover, we outline the future research prospects and directions in cartilage tissue regeneration. This would provide theoretical guidance for developing hyaluronic acid-based hydrogels with specific properties to satisfy the requirements of cartilage tissue repair.
Collapse
|
44
|
Zhu S, Li Y, He Z, Ji L, Zhang W, Tong Y, Luo J, Yu D, Zhang Q, Bi Q. Advanced injectable hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2022; 10:954501. [PMID: 36159703 PMCID: PMC9493100 DOI: 10.3389/fbioe.2022.954501] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023] Open
Abstract
The rapid development of tissue engineering makes it an effective strategy for repairing cartilage defects. The significant advantages of injectable hydrogels for cartilage injury include the properties of natural extracellular matrix (ECM), good biocompatibility, and strong plasticity to adapt to irregular cartilage defect surfaces. These inherent properties make injectable hydrogels a promising tool for cartilage tissue engineering. This paper reviews the research progress on advanced injectable hydrogels. The cross-linking method and structure of injectable hydrogels are thoroughly discussed. Furthermore, polymers, cells, and stimulators commonly used in the preparation of injectable hydrogels are thoroughly reviewed. Finally, we summarize the research progress of the latest advanced hydrogels for cartilage repair and the future challenges for injectable hydrogels.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Li
- Zhejiang University of Technology, Hangzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Yu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qiong Zhang
- Center for Operating Room, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
Kim YS, Guilak F. Engineering Hyaluronic Acid for the Development of New Treatment Strategies for Osteoarthritis. Int J Mol Sci 2022; 23:8662. [PMID: 35955795 PMCID: PMC9369020 DOI: 10.3390/ijms23158662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that is characterized by inflammation of the joints, degradation of cartilage, and the remodeling of other joint tissues. Due to the absence of disease-modifying drugs for OA, current clinical treatment options are often only effective at slowing down disease progression and focus mainly on pain management. The field of tissue engineering has therefore been focusing on developing strategies that could be used not only to alleviate symptoms of OA but also to regenerate the damaged tissue. Hyaluronic acid (HA), an integral component of both the synovial fluid and articular cartilage, has gained widespread usage in developing hydrogels that deliver cells and biomolecules to the OA joint thanks to its biocompatibility and ability to support cell growth and the chondrogenic differentiation of encapsulated stem cells, providing binding sites for growth factors. Tissue-engineering strategies have further attempted to improve the role of HA as an OA therapeutic by developing diverse modified HA delivery platforms for enhanced joint retention and controlled drug release. This review summarizes recent advances in developing HA-based hydrogels for OA treatment and provides additional insights into how HA-based therapeutics could be further improved to maximize their potential as a viable treatment option for OA.
Collapse
Affiliation(s)
- Yu Seon Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children—Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children—Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
46
|
Zheng J, Xie Y, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Stepwise Proliferation and Chondrogenic Differentiation of Mesenchymal Stem Cells in Collagen Sponges under Different Microenvironments. Int J Mol Sci 2022; 23:ijms23126406. [PMID: 35742851 PMCID: PMC9223568 DOI: 10.3390/ijms23126406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Biomimetic microenvironments are important for controlling stem cell functions. In this study, different microenvironmental conditions were investigated for the stepwise control of proliferation and chondrogenic differentiation of human bone-marrow-derived mesenchymal stem cells (hMSCs). The hMSCs were first cultured in collagen porous sponges and then embedded with or without collagen hydrogels for continual culture under different culture conditions. The different influences of collagen sponges, collagen hydrogels, and induction factors were investigated. The collagen sponges were beneficial for cell proliferation. The collagen sponges also promoted chondrogenic differentiation during culture in chondrogenic medium, which was superior to the effect of collagen sponges embedded with hydrogels without loading of induction factors. However, collagen sponges embedded with collagen hydrogels and loaded with induction factors had the same level of promotive effect on chondrogenic differentiation as collagen sponges during in vitro culture in chondrogenic medium and showed the highest promotive effect during in vivo subcutaneous implantation. The combination of collagen sponges with collagen hydrogels and induction factors could provide a platform for cell proliferation at an early stage and subsequent chondrogenic differentiation at a late stage. The results provide useful information for the chondrogenic differentiation of stem cells and cartilage tissue engineering.
Collapse
Affiliation(s)
- Jing Zheng
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yan Xie
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan;
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Correspondence: ; Tel.: +81-29-860-4496
| |
Collapse
|
47
|
Yu Q, Han F, Yuan Z, Zhu Z, Liu C, Tu Z, Guo Q, Zhao R, Zhang W, Wang H, Mao H, Li B, Zhu C. Fucoidan-loaded nanofibrous scaffolds promote annulus fibrosus repair by ameliorating the inflammatory and oxidative microenvironments in degenerative intervertebral discs. Acta Biomater 2022; 148:73-89. [PMID: 35671874 DOI: 10.1016/j.actbio.2022.05.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD). However, implantation of tissue engineered constructs may cause foreign body reaction and aggravate the inflammatory and oxidative microenvironment of the degenerative intervertebral disc (IVD). In order to ameliorate the adverse microenvironment of IDD, in this study, we prepared a biocompatible poly (ether carbonate urethane) urea (PECUU) nanofibrous scaffold loaded with fucoidan, a natural marine bioactive polysaccharide which has great anti-inflammatory and antioxidative functions. Compared with pure PECUU scaffold, the fucoidan-loaded PECUU nanofibrous scaffold (F-PECUU) decreased the gene and protein expression related to inflammation and the oxidative stress in the lipopolysaccharide (LPS) induced annulus fibrosus cells (AFCs) significantly (p<0.05). Especially, gene expression of Ill 6 and Ptgs2 was decreased by more than 50% in F-PECUU with 3.0 wt% fucoidan (HF-PECUU). Moreover, the gene and protein expression related to the degradation of extracellular matrix (ECM) were reduced in a fucoidan concentration-dependent manner significantly, with increased almost 3 times gene expression of Col1a2 and Acan in HF-PECUU. Further, in a 'box' defect model, HF-PECUU decreased the expression of COX-2 and deposited more ECM between scaffold layers when compared with pure PECUU. The disc height and nucleus pulposus hydration of repaired IVD reached up to 75% and 85% of those in the sham group. In addition, F-PECUU helped to maintain an integrate tissue structure with a similar compression modulus to that in sham group. Taken together, the F-PECUU nanofibrous scaffolds showed promising potential to promote AF repair in IDD treatment by ameliorating the harsh degenerative microenvironment. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD), but is restricted by the inflammatory and oxidative microenvironment of degenerative disc. This study developed a biocompatible polyurethane scaffold (F-PECUU) loaded with fucoidan, a marine bioactive polysaccharide, for ameliorating IDD microenvironment and promoting disc regeneration. F-PECUU alleviated the inflammation and oxidative stress caused by lipopolysaccharide and prevented extracellular matrix (ECM) degradation in AF cells. In vivo, it promoted ECM deposition to maintain the height, water content and mechanical property of disc. This work has shown the potential of marine polysaccharides-containing functional scaffolds in IDD treatment by ameliorating the harsh microenvironment accompanied with disc degeneration.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhuang Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Changjiang Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhengdong Tu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Runze Zhao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, China.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
48
|
Characteristic and Chondrogenic Differentiation Analysis of Hybrid Hydrogels Comprised of Hyaluronic Acid Methacryloyl (HAMA), Gelatin Methacryloyl (GelMA), and the Acrylate-Functionalized Nano-Silica Crosslinker. Polymers (Basel) 2022; 14:polym14102003. [PMID: 35631885 PMCID: PMC9144778 DOI: 10.3390/polym14102003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Developing a biomaterial suitable for adipose-derived stem cell (ADSCs)-laden scaffolds that can directly bond to cartilage tissue surfaces in tissue engineering has still been a significant challenge. The bioinspired hybrid hydrogel approaches based on hyaluronic acid methacryloyl (HAMA) and gelatin methacryloyl (GelMA) appear to have more promise. Herein, we report the cartilage tissue engineering application of a novel photocured hybrid hydrogel system comprising HAMA, GelMA, and 0~1.0% (w/v) acrylate-functionalized nano-silica (AFnSi) crosslinker, in addition to describing the preparation of related HAMA, GelMA, and AFnSi materials and confirming their related chemical evidence. The study also examines the physicochemical characteristics of these hybrid hydrogels, including swelling behavior, morphological conformation, mechanical properties, and biodegradation. To further investigate cell viability and chondrogenic differentiation, the hADSCs were loaded with a two-to-one ratio of the HAMA-GelMA (HG) hybrid hydrogel with 0~1.0% (w/v) AFnSi crosslinker to examine the process of optimal chondrogenic development. Results showed that the morphological microstructure, mechanical properties, and longer degradation time of the HG+0.5% (w/v) AFnSi hydrogel demonstrated the acellular novel matrix was optimal to support hADSCs differentiation. In other words, the in vitro experimental results showed that hADSCs laden in the photocured hybrid hydrogel of HG+0.5% (w/v) AFnSi not only significantly increased chondrogenic marker gene expressions such as SOX-9, aggrecan, and type II collagen expression compared to the HA and HG groups, but also enhanced the expression of sulfated glycosaminoglycan (sGAG) and type II collagen formation. We have concluded that the photocured hybrid hydrogel of HG+0.5% (w/v) AFnSi will provide a suitable environment for articular cartilage tissue engineering applications.
Collapse
|
49
|
Ho TC, Chang CC, Chan HP, Chung TW, Shu CW, Chuang KP, Duh TH, Yang MH, Tyan YC. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022; 27:2902. [PMID: 35566251 PMCID: PMC9104731 DOI: 10.3390/molecules27092902] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 12/19/2022] Open
Abstract
Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. Although not all hydrogels have good biodegradability and biocompatibility, such as synthetic hydrogels (polyvinyl alcohol, polyacrylamide, polyethylene glycol hydrogels, etc.), their biodegradability and biocompatibility can be adjusted by modification of their functional group or incorporation of natural polymers. Hence, scientists are still interested in the biomedical applications of hydrogels due to their creative adjustability for different uses. In this review, we first introduce the basic information of hydrogels, such as structure, classification, and synthesis. Then, we further describe the recent applications of hydrogels in 3D cell cultures, drug delivery, wound dressing, and tissue engineering.
Collapse
Affiliation(s)
- Tzu-Chuan Ho
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-C.H.); (C.-W.S.)
| | - Chin-Chuan Chang
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Electrical Engineering, I-Shou University, Kaohsiung 840, Taiwan
| | - Hung-Pin Chan
- Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
| | - Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chih-Wen Shu
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-C.H.); (C.-W.S.)
| | - Kuo-Pin Chuang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Tsai-Hui Duh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hui Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Center of General Education, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-C.H.); (C.-W.S.)
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
50
|
Xiang Y, Miller K, Guan J, Kiratitanaporn W, Tang M, Chen S. 3D bioprinting of complex tissues in vitro: state-of-the-art and future perspectives. Arch Toxicol 2022; 96:691-710. [PMID: 35006284 PMCID: PMC8850226 DOI: 10.1007/s00204-021-03212-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
The pharmacology and toxicology of a broad variety of therapies and chemicals have significantly improved with the aid of the increasing in vitro models of complex human tissues. Offering versatile and precise control over the cell population, extracellular matrix (ECM) deposition, dynamic microenvironment, and sophisticated microarchitecture, which is desired for the in vitro modeling of complex tissues, 3D bio-printing is a rapidly growing technology to be employed in the field. In this review, we will discuss the recent advancement of printing techniques and bio-ink sources, which have been spurred on by the increasing demand for modeling tactics and have facilitated the development of the refined tissue models as well as the modeling strategies, followed by a state-of-the-art update on the specialized work on cancer, heart, muscle and liver. In the end, the toxicological modeling strategies, substantial challenges, and future perspectives for 3D printed tissue models were explored.
Collapse
Affiliation(s)
- Yi Xiang
- Department of NanoEngineering, University of California San Diego, La Jolla, USA
| | - Kathleen Miller
- Department of NanoEngineering, University of California San Diego, La Jolla, USA
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, USA
| | | | - Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, USA.
| |
Collapse
|