1
|
Ramamurthy RM, Rodriguez M, Ainsworth HC, Shields J, Meares D, Bishop C, Farland A, Langefeld CD, Atala A, Doering CB, Spencer HT, Porada CD, Almeida-Porada G. Comparison of different gene addition strategies to modify placental derived-mesenchymal stromal cells to produce FVIII. Front Immunol 2022; 13:954984. [PMID: 36591257 PMCID: PMC9800010 DOI: 10.3389/fimmu.2022.954984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Placenta-derived mesenchymal cells (PLCs) endogenously produce FVIII, which makes them ideally suited for cell-based fVIII gene delivery. We have previously reported that human PLCs can be efficiently modified with a lentiviral vector encoding a bioengineered, expression/secretion-optimized fVIII transgene (ET3) and durably produce clinically relevant levels of functionally active FVIII. The objective of the present study was to investigate whether CRISPR/Cas9 can be used to achieve location-specific insertion of a fVIII transgene into a genomic safe harbor, thereby eliminating the potential risks arising from the semi-random genomic integration inherent to lentiviral vectors. We hypothesized this approach would improve the safety of the PLC-based gene delivery platform and might also enhance the therapeutic effect by eliminating chromatin-related transgene silencing. Methods We used CRISPR/Cas9 to attempt to insert the bioengineered fVIII transgene "lcoET3" into the AAVS1 site of PLCs (CRISPR-lcoET3) and determined their subsequent levels of FVIII production, comparing results with this approach to those achieved using lentivector transduction (LV-lcoET3) and plasmid transfection (Plasmid-lcoET3). In addition, since liver-derived sinusoidal endothelial cells (LSECs) are the native site of FVIII production in the body, we also performed parallel studies in human (h)LSECs). Results PLCs and hLSECs can both be transduced (LV-lcoET3) with very high efficiency and produce high levels of biologically active FVIII. Surprisingly, both cell types were largely refractory to CRISPR/Cas9-mediated knockin of the lcoET3 fVIII transgene in the AAVS1 genome locus. However, successful insertion of an RFP reporter into this locus using an identical procedure suggests the failure to achieve knockin of the lcoET3 expression cassette at this site is likely a function of its large size. Importantly, using plasmids, alone or to introduce the CRISPR/Cas9 "machinery", resulted in dramatic upregulation of TLR 3, TLR 7, and BiP in PLCs, compromising their unique immune-inertness. Discussion Although we did not achieve our primary objective, our results validate the utility of both PLCs and hLSECs as cell-based delivery vehicles for a fVIII transgene, and they highlight the hurdles that remain to be overcome before primary human cells can be gene-edited with sufficient efficiency for use in cell-based gene therapy to treat HA.
Collapse
Affiliation(s)
- Ritu M. Ramamurthy
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Martin Rodriguez
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Hannah C. Ainsworth
- Department of Biostatistics and Data Sciences Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Jordan Shields
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Diane Meares
- Department of Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Colin Bishop
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Andrew Farland
- Department of Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Carl D. Langefeld
- Department of Biostatistics and Data Sciences Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Anthony Atala
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Christopher B. Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - H. Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Christopher D. Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Graça Almeida-Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| |
Collapse
|
2
|
Xu R, Wu J, Lang L, Hu J, Tang H, Xu J, Sun B. Implantation of glial cell line-derived neurotrophic factor-expressing adipose tissue-derived stromal cells in a rat Parkinson's disease model. Neurol Res 2020; 42:712-720. [PMID: 32567526 DOI: 10.1080/01616412.2020.1783473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In previous studies, the effects of glial cell line-derived neurotrophic factor (GDNF) expressing adipose tissue-derived stromal cells (ADSCs) on Parkinson's disease (PD) models have been studied but have not been elucidated. The present study aims to investigate this phenomenon and trace their differentiation in vivo. In our study, ADSCs were harvested from adult Sprague-Dawley rats, then genetically modified into GDNF-expressing system by lentivirus. The secretion of GDNF from the transduced cells was titrated by enzyme-linked immunosorbent assay (ELISA). Cellular differentiation in vitro was observed after induction. To examine survival and differentiation in vivo, they were injected into the striatum of 6-hydroxydopamine-lesioned rats, whose apomorphine-induced rotations were examined 2, 7, 14 and 21d after grafting. It's found that GDNF-expressing ADSCs can differentiate into neuron-like cells in vitro. Moreover, engrafted GDNF-expressing ADSCs survived at least 90 days post-grafting and differentiated into dopaminergic neuron-like cells. Most importantly, these cells drastically improved the clinical symptoms of PD rats. In conclusion, ADSCs can be efficiently engineered by lentivirus system and deliver a therapeutic level of the transgene to target tissues. GDNF-ADSCs can improve behavior phenotype in the rat PD model. Moreover, ADSCs is a more readily available source of dopaminergic neurons, though a more effective procedure needs to be developed to enrich the number of differentiation.
Collapse
Affiliation(s)
- Rong Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University , Shanghai, China
| | - Julei Wu
- Department of Nursing, Huashan Hospital North, Fudan University , Shanghai, China
| | - Liqin Lang
- Department of Neurosurgery, Huashan Hospital, Fudan University , Shanghai, China
| | - Jie Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University , Shanghai, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University , Shanghai, China
| | - Juefeng Xu
- Department of Nursing, Huashan Hospital North, Fudan University , Shanghai, China
| | - Bing Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University , Shanghai, China
| |
Collapse
|
3
|
Patel SR, Lundgren TS, Spencer HT, Doering CB. The Immune Response to the fVIII Gene Therapy in Preclinical Models. Front Immunol 2020; 11:494. [PMID: 32351497 PMCID: PMC7174743 DOI: 10.3389/fimmu.2020.00494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Neutralizing antibodies to factor VIII (fVIII), referred to as "inhibitors," remain the most challenging complication post-fVIII replacement therapy. Preclinical development of novel fVIII products involves studies incorporating hemophilia A (HA) and wild-type animal models. Though immunogenicity is a critical aspect of preclinical pharmacology studies, gene therapy studies tend to focus on fVIII expression levels without major consideration for immunogenicity. Therefore, little clarity exists on whether preclinical testing can be predictive of clinical immunogenicity risk. Despite this, but perhaps due to the potential for transformative benefits, clinical gene therapy trials have progressed rapidly. In more than two decades, no inhibitors have been observed. However, all trials are conducted in previously treated patients without a history of inhibitors. The current review thus focuses on our understanding of preclinical immunogenicity for HA gene therapy candidates and the potential indication for inhibitor treatment, with a focus on product- and platform-specific determinants, including fVIII transgene sequence composition and tissue/vector biodistribution. Currently, the two leading clinical gene therapy vectors are adeno-associated viral (AAV) and lentiviral (LV) vectors. For HA applications, AAV vectors are liver-tropic and employ synthetic, high-expressing, liver-specific promoters. Factors including vector serotype and biodistribution, transcriptional regulatory elements, transgene sequence, dosing, liver immunoprivilege, and host immune status may contribute to tipping the scale between immunogenicity and tolerance. Many of these factors can also be important in delivery of LV-fVIII gene therapy, especially when delivered intravenously for liver-directed fVIII expression. However, ex vivo LV-fVIII targeting and transplantation of hematopoietic stem and progenitor cells (HSPC) has been demonstrated to achieve durable and curative fVIII production without inhibitor development in preclinical models. A critical variable appears to be pre-transplantation conditioning regimens that suppress and/or ablate T cells. Additionally, we and others have demonstrated the potential of LV-fVIII HSPC and liver-directed AAV-fVIII gene therapy to eradicate pre-existing inhibitors in murine and canine models of HA, respectively. Future preclinical studies will be essential to elucidate immune mechanism(s) at play in the context of gene therapy for HA, as well as strategies for preventing adverse immune responses and promoting immune tolerance even in the setting of pre-existing inhibitors.
Collapse
Affiliation(s)
- Seema R. Patel
- Hemostasis and Thrombosis Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Taran S. Lundgren
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - H. Trent Spencer
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Christopher B. Doering
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:204-224. [PMID: 32071924 PMCID: PMC7012781 DOI: 10.1016/j.omtm.2020.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) possess several fairly unique properties that, when combined, make them ideally suited for cellular-based immunotherapy and as vehicles for gene and drug delivery for a wide range of diseases and disorders. Key among these are: (1) their relative ease of isolation from a variety of tissues; (2) the ability to be expanded in culture without a loss of functionality, a property that varies to some degree with tissue source; (3) they are relatively immune-inert, perhaps obviating the need for precise donor/recipient matching; (4) they possess potent immunomodulatory functions that can be tailored by so-called licensing in vitro and in vivo; (5) the efficiency with which they can be modified with viral-based vectors; and (6) their almost uncanny ability to selectively home to damaged tissues, tumors, and metastases following systemic administration. In this review, we summarize the latest research in the immunological properties of MSCs, their use as immunomodulatory/anti-inflammatory agents, methods for licensing MSCs to customize their immunological profile, and their use as vehicles for transferring both therapeutic genes in genetic disease and drugs and genes designed to destroy tumor cells.
Collapse
|
5
|
Rodriguez M, Porada CD, Almeida-Porada G. Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A. CURRENT STEM CELL REPORTS 2019; 5:145-161. [PMID: 32351874 DOI: 10.1007/s40778-019-00165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Purpose of Review Prenatal stem cell and gene therapy approaches are amongst the few therapies that can promise the birth of a healthy infant with specific known genetic diseases. This review describes fetal immune cell signaling and its potential influence on donor cell engraftment, and summarizes mechanisms of central T cell tolerance to peripherally-acquired antigen in the context of prenatal therapies for Hemophilia A. Recent Findings During early gestation, different subsets of antigen presenting cells take up peripherally-acquired, non-inherited antigens and induce the deletion of antigen-reactive T-cell precursors in the thymus, demonstrating the potential for using prenatal cell and gene therapies to induce central tolerance to FVIII in the context of prenatal diagnosis/therapy of Hemophilia A. Summary Prenatal cell and gene therapies are promising approaches to treat several genetic disorders including Hemophilia A and B. Understanding the mechanisms of how FVIII-specific tolerance is achieved during ontogeny could help develop novel therapies for HA and better approaches to overcome FVIII inhibitors.
Collapse
Affiliation(s)
- Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Graҫa Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
6
|
Hauber I, Beschorner N, Schrödel S, Chemnitz J, Kröger N, Hauber J, Thirion C. Improving Lentiviral Transduction of CD34 + Hematopoietic Stem and Progenitor Cells. Hum Gene Ther Methods 2019; 29:104-113. [PMID: 29631437 DOI: 10.1089/hgtb.2017.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The delivery of therapeutic genes for treatment of inherited or infectious diseases frequently requires lentiviral transduction of CD34+ hematopoietic stem and progenitor cells (HSC). Optimized transduction protocols with a therapeutic goal aim to maximize the number of transduction-positive cells while limiting the vector copy number that reach each individual cell. Importantly, the transduced HSC should maintain their "stem-like" properties. Here, we analyzed LentiBOOST™ reagent, a membrane-sealing poloxamer, with respect to enhancing lentiviral transduction of CD34+ peripheral blood stem cells. We demonstrate that inclusion of LentiBOOST™ in a standard HSC transduction protocol yields high transduction efficiencies while preserving the ability of the transduced HSC to differentiate into various hematopoietic lineages. Thus, LentiBOOST™ reagent can significantly improve lentiviral CD34+ HSC transduction protocols with the potential to improve production of gene-modified cell products.
Collapse
Affiliation(s)
- Ilona Hauber
- 1 Heinrich Pette Institute - Leibniz Institute for Experimental Virology , Hamburg, Germany
| | - Niklas Beschorner
- 1 Heinrich Pette Institute - Leibniz Institute for Experimental Virology , Hamburg, Germany.,2 German Center for Infection Research (DZIF) , Partner Site Hamburg, Germany
| | | | - Jan Chemnitz
- 1 Heinrich Pette Institute - Leibniz Institute for Experimental Virology , Hamburg, Germany
| | - Nicolaus Kröger
- 4 Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Joachim Hauber
- 1 Heinrich Pette Institute - Leibniz Institute for Experimental Virology , Hamburg, Germany.,2 German Center for Infection Research (DZIF) , Partner Site Hamburg, Germany
| | | |
Collapse
|
7
|
Oh T, Peister A, Ohashi K, Park F. Transplantation of Murine Bone Marrow Stromal Cells under the Kidney Capsule to Secrete Coagulation Factor VIII. Cell Transplant 2017; 15:637-45. [PMID: 17176615 DOI: 10.3727/000000006783981620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ectopic cell transplantation has been studied as an alternative to whole organ transplantation or as a method to produce secretable proteins for genetic disorders. In this study, bone marrow stromal cells isolated from C57Bl/6 mice were genetically modified to express either lacZ- or B-domain-deleted human factor VIII. In vitro modification of the isolated bone marrow stromal cells was initially performed by transducing increased doses of VSV-G pseudotyped lentiviral vectors expressing lacZ. At a MOI of 25, all of the bone marrow stromal cells were X-gal positive, which maintained their ability to expand and differentiate prior to transplantation into mice. Extremely poor engraftment was observed in the liver, but transplantation of the bone marrow stromal cells expressing lacZ under the kidney capsule resulted in long-term viable X-gal-positive cells for at least 8 weeks (length of study). In vitro expression of human factor VIII was detected in a dose-dependent manner following bone marrow stromal cell with a factor VIII-expressing lentiviral vector. Transplantation of the factor VIII-expressing bone marrow stromal cells under the kidney capsule led to long-term therapeutic expression in the mouse plasma (1–3 ng/ml; n = 4–5 mice/group) for 8 weeks. This study demonstrated that ectopic transplantation of bone marrow stromal cells under the kidney capsule can be effective as a method to express secretable proteins in vivo.
Collapse
Affiliation(s)
- Taekeun Oh
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | |
Collapse
|
8
|
Park SJ, Kim HJ, Kim W, Kim OS, Lee S, Han SY, Jeong EJ, Park HS, Kim HW, Moon KS. Tumorigenicity Evaluation of Umbilical Cord Blood-derived Mesenchymal Stem Cells. Toxicol Res 2016; 32:251-8. [PMID: 27437093 PMCID: PMC4946422 DOI: 10.5487/tr.2016.32.3.251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/18/2016] [Accepted: 06/01/2016] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in multiple types of tissue and exhibit characteristic self-renewal and multi-lineage differentiation abilities. However, the possibility of oncogenic transformation after transplantation is concerning. In this study, we investigated the tumorigenic potential of umbilical cord blood-derived MSCs (hUCB-MSCs) relative to MRC-5 and HeLa cells (negative and positive controls, respectively) both in vitro and in vivo. To evaluate tumorigenicity in vitro, anchorage-independent growth was assessed using the soft agar colony formation assay. hUCB-MSCs and MRC-5 cells formed few colonies, while HeLa cells formed a greater number of larger colonies, indicating that hUCB-MSCs and MRC-5 cells do not have anchorage-independent proliferation potential. To detect tumorigenicity in vivo, hUCB-MSCs were implanted as a single subcutaneous injection into BALB/c-nu mice. No tumor formation was observed in mice transplanted with hUCB-MSCs or MRC-5 cells based on macroand microscopic examinations; however, all mice transplanted with HeLa cells developed tumors that stained positive for a human gene according to immunohistochemical analysis. In conclusion, hUCB-MSCs do not exhibit tumorigenic potential based on in vitro and in vivo assays under our experimental conditions, providing further evidence of their safety for clinical applications.
Collapse
Affiliation(s)
- Sang-Jin Park
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon, Korea
| | - Hyun-Jung Kim
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon, Korea
| | - Woojin Kim
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon, Korea
| | - Ok-Sun Kim
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon, Korea
| | - Sunyeong Lee
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon, Korea
| | - Su-Yeon Han
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon, Korea
| | - Eun Ju Jeong
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon, Korea
| | | | - Hea-Won Kim
- Research Institute, Genexine Co., Seongnam, Korea
| | - Kyoung-Sik Moon
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon, Korea
| |
Collapse
|
9
|
Abstract
Bone is one of the few tissues to display a true potential for regeneration. Fracture healing is an obvious example where regeneration occurs through tightly regulated sequences of molecular and cellular events which recapitulate tissue formation seen during embryogenesis. Still in some instances, bone regeneration does not occur properly (i.e. critical size lesions) and an appropriate therapeutic intervention is necessary. Successful replacement of bone by tissue engineering will likely depend on the recapitulation of this flow of events. In fact, bone regeneration requires cross-talk between microenvironmental factors and cells; for example, resident mesenchymal progenitors are recruited and properly guided by soluble and insoluble signaling molecules. Tissue engineering attempts to reproduce and to mimic this natural milieu by delivering cells capable of differentiating into osteoblasts, inducing growth factors and biomaterials to support cellular attachment, proliferation, migration, and matrix deposition. In the last two decades, a significant effort has been made by the scientific community in the development of methods and protocols to repair and regenerate tissues such as bone, cartilage, tendons, and ligaments. In this same period, great advancements have been achieved in the biology of stem cells and on the mechanisms governing "stemness". Unfortunately, after two decades, effective clinical translation does not exist, besides a few limited examples. Many years have passed since cell-based regenerative therapies were first described as "promising approaches", but this definition still engulfs the present literature. Failure to envisage translational cell therapy applications in routine medical practice evidences the existence of unresolved scientific and technical struggles, some of which still puzzle researchers in the field and are presented in this chapter.
Collapse
Affiliation(s)
- Rodolfo Quarto
- Stem Cell Laboratory, Department of Experimental Medicine, University of Genova, c/o Advanced Biotechnology Center, L.go R. Benzi, 10, 16132, Genoa, Italy.
| | - Paolo Giannoni
- Stem Cell Laboratory, Department of Experimental Medicine, University of Genova, c/o Advanced Biotechnology Center, L.go R. Benzi, 10, 16132, Genoa, Italy
| |
Collapse
|
10
|
Doering CB, Spencer HT. Advancements in gene transfer-based therapy for hemophilia A. Expert Rev Hematol 2014; 2:673-683. [PMID: 20577574 DOI: 10.1586/ehm.09.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gene therapy has promised clinical benefit to those suffering with hemophilia A, but this benefit has not yet been realized. However, during the past two decades, basic and applied gene therapy research has progressed and the goal of gene therapy for hemophilia A is once again in our sights. The hemophilia A patient population suffers from a disease that requires invasive, lifelong management, is exorbitantly expensive to treat, has geographically limited treatment access and can become untreatable due to immune reactions to the treatment product. Subsequent to the cloning of the factor VIII gene and cDNA in the early 1980s, academic and commercial research laboratories began to pursue gene transfer-based therapies to supplement or supplant the available protein replacement therapy. However, to date, clinical trials for gene therapy of hemophilia A have been unsuccessful. Three trials have been conducted with each having tested a different gene-transfer strategy and each demonstrating that there is a considerable barrier to achieving sustained expression of therapeutic amounts of factor VIII. Recent progress has been made in gene-transfer technology and, relevant to hemophilia A, towards increasing the biosynthetic efficiency of factor VIII. These advances are now being combined to develop novel strategies to treat and possibly cure hemophilia A.
Collapse
Affiliation(s)
- Christopher B Doering
- Aflac Cancer Center and Blood Disorders Service, Department of Pediatrics, Emory University School of Medicine, GA 30322, USA, Tel.: +1 404 727 7988
| | | |
Collapse
|
11
|
The mesenchymal stem cells derived from transgenic mice carrying human coagulation factor VIII can correct phenotype in hemophilia A mice. J Genet Genomics 2013; 40:617-28. [PMID: 24377868 DOI: 10.1016/j.jgg.2013.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/20/2022]
Abstract
Hemophilia A (HA) is an inherited X-linked recessive bleeding disorder caused by coagulant factor VIII (FVIII) deficiency. Previous studies showed that introduction of mesenchymal stem cells (MSCs) modified by FVIII-expressing retrovirus may result in phenotypic correction of HA animals. This study aimed at the investigation of an alternative gene therapy strategy that may lead to sustained FVIII transgene expression in HA mice. B-domain-deleted human FVIII (hFVIIIBD) vector was microinjected into single-cell embryos of wild-type mice to generate a transgenic mouse line, from which hFVIIIBD-MSCs were isolated, followed by transplantation into HA mice. RT-PCR and real-time PCR analysis demonstrated the expression of hFVIIIBD in multi-organs of recipient HA mice. Immunohistochemistry showed the presence of hFVIIIBD positive staining in multi-organs of recipient HA mice. ELISA indicated that plasma hFVIIIBD level in recipient mice reached its peak (77 ng/mL) at the 3rd week after implantation, and achieved sustained expression during the 5-week observation period. Plasma FVIII activities of recipient HA mice increased from 0% to 32% after hFVIIIBD-MSCs transplantation. APTT (activated partial thromboplastin time) value decreased in hFVIIIBD-MSCs transplanted HA mice compared with untreated HA mice (45.5 s vs. 91.3 s). Our study demonstrated an effective phenotypic correction in HA mice using genetically modified MSCs from hFVIIIBD transgenic mice.
Collapse
|
12
|
Kumar M, Singh R, Kumar K, Agarwal P, Mahapatra PS, Saxena AK, Kumar A, Bhanja SK, Malakar D, Singh R, Das BC, Bag S. Plasmid vector based generation of transgenic mesenchymal stem cells with stable expression of reporter gene in caprine. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/scd.2013.34028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Lin P, Lin Y, Lennon DP, Correa D, Schluchter M, Caplan AI. Efficient lentiviral transduction of human mesenchymal stem cells that preserves proliferation and differentiation capabilities. Stem Cells Transl Med 2012; 1:886-97. [PMID: 23283550 DOI: 10.5966/sctm.2012-0086] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Long-term lentiviral transduction of human mesenchymal stem cells (hMSCs) greatly enhances the usefulness of these cells. However, such transduction currently requires the use of polybrene, which severely inhibits hMSC proliferation. In contrast, protamine sulfate at 100 μg/ml doubled transduction efficiencies without affecting proliferation or differentiation potential. Expression levels improved 2.2-fold with the addition of a woodchuck hepatitis post-transcriptional regulatory element. Further improvements in transduction efficiencies could be obtained by a modest increase in viral concentrations through increased viral titers or decreased transduction volumes without changing multiplicity of infection, by transducing over multiple days, or by culturing the cells in fibroblast growth factor-2. Centrifugation improved expression but had no effect on efficiency. Transgene expression was stable over 6 weeks in vitro and in vivo. Donor-to-donor and intradonor variability were observed in primary passage through passage 2 cultures, but not at passage 3. These results provide a better optimized approach for expanded use of hMSCs through genetic manipulation.
Collapse
Affiliation(s)
- Paul Lin
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Bao B, Ahmad A, Li Y, Azmi AS, Ali S, Banerjee S, Kong D, Sarkar FH. Targeting CSCs within the tumor microenvironment for cancer therapy: a potential role of mesenchymal stem cells. Expert Opin Ther Targets 2012; 16:1041-54. [DOI: 10.1517/14728222.2012.714774] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Braem K, Deroose CM, Luyten FP, Lories RJ. Inhibition of inflammation but not ankylosis by glucocorticoids in mice: further evidence for the entheseal stress hypothesis. Arthritis Res Ther 2012; 14:R59. [PMID: 22410100 PMCID: PMC3446425 DOI: 10.1186/ar3772] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/10/2012] [Accepted: 03/12/2012] [Indexed: 12/24/2022] Open
Abstract
Introduction Studies in the spontaneous ankylosis model in aging male DBA/1 mice and in patients with ankylosing spondylitis provide evidence that inflammation and new tissue formation leading to joint or spine ankylosis are likely linked but largely uncoupled processes. We previously proposed the 'entheseal stress' hypothesis that defines microdamage or cell stress in the enthesis as a trigger for these disease processes. Here, we further investigated the relationship between inflammation and ankylosis by focusing on the early phase of the spontaneous arthritis model. Methods Aging male DBA/1 mice from different litters were caged together at the age of ten weeks and studied for signs of arthritis. A group of DBA/1 mice were treated daily with dexamethasone (0.5 μg/g body weight). Severity of disease was assessed by histomorphology and by positron emission tomography (PET) using 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG) as a tracer. Bone loss in dexamethasone-treated or control mice was determined by in vivo dual-energy X-ray absorptiometry. Chemokine gene expression was studied ex vivo in dissected paws and in vitro in mesenchymal cells (periosteal and bone marrow stromal cells) by quantitative real-time PCR in the presence or absence of bone morphogenetic protein 2 (BMP2) and dexamethasone. Results Dexamethasone treatment did not affect incidence or severity of ankylosis, but led to an expected reduction in inflammation in the paws at week 15 as measured by PET tracer uptake. Treatment with dexamethasone negatively affected bone mineral density. Chemokines attracting neutrophils and lymphocytes were expressed in affected paws. In vitro, BMP2 stimulation upregulated chemokines in different mesenchymal joint-associated cell types, an effect that was inhibited by dexamethasone. Conclusions BMP signaling may be a trigger for both inflammation and ankylosis in the spontaneous model of ankylosing enthesitis. The lack of inhibition by glucocorticoids on new bone formation while causing systemic bone loss highlights the paradoxical simultaneous loss and gain of bone in patients with ankylosing spondylitis.
Collapse
Affiliation(s)
- Kirsten Braem
- Laboratory for Skeletal Development and Joint Disorders, Department of Development and Regeneration, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | | | | | | |
Collapse
|
16
|
Abstract
As an alternative to recombinant protein administration, ex vivo gene-modified cells may provide a novel strategy for systemic delivery of therapeutic proteins. This approach has been used in preclinical and clinical studies of a plethora of pathological conditions, including anemia, hemophilia and cancer for the production of erythropoietin, coagulation factors, immunostimulatory cytokines, recombinant antibodies and angiogenesis inhibitors. Cell delivery vehicles may also be varied: autologous or allogeneic, precursor or terminally differentiated cells, with targeting properties or immobilized in immunoprotective devices. This field did not meet the expectation raised initially, mainly because of difficulties with obtaining therapeutic plasma levels and the short lifespan of producer cells that hampered clinical application. Different non-hematopoietic stem/progenitor cells have emerged as potential delivery vehicles, since they are easy to obtain, expand and transduce, and they exhibit prolonged lifespans (with mesenchymal stem cells probably being the most popular cell type, but not the only one). Special emphasis is placed on the different routes used to deliver these cellular vehicles and the controversies about their targeting abilities.
Collapse
|
17
|
Bobis-Wozowicz S, Miekus K, Wybieralska E, Jarocha D, Zawisz A, Madeja Z, Majka M. Genetically modified adipose tissue-derived mesenchymal stem cells overexpressing CXCR4 display increased motility, invasiveness, and homing to bone marrow of NOD/SCID mice. Exp Hematol 2011; 39:686-696.e4. [PMID: 21426925 DOI: 10.1016/j.exphem.2011.03.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 02/28/2011] [Accepted: 03/13/2011] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study evaluates usefulness of CXCR4 overexpression via retroviral transduction in adipose tissue-derived mesenchymal stem cells (AT-MSCs) as a strategy to increase their migration and engraftment ability. MATERIALS AND METHODS AT-MSCs were isolated from lipoaspirates from human healthy donors with liberase 3. Cells were transduced with retroviral vector carrying either CXCR4 or green fluorescent protein (GFP) complementary DNA, and neo-resistant colonies were selected and used in experiments. Chemotaxis, invasion through Matrigel, motor activity, gene expression, osteodifferentiation potential, and engraftment into bone marrow of nonobese diabetic/severe combined immunodeficient mice were analyzed for CXCR4-overexpressing cells and GFP-control cells. RESULTS Approximately 90% of retrovirus-transduced AT-MSCs expressed CXCR4 or GFP and maintained their ability to differentiate into osteocytes. CXCR4-transduced AT-MSCs displayed enhanced migration and higher invasiveness toward SDF-1 gradient. The upregulation of CXCR4 led to phosphorylation of mitogen-activated protein and AKT kinases and an increase in metalloproteinase expression after SDF-1 stimulation. The transplantation of CXCR4-transduced AT-MSCs into nonobese diabetic/severe combined immunodeficient mice led to increased engraftment into bone marrow in comparison to GFP-transduced AT-MSCs. CONCLUSIONS Adipose tissue is one of the alternative sources of MSCs to bone marrow. We showed that AT-MSCs overexpressing CXCR4 preserve their ability for osteodifferentiation. Enhanced migration and engraftment of the transduced AT-MSCs into bone marrow indicate the usefulness of this strategy in overcoming low engraftment of MSCs in clinical approaches of cellular therapies for bone disorders and can represent a powerful tool in regenerative medicine and gene therapies. Thus, these cells may be used as an alternative to bone marrow-derived MSCs.
Collapse
Affiliation(s)
- Sylwia Bobis-Wozowicz
- Department of Transplantation, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | | | | | | | | | | | | |
Collapse
|
18
|
Moreno R, Martínez I, Petriz J, Nadal M, Tintoré X, Gonzalez JR, Gratacós E, Aran JM. The β-Interferon Scaffold Attachment Region Confers High-Level Transgene Expression and Avoids Extinction by Epigenetic Modifications of Integrated Provirus in Adipose Tissue-Derived Human Mesenchymal Stem Cells. Tissue Eng Part C Methods 2011; 17:275-87. [DOI: 10.1089/ten.tec.2010.0383] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rafael Moreno
- Medical and Molecular Genetics Center, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Itziar Martínez
- Medical and Molecular Genetics Center, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Jordi Petriz
- Biomedical Research Unit, Institut de Recerca Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Marga Nadal
- Translational Research Laboratory, IDIBELL-Institut Català d'Oncologia, Barcelona, Spain
| | - Xavier Tintoré
- Plastic Surgery Service, Capio Hospital General de Catalunya, Barcelona, Spain
| | - Juan Ramón Gonzalez
- Center for Research in Environmental Epidemiology (CREAL) and CIBERESP, Barcelona, Spain
| | - Eduard Gratacós
- Maternal-Fetal Medicine Department, Hospital Clinic-IDIBAPS, University of Barcelona and CIBERER, Barcelona, Spain
| | - Josep M. Aran
- Medical and Molecular Genetics Center, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| |
Collapse
|
19
|
Belay E, Mátrai J, Acosta-Sanchez A, Ma L, Quattrocelli M, Mátés L, Sancho-Bru P, Geraerts M, Yan B, Vermeesch J, Rincón MY, Samara-Kuko E, Ivics Z, Verfaillie C, Sampaolesi M, Izsvák Z, Vandendriessche T, Chuah MKL. Novel hyperactive transposons for genetic modification of induced pluripotent and adult stem cells: a nonviral paradigm for coaxed differentiation. Stem Cells 2011; 28:1760-71. [PMID: 20715185 DOI: 10.1002/stem.501] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adult stem cells and induced pluripotent stem cells (iPS) hold great promise for regenerative medicine. The development of robust nonviral approaches for stem cell gene transfer would facilitate functional studies and potential clinical applications. We have previously generated hyperactive transposases derived from Sleeping Beauty, using an in vitro molecular evolution and selection paradigm. We now demonstrate that these hyperactive transposases resulted in superior gene transfer efficiencies and expression in mesenchymal and muscle stem/progenitor cells, consistent with higher expression levels of therapeutically relevant proteins including coagulation factor IX. Their differentiation potential and karyotype was not affected. Moreover, stable transposition could also be achieved in iPS, which retained their ability to differentiate along neuronal, cardiac, and hepatic lineages without causing cytogenetic abnormalities. Most importantly, transposon-mediated delivery of the myogenic PAX3 transcription factor into iPS coaxed their differentiation into MYOD(+) myogenic progenitors and multinucleated myofibers, suggesting that PAX3 may serve as a myogenic "molecular switch" in iPS. Hence, this hyperactive transposon system represents an attractive nonviral gene transfer platform with broad implications for regenerative medicine, cell and gene therapy.
Collapse
Affiliation(s)
- Eyayu Belay
- Flanders Institute for Biotechnology (VIB), Vesalius Research Center, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li M, Jayandharan GR, Li B, Ling C, Ma W, Srivastava A, Zhong L. High-efficiency transduction of fibroblasts and mesenchymal stem cells by tyrosine-mutant AAV2 vectors for their potential use in cellular therapy. Hum Gene Ther 2010; 21:1527-43. [PMID: 20507237 DOI: 10.1089/hum.2010.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adeno-associated virus 2 (AAV2) vectors transduce fibroblasts and mesenchymal stem cells (MSCs) inefficiently, which limits their potential widespread applicability in combinatorial gene and cell therapy. We have reported that AAV2 vectors fail to traffic efficiently to the nucleus in murine fibroblasts. We have also reported that site-directed mutagenesis of surface-exposed tyrosine residues on viral capsids leads to improved intracellular trafficking of the mutant vectors, and the transduction efficiency of the single tyrosine-mutant vectors is ∼10-fold higher in human cells. In the current studies, we evaluated the transduction efficiency of single as well as multiple tyrosine-mutant AAV2 vectors in murine fibroblasts. Our results indicate that the Y444F mutant vectors transduce these cells most efficiently among the seven single-mutant vectors, with >30-fold increase in transgene expression compared with the wild-type vectors. When the Y444F mutation is combined with additional mutations (Y500F and Y730F), the transduction efficiency of the triple-mutant vectors is increased by ∼130-fold and the viral intracellular trafficking is also significant improved. Similarly, the triple-mutant vectors are capable of transducing up to 80-90% of bone marrow-derived primary murine as well as human MSCs. Thus, high-efficiency transduction of fibroblasts with reprogramming genes to generate induced pluripotent stem cells, and the MSCs for delivering therapeutic genes, should now be feasible with the tyrosine-mutant AAV vectors.
Collapse
Affiliation(s)
- Mengxin Li
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Liang X, Su YP, Kong PY, Zeng DF, Chen XH, Peng XG, Zou ZM, Xu H. Human bone marrow mesenchymal stem cells expressing SDF-1 promote hematopoietic stem cell function of human mobilised peripheral blood CD34+cells in vivo and in vitro. Int J Radiat Biol 2010; 86:230-7. [DOI: 10.3109/09553000903422555] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Abstract
Human mesenchymal stem cells (MSCs) contribute to the regeneration of mesenchymal tissues, and are essential in providing support for the growth and differentiation of primitive hemopoietic cells within the bone marrow microenvironment. Techniques are now available to isolate human MSCs and manipulate their expansion in vitro under defined culture conditions without change of phenotype or loss of function. Mesenchymal stem cells have generated a great deal of interest in many clinical settings, including that of regenerative medicine, immune modulation and tissue engineering. Studies have already demonstrated the feasibility of transplanted MSCs providing crucial new cellular therapy. In this review, many aspects of the MSC will be discussed, with the main focus being on clinical studies that describe the potential of MSCs to treat patients with hematological malignancies who are undergoing chemotherapy and/or radiotherapy.
Collapse
Affiliation(s)
- Kevin C Kemp
- Centre for Research in Biomedicine, Faculty of Applied Sciences, University of the West of England, Bristol, UK
| | | | | |
Collapse
|
23
|
Directed engineering of a high-expression chimeric transgene as a strategy for gene therapy of hemophilia A. Mol Ther 2009; 17:1145-54. [PMID: 19259064 DOI: 10.1038/mt.2009.35] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human coagulation factor VIII (fVIII) is inefficiently biosynthesized in vitro and has proven difficult to express at therapeutic levels using available clinical gene-transfer technologies. Recently, we showed that a porcine and certain hybrid human/porcine fVIII transgenes demonstrate up to 100-fold greater expression than human fVIII. In this study, we extend these results to describe the use of a humanized, high-expression, hybrid human/porcine fVIII transgene that is 89% identical to human fVIII and was delivered by lentiviral vectors (LVs) to hematopoietic stem cells for gene therapy of hemophilia A. Recombinant human immunodeficiency virus-based vectors encoding the fVIII chimera efficiently transduced human embryonic kidney (HEK)-293T cells. Cells transduced with hybrid human/porcine fVIII encoding vectors expressed fVIII at levels 6- to 100-fold greater than cells transduced with vectors encoding human fVIII. Transplantation of transduced hematopoietic stem and progenitor cells into hemophilia A mice resulted in long-term fVIII expression at therapeutic levels despite <5% genetically modified blood mononuclear cells. Furthermore, the simian immunodeficiency virus (SIV) -derived vector effectively transduced the human hematopoietic cell lines K562, EU1, U.937, and Jurkat as well as the nonhematopoietic cell lines, HEK-293T and HeLa. All cell lines expressed hybrid human/porcine fVIII, albeit at varying levels with the K562 cells expressing the highest level of the hematopoietic cell lines. From these studies, we conclude that humanized high-expression hybrid fVIII transgenes can be utilized in gene therapy applications for hemophilia A to significantly increase fVIII expression levels compared to what has been previously achieved.
Collapse
|
24
|
Van Damme A, Thorrez L, Ma L, Vandenburgh H, Eyckmans J, Dell'Accio F, De Bari C, Luyten F, Lillicrap D, Collen D, VandenDriessche T, Chuah MKL. Efficient Lentiviral Transduction and Improved Engraftment of Human Bone Marrow Mesenchymal Cells. Stem Cells 2009; 24:896-907. [PMID: 16339997 DOI: 10.1634/stemcells.2003-0106] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human bone marrow (BM) mesenchymal stem/progenitor cells are potentially attractive targets for ex vivo gene therapy. The potential of lentiviral vectors for transducing BM mesenchymal cells was examined using a self-inactivating vector that expressed the green fluorescent protein (GFP) from an internal cytomegalovirus (CMV) promoter. This vector was compared with oncoretroviral vectors expressing GFP from the CMV promoter or a modified long-terminal repeat that had been optimized for long-term expression in stem cells. The percentage of GFP-positive cells was consistently higher following lentiviral versus oncoretroviral transduction, consistent with increased GFP mRNA levels and increased gene transfer efficiency measured by polymerase chain reaction and Southern blot analysis. In vitro GFP and FVIII expression lasted for several months post-transduction, although expression slowly declined. The transduced cells retained their stem/progenitor cell properties since they were still capable of differentiating along adipogenic and osteogenic lineages in vitro while maintaining high GFP and FVIII expression levels. Implantation of lentivirally transduced human BM mesenchymal cells using collagen scaffolds into immunodeficient mice resulted in efficient engraftment of gene-engineered cells and long-term transgene expression in vivo. These biocompatible BM mesenchymal implants represent a reversible, safe, and versatile protein delivery approach because they can be retrieved in the event of an unexpected adverse reaction or when expression of the protein of interest is no longer required. In conclusion, efficient gene delivery with lentiviral vectors in conjunction with the use of bioengineered reversible scaffolds improves the therapeutic prospects of this novel approach for gene therapy, protein delivery, or tissue engineering.
Collapse
Affiliation(s)
- An Van Damme
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Herestraat 49, Building O&N1, Leuven B-3000, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ricks DM, Kutner R, Zhang XY, Welsh DA, Reiser J. Optimized lentiviral transduction of mouse bone marrow-derived mesenchymal stem cells. Stem Cells Dev 2008; 17:441-50. [PMID: 18513160 DOI: 10.1089/scd.2007.0194] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted much attention as potential platforms for transgene delivery and cell-based therapy for human disease. MSCs have the capability to self-renew and retain multipotency after extensive expansion in vitro, making them attractive targets for ex vivo modification and autologous transplantation. Viral vectors, including lentiviral vectors, provide an efficient means for transgene delivery into human MSCs. In contrast, mouse MSCs have proven more difficult to transduce with lentiviral vectors than their human counterparts, and because many studies use mouse models of human disease, an improved method of transduction would facilitate studies using ex vivo-modified mouse MSCs. We have worked toward improving the production of human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors and optimizing transduction conditions for mouse MSCs using lentivirus vectors pseudotyped with the vesicular stomatitis virus G glycoprotein (VSV-G), the ecotropic murine leukemia virus envelope glycoprotein (MLV-E), and the glycoproteins derived from the Armstrong and WE strains of lymphocytic choriomeningitis virus (LCMV-Arm, LCMV-WE). Mouse MSCs were readily transduced following overnight incubation using a multiplicity of infection of at least 40. Alternatively, mouse MSCs in suspension were readily transduced after a 1-h exposure to lentiviral pseudotypes immediately following trypsin treatment or retrieval from storage in liquid nitrogen. LCMV-WE pseudotypes resulted in efficient transduction of mouse MSCs with less toxicity than VSV-G pseudotypes. In conclusion, our improved production and transduction conditions for lentiviral vectors resulted in efficient transduction of mouse MSCs, and these improvements should facilitate the application of such cells in the context of mouse models of human disease.
Collapse
Affiliation(s)
- David M Ricks
- Gene Therapy Program, Department of Medicine, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
26
|
Peng J, Wang H, Ma Y, Wu X, Chen F. Non-invasive viral gene transfer of factor IX to colonic epithelial cells in hemophilia B mice. J Thromb Haemost 2008; 6:1033-5. [PMID: 18182037 DOI: 10.1111/j.1538-7836.2007.02878.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Abstract
Mesenchymal stem cells (MSCs) can be derived from adult bone marrow, fat and several foetal tissues. In vitro, MSCs have the capacity to differentiate into multiple mesodermal and non-mesodermal cell lineages. Besides, MSCs possess immunosuppressive effects by modulating the immune function of the major cell populations involved in alloantigen recognition and elimination. The intriguing biology of MSCs makes them strong candidates for cell-based therapy against various human diseases. Type 1 diabetes is caused by a cell-mediated autoimmune destruction of pancreatic β-cells. While insulin replacement remains the cornerstone treatment for type 1 diabetes, the transplantation of pancreatic islets of Langerhans provides a cure for this disorder. And yet, islet transplantation is limited by the lack of donor pancreas. Generation of insulin-producing cells (IPCs) from MSCs represents an attractive alternative. On the one hand, MSCs from pancreas, bone marrow, adipose tissue, umbilical cord blood and cord tissue have the potential to differentiate into IPCs by genetic modification and/or defined culture conditions In vitro. On the other hand, MSCs are able to serve as a cellular vehicle for the expression of human insulin gene. Moreover, protein transduction technology could offer a novel approach for generating IPCs from stem cells including MSCs. In this review, we first summarize the current knowledge on the biological characterization of MSCs. Next, we consider MSCs as surrogate β-cell source for islet transplantation, and present some basic requirements for these replacement cells. Finally, MSCs-mediated therapeutic neovascularization in type 1 diabetes is discussed.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, PR China
| | | |
Collapse
|
28
|
Matsui H, Shibata M, Brown B, Labelle A, Hegadorn C, Andrews C, Hebbel RP, Galipeau J, Hough C, Lillicrap D. Ex Vivo Gene Therapy for Hemophilia A That Enhances Safe Delivery and Sustained In Vivo Factor VIII Expression from Lentivirally Engineered Endothelial Progenitors. Stem Cells 2007; 25:2660-9. [PMID: 17615271 DOI: 10.1634/stemcells.2006-0699] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Novel therapeutic strategies for hemophilia must be at least as effective as current treatments and demonstrate long-term safety. To date, several small clinical trials of hemophilia gene transfer have failed to show the promise of preclinical evaluations. Therefore, we wanted to develop and evaluate the feasibility of a novel ex vivo gene transfer strategy whereby cells derived from progenitor cells are engineered to express factor VIII (FVIII) and then implanted subcutaneously to act as a depot for FVIII expression. Circulating blood outgrowth endothelial cells (BOECs) were isolated from canine and murine blood and transduced with a lentiviral vector encoding the canine FVIII transgene. To enhance safety, these cells were implanted subcutaneously in a Matrigel scaffold, and the efficacy of this strategy was compared with i.v. delivery of engineered BOECs in nonhemophilic nonobese diabetic/severe combined immunodeficiency mice. Therapeutic levels of FVIII persisted for 15 weeks, and these levels of stable expression were extended to 20 weeks when the cytomegalovirus promoter was replaced with the thrombomodulin regulatory element. Subsequent studies in immunocompetent hemophilic mice, pretreated with tolerizing doses of FVIII or with transient immunosuppression, showed therapeutic FVIII expression for 27 weeks before the eventual return to baseline levels. This loss of transgene expression appears to be due to the disappearance of the implanted cells. The animals treated with either of the two tolerizing regimens did not develop anti-FVIII antibodies. Biodistribution analysis demonstrated that BOECs were retained inside the subcutaneous implants. These results indicate, for the first time, that genetically modified endothelial progenitor cells implanted in a subcutaneous scaffold can provide sustained therapeutic levels of FVIII and are a promising and safe treatment modality for hemophilia A. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Hideto Matsui
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Böcker W, Rossmann O, Docheva D, Malterer G, Mutschler W, Schieker M. Quantitative polymerase chain reaction as a reliable method to determine functional lentiviral titer afterex vivo gene transfer in human mesenchymal stem cells. J Gene Med 2007; 9:585-95. [PMID: 17510916 DOI: 10.1002/jgm.1049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human mesenchymal stem cells (hMSCs) are a promising target for ex vivo gene therapy and lentiviruses are excellent gene transfer vehicles in hMSCs since they achieve high transduction rates with long-term gene expression. Nevertheless, senescence of hMSCs may limit therapeutic applications due to time-consuming cell selection and viral titration. Here, we describe a fast and reliable method to determine functional lentiviral titer by quantitative polymerase chain reaction (qPCR) after highly efficient ex vivo gene transfer in hMSCs. METHODS Lentivirus production was tested with different types of packaging systems. Using p24 ELISA remaining viral particles were detected in the cell culture supernatant. The lentiviral gene transfer efficiency was quantified by FACS analysis. Lentiviral titers were determined by qPCR of expressed transgenes. RESULTS Third-generation self-inactivating vectors showed highly efficient gene transfer in hMSCs. No viral antigen was detected in the cell culture supernatant after four media changes, suggesting the absence of infectious particles after 4 days. We observed a linear correlation between virus dilution and level of transgene expression by qPCR analysis, therefore allowing viral titering by quantification of transgene expression. Finally, we demonstrated that transduced hMSCs retained their stem cell character by differentiation towards adipogenic, osteogenic and chondrogenic lineages. CONCLUSIONS Quantification of transgene copy numbers by qPCR is a fast and reliable method to determine functional lentiviral titer after ex vivo gene transfer in hMSCs.
Collapse
Affiliation(s)
- Wolfgang Böcker
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
30
|
High KA. The leak stops here: platelets as delivery vehicles for coagulation factors. J Clin Invest 2006; 116:1840-2. [PMID: 16823486 PMCID: PMC1483169 DOI: 10.1172/jci29193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gene therapy is an attractive approach for the treatment of hemophilia, as continuous expression of donated clotting factor VIII (FVIII) DNA would ensure clotting factor replacement at constant circulating levels rather than at the peaks and troughs that characterize the current protein infusion therapeutic approach. In this issue of the JCI, Shi et al. describe an interesting variant of a gene transfer approach for hemophilia (see the related article beginning on page 1974). They show that targeted expression of FVIII in megakaryocytes, with storage in the alpha-granules of platelets, has the advantage of delivering clotting factors directly to the site of an injury, where platelets accumulate in large numbers and undergo activation accompanied by release of granule contents. Earlier clinical experience with gene transfer into hematopoietic cells highlighted the potential safety risks of this approach, but an F8 transgene may represent a lower risk than transgenes for growth factors or their receptors.
Collapse
Affiliation(s)
- Katherine A High
- Howard Hughes Medical Institute, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
31
|
Abstract
Peripheral blood-derived multipotent mesenchymal stromal cells circulate in low number. They share, most although not all, of the surface markers with bone marrow-derived multipotent mesenchymal stromal cells, possess diverse and complicated gene expression characteristics, and are capable of differentiating along and even beyond mesenchymal lineages. Although their origin and physio-pathological function are still unclear, their presence in the adult peripheral blood might relate to some interesting but controversial subjects in the field of adult stem cell biology, such as systemic migration of bone marrow-derived multipotent mesenchymal stromal cells and the existence of common hematopoietic-mesenchymal precursors. In this review, current studies/knowledge about peripheral blood-derived multipotent mesenchymal stromal cells is summarized, and the above-mentioned topics are discussed.
Collapse
Affiliation(s)
- Qiling He
- Centre for Cancer Research and Cell Biology, Musculoskeletal Education and Research Unit, School of Biomedical Sciences, Queen's University of Belfast, Musgrave Park Hospital, Belfast, United Kingdom
| | | | | |
Collapse
|
32
|
Thorrez L, Vandenburgh H, Callewaert N, Mertens N, Shansky J, Wang L, Arnout J, Collen D, Chuah M, Vandendriessche T. Angiogenesis Enhances Factor IX Delivery and Persistence from Retrievable Human Bioengineered Muscle Implants. Mol Ther 2006; 14:442-51. [PMID: 16750937 DOI: 10.1016/j.ymthe.2006.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 02/27/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022] Open
Abstract
Human muscle progenitor cells transduced with lentiviral vectors secreted high levels of blood clotting factor IX (FIX). When bioengineered into postmitotic myofibers as human bioartificial muscles (HBAMs) and subcutaneously implanted into immunodeficient mice, they secreted FIX into the circulation for >3 months. The HBAM-derived FIX was biologically active, consistent with the cells' ability to conduct the necessary posttranslational modifications. These bioengineered muscle implants are retrievable, an inherent safety feature that distinguishes this "reversible" gene therapy approach from most other gene therapy strategies. When myofibers were bioengineered from human myoblasts expressing FIX and vascular endothelial growth factor, circulating FIX levels were increased and maintained long term within the therapeutic range, consistent with the generation of a vascular network around the HBAM. The present study implicates an important role for angiogenesis in the efficient delivery of therapeutic proteins using tissue engineered stem cell-based gene therapies.
Collapse
Affiliation(s)
- Lieven Thorrez
- Center for Transgene Technology and Gene Therapy, University of Leuven/Flanders Interuniversity Institute for Biotechnology, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim D, Cho SW, Her SJ, Yang JY, Kim SW, Kim SY, Shin CS. Retrovirus-Mediated Gene Transfer of Receptor Activator of Nuclear Factor-κB-Fc Prevents Bone Loss in Ovariectomized Mice. Stem Cells 2006; 24:1798-805. [PMID: 16556708 DOI: 10.1634/stemcells.2005-0480] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Postmenopausal osteoporosis is characterized by increased bone resorption due to estrogen deficiency. Receptor activator of nuclear factor-kappaB-Fc (RANK-Fc), a fusion protein that specifically blocks receptor activator of nuclear factor ligand binding to RANK, has been known to be efficient and well tolerated in animal models of osteoporosis. Here we show that cell-based gene therapy with RANK-Fc effectively prevented bone loss in ovariectomized (OVX) mice. Thirty-one young adult female C57Bl/6 mice were used, and repeated intraperitoneal injection of mesenchymal stem cells (MSCs) transduced with retrovirus was performed as follows: 1) Sham-operated mice (n = 8); 2) OVX mice treated with phosphate-buffered saline (OVX-PBS; n = 8); 3) OVX mice injected with MSCs transduced with control retrovirus (OVX-green fluorescent protein [GFP]; n = 7); and 4) OVX mice injected with MSCs transduced with RANK-Fc (OVX-RANK-Fc; n = 8). Cellular expression of RANK-Fc was confirmed by Western blot analysis of cell lysates and conditioned medium and also by enzyme-linked immunosorbent assay for the mice serum. Measurement of bone mineral density (BMD) by dual-energy x-ray absorptiometry (PIXImus) revealed that the OVX-RANK-Fc group gained significantly higher BMD than either the OVX-PBS group or OVX-GFP group after 8 weeks. The expression of GFP, which is coexpressed with RANK-Fc, was detected by polymerase chain reaction analysis of DNA isolated from femur and intra-abdominal fat, whereas no GFP signal was identified in liver, brain, heart, lung, or bone marrow aspirates. These suggest that expression of RANK-Fc by genetically modified MSCs may be a feasible option for the prevention of bone loss induced by ovariectomy.
Collapse
Affiliation(s)
- Dohee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Chongno-Gu, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L, La Russa VF. Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 2006; 5:1571-84. [PMID: 16318421 PMCID: PMC1371057 DOI: 10.1517/14712598.5.12.1571] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The intriguing biology of stem cells and their vast clinical potential is emerging rapidly for gene therapy. Bone marrow stem cells, including the pluripotent haematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and possibly the multipotent adherent progenitor cells (MAPCs), are being considered as potential targets for cell and gene therapy-based approaches against a variety of different diseases. The MSCs from bone marrow are a promising target population as they are capable of differentiating along multiple lineages and, at least in vitro, have significant expansion capability. The apparently high self-renewal potential makes them strong candidates for delivering genes and restoring organ systems function. However, the high proliferative potential of MSCs, now presumed to be self-renewal, may be more apparent than real. Although expanded MSCs have great proliferation and differentiation potential in vitro, there are limitations with the biology of these cells in vivo. So far, expanded MSCs have failed to induce durable therapeutic effects expected from a true self-renewing stem cell population. The loss of in vivo self-renewal may be due to the extensive expansion of MSCs in existing in vitro expansion systems, suggesting that the original stem cell population and/or properties may no longer exist. Rather, the expanded population may indeed be heterogeneous and represents several generations of different types of mesenchymal cell progeny that have retained a limited proliferation potential and responsiveness for terminal differentiation and maturation along mesenchymal and non-mesenchymal lineages. Novel technology that allows MSCs to maintain their stem cell function in vivo is critical for distinguishing the elusive stem cell from its progenitor cell populations. The ultimate dream is to use MSCs in various forms of cellular therapies, as well as genetic tools that can be used to better understand the mechanisms leading to repair and regeneration of damaged or diseased tissues and organs.
Collapse
Affiliation(s)
- Jakob Reiser
- LSU Health Sciences Center, Gene Therapy Program, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Knaän-Shanzer S, van de Watering MJM, van der Velde I, Gonçalves MAFV, Valerio D, de Vries AAF. Endowing human adenovirus serotype 5 vectors with fiber domains of species B greatly enhances gene transfer into human mesenchymal stem cells. Stem Cells 2006; 23:1598-607. [PMID: 16293583 DOI: 10.1634/stemcells.2005-0016] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bone marrow-derived human mesenchymal stem cells (hMSCs) lack the Coxsackie-adenovirus (Ad) receptor and thus are poorly transduced by vectors based on human Ad serotype 5 (Ad5). We investigated whether this problem could be overcome by using tropism-modified Ad5 vectors carrying fiber shaft domains and knobs of different human species B Ads (Ad5FBs). To allow quantitative analyses, these vectors coded for the enhanced green fluorescent protein (eGFP). Transgene expression analysis showed superior transduction of hMSCs by all Ad5FBs tested as compared with conventional Ad5 vectors. This was evident both by the frequency of eGFP-positive cells and by the eGFP level per cell. Highly efficient transduction of hMSCs, with limited variability between cells from different donors, was achieved with vectors displaying fiber domains of Ad serotypes 50, 35, and 16. These findings could not be reconciled with the very low levels of CD46, a recently identified receptor for species B Ads, on hMSCs, suggesting that AdFBs probably use receptors other than CD46 to enter these cells. We further observed that high eGFP levels were maintained in replication-restricted hMSCs for more than 30 days. In dividing hMSCs, foreign DNA delivered by Ad5FBs was expressed in a large fraction of the cells for approximately 3 weeks without compromising their replication capacity. Importantly, the transduced hMSCs retained their capacity to differentiate into adipocytes and osteoblasts when exposed to the appropriate stimuli.
Collapse
Affiliation(s)
- Shoshan Knaän-Shanzer
- Gene Therapy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
36
|
Gangadharan B, Parker ET, Ide LM, Spencer HT, Doering CB. High-level expression of porcine factor VIII from genetically modified bone marrow-derived stem cells. Blood 2006; 107:3859-64. [PMID: 16449528 DOI: 10.1182/blood-2005-12-4961] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Clinical success for gene therapy of hemophilia A will be judged by achievement of sustained, therapeutic levels of coagulation factor VIII (fVIII). Previous clinical trials have suffered from transient, subtherapeutic expression of human fVIII transgenes. Porcine fVIII contains sequence elements that enable more efficient biosynthesis than human fVIII due to enhanced posttranslational transit through the secretory pathway. In this study, we evaluated ex vivo retroviral gene transfer of a high-expression porcine fVIII transgene into bone marrow-derived stromal and hematopoietic stem/progenitor cells (MSCs and HSCs, respectively) and transplantation into genetically immunocompetent hemophilia A mice. Both MSCs and HSCs demonstrated high-level expression of porcine fVIII in vivo. However, following transplantation of gene-modified MSCs, fVIII activity levels rapidly returned to baseline due to the formation of anti-porcine fVIII-neutralizing antibodies. Alternatively, transplantation of HSCs into myeloablated and nonmyeloablated hemophilia A mice resulted in high-level fVIII expression despite low-level hematopoietic reconstitution by gene-modified cells. FVIII expression was sustained beyond 10 months, indicating that immunologic tolerance to porcine fVIII was achieved. Furthermore, transplantation of bone marrow from primary recipients into naive secondary recipients resulted in sustained, high-level fVIII expression demonstrating successful genetic modification and engraftment of HSCs.
Collapse
Affiliation(s)
- Bagirath Gangadharan
- Emory Children's Center, Rm 418, Emory University, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
37
|
Stagg J, Pommey S, Eliopoulos N, Galipeau J. Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 2005; 107:2570-7. [PMID: 16293599 DOI: 10.1182/blood-2005-07-2793] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several studies have demonstrated that marrow stromal cells (MSCs) can suppress allogeneic T-cell responses. However, the effect of MSCs on syngeneic immune responses has been largely overlooked. We describe here that primary MSCs derived from C57BL/6 mice behave as conditional antigen-presenting cells (APCs) and can induce antigen-specific protective immunity. Interferon gamma (IFNgamma)-treated C57BL/6 MSCs, but not unstimulated MSCs, cocultured with ovalbumin-specific major histocompatibility (MHC) class II-restricted hybridomas in the presence of soluble ovalbumin-induced significant production of interleukin-2 (IL-2) in an antigen dose-dependent manner (P < .005). IFNgamma-treated MSCs could further activate in vitro ovalbumin-specific primary transgenic CD4+ T cells. C57BL/6 MSCs, however, were unable to induce antigen cross-presentation via the MHC class I pathway. When syngeneic mice were immunized intraperitoneally with ovalbumin-pulsed IFNgamma-treated MSCs, they developed antigen-specific cytotoxic CD8+ T cells and became fully protected (10 of 10 mice) against ovalbumin-expressing E.G7 tumors. Human MSCs were also studied for antigen-presenting functions. IFNgamma-treated DR1-positive human MSCs, but not unstimulated human MSCs, induced significant production of IL-2 when cocultured with DR1-restricted influenza-specific humanized T-cell hybridomas in the presence of purified influenza matrix protein 1. Taken together, our data strongly suggest that MSCs behave as conditional APCs in syngeneic immune responses.
Collapse
Affiliation(s)
- John Stagg
- Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine Rd, Montreal, QC, Canada H3T 1E2
| | | | | | | |
Collapse
|
38
|
Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J, Cao W, Han C, Chen Y. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 2005; 80:267-74. [PMID: 16214129 DOI: 10.1016/j.yexmp.2005.07.004] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 07/18/2005] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical application because of their potential use in regenerative medicine and tissue engineering. However, the therapeutic application of MSCs still remain limited unless the favorable effect of MSCs for tumor growth in vivo and the long-term safety of the clinical applications of MSCs are better understood. In this study, MSCs derived from fetal bone marrow (FMSCs) and adult MSCs (AMSCs) alone or FMSCs and AMSCs with tumor cell line (F6 or SW480) together were transplanted subcutaneously into BALB/c-nu/nu mice to observe the outgrowth of tumor, and the characteristics of tumor cells were investigated by pathological and immunohistochemical methods, flow cytometry and real-time quantitative PCR. The results showed that both FMSCs and AMSCs could favor tumor growth in vivo. The pathologic examination revealed that tumor tissues had rich vessel distribution, extensive necrosis and invasion surrounding normal tissues, such as muscular tissue and subcutaneous tissue. In the immunohistochemical examination, tumor cells mixed with MSCs transplanted subcutaneously exhibited elevated capability of proliferation, rich angiogenesis in tumor tissues and highly metastatic ability. To understand whether MSCs affected the general properties of the tumor cells in vivo, the expression of some surface antigens and Bmi-1 gene of tumor tissue cells was detected in this study. The results indicated that these parameters were not affected after the interaction of MSCs with tumor cells in vivo. These findings suggested that MSCs could favor tumor growth in vivo. It is necessary to carry out a study for assurance of the long-term safety before MSCs were used as a therapy tools in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Wei Zhu
- School of Medical Technology, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, Mortier C, Bron D, Lagneaux L. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 2005; 23:1105-12. [PMID: 15955825 DOI: 10.1634/stemcells.2004-0330] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we used a common procedure to assess the potential of mobilized peripheral blood (MPB) and umbilical cord blood (UCB) as sources of mesenchymal stem cells (MSCs) in comparison with bone marrow (BM). We tested three methods: plastic adhesion supplemented with 5% of BM-MSC conditioned medium, unsupplemented plastic adhesion, and selection of CD133-positive cells. MSCs derived from MPB or UCB are identified by their positive expression of mesenchymal (SH2, SH3) and negative expression of hematopoietic markers (CD14, CD34, CD45, HLA-DR). We observed that the CD133-positive cell fraction contains more MSCs with high proliferative potential. Placed in appropriate conditions, these cells proved their capacity to differentiate into adipocytes, osteocytes, chondrocytes, and neuronal/glial cells. MPB- and UCB-MSCs express Oct4, a transcriptional binding factor present in undifferentiated cells with high proliferative capacity. The selection of CD133-positive cells enabled us to obtain a homogeneous population of MSCs from UCB and MPB. These sources may have a major clinical importance thanks to their easy accessibility.
Collapse
Affiliation(s)
- Tatiana Tondreau
- Jules Bordet Institute, 121 Bd de Waterloo, 1000 Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Cancer is a difficult target for any therapeutic strategy; therefore, there is a continuous search for new therapeutic modalities, for application either alone or in combination. In this regard, gene-based therapy is a new approach that offers hope of improved control of tumors. Intensive research to apply gene therapy for cancer treatment has led to identification of the most important technical and theoretical barriers that need to be overcome for clinical success. One of the central unresolved challenges remains the issue of specific and efficient delivery of genes to target cells or tissues, emphasizing the importance of the gene carrier. Along with different viral and non-viral vector systems, mammalian cells have also been considered as vehicles for delivery of anti-cancer therapeutics. The cell-based delivery approach was introduced as the first attempt to apply gene therapy to cancer treatment, and in general, has followed most of the ups and downs of gene therapy applications, progressing alongside new knowledge gained in this field. As a result, significant progress has been made in some aspects of the cell-based approach, while the development of other essential issues is only just gaining speed. It appears that the initial phase of development of cell-based protocols - the achievement of efficient ex vivo cell loading with therapeutics - has largely been fulfilled. However, the desired efficacy of cell-based strategies in general has not yet been reached, and specificity of tumor homing needs to be improved considerably. There is hope that advances in related scientific fields will promote the utilization of cells as powerful and versatile vehicles for cancer gene therapy.
Collapse
Affiliation(s)
- Larisa Pereboeva
- Division of Human Gene Therapy, Department of Medicine, The Gene Therapy Center, BMRII-572, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL 35294, USA.
| | | |
Collapse
|
41
|
Moayeri M, Ramezani A, Morgan RA, Hawley TS, Hawley RG. Sustained phenotypic correction of hemophilia a mice following oncoretroviral-mediated expression of a bioengineered human factor VIII gene in long-term hematopoietic repopulating cells. Mol Ther 2005; 10:892-902. [PMID: 15509507 DOI: 10.1016/j.ymthe.2004.08.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 08/04/2004] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are an attractive target cell population for hemophilia A gene therapy because of their capacity to regenerate the hematolymphoid system permanently following transplantation. Here we transplanted bone marrow (BM) cells transduced with a splicing-optimized MSCV oncoretroviral vector expressing a secretion-improved human factor VIII gene into immunocompromised hemophilic mice that had received a reduced dose conditioning regimen. An enhanced green fluorescent protein (EGFP) reporter gene linked to an encephalomyocarditis virus internal ribosome entry site was incorporated into the vector to allow preselection of transduced cells and facile evaluation of engraftment. Sustained expression of EGFP was demonstrated in the peripheral blood, and therapeutic levels of factor VIII were detected in the plasma of the majority of the recipients for the duration of the observation period (up to 22 weeks). Coordinate expression of factor VIII and EGFP (up to 19 weeks) was transferred to secondary BM transplant recipients, indicating that long-term repopulating HSCs had been successfully gene modified. Notably, the hemophilic phenotype of all treated mice was corrected, thus demonstrating the potential of HSC-directed oncoretroviral-mediated factor VIII gene transfer as a curative therapeutic strategy for hemophilia A.
Collapse
Affiliation(s)
- Morvarid Moayeri
- Department of Anatomy and Cell Biology, Flow Cytometry Core Facility, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
42
|
Chan J, O'Donoghue K, de la Fuente J, Roberts IA, Kumar S, Morgan JE, Fisk NM. Human Fetal Mesenchymal Stem Cells as Vehicles for Gene Delivery. Stem Cells 2005; 23:93-102. [PMID: 15625126 DOI: 10.1634/stemcells.2004-0138] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
First-trimester fetal blood contains a readily expandable population of stem cells, human fetal mesenchymal stem cells (hfMSCs), which might be exploited for autologous intrauterine gene therapy. We investigated the self-renewal and differentiation of hfMSCs after transduction with onco-retroviral and lentiviral vectors. After transduction with either a MoMuLV retrovirus or an HIV-1-based lentiviral vector carrying the ss-galactosidase and green fluorescent reporter gene, respectively, transgene expression, self-renewal, and differentiation capabilities were assessed 2 and 14 weeks later. Transduction with the lentiviral vector resulted in higher efficiencies than with the MoMuLV-based vector (mean, 97.7 +/- 1.4% versus 80.2 +/- 5.4%; p = .02). Transgene expression was maintained with lentiviral-transduced cells (94.6 +/- 2.6%) but decreased over 14 weeks in culture with onco-retroviral-transduced cells (48.3 +/- 3.9%). The self-renewal capability of these cells and their ability to undergo osteogenic, adipogenic, and myogenic differentiation was unimpaired after transduction with either vector. Finally, clonal expansion of lentivirally modified cells was expanded over 20 population doublings with maintenance of multiline age differentiation capacity. These results suggest that hfMSCs may be suitable targets for ex vivo genetic manipulation with onco-retroviral or lentiviral vectors without affecting their stem cell properties.
Collapse
Affiliation(s)
- Jerry Chan
- Institute of Reproductive and Developmental Biology & Queen Charlote's and Chelsea Hospital, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | | | | | |
Collapse
|
43
|
Ho YC, Chung YC, Hwang SM, Wang KC, Hu YC. Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells. J Gene Med 2005; 7:860-8. [PMID: 15712348 DOI: 10.1002/jgm.729] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have drawn considerable attention as vehicles for cell- or gene-based therapies, yet various problems still exist for current gene delivery vectors. On the other hand, baculovirus has emerged as a novel gene therapy vector, but its transduction of stem cells has not been reported. METHODS A recombinant baculovirus expressing the enhanced green fluorescent protein (EGFP) was constructed to transduce human MSCs derived from umbilical cord blood (uMSCs) or bone marrow (bMSCs). RESULTS In this study, we demonstrated for the first time that human uMSCs or bMSCs could be transduced by baculovirus with high efficiencies (up to approximately 72.8% and 41.1%, respectively) and significantly elevated transgene (enhanced green fluorescent protein, EGFP) expression upon incubation with unconcentrated virus and phosphate-buffered saline for 4 h at 25 degrees C. The transduction efficiency into bMSCs could be further increased to approximately 72.2% by lowering the cell density. The improved transgene expression was partly attributed to the enhanced virus uptake upon transduction, as determined by quantitative real-time polymerase chain reaction (Q-PCR). MSC growth was not obstructed by baculovirus transduction itself, but was somewhat hampered by EGFP expression. Nonetheless, the baculovirus-transduced cells remained capable of differentiating into adipogenic lineage. The adipogenic progenitors appeared more permissive to baculovirus transduction than the undifferentiated bMSCs, thus allowing for the maintenance and enhancement of transgene expression by repeated transduction after subculture. CONCLUSIONS These findings implicate the potential applications of baculovirus as an alternative vector to genetically modify MSCs for ex vivo gene therapy.
Collapse
Affiliation(s)
- Yi-Chen Ho
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | | | | | |
Collapse
|
44
|
Stagg J, Lejeune L, Paquin A, Galipeau J. Marrow Stromal Cells for Interleukin-2 Delivery in Cancer Immunotherapy. Hum Gene Ther 2004; 15:597-608. [PMID: 15212718 DOI: 10.1089/104303404323142042] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Marrow stromal cells (MSCs) can be easily gene-modified and clonally expanded making them ideal candidates for transgenic cell therapy. However, recent reports suggest that MSCs possess immunosuppressive effects, which may limit their clinical applications. We investigated whether interleukin (IL)-2 gene-modified MSCs can be used to mount an effective immune response against the poorly immunogenic B16 melanoma model. We first show that primary MSCs mixed with B16 cells and injected subcutaneously in syngeneic recipients do not affect tumor growth. On the other hand, IL-2-producing MSCs mixed with B16 cells significantly delayed tumor growth in an IL-2 dose-dependent manner. Furthermore, we observed that matrix-embedded IL-2-producing MSCs injected in the vicinity of preestablished B16 tumors led to absence of tumor growth in 90% of treated mice (p < 0.001). We demonstrated that tumor-bearing mice treated with IL-2-producing MSCs developed CD8-mediated tumor-specific immunity and significantly delayed tumor growth of a B16 cell challenge (p < 0.05). In addition, treatment of cd8-/-, cd4-/- and beige mice revealed that CD8+ and natural killer (NK) cells, but not CD4+ cells, were required to achieve antitumor effect. In conclusion, MSCs can be exploited to deliver IL-2 and generate effective immune responses against melanoma in mice with normal immune systems.
Collapse
Affiliation(s)
- John Stagg
- Lady Davis Institute for Medical Research, McGill University, 3755 Côte Ste-Catherine Road, Montreal, Quebec, Canada H3T 1E2
| | | | | | | |
Collapse
|
45
|
Abdallah BM, Jensen CH, Gutierrez G, Leslie RGQ, Jensen TG, Kassem M. Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1. J Bone Miner Res 2004; 19:841-52. [PMID: 15068508 DOI: 10.1359/jbmr.040118] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 12/08/2003] [Accepted: 01/16/2004] [Indexed: 12/20/2022]
Abstract
UNLABELLED Dlk-1/Pref-1 was identified as a novel regulator of human skeletal stem cell differentiation. Dlk1/Pref-1 is expressed in bone and cultured osteoblasts, and its constitutive overexpression led to inhibition of osteoblast and adipocyte differentiation of human marrow stromal cells. INTRODUCTION Molecular control of human mesenchymal stem cell (hMSC) differentiation into osteoblasts and adipocytes is not known. In this study, we examined the role of delta-like 1/preadipocyte factor-1 (Dlk1/Pref-1) in regulating the differentiation of hMSCs. MATERIALS AND METHODS As a model for hMSCs, we have stably transduced telomerase-immortalized hMSC (hMSC-TERT) with the full length of human Dlk1/Pref-1 cDNA and tested its effect on hMSC growth and differentiation into osteoblasts or adipocytes as assessed by cytochemical staining, FACS analysis, and real time PCR. Ex vivo calvaria organ cultures assay was used to confirm the in vitro effect of Dlk/Pref-1 on bone formation. RESULTS Dlk1/Pref-1 was found to be expressed in fetal and adult bone, hMSCs, and some osteoblastic cell lines. A retroviral vector containing the human Dlk1/Pref-1 cDNA was used to create a cell line (hMSC-dlk1) expressing high levels of Dlk1/Pref-1 protein. Overexpression of Dlk1/Pref-1 did not affect the proliferation rate of hMSC, but the ability to form mature adipocytes, mineralized matrix in vitro, and new bone formation in neonatal murine calvariae organ cultures was reduced. These effects were associated with inhibition of gene expression markers of late stages of adipocyte (adipocyte fatty acid-binding protein [aP2], peroxisome proliferator-activated receptor-gamma2 [PPARgamma2], and adiponectin [APM1]) and osteoblast differentiation (alkaline phosphatase [ALP], collagen type I [Col1], and osteocalcin [OC]). Lineage commitment markers for adipocytes (adipocyte determination and differentiation factor -1 [ADD1]) and osteoblasts (core binding factor/runt-related binding factor 2 [Cbfa1/Runx2]) were not affected. CONCLUSION During hMSC differentiation, Dlk1/Pref-1 maintains the size of the bipotential progenitor cell pool by inhibiting the formation of mature osteoblasts and adipocytes.
Collapse
Affiliation(s)
- Basem M Abdallah
- Department of Endocrinology, Univerity Hospital of Odense, Odense, Denmark
| | | | | | | | | | | |
Collapse
|
46
|
Vanderbyl S, MacDonald GN, Sidhu S, Gung L, Telenius A, Perez C, Perkins E. Transfer and Stable Transgene Expression of a Mammalian Artificial Chromosome into Bone Marrow-Derived Human Mesenchymal Stem Cells. Stem Cells 2004; 22:324-33. [PMID: 15153609 DOI: 10.1634/stemcells.22-3-324] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian artificial chromosomes (ACEs) transferred to autologous adult stem cells (SCs) provide a novel strategy for the ex vivo gene therapy of a variety of clinical indications. Unlike retroviral vectors, ACEs are stably maintained, autonomous, and nonintegrating. In this report we assessed the delivery efficiency of ACEs and evaluated the subsequent differentiation potential of ACE-transfected bone marrow-derived human mesenchymal stem cells (hMSCs). For this, an ACE carrying multiple copies of the red fluorescent protein (RFP) reporter gene was transferred under optimized conditions into hMSCs using standard cationic transfection reagents. RFP expression was detectable in 11% of the cells 4-5 days post-transfection. The RFP-expressing hMSCs were enriched by high-speed flow cytometry and maintained their potential to differentiate along adipogenic or osteogenic lineages. Fluorescent in situ hybridization and fluorescent microscopy demonstrated that the ACEs were stably maintained as single chromosomes and expressed the RFP transgenes in both differentiated cultures. These findings demonstrate the potential utility of ACEs for human adult SC ex vivo gene therapy.
Collapse
Affiliation(s)
- S Vanderbyl
- Chromos Molecular Systems Inc., Burnaby, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhang XY, La Russa VF, Reiser J. Transduction of bone-marrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J Virol 2004; 78:1219-29. [PMID: 14722277 PMCID: PMC321376 DOI: 10.1128/jvi.78.3.1219-1229.2004] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bone-marrow-derived mesenchymal stem cells (MSCs) have attracted considerable attention as tools for the systemic delivery of therapeutic proteins in vivo, and the ability to efficiently transfer genes of interest into such cells would create a number of therapeutic opportunities. We have designed and tested a series of human immunodeficiency virus type 1 (HIV-1)-based vectors and vectors based on the oncogenic murine stem cell virus to deliver and express transgenes in human MSCs. These vectors were pseudotyped with either the vesicular stomatitis virus G (VSV-G) glycoprotein (GP) or the feline endogenous virus RD114 envelope GP. Transduction efficiencies and transgene expression levels in MSCs were analyzed by quantitative flow cytometry and quantitative real-time PCR. While transduction efficiencies with virus particles pseudotyped with the VSV-G GP were found to be high, RD114 pseudotypes revealed transduction efficiencies that were 1 to 2 orders of magnitude below those observed with VSV-G pseudotypes. However, chimeric RD114 GPs, with the transmembrane and extracellular domains fused to the cytoplasmic domain derived from the amphotropic Moloney murine leukemia virus 4070A GP, revealed about 15-fold higher titers relative to the unmodified RD114 GP. The transduction efficiencies in human MSCs of HIV-1-based vectors pseudotyped with the chimeric RD114 GP were similar to those obtained with HIV-1 vectors pseudotyped with the VSV-G GP. Our results also indicate that RD114 pseudotypes were less toxic than VSV-G pseudotypes in human MSC progenitor assays. Taken together, these results suggest that lentivirus pseudotypes bearing alternative Env GPs provide efficient tools for ex vivo modification of human MSCs.
Collapse
Affiliation(s)
- Xian-Yang Zhang
- Gene Therapy Program, Department of Medicine, LSU Health Sciences Center, Tulane Cancer Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
48
|
Pereboeva L, Komarova S, Mikheeva G, Krasnykh V, Curiel DT. Approaches to utilize mesenchymal progenitor cells as cellular vehicles. Stem Cells 2004; 21:389-404. [PMID: 12832693 DOI: 10.1634/stemcells.21-4-389] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mammalian cells represent a novel vector approach for gene delivery that overcomes major drawbacks of viral and nonviral vectors and couples cell therapy with gene delivery. A variety of cell types have been tested in this regard, confirming that the ideal cellular vector system for ex vivo gene therapy has to comply with stringent criteria and is yet to be found. Several properties of mesenchymal progenitor cells (MPCs), such as easy access and simple isolation and propagation procedures, make these cells attractive candidates as cellular vehicles. In the current work, we evaluated the potential utility of MPCs as cellular vectors with the intent to use them in the cancer therapy context. When conventional adenoviral (Ad) vectors were used for MPC transduction, the highest transduction efficiency of MPCs was 40%. We demonstrated that Ad primary-binding receptors were poorly expressed on MPCs, while the secondary Ad receptors and integrins presented in sufficient amounts. By employing Ad vectors with incorporated integrin-binding motifs (Ad5lucRGD), MPC transduction was augmented tenfold, achieving efficient genetic loading of MPCs with reporter and anticancer genes. MPCs expressing thymidine kinase were able to exert a bystander killing effect on the cancer cell line SKOV3ip1 in vitro. In addition, we found that MPCs were able to support Ad replication, and thus can be used as cell vectors to deliver oncolytic viruses. Our results show that MPCs can foster expression of suicide genes or support replication of adenoviruses as potential anticancer therapeutic payloads. These findings are consistent with the concept that MPCs possess key properties that ensure their employment as cellular vehicles and can be used to deliver either therapeutic genes or viruses to tumor sites.
Collapse
Affiliation(s)
- L Pereboeva
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, 35294, USA.
| | | | | | | | | |
Collapse
|
49
|
Abstract
The potential for gene therapy to cure a wide range of diseases has lead to high expectations and a great increase in research efforts in this area. At present, viral vectors are the most efficient means of delivering a corrective gene into human cells. While a number of different viral vectors are under development, retroviral vectors are currently the most common type used in clinical trials today. However, the production of retroviral vectors for gene therapy applications faces a number of challenges. Of primary concern is the low titre of vector stocks produced by packaging cells in culture and the inherent instability of retroviral vector activity. The problems facing large-scale retroviral vector production are outlined in this review and the research efforts by a number of groups who have attempted to optimise production methods are presented.
Collapse
Affiliation(s)
- Sally McTaggart
- Animal Cell Technology Group, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
50
|
Kikuchi J, Mimuro J, Ogata K, Tabata T, Ueda Y, Ishiwata A, Kimura K, Kimura K, Takano K, Madoiwa S, Mizukami H, Hanazono Y, Kume A, Hasegawa M, Ozawa K, Sakata Y. Sustained transgene expression by human cord blood derived CD34+ cells transduced with simian immunodeficiency virus agmTYO1-based vectors carrying the human coagulation factor VIII gene in NOD/SCID mice. J Gene Med 2004; 6:1049-60. [PMID: 15386735 DOI: 10.1002/jgm.609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Gene therapy is being studied as the next generation therapy for hemophilia and several clinical trials have been carried out, albeit with limited success. To explore the possibility of utilizing autologous bone marrow transplantation of genetically modified hematopoietic stem cells for hemophilia gene therapy, we investigated the efficacy of genetically engineered CD34+ cell transplantation to NOD/SCID mice for expression of human factor VIII (hFVIII). METHODS CD34+ cells were transduced with a simian immunodeficiency virus agmTYO1 (SIV)-based lentiviral vector carrying the enhanced green fluorescent protein (eGFP) gene (SIVeGFP) or the hFVIII gene (SIVhFVIII). CD34+ cells transduced with SIV vectors were transplanted to NOD/SCID mice. Engraftment of transduced CD34+ cells and expression of transgenes were studied. RESULTS We could efficiently transduce CD34+ cells using the SIVeGFP vector in a dose-dependent manner, reaching a maximum (99.6 +/- 0.1%) at MOI of 5 x 10(3) vector genome/cell. After transducing CD34+ cells with SIVhFVIII, hFVIII was produced (274.3 +/- 20.1 ng) from 10(6) CD34+ cells during 24 h in vitro incubation. Transplantation of SIVhFVIII-transduced CD34+ cells (5-10 x 10(5)) at a multiplicity of infection (MOI) of 50 vector genome/cell into NOD/SCID mice resulted in successful engraftment of CD34+ cells and production of hFVIII (minimum 1.2 +/- 0.9 ng/mL, maximum 3.6 +/- 0.8 ng/mL) for at least 60 days in vivo. Transcripts of the hFVIII gene and the hFVIII antigen were also detected in the murine bone marrow cells. CONCLUSIONS Transplantation of ex vivo transduced hematopoietic stem cells by non-pathogenic SIVhFVIII without exposure of subjects to viral vectors is safe and potentially applicable for gene therapy of hemophilia A patients.
Collapse
Affiliation(s)
- Jiro Kikuchi
- Division of Cell and Molecular Medicine, The Center for Molecular Medicine, Jichi Medical School, Tochigi-ken 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|