1
|
Nandha SR, Checker R, Patwardhan RS, Sharma D, Sandur SK. Anti-oxidants as therapeutic agents for oxidative stress associated pathologies: future challenges and opportunities. Free Radic Res 2025; 59:61-85. [PMID: 39764687 DOI: 10.1080/10715762.2025.2450504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects. However, these trials failed to establish anti-oxidants as therapeutic agents due to lack of efficacy. This is attributed to the fact that living systems are under dynamic redox control wherein their redox behavior is compartmentalized and simple aggregation of redox couples, distributed throughout the system, is of miniscule importance while determining their overall redox state. Further, free radical metabolism is intriguingly complex as they play plural roles segregated in a spatio-temporal manner. Depending on quality, quantity and site of generation, free radicals exhibit beneficial or harmful effects. Use of nonspecific, non-targeted, general ROS scavengers lead to systemic elimination of all types of ROS and interferes in cellular signaling. Failure of anti-oxidants to act as therapeutic agents lies in this oversimplification of extremely dynamic cellular redox environment as a static and non-compartmentalized redox state. Rather than generalizing the term "oxidative stress" if we can identify the "type of oxidative stress" in different types of diseases, a targeted and more specific anti-oxidant therapy may be developed. In this review, we discuss the concept of redox dynamics, role and type of oxidative stress in disease conditions, and current status of anti-oxidants as therapeutic agents. Further, we probe the possibility of developing novel, targeted and efficacious anti-oxidants with drug-like properties.
Collapse
Affiliation(s)
- Shivani R Nandha
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Mooradian AD. Cardiomodulatory Effects of Cardiometabolic and Antihyperglycemic Medications: The Roles of Oxidative and Endoplasmic Reticulum Stress. Am J Cardiovasc Drugs 2025; 25:37-46. [PMID: 39392561 DOI: 10.1007/s40256-024-00685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Uncontrolled hyperglycemia in people with diabetes is an established risk of premature cardiovascular disease. Repeated hypoglycemic events are also associated with increased cardiovascular mortality. Both hyperglycemia and hypoglycemia induce cellular stress, notably endoplasmic reticulum (ER) stress, a known promoter of cardiovascular disease. Contemporary anti-hyperglycemic drugs such as glucagon-like peptide 1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 (SGLT-2) inhibitors simultaneously inhibit oxidative stress and ER stress in human coronary artery endothelial cells. Similarly, other known cardioprotective drugs, such as statins and inhibitors of the renin-angiotensin-aldosterone system (RAAS) share a common pleiotropic effect of reducing cellular stress. Antioxidants reduce oxidative stress but may aggravate ER stress. This dichotomy of antioxidant effects may underline the unfavorable outcomes of clinical trials with antioxidant vitamin use. The aim of this review is to highlight the potential role of cellular stress reduction in cardioprotective effects of contemporary diabetes drugs. Future clinical trials are needed to test the hypothesis that cellular stress is the fundamental culprit in cardiovascular disease.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, 653-1 West 8th Street, Jacksonville, FL, 32209, USA.
| |
Collapse
|
3
|
Schanne G, Demignot S, Policar C, Delsuc N. Cellular evaluation of superoxide dismutase mimics as catalytic drugs: Challenges and opportunities. Coord Chem Rev 2024; 514:215906. [DOI: 10.1016/j.ccr.2024.215906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Veszelyi K, Czegle I, Varga V, Németh CE, Besztercei B, Margittai É. Subcellular Localization of Thioredoxin/Thioredoxin Reductase System-A Missing Link in Endoplasmic Reticulum Redox Balance. Int J Mol Sci 2024; 25:6647. [PMID: 38928353 PMCID: PMC11204020 DOI: 10.3390/ijms25126647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The lumen of the endoplasmic reticulum (ER) is usually considered an oxidative environment; however, oxidized thiol-disulfides and reduced pyridine nucleotides occur there parallelly, indicating that the ER lumen lacks components which connect the two systems. Here, we investigated the luminal presence of the thioredoxin (Trx)/thioredoxin reductase (TrxR) proteins, capable of linking the protein thiol and pyridine nucleotide pools in different compartments. It was shown that specific activity of TrxR in the ER is undetectable, whereas higher activities were measured in the cytoplasm and mitochondria. None of the Trx/TrxR isoforms were expressed in the ER by Western blot analysis. Co-localization studies of various isoforms of Trx and TrxR with ER marker Grp94 by immunofluorescent analysis further confirmed their absence from the lumen. The probability of luminal localization of each isoform was also predicted to be very low by several in silico analysis tools. ER-targeted transient transfection of HeLa cells with Trx1 and TrxR1 significantly decreased cell viability and induced apoptotic cell death. In conclusion, the absence of this electron transfer chain may explain the uncoupling of the redox systems in the ER lumen, allowing parallel presence of a reduced pyridine nucleotide and a probably oxidized protein pool necessary for cellular viability.
Collapse
Affiliation(s)
- Krisztina Veszelyi
- Institute of Translational Medicine, Semmelweis University, H-1085 Budapest, Hungary; (K.V.); (V.V.); (B.B.)
| | - Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Viola Varga
- Institute of Translational Medicine, Semmelweis University, H-1085 Budapest, Hungary; (K.V.); (V.V.); (B.B.)
| | - Csilla Emese Németh
- Institute of Biochemistry and Molecular Biology, Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Balázs Besztercei
- Institute of Translational Medicine, Semmelweis University, H-1085 Budapest, Hungary; (K.V.); (V.V.); (B.B.)
| | - Éva Margittai
- Institute of Translational Medicine, Semmelweis University, H-1085 Budapest, Hungary; (K.V.); (V.V.); (B.B.)
| |
Collapse
|
5
|
Mooradian AD, Haas MJ. Endoplasmic reticulum stress: A common pharmacologic target of cardioprotective drugs. Eur J Pharmacol 2022; 931:175221. [PMID: 35998751 DOI: 10.1016/j.ejphar.2022.175221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Despite the advances made in cardiovascular disease prevention, there is still substantial residual risk of adverse cardiovascular events. Contemporary evidence suggests that additional reduction in cardiovascular disease risk can be achieved through amelioration of cellular stresses, notably inflammatory stress and endoplasmic reticulum (ER) stress. Only two clinical trials with anti-inflammatory agents have supported the role of inflammatory stress in cardiovascular risk. However, there are no clinical trials with selective ER stress modifiers to test the hypothesis that reducing ER stress can reduce cardiovascular disease. Nevertheless, the ER stress hypothesis is supported by recent pharmacologic studies revealing that currently available cardioprotective drugs share a common property of reducing ER stress. These drug classes include angiotensin converting enzyme inhibitors, angiotensin II receptor blockers, mineralocorticoid receptor blockers, β-adrenergic receptor blockers, statins, and select antiglycemic agents namely, metformin, glucagon like peptide 1 receptor agonists and sodium glucose cotransporter 2 inhibitors. Although these drugs ameliorate common risk factors for cardiovascular disease, such as hypertension, hypercholesterolemia and hyperglycemia, their cardioprotective effects may be partially independent of their principal effects on cardiovascular risk factors. Clinical trials with selective ER stress modifiers are needed to test the hypothesis that reducing ER stress can reduce cardiovascular disease.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL, USA.
| | - Michael J Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida College of Medicine, Jacksonville, FL, USA
| |
Collapse
|
6
|
Nascè A, Gariani K, Jornayvaz FR, Szanto I. NADPH Oxidases Connecting Fatty Liver Disease, Insulin Resistance and Type 2 Diabetes: Current Knowledge and Therapeutic Outlook. Antioxidants (Basel) 2022; 11:antiox11061131. [PMID: 35740032 PMCID: PMC9219746 DOI: 10.3390/antiox11061131] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by ectopic fat accumulation in hepatocytes, is closely linked to insulin resistance and is the most frequent complication of type 2 diabetes mellitus (T2DM). One of the features connecting NAFLD, insulin resistance and T2DM is cellular oxidative stress. Oxidative stress refers to a redox imbalance due to an inequity between the capacity of production and the elimination of reactive oxygen species (ROS). One of the major cellular ROS sources is NADPH oxidase enzymes (NOX-es). In physiological conditions, NOX-es produce ROS purposefully in a timely and spatially regulated manner and are crucial regulators of various cellular events linked to metabolism, receptor signal transmission, proliferation and apoptosis. In contrast, dysregulated NOX-derived ROS production is related to the onset of diverse pathologies. This review provides a synopsis of current knowledge concerning NOX enzymes as connective elements between NAFLD, insulin resistance and T2DM and weighs their potential relevance as pharmacological targets to alleviate fatty liver disease.
Collapse
Affiliation(s)
- Alberto Nascè
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - François R. Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: (F.R.J.); (I.S.)
| | - Ildiko Szanto
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
- Correspondence: (F.R.J.); (I.S.)
| |
Collapse
|
7
|
Passos E, Pereira C, Gonçalves IO, Faria A, Ascensão A, Monteiro R, Magalhães J, Martins MJ. Physical exercise positively modulates nonalcoholic steatohepatitis-related hepatic endoplasmic reticulum stress. J Cell Biochem 2022; 123:1647-1662. [PMID: 35467032 DOI: 10.1002/jcb.30250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Obesity is a predictive factor for the development of nonalcoholic steatohepatitis (NASH). Although some of the mechanisms associated with NASH development are still elusive, its pathogenesis relies on a complex broad spectrum of (interconnected) metabolic-based disorders. We analyzed the effects of voluntary physical activity (VPA) and endurance training (ET), as preventive and therapeutic nonpharmacological strategies, respectively, against hepatic endoplasmic reticulum (ER) stress, ER-related proapoptotic signaling, and oxidative stress in an animal model of high-fat diet (HFD)-induced NASH. Adult male Sprague-Dawley rats were divided into standard control liquid diet (SCLD) or HFD groups, with sedentary, VPA, and ET subgroups in both (sedentary animals with access to SCLD [SS], voluntarily physically active animals with access to SCLD [SV], and endurance-trained animals with access to SCLD [ST] in the former and sedentary animals with access to liquid HFD [HS], voluntarily physically active animals with access to liquid HFD [HV], and endurance-trained animals with access to liquid HFD [HT] in the latter, respectively). Hepatic ER stress and ER-related proapoptotic signaling were evaluated by Western blot and reverse transcriptase-polymerase chain reaction; redox status was evaluated through quantification of lipid peroxidation, protein carbonyls groups, and glutathione levels as well as antioxidant enzymes activity. In SCLD-treated animals, VPA significantly decreased eukaryotic initiation factor-2 alpha (eIF2α). In HFD-treated animals, VPA significantly decreased eIF2α and phospho-inositol requiring enzyme-1 alpha (IRE1α) but ET significantly decreased eIF2α and significantly increased both spliced X-box binding protein 1 (sXBP1) and unspliced X-box binding protein 1; a significant increase of phosphorylated-eIF2α (p-eIF2α) to eIF2α ratio occurred in ET versus VPA. HS compared to SS disclosed a significant increase of total and reduced glutathione, HV compared to SV a significant increase of oxidized glutathione, HT compared to ST a significant increase of p-eIF2α to eIF2α ratio and sXBP1. Physical exercise counteracts NASH-related ER stress and its associated deleterious consequences through a positive and dynamical modulation of the hepatic IRE1α-X-box binding protein 1 pathway.
Collapse
Affiliation(s)
- Emanuel Passos
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,National Anti-Doping Organization of Cape Verde, Praia, Cabo Verde.,Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Cidália Pereira
- School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal.,CiTechCare-Centre for Innovative Care and Health Technology, Polytechnic of Leiria, Leiria, Portugal
| | - Inês O Gonçalves
- Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Ana Faria
- Nutrition and Metabolism, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal.,CINTESIS-Center for Health Technology Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Comprehensive Health Research Centre, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - António Ascensão
- Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Rosário Monteiro
- CINTESIS-Center for Health Technology Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Unidade de Saúde Familiar Homem do Leme, Agrupamento de Centros de Saúde Porto Ocidental, ARS Norte, Porto, Portugal.,MEDCIDS-Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Magalhães
- Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Maria J Martins
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Diaz-Ruiz A, Rhinesmith T, Pomatto-Watson LCD, Price NL, Eshaghi F, Ehrlich MR, Moats JM, Carpenter M, Rudderow A, Brandhorst S, Mattison JA, Aon MA, Bernier M, Longo VD, de Cabo R. Diet composition influences the metabolic benefits of short cycles of very low caloric intake. Nat Commun 2021; 12:6463. [PMID: 34753921 PMCID: PMC8578605 DOI: 10.1038/s41467-021-26654-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Diet composition, calories, and fasting times contribute to the maintenance of health. However, the impact of very low-calorie intake (VLCI) achieved with either standard laboratory chow (SD) or a plant-based fasting mimicking diet (FMD) is not fully understood. Here, using middle-aged male mice we show that 5 months of short 4:10 VLCI cycles lead to decreases in both fat and lean mass, accompanied by improved physical performance and glucoregulation, and greater metabolic flexibility independent of diet composition. A long-lasting metabolomic reprograming in serum and liver is observed in mice on VLCI cycles with SD, but not FMD. Further, when challenged with an obesogenic diet, cycles of VLCI do not prevent diet-induced obesity nor do they elicit a long-lasting metabolic memory, despite achieving modest metabolic flexibility. Our results highlight the importance of diet composition in mediating the metabolic benefits of short cycles of VLCI.
Collapse
Affiliation(s)
- Alberto Diaz-Ruiz
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
- Nutritional Interventions Group, Precision Nutrition and Aging, Institute IMDEA Food, Crta. de Canto Blanco n° 8, E - 28049, Madrid, Spain.
| | - Tyler Rhinesmith
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Laura C D Pomatto-Watson
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Farzin Eshaghi
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Margaux R Ehrlich
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jacqueline M Moats
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Melissa Carpenter
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Annamaria Rudderow
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sebastian Brandhorst
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Julie A Mattison
- Nonhuman Primate Core, Translational Gerontology Branch, National Institutes of Health, National Institute on Aging, Dickerson, MD, 20842, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Valter D Longo
- Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- IFOM, FIRC Institute of Molecular Oncology, 20139, Milano, Italy
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
- Nutritional Interventions Group, Precision Nutrition and Aging, Institute IMDEA Food, Crta. de Canto Blanco n° 8, E - 28049, Madrid, Spain.
| |
Collapse
|
9
|
Abstract
Significance: During aging, excessive production of reactive species in the liver leads to redox imbalance with consequent oxidative damage and impaired organ homeostasis. Nevertheless, slight amounts of reactive species may modulate several transcription factors, acting as second messengers and regulating specific signaling pathways. These redox-dependent alterations may impact the age-associated decline in liver regeneration. Recent Advances: In the last few decades, relevant findings related to redox alterations in the aging liver were investigated. Consistently, recent research broadened understanding of redox modifications and signaling related to liver regeneration. Other than reporting the effect of oxidative stress, epigenetic and post-translational modifications, as well as modulation of specific redox-sensitive cellular signaling, were described. Among them, the present review focuses on Wnt/β-catenin, the nuclear factor (erythroid-derived 2)-like 2 (NRF2), members of the Forkhead box O (FoxO) family, and the p53 tumor suppressor. Critical Issues: Even though alteration in redox homeostasis occurs both in aging and in impaired liver regeneration, the associative mechanisms are not clearly defined. Of note, antioxidants are not effective in slowing hepatic senescence, and do not clearly improve liver repopulation after hepatectomy or transplant in humans. Future Directions: Further investigations are needed to define mutual redox-dependent molecular pathways involved both in aging and in the decline of liver regeneration. Preclinical studies aimed at the characterization of these pathways would define possible therapeutic targets for human trials. Antioxid. Redox Signal. 35, 832-847.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
10
|
Huang Y, Ye Z, Yin Y, Ma T, Zhang Q, Shang K, Chen W, Li Z. Cataract formation in transgenic HO-1 G143H mutant mice: Involvement of oxidative stress and endoplasmic reticulum stress. Biochem Biophys Res Commun 2021; 537:43-49. [PMID: 33383563 DOI: 10.1016/j.bbrc.2020.12.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 01/27/2023]
Abstract
Oxidative stress and endoplasmic reticulum (ER) stress are the key contributing factors for cataract progression. In our previous studies, we demonstrated that the nuclear factor erythroid 2-like-2 (Nrf-2)/heme oxygenase-1 (HO-1)/carbon monoxide (CO) axis protects lens epithelial cells (LECs) against oxidants and ER stress. In the present study, transgenic FVB/N mice overexpressing the negative dominant mutant HO-1 G143H (TgHO-1 G143H) were generated to evaluate the crosstalk among HO-1, oxidative stress and ER stress in maintaining lens transparency. Slit-lamp examination revealed that nuclear cataracts occurred at 4 months in the TgHO-1 G143H mice, which was 5 months earlier than that of the control mice. The lenses of the transgenic mice showed an accumulation of malondialdehyde and protein carbonyl with a decrease in glutathione and protein sulfhydryl levels. Elevated concentrations of ER stress biomarkers (Bip, PERK, ATF6, IRE1, CHOP, caspase-12 and caspase-3) in the lenses of the TgHO-1 G143H mice were identified by western blotting. Furthermore, we confirmed that overexpressed HO-1 G143H in LECs resulted in oxidative insult and apoptosis in vitro. All of these data suggested that HO-1 enzymatic activity loss induces early-onset nuclear cataracts by activating oxidative stress and ER stress.
Collapse
Affiliation(s)
- Yang Huang
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zi Ye
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yujing Yin
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Tianju Ma
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Qi Zhang
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Kun Shang
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wenqian Chen
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhaohui Li
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
11
|
Chi ZC. Research status and prgoress of nonalcoholic fatty pancreatic disease. Shijie Huaren Xiaohua Zazhi 2020; 28:933-950. [DOI: 10.11569/wcjd.v28.i19.933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty pancreatic disease (NAFPD) is a disease characterized by an increase in pancreatic fat accumulation. It is a component of the metabolic syndrome and often coexists with nonalcoholic fatty liver disease. Once the diagnosis is established, it is closely related to acute and chronic pancreatitis, type 2 diabetes mellitus, pancreatic fibrosis, and pancreatic cancer. In recent years, it has been confirmed that NAFPD is closely related to cardiovascular disease, liver fibrosis, and liver cancer. The prevalence of NAFPD ranges between 11% and 69%, and increases with age. It is worth noting that the prevalence in obese children is twice as high as that in non-obese children. The high prevalence rate and complexity of the disease have aroused people's high attention. Therefore, to improve the understanding of NAFPD, fully understand the clinical significance of NAFPD, and further study its pathogenesis, diagnosis, and treatment require the collaboration and joint efforts of multiple disciplines, including hepatopathy, gastroenterology, endocrine metabolism, cardiovascular disease, imaging, pathology, and others. In this paper, we review the clinical significance, pathogenesis, and imaging diagnosis of NAFPD and propose our personal understanding of the key points in future research.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
12
|
Suman SS, Kumar A, Singh AK, Amit A, Topno RK, Pandey K, Das VNR, Das P, Ali V, Bimal S. Dendritic cell engineered cTXN as new vaccine prospect against L. donovani. Cytokine 2020; 145:155208. [PMID: 32736961 DOI: 10.1016/j.cyto.2020.155208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
Dendritic cells (DCs), as antigen-presenting cells, can reportedly be infected withLeishmaniaparasites and hence provide a better option to trigger T-cell primary immune responses and immunological memory. We consistently primed DCs during culture with purified recombinant cytosolic tryparedoxin (rcTXN) and then evaluated the vaccine prospect of presentation of rcTXN against VL in BALB/c mice. We reported earlier the immunogenic properties of cTXN antigen derived fromL. donovani when anti-cTXN antibody was detected in the sera of kala-azar patients. It was observed that cTXN antigen, when used as an immunogen with murine DCs acting as a vehicle, was able to induce complete protection against VL in an infected group of immunized mice. This vaccination triggered splenic macrophages to produce more IL-12 and GM-CSF, and restricted IL-10 release to a minimum in an immunized group of infected animals. Concomitant changes in T-cell responses against cTXN antigen were also noticed, which increased the release of protective cytokine-like IFN-γ under the influence of NF-κβ in the indicated vaccinated group of animals. All cTXN-DCs-vaccinated BALB/c mice survived during the experimental period of 120 days. The results obtained in our study suggest that DCs primed with cTXN can be used as a vaccine prospect for the control of visceral leishmaniasis.
Collapse
Affiliation(s)
- Shashi S Suman
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Akhilesh Kumar
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ashish K Singh
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) 495009, India
| | - R K Topno
- Department of Epidemiology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - K Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - V N R Das
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - P Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Vahab Ali
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India.
| |
Collapse
|
13
|
Kapuy O, Márton M, Bánhegyi G, Vinod PK. Multiple system-level feedback loops control life-and-death decisions in endoplasmic reticulum stress. FEBS Lett 2019; 594:1112-1123. [PMID: 31769869 DOI: 10.1002/1873-3468.13689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
Scientific results have revealed that autophagy is able to promote cell survival in response to endoplasmic reticulum (ER) stress, while drastic events result in apoptotic cell death. Here, we analyse the important crosstalk of life-and-death decisions from a systems biological perspective by studying the regulatory modules of the unfolded protein response (UPR). While a double-negative loop between autophagy and apoptosis inducers is crucial for the switch-like characteristic of the stress response mechanism, a positive feedback loop between ER stress sensors is also essential. Corresponding to experimental data, here, we show the dynamical significance of Gadd34-CHOP connections inside the PERK branch of the UPR. The multiple system-level feedback loops seem to be crucial for managing a robust life-and-death decision depending on the level and durability of cellular stress.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Margita Márton
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary.,Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - P K Vinod
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| |
Collapse
|
14
|
Liyanage D, Omeka W, Lee J. Molecular characterization, host defense mechanisms, and functional analysis of ERp44 from big-belly seahorse: A novel member of the teleost thioredoxin family present in the endoplasmic reticulum. Comp Biochem Physiol B Biochem Mol Biol 2019; 232:31-41. [DOI: 10.1016/j.cbpb.2019.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
|
15
|
Fujii J, Homma T, Kobayashi S, Seo HG. Mutual interaction between oxidative stress and endoplasmic reticulum stress in the pathogenesis of diseases specifically focusing on non-alcoholic fatty liver disease. World J Biol Chem 2018; 9:1-15. [PMID: 30364769 PMCID: PMC6198288 DOI: 10.4331/wjbc.v9.i1.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/19/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are produced during normal physiologic processes with the consumption of oxygen. While ROS play signaling roles, when they are produced in excess beyond normal antioxidative capacity this can cause pathogenic damage to cells. The majority of such oxidation occurs in polyunsaturated fatty acids and sulfhydryl group in proteins, resulting in lipid peroxidation and protein misfolding, respectively. The accumulation of misfolded proteins in the endoplasmic reticulum (ER) is enhanced under conditions of oxidative stress and results in ER stress, which, together, leads to the malfunction of cellular homeostasis. Multiple types of defensive machinery are activated in unfolded protein response under ER stress to resolve this unfavorable situation. ER stress triggers the malfunction of protein secretion and is associated with a variety of pathogenic conditions including defective insulin secretion from pancreatic β-cells and accelerated lipid droplet formation in hepatocytes. Herein we use nonalcoholic fatty liver disease (NAFLD) as an illustration of such pathological liver conditions that result from ER stress in association with oxidative stress. Protecting the ER by eliminating excessive ROS via the administration of antioxidants or by enhancing lipid-metabolizing capacity via the activation of peroxisome proliferator-activated receptors represent promising therapeutics for NAFLD.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Han Geuk Seo
- Sanghuh College of Life Sciences, Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
16
|
Li Q, Zhou T, Wu F, Li N, Wang R, Zhao Q, Ma YM, Zhang JQ, Ma BL. Subcellular drug distribution: mechanisms and roles in drug efficacy, toxicity, resistance, and targeted delivery. Drug Metab Rev 2018; 50:430-447. [PMID: 30270675 DOI: 10.1080/03602532.2018.1512614] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
After administration, drug molecules usually enter target cells to access their intracellular targets. In eukaryotic cells, these targets are often located in organelles, including the nucleus, endoplasmic reticulum, mitochondria, lysosomes, Golgi apparatus, and peroxisomes. Each organelle type possesses unique biological features. For example, mitochondria possess a negative transmembrane potential, while lysosomes have an intraluminal delta pH. Other properties are common to several organelle types, such as the presence of ATP-binding cassette (ABC) or solute carrier-type (SLC) transporters that sequester or pump out xenobiotic drugs. Studies on subcellular drug distribution are critical to understand the efficacy and toxicity of drugs along with the body's resistance to them and to potentially offer hints for targeted subcellular drug delivery. This review summarizes the results of studies from 1990 to 2017 that examined the subcellular distribution of small molecular drugs. We hope this review will aid in the understanding of drug distribution within cells.
Collapse
Affiliation(s)
- Qiao Li
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Ting Zhou
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Fei Wu
- b Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Na Li
- c Department of Chinese materia medica , School of Pharmacy , Shanghai , China
| | - Rui Wang
- b Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Qing Zhao
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yue-Ming Ma
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Ji-Quan Zhang
- b Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Bing-Liang Ma
- a Department of Pharmacology , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| |
Collapse
|
17
|
Gao C, Tian Y, Zhang R, Jing J, Zhang X. Endoplasmic Reticulum-Directed Ratiometric Fluorescent Probe for Quantitive Detection of Basal H2O2. Anal Chem 2017; 89:12945-12950. [DOI: 10.1021/acs.analchem.7b03809] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Congcong Gao
- Key Laboratory of Cluster Science of
the Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Yong Tian
- Key Laboratory of Cluster Science of
the Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Rubo Zhang
- Key Laboratory of Cluster Science of
the Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Jing Jing
- Key Laboratory of Cluster Science of
the Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of
the Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
18
|
Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca 2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017; 60:1-19. [PMID: 28864287 PMCID: PMC5600869 DOI: 10.1016/j.preteyeres.2017.08.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
Age-related cataracts are closely associated with lens chronological aging, oxidation, calcium imbalance, hydration and crystallin modifications. Accumulating evidence indicates that misfolded proteins are generated in the endoplasmic reticulum (ER) by most cataractogenic stresses. To eliminate misfolded proteins from cells before they can induce senescence, the cells activate a clean-up machinery called the ER stress/unfolded protein response (UPR). The UPR also activates the nuclear factor-erythroid-2-related factor 2 (Nrf2), a central transcriptional factor for cytoprotection against stress. Nrf2 activates nearly 600 cytoprotective target genes. However, if ER stress reaches critically high levels, the UPR activates destructive outputs to trigger programmed cell death. The UPR activates mobilization of ER-Ca2+ to the cytoplasm and results in activation of Ca2+-dependent proteases to cleave various enzymes and proteins which cause the loss of normal lens function. The UPR also enhances the overproduction of reactive oxygen species (ROS), which damage lens constituents and induce failure of the Nrf2 dependent cytoprotection. Kelch-like ECH-associated protein 1 (Keap1) is an oxygen sensor protein and regulates the levels of Nrf2 by the proteasomal degradation. A significant loss of DNA methylation in diabetic cataracts was found in the Keap1 promoter, which overexpresses the Keap1 protein. Overexpressed Keap1 significantly decreases the levels of Nrf2. Lower levels of Nrf2 induces loss of the redox balance toward to oxidative stress thereby leading to failure of lens cytoprotection. Here, this review summarizes the overall view of ER stress, increases in Ca2+ levels, protein cleavage, and loss of the well-established stress protection in somatic lens cells.
Collapse
Affiliation(s)
- Palsamy Periyasamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
19
|
Targeting Select Cellular Stress Pathways to Prevent Hyperglycemia-Related Complications: Shifting the Paradigm. Drugs 2017; 76:1081-91. [PMID: 27364752 DOI: 10.1007/s40265-016-0609-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the advances made in preventing complications of diabetes, there is still substantial residual risk. Hence the need for developing new therapeutic agents that target the various facets of the pathogenesis of complications in people with diabetes. Traditionally four general biochemical pathways had been recognized as major contributors to glucotoxicity. These include the polyol pathway, the protein kinase C (PKC) pathway, glycosylation pathway, and oxidative stress. The latter has been proposed as a common impetus of the other pathways of glucotoxicity. More recently, the cross talk between oxidative stress and other recognized cellular stresses such as endoplasmic reticulum (ER), inflammatory, and mitochondrial stresses has emerged as an important additional mechanism of glucotoxicity. The observation that targeting oxidative stress with antioxidants has been associated with unfavorable clinical outcomes and the recognition that in cell cultures antioxidants may aggravate ER stress, suggests that selective targeting of individual cellular stresses may not be sufficient for preventing glucotoxicity. Future efforts should focus on developing therapeutic agents that can ameliorate cellular stress globally by simultaneously targeting the oxidative, ER, mitochondrial, and inflammatory stresses.
Collapse
|
20
|
Mann JP, Raponi M, Nobili V. Clinical implications of understanding the association between oxidative stress and pediatric NAFLD. Expert Rev Gastroenterol Hepatol 2017; 11:371-382. [PMID: 28162008 DOI: 10.1080/17474124.2017.1291340] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress is central to the pathogenesis of non-alcoholic steatohepatitis. The reactive oxygen species (ROS) that characterise oxidative stress are generated in several cellular sites and their production is influence by multi-organ interactions. Areas covered: Mitochondrial dysfunction is the main source of ROS in fatty liver and is closely related to endoplasmic reticulum stress. Both are caused by lipotoxicity and together these three factors form a cycle of progressive organelle damage, resulting in sterile inflammation and apoptosis. Adipose tissue inflammation and intestinal dysbiosis provide substrates for ROS formation and trigger immune activation. Obstructive sleep apnea and abnormal divalent metal metabolism may also play a role. Expert commentary: The majority of available high-quality data originates from studies in adults and there are fewer therapeutic trials performed in pediatric cohorts, therefore conclusions are generalised to children. Establishing the role of organelle interactions, and its relationship with oxidative stress in steatohepatitis, is a rapidly evolving area of research.
Collapse
Affiliation(s)
- Jake P Mann
- a Metabolic Research Laboratories, Institute of Metabolic Science , University of Cambridge , Cambridge , UK.,b Department of paediatrics , University of Cambridge , Cambridge , UK
| | | | - Valerio Nobili
- d Hepatometabolic Unit , Bambino Gesu Hospital - IRCCS , Rome , Italy.,e Liver Research Unit , Bambino Gesu Hospital - IRCCS , Rome , Italy
| |
Collapse
|
21
|
Immunization with Leishmania donovani protein disulfide isomerase DNA construct induces Th1 and Th17 dependent immune response and protection against experimental visceral leishmaniasis in Balb/c mice. Mol Immunol 2017; 82:104-113. [DOI: 10.1016/j.molimm.2016.12.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 11/20/2022]
|
22
|
Kilic E, Özer ÖF, Erek Toprak A, Erman H, Torun E, Kesgin Ayhan S, Caglar HG, Selek S, Kocyigit A. Oxidative Stress Status in Childhood Obesity: A Potential Risk Predictor. Med Sci Monit 2016; 22:3673-3679. [PMID: 27733746 PMCID: PMC5066503 DOI: 10.12659/msm.897965] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Childhood obesity characterized by excessive fat in the body is one of the most serious health problems worldwide due to the social, medical, and physiological complications. Obesity and associated diseases are triggering factors for oxidative stress and inflammation. The aim of this study was to explore the possible association between childhood obesity and inflammatory and oxidative status. Material/Methods Thirty-seven obese children and 37 healthy controls selected from among children admitted to BLIND University Paediatrics Department were included in the study. Anthropometric measurements were performed using standard methods. Glucose, lipid parameters, CRP, insulin, total oxidant status (TOS), total anti-oxidant status (TAS) levels, and total thiol levels (TTL) were measured in serum. HOMA index (HOMA-IR) were calculated. The differences between the groups were evaluated statistically using the Mann-Whitney U test. Results Body mass index was significantly higher in the obese group (median: 28.31(p<0.001). Glucose metabolism, insulin, and HOMA-IR levels were significantly higher in the obese group (both p<0.001). Total cholesterol, HDL cholesterol, LDL cholesterol, and triglyceride levels were significantly higher in the obese group (p<0.001). TAS (med: 2.5 μmol Trolox eq/L (1.7–3.3)) and TOS (med: 49.1 μmol H2O2 eq/L (34.5–78.8)) levels and TTL (med: 0.22 mmol/L (0.16–0.26)) were significantly higher in the obese group (p=0.001). CRP levels showed positive correlation with TOS and negative correlation with TTL levels (p=0.005, r=0.473; p=0.01, r=−0.417; respectively). TTL levels exhibited negative correlation with TOS levels (p=0.03, r=−0.347). Conclusions In conclusion, obese children were exposed to more oxidative burden than children with normal weight. Increased systemic oxidative stress induced by childhood obesity can cause development of obesity-related complications and diseases. Widely focussed studies are required on the use of oxidative parameters as early prognostic parameters in detection of obesity-related complications.
Collapse
Affiliation(s)
- Elif Kilic
- Department of Biochemistry, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| | - Ömer Faruk Özer
- Department of Biochemistry, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| | - Aybala Erek Toprak
- Department of Biochemistry, Medeniyet University, Medical Faculty, Istanbul, Turkey
| | - Hayriye Erman
- Department of Biochemistry, Medeniyet University, Medical Faculty, Istanbul, Turkey
| | - Emel Torun
- Department of Paediatrics, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| | - Sıddıka Kesgin Ayhan
- Department of Biochemistry, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| | - Hifa Gülru Caglar
- Department of Biochemistry, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| | - Sahbettin Selek
- Department of Biochemistry, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Department of Biochemistry, Bezmialem Vakif University, Medical Faculty, Istanbul, Turkey
| |
Collapse
|
23
|
SHP-2 phosphatase controls aryl hydrocarbon receptor-mediated ER stress response in mast cells. Arch Toxicol 2016; 91:1739-1748. [PMID: 27709270 DOI: 10.1007/s00204-016-1861-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/28/2016] [Indexed: 12/17/2022]
Abstract
Previously we reported that exposure of mouse and human mast cells to aryl hydrocarbon receptor (AhR) ligands resulted in reactive oxygen species (ROS)- and calcium (Ca2+)-dependent activation of mast cells in vitro and in vivo. However, the mechanisms through which the AhR-ligand axis mediates stress response, Ca2+ signaling and subsequent mast cell activation remain to be fully elucidated. Evidence is provided herein that SHP-2 is critical in regulating AhR-mediated ER stress response and intracellular Ca2+ dynamics. We found that an AhR ligand, FICZ, induced significant reduction of intracellular GSH and an increased level of intracellular ROS. Significantly, we showed that in FICZ-treated mast cells, SHP-2 promoted, in a ROS-dependent manner, ER stress response involving primarily the PERK signaling pathway, ATF4 activation and eIF2α phosphorylation, which could be reversed by the addition of an antioxidant, NAC, and was inhibited in cells with SHP-2 knockdown. Our findings suggested that SHP-2 is critical in controlling ER stress signals in response to AhR activation, which provides a new mechanistic insight into how the AhR-ligand axis regulates cellular adaptation to the environmental insult in mast cells.
Collapse
|
24
|
Bozaykut P, Sahin A, Karademir B, Ozer NK. Endoplasmic reticulum stress related molecular mechanisms in nonalcoholic steatohepatitis. Mech Ageing Dev 2016; 157:17-29. [PMID: 27393639 DOI: 10.1016/j.mad.2016.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/23/2016] [Accepted: 07/02/2016] [Indexed: 12/18/2022]
|
25
|
Time course of lead induced proteomic changes in gill of the Antarctic limpet Nacella Concinna (Gastropoda: Patellidae). J Proteomics 2016; 151:145-161. [PMID: 27126604 DOI: 10.1016/j.jprot.2016.04.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/06/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
The effect of increasing levels of metals from anthropogenic sources on Antarctic invertebrates is poorly understood. Here we exposed limpets (Nacella concinna) to 0, 0.12 and 0.25 μg L− 1 lead for 12, 24, 48 and 168 h. We subsequently quantified the changes in protein abundance from gill, using 2D gel electrophoresis and mass spectrometry. We identified several antioxidant proteins, including the metal binding Mn-superoxide dismutase and ferritin, increasing abundances early on. Chaperones involved in the redox-dependent maturation of proteins in the endoplasmic reticulum (ER) showed higher abundance with lead at 48 h. Lead also increased the abundance of Zn-binding carbonic anhydrase at 12 h, suggesting a challenge to acid-base balance. Metabolic proteins increased abundance at 168 h, suggesting a greater ATP demand during prolonged exposure. Changes in abundance of the small G-protein cdc42, a signaling protein modifying cytoskeleton, increased early and subsequently reversed during prolonged exposure, possibly leading to the modification of thick filament structure and function. We hypothesize that the replacement of metals initially affected antioxidant proteins and increased the production of reactive oxygen species. This disrupted the redox-sensitive maturation of proteins in the ER and caused increased ATP demand later on, accompanied by changes in cytoskeleton. SIGNIFICANCE Proteomic analysis of gill tissue in Antarctic limpets exposed to different concentrations of lead (Pb) over a 168 h time period showed that proteomic changes vary with time. These changes included an increase in the demand of scavenging reactive oxygen species, acid-base balance and a challenge to protein homeostasis in the endoplasmic reticulum early on and subsequently an increase in energy metabolism, cellular signaling, and cytoskeletal modifications. Based on this time course, we hypothesize that the main mode of action of lead is a replacement of metal-cofactors of key enzymes involved in the scavenging of reactive oxygen species and the regulation of acid-base balance.
Collapse
|
26
|
Rapamycin Attenuates Mouse Liver Ischemia and Reperfusion Injury by Inhibiting Endoplasmic Reticulum Stress. Transplant Proc 2016; 47:1646-52. [PMID: 26293028 DOI: 10.1016/j.transproceed.2015.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/25/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023]
Abstract
The roles of endoplasmic reticulum (ER) stress in liver ischemia and reperfusion injury (IRI) have been well recognized. However, the impact of rapamycin (Rapa), a broadly used immunosuppressive agent in human liver transplantation, on ER stress during IRI remains unclear. This study was designed to investigate the roles of Rapa in the regulation of ER stress in vivo and in vitro. In a mouse liver partial warm ischemia and reperfusion mode, we demonstrated that Rapa markedly protected livers from IRI, as evidenced by serum alanine aminotransferase (sALT) levels and liver histology. Then we also confirmed the protection of Rapa from thapsigargin (Tg)-induced cell death in primary hepatocytes. Both in vivo and in vitro experiments showed that the ER stress markers were markedly up-regulated by IRI and Tg treatment, whereas they were down-regulated by Rapa pretreatment, as monitored by Western blot at the protein levels and by quantitative reverse transcription polymerase chain reaction (RT-PCR) at the messenger RNA (mRNA) levels. In addition, it was also revealed that Rapa was able to remarkably inhibit the mammalian target of rapamycin (mTOR) pathway and enhance autophagy both in IR-stressed livers and Tg-treated primary hepatocytes. Thus, these results suggest that Rapa protects livers from IRI through inhibiting the ER stress pathway.
Collapse
|
27
|
Shen F, Feng J, Wang X, Qi Z, Shi X, An Y, Zhang Q, Wang C, Liu M, Liu B, Yu L. Vinegar Treatment Prevents the Development of Murine Experimental Colitis via Inhibition of Inflammation and Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1111-1121. [PMID: 26795553 DOI: 10.1021/acs.jafc.5b05415] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study investigated the preventive effects of vinegar and acetic acid (the active component of vinegar) on ulcerative colitis (UC) in mice. Vinegar (5% v/v) or acetic acid (0.3% w/v) treatment significantly reduced the disease activity index and histopathological scores, attenuated body weight loss, and shortened the colon length in a murine experimental colitis model induced by dextran sulfate sodium (DSS). Further mechanistic analysis showed that vinegar inhibited inflammation through suppressing Th1 and Th17 responses, the NLRP3 inflammasome, and MAPK signaling activation. Vinegar also inhibited endoplasmic reticulum (ER) stress-mediated apoptosis in the colitis mouse model. Surprisingly, pretreatment with vinegar for 28 days before DSS induction increased levels of the commensal lactic acid-producing or acetic acid-producing bacteria, including Lactobacillus, Bifidobacteria, and Enterococcus faecalis, whereas decreased Escherichia coli levels were found in the feces of mice. These results suggest that vinegar supplementation might provide a new dietary strategy for the prevention of UC.
Collapse
Affiliation(s)
- Fengge Shen
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Jiaxuan Feng
- College of Medicine, Yanbian University , Yanji 133000, China
| | - Xinhui Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Zhimin Qi
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Xiaochen Shi
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Yanan An
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Qiaoli Zhang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Chao Wang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Mingyuan Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou 225009, China
| | - Bo Liu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| | - Lu Yu
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, The First Hospital of Jilin University, College of Veterinary Medicine and College of Animal Science, Jilin University , Changchun 130062, China
| |
Collapse
|
28
|
Mooradian AD, Onstead-Haas L, Haas MJ. Asymmetrical cross-talk between the endoplasmic reticulum stress and oxidative stress caused by dextrose. Life Sci 2016; 144:37-48. [DOI: 10.1016/j.lfs.2015.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/19/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
|
29
|
Oxidative Stress in the Healthy and Wounded Hepatocyte: A Cellular Organelles Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8327410. [PMID: 26788252 PMCID: PMC4691634 DOI: 10.1155/2016/8327410] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023]
Abstract
Accurate control of the cell redox state is mandatory for maintaining the structural integrity and physiological functions. This control is achieved both by a fine-tuned balance between prooxidant and anti-oxidant molecules and by spatial and temporal confinement of the oxidative species. The diverse cellular compartments each, although structurally and functionally related, actively maintain their own redox balance, which is necessary to fulfill specialized tasks. Many fundamental cellular processes such as insulin signaling, cell proliferation and differentiation and cell migration and adhesion, rely on localized changes in the redox state of signal transducers, which is mainly mediated by hydrogen peroxide (H2O2). Therefore, oxidative stress can also occur long before direct structural damage to cellular components, by disruption of the redox circuits that regulate the cellular organelles homeostasis. The hepatocyte is a systemic hub integrating the whole body metabolic demand, iron homeostasis and detoxification processes, all of which are redox-regulated processes. Imbalance of the hepatocyte's organelles redox homeostasis underlies virtually any liver disease and is a field of intense research activity. This review recapitulates the evolving concept of oxidative stress in the diverse cellular compartments, highlighting the principle mechanisms of oxidative stress occurring in the healthy and wounded hepatocyte.
Collapse
|
30
|
Abstract
Glioblastomas are devastating central nervous system tumors with abysmal prognoses. These tumors are often difficult to resect surgically, are highly invasive and proliferative, and are resistant to virtually all therapeutic attempts, making them universally lethal diseases. One key enabling feature of their tumor biology is the engagement of the unfolded protein response (UPR), a stress response originating in the endoplasmic reticulum (ER) designed to handle the pathologies of aggregating malfolded proteins in that organelle. Glioblastomas and other tumors have co-opted this stress response to allow their continued uncontrolled growth by enhanced protein production (maintained by chaperone-assisted protein folding) and lipid biosynthesis driven downstream of the UPR. These features can account for the extensive extracellular remodeling/invasiveness/angiogenesis and proliferative capacity, and ultimately result in tumor phenotypes of chemo- and radio-resistance. The UPR in general, and its chaperoning capacity in particular, are thus putative high-value targets for treatment intervention. Such therapeutic strategies, and potential problems with them, will be discussed and analyzed.
Collapse
|
31
|
Pilar Valdecantos M, Prieto-Hontoria PL, Pardo V, Módol T, Santamaría B, Weber M, Herrero L, Serra D, Muntané J, Cuadrado A, Moreno-Aliaga MJ, Alfredo Martínez J, Valverde ÁM. Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radic Biol Med 2015; 84:263-278. [PMID: 25841776 DOI: 10.1016/j.freeradbiomed.2015.03.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/10/2015] [Accepted: 03/01/2015] [Indexed: 01/06/2023]
Abstract
Excess of saturated free fatty acids, such as palmitic acid (PA), in hepatocytes has been implicated in nonalcoholic fatty liver disease. α-Lipoic acid (LA) is an antioxidant that protects against oxidative stress conditions. We have investigated the effects of LA in the early activation of oxidative and endoplasmic reticulum stress, lipid accumulation, and Nrf2-mediated antioxidant defenses in hepatocytes treated with PA or in rats fed a high-fat diet. In primary human hepatocytes, a lipotoxic concentration of PA triggered endoplasmic reticulum stress, induced the apoptotic transcription factor CHOP, and increased the percentage of apoptotic cells. Cotreatment with LA prevented these effects. Similar results were found in mouse hepatocytes in which LA attenuated PA-mediated activation of caspase 3 and reduced lipid accumulation by decreasing PA uptake and increasing fatty acid oxidation and lipophagy, thereby preventing lipoapoptosis. Moreover, LA augmented the proliferation capacity of hepatocytes after PA challenge. Antioxidant effects of LA ameliorated reactive oxygen species production and endoplasmic reticulum stress and protected against mitochondrial apoptosis in hepatocytes treated with PA. Cotreatment with PA and LA induced an early nuclear translocation of Nrf2 and activated antioxidant enzymes, whereas reduction of Nrf2 by siRNA abolished the benefit of LA on PA-induced lipoapoptosis. Importantly, posttreatment with LA reversed the established damage induced by PA in hepatocytes, as well as preventing obesity-induced oxidative stress and lipoapoptosis in rat liver. In conclusion, our work has revealed that in hepatocytes, Nrf2 is an essential early player in the rescue of oxidative stress by LA leading to protection against PA-mediated lipoapoptosis.
Collapse
Affiliation(s)
- M Pilar Valdecantos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Instituto de Investigación Sanitaria La Paz, 28029 Madrid, Spain
| | | | - Virginia Pardo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Teresa Módol
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| | - Beatriz Santamaría
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Instituto de Investigación Sanitaria La Paz, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Minéia Weber
- Department of Biochemistry and Molecular Biology, Institut de Biomedicina, Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Molecular Biology, Institut de Biomedicina, Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Molecular Biology, Institut de Biomedicina, Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jordi Muntané
- Departamento de Cirugía General y Digestiva, Hospital Universitario Virgen del Rocío-Virgen Macarena/IBiS/CSIC/University of Sevilla, 41013 Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Instituto de Investigación Sanitaria La Paz, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Jesús Moreno-Aliaga
- Department of Nutrition, Food Science, and Physiology University of Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science, and Physiology University of Navarra, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; Instituto de Investigación Sanitaria La Paz, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
32
|
Passos E, Ascensão A, Martins MJ, Magalhães J. Endoplasmic Reticulum Stress Response in Non-alcoholic Steatohepatitis: The Possible Role of Physical Exercise. Metabolism 2015; 64:780-92. [PMID: 25838034 DOI: 10.1016/j.metabol.2015.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 02/06/2023]
Abstract
Sedentary lifestyle coupled with excessive consumption of high caloric food has been related to the epidemic increase of non-alcoholic fatty liver disease, which can progress from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and, eventually, may culminate in hepatocellular carcinoma. Although the precise mechanisms underlying the progression of NASH are not completely understood, endoplasmic reticulum (ER) dysfunction seems to play a key role in the process. Hepatic ER stress has been associated to hepatic steatosis, insulin resistance, inflammation, oxidative stress and hepatocyte death, contributing to liver dysfunction. Physical exercise seems to be the most effective preventive and therapeutic non-pharmacological strategy to mitigate several features related to NASH, possibly targeting most of the referred mechanisms associated with the pathophysiology of ER-related NASH. Nevertheless, little is known about the impact of physical exercise on NASH-related ER stress. In this review, we will discuss the ER stress associated to NASH conditions and highlight the possible benefits of physical exercise in the attenuation and/or reversion of NASH-related ER stress.
Collapse
Affiliation(s)
- Emanuel Passos
- Department of Biochemistry, Faculty of Medicine and Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal; Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - António Ascensão
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - Maria João Martins
- Department of Biochemistry, Faculty of Medicine and Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - José Magalhães
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal.
| |
Collapse
|
33
|
Abstract
ABSTRACT
Environmental (acute and chronic temperature, osmotic, hypoxic and pH) stress challenges the cellular redox balance and can lead to the increased production of reactive oxygen species (ROS). This review provides an overview of the reactions producing and scavenging ROS in the mitochondria, endoplasmic reticulum (ER) and peroxisome. It then compares these reactions with the findings of a number of studies investigating the proteomic responses of marine organisms to environmentally induced oxidative stress. These responses indicate that the thioredoxin–peroxiredoxin system is possibly more frequently recruited to scavenge H2O2 than the glutathione system. Isoforms of superoxide dismutase (SOD) are not ubiquitously induced in parallel, suggesting that SOD scavenging activity is sometimes sufficient. The glutathione system plays an important role in some organisms and probably also contributes to protecting protein thiols during environmental stress. Synthesis pathways of cysteine and selenocysteine, building blocks for glutathione and glutathione peroxidase, also play an important role in scavenging ROS during stress. The increased abundance of glutaredoxin and DyP-type peroxidase suggests a need for regulating the deglutathionylation of proteins and scavenging of peroxynitrite. Reducing equivalents for these scavenging reactions are generated by proteins of the pentose phosphate pathway and by NADP-dependent isocitrate dehydrogenase. Furthermore, proteins representing reactions of the tricarboxylic acid cycle and the electron transport system generating NADH and ROS, including those of complex I, II and III, are frequently reduced in abundance with stress. Protein maturation in the ER likely represents another source of ROS during environmental stress, as indicated by simultaneous changes in ER chaperones and antioxidant proteins. Although there are still too few proteomic analyses of non-model organisms exposed to environmental stress for a general pattern to emerge, hyposaline and low pH stress show different responses from temperature and hypoxic stress. Furthermore, comparisons of closely related congeners differing in stress tolerance start to provide insights into biochemical processes contributing to adaptive differences, but more of these comparisons are needed to draw general conclusions. To fully take advantage of a systems approach, studies with longer time courses, including several tissues and more species comparisons are needed.
Collapse
|
34
|
Margittai É, Enyedi B, Csala M, Geiszt M, Bánhegyi G. Composition of the redox environment of the endoplasmic reticulum and sources of hydrogen peroxide. Free Radic Biol Med 2015; 83:331-40. [PMID: 25678412 DOI: 10.1016/j.freeradbiomed.2015.01.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 12/22/2022]
Abstract
The endoplasmic reticulum (ER) is a metabolically active organelle, which has a central role in proteostasis by translating, modifying, folding, and occasionally degrading secretory and membrane proteins. The lumen of the ER represents a separate compartment of the eukaryotic cell, with a characteristic proteome and metabolome. Although the redox metabolome and proteome of the compartment have not been holistically explored, it is evident that proper redox conditions are necessary for the functioning of many luminal pathways. These redox conditions are defined by local oxidoreductases and the membrane transport of electron donors and acceptors. The main electron carriers of the compartment are identical with those of the other organelles: glutathione, pyridine and flavin nucleotides, ascorbate, and others. However, their composition, concentration, and redox state in the ER lumen can be different from those observed in other compartments. The terminal oxidases of oxidative protein folding generate and maintain an "oxidative environment" by oxidizing protein thiols and producing hydrogen peroxide. ER-specific mechanisms reutilize hydrogen peroxide as an electron acceptor of oxidative folding. These mechanisms, together with membrane and kinetic barriers, guarantee that redox systems in the reduced or oxidized state can be present simultaneously in the lumen. The present knowledge on the in vivo conditions of ER redox is rather limited; development of new genetically encoded targetable sensors for the measurement of the luminal state of redox systems other than thiol/disulfide will contribute to a better understanding of ER redox homeostasis.
Collapse
Affiliation(s)
- Éva Margittai
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest 1444, Hungary
| | - Balázs Enyedi
- Department of Physiology, Semmelweis University, Budapest 1444, Hungary
| | - Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1444, Hungary
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, Budapest 1444, Hungary; "Lendület" Peroxidase Enzyme Research Group of Semmelweis University and the Hungarian Academy of Sciences, Semmelweis University, Budapest 1444, Hungary
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest 1444, Hungary.
| |
Collapse
|
35
|
Szarka A, Bánhegyi G. Oxidative folding: recent developments. Biomol Concepts 2015; 2:379-90. [PMID: 25962043 DOI: 10.1515/bmc.2011.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023] Open
Abstract
Disulfide bond formation in proteins is an effective tool of both structure stabilization and redox regulation. The prokaryotic periplasm and the endoplasmic reticulum of eukaryotes were long considered as the only compartments for enzyme mediated formation of stable disulfide bonds. Recently, the mitochondrial intermembrane space has emerged as the third protein-oxidizing compartment. The classic view on the mechanism of oxidative folding in the endoplasmic reticulum has also been reshaped by new observations. Moreover, besides the structure stabilizing function, reversible disulfide bridge formation in some proteins of the endoplasmic reticulum, seems to play a regulatory role. This review briefly summarizes the present knowledge of the redox systems supporting oxidative folding, emphasizing recent developments.
Collapse
|
36
|
A Comprehensive Systems Biological Study of Autophagy-Apoptosis Crosstalk during Endoplasmic Reticulum Stress. BIOMED RESEARCH INTERNATIONAL 2015; 2015:319589. [PMID: 25984530 PMCID: PMC4423012 DOI: 10.1155/2015/319589] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/06/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
One of the most important tasks of a living organism is to maintain its genetic integrity with respect to stress. Endoplasmic reticulum (ER) has a crucial role in sensing cellular homeostasis by controlling metabolism, proteostasis, and several signaling processes. ER stressors can induce autophagy-dependent survival; however excessive level of stress results in apoptotic cell death. Although many molecular components of these networks have already been discovered, the analysis of the dynamical features of the regulatory network of life-or-death decision is still lacking. Our goal was to incorporate both theoretical and molecular biological techniques to explore the autophagy-apoptosis crosstalk under ER stress. Using various levels of different ER stressors we confirmed that the control network always generated an evidently detectable autophagy-dependent threshold for apoptosis activation. We explored the features of this threshold by introducing both autophagy activators and inhibitors, and transient treatment with excessive level of ER stressor was also performed. Our experimental data were also supported by a stochastic approach. Our analysis suggests that even if the switch-like characteristic of apoptosis activation is hardly seen on population level the double negative feedback loop between autophagy and apoptosis inducers introduces bistability in the control network.
Collapse
|
37
|
Csala M, Kardon T, Legeza B, Lizák B, Mandl J, Margittai É, Puskás F, Száraz P, Szelényi P, Bánhegyi G. On the role of 4-hydroxynonenal in health and disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:826-38. [PMID: 25643868 DOI: 10.1016/j.bbadis.2015.01.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/16/2014] [Accepted: 01/23/2015] [Indexed: 02/08/2023]
Abstract
Polyunsaturated fatty acids are susceptible to peroxidation and they yield various degradation products, including the main α,β-unsaturated hydroxyalkenal, 4-hydroxy-2,3-trans-nonenal (HNE) in oxidative stress. Due to its high reactivity, HNE interacts with various macromolecules of the cell, and this general toxicity clearly contributes to a wide variety of pathological conditions. In addition, growing evidence suggests a more specific function of HNE in electrophilic signaling as a second messenger of oxidative/electrophilic stress. It can induce antioxidant defense mechanisms to restrain its own production and to enhance the cellular protection against oxidative stress. Moreover, HNE-mediated signaling can largely influence the fate of the cell through modulating major cellular processes, such as autophagy, proliferation and apoptosis. This review focuses on the molecular mechanisms underlying the signaling and regulatory functions of HNE. The role of HNE in the pathophysiology of cancer, cardiovascular and neurodegenerative diseases is also discussed.
Collapse
Affiliation(s)
- Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Budapest, Hungary
| | - Tamás Kardon
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Budapest, Hungary
| | - Balázs Legeza
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Beáta Lizák
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Budapest, Hungary
| | - József Mandl
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Budapest, Hungary
| | - Éva Margittai
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Ferenc Puskás
- Department of Anesthesiology, University of Colorado, Denver, CO, USA
| | - Péter Száraz
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Péter Szelényi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Budapest, Hungary
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Budapest, Hungary.
| |
Collapse
|
38
|
Cheng KY, Guo F, Lu JQ, Cao YZ, Wang TC, Yang Q, Xia Q. MnTM-4-PyP modulates endogenous antioxidant responses and protects primary cortical neurons against oxidative stress. CNS Neurosci Ther 2014; 21:435-45. [PMID: 25545542 DOI: 10.1111/cns.12373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 12/13/2022] Open
Abstract
AIMS Oxidative stress is a direct cause of injury in various neural diseases. Manganese porphyrins (MnPs), a large category of superoxide dismutase (SOD) mimics, shown universally to have effects in numerous neural disease models in vivo. Given their complex intracellular redox activities, detailed mechanisms underlying the biomedical efficacies are not fully elucidated. This study sought to investigate the regulation of endogenous antioxidant systems by a MnP (MnTM-4-PyP) and its role in the protection against neural oxidative stress. METHODS Primary cortical neurons were treated with MnTM-4-PyP prior to hydrogen peroxide-induced oxidative stress. RESULTS MnTM-4-PyP increased cell viability, reduced intracellular level of reactive oxygen species, inhibited mitochondrial apoptotic pathway, and ameliorated endoplasmic reticulum function. The protein levels and activities of endogenous SODs were elevated, but not those of catalase. SOD2 transcription was promoted in a transcription factor-specific manner. Additionally, we found FOXO3A and Sirt3 levels also increased. These effects were not observed with MnTM-4-PyP alone. CONCLUSION Induction of various levels of endogenous antioxidant responses by MnTM-4-PyP has indispensable functions in its protection for cortical neurons against hydrogen peroxide-induced oxidative stress.
Collapse
Affiliation(s)
- Kuo-Yuan Cheng
- Department of Chemical Biology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Cho SY, Lee JH, Ju MK, Jeong EM, Kim HJ, Lim J, Lee S, Cho NH, Park HH, Choi K, Jeon JH, Kim IG. Cystamine induces AIF-mediated apoptosis through glutathione depletion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:619-31. [PMID: 25549939 DOI: 10.1016/j.bbamcr.2014.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/09/2014] [Accepted: 12/22/2014] [Indexed: 12/18/2022]
Abstract
Cystamine and its reduced form cysteamine showed protective effects in various models of neurodegenerative disease, including Huntington's disease and Parkinson's disease. Other lines of evidence demonstrated the cytotoxic effect of cysteamine on duodenal mucosa leading to ulcer development. However, the mechanism for cystamine cytotoxicity remains poorly understood. Here, we report a new pathway in which cystamine induces apoptosis by targeting apoptosis-inducing factor (AIF). By screening of various cell lines, we observed that cystamine and cysteamine induce cell death in a cell type-specific manner. Comparison between cystamine-sensitive and cystamine-resistant cell lines revealed that cystamine cytotoxicity is not associated with unfolded protein response, reactive oxygen species generation and transglutaminase or caspase activity; rather, it is associated with the ability of cystamine to trigger AIF nuclear translocation. In cystamine-sensitive cells, cystamine suppresses the levels of intracellular glutathione by inhibiting γ-glutamylcysteine synthetase expression that triggers AIF translocation. Conversely, glutathione supplementation completely prevents cystamine-induced AIF translocation and apoptosis. In rats, cysteamine administration induces glutathione depletion and AIF translocation leading to apoptosis of duodenal epithelium. These results indicate that AIF translocation through glutathione depletion is the molecular mechanism of cystamine toxicity, and provide important implications for cystamine in the neurodegenerative disease therapeutics as well as in the regulation of AIF-mediated cell death.
Collapse
Affiliation(s)
- Sung-Yup Cho
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jin-Haeng Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Mi-kyeong Ju
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Hyo-Jun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jisun Lim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Seungun Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Hyun Ho Park
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Kihang Choi
- Department of Chemistry, Korea University, Seoul 136-701, Republic of Korea
| | - Ju-Hong Jeon
- Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| |
Collapse
|
40
|
Gullberg RC, Jordan Steel J, Moon SL, Soltani E, Geiss BJ. Oxidative stress influences positive strand RNA virus genome synthesis and capping. Virology 2014; 475:219-29. [PMID: 25514423 PMCID: PMC4332586 DOI: 10.1016/j.virol.2014.10.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 12/24/2022]
Abstract
Flaviviruses are 5′ capped positive-stranded RNA viruses that replicate their genomes within endoplasmic reticulum-derived vesicles. Flaviviruses are well known to induce oxidative stress late in infection but it is unknown if oxidative stress plays a positive role in the viral RNA replication cycle. We therefore examined how oxidation affects flavivirus RNA replication. We found that antioxidant treatment reduced virus production, reduced the viral positive-to-negative strand RNA ratio, and resulted in the accumulation of uncapped positive-sense viral RNAs. Treatment of the NS5 RNA capping enzyme in vitro with oxidizing agents enhanced guanylyltransferase activity, indicating that the guanylyltransferase function of the flavivirus NS5 RNA capping enzyme is activated by oxidative conditions. Antioxidant treatment also reduced alphavirus RNA replication and protein expression while enhancing nsP1 capping activity. These findings suggest that RNA viruses may utilize oxidative stress induced during infection to help temporally control genome RNA capping and genome replication.
Collapse
Affiliation(s)
- Rebekah C Gullberg
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - J Jordan Steel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Stephanie L Moon
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Elnaz Soltani
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Brian J Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
41
|
Kapuy O, Vinod PK, Bánhegyi G. mTOR inhibition increases cell viability via autophagy induction during endoplasmic reticulum stress - An experimental and modeling study. FEBS Open Bio 2014; 4:704-13. [PMID: 25161878 PMCID: PMC4141208 DOI: 10.1016/j.fob.2014.07.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/04/2014] [Accepted: 07/21/2014] [Indexed: 01/21/2023] Open
Abstract
Unfolded or misfolded proteins in the endoplasmic reticulum (ER) trigger an adaptive ER stress response known as unfolded protein response (UPR). Depending on the severity of ER stress, either autophagy-controlled survival or apoptotic cell death can be induced. The molecular mechanisms by which UPR controls multiple fate decisions have started to emerge. One such molecular mechanism involves a master regulator of cell growth, mammalian target of rapamycin (mTOR), which paradoxically is shown to have pro-apoptotic role by mutually interacting with ER stress response. How the interconnections between UPR and mTOR influence the dynamics of autophagy and apoptosis activation is still unclear. Here we make an attempt to explore this problem by using experiments and mathematical modeling. The effect of perturbed mTOR activity in ER stressed cells was studied on autophagy and cell viability by using agents causing mTOR pathway inhibition (such as rapamycin or metyrapone). We observed that mTOR inhibition led to an increase in cell viability and was accompanied by an increase in autophagic activity. It was also shown that autophagy was activated under conditions of severe ER stress but that in the latter phase of stress it was inhibited at the time of apoptosis activation. Our mathematical model shows that both the activation threshold and temporal dynamics of autophagy and apoptosis inducers are sensitive to variation in mTOR activity. These results confirm that autophagy has cytoprotective role and is activated in mutually exclusive manner with respect to ER stress levels.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tűzoltó utca 37-47, Budapest H-1094, Hungary
| | - P K Vinod
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tűzoltó utca 37-47, Budapest H-1094, Hungary
| |
Collapse
|
42
|
Tomanek L. Proteomics to study adaptations in marine organisms to environmental stress. J Proteomics 2014; 105:92-106. [PMID: 24788067 DOI: 10.1016/j.jprot.2014.04.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/25/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Comparisons of proteomic responses of closely related congeners and populations have shown which cellular processes are critical to adapt to environmental stress. For example, several proteomic species comparisons showed that increasing abundances of oxidative stress proteins indicate that reactive oxygen species (ROS) represent a ubiquitous signal and possible co-stressor of warm and cold temperature, acute hyposaline and low pH stress, possibly causing a shift from pro-oxidant NADH-producing to anti-oxidant NADPH-producing and -consuming metabolic pathways. Changes in cytoskeletal and actin-binding proteins in response to several stressors, including ROS, suggest that both are important structural and functional elements in responding to stress. Disruption of protein homeostasis, e.g., increased abundance of molecular chaperones, was severe in response to acute heat stress, inducing proteolysis, but was also observed in response to chronic heat and cold stress and was concentrated to the endoplasmic reticulum during hyposaline stress. Small GTPases affecting vesicle formation and transport, Ca(2+)-signaling and ion transport responded to salinity stress in species- and population-specific ways. Aerobic energy metabolism was in general down-regulated in response to temperature, hypoxia, hyposalinity and low pH stress, but other metabolic pathways were activated to respond to increased oxidative stress or to switch metabolic fuels. Thus, comparative proteomics is a powerful approach to identify functionally adaptive variation. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Lars Tomanek
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Sciences, Environmental Proteomics Laboratory, 1 Grand Ave., San Luis Obispo, CA 93407-0401, USA.
| |
Collapse
|
43
|
Zámbó V, Simon-Szabó L, Szelényi P, Kereszturi &E, Bánhegyi G, Csala M. Lipotoxicity in the liver. World J Hepatol 2013; 5:550-557. [PMID: 24179614 PMCID: PMC3812457 DOI: 10.4254/wjh.v5.i10.550] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/27/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Obesity due to excessive food intake and the lack of physical activity is becoming one of the most serious public health problems of the 21st century. With the increasing prevalence of obesity, non-alcoholic fatty liver disease is also emerging as a pandemic. While previously this pathophysiological condition was mainly attributed to triglyceride accumulation in hepatocytes, recent data show that the development of oxidative stress, lipid peroxidation, cell death, inflammation and fibrosis are mostly due to accumulation of fatty acids, and the altered composition of membrane phospholipids. In fact, triglyceride accumulation might play a protective role, and the higher toxicity of saturated or trans fatty acids seems to be the consequence of a blockade in triglyceride synthesis. Increased membrane saturation can profoundly disturb cellular homeostasis by impairing the function of membrane receptors, channels and transporters. However, it also induces endoplasmic reticulum stress via novel sensing mechanisms of the organelle’s stress receptors. The triggered signaling pathways in turn largely contribute to the development of insulin resistance and apoptosis. These findings have substantiated the lipotoxic liver injury hypothesis for the pathomechanism of hepatosteatosis. This minireview focuses on the metabolic and redox aspects of lipotoxicity and lipoapoptosis, with special regards on the involvement of endoplasmic reticulum stress responses.
Collapse
|
44
|
Jain K, Suryakumar G, Prasad R, Ganju L. Differential activation of myocardial ER stress response: A possible role in hypoxic tolerance. Int J Cardiol 2013; 168:4667-77. [DOI: 10.1016/j.ijcard.2013.07.180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/09/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
|
45
|
Sarkar DD, Edwards SK, Mauser JA, Suarez AM, Serowoky MA, Hudok NL, Hudok PL, Nuñez M, Weber CS, Lynch RM, Miyashita O, Tsao TS. Increased redox-sensitive green fluorescent protein reduction potential in the endoplasmic reticulum following glutathione-mediated dimerization. Biochemistry 2013; 52:3332-45. [PMID: 23594148 DOI: 10.1021/bi400052u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the endoplasmic reticulum (ER) is the compartment where disulfide bridges in secreted and cell surface proteins are formed, the disturbance of its redox state has profound consequences, yet regulation of ER redox potential remains poorly understood. To monitor the ER redox state in live cells, several fluorescence-based sensors have been developed. However, these sensors have yielded results that are inconsistent with each other and with earlier non-fluorescence-based studies. One particular green fluorescent protein (GFP)-based redox sensor, roGFP1-iL, could detect oxidizing changes in the ER despite having a reduction potential significantly lower than that previously reported for the ER. We have confirmed these observations and determined the mechanisms by which roGFP1-iL detects oxidizing changes. First, glutathione mediates the formation of disulfide-bonded roGFP1-iL dimers with an intermediate excitation fluorescence spectrum resembling a mixture of oxidized and reduced monomers. Second, glutathione facilitates dimerization of roGFP1-iL, which shifted the equilibrium from oxidized monomers to dimers, thereby increasing the molecule's reduction potential compared with that of a dithiol redox buffer. We conclude that the glutathione redox couple in the ER significantly increased the reduction potential of roGFP1-iL in vivo by facilitating its dimerization while preserving its ratiometric nature, which makes it suitable for monitoring oxidizing and reducing changes in the ER with a high degree of reliability in real time. The ability of roGFP1-iL to detect both oxidizing and reducing changes in ER and its dynamic response in glutathione redox buffer between approximately -190 and -130 mV in vitro suggests a range of ER redox potentials consistent with those determined by earlier approaches that did not involve fluorescent sensors.
Collapse
Affiliation(s)
- Deboleena Dipak Sarkar
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Essential roles of the Kar2/BiP molecular chaperone downstream of the UPR pathway in Cryptococcus neoformans. PLoS One 2013; 8:e58956. [PMID: 23484059 PMCID: PMC3590199 DOI: 10.1371/journal.pone.0058956] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/08/2013] [Indexed: 11/19/2022] Open
Abstract
The endoplasmic reticulum (ER) is a central hub where secreted or membrane-bound proteins are maturated and folded properly in eukaryotes. Maintenance of ER homeostasis is particularly important for human fungal pathogens, such as Cryptococcus neoformans, which encounter a plethora of host-mediated stresses during infection. Our previous study demonstrated that the unfolded protein response (UPR) pathway, composed of the evolutionarily conserved Ire1 kinase and the unique Hxl1 transcription factor, has pleiotropic roles in ER stress response, thermotolerance, antifungal drug resistance, and virulence in C. neoformans. Here, we functionally characterized an ER-resident molecular chaperone, Kar2/BiP, in C. neoformans. Conditional expression of KAR2 by the copper-regulated promoter revealed that Kar2 is essential for the viability of C. neoformans. Constitutive expression of KAR2 by the strong histone H3 promoter partially restores resistance to ER stress, cell wall stress, thermotolerance, and genotoxic stress in ire1Δ and hxl1Δ mutants, suggesting that Kar2 mainly functions downstream of the UPR pathway. Furthermore, Kar2 appears to control azole resistance in C. neoformans downstream of the UPR pathway without regulation of ERG11 or ERG3. Interestingly, we discovered that azole treatment is sensed as ER-stress and subsequently activates the Ire1-dependent Hxl1 splicing event and induction of KAR2 by the UPR pathway. In contrast, the constitutive expression of Kar2 is not sufficient to restore the Ire1-mediated regulation of capsule production in C. neoformans UPR mutants. In conclusion, this study demonstrates that Kar2 is not only essential for vegetative growth but also required for response and adaptation to the environmental stresses and antifungal drugs downstream of the UPR pathway in C. neoformans.
Collapse
|
47
|
Schönthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. SCIENTIFICA 2012; 2012:857516. [PMID: 24278747 PMCID: PMC3820435 DOI: 10.6064/2012/857516] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/12/2012] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle required for lipid biosynthesis, calcium storage, and protein folding and processing. A number of physiological and pathological conditions, as well as a variety of pharmacological agents, are able to disturb proper ER function and thereby cause ER stress, which severely impairs protein folding and therefore poses the risk of proteotoxicity. Specific triggers for ER stress include, for example, particular intracellular alterations (e.g., calcium or redox imbalances), certain microenvironmental conditions (e.g., hypoglycemia, hypoxia, and acidosis), high-fat and high-sugar diet, a variety of natural compounds (e.g., thapsigargin, tunicamycin, and geldanamycin), and several prescription drugs (e.g., bortezomib/Velcade, celecoxib/Celebrex, and nelfinavir/Viracept). The cell reacts to ER stress by initiating a defensive process, called the unfolded protein response (UPR), which is comprised of cellular mechanisms aimed at adaptation and safeguarding cellular survival or, in cases of excessively severe stress, at initiation of apoptosis and elimination of the faulty cell. In recent years, this dichotomic stress response system has been linked to several human diseases, and efforts are underway to develop approaches to exploit ER stress mechanisms for therapy. For example, obesity and type 2 diabetes have been linked to ER stress-induced failure of insulin-producing pancreatic beta cells, and current research efforts are aimed at developing drugs that ameliorate cellular stress and thereby protect beta cell function. Other studies seek to pharmacologically aggravate chronic ER stress in cancer cells in order to enhance apoptosis and achieve tumor cell death. In the following, these principles will be presented and discussed.
Collapse
Affiliation(s)
- Axel H. Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR-405, Los Angeles, CA 90033, USA
| |
Collapse
|
48
|
Deng Y, Wang ZV, Tao C, Gao N, Holland WL, Ferdous A, Repa JJ, Liang G, Ye J, Lehrman MA, Hill JA, Horton JD, Scherer PE. The Xbp1s/GalE axis links ER stress to postprandial hepatic metabolism. J Clin Invest 2012; 123:455-68. [PMID: 23257357 DOI: 10.1172/jci62819] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 10/25/2012] [Indexed: 12/21/2022] Open
Abstract
Postprandially, the liver experiences an extensive metabolic reprogramming that is required for the switch from glucose production to glucose assimilation. Upon refeeding, the unfolded protein response (UPR) is rapidly, though only transiently, activated. Activation of the UPR results in a cessation of protein translation, increased chaperone expression, and increased ER-mediated protein degradation, but it is not clear how the UPR is involved in the postprandial switch to alternate fuel sources. Activation of the inositol-requiring enzyme 1 (IRE1) branch of the UPR signaling pathway triggers expression of the transcription factor Xbp1s. Using a mouse model with liver-specific inducible Xbp1s expression, we demonstrate that Xbp1s is sufficient to provoke a metabolic switch characteristic of the postprandial state, even in the absence of caloric influx. Mechanistically, we identified UDP-galactose-4-epimerase (GalE) as a direct transcriptional target of Xbp1s and as the key mediator of this effect. Our results provide evidence that the Xbp1s/GalE pathway functions as a novel regulatory nexus connecting the UPR to the characteristic postprandial metabolic changes in hepatocytes.
Collapse
Affiliation(s)
- Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Crespo I, San-Miguel B, Prause C, Marroni N, Cuevas MJ, González-Gallego J, Tuñón MJ. Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis. PLoS One 2012; 7:e50407. [PMID: 23209735 PMCID: PMC3508929 DOI: 10.1371/journal.pone.0050407] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/18/2012] [Indexed: 12/23/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and apoptotic cell death play an important role in the pathogenesis and perpetuation of inflammatory bowel disease (IBD). We aimed to explore the potential of glutamine to reduce ER stress and apoptosis in a rat model of experimental IBD. Colitis was induced in male Wistar rats by intracolonic administration of 30 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Glutamine (25 mg/dL) was given by rectal route daily for 2 d or 7 d. Both oxidative stress (TBARS concentration and oxidised/reduced glutathione ratio) and ER stress markers (CHOP, BiP, calpain-1 and caspase-12 expression) increased significantly within 48 h of TNBS instillation, and glutamine attenuated the extent of the changes. Glutamine also inhibited the significant increases of ATF6, ATF4 and spliced XBP-1 mRNA levels induced by TNBS instillation. TNBS-colitis resulted in a significant increase in p53 and cytochrome c expression, and a reduced Bcl-xL expression and Bax/Bcl-2 ratio. These effects were significantly inhibited by glutamine. Treatment with the amino acid also resulted in significant decreases of caspase-9, caspase-8 and caspase-3 activities. Double immunofluorescence staining showed co-localization of CHOP and cleaved caspase-3 in colon sections. Phospho-JNK and PARP-1 expression was also significantly higher in TNBS-treated rats, and treatment with glutamine significantly decreased JNK phosphorylation and PARP-1 proteolysis. To directly address the effect of glutamine on ER stress and apoptosis in epithelial cells, the ER stress inducers brefeldin A and tunicamycin were added to Caco-2 cells that were treated with glutamine (5 mM and 10 mM). The significant enhancement in PERK, ATF6 phosphorylated IRE1, BiP and cleaved caspase-3 expression induced by brefeldin A and tunicamycin was partly prevented by glutamine. Data obtained indicated that modulation of ER stress signalling and anti-apoptotic effects contribute to protection by glutamine against damage in TNBS-induced colitis.
Collapse
Affiliation(s)
- Irene Crespo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - Carolina Prause
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Norma Marroni
- Porto Alegre Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - María J. Cuevas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Javier González-Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - María J. Tuñón
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| |
Collapse
|
50
|
Tomanek L. Environmental proteomics of the mussel Mytilus: implications for tolerance to stress and change in limits of biogeographic ranges in response to climate change. Integr Comp Biol 2012; 52:648-64. [PMID: 22966064 DOI: 10.1093/icb/ics114] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Climate change will affect temperature extremes and averages, and hyposaline conditions in coastal areas due to extreme precipitation events and oceanic pH. How climate change will push species close to, or beyond, their physiological tolerance limits as well as change the limits of their biogeographic ranges can probably be investigated best in species that have already responded to climate change and whose distribution ranges are currently in flux. Blue mussels provide such a study system, with the invading warm-adapted Mediterranean Mytilus galloprovincialis having replaced the native more cold-adapted Mytilus trossulus from the southern part of its range in southern California over the past century, possibly due to climate change. However, freshwater input may prevent the latter species from expanding further north. We used a proteomics approach to characterize the responses of the two congeners to acute heat stress, chronic thermal acclimation, and hyposaline stress. In addition, we investigated the proteomic changes in response to decreasing seawater pH in another bivalve, the eastern oyster Crassostrea virginica. The results suggest that reactive oxygen species (ROS) are a common costressor during environmental stress, including oceanic acidification, and possibly cause modifications of cytoskeletal elements. All stressors disrupted protein homeostasis, indicated by the induction of molecular chaperones and, in the case of acute heat stress, proteasome isoforms, possibly due both to protein denaturation directly by the stressor and to the production of ROS. Acute stress by heat and hyposalinity changed several small G-proteins implicated in cytoskeletal modifications and vesicular transport, respectively. Changes in abundance of proteins involved in energy metabolism and ROS scavenging further suggest a possible trade-off during acute and chronic stress from heat and cold between ROS-generating NADH-producing pathways and ROS-scavenging NADPH-producing pathways, especially through the reaction of NADPH-dependent isocitrate dehydrogenase and the pentose-phosphate pathway. Some of the proteomic changes may not constitute de novo protein synthesis but rather shifts in abundance of isoforms differing in posttranslational modifications, specifically acetylation by a NAD-dependent deacetylase (sirtuin). Interspecific differences suggest that these processes set physiological tolerance limits and thereby contribute to recent biogeographic shifts in range, possibly caused by climate change.
Collapse
Affiliation(s)
- Lars Tomanek
- Department of Biological Sciences, Center for Coastal Marine Science, Environmental Proteomics Laboratory, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA.
| |
Collapse
|