1
|
Bhuvaneshwari K, Harithpriya K, Ganesan K, Xu B, Ramkumar KM. Role of oxeiptosis in disease mechanisms and therapeutic opportunities. Apoptosis 2025; 30:1182-1201. [PMID: 40064755 DOI: 10.1007/s10495-025-02087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 06/16/2025]
Abstract
Cell death is a crucial mechanism through which cells respond to damage and stress, thereby maintaining homeostasis. Cell death pathways include both caspase-dependent and caspase-independent mechanisms, such as apoptosis, necrosis, autophagy, and ferroptosis. The recent discovery of oxeiptosis identifies a unique form of ROS-mediated, caspase-independent cell death with apoptotic-like features. This process is regulated by key molecules, including KEAP1, PGAM5, and AIFM1, and is characterized by distinct molecular and morphological features. These regulators contribute to cellular integrity by activating cytoprotective genes through Nrf2 stabilization by KEAP1 and maintaining cellular homeostasis via PGAM5-mediated AIFM1 Ser116 dephosphorylation. In this review, we discuss the broad spectrum of oxeiptosis-mediated regulation in disease pathogenesis by combating ROS-induced cellular damage. Modulating oxeiptosis helps in disease management by mitigating ROS-induced cellular damage, restoring redox balance, and preventing pathological inflammation. Additionally, we highlight modulators such as natural derivatives and lncRNAs that trigger oxeiptosis in various diseases, including vitiligo, psoriasis, and multiple cancer types. Modulating oxeiptosis presents significant clinical implications by offering novel therapeutic strategies to mitigate oxidative stress, restore cellular homeostasis, and prevent inflammation-driven diseases. This review emphasizes potential therapeutic advances for conditions characterized by aberrant ROS accumulation, offering innovative avenues for clinical intervention and treatment development.
Collapse
Affiliation(s)
- K Bhuvaneshwari
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, TN, India
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, TN, India
| | - Kumar Ganesan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3, Sassoon Road, Pokfulam, Hong Kong, 999077, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong, 519087, China.
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, TN, India.
| |
Collapse
|
2
|
Liu Z, Cai H, Wang T, Aleem HB, Liu R, Chen H. Gallic acid protect against spinal cord ischemia-reperfusion injury in rat via activation of Nrf2/HO-1 signaling. Regen Ther 2025; 29:419-426. [PMID: 40292078 PMCID: PMC12022406 DOI: 10.1016/j.reth.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/30/2025] Open
Abstract
Object This study explores Gallic acid's (GA) neuroprotective effects against spinal cord ischemia-reperfusion injury (SCII) and its underlying mechanisms. Methods Spinal cord ischemia/reperfusion injury was induced in rats using the modified Zivin's method of clamping the abdominal aorta. The Basso-Beattie-Bresnahan scores, the inclined plane test, hematoxylin and eosin (HE) staining, and Nissl staining were used to measure locomotor activity and histological changes in the injured spinal cords. Proinflammatory factors (TNF-α and IL-1β) were examined using an ELISA kit. Moreover, In vitro oxidative stress model was induced by tBHP used to assess the cell survival rate, reactive oxygen species (ROS) levels, Malondialdehyde (MDA) levels. RT-qPCR and Western blot was used to detect the expression levels of mRNA and proteins. Results In vitro, GA inhibited tBHP-induced apoptosis in PC-12 cells, reduced ROS and MDA production, and abolished the expression of pro-apoptotic factors while enhancing the Nrf2/HO-1 signaling pathway. In vivo, GA treatment improved the behavioral and structural aspects of SCII in rats, inhibiting the production of proinflammatory factors, also reduced oxidative stress, and prevented neuronal apoptosis by enhancing the Nrf2/HO-1 signaling pathway. Conclusions GA exhibits neuroprotective effects against SCII, involving antioxidant, anti-inflammatory, and anti-apoptotic activities through Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zhengqiang Liu
- Department of Spinal Surgery, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, 443003, China
- Department of Orthopaedics, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332000, China
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China
| | - Huili Cai
- Department of Hematology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, 443003, China
| | - Tianlun Wang
- College of Medicine and Health Sciences, China Three Gorges University, Yichang 443003, China
| | - Hamza bin Aleem
- Department of Spinal Surgery, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, 443003, China
| | - Rui Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Haidan Chen
- Department of Spinal Surgery, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, Hubei, 443003, China
| |
Collapse
|
3
|
Shaernejad S, Nosrat A, Baeeri M, Hashemi Goradel N, SeyedSadeghi M, Akbariani M, Arabzadeh A, Rahimifard M, Haghi-Aminjan H. Role of hesperidin/hesperetin against chemotherapy-induced cardiotoxicity: a systematic review of non-clinical studies. Cancer Cell Int 2025; 25:186. [PMID: 40405281 PMCID: PMC12100833 DOI: 10.1186/s12935-025-03828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 05/11/2025] [Indexed: 05/24/2025] Open
Abstract
Despite the undeniable role of chemotherapeutics in cancer treatment, their administration may be associated with various side effects. Cardiac injury is among the most crucial side effects related to the induction of chemotherapeutic agents. Since the heart is a vital organ, cardiotoxicity often prevents clinicians from continuing chemotherapy. Hesperidin and hesperetin, flavonoids derived from citrus fruits, possess several pharmaceutical properties. This study firstly explores the cardioprotective effects of hesperidin and hesperetin against chemotherapy-induced cardiotoxicity mechanisms, emphasizing their potential as adjunctive therapies. Key literature gaps are identified, and further mechanistic studies will be proposed. The findings underscore the translational potential of these flavonoids, advocating for rigorous preclinical optimization and clinical trials to validate their efficacy and safety. This review lays a foundation for integrating natural compounds into cardioprotective strategies in oncology. A systematic search was conducted in databases (PubMed, Scopus, ISI) until May 2025, according to PRISMA principles. The search terms were chosen according to our research objective and queried in the title and abstract. Following the screening of 82 papers, twelve articles were selected based on our inclusion and exclusion criteria. Based on the evaluated results, chemotherapy adversely affects cardiac tissue, leading to elevated risks of morbidity and mortality. Co-administration of hesperidin and hesperetin with chemotherapy prevents heart injury and preserves cardiac function, maintaining it almost like a normal heart. The protective role of hesperidin and hesperetin is based on their ability to fight free radicals, reduce inflammation, and stop cell death. Nonclinical investigations indicate that hesperidin and hesperetin ameliorate chemotherapy-induced cardiotoxicity. Nonetheless, they may influence the efficacy of anticancer medications, which primarily function by elevating oxidants, inflammation, and apoptosis. This indicates that meticulously designed trials are necessary to evaluate the efficacy and safety of this combination along with the synergistic potential of them in preventing chemotherapy-induced cardiotoxicity while maintaining anticancer effectiveness.
Collapse
Affiliation(s)
- Sina Shaernejad
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Nosrat
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mirsalim SeyedSadeghi
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mostafa Akbariani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - AmirAhmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mahban Rahimifard
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Hamed Haghi-Aminjan
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
4
|
André DCA, Oliveira PF, Alves MG, Martins AD. Caloric Restriction and Sirtuins as New Players to Reshape Male Fertility. Metabolites 2025; 15:303. [PMID: 40422880 DOI: 10.3390/metabo15050303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/28/2025] Open
Abstract
Over the years, caloric intake has remained a subject of profound scrutiny. Within the scientific community, there has been rigorous debate to ascertain which path is most ideal for enhancing quality of life and extending the human lifespan. Caloric restriction has been shown to be a promising contributor towards longevity and delaying the onset of age-related diseases. This diet consists of a reduction in caloric intake while maintaining essential energy and nutritional requirements to achieve optimal health while avoiding malnutrition. However, the effects of this nutritional regimen on male reproductive health have not yet been comprehensively studied. Nevertheless, such a complex process will certainly be regulated by a variety of metabolic sensors, likely sirtuins. Evidence has been gathered regarding this group of enzymes, and their ability to regulate processes such as chromatin condensation, the cell cycle, insulin signaling, and glucose and lipid metabolism, among many others. Concerning testicular function and male fertility, sirtuins can modulate certain metabolic processes through their interaction with the hypothalamic-pituitary-gonadal axis and mitochondrial dynamics, among many others, which remain largely unexplored. This review explores the impact of caloric restriction on male fertility, highlighting the emerging role of sirtuins as key regulators of male reproductive health through their influence on cellular metabolism.
Collapse
Affiliation(s)
- Diana C A André
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco G Alves
- Institute of Biomedicine, Department of Medical Sciences (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana D Martins
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Kar E, Övenler Z, Hacıoğlu C, Kar F. Boric Acid Induces Oxidative Damage and Apoptosis Through SEMA3A/PLXNA1/NRP1 Signalling Pathway in U251 Glioblastoma Cell. J Cell Mol Med 2025; 29:e70578. [PMID: 40318008 PMCID: PMC12049150 DOI: 10.1111/jcmm.70578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
Glioblastoma is one of the deadliest cancers with a very low chance of survival. Glioblastomas have a poor prognosis because of their infiltrative nature, which makes them difficult to totally isolate with rigorous surgery, radiation, and chemotherapy. Our aim in this study was to investigate the efficacy of boric acid, which has anti-cancer properties, on glioblastoma, which has very limited treatment options. U251 human glioblastoma cell lines were treated with IC25 (15.62 μg/mL), IC50 (31.25 μg/mL) and IC75 (62.5 μg/mL) doses of boric acid. Cell viability and proliferation levels were tested. At the same time, the activity of boric acid on cells was tested through oxidative stress, apoptosis, and semaphorin signalling pathway parameters. Our findings indicate that boric acid induced dose-dependent oxidative stress, cellular growth inhibition, apoptosis and morphological changes in U251 cells. Additionally, treatments with increasing amounts of boric acid resulted in a rise in the production of biomarkers of the semaphorin pathway, which may limit cell growth and proliferation. We found that boric acid activates apoptosis by triggering ROS formation at high doses and at the same time inhibits cell proliferation by increasing semaphorin signalling pathway expressions. Boric acid may act as an anti-cancer agent by activating different mechanisms in a dose-dependent manner.
Collapse
Affiliation(s)
- Ezgi Kar
- Department of Nutrition and Dietetics, Faculty of Health SciencesKutahya Health Sciences UniversityKutahyaTurkey
| | - Zeynep Övenler
- Faculty of MedicineKutahya Health Sciences UniversityKutahyaTurkey
| | - Ceyhan Hacıoğlu
- Department of Medical Biochemistry, Faculty of MedicineDuzce UniversityDuzceTurkey
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of MedicineKutahya Health Sciences UniversityKutahyaTurkey
| |
Collapse
|
6
|
Wei Y, Pan S, Zhou Z, Yang Y, Liu T, Chen J, Xie Y. Remimazolam attenuated lipopolysaccharide-induced behavioral deficits and neuronal injury via activation of the Nrf2 pathway. Sci Rep 2025; 15:13784. [PMID: 40258855 PMCID: PMC12012220 DOI: 10.1038/s41598-025-95379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
Sepsis is a severe disorder that is always accompanied by brain injury and dysfunction. This study aimed to evaluate the effects of remimazolam, a new ultra-short-acting sedative, on LPS-induced neuronal injury, and the role of Nrf2 signaling pathway involved. LPS was administered to Sprague-Dawley rats in the presence or absence of remimazolam. Then the behavior analysis was performed by using the Morris Water Maze and Open Field Test. The levels of the Superoxide Dismutase (SOD) and Malondialdehyde (MDA), the neuronal apoptosis, and the expression of Nrf2, HO-1, and Bcl-2 were detected in the hippocampus. In vitro, primary hippocampal neurons were exposed to LPS with or without remimazolam administration. Then the cell viability, apoptosis, mitochondrial membrane potential (MMP), and intracellular ROS were measured to assess oxidative stress and neuron injury. The expression of Nrf2, and HO-1 was also determined by Western blotting. LPS triggered neuroapoptosis, evoked oxidative stress, and inhibited the expression of Nrf2, and HO-1 in rat hippocampus, which were attenuated by remimazolam treatment. Additionally, remimazolam alleviated LPS-induced cognitive dysfunction and anxiety‑like behaviors in rats. In vitro, remimazolam could ameliorate neuronal damage, decrease the production of ROS, and increase the MMP of neurons exposed to LPS, which was accompanied by an increase in the expression of Nrf2 and HO-1. However, ML385 (an Nrf2 inhibitor) reversed the beneficial effects of remimazolam on primary hippocampal neurons. These findings suggest that remimazolam exerted protective effects on LPS-induced hippocampal neuronal injury in vivo and in vitro, which was associated with activation of Nrf2 signaling. Further experiments are needed to fully explore the exact molecular mechanism of Nrf2 upstream and downstream of remimazolam and its effects on distinct brain regions, which will help to better understand the neural effects of remimazolam.
Collapse
Affiliation(s)
- Yi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sining Pan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhan Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Yang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianxiao Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Gupta G, Samuel VP, M RM, Rani B, Sasikumar Y, Nayak PP, Sudan P, Goyal K, Oliver BG, Chakraborty A, Dua K. Caspase-independent cell death in lung cancer: from mechanisms to clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04149-0. [PMID: 40257494 DOI: 10.1007/s00210-025-04149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Caspase-independent cell death (CICD) has recently become a very important mechanism in lung cancer, in particular, to overcome a critical failure in apoptotic cell death that is common to disease progression and treatment failures. The pathways involved in CICD span from necroptosis, ferroptosis, mitochondrial dysfunction, and autophagy-mediated cell death. Its potential therapeutic applications have been recently highlighted. Glutathione peroxidase 4 (GPX4) inhibition-driven ferroptosis has overcome drug resistance in non-small cell lung cancer (NSCLC). In addition, necroptosis involving RIPK1 and RIPK3 causes tumor cell death and modulation of immune responses in the tumor microenvironment (TME). Mitochondrial pathways are critical for CICD through modulation of metabolic and redox homeostasis. Ferroptosis is amplified by mitochondrial reactive oxygen species (ROS) and lipid peroxidation in lung cancer cells, and mitochondrial depolarization induces oxidative stress and leads to cell death. In addition, mitochondria-mediated autophagy, or mitophagy, results in the clearance of damaged organelles under stress conditions, while this function is also linked to CICD when dysregulated. The role of cell death through autophagy regulated by ATG proteins and PI3K/AKT/mTOR pathway is dual: to suppress tumor and to sensitize cells to therapy. A promising approach to enhancing therapeutic outcomes involves targeting mechanisms of CICD, including inducing ferroptosis by SLC7A11 inhibition, modulating mitochondrial ROS generation, or combining inhibition of autophagy with chemotherapy. Here, we review the molecular underpinnings of CICD, particularly on mitochondrial pathways and their potential to transform lung cancer treatment.
Collapse
Affiliation(s)
- Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Y Sasikumar
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Priya Priyadarshini Nayak
- Department of Medical Oncology IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Puneet Sudan
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Kamal Dua
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
8
|
Hsu MC, Wang HT, Chen CY. Carvacrol Protects IPEC-J2 Cells from Oxidative Stress by Suppressing Autophagy. Int J Mol Sci 2025; 26:3495. [PMID: 40331969 PMCID: PMC12026536 DOI: 10.3390/ijms26083495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Oxidative stress impairs intestinal function and causes poor growth performance in piglets. Carvacrol is a natural essential oil, and its anti-oxidative and anti-inflammatory activities in the intestines of piglets have been reported in many studies. However, the mechanisms underlying these protective effects against oxidative stress remain unclear. This study aimed to investigate the possible pathway of carvacrol in the porcine intestine under oxidative stress using an in vitro model. Porcine intestinal epithelial cells (IPEC-J2) were treated with carvacrol and hydrogen peroxide (H2O2), an oxidative stress inducer, to investigate the protective mechanisms of carvacrol under oxidative stress. We found that carvacrol ameliorated a H2O2-induced loss of cell viability, apoptosis, and reduced intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels. Carvacrol reduced mitochondrial ROS generation and increased citrate synthase activity during oxidative stress. Furthermore, carvacrol attenuated an increase in the autophagy marker LC3II-to-I ratio and reduced the accumulation of lysosomes and autolysosomes induced by H2O2. The increased protein expression of the mitophagy marker PINK1, induced by H2O2, was also reduced by carvacrol treatment. Metformin-activated autophagy diminished the protective effects of carvacrol on cell viability and MDA levels under H2O2 treatment, indicating that autophagy inhibition is necessary for carvacrol-induced protection in IPEC-J2 cells during oxidative stress. In conclusion, this study demonstrated the underlying mechanism that carvacrol exerted its anti-oxidative effects on porcine intestinal epithelial cells by relieving excessive autophagy during weaning stress.
Collapse
Affiliation(s)
| | | | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 10672, Taiwan; (M.-C.H.); (H.-T.W.)
| |
Collapse
|
9
|
Eanes LA, Eldeeb M, Storholt D, Patel YM. Naringenin impairs mitochondrial function via ROS to induce apoptosis in tamoxifen resistant MCF-7 breast cancer cells. PLoS One 2025; 20:e0320020. [PMID: 40179084 PMCID: PMC11967926 DOI: 10.1371/journal.pone.0320020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/11/2025] [Indexed: 04/05/2025] Open
Abstract
Breast cancer is the second leading cause of cancer deaths among women. While tamoxifen, a commonly used drug therapy in breast cancer patients, is effective, many patients acquire tamoxifen resistance. Therefore, it is essential to identify alternative or combination therapeutics for the treatment of breast cancer. Naringenin, a naturally occurring flavonoid, has been reported to elicit antioxidant, anti-proliferative, and pro-apoptotic effects in cancer cells. The current study aimed to identify the mechanism by which naringenin induces apoptosis in tamoxifen-resistant breast cancer cells. The present study demonstrated that naringenin induced an increase in ROS, resulting in oxidative stress, impaired mitochondrial function, and apoptosis in tamoxifen-resistant breast cancer cells. Our study reports that naringenin specifically increases mitochondrial superoxide anions and hydrogen peroxide production while also causing mitochondrial dysfunction. These studies provide novel evidence for the mechanism by which naringenin induces apoptosis in tamoxifen-resistant breast cancer cells and supports the use of naringenin as a therapeutic on breast cancer cells and drug-resistant cancer cells.
Collapse
Affiliation(s)
- Lauren A. Eanes
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Mayar Eldeeb
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Darrell Storholt
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Yashomati M. Patel
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| |
Collapse
|
10
|
Alanazi ST, Salama SA, Althobaiti MM, Bakhsh A, Aljehani NM, Alanazi E, Alanazi MT, Musa A. Theaflavin alleviates cisplatin-induced nephrotoxicity: Targeting SIRT1/p53/FOXO3a/Nrf2 signaling and the NF-kB inflammatory cascade. Food Chem Toxicol 2025; 198:115334. [PMID: 39978533 DOI: 10.1016/j.fct.2025.115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
Cisplatin is a widely used chemotherapeutic agent. Nevertheless, a significant fraction of cisplatin-treated patients develops nephrotoxicity which limits cisplatin therapeutic implementation. The current work was devoted to investigate the potential nephroprotective impact of theaflavin against the cisplatin-induced nephrotoxicity using male Wistar rats as a mammalian model. The results indicated that theaflavin significantly improved the renal histopathological picture and glomerular filtration rate, along with reduced renal injury marker KIM-1, urinary albumin/creatinine ratio, serum creatinine, and urea. Mechanistically, theaflavin upregulated protein level of SIRT1 and downregulated the acetylated forms of the inflammatory transcription factor (TF) NF-kB, the antioxidant TF FOXO3a, and the pro-apoptotic TF p53 in the cisplatin-treated rats. Additionally, it upregulated the antioxidant TF Nrf2. In the same context, it suppressed the inflammatory responses, oxidative stress, and apoptosis. NF-kB nuclear translocation and levels of its responsive gene products IL-6 and TNF-α were suppressed. Lipids and DNA oxidation were reduced, and level of the antioxidant GSH and activity of the antioxidant enzymes SOD, GPx, and CAT were increased. The apoptotic markers caspase-3, BAX, and Bcl2 were modulated. Collectively, these findings highlight the nephroprotective competency of theaflavin against cisplatin-induced nephrotoxicity and underscore modulations of SIRT1, p53, FOXO3a, Nrf2, and NF-kB as potential targets.
Collapse
Affiliation(s)
- Samyah T Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Musaad M Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Afnan Bakhsh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Najla M Aljehani
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, 13316, Saudi Arabia
| | - Ebtisam Alanazi
- Cardiac Center King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Maha T Alanazi
- Medical Imaging, King Abdulaziz Medical City, Ministry of National Guard, Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| |
Collapse
|
11
|
Wakle KS, Karwa PN, Sakle NS. Investigating Vitamin D 3's anticancer mechanisms in MCF-7 cells: a network pharmacology and omics technology approach. Mol Divers 2025:10.1007/s11030-025-11156-z. [PMID: 40146431 DOI: 10.1007/s11030-025-11156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025]
Abstract
Breast cancer is one of the leading reasons of mortality due to cancer globally. Estrogen receptor-positive (ER +) breast cancer being a significant subtype. The therapeutic potential of Vitamin D3 in cancer treatment has gained attention due to its ability to modulate key molecular targets and signaling pathways. This study investigates the anticancer mechanisms of Vitamin D3 in MCF-7 breast cancer cells using network pharmacology and omics technology approach. Utilizing protein-protein interaction (PPI) networks, we identified several critical protein targets involved in breast cancer progression, including ESR1, ESR2, PGR, IGF1R, and KDR. Pathway enrichment analyses highlighted Vitamin D3's impact on pivotal signaling pathways such as the PI3K/Akt pathway, estrogen receptor signaling, and apoptosis regulation. In vitro studies showed that Vitamin D3 significantly inhibited cell proliferation in MCF-7 cells. It also induced apoptosis and disrupted mitochondrial function. Flow cytometry analysis demonstrated a dose-dependent increase in apoptotic cell death and S-phase cell cycle arrest. Confocal imaging and mitochondrial membrane potential assays further supported the findings, indicating mitochondrial dysfunction and chromatin condensation. Additionally, gene expression analysis in breast invasive carcinoma tissues confirmed the relevance of ESR1 and PGR in hormone receptor-positive breast cancer. Histopathological studies on DMBA-induced mammary carcinoma revealed Vitamin D3's protective effects, reducing tumor malignancy severity through anti-proliferative and pro-apoptotic actions. These findings provide strong evidence for Vitamin D3's potential as a multi-targeted therapeutic agent in breast cancer, suggesting further investigation into its clinical applications and combination strategies with existing therapies as an adjunct or alternative in the treatment.
Collapse
Affiliation(s)
- Komal S Wakle
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, 431001, India
| | - Pawan N Karwa
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, 411018, India
| | - Nikhil S Sakle
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, 431001, India.
| |
Collapse
|
12
|
He L, Tan D, Zhu R, Zhao J, Yin H, Duan M, Li X, Fan W, Yang Z, Wang X, Yang H. Lactobacillus brevis YNH inhibits proliferation of HeLa cells and promotes their apoptosis by modulating the PI3K/AKT pathway. Contemp Oncol (Pozn) 2025; 29:55-68. [PMID: 40330442 PMCID: PMC12051884 DOI: 10.5114/wo.2025.148642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/21/2024] [Indexed: 05/08/2025] Open
Abstract
Introduction Existing treatments for cervical cancer have side effects on the human body. Some lactobacilli inhibit tumour progression in a strain-specific manner without toxic side effects. Material and methods We explored whether Lactobacillus brevis YNH isolated from the vagina has anti-cervical cancer effects by performing Cell Counting Kit-8 assays, flow cytometry, JC-1 staining, and western blotting. Transcriptome sequencing was performed to determine the possible mechanism. Xenograft tumour model mice that were orally administered Lactobacillus brevis YNH were used to validate the anticancer effects in vivo. Results Our study revealed that Lactobacillus brevis YNH downregulated the expression of cyclin E1 and CDK2, resulting in cell cycle arrest at S phase and inhibition of HeLa cell proliferation. In addition, HeLa cells treated with Lactobacillus brevis YNH significantly promoted the cleavage of caspase-3 and caspase-8, and increased the expression of Bax. Also, the mitochondrial membrane potential decreased, which induced apoptosis of HeLa cells. Most of the differentially expressed genes were enriched in the PI3K/AKT pathway, indicating that Lactobacillus brevis YNH might exert its anticancer effects through the PI3K/AKT pathway. Most importantly, we found that the tumour volume of mice was significantly smaller than control group after orally administered Lactobacillus brevis YNH, and biochemical results showed that Lactobacillus brevis YNH had no toxic side effects on the liver or kidney, suggesting that Lactobacillus brevis YNH has anti-cervical cancer effects in vivo. Conclusions This study revealed the anti-cervical cancer effects of Lactobacillus brevis YNH, providing a new candidate bioactive substance for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Liang He
- Department of Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Peking University Cancer Hospital Yunnan, Kunming, China
| | - Dingji Tan
- Department of Laboratory, Chongqing Bishan Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Rui Zhu
- Department of Inspection Center, First People’s Hospital of Qujing City, Kunming, China
| | - Jinglin Zhao
- Department of Laboratory, Kunming Children’s Hospital, Children’s Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Hongli Yin
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Peking University Cancer Hospital Yunnan, Kunming, China
| | - Ming Duan
- Department of Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Peking University Cancer Hospital Yunnan, Kunming, China
| | - Xin Li
- Department of Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Peking University Cancer Hospital Yunnan, Kunming, China
| | - Wen Fan
- Department of Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhiqin Yang
- Department of Gynecology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Wang
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Peking University Cancer Hospital Yunnan, Kunming, China
| | - Hongying Yang
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Peking University Cancer Hospital Yunnan, Kunming, China
| |
Collapse
|
13
|
Tambe PK, Shetty MP, Rana K, Bharati S. Targeted Modulation of Mitochondrial Oxidative Stress Ameliorates 5-Fluorouracil-Induced Renal Injury in BALB/c Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2025; 2025:8892026. [PMID: 40225412 PMCID: PMC11986914 DOI: 10.1155/omcl/8892026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/15/2025] [Indexed: 04/15/2025]
Abstract
Background: The present study reports the protective effect conferred by scavenging mitochondrial oxidative stress (mtOS) in 5-fluorouracil (5-FU)-induced renal injury. Methods: 5-FU renal toxicity model was created by administering 5-FU (12 mg/kg b.w. intraperitoneally [i.p.], for 4 days) to male BALB/c mice. The protective effect of mitochondria-targeted antioxidant (MTA), Mito-TEMPO coadministered at a dosage of 0.1 mg/kg b.w. i.p., was established in terms of levels/expressions of renal injury markers, histopathological alterations, oxidative DNA damage, proinflammatory markers, mtOS, mitochondrial dysfunction, and modulation of apoptotic proteins and apoptotic cell death. Results: A significant rise in the levels of serum urea, uric acid, and creatinine was noted after 5-FU administration to the animals. Immunohistochemical and ELISA findings demonstrated significant decrease in podocin and conversely a significant increase in neutrophil gelatinase-associated lipocalin (NGAL) expression after 5-FU challenge. The histopathological analysis further revealed Bowman's capsule dilation, glomerular condensation, and vacuolar degeneration. Mito-TEMPO treatment significantly lowered renal injury markers, reversed the expressions of podocin and NGAL to normal, and restored normal histoarchitecture of renal tissue. Mitochondrial reactive oxygen species (mtROS), mtLPO, activity of mitochondrial enzyme complexes, and mitochondrial antioxidant defense status were significantly improved in Mito-TEMPO protected group as compared to the 5-FU group. Further, significantly decreased expression of 8-OHdG, reduction in apoptotic cell death, and modulation of apoptotic proteins Bax, Bcl-2, and caspase-3 were noted in Mito-TEMPO protected group, indicating its protective effect against 5-FU-induced renal injury. Conclusion: The approach of targeting mtOS using MTA, Mito-TEMPO, may prove as safe adjuvant in alleviating renal toxicity during 5-FU chemotherapy.
Collapse
Affiliation(s)
- Prasad Kisan Tambe
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Maya P. Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Komal Rana
- Manipal Government of Karnataka Bioincubator Advanced Research Centre, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
14
|
Gomes AR, Tavares-da-Silva EJ, Abrantes AM, Gonçalves AC, Alves R, Botelho MF, Pires AS, Roleira FMF. Novel steroidal oximes as antiproliferative agents: Design, synthesis and biological activity evaluation. Bioorg Chem 2025; 156:108229. [PMID: 39914031 DOI: 10.1016/j.bioorg.2025.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 03/28/2025]
Abstract
Oximes have been the subject of extensive research given their interesting anticancer activity. Steroids are also important scaffolds in drug discovery, not only due to their ability to penetrate cell membranes and bind to the nuclear and membrane receptors but also due to their suitability for structural modifications, allowing their use as cytotoxic and cytostatic anticancer agents. Combining the oxime group with the steroidal skeleton can be a suitable strategy to create novel anticancer agents. In this study, we designed and synthesised several novel steroidal oximes (OX1, OX2, OX3, OX3.1, OX4, EP2OX, FormOX and ExeOX) and evaluated their anticancer activity in three of the most incident and deadliest types of cancer, prostate (PC3), lung (H1299) and triple-negative breast (HCC1806) cancers. Selectivity using a normal human cell line, MRC-5, and hemocompatibility were also assessed. EP2OX was the most active compound in the studied cancer cell lines (IC50 values ranging from 1.13 to 3.70 µM) followed by OX1 (IC50 values ranging from 18.69 to 29.95 µM). Further studies with EP2OX and OX1 showed that the first induced DNA damage by double-strand breaks triggered by ROS production, leading to apoptosis/necrosis (depending on the concentration), while the second induced cell death by apoptosis regardless of the concentration. Moreover, both compounds showed some selectivity towards cancer cells and proved to be non-haemolytic. Our results reinforce the importance of steroidal oximes in the oncology field, namely our novel compound EP2OX which might be the starting point for a potential drug candidate for treating these types of cancer.
Collapse
Affiliation(s)
- Ana R Gomes
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde 3000-548 Coimbra, Portugal; Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde 3000-548 Coimbra, Portugal
| | - Elisiário J Tavares-da-Silva
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde 3000-548 Coimbra, Portugal
| | - Ana M Abrantes
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde 3000-548 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto 3004-561 Coimbra, Portugal
| | - Ana C Gonçalves
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto 3004-561 Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Oncobiology and Hematology and University Clinics of Hematology and Oncology, Faculty of Medicine, Portugal
| | - Raquel Alves
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto 3004-561 Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Oncobiology and Hematology and University Clinics of Hematology and Oncology, Faculty of Medicine, Portugal
| | - Maria F Botelho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde 3000-548 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto 3004-561 Coimbra, Portugal
| | - Ana S Pires
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde 3000-548 Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Praceta Professor Mota Pinto 3004-561 Coimbra, Portugal.
| | - Fernanda M F Roleira
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde 3000-548 Coimbra, Portugal.
| |
Collapse
|
15
|
Sharma V, Kumar A. MCL-1 as a potent target for cancer: Recent advancements, structural insights and SAR studies. Bioorg Chem 2025; 156:108211. [PMID: 39889551 DOI: 10.1016/j.bioorg.2025.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
The myeloid cell leukemia-1 (Mcl-1) differentiation protein belongs to the B-cell lymphoma 2 (Bcl-2) family of proteins which regulates the apoptosis or cell death. Mcl-1 is known for its pro-survival in response to various stressors. Therefore, it acts as a prominent target in cancer treatment. Mcl-1 has emerged as one of the validated drug targets for anticancer drug discovery as their expression has been implicated in the pathogenesis of cancers. In this review, we have included the various inhibitors based on many heterocyclic rings such as pyrrole, pyrazole, coumarin, quinoline and indole. This manuscript incorporates the anticancer activity, structure activity relationship (SAR) and molecular modelling of recently synthesized Mcl-1 inhibitors. The clinical trial status of Mcl-1 inhibitors is also described. But till now, no Mcl-1 inhibitor has been approved by any drug authority. This review is based on extensive research in the field of designing Mcl-1 inhibitors from 2020 to till now. It will provide extensive information to researchers and scientists for designing of novel Mcl-1 inhibitors.
Collapse
Affiliation(s)
- Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University Punjab, Mohali, India
| | - Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University Punjab, Mohali, India.
| |
Collapse
|
16
|
Singh R, Gaur SK, Nagar R, Kaul R. Insights into the different mechanisms of Autophagy and Apoptosis mediated by Morbilliviruses. Virology 2025; 603:110371. [PMID: 39742556 DOI: 10.1016/j.virol.2024.110371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/03/2025]
Abstract
Viruses are obligate intracellular parasites that have co-evolved with the host. During the course of evolution, viruses have acquired abilities to abrogate the host's immune responses by modulating the host proteins which play a pivotal role in various biological processes. One such process is the programmed cell death in virus-infected cells, which can occur via autophagy or apoptosis. Morbilliviruses are known to modulate both autophagy and apoptosis. Upon infecting a cell, the morbilliviruses can utilize autophagosomes as their nest and delay the host defense apoptotic response, and/or can promote apoptosis to escalate the virus dissemination. Moreover, there is an active interplay between these two pathways which eventually decides the fate of a virus-infected cell. Recent advances in our understanding of these processes provide a potential rationale to further explore morbilliviruses for therapeutic purposes.
Collapse
Affiliation(s)
- Rashmi Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sharad Kumar Gaur
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rakhi Nagar
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
17
|
Kocanci FG. Effect of Pimecrolimus on apoptotic pathways in H 2O 2-treated neuron like differentiated-SH-SY5Y cells: a molecular docking and mechanistic study. Toxicol Res (Camb) 2025; 14:tfaf020. [PMID: 39968517 PMCID: PMC11831029 DOI: 10.1093/toxres/tfaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Neurodegenerative diseases (NDs), including Alzheimer's and Parkinson's, are marked by progressive neuronal loss, driven largely by oxidative stress and apoptosis. Developing neuroprotective strategies to counteract these processes is critical for managing such disorders. This study explores the neuroprotective effects of pimecrolimus, a calcineurin inhibitor, in mitigating hydrogen peroxide (H₂O₂)-induced cytotoxicity in neuron-like differentiated SH-SY5Y (d-SH-SY5Y) cells. The investigation focuses on apoptosis modulation, cell viability, and molecular docking interactions with apoptotic proteins. SH-SY5Y cells were differentiated with retinoic acid and treated with H₂O₂ (250 μM) alone or in combination with pimecrolimus (0.01, 0.1, and 1 μM) for 24 h. Cell viability was assessed using lactate dehydrogenase (LDH) assays. Additionally, malondialdehyde (MDA) levels were measured to assess oxidative stress in SH-SY5Y cells following the treatment conditions. Molecular docking analyses evaluated pimecrolimus' interactions with bax, bcl-2, caspase-3 and caspase-8 proteins, using Venetoclax as a positive control. Apoptosis-related protein levels were analyzed via ELISA, qRT-PCR, and immunofluorescence staining (cleaved caspase-3 and DAPI). Molecular docking showed strong binding of pimecrolimus to bax, bcl-2, caspase-3 and caspase-8, with comparable binding energies to Venetoclax. LDH and MDA assays demonstrated significant reductions in H₂O₂-induced cytotoxicity with pimecrolimus. ELISA and qRT-PCR revealed that H₂O₂ increased pro-apoptotic bax, caspase-3 and caspase-8 levels while decreasing anti-apoptotic bcl-2 levels. Pimecrolimus co-treatment reversed these effects in a dose-dependent manner. Immunofluorescence confirmed reduced apoptosis and cell death with pimecrolimus. Pimecrolimus effectively mitigates oxidative stress and apoptosis in H₂O₂-treated d-SH-SY5Y cells. These findings suggest its potential as a neuroprotective agent for managing (NDs).
Collapse
Affiliation(s)
- Fatma Gonca Kocanci
- Alanya Alaaddin Keykubat University, Vocational High School of Health Services, Department of Medical Laboratory Techniques, Alanya/Antalya 07425, Türkiye
| |
Collapse
|
18
|
Gan L, Zhao J, Yao P, Christopher TA, Lopez B, Lau WB, Koch W, Gao E, Ma X, Wang Y. Adipocyte-derived small extracellular vesicles exacerbate diabetic ischemic heart injury by promoting oxidative stress and mitochondrial-mediated cardiomyocyte apoptosis. Redox Biol 2025; 79:103443. [PMID: 39740363 PMCID: PMC11750569 DOI: 10.1016/j.redox.2024.103443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Diabetes increases ischemic heart injury via incompletely understood mechanisms. We recently reported that diabetic adipocytes-derived small extracellular vesicles (sEV) exacerbate myocardial reperfusion (MI/R) injury by promoting cardiomyocyte apoptosis. Combining in vitro mechanistic investigation and in vivo proof-concept demonstration, we determined the underlying molecular mechanism responsible for diabetic sEV-induced cardiomyocyte apoptosis after MI/R. METHODS AND RESULTS Adult mice were fed a high-fat diet (HFD) for 12 weeks. sEV were isolated from plasma or epididymal adipose tissue. HFD significantly increased the number and size of plasma- and adipocyte-derived sEV. Intramyocardial injection of an equal number of diabetic plasma sEV in nondiabetic hearts significantly increased cardiac apoptosis and exacerbated MI/R-induced cardiac dysfunction. Diabetic plasma sEV significantly activated cardiac caspase 9 but not caspase 8, suggesting that diabetic sEV induces cardiac apoptosis via the mitochondrial pathway. These pathologic alterations were phenotyped by intramyocardial injection of sEV isolated from diabetic adipocytes or HGHL-challenged 3T3L1 adipocytes. To obtain direct evidence that diabetic sEV promotes cardiomyocyte apoptotic cell death, isolated neonatal rat ventricular cardiomyocytes (NRVMs) were treated with sEV and subjected to simulated ischemia/reperfusion (SI/R). Treatment of cardiomyocytes with sEV from diabetic plasma, diabetic adipocytes, or HGHL-challenged 3T3L1 adipocytes significantly enhanced SI/R-induced apoptosis and reduced cell viability. These pathologic effects were replicated by a miR-130b-3p (a molecule increased dramatically in diabetic sEV) mimic and blocked by a miRb-130b-3p inhibitor. Molecular studies identified PGC-1α (i.e. PGC-1α1/-a) as the direct downstream target of miR-130b-3p, whose downregulation causes mitochondrial dysfunction and apoptosis. Finally, treatment with diabetic adipocyte-derived sEV or a miR-130b-3p mimic significantly enhanced mitochondrial reactive oxygen species (ROS) production in SI/R cardiomyocytes. Conversely, treatment with a miR-130b-3p inhibitor or overexpression of PGC-1α extremely attenuated diabetic sEV-induced ROS production. CONCLUSION We obtained the first evidence that diabetic sEV promotes oxidative stress and mitochondrial-mediated cardiomyocyte apoptotic cell death, exacerbating MI/R injury. These pathological phenotypes were mediated by miR-130b-3p-induced suppression of PGC-1α expression and subsequent mitochondrial ROS production. Targeting miR-130b-3p mediated cardiomyocyte apoptosis may be a novel strategy for attenuating diabetic exacerbation of MI/R injury.
Collapse
Affiliation(s)
- Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Jianli Zhao
- Department of Biomedical Engineering, UAB, Birmingham, AL, USA
| | - Peng Yao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Bernard Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wayne B Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Walter Koch
- Department of Cardiovascular Science, Temple University, Philadelphia, PA, USA
| | - Erhe Gao
- Department of Cardiovascular Science, Temple University, Philadelphia, PA, USA
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA; Department of Biomedical Engineering, UAB, Birmingham, AL, USA.
| |
Collapse
|
19
|
Yavuz E, Cengiz IZ, Arslan A, Eser C. Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps. ANN CHIR PLAST ESTH 2025:S0294-1260(25)00008-1. [PMID: 39863446 DOI: 10.1016/j.anplas.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about H2S effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area. MATERIALS AND METHODS "Wistar albino" rats weighing between 250 and 300 grams were divided into 4 groups (group 1, group 2, group 3, group 4). Each group was divided into 2 subgroups: subgroup A (control) and subgroup B (H2S). In each group, skin flaps were elevated as an island flap with a superficial epigastric artery pedicle, 6 × 4cm from the groin area. In subgroup B (H2S), liquid hydrogen sulfide was injected through the tail vein 20minutes before ischemia at a final concentration of 10μM. Femoral artery and vein blood flows were stopped with separate microclips and left in ischemia, according to the planned ischemia hours of the flaps: group 1 as 1 hour, group 2 as 2hours, group 3 as 3hours, and group 4 as 6hours. Later, microclips were removed, and blood flow restored again. After 12hours of reperfusion, the rats were sacrificed by cervical dislocation, and tissue samples were taken. From the samples taken, neutrophil count in ischemic tissue, MDA (malondialdehyde) measurement, and damage in the tissue were evaluated by electron microscopy. RESULTS On electron microscopy inspection at all hours (1, 2, 3, and 6), hydrogen sulfide was found to provide protection against ischemia, reperfusion damage, and apoptosis at the cellular level. There was a statistically significant (P=0.035) decrease in the tissue neutrophil count at the 1st, 2nd, and 3rd hours. In the tissue MDA measurement, a statistically significant (P=0.026) decrease in hydrogen sulfide was detected at the first hour. There was no statistically significant difference in the 6th hour tissue neutrophil count and 2nd, 3rd, and 6th hour tissue MDA measurement. CONCLUSION Electron microscopy results in this study showed that hydrogen sulfide had antiapoptotic effects on reperfusion damage in skin flaps at all hours. However, the neutrophil counts showed it had cytoprotective and anti-inflammatory properties during the 1st, 2nd, and 3rd hours following ischemia, but not during the 6th hour. Tissue MDA levels indicate that H2S mitigates significant I/R injury during the 1st hour but not in the subsequent 2nd, 3rd, and 6th hours. These results led to the hypothesis that, in order to offer a strong enough protective effect against I/R damage, H2S should be administered repeatedly or at varying concentrations. After more research on how H2S affects skin flaps, we believe that it can be used in plastic surgery practices.
Collapse
Affiliation(s)
- E Yavuz
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.
| | - I Z Cengiz
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Istanbul Atlas University, Istanbul, Turkey
| | - A Arslan
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - C Eser
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
20
|
He Y, Liu Y, Zhang M. The beneficial effects of curcumin on aging and age-related diseases: from oxidative stress to antioxidant mechanisms, brain health and apoptosis. Front Aging Neurosci 2025; 17:1533963. [PMID: 39906716 PMCID: PMC11788355 DOI: 10.3389/fnagi.2025.1533963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
Aging and age-related disease are among the most common and challenging issues worldwide. During the aging process, the accumulation of oxidative stress, DNA damage, telomere dysfunction, and other related changes lead to cellular dysfunction and the development of diseases such as neurodegenerative and cardiovascular conditions. Curcumin is a widely-used dietary supplement against various diseases such as cancer, diabetes, cardiovascular diseases and aging. This agent mediates its effects through several mechanisms, including the reduction of reactive oxygen species (ROS) and oxidative stress-induced damage, as well as the modulation of subcellular signaling pathways such as AMPK, AKT/mTOR, and NF-κB. These pathways are involved in cellular senescence and inflammation, and their modulation can improve cell function and help prevent disease. In cancer, Curcumin can induce apoptosis in a variety of different tumor cell lines. Curcumin also activates redox reactions within cells inducing ROS production that leads to the upregulation of apoptosis receptors on the tumor cell membrane. Curcumin can also upregulate the expression and activity of p53 that inhibits tumor cell proliferation and increases apoptosis. Furthermore, curcumin has a potent inhibitory effect on the activity of nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2), which are involved in the overexpression of antiapoptosis genes such as Bcl-2. It can also attenuate the regulation of antiapoptosis phosphoinositide 3-kinases (PI3K) signaling and increase the expression of mitogen-activated protein kinases (MAPKs) to induce endogenous production of ROS. Therefore, herein, we aim to summarize how curcumin affect different epigenetic processes (such as apoptosis and oxidative stress) in order to change aging-related mechanisms. Furthermore, we discuss its roles in age-related diseases, such as Alzheimer, Parkinson, osteoporosis, and cardiovascular diseases.
Collapse
Affiliation(s)
- Ying He
- Department of Biological and Food Engineering, Lyuliang University, Lishi, Shanxi, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yongqing Liu
- Department of Biological and Food Engineering, Lyuliang University, Lishi, Shanxi, China
| | - Min Zhang
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, MARA, Beijing, China
| |
Collapse
|
21
|
Perrotta I. Live and let die: analyzing ultrastructural features in cell death. Ultrastruct Pathol 2025; 49:1-19. [PMID: 39552095 DOI: 10.1080/01913123.2024.2428703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Cell death is an important process that supports morphogenesis during development and tissue homeostasis during adult life by removing damaged or unwanted cells and its dysregulation is associated with numerous disease states. There are different pathways through which a cell can undergo cell death, each relying on peculiar molecular mechanisms and morpho-ultrastructural features. To date, however, while molecular and genetic approaches have been successfully integrated into the field, cell death studies rarely incorporate ultrastructural data from electron microscopy. This review article reports a gallery of original transmission electron microscopy images to describe the ultrastructural features of cells undergoing different types of cell death programs, including necrosis, apoptosis, autophagy, mitotic catastrophe, ferroptosis, methuosis, and paraptosis. TEM has been an important technology in cell biology for well over 50 years and still continues to offer significant advantages in the area of cell death research. TEM allows detailed characterization of the ultrastructural changes within the cell, such as the alteration of organelles and subcellular structures, the nuclear reorganization, and the loss of membrane integrity that enable a distinction between the different forms of cell death based on morphological criteria. Possible pitfalls are also described.
Collapse
Affiliation(s)
- Ida Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis (CM2) Transmission Electron Microscopy Laboratory, University of Calabria, Cosenza, Italy
| |
Collapse
|
22
|
Mansuri A, Trivedi C, Kumar A. Impact of virgin and weathered microplastics on zebrafish: Bioaccumulation, developmental toxicity and molecular pathway disruptions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177510. [PMID: 39536872 DOI: 10.1016/j.scitotenv.2024.177510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) are ubiquitous environmental pollutants with significant ecological risks, particularly due to their potential for bioaccumulation and toxicity. This study examines the effects of virgin spherical MPs and environmentally weathered MPs, specifically polystyrene (PS) and polyethylene (PE), on zebrafish larvae to enhance the environmental relevance of the findings. MP concentrations used were 105-106 particles/L for the virgin MP group and 104 particles/L for the weathered MP group, reflecting levels commonly observed in natural environments. Weathered MPs were produced through mechanical grinding followed by one month of exposure to water and sunlight to simulate environmental aging. MP characterization was performed using advanced microscopy techniques, including Scanning Electron Microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The results indicated significantly higher mortality in the weathered MP group (80%) compared to the virgin MP group (20%). Zebrafish larvae ingested MPs and exhibited disruptions in key molecular pathways, including those involved in oxidative stress response, apoptosis, and DNA damage repair. Notably, this study is among the first to evaluate the impact of MPs on the complete homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways. Our findings highlight the enhanced toxicity of weathered MPs and emphasize the importance of considering MP aging in toxicological assessments. These results contribute to a deeper understanding of MP pollution and provide valuable insights for the development of regulatory measures to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Abdulkhalik Mansuri
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Charvi Trivedi
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
23
|
Ntanzi N, Khan RB, Nxumalo MB, Kumalo HM. Mechanisms of H2pmen-Induced cell death: Necroptosis and apoptosis in MDA cells, necrosis in MCF7 cells. Heliyon 2024; 10:e40654. [PMID: 39660197 PMCID: PMC11629215 DOI: 10.1016/j.heliyon.2024.e40654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women around the world. Several cancer therapeutics have already been discovered and are being used to treat breast cancer. However, most of them cause severe side effects. H2pmen, a tetradentate ligand, was used in this study to investigate its cytotoxic effects on growth, viability, and induction of cell death in MCF7 and MDA cells. The cell viability was determined by treating cells with different concentrations of H2pmen. MTT assay was used to obtain an IC50, and the cells were then assayed for membrane damage, apoptotic induction, and metabolism. Protein expression of Bax, p53, Bcl2, and xIAP was identified using Western blot analysis. The gene expression of RIPK1, RIPK3, and MKLK was determined using qPCR. In MDA cells, H2pmen increases cytotoxicity, as evidenced by upregulated LDH and JC-10, and enhances apoptosis, indicated by upregulated caspase-3/7 and Bax. In contrast, MCF7 cells exhibit a more stable profile with downregulated LDH and Annexin V Activity. MCF7 cells also show reduced necroptosis and increased necrosis. These findings highlight that H2pmen induces varied cytotoxic effects across MDA and MCF7 cells, with MDA cells exhibiting more pronounced apoptosis and necroptosis alongside complex anti-apoptotic responses.
Collapse
Affiliation(s)
- Nosipho Ntanzi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rene B. Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mthokozisi B. Nxumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel M. Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
24
|
Khan F, Kwapiszewska K, Romero AM, Rudzinski K, Gil-Casanova D, Surratt JD, Szmigielski R. Evidence for cytotoxicity and mitochondrial dysfunction in human lung cells exposed to biomass burning aerosol constituents: Levoglucosan and 4-nitrocatechol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125173. [PMID: 39442609 DOI: 10.1016/j.envpol.2024.125173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Biomass burning (BB) emissions are one of the largest sources of carbonaceous aerosol, posing a significant risk as an airway irritant. Important BB markers include wood pyrolysis emissions, such as levoglucosan (LG) that is an anhydrous sugar bearing a six-carbon ring structure (i.e., 1,6-anhydro-β-D-glucopyranose). Atmospheric chemical aging of BB-derived aerosol (BBA) in the presence of nitrogen oxides (NOx) can yield nitro-aromatic compounds, including 4-nitrocatechol (4NC). There is building evidence that NOx-mediated chemical aging of BBA poses a more serious exposure effect than primary pyrolysis emissions. This study provides a comparative toxicological assessment following the exposure to important BBA marker compounds in human lung cells (i.e., A549 and BEAS-2B) to determine whether aromatic 4NC is more toxic than BBA-bound anhydrous carbohydrate (i.e., LG). We determined inhibitory concentration-50 (IC50) and examined reactive oxygen species (ROS) changes, mitochondrial dysfunction, and apoptosis induction in the two cell lines following exposure to LG and 4NC in a dose-response manner. In the BEAS-2B cells, estimated IC50 values for 4NC were 33 and 8.8 μg mL-1, and for LG were 2546 and ∼3 × 107 μg mL-1 at 24 h and 48 h of exposure, respectively. A549 cells exhibited a much higher IC50 value than BEAS-2B cells. LG exposures resulted in mitochondrial stress with viability inhibition, but cells recovered with increasing exposure time. 4NC exposures at 200 μg mL-1 resulted in the induction of apoptosis at 6 h. Mitochondrial dysfunction and ROS imbalance induced the intrinsic apoptotic pathway induction following 4NC exposures. While increased ROS is caused by LG exposure in lung cells, 4NC is a marker of concern during BB emissions, as we observed apoptosis and high mitochondrial ROS in both lung cells at atmospherically-relevant aerosol concentrations. It may be associated with higher airway or inhalation pathologies in higher BBA emissions, such as wildfires or during wood combustion.
Collapse
Affiliation(s)
- Faria Khan
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Karina Kwapiszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Alicia M Romero
- Cytomics Core Facility, Príncipe Felipe Research Center, Avda. Eduardo Primo Yúfera, 3, 46012, Valenica, Spain
| | - Krzysztof Rudzinski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Domingo Gil-Casanova
- Cytomics Core Facility, Príncipe Felipe Research Center, Avda. Eduardo Primo Yúfera, 3, 46012, Valenica, Spain
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Chemistry, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Rafal Szmigielski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
25
|
Alshehri B. Cytochrome c and cancer cell metabolism: A new perspective. Saudi Pharm J 2024; 32:102194. [PMID: 39564377 PMCID: PMC11570848 DOI: 10.1016/j.jsps.2024.102194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Cytochrome c is a vital electron carrier in the mitochondrial respiratory chain. When the outer membrane of mitochondria becomes permeable, cytochrome c is discharged into the cytoplasm, where it initiates the intrinsic apoptosis pathway. The complex interaction between cytochrome c and apoptosis protease-activating factor-1 (Apaf-1) leads to the formation of the apoptosome and activation of a cascade of caspases, highlighting the critical role of cytochrome c in controlling cell death mechanisms. Additionally, cytochrome c undergoes post-translational modifications, especially phosphorylation, which intricately regulate its roles in both respiration and apoptosis. These modifications add layers of complexity to how cytochrome c effectively controls cellular functions. cytochrome c becomes a lighthouse in the intricate web of cancer, its expression patterns providing hints about prognosis and paths toward treatment. Reduced levels of cytochrome c have been observed in cancer tissues, indicating a potential inhibition of apoptosis. For instance, in glioma tissues, cytochrome c levels were lower compared to healthy tissues, and this reduction became more pronounced in advanced stages of the disease. However, the role of cytochrome c in cancer becomes more intricate as it becomes intertwined with the metabolic reprogramming of cancer cells. This suggests that cytochrome c plays a crucial role in tumor progression and resistance to treatment. Viewing cytochrome c as a molecular mosaic reveals that it is not merely a protein, but also a central player in determining cellular fate. This realization opens up exciting avenues for potential advancements in cancer diagnosis and treatment strategies. Despite the advancements made, the narrative surrounding cytochrome c remains incomplete, urging further exploration into its complexities and the biological implications linked to cancer. cytochrome c stands as a beacon of hope and a promising target for therapy in the battle against cancer, particularly due to its significant involvement in tumor metabolism. It holds the potential for a future where innovative solutions can be developed to address the intricate challenges of cellular fate. In this review, we have endeavored to illuminate the multifaceted domain of cytochrome c drawing connections among apoptosis, metabolic reprogramming, and the Warburg effect in the context of cancer.
Collapse
Affiliation(s)
- Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah-11952, Saudi Arabia
| |
Collapse
|
26
|
Gokce Y, Seker U, Ozoner MP. Safety analysis of different ıntensities of elf-pemf in terms of apoptotic, inflammatory, and transcription factor NF-Κb expression levels in rat liver. HEPATOLOGY FORUM 2024; 5:178-183. [PMID: 39524317 PMCID: PMC11440225 DOI: 10.14744/hf.2024.2024.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 11/16/2024]
Abstract
Background and Aim The purpose of this research was to ascertain how exposure to extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) at varying intensities affects apoptosis-related protein expression levels and liver morphology in rats. Materials and Methods In this experimental study, 40 Wistar albino rats were randomly divided into 4 groups, with 10 animals in each group: Control, Sham, 1 milli Tesla (1mT), and 5 mT groups. The control group did not expose any application during the experiment. Animals in the sham group were placed into the closed ELF-PEMF exposure environment, but the device was kept closed. The rats in the 1mT and 5mT groups were placed into a closed ELF-PEMF exposure environment, and the magnetic field application was applied 5 days a week for 4 hours a day for 8 weeks. At the end of the study, the animals were sacrificed, and their liver tissues were examined morphologically, and the expression levels of proteins related to apoptosis and inflammation in these tissues were analyzed. Results Our results indicated that ELF-PEMFs did not lead to any exact morphological alterations in the groups. Tissue apoptotic Bax and Caspase 3 expression levels in the 1mT and 5mT groups were similar (p>0.05) to the control group. Additionally, pro-inflammatory TNF-α and transcription factor NF-κB in the 1mT and 5mT groups were similar (p>0.05) to each other and the control group. Conclusion It is feasible to conclude that neither the administration nor the exposure design of this study is changing the immunoexpression of apoptosis-regulating protein expression levels or liver morphology exposed to ELF-PEMF in rats.
Collapse
Affiliation(s)
- Yasin Gokce
- Department of Biophysics, Harran University School of Medicine, Sanliurfa, Turkiye
| | - Ugur Seker
- Department of Histology and Embryology, Mardin Artuklu University School of Medicine, Mardin, Turkiye
| | - Merve Pekince Ozoner
- Department of Veterinary Histology and Embryology, School of Veterinary Medicine, Siirt University, Siirt, Turkiye
| |
Collapse
|
27
|
Bae E, Beil S, König M, Stolte S, Escher BI, Markiewicz M. The mode of toxic action of ionic liquids: Narrowing down possibilities using high-throughput, in vitro cell-based bioassays. ENVIRONMENT INTERNATIONAL 2024; 193:109089. [PMID: 39500119 DOI: 10.1016/j.envint.2024.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/25/2024]
Abstract
Growing concerns about the environmental impact of ionic liquids (ILs) have spurred research into their (eco)toxic effects, but studies on their mode of toxic action (MOA) still remain limited. However, understanding the MOA and identifying structural features responsible for enhanced toxicity is crucial for characterising the hazard and designing safer alternatives. Therefore, 45 ILs, with systematically varied chemical structures, were tested for cytotoxicity and two specific endpoints in reporter gene assays targeting the Nrf2-ARE mediated oxidative stress response (AREc32) and aryl hydrocarbon receptor activation (AhR-CALUX). While none of the ILs activated the reporter genes, cytotoxicity was high and markedly different between cell lines. Seven and 25 ILs proved more cytotoxic than predicted by baseline toxicity model in the AREc32 and the AhR-CALUX assays, respectively. The length of the side chain and headgroup structures of ILs altered the MOA of ILs. Cellular metabolism of the ILs, investigated by LC-MS/MS, showed side-chain oxidation of the long-chain quaternary ammonium compounds in AhR-CALUX cells and, to a lower extent, in AREc32 cells, however, this transformation could not explain the high cytotoxicity. Effect data for 72 ILs for ten endpoints retrieved from the Tox21 database identified the inhibition of aromatase activity and of mitochondrial membrane potential as potential MOAs. However, in vitro fluorimetric assays for these endpoints demonstrated that effects were activated in a non-specific manner, probably through cytotoxicity. Although many of the ILs tested induced cytotoxicity at concentrations lower than baseline toxicity, the specific MOAs responsible could not be identified. Alternatively, we suggest that the descriptors currently used may fail to define the affinity of ILs for cells. Testing of the affinity of ILs for a diverse range of biomolecules is needed to accurately describe their interactions with cells.
Collapse
Affiliation(s)
- Eunhye Bae
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Maria König
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, D-04318 Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, D-72076 Tübingen, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Dresden University of Technology, D-01062 Dresden, Germany.
| |
Collapse
|
28
|
Lee DH, Lee HJ, Yang G, Kim DY, Kim JU, Yook TH, Lee JH, Kim HJ. A novel treatment strategy targeting cellular pathways with natural products to alleviate sarcopenia. Phytother Res 2024; 38:5033-5051. [PMID: 39099170 DOI: 10.1002/ptr.8301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
Sarcopenia is a condition marked by a significant reduction in muscle mass and strength, primarily due to the aging process, which critically impacts muscle protein dynamics, metabolic functions, and overall physical functionality. This condition leads to increased body fat and reduced daily activity, contributing to severe health issues and a lower quality of life among the elderly. Recognized in the ICD-10-CM only in 2016, sarcopenia lacks definitive treatment options despite its growing prevalence and substantial social and economic implications. Given the aging global population, addressing sarcopenia has become increasingly relevant and necessary. The primary causes include aging, cachexia, diabetes, and nutritional deficiencies, leading to imbalances in protein synthesis and degradation, mitochondrial dysfunction, and hormonal changes. Exercise remains the most effective intervention, but it is often impractical for individuals with limited mobility, and pharmacological options such as anabolic steroids and myostatin inhibitors are not FDA-approved and are still under investigation. This review is crucial as it examines the potential of natural products as a novel treatment strategy for sarcopenia, targeting multiple mechanisms involved in its pathogenesis. By exploring natural products' multi-targeted effects, this study aims to provide innovative and practical solutions for sarcopenia management. Therefore, this review indicates significant improvements in muscle mass and function with the use of specific natural compounds, suggesting promising alternatives for those unable to engage in regular physical activity.
Collapse
Affiliation(s)
- Da Hee Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Hye Jin Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Gabsik Yang
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Dae Yong Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jong Uk Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Tae Han Yook
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jun Ho Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
- Da Capo Co., Ltd., Jeonju-si, Republic of Korea
| | - Hong Jun Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| |
Collapse
|
29
|
Abi Akl M, Hajj R, Jamati G, Karam L, Ibrahim JN, Kobeissy PH, Younes M, Rizk S. Protective Effects of Nettle Tea on SKOV-3 Ovarian Cancer Cells Through ROS Production, Apoptosis Induction, and Motility Inhibition Without Altering Autophagy. Foods 2024; 13:3336. [PMID: 39456397 PMCID: PMC11507475 DOI: 10.3390/foods13203336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Urtica dioica L. (UD), also known as the stinging nettle, has long been used in traditional medicine for its wide range of health benefits. The current study focuses on the effect of nettle tea on the growth and proliferation of one of the most aggressive ovarian adenocarcinoma cell line, SKOV-3 cells. To examine this, cytotoxicity, cell cycle analysis, and ROS assays were performed, along with Annexin V/PI dual staining, cell death ELISA, Western blot analysis, and motility assays. The results showed that a UD aqueous extract (UDAE) can inhibit the growth and proliferation of SKOV-3 cells in a dose- and time-dependent manner by promoting cellular fragmentation. This was accompanied by an increase in two apoptotic hallmarks, the flipping of phosphatidylserine to the outer membrane leaflet and DNA fragmentation as revealed by cell death ELISA. This aqueous extract showed a pro-oxidant activity while also activating the extrinsic caspase-dependent apoptotic pathway with no alteration in autophagy markers. Furthermore, the extract showed promising inhibitory effect on the migratory capacities of aggressive ovarian cancer cells, in vitro.
Collapse
Affiliation(s)
- Maria Abi Akl
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (M.A.A.); (R.H.); (L.K.); (J.-N.I.); (P.H.K.)
| | - Roy Hajj
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (M.A.A.); (R.H.); (L.K.); (J.-N.I.); (P.H.K.)
| | - Georgio Jamati
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
| | - Louna Karam
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (M.A.A.); (R.H.); (L.K.); (J.-N.I.); (P.H.K.)
| | - José-Noel Ibrahim
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (M.A.A.); (R.H.); (L.K.); (J.-N.I.); (P.H.K.)
| | - Philippe H. Kobeissy
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (M.A.A.); (R.H.); (L.K.); (J.-N.I.); (P.H.K.)
| | - Maria Younes
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (M.A.A.); (R.H.); (L.K.); (J.-N.I.); (P.H.K.)
| | - Sandra Rizk
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (M.A.A.); (R.H.); (L.K.); (J.-N.I.); (P.H.K.)
| |
Collapse
|
30
|
Alanazi ST, Salama SA, Althobaiti MM, Alotaibi RA, AlAbdullatif AA, Musa A, Harisa GI. Alleviation of Copper-Induced Hepatotoxicity by Bergenin: Diminution of Oxidative Stress, Inflammation, and Apoptosis via Targeting SIRT1/FOXO3a/NF-κB Axes and p38 MAPK Signaling. Biol Trace Elem Res 2024:10.1007/s12011-024-04401-3. [PMID: 39347884 DOI: 10.1007/s12011-024-04401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Despite its biological importance, excess copper induces organ damage, especially to the liver. Disruption of critical signaling cascades that control redox status, inflammatory responses, and cellular apoptosis significantly contributes to the copper-induced hepatotoxicity. The present work explored the hepatoprotective ability of bergenin against the copper-induced hepatotoxicity using male Wistar rats as a mammalian model. The results revealed that bergenin suppressed the copper-evoked histopathological changes and hepatocellular necrosis as indicated by decreased activity of the liver enzymes ALT and AST in the sera of the copper-intoxicated rats. It decreased hepatic copper content and the copper-induced oxidative stress as revealed by reduced lipid peroxidation and improved activity of the antioxidant enzymes thioredoxin reductase, glutathione peroxidase, catalase, and superoxide dismutase. Bergenin downregulated the inflammatory cytokines TNF-α and IL-6, and the inflammatory cell infiltration to the liver tissues. Additionally, it inhibited the copper-induced apoptosis as indicated by significant reduction in caspase-3 activity. At the molecular level, bergenin activated the antioxidant transcription factor FOXO3a, inhibited the nuclear translocation of the inflammatory transcription factor NF-κB, and suppressed the inflammatory signaling molecules p38 MAPK and c-Fos. Interestingly, bergenin improved the expression of the anti-apoptotic protein Bcl2 and reduced the pro-apoptotic protein BAX. Bergenin markedly enhanced the expression of the histone deacetylase protein SIRT1 that regulates activity of NF-κB and FOXO3a. Collectively, these findings highlight the alleviating activity of bergenin against the copper-induced hepatotoxicity via controlling oxidative stress, inflammation, and apoptosis potentially through upregulation of SIRT1, activation of FOXO3a along with suppression of NF-κB and p38 MAPK signaling.
Collapse
Affiliation(s)
- Samyah T Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.
| | - Musaad M Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Rana A Alotaibi
- College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ammar A AlAbdullatif
- Pharmaceutical Care Services, Ministry of the National Guard-Health Affairs, P.O. Box 4616, 31412, Dammam, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Kate WD, Fanta M, Weinfeld M. Loss of the DNA repair protein, polynucleotide kinase/phosphatase, activates the type 1 interferon response independent of ionizing radiation. Nucleic Acids Res 2024; 52:9630-9653. [PMID: 39087523 PMCID: PMC11381348 DOI: 10.1093/nar/gkae654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
DNA damage has been implicated in the stimulation of the type 1 interferon (T1IFN) response. Here, we show that downregulation of the DNA repair protein, polynucleotide kinase/phosphatase (PNKP), in a variety of cell lines causes robust phosphorylation of STAT1, upregulation of interferon-stimulated genes and persistent accumulation of cytosolic DNA, all of which are indicators for the activation of the T1IFN response. Furthermore, this did not require damage induction by ionizing radiation. Instead, our data revealed that production of reactive oxygen species (ROS) synergises with PNKP loss to potentiate the T1IFN response, and that loss of PNKP significantly compromises mitochondrial DNA (mtDNA) integrity. Depletion of mtDNA or treatment of PNKP-depleted cells with ROS scavengers abrogated the T1IFN response, implicating mtDNA as a significant source of the cytosolic DNA required to potentiate the T1IFN response. The STING signalling pathway is responsible for the observed increase in the pro-inflammatory gene signature in PNKP-depleted cells. While the response was dependent on ZBP1, cGAS only contributed to the response in some cell lines. Our data have implications for cancer therapy, since PNKP inhibitors would have the potential to stimulate the immune response, and also to the neurological disorders associated with PNKP mutation.
Collapse
Affiliation(s)
- Wisdom Deebeke Kate
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Mesfin Fanta
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
32
|
Hedayati N, Safaei Naeini M, Ale Sahebfosoul MM, Mafi A, Eshaghi Milasi Y, Rizaneh A, Nabavi N, Farahani N, Alimohammadi M, Ghezelbash B. MicroRNA dysregulation and its impact on apoptosis-related signaling pathways in myelodysplastic syndrome. Pathol Res Pract 2024; 261:155478. [PMID: 39079383 DOI: 10.1016/j.prp.2024.155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/18/2024]
Abstract
Myelodysplastic syndrome (MDS) holds a unique position among blood cancers, encompassing a spectrum of blood-related disorders marked by impaired maturation of blood cell precursors, bone marrow abnormalities, genetic instability, and a higher likelihood of progressing to acute myeloid leukemia. MicroRNAs (miRNAs), short non-coding RNA molecules typically 18-24 nucleotides in length, are known to regulate gene expression and contribute to various biological processes, including cellular differentiation and programmed cell death. Additionally, miRNAs are involved in many aspects of cancer development, influencing cell growth, transformation, and apoptosis. In this study, we explore the impact of microRNAs on cellular apoptosis in MDS.
Collapse
Affiliation(s)
- Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mobina Safaei Naeini
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anahita Rizaneh
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, Canada.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behrooz Ghezelbash
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
33
|
Longobardi C, Damiano S, Ferrara G, Esposito R, Montagnaro S, Florio S, Ciarcia R. Green tea extract reduces viral proliferation and ROS production during Feline Herpesvirus type-1 (FHV-1) infection. BMC Vet Res 2024; 20:374. [PMID: 39175036 PMCID: PMC11340149 DOI: 10.1186/s12917-024-04227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Feline Herpesvirus type-1 (FHV-1) is a worldwide spread pathogen responsible for viral rhinotracheitis and conjunctivitis in cats that, in the most severe cases, can lead to death. Despite the availability of a variety of antiviral medications to treat this illness, mainly characterized by virostatic drugs that alter DNA replication, their use is often debated. Phytotherapeutic treatments are a little-explored field for FHV-1 infections and reactivations. In this scenario, natural compounds could provide several advantages, such as reduced side effects, less resistance and low toxicity. The purpose of this study was to explore the potential inhibitory effects of the green tea extract (GTE), consisting of 50% of polyphenols, on FHV-1 infection and reactive oxygen species (ROS) production. RESULTS Crandell-Reese feline kidney (CRFK) cells were treated with different doses of GTE (10-400 µg/mL) during the viral adsorption and throughout the following 24 h. The MTT and TCID50 assays were performed to determine the cytotoxicity and the EC50 of the extract, determining the amounts of GTE used for the subsequent investigations. The western blot assay showed a drastic reduction in the expression of viral glycoproteins (i.e., gB and gI) after GTE treatment. GTE induced not only a suppression in viral proliferation but also in the phosphorylation of Akt protein, generally involved in viral entry. Moreover, the increase in cell proliferation observed in infected cells upon GTE addition was supported by enhanced expression of Bcl-2 and Bcl-xL anti-apoptotic proteins. Finally, GTE antioxidant activity was evaluated by dichloro-dihydro-fluorescein diacetate (DCFH-DA) and total antioxidant capacity (TAC) assays. The ROS burst observed during FHV-1 infection was mitigated after GTE treatment, leading to a reduction in the oxidative imbalance. CONCLUSIONS Although further clinical trials are necessary, this study demonstrated that the GTE could potentially serve as natural inhibitor of FHV-1 proliferation, by reducing viral entry. Moreover, it is plausible that the extract could inhibit apoptosis by modulating the intrinsic pathway, thus affecting ROS production.
Collapse
Affiliation(s)
- Consiglia Longobardi
- Department of Veterinary Medicine and Animals Productions, University of Naples Federico II, Via F. Delpino n. 1, Naples, 80137, Italy
| | - Sara Damiano
- Department of Veterinary Medicine and Animals Productions, University of Naples Federico II, Via F. Delpino n. 1, Naples, 80137, Italy.
| | - Gianmarco Ferrara
- Department of Veterinary Medicine and Animals Productions, University of Naples Federico II, Via F. Delpino n. 1, Naples, 80137, Italy
| | - Riccardo Esposito
- Department of Veterinary Medicine and Animals Productions, University of Naples Federico II, Via F. Delpino n. 1, Naples, 80137, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animals Productions, University of Naples Federico II, Via F. Delpino n. 1, Naples, 80137, Italy
| | - Salvatore Florio
- Department of Veterinary Medicine and Animals Productions, University of Naples Federico II, Via F. Delpino n. 1, Naples, 80137, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animals Productions, University of Naples Federico II, Via F. Delpino n. 1, Naples, 80137, Italy
| |
Collapse
|
34
|
Liu X, Li Y, Huang L, Kuang Y, Wu X, Ma X, Zhao B, Lan J. Unlocking the therapeutic potential of P2X7 receptor: a comprehensive review of its role in neurodegenerative disorders. Front Pharmacol 2024; 15:1450704. [PMID: 39139642 PMCID: PMC11319138 DOI: 10.3389/fphar.2024.1450704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The P2X7 receptor (P2X7R), an ATP-gated ion channel, has emerged as a crucial player in neuroinflammation and a promising therapeutic target for neurodegenerative disorders. This review explores the current understanding of P2X7R's structure, activation, and physiological roles, focusing on its expression and function in microglial cells. The article examines the receptor's involvement in calcium signaling, microglial activation, and polarization, as well as its role in the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The review highlights the complex nature of P2X7R signaling, discussing its potential neuroprotective and neurotoxic effects depending on the disease stage and context. It also addresses the development of P2X7R antagonists and their progress in clinical trials, identifying key research gaps and future perspectives for P2X7R-targeted therapy development. By providing a comprehensive overview of the current state of knowledge and future directions, this review serves as a valuable resource for researchers and clinicians interested in exploring the therapeutic potential of targeting P2X7R for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yiwen Li
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Liting Huang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yingyan Kuang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiaoxiong Wu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiangqiong Ma
- Henan Hospital of Integrated Chinese and Western Medicine, Zhengzhou, China
| | - Beibei Zhao
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jiao Lan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
35
|
Hassanin SO, Hegab AMM, Mekky RH, Said MA, Khalil MG, Hamza AA, Amin A. Combining In Vitro, In Vivo, and Network Pharmacology Assays to Identify Targets and Molecular Mechanisms of Spirulina-Derived Biomolecules against Breast Cancer. Mar Drugs 2024; 22:328. [PMID: 39057437 PMCID: PMC11278317 DOI: 10.3390/md22070328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
The current research employed an animal model of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary gland carcinogenesis. The estrogen receptor-positive human breast adenocarcinoma cell line (MCF-7) was used for in vitro analysis. This was combined with a network pharmacology-based approach to assess the anticancer properties of Spirulina (SP) extract and understand its molecular mechanisms. The results showed that the administration of 1 g/kg of SP increased the antioxidant activity by raising levels of catalase (CAT) and superoxide dismutase (SOD), while decreasing the levels of malonaldehyde (MDA) and protein carbonyl. A histological examination revealed reduced tumor occurrence, decreased estrogen receptor expression, suppressed cell proliferation, and promoted apoptosis in SP protected animals. In addition, SP disrupted the G2/M phase of the MCF-7 cell cycle, inducing apoptosis and reactive oxygen species (ROS) accumulation. It also enhanced intrinsic apoptosis in MCF-7 cells by upregulating cytochrome c, Bax, caspase-8, caspase-9, and caspase-7 proteins, while downregulating Bcl-2 production. The main compounds identified in the LC-MS/MS study of SP were 7-hydroxycoumarin derivatives of cinnamic acid, hinokinin, valeric acid, and α-linolenic acid. These substances specifically targeted three important proteins: ERK1/2 MAPK, PI3K-protein kinase B (AKT), and the epidermal growth factor receptor (EGFR). Network analysis and molecular docking indicated a significant binding affinity between SP and these proteins. This was verified by Western blot analysis that revealed decreased protein levels of p-EGFR, p-ERK1/2, and p-AKT following SP administration. SP was finally reported to suppress MCF-7 cell growth and induce apoptosis by modulating the PI3K/AKT/EGFR and MAPK signaling pathways suggesting EGFR as a potential target of SP in breast cancer (BC) treatment.
Collapse
Affiliation(s)
- Soha Osama Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11585, Egypt;
| | - Amany Mohammed Mohmmed Hegab
- Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research, Developmental Pharmacology and Acute Toxicity Department, Giza 12611, Egypt;
| | - Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, Cairo 11829, Egypt;
| | - Mohamed Adel Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt
| | - Mona G. Khalil
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11829, Egypt
| | - Alaaeldin Ahmed Hamza
- Biology Department, Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research (NODCAR), Giza 12611, Egypt
- Medical Research Council, Academy of Scientific Research and Technology, Cairo 11334, Egypt
| | - Amr Amin
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
36
|
Melones-Herrero J, Delgado-Aliseda P, Figueiras S, Velázquez-Gutiérrez J, Quiroga AG, Calés C, Sánchez-Pérez I. Trans-[Pt(amine)Cl 2(PPh 3)] Complexes Target Mitochondria and Endoplasmic Reticulum in Gastric Cancer Cells. Int J Mol Sci 2024; 25:7739. [PMID: 39062981 PMCID: PMC11276749 DOI: 10.3390/ijms25147739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Gastric cancer prognosis is still notably poor despite efforts made to improve diagnosis and treatment of the disease. Chemotherapy based on platinum agents is generally used, regardless of the fact that drug toxicity leads to limited clinical efficacy. In order to overcome these problems, our group has been working on the synthesis and study of trans platinum (II) complexes. Here, we explore the potential use of two phosphine-based agents with the general formula trans-[Pt(amine)Cl2(PPh3)], called P1 and P2 (with dimethylamine or isopropylamine, respectively). A cytotoxicity analysis showed that P1 and especially P2 decrease cell viability. Specifically, P2 exhibits higher activity than cisplatin in gastric cancer cells while its toxicity in healthy cells is slightly lower. Both complexes generate Reactive Oxygen Species, produce DNA damage and mitochondrial membrane depolarization, and finally lead to induced apoptosis. Thus, an intrinsic apoptotic pathway emerges as the main type of cell death through the activation of BAX/BAK and BIM and the degradation of MCL1. Additionally, we demonstrate here that P2 produces endoplasmic reticulum stress and activates the Unfolded Protein Response, which also relates to the impairment observed in autophagy markers such as p62 and LC3. Although further studies in other biological models are needed, these results report the biomolecular mechanism of action of these Pt(II)-phosphine prototypes, thus highlighting their potential as novel and effective therapies.
Collapse
Affiliation(s)
- Jorge Melones-Herrero
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain; (J.M.-H.); (P.D.-A.); (S.F.); (J.V.-G.); (C.C.)
- Instituto de Investigaciones Biomédicas “Sols-Morreale” (IIBM), CSIC-UAM, 28029 Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group, Area 3 Cancer-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Patricia Delgado-Aliseda
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain; (J.M.-H.); (P.D.-A.); (S.F.); (J.V.-G.); (C.C.)
- Instituto de Investigaciones Biomédicas “Sols-Morreale” (IIBM), CSIC-UAM, 28029 Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group, Area 3 Cancer-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Sofía Figueiras
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain; (J.M.-H.); (P.D.-A.); (S.F.); (J.V.-G.); (C.C.)
- Instituto de Investigaciones Biomédicas “Sols-Morreale” (IIBM), CSIC-UAM, 28029 Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group, Area 3 Cancer-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Javier Velázquez-Gutiérrez
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain; (J.M.-H.); (P.D.-A.); (S.F.); (J.V.-G.); (C.C.)
- Instituto de Investigaciones Biomédicas “Sols-Morreale” (IIBM), CSIC-UAM, 28029 Madrid, Spain
| | - Adoración Gomez Quiroga
- Department of Inorganic Chemistry, School of Sciences, Autonomous University of Madrid (UAM), 28049 Madrid, Spain;
- Institute for Advance Research in Chemistry, Autonomous University of Madrid (UAM), 28049 Madrid, Spain
| | - Carmela Calés
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain; (J.M.-H.); (P.D.-A.); (S.F.); (J.V.-G.); (C.C.)
- Instituto de Investigaciones Biomédicas “Sols-Morreale” (IIBM), CSIC-UAM, 28029 Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group, Area 3 Cancer-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Isabel Sánchez-Pérez
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), 28029 Madrid, Spain; (J.M.-H.); (P.D.-A.); (S.F.); (J.V.-G.); (C.C.)
- Instituto de Investigaciones Biomédicas “Sols-Morreale” (IIBM), CSIC-UAM, 28029 Madrid, Spain
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group, Area 3 Cancer-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Rare Diseases, CIBERER-ISCIII, 28029 Madrid, Spain
- Unidad Asociada de Biomedicina, UCLM-CSIC, 28029 Madrid, Spain
| |
Collapse
|
37
|
Kim SM, Kim YH, Han GU, Kim SG, Kim BJ, Moon SH, Shin SH, Ryu BY. Elucidating the mechanisms and mitigation strategies for six-phthalate-induced toxicity in male germ cells. Front Cell Dev Biol 2024; 12:1398176. [PMID: 39050888 PMCID: PMC11266291 DOI: 10.3389/fcell.2024.1398176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Phthalate esters (PAEs) are primary plasticizers and endocrine-disrupting chemicals (EDCs) that are extensively used in numerous everyday consumer products. Although the adverse effects of single PAEs have been studied, our understanding of the effect of multiple phthalate exposure on male germ cell vitality remains limited. Therefore, this study aimed to investigate the collective effects of a mixture of PAEs (MP) comprising diethyl-, bis (2-ethylhexyl)-, dibutyl-, diisononyl-, diisobutyl-, and benzyl butyl-phthalates in the proportions of 35, 21, 15, 15, 8, and 5%, respectively, on differentiated male germ cells using GC-1 spermatogonia (spg) cells. As a mixture, MP substantially hindered GC-1 spg cell proliferation at 3.13 μg/mL, with a half-maximal inhibitory concentration of 16.9 μg/mL. Treatment with 25 μg/mL MP significantly induced reactive oxygen species generation and promoted apoptosis. Furthermore, MP activated autophagy and suppressed phosphorylation of phosphoinositide 3-kinase, protein kinase B, and mammalian target of rapamycin (mTOR). The triple inhibitor combination treatment comprising parthenolide, N-acetylcysteine, and 3-methyladenine effectively reversed MP-induced GC-1 spg cell proliferation inhibition, mitigated apoptosis and autophagy, and restored mTOR phosphorylation. This study is the first to elucidate the mechanism underlying MP-induced male germ cell toxicity and the restoration of male germ cell proliferation mediated by chemical inhibitors. Therefore, it provides valuable insights into the existing literature by proposing a combinatorial toxicity mitigation strategy to counteract male germ cell toxicity induced by various EDCs exposure.
Collapse
Affiliation(s)
- Seok-Man Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Yong-Hee Kim
- AttisLab Inc., Anyang-Si, Gyeonggi-Do, Republic of Korea
| | - Gil Un Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Seul Gi Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Bang-Jin Kim
- Department of Surgery, Division of Surgical Sciences, Columbia University Irving Medical Center, New York, NY, United States
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| |
Collapse
|
38
|
Valizadeh M, Derafsh E, Abdi Abyaneh F, Parsamatin SK, Noshabad FZR, Alinaghipour A, Yaghoobi Z, Taheri AT, Dadgostar E, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Non-Coding RNAs and Neurodegenerative Diseases: Information of their Roles in Apoptosis. Mol Neurobiol 2024; 61:4508-4537. [PMID: 38102518 DOI: 10.1007/s12035-023-03849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Apoptosis can be known as a key factor in the pathogenesis of neurodegenerative disorders. In disease conditions, the rate of apoptosis expands and tissue damage may become apparent. Recently, the scientific studies of the non-coding RNAs (ncRNAs) has provided new information of the molecular mechanisms that contribute to neurodegenerative disorders. Numerous reports have documented that ncRNAs have important contributions to several biological processes associated with the increase of neurodegenerative disorders. In addition, microRNAs (miRNAs), circular RNAs (circRNAs), as well as, long ncRNAs (lncRNAs) represent ncRNAs subtypes with the usual dysregulation in neurodegenerative disorders. Dysregulating ncRNAs has been associated with inhibiting or stimulating apoptosis in neurodegenerative disorders. Therefore, this review highlighted several ncRNAs linked to apoptosis in neurodegenerative disorders. CircRNAs, lncRNAs, and miRNAs were also illustrated completely regarding the respective signaling pathways of apoptosis.
Collapse
Affiliation(s)
| | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Canada
| | | | - Sayedeh Kiana Parsamatin
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Azam Alinaghipour
- School of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Zahra Yaghoobi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Abdolkarim Talebi Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, IR, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, IR, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran
| |
Collapse
|
39
|
Promsut K, Sangtanoo P, Srimongkol P, Saisavoey T, Puthong S, Buakeaw A, Reamtong O, Nutho B, Karnchanatat A. A novel peptide derived from Zingiber cassumunar rhizomes exhibits anticancer activity against the colon adenocarcinoma cells (Caco-2) via the induction of intrinsic apoptosis signaling. PLoS One 2024; 19:e0304701. [PMID: 38870120 PMCID: PMC11175412 DOI: 10.1371/journal.pone.0304701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
This paper presents the initial exploration of the free radical scavenging capabilities of peptides derived from protein hydrolysates (PPH) obtained from Zingiber cassumunar rhizomes (Phlai). To replicate the conditions of gastrointestinal digestion, a combination of pepsin and pancreatin proteolysis was employed to generate these hydrolysates. Subsequently, the hydrolysate underwent fractionation using molecular weight cut-off membranes at 10, 5, 3, and 0.65 kDa. The fraction with a molecular weight less than 0.65 kDa exhibited the highest levels ABTS, DPPH, FRAP, and NO radical scavenging activity. Following this, RP-HPLC was used to further separate the fraction with a molecular weight less than 0.65 kDa into three sub-fractions. Among these, the F5 sub-fraction displayed the most prominent radical-scavenging properties. De novo peptide sequencing via quadrupole-time-of-flight-electron spin induction-mass spectrometry identified a pair of novel peptides: Asp-Gly-Ile-Phe-Val-Leu-Asn-Tyr (DGIFVLNY or DY-8) and Ile-Pro-Thr-Asp-Glu-Lys (IPTDEK or IK-6). Database analysis confirmed various properties, including biological activity, toxicity, hydrophilicity, solubility, and potential allergy concerns. Furthermore, when tested on the human adenocarcinoma colon (Caco-2) cell line, two synthetic peptides demonstrated cellular antioxidant activity in a concentration-dependent manner. These peptides were also assessed using the FITC Annexin V apoptosis detection kit with PI, confirming the induction of apoptosis. Notably, the DY-8 peptide induced apoptosis, upregulated mRNA levels of caspase-3, -8, and -9, and downregulated Bcl-2, as confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Western blot analysis indicated increased pro-apoptotic Bax expression and decreased anti-apoptotic Bcl-2 expression in Caco-2 cells exposed to the DY-8 peptide. Molecular docking analysis revealed that the DY-8 peptide exhibited binding affinity with Bcl-2, Bcl-xL, and Mcl-1, suggesting potential utility in combating colon cancer as functional food ingredients.
Collapse
Affiliation(s)
- Kitjasit Promsut
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Tanatorn Saisavoey
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
40
|
Saleh AK, El-Mahdy NA, El-Masry TA, El-Kadem AH. Trifluoperazine mitigates cyclophosphamide-induced hepatic oxidative stress, inflammation, and apoptosis in mice by modulating the AKT/mTOR-driven autophagy and Nrf2/HO-1 signaling cascades. Life Sci 2024; 344:122566. [PMID: 38499285 DOI: 10.1016/j.lfs.2024.122566] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
AIM This study aims to investigate the hepatoprotective effect of the antipsychotic drug trifluoperazine (TFP) against cyclophosphamide (CPA)-induced hepatic injury by exploring its effect on autophagy and the Nrf2/HO-1 signaling pathway. MAIN METHODS The hepatotoxicity of CPA was assessed by biochemical analysis of the serum hepatotoxicity markers (ALT, AST, and direct bilirubin), histopathological examination, and ultrastructure analysis by transmission electron microscopy (TEM). The ELISA technique was used to assess the hepatic content of oxidative stress (MDA and SOD) and inflammatory markers (IL-1β and TNF-α). Immunohistochemical assessment was used to investigate the hepatic expression of NF-κB, Nrf2, caspase-3, as well as autophagy flux markers (p62 and LC3B). The mRNA expression of HO-1 was assessed using RT-qPCR. Western blot assay was used to determine the expression of p-AKT and p-mTOR. KEY FINDINGS TFP improved CPA-induced hepatotoxicity by reducing the elevated hepatotoxicity markers, and alleviating the histopathological changes with improving ultrastructure alterations. It also reduced oxidative stress by reducing MDA content and upregulating SOD activity. In addition, it exhibited anti-inflammatory and anti-apoptotic effects by decreasing NF-κB expression, IL-1β, TNF-α levels, and caspase-3 expression. Furthermore, TFP-induced hepatoprotection was mediated by favoring Nrf2 expression and increasing the mRNA level of HO-1. As well, it improved autophagy by increasing LC3B expression concurrently with reducing p62 expression. Moreover, TFP modulated the AKT/mTOR pathway by reducing the expression of p-AKT and p-mTOR. SIGNIFICANCE TFP significantly protected against CPA-induced hepatotoxicity by upregulating Nrf2/HO-1 signaling along with enhancement of protective autophagy via inhibition of the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Ahmed K Saleh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Nageh A El-Mahdy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Thanaa A El-Masry
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Aya H El-Kadem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
41
|
Dakkak BE, Taneera J, El-Huneidi W, Abu-Gharbieh E, Hamoudi R, Semreen MH, Soares NC, Abu-Rish EY, Alkawareek MY, Alkilany AM, Bustanji Y. Unlocking the Therapeutic Potential of BCL-2 Associated Protein Family: Exploring BCL-2 Inhibitors in Cancer Therapy. Biomol Ther (Seoul) 2024; 32:267-280. [PMID: 38589288 PMCID: PMC11063480 DOI: 10.4062/biomolther.2023.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 04/10/2024] Open
Abstract
Apoptosis, programmed cell death pathway, is a vital physiological mechanism that ensures cellular homeostasis and overall cellular well-being. In the context of cancer, where evasion of apoptosis is a hallmark, the overexpression of anti-apoptotic proteins like Bcl2, Bcl-xL and Mcl-1 has been documented. Consequently, these proteins have emerged as promising targets for therapeutic interventions. The BCL-2 protein family is central to apoptosis and plays a significant importance in determining cellular fate serving as a critical determinant in this biological process. This review offers a comprehensive exploration of the BCL-2 protein family, emphasizing its dual nature. Specifically, certain members of this family promote cell survival (known as anti-apoptotic proteins), while others are involved in facilitating cell death (referred to as pro-apoptotic and BH3-only proteins). The potential of directly targeting these proteins is examined, particularly due to their involvement in conferring resistance to traditional cancer therapies. The effectiveness of such targeting strategies is also discussed, considering the tumor's propensity for anti-apoptotic pathways. Furthermore, the review highlights emerging research on combination therapies, where BCL-2 inhibitors are used synergistically with other treatments to enhance therapeutic outcomes. By understanding and manipulating the BCL-2 family and its associated pathways, we open doors to innovative and more effective cancer treatments, offering hope for resistant and aggressive cases.
Collapse
Affiliation(s)
- Bisan El Dakkak
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon 1649-016, Portugal
| | - Eman Y. Abu-Rish
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | | | | | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
42
|
Zi G, Chen J, Peng Y, Wang Y, Peng B. Hyperthermia and cisplatin combination therapy promotes caspase-8 accumulation and activation to enhance apoptosis and pyroptosis in cancer cells. Int J Hyperthermia 2024; 41:2325489. [PMID: 38632954 DOI: 10.1080/02656736.2024.2325489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Hyperthermia can play a synergistic role with chemotherapy in combination therapy. Although the association between caspase activation, apoptosis, and pyroptosis have been published for both cisplatin (CDDP) and hyperthermia therapies independently, the interactions between these molecular pathways in combination therapy are unknown. The present study aimed to investigate the possible interactions between caspase 8 activation, apoptosis, and pyroptosis in combination therapy. METHODS Cells were treated with CDDP (15 µg/ml), followed by hyperthermia at optimized temperature (42.5 °C) in water-bath. After combination therapy, cell viability was analyzed by CCK-8, and cell death was analyzed by Annexin-V-FITC/PI and caspases activation. Immuno-staining and co-immuno-precipitation were used to examine the interaction between p62 and caspase-8. Pyroptosis was investigated by western blotting and transmission electron microscopy. E3 ligase Cullin 3 was knockdown by siRNA. In addition, caspase-8 activation was modulated by CRISPR-Cas9 gene-editing or pharmacological inhibition. RESULTS Combination therapy promoted K63-linked polyubiquitination of caspase-8 and cellular accumulation of caspase-8. In turn, polyubiquitinated caspase-8 interacted with p62 and led to the activation of caspase-3. Knockdown of the E3 ligase Cullin 3 by siRNA reduced caspase-8 polyubiquitination and activation. In addition, combination therapy induced release of the pore-forming N-terminus from gasdermins and promoted pyroptosis along with caspase-8 accumulation and activation. Knockdown of caspase-8 by CRISPR/Cas9 based gene editing reduced the sensitivity of tumor cells to apoptosis and pyroptosis. CONCLUSIONS Our study presented a novel mechanism in which hyperthermia synergized with chemotherapy in promoting apoptosis and pyroptosis in a caspase-8 dependent manner.
Collapse
Affiliation(s)
- Guanghui Zi
- College of Pharmacy, DaLi University, Dali, Yunan Province , China
| | - Jin Chen
- College of Pharmacy, DaLi University, Dali, Yunan Province , China
| | | | - Yue Wang
- College of Pharmacy, DaLi University, Dali, Yunan Province , China
| | - Baowei Peng
- College of Pharmacy, DaLi University, Dali, Yunan Province , China
| |
Collapse
|
43
|
Ahmad B, Tian C, Tang JX, Dumbuya JS, Li W, Lu J. Anticancer activities of natural abietic acid. Front Pharmacol 2024; 15:1392203. [PMID: 38633616 PMCID: PMC11021724 DOI: 10.3389/fphar.2024.1392203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Cancer is the main cause of death in the world. There are several therapies that are in practice for cancer cure including radiotherapy, chemotherapy, and surgery. Among the chemotherapies, natural products are considered comparable safe, easily available and cost effective. Approximately 60% of cancer approved FDA drugs are natural products including vinblastine, doxorubicin, and paclitaxel. These natural products have complex structures due to which they work against cancer through different molecular pathways, STAT3, NF-kB, PI3K/AKT/mTOR, cell cycle arrest, mitochondrial dependent pathway, extrinsic apoptosis pathway, autophagy, mitophagy and ferroptosis. AA is a natural abietane diterpenoid compound from Pinus palustris and Pimenta racemose var. grissea with different pharmacological activities including anti-inflammatory, anti-convulsant, anti-obesity and anti-allergic. Recently it has been reported with its anticancer activities through different molecular mechanisms including NF-kB, PI3K/AKT, call cycle arrest at G0/G1 phase, mitochondrial dependent pathway, extrinsic apoptosis pathway, AMPK pathway and ferroptosis pathways. The literature survey reveals that there is no review on AA anticancer molecular mechanisms, therefore in current review, we summarize the anticancer molecular mechanisms of AA.
Collapse
Affiliation(s)
- Bashir Ahmad
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chuan Tian
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - John Sieh Dumbuya
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jun Lu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
44
|
Joukar S, Rajizadeh MA, Bejeshk MA, Alavi SS, Bagheri F, Rami M, Khoramipour K. ATP releasing channels and the ameliorative effects of high intensity interval training on diabetic heart: a multifaceted analysis. Sci Rep 2024; 14:7113. [PMID: 38532054 DOI: 10.1038/s41598-024-57818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Type 2 diabetes (T2D) can cause severe cardiac complications at functional, histologic and molecular levels. These pathological complications could be mediated by ATP-releasing channels such as Panx1 and ATP receptors, in particular P2X7. The aim of our study was to investigate the effect of high-intensity interval training (HIIT) on T2D-induced cardiac complications at the functional, histopathological and molecular levels, with a particular focus on ATP-releasing channels. 48 male Wistar rats at the age of 8 weeks were randomly allocated into four groups: control (Con), Diabetes (T2D), Training (TR), and Diabetes + Training (T2D + TR). T2D was induced by a high-fat diet plus a low dose (35 mg/kg) of STZ administration. Rats in the TR and T2D + TR groups underwent an 8-weeks training program involving intervals ranging from 80 to 100% of their maximum running speed (Vmax), with 4-10 intervals per session. Protein expression of Interleukin 1β (IL1β), Interleukin 10 (IL-10), Pannexin 1 (Panx1), P2X7R (purinergic P2X receptor 7), NLRP1 (NLR Family Pyrin Domain Containing 1), BAX, and Bcl2 were measured in the heart tissue. Additionally, we assessed heart function, histopathological changes, as well as insulin resistance using the homeostasis model assessment of insulin resistance (HOMA-IR). In contrast to the T2D group, HIIT led to increased protein expression of Bcl2 and IL-10 in the heart. It also resulted in improvements in systolic and diastolic blood pressures, heart rate, ± dp/dt (maximum and minimum changes in left ventricular pressure), while reducing protein expression of IL-1β, Panx1, P2X7R, NLRP1, and BAX levels in the heart. Furthermore, left ventricular diastolic pressure (LVDP) was reduced (P ≤ 0.05). Moreover, heart lesion scores increased with T2D but decreased with HIIT, along with a reduction in fibrosis percentage (P ≤ 0.05). The results of this study suggest that the cardioprotective effects of HIIT on the diabetic heart may be mediated by the modulation of ATP-releasing channels. This modulation may lead to a reduction in inflammation and apoptosis, improve cardiac function, and attenuate cardiac injury and fibrosis.
Collapse
Affiliation(s)
- Siyavash Joukar
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Sadat Alavi
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Bagheri
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour Medical Faculty, Kerman, Iran
| | - Mohammad Rami
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kayvan Khoramipour
- Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
45
|
Park CH, Park JY, Cho WG. Chemical Hypoxia Induces Pyroptosis in Neuronal Cells by Caspase-Dependent Gasdermin Activation. Int J Mol Sci 2024; 25:2185. [PMID: 38396860 PMCID: PMC10889762 DOI: 10.3390/ijms25042185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoxia-induced neuronal death is a major cause of neurodegenerative diseases. Pyroptosis is a type of inflammatory programmed cell death mediated by elevated intracellular levels of reactive oxygen species (ROS). Therefore, we hypothesized that hypoxia-induced ROS may trigger pyroptosis via caspase-dependent gasdermin (GSDM) activation in neuronal cells. To test this, we exposed SH-SY5Y neuronal cells to cobalt chloride (CoCl2) to trigger hypoxia and then evaluated the cellular and molecular responses to hypoxic conditions. Our data revealed that CoCl2 induced cell growth inhibition and the expression of hypoxia-inducible factor-1α in SH-SY5Y cells. Exposure to CoCl2 elicits excessive accumulation of cytosolic and mitochondrial ROS in SH-SY5Y cells. CoCl2-induced hypoxia not only activated the intrinsic (caspases-3, -7, and -9) apoptotic pathway but also induced caspase-3/GSDME-dependent and NLRP3/caspase-1/GSDMD-mediated pyroptosis in SH-SY5Y cells. Importantly, inhibition of caspase-3 and -1 using selective inhibitors ameliorated pyroptotic cell death and downregulated GSDM protein expression. Additionally, treatment with a ROS scavenger significantly suppressed caspase- and pyroptosis-related proteins in CoCl2-treated SH-SY5Y cells. Our findings indicate that hypoxia-mediated ROS production plays an important role in the activation of both apoptosis and pyroptosis in SH-SY5Y neuronal cells, thus providing a potential therapeutic strategy for hypoxia-related neurological diseases.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea;
| | - Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea;
| |
Collapse
|
46
|
López-Sánchez C, Lagoa R, Poejo J, García-López V, García-Martínez V, Gutierrez-Merino C. An Update of Kaempferol Protection against Brain Damage Induced by Ischemia-Reperfusion and by 3-Nitropropionic Acid. Molecules 2024; 29:776. [PMID: 38398528 PMCID: PMC10893315 DOI: 10.3390/molecules29040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Kaempferol, a flavonoid present in many food products, has chemical and cellular antioxidant properties that are beneficial for protection against the oxidative stress caused by reactive oxygen and nitrogen species. Kaempferol administration to model experimental animals can provide extensive protection against brain damage of the striatum and proximal cortical areas induced by transient brain cerebral ischemic stroke and by 3-nitropropionic acid. This article is an updated review of the molecular and cellular mechanisms of protection by kaempferol administration against brain damage induced by these insults, integrated with an overview of the contributions of the work performed in our laboratories during the past years. Kaempferol administration at doses that prevent neurological dysfunctions inhibit the critical molecular events that underlie the initial and delayed brain damage induced by ischemic stroke and by 3-nitropropionic acid. It is highlighted that the protection afforded by kaempferol against the initial mitochondrial dysfunction can largely account for its protection against the reported delayed spreading of brain damage, which can develop from many hours to several days. This allows us to conclude that kaempferol administration can be beneficial not only in preventive treatments, but also in post-insult therapeutic treatments.
Collapse
Affiliation(s)
- Carmen López-Sánchez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| | - Joana Poejo
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| | - Virginio García-López
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-Martínez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| |
Collapse
|
47
|
Zheng H, Liu Q, Zhou S, Luo H, Zhang W. Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases. Front Immunol 2024; 15:1345625. [PMID: 38370420 PMCID: PMC10869479 DOI: 10.3389/fimmu.2024.1345625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
The P2X7 receptor (P2X7R), a non-selective cation channel modulated by adenosine triphosphate (ATP), localizes to microglia, astrocytes, oligodendrocytes, and neurons in the central nervous system, with the most incredible abundance in microglia. P2X7R partake in various signaling pathways, engaging in the immune response, the release of neurotransmitters, oxidative stress, cell division, and programmed cell death. When neurodegenerative diseases result in neuronal apoptosis and necrosis, ATP activates the P2X7R. This activation induces the release of biologically active molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen species, and excitotoxic glutamate/ATP. Subsequently, this leads to neuroinflammation, which exacerbates neuronal involvement. The P2X7R is essential in the development of neurodegenerative diseases. This implies that it has potential as a drug target and could be treated using P2X7R antagonists that are able to cross the blood-brain barrier. This review will comprehensively and objectively discuss recent research breakthroughs on P2X7R genes, their structural features, functional properties, signaling pathways, and their roles in neurodegenerative diseases and possible therapies.
Collapse
Affiliation(s)
- Huiyong Zheng
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Liu
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siwei Zhou
- Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
48
|
Kim SM, Kim YH, Han GU, Kim SG, Bhang DH, Kim BG, Moon SH, Shin SH, Ryu BY. Diisobutyl phthalate (DiBP)-induced male germ cell toxicity and its alleviation approach. Food Chem Toxicol 2024; 184:114387. [PMID: 38123059 DOI: 10.1016/j.fct.2023.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Diisobutyl phthalate (DiBP) is a commonly used plasticizer in manufacturing consumer and industrial products to improve flexibility and durability. Despite of the numerous studies, however, the direct mechanism underlying the male reproductive damage of DiBP is poorly understood. In this study, we investigated the male germ cell toxicity of DiBP using GC-1 spermatogonia (spg) cells. Our results indicated that DiBP exposure causes oxidative stress and apoptosis in GC-1 spg cells. In addition, DiBP-derived autophagy activation and down-regulation of phosphoinositide 3-kinase (PI3K)-AKT and extracellular signal-regulated kinase (ERK) pathways further inhibited GC-1 spg cell proliferation, indicating that DiBP can instigate male germ cell toxicity by targeting several pathways. Importantly, a combined treatment of parthenolide, N-acetylcysteine, and 3-methyladenine significantly reduced DiBP-induced male germ cell toxicity and restored proliferation. Taken together, the results of this study can provide valuable information to the existing literature by enhancing the understanding of single phthalate DiBP-derived male germ cell toxicity and the therapeutic interventions that can mitigate DiBP damage.
Collapse
Affiliation(s)
- Seok-Man Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Yong-Hee Kim
- AttisLab Inc., Anyang, Gyeonggi-Do, 14059, Republic of Korea.
| | - Gil Un Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Seul Gi Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Dong Ha Bhang
- AttisLab Inc., Anyang, Gyeonggi-Do, 14059, Republic of Korea.
| | - Byung-Gak Kim
- Biattic Inc., Anyang, Gyeonggi-Do, 14059, Republic of Korea.
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
49
|
Mansouri M, Lamichhane A, Das D, Aucejo F, Tavana H, Leipzig ND. Comparison of Engineered Liver 3D Models and the Role of Oxygenation for Patient-Derived Tumor Cells and Immortalized Cell Lines Cocultured with Tumor Stroma in the Detection of Hepatotoxins. Adv Biol (Weinh) 2024; 8:e2300386. [PMID: 37845003 DOI: 10.1002/adbi.202300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Indexed: 10/18/2023]
Abstract
In metabolically active tumors, responses of cells to drugs are heavily influenced by oxygen availability via the surrounding vasculature alongside the extracellular matrix signaling. The objective of this study is to investigate hepatotoxicity by replicating critical features of hepatocellular carcinoma (HCC). This includes replicating 3D structures, metabolic activities, and tumor-specific markers. The internal environment of spheroids comprised of cancerous human patient-derived hepatocytes using microparticles is modulated to enhance the oxygenation state and recreate cell-extracellular matrix interactions. Furthermore, the role of hepatic stellate cells in maintaining hepatocyte survival and function is explored and hepatocytes from two cellular sources (immortalized and patient-derived) to create four formulations with and without microparticles are utilized. To investigate drug-induced changes in metabolism and apoptosis in liver cells, coculture spheroids with and without microparticles are exposed to three hepatotoxic drugs. The use of microparticles increases levels of apoptotic markers in both liver models under drug treatments. This coincides with reduced levels of anti-apoptotic proteins and increased levels of pro-apoptotic proteins. Moreover, cells from different origins undergo apoptosis through distinct apoptotic pathways in response to identical drugs. This 3D microphysiological system offers a viable tool for liver cancer research to investigate mechanisms of apoptosis under different microenvironmental conditions.
Collapse
Affiliation(s)
- Mona Mansouri
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Astha Lamichhane
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Dola Das
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Federico Aucejo
- Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Nic D Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
50
|
Wang M, Yu F, Zhang Y, Li P. Programmed cell death in tumor immunity: mechanistic insights and clinical implications. Front Immunol 2024; 14:1309635. [PMID: 38283351 PMCID: PMC10811021 DOI: 10.3389/fimmu.2023.1309635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Programmed cell death (PCD) is an evolutionarily conserved mechanism of cell suicide that is controlled by various signaling pathways. PCD plays an important role in a multitude of biological processes, such as cell turnover, development, tissue homeostasis and immunity. Some forms of PCD, including apoptosis, autophagy-dependent cell death, pyroptosis, ferroptosis and necroptosis, contribute to carcinogenesis and cancer development, and thus have attracted increasing attention in the field of oncology. Recently, increasing research-based evidence has demonstrated that PCD acts as a critical modulator of tumor immunity. PCD can affect the function of innate and adaptive immune cells, which leads to distinct immunological consequences, such as the priming of tumor-specific T cells, immunosuppression and immune evasion. Targeting PCD alone or in combination with conventional immunotherapy may provide new options to enhance the clinical efficacy of anticancer therapeutics. In this review, we introduce the characteristics and mechanisms of ubiquitous PCD pathways (e.g., apoptosis, autophagy-dependent cell death, pyroptosis and ferroptosis) and explore the complex interaction between these cell death mechanisms and tumor immunity based on currently available evidence. We also discuss the therapeutic potential of PCD-based approaches by outlining clinical trials targeting PCD in cancer treatment. Elucidating the immune-related effects of PCD on cancer pathogenesis will likely contribute to an improved understanding of oncoimmunology and allow PCD to be exploited for cancer treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|