1
|
Doležalová K, Soják L, Grigláková A, Jurenka J, Sedlák M, Horniaková L, Kromka P, Szántová M, Sabaka P. Cardiac Device-Related Infective Endocarditis Caused by Salmonella Infantis-Case Report and Review of Clinical and Epidemiologic Implications. Pathogens 2025; 14:474. [PMID: 40430794 PMCID: PMC12115118 DOI: 10.3390/pathogens14050474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Salmonella enterica serovar Infantis (S. Infantis) is a widespread pathogen in agriculture, causing epidemics in chicken flocks. Despite being primarily an animal pathogen, it may pose significant health risks to immunocompromised individuals. METHODS This report describes the first known case of cardiac device-related infective endocarditis (CDRIE) attributed to S. Infantis, highlighting its emerging pathogenic potential. It also reviews the literature for microbiologic and epidemiologic perspectives. RESULTS A 61-year-old male with a history of high-grade multiple myeloma presented with nonspecific symptoms, including low-grade fever and exertional dyspnoea. Blood cultures identified a pure culture of S. Infantis, and transoesophageal echocardiography revealed vegetations on pacing leads. Following pacemaker extraction and appropriate antimicrobial therapy, the patient's condition temporary improved, but later deteriorated due to the progression of underlying malignancy. CONCLUSIONS This case underscores the importance of considering S. Infantis in the differential diagnosis of endocarditis in immunocompromised patients, along with the critical need for stringent food safety measures to mitigate infection risks from contaminated poultry products.
Collapse
Affiliation(s)
- Kristína Doležalová
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 831 01 Bratislava, Slovakia; (K.D.); (J.J.)
| | - Lubomír Soják
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 831 01 Bratislava, Slovakia; (K.D.); (J.J.)
| | - Annamária Grigláková
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 831 01 Bratislava, Slovakia; (K.D.); (J.J.)
| | - Ján Jurenka
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 831 01 Bratislava, Slovakia; (K.D.); (J.J.)
| | - Martin Sedlák
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 831 01 Bratislava, Slovakia; (M.S.); (L.H.); (M.S.)
| | - Lucia Horniaková
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 831 01 Bratislava, Slovakia; (M.S.); (L.H.); (M.S.)
| | - Peter Kromka
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 831 01 Bratislava, Slovakia; (M.S.); (L.H.); (M.S.)
| | - Mária Szántová
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 831 01 Bratislava, Slovakia; (M.S.); (L.H.); (M.S.)
| | - Peter Sabaka
- Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 831 01 Bratislava, Slovakia; (K.D.); (J.J.)
| |
Collapse
|
2
|
Barmettler K, Kelbert L, Horlbog JA, Cernela N, Biggel M, Stephan R. Salmonella in Swiss and Imported Retail Chicken Meat - A Cross-Sectional Study. J Food Prot 2025; 88:100532. [PMID: 40339991 DOI: 10.1016/j.jfp.2025.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Non-typhoidal Salmonella enterica (NTS) are significant foodborne pathogens responsible for many cases of enterocolitis worldwide, with the increasing threat of antimicrobial resistance (AMR) posing a growing public health concern. Salmonella Infantis has emerged as a predominant multidrug-resistant (MDR) serotype, particularly in poultry. This study investigated the Salmonella prevalence in 200 chicken meat samples from Swiss retail stores. Six (3%) samples tested positive; all were imported, and the isolates were all identified as S. Infantis. Whole genome sequencing confirmed the presence of the pESI (plasmid of emerging S. Infantis) megaplasmid, which is associated with enhanced persistence, biofilm formation, and multidrug resistance. Statistical analysis revealed a significant correlation between Salmonella prevalence and imported, unlabeled products. These findings highlight the effectiveness of Swiss control measures in the poultry production but underscore the importance of maintaining consumer awareness to mitigate Salmonella transmission and MDR risks.
Collapse
Affiliation(s)
- Karen Barmettler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland.
| | - Lucien Kelbert
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Jule Anna Horlbog
- National Reference Center for Enteropathogenic Bacteria and Listeria (NENT), Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| |
Collapse
|
3
|
Lee SH, Lee OM, Kang SI, Her M, Kang MS, Chae M, Seo MG. Recent Occurrence and Rapid Spread of Multidrug-Resistant Salmonella Infantis in Broiler Flocks in Korea. Foodborne Pathog Dis 2025. [PMID: 40014431 DOI: 10.1089/fpd.2024.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Salmonella Infantis has recently been one of the most prevalent serotypes in poultry and has been identified in human salmonellosis cases worldwide. Multidrug-resistant (MDR) Salmonella Infantis has emerged as a significant threat to both poultry production and public health due to its increasing prevalence and global dissemination. We identified the occurrence of an MDR Salmonella Infantis clone in broiler flocks in Korea, and the clone was characterized to explore potential genetic causes for its high prevalence and rapid spread in broiler production. In total, 220 Salmonella strains isolated between 2020 and 2023 from broiler flocks were serotyped, and 50 strains were identified as Salmonella Infantis (22.7%). The isolates were tested for antimicrobial susceptibility, and their genetic characteristics were analyzed using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing, and whole genome sequencing (WGS). Forty-six strains of Salmonella Infantis isolated since 2020 were resistant to at least five antimicrobial families including ampicillin, cephalosporins, chloramphenicol, nalidixic acid, and tetracycline. The strains showed 10 PFGE patterns and a single multilocus sequence type 32. Eight representative MDR strains were analyzed by WGS. Seven of the eight strains carried the plasmid of emerging Salmonella Infantis-like megaplasmids recognized globally in emergent MDR Salmonella Infantis. They had a high prevalence of seven antimicrobial resistance genes, six of which were identified in plasmids. Also, they all share virulence genes, including fimbrial adherence determinants and secretion system components, and showed a clonal relationship to strains from North America, South America, and West Asia, suggesting potential international dissemination routes. To mitigate the risks associated with the rapid spread of MDR Salmonella Infantis in poultry production and its potential impact on human health, this study provides valuable insights into implementing effective control measures to reduce Salmonella in broiler production in Korea. Further highlighting the critical importance of enhanced biosecurity and continuous surveillance.
Collapse
Affiliation(s)
- So-Hee Lee
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Gimcheon, Korea
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Korea
| | - O-Mi Lee
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Gimcheon, Korea
| | - Sung-Il Kang
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Gimcheon, Korea
| | - Moon Her
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Gimcheon, Korea
| | - Min-Su Kang
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Gimcheon, Korea
| | - Myeongju Chae
- Avian Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Gimcheon, Korea
| | - Min-Goo Seo
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Korea
| |
Collapse
|
4
|
Gheorghe-Barbu I, Czobor Barbu I, Dragomir RI, Marinaș IC, Stan MS, Pericleanu R, Dumbravă AȘ, Rotaru LI, Paraschiv S, Bănică LM, Pecete I, Oțelea D, Cristea VC, Popa MI, Țânțu MM, Surleac M. Emerging Resistance and Virulence Patterns in Salmonella enterica: Insights into Silver Nanoparticles as an Antimicrobial Strategy. Antibiotics (Basel) 2025; 14:46. [PMID: 39858332 PMCID: PMC11762817 DOI: 10.3390/antibiotics14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study aims to characterize antibiotic resistance (AR) and virulence markers in Salmonella spp. isolated from Romanian outpatients' stool samples. METHODS In 2019, community-acquired Salmonella strains were collected and identified using MALDI-TOF mass spectrometry, antibiotic susceptibility profiles have been determined with the MicroScan system, and soluble virulence factors were evaluated using specific culture media, while biofilm formation was quantified in 96-well plates. Molecular analysis targeted resistance genes for β-lactams (e.g., blaTEM and blaSHV); tetracyclines (e.g., tet(A)); sulphonamides; and quinolones, as well as virulence genes (e.g., invA, spvC, pldA, and held). Whole-genome sequencing (WGS) was performed on 19 selected isolates. A silver nanoparticles (AgNPsol) alternative to conventional antibiotics was tested for effectiveness against multidrug-resistant (MDR) isolates. RESULTS From the total of 309 Salmonella isolates (65.05% from children under 4 years of age) belonging to four subtypes and four serovars, 27.86% showed resistance to at least one antibiotic, most frequently to tetracycline, ampicillin, and piperacillin. The strains frequently expressed haemolysin (67%), aesculinase (65%), and gelatinase (62%). Resistance to trimethoprim-sulfamethoxazole was encoded by the sul1 gene in 44.83% of the strains and to tetracyclines by the tet(A) gene (59.52%). The ESBL genes blaTEM, blaSHV, and blaCTX-M were detected by PCR in 16.18%, 2.91%, and 0.65% of the strains, respectively. Additionally, 98.63% of the strains carried the invA marker, with notable positive associations between blaSHV, qnrB, and sul1 with spvC. CONCLUSIONS The present findings revealed significant patterns in Salmonella isolates, subtypes, serovars, AR, and virulence, emphasising the need for continuous surveillance of Salmonella infections. Additionally, the potential of AgNPs as an alternative treatment option was demonstrated, particularly for paediatric S. enterica infections.
Collapse
Affiliation(s)
- Irina Gheorghe-Barbu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Ilda Czobor Barbu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Rareș-Ionuț Dragomir
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Ioana Cristina Marinaș
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Miruna Silvia Stan
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Radu Pericleanu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Andreea Ștefania Dumbravă
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Liviu-Iulian Rotaru
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| | - Simona Paraschiv
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Leontina Mirela Bănică
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Ionuț Pecete
- Synevo Central Lab Romania, 021408 Bucharest, Romania;
| | - Dan Oțelea
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| | - Violeta Corina Cristea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Mircea Ioan Popa
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
| | - Marilena Monica Țânțu
- National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania;
- Department of Medical Assistance and Physiotherapy, Faculty of Sciences, Physical Education and Informatics, University of Pitești, 110040 Pitesti, Romania
| | - Marius Surleac
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| |
Collapse
|
5
|
Prasertsee T, Prachantasena S, Tantitaveewattana P, Chuaythammakit P, Pascoe B, Patchanee P. Assessing antimicrobial resistance profiles of Salmonella enterica in the pork production system. J Med Microbiol 2024; 73:001894. [PMID: 39320348 PMCID: PMC11423857 DOI: 10.1099/jmm.0.001894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction. Salmonella enterica is a significant enteric pathogen affecting human and livestock health. Pork production is a common source of Salmonella contamination, with emerging multidrug resistance (MDR) posing a global health threat.Gap statement. Salmonella contamination and antimicrobial resistance (AMR) profiles in the pig production chain are underreported.Aim. To investigate the prevalence of S. enterica in the pig production chain and characterise their AMR profiles.Methodology. We collected 485 samples from pig farms, a standard pig abattoir and retail markets in Patthalung and Songkhla provinces in southern Thailand. Antimicrobial susceptibility testing was performed on these samples, and AMR profiles were determined.Results. S. enterica was detected in 68.67% of farm samples, 45.95% of abattoir samples and 50.67% of retail market samples. Analysis of 264 isolates, representing 18 serotypes, identified S. enterica serotype Rissen as the most prevalent. The predominant resistance phenotypes included ampicillin (AMP, 91.29%), tetracycline (TET, 88.26%) and streptomycin (STR, 84.47%). Over 80% of isolates showed resistance to three or more antimicrobial classes, indicating MDR. The AMP-STR-TET resistance pattern was found in nearly 70% of all MDR isolates across the production chain.Conclusions. The high prevalence of MDR is consistent with extensive antimicrobial use in the livestock sector. The presence of extensively resistant S. enterica highlights the urgent need for antimicrobial stewardship. Strengthening preventive strategies and control measures is crucial to mitigate the risk of MDR Salmonella spreading from farm to fork.
Collapse
Affiliation(s)
- Teerarat Prasertsee
- Faculty of Veterinary Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | | | | | | | - Ben Pascoe
- Department of Biology, Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
- Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Prapas Patchanee
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai, Thailand
| |
Collapse
|
6
|
Gvaladze T, Lehnherr H, Hertwig S. A bacteriophage cocktail can efficiently reduce five important Salmonella serotypes both on chicken skin and stainless steel. Front Microbiol 2024; 15:1354696. [PMID: 38500580 PMCID: PMC10944927 DOI: 10.3389/fmicb.2024.1354696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Salmonella is one of the most important zoonotic pathogens and is mostly transmitted through food of animal origin. Application of bacteriophages is a promising tool to biocontrol Salmonella on both food and food contact surfaces. In this study, we evaluated the effectiveness of a six-phage cocktail for the reduction of Salmonella Enteritidis and a mixture of five major Salmonella serotypes (S. Enteritidis, Salmonella Typhimurium, Salmonella Infantis, Salmonella Paratyphi B, and Salmonella Indiana) on chicken skin and stainless steel. A phage cocktail with a final concentration of 107 PFU/cm2 was sprayed on these surfaces. After adding the phage cocktail, the samples were incubated at RT (~23°C) for different periods of time. The phage cocktail caused a significant reduction of S. Enteritidis and the mixed culture on chicken skin 30 min after phage addition, with 1.8 log10 and 1 log10 units, respectively. Reduction rates (1.2-1.7 log10 units) on stainless steel after 30 min were similar. Four hours after addition, the phage cocktail caused a significant reduction on both surfaces up to 3 log10 units on chicken skin and 2.4 log10 units on stainless steel. In a further experiment, bacteria added to stainless steel were not allowed to dry to simulate a fresh bacterial contamination. In this case, the bacterial count of S. Enteritidis was reduced below the detection limit after 2 h. The results demonstrate that this phage cocktail has potential to be used in post-harvest applications to control Salmonella contaminations.
Collapse
Affiliation(s)
- Tamar Gvaladze
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Stefan Hertwig
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
7
|
Gvaladze T, Lehnherr H, Große-Kleimann J, Hertwig S. A Bacteriophage Cocktail Reduces Five Relevant Salmonella Serotypes at Low Multiplicities of Infection and Low Temperatures. Microorganisms 2023; 11:2298. [PMID: 37764141 PMCID: PMC10535997 DOI: 10.3390/microorganisms11092298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Salmonella are important pathogenic bacteria and, following Campylobacter, they are the second most common cause of bacterial foodborne infections worldwide. To reduce the presence of bacteria along the food chain, the application of bacteriophages (phages) may be a promising tool. In this study, the lytic properties of six phages against five relevant Salmonella serotypes (S. Enteritidis, S. Typhimurium, S. Infantis, S. Paratyphi B and S. Indiana) were analyzed. Three phages were able to lyse all five serotypes. We determined the lytic potential of each phage on indicator strains in vitro at room temperature (RT) and at 37 °C using low multiplicities of infection (MOIs). Most phages reduced their host more efficiently at RT than at 37 °C, even at the lowest MOI of 0.001. Following this, the lytic activity of a cocktail comprising five phages (MOI = 0.1) was examined with each of the five serotypes and a mix of them at RT, 15, 12, 10, 8 and 6 °C. All cultures of single serotypes as well as the mixture of strains were significantly reduced at temperatures as low as 8 °C. For single serotypes, reductions of up to 5 log10 units and up to 2.3 log10 units were determined after 6 h (RT) and 40 h (8 °C), respectively. The mixture of strains was reduced by 1.7 log10 units at 8 °C. The data clearly suggest that these phages are suitable candidates for biocontrol of various Salmonella serotypes under food manufacturing conditions.
Collapse
Affiliation(s)
- Tamar Gvaladze
- Department Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
| | | | - Julia Große-Kleimann
- Department for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Stefan Hertwig
- Department Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
| |
Collapse
|
8
|
Dos Santos AMP, Panzenhagen P, Ferrari RG, Conte-Junior CA. Large-scale genomic analysis reveals the pESI-like megaplasmid presence in Salmonella Agona, Muenchen, Schwarzengrund, and Senftenberg. Food Microbiol 2022; 108:104112. [PMID: 36088119 DOI: 10.1016/j.fm.2022.104112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022]
Abstract
Salmonella spp. remains one of the main pathogens causing diarrhea in humans worldwide. Lately, Salmonella Infantis has become endemic in several European, American, and Asian countries, presenting a multi-drug resistance profile and increased virulence. Various studies have attributed the high endemicity of Salmonella Infantis to pESI (plasmid to Emergent Salmonella Infantis). The ease of Salmonella to acquire pESI is of concern to health authorities and the food production chain. We searched for the presence of pESI in Salmonella genomes from the NCBI to understand the distribution of pESI worldwide and predict the main serovars and sequence types associated with the plasmid. We identified the pESI backbone, virulence, and resistance genes among Salmonella spp. isolated from 45 countries on five continents. We found the pESI-like structure in four different serovars: S. Muenchen, S. Schwarzengrund, S. Agona and S. Senftenberg. The pESI markers were also identified in 24 different sequence types. Most of the analyzed genomes were isolated from poultry, especially broiler and chicken. These results confirm the high dissemination of pESI-like megaplasmid among Salmonella Infantis worldwide and its ability to infect different serovars, as well as placing poultry production as the most favorable environment for pESI dissemination. Therefore, further studies are needed to prevent the spread of pESI to humans and the food chain.
Collapse
Affiliation(s)
- Anamaria M P Dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, 24230-340, Brazil.
| | - Rafaela G Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - Carlos A Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, 24230-340, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, 21040-900, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| |
Collapse
|
9
|
In Silico Detection of Antimicrobial Resistance Integrons in Salmonella enterica Isolates from Countries of the Andean Community. Antibiotics (Basel) 2021; 10:antibiotics10111388. [PMID: 34827328 PMCID: PMC8614897 DOI: 10.3390/antibiotics10111388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance genes are often associated with integrons, which promote their movement between and within DNA molecules. IntFinder 1.0 and I-VIP v1.2 were used for the detection of integrons and their associated resistance genes in assembled sequences and raw reads. A dataset comprising 1688 sequenced Salmonella enterica isolates from countries of the Andean Community was developed. A total of 749 and 680 integrons were identified by IntFinder 1.0 and I-VIP v1.2, respectively; class 2 integrons were the most abundant followed by class 1, whereas no class 3 integrons were detected. These elements were mainly associated with isolates from animal sources. S. Infantis ST32 contained the majority of integrons. Trimethoprim resistance genes (dfrA) were found in greater numbers than others, including aadA and bla genes. The presence of these resistance integrons may come as a response to antibiotic misuse, especially of co-trimoxazole. This represents a public health risk as novel resistant strains might appear due to gene dissemination. The information gathered from in silico studies not only contributes to our understanding of integron dynamics in pathogenic Salmonella, but also helps identify potential emergent patterns of resistance in the region, which is fundamental for developing pertinent antibiotic surveillance programs.
Collapse
|
10
|
Chu BX, Li YN, Liu N, Yuan LX, Chen SY, Zhu YH, Wang JF. Salmonella Infantis Delays the Death of Infected Epithelial Cells to Aggravate Bacterial Load by Intermittent Phosphorylation of Akt With SopB. Front Immunol 2021; 12:757909. [PMID: 34804044 PMCID: PMC8602575 DOI: 10.3389/fimmu.2021.757909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella Infantis has emerged as a major clinical pathogen causing gastroenteritis worldwide in recent years. As an intracellular pathogen, Salmonella has evolved to manipulate and benefit from the cell death signaling pathway. In this study, we discovered that S. Infantis inhibited apoptosis of infected Caco-2 cells by phosphorylating Akt. Notably, Akt phosphorylation was observed in a discontinuous manner: immediately 0.5 h after the invasion, then before peak cytosolic replication. Single-cell analysis revealed that the second phase was only induced by cytosolic hyper-replicating bacteria at 3-4 hpi. Next, Akt-mediated apoptosis inhibition was found to be initiated by Salmonella SopB. Furthermore, Akt phosphorylation increased mitochondrial localization of Bcl-2 to prevent Bax oligomerization on the mitochondrial membrane, maintaining the mitochondrial network homeostasis to resist apoptosis. In addition, S. Infantis induced pyroptosis, as evidenced by increased caspase-1 (p10) and GSDMS-N levels. In contrast, cells infected with the ΔSopB strain displayed faster but less severe pyroptosis and had less bacterial load. The results indicated that S. Infantis SopB-mediated Akt phosphorylation delayed pyroptosis, but aggravated its severity. The wild-type strain also caused more severe diarrhea and intestinal inflammatory damage than the ΔSopB strain in mice. These findings revealed that S. Infantis delayed the cells' death by intermittent activation of Akt, allowing sufficient time for replication, thereby causing more severe inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiu-Feng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Ye Q, Shang Y, Chen M, Pang R, Li F, Xiang X, Zhou B, Wang C, Zhang S, Zhang J, Wang J, Xue L, Ding Y, Wu Q. Mining and evaluating novel serovar-specific Salmonella C1 serogroup genes by polymerase chain reaction analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Genomic Characteristics of Colistin-Resistant Salmonella enterica subsp. enterica Serovar Infantis from Poultry Farms in the Republic of Serbia. Antibiotics (Basel) 2020; 9:antibiotics9120886. [PMID: 33321688 PMCID: PMC7762970 DOI: 10.3390/antibiotics9120886] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
The antimicrobial susceptibility testing was conducted on 174 single isolates from poultry farms in Serbia and it was determined that seven Salmonella spp. were multidrug resistant. Sixteen serotypes were detected, but only serotype Infantis confirmed reduced susceptibility to colistin. Seven colistin resistant Salmonella Infantis were studied in detail using the WGS approach. Three sequence types were identified corresponding to different epizootiology region. The isolate from the Province of Vojvodina 3842 and isolates from Jagodina (92 and 821) are represented by the sequence type ST413 and ST11, respectively. Four isolates from Kraljevo are ST32, a common S. Infantis sequence type in humans, poultry and food. The fosfomycin resistance gene fosA7 in isolate 3842 and the vgaA gene in isolate 8418/2948 encoding resistance to pleuromutilins were reported for the first time in serovar Infantis. The changes in relative expression of the phoP/Q, mgrB and pmrA/B genes were detected. Single nucleotide polymorphisms of the pmrB gene, including transitions Val164Gly or Val164Met, and Arg92Pro are described. Analyses of quinolone resistance determining region revealed substitutions Ser83Tyr in GyrA protein and Thr57Ser and Ser80Arg in ParC protein. Based on WGS data, there are two major clusters among analyzed Salmonella Infantis isolates from central Serbia.
Collapse
|
13
|
Newton K, Gosling B, Rabie A, Davies R. Field investigations of multidrug-resistant Salmonella Infantis epidemic strain incursions into broiler flocks in England and Wales. Avian Pathol 2020; 49:631-641. [PMID: 32783749 DOI: 10.1080/03079457.2020.1809634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Salmonella Infantis is a major public health concern and has become established in the broiler sector in some European countries, as well as globally, and is frequently multidrug resistant (MDR). Three broiler farms in England and Wales, which had incursions of MDR S. Infantis between 2013 and 2017, were investigated longitudinally. The company feed mill and two associated hatcheries were intensively sampled. Following each visit, advice on cleaning, disinfection and other control measures for Salmonella was given to help eliminate S. Infantis from the premises. Four samples collected from inside the broiler houses after cleaning and disinfection were Salmonella-positive, indicating cleaning and disinfection within houses was generally effective. However, the exterior of persistently infected houses remained substantially contaminated and feeding systems could not be sampled. Clearance of S. Infantis from affected houses requires additional attention to decontamination of these aspects. Sixty S. Infantis isolates were tested for antimicrobial susceptibility by disk diffusion tests. All isolates were MDR, with resistance to at least nalidixic acid (Na), tetracycline (T), compound sulphonamide (Su), streptomycin (S) and furazolidone. This is a similar resistance pattern to the previously identified MDR (NaSSuT) clone in some European countries. The study shows that to remove S. Infantis from premises effectively, a combined approach to poultry houses and the surrounding farm environment is necessary. A revised cleaning and disinfection programme was developed that was associated with the clearance of MDR S. Infantis from persistently infected and newly infected broiler flocks, and UK livestock remains free of MDR S. Infantis. RESEARCH HIGHLIGHTS Standard cleaning and disinfection protocols did not completely eliminate infection. A revised cleaning and disinfection programme was developed. Disinfecting feeder lines and external areas was key to eliminating S. Infantis. Identified similar antimicrobial resistance pattern to MDR epidemic S. Infantis.
Collapse
Affiliation(s)
- Kate Newton
- Department of Bacteriology, Animal and Plant Health Agency - Weybridge, Addlestone, UK
| | - Becky Gosling
- Department of Bacteriology, Animal and Plant Health Agency - Weybridge, Addlestone, UK
| | - André Rabie
- Department of Bacteriology, Animal and Plant Health Agency - Weybridge, Addlestone, UK
| | - Rob Davies
- Department of Bacteriology, Animal and Plant Health Agency - Weybridge, Addlestone, UK
| |
Collapse
|
14
|
García-Soto S, Abdel-Glil MY, Tomaso H, Linde J, Methner U. Emergence of Multidrug-Resistant Salmonella enterica Subspecies enterica Serovar Infantis of Multilocus Sequence Type 2283 in German Broiler Farms. Front Microbiol 2020; 11:1741. [PMID: 32765483 PMCID: PMC7380084 DOI: 10.3389/fmicb.2020.01741] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
During the last decade, Salmonella enterica subspecies enterica serovar Infantis (S. Infantis) has become more prevalent across Europe with an increased capability to persist in broiler farms. In this study, we aimed to identify potential genetic causes for the increased emergence and longer persistence of S. Infantis in German poultry farms by high-throughput-sequencing. Broiler derived S. Infantis strains from two decades, the 1990s (n = 12) and the 2010s (n = 18), were examined phenotypically and genotypically to detect potential differences responsible for increased prevalence and persistence. S. Infantis organisms were characterized by serotyping and determining antimicrobial susceptibility using the microdilution method. Genotypic characteristics were analyzed by whole genome sequencing (WGS) to detect antimicrobial resistance and virulence genes as well as plasmids. To detect possible clonal relatedness within S. Infantis organisms, 17 accessible genomes from previous studies about emergent S. Infantis were downloaded and analyzed using complete genome sequence of SI119944 from Israel as reference. In contrast to the broiler derived antibiotic-sensitive S. Infantis strains from the 1990s, the majority of strains from the 2010s (15 out of 18) revealed a multidrug-resistance (MDR) phenotype that encodes for at least three antimicrobials families: aminoglycosides [ant(3“)-Ia], sulfonamides (sul1), and tetracyclines [tet(A)]. Moreover, these MDR strains carry a virulence gene pattern missing in strains from the 1990s. It includes genes encoding for fimbriae clusters, the yersiniabactin siderophore, mercury and disinfectants resistance and toxin/antitoxin complexes. In depth genomic analysis confirmed that the 15 MDR strains from the 2010s carry a pESI-like megaplasmid with resistance and virulence gene patterns detected in the emerged S. Infantis strain SI119944 from Israel and clones inside and outside Europe. Genotyping analysis revealed two sequence types (STs) among the resistant strains from the 2010s, ST2283 (n = 13) and ST32 (n = 2). The sensitive strains from the 1990s, belong to sequence type ST32 (n = 10) and ST1032 (n = 2). Therefore, this study confirms the emergence of a MDR S. Infantis pESI-like clone of ST2283 in German broiler farms with presumably high tendency of dissemination. Further studies on the epidemiology and control of S. Infantis in broilers are needed to prevent the transfer from poultry into the human food chain.
Collapse
Affiliation(s)
- Silvia García-Soto
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Mostafa Y Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|
15
|
Arkali A, Çetinkaya B. Molecular identification and antibiotic resistance profiling of Salmonella species isolated from chickens in eastern Turkey. BMC Vet Res 2020; 16:205. [PMID: 32560721 PMCID: PMC7304202 DOI: 10.1186/s12917-020-02425-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The aim of this study was to obtain quantitative data about the frequency, genotypic characterization and antibiotic resistance profiling of Salmonella agents in chicken flocks located in eastern Turkey. RESULTS Feces samples representing at least 20% of the flock area were collected via sock swabs from commercial poultry flocks in the study region in addition to internal organs (liver, spleen, intestine) collected at necropsy of suspected chickens belonging to small family enterprises. The samples were analyzed by conventional bacteriological methods (ISO 6579:2002/A1:2007) for isolation, and genus specific (invA) PCR for the identification of Salmonella spp. Then, two mPCR were set up to determine Salmonella serotypes and genotypic resistance status of the field isolates against ampicillin, tetracycline, trimethoprim-sulfamethoxazole and chloramphenicol antibiotics. In the PCR analysis of the suspected colonies, 98.5% were confirmed as Salmonella spp., and, the most prevalent serotype was identified as S. Infantis with the proportion of 26.6% (17/64), followed by S. Enteritidis with 21.9% (14/64) and S. Typhimurium with 9.4% (6/64). The findings related to antibiotic resistance genes revealed that the most frequently determined gene was sul1 with approximately 58%, while the blaTEM gene was detected at the lowest proportion with 20%, among Salmonella isolates. CONCLUSIONS The results indicated that Salmonella infections constitute a potential risk for chicken flocks in the country and that genotypic resistance rates against various antibiotics should draw particular attention in terms of both human and animal health.
Collapse
Affiliation(s)
| | - Burhan Çetinkaya
- Department of Microbiology, Veterinary Faculty, Firat University, 23100, Elazig, Turkey.
| |
Collapse
|
16
|
Aviv G, Cornelius A, Davidovich M, Cohen H, Suwandi A, Galeev A, Steck N, Azriel S, Rokney A, Valinsky L, Rahav G, Grassl GA, Gal-Mor O. Differences in the expression of SPI-1 genes pathogenicity and epidemiology between the emerging Salmonella enterica serovar Infantis and the model Salmonella enterica serovar Typhimurium. J Infect Dis 2020; 220:1071-1081. [PMID: 31062854 DOI: 10.1093/infdis/jiz235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/06/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Salmonella enterica serovar Infantis (S. Infantis) is one of the ubiquitous serovars of the bacterial pathogen S. enterica and recently has been emerging in many countries worldwide. Nonetheless, not much is known about its epidemiology, host adaptation, and virulence. METHODS Epidemiological and molecular approaches were used together with tissue-culture and mouse models to conduct phenotypic comparison with the model S. enterica serovar Typhimurium. RESULTS We show that S. Infantis is more frequently associated with infections in infants <2 years old and prone to cause significantly less invasive infections than serovar Typhimurium. Moreover, although S. Infantis adheres better to host cells and highly colonizes mouse intestines soon after infection, it is significantly less invasive and induces much lower inflammation and disease in vivo than S. Typhimurium. These differences were associated with lower expression of Salmonella pathogenicity island (SPI) 1 genes in S. Infantis than in S. Typhimurium. CONCLUSIONS Our results demonstrate previously unknown differences in the epidemiology, virulence pathway expression, and pathogenicity between two highly abundant Salmonella serovars and suggest that native variation in the expression of the SPI-1 regulon is likely to contribute to epidemiological and virulence variation between genetically similar nontyphoidal Salmonella serovars.
Collapse
Affiliation(s)
- Gili Aviv
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer.,Department of Clinical Microbiology and Immunology, Jerusalem, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Jerusalem, Israel
| | | | | | - Helit Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer
| | - Abdulhadi Suwandi
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research, Partner Site Hannover-Braunschweig
| | - Alibek Galeev
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research, Partner Site Hannover-Braunschweig
| | | | - Shalhevet Azriel
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer
| | - Assaf Rokney
- Central Laboratories, Ministry of Health, Jerusalem, Israel
| | - Lea Valinsky
- Central Laboratories, Ministry of Health, Jerusalem, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer.,Sackler Faculty of Medicine, Tel Aviv University, Jerusalem, Israel
| | - Guntram A Grassl
- Research Center Borstel, Germany.,Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research, Partner Site Hannover-Braunschweig
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer.,Department of Clinical Microbiology and Immunology, Jerusalem, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Jerusalem, Israel
| |
Collapse
|
17
|
Genome-based Salmonella serotyping as the new gold standard. Sci Rep 2020; 10:4333. [PMID: 32152449 PMCID: PMC7062728 DOI: 10.1038/s41598-020-61254-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/25/2020] [Indexed: 11/08/2022] Open
Abstract
Salmonella enterica is the second most reported bacterial cause of food-borne infections in Europe. Therefore molecular surveillance activities based on pathogen subtyping are an important measure of controlling Salmonellosis by public health agencies. In Germany, at the federal level, this work is carried out by the National Reference Center for Salmonella and other Bacterial Enteric Pathogens (NRC). With rise of next generation sequencing techniques, the NRC has introduced whole-genome-based typing methods for S. enterica in 2016. In this study we report on the feasibility of genome-based in silico serotyping in the German setting using raw sequence reads. We found that SeqSero and seven gene MLST showed 98% and 95% concordance, respectively, with classical serotyping for the here evaluated serotypes, including the most common German serotypes S. Enteritidis and S. Typhimurium as well as less frequently found serotypes. The level of concordance increased to >99% when the results of both in silico methods were combined. However, both tools exhibited misidentification of monophasic variants, in particular monophasic S. Typhimurium and therefore need to be fine-tuned for reliable detection of this epidemiologically important variant. We conclude that with adjustments Salmonella genome-based serotyping might become the new gold standard.
Collapse
|
18
|
Cohen E, Rahav G, Gal-Mor O. Genome Sequence of an Emerging Salmonella enterica Serovar Infantis and Genomic Comparison with Other S. Infantis Strains. Genome Biol Evol 2020; 12:151-159. [PMID: 32145019 PMCID: PMC7144548 DOI: 10.1093/gbe/evaa048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Salmonella enterica serovar Infantis (S. Infantis) is one of the dominant serovars of the bacterial pathogen S. enterica. In recent years, the number of human infections caused by S. Infantis has been increasing in many countries, and often the emerging population harbors a unique virulence-resistant megaplasmid called plasmid of emerging S. Infantis (pESI). Here, we report the complete gap-free genome sequence of the S. Infantis Israeli emerging clone and compare its chromosome and pESI sequences with other complete S. Infantis genomes. We show a conserved presence of the Salmonella pathogenicity islands 1-6, 9, 11, 12, and CS54 and a common integration of five bacteriophages in the S. Infantis chromosome. In contrast, we found variable presence of additionally three chromosomally integrated phages and eight modular regions in pESI, which contribute to the genetic and phenotypic diversity (including antimicrobial resistance) of this ubiquitous foodborne pathogen.
Collapse
Affiliation(s)
- Emiliano Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Israel
| |
Collapse
|
19
|
Gymoese P, Kiil K, Torpdahl M, Østerlund MT, Sørensen G, Olsen JE, Nielsen EM, Litrup E. WGS based study of the population structure of Salmonella enterica serovar Infantis. BMC Genomics 2019; 20:870. [PMID: 31730461 PMCID: PMC6858691 DOI: 10.1186/s12864-019-6260-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella Infantis (S. Infantis) is one of the most frequent Salmonella serovars isolated from human cases of salmonellosis and the most detected serovar from animal and food sources in Europe. The serovar is commonly associated with poultry and there is increasing concern over multidrug resistant clones spreading worldwide, as the dominating clones are characterized by presence of large plasmids carrying multiple resistance genes. Increasing the knowledge of the S. Infantis population and evolution is important for understanding and preventing further spread. In this study, we analysed a collection of strains representing different decades, sources and geographic locations. We analysed the population structure and the accessory genome, in particular we identified prophages with a view to understand the role of prophages in relation to the evolution of this serovar. RESULTS We sequenced a global collection of 100 S. Infantis strains. A core-genome SNP analysis separated five strains in e-Burst Group (eBG) 297 with a long branch. The remaining strains, all in eBG31, were divided into three lineages that were estimated to have separated approximately 150 years ago. One lineage contained the vast majority of strains. In five of six clusters, no obvious correlation with source or geographical locations was seen. However, one cluster contained mostly strains from human and avian sources, indicating a clone with preference for these sources. The majority of strains within this cluster harboured a pESI-like plasmid with multiple resistance genes. Another lineage contained three genetic clusters with more rarely isolated strains of mainly animal origin, possibly less sampled or less infectious clones. Conserved prophages were identified in all strains, likely representing bacteriophages which integrated into the chromosome of a common ancestor to S. Infantis. We also saw that some prophages were specific to clusters and were probably introduced when the clusters were formed. CONCLUSIONS This study analysed a global S. Infantis population and described its genetic structure. We hypothesize that the population has evolved in three separate lineages, with one more successfully emerging lineage. We furthermore detected conserved prophages present in the entire population and cluster specific prophages, which probably shaped the population structure.
Collapse
Affiliation(s)
- Pernille Gymoese
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Artillerivej 5 Denmark
| | - Kristoffer Kiil
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Artillerivej 5 Denmark
| | - Mia Torpdahl
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Artillerivej 5 Denmark
| | - Mark T. Østerlund
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Artillerivej 5 Denmark
| | - Gitte Sørensen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Artillerivej 5 Denmark
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg C, Denmark
| | - Eva M. Nielsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Artillerivej 5 Denmark
| | - Eva Litrup
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Artillerivej 5 Denmark
| |
Collapse
|
20
|
Cui M, Zhang P, Li J, Sun C, Song L, Zhang C, Zhao Q, Wu C. Prevalence and Characterization of Fluoroquinolone Resistant Salmonella Isolated From an Integrated Broiler Chicken Supply Chain. Front Microbiol 2019; 10:1865. [PMID: 31456779 PMCID: PMC6700324 DOI: 10.3389/fmicb.2019.01865] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/29/2019] [Indexed: 11/23/2022] Open
Abstract
The objectives of this study were to investigate the prevalence and fluoroquinolone resistant Salmonella isolated from an integrated broiler chicken supply chain and their molecular characterization. In total, 73 Salmonella isolates were recovered from a broiler chicken supply chain in Shanghai. Salmonella isolates were tested for susceptibility to 11 antimicrobial agents using the broth dilution method and were characterized using pulsed-field gel electrophoresis (PFGE). Then, the Salmonella isolates were examined for mutations in quinolone resistance-determining region (QRDR) of gyrA, gyrB, parC, and parE, and were screened for plasmid-mediated quinolone resistance (PMQR) genes. Lastly, we sequenced the plasmids carrying qnrS1 in six Salmonella isolates from three sources (two isolated per source). Among 73 Salmonella isolates, 45 isolates were identified as S. Indiana, 24 were S. Schwarzengrund, 2 were S. Enteritidis, and 2 were S. Stanleyville. In addition, high rates of resistance were detected for nalidixic acid (41.1%) and ciprofloxacin (37.0%), while resistance to other test agents was diverse (2.0-100%). S. Indiana and S. Schwarzengrund isolates from different sources exhibited the same PFGE pattern, suggesting that the Salmonella isolates possessed high potential to spread along the broiler chicken supply chain. gyrA and parC exhibited frequent missense mutations. Moreover, qnrS1 was the most prevalent PMQR gene in the 73 Salmonella isolates, and it was found about a new hybrid plasmid. This study concludes a high prevalence of fluoroquinolone resistant Salmonella in chicken supply chain, threatening the treatment of Salmonella foodborne diseases. In particular, the emergence of a new hybrid plasmid carrying qnrS1 indicates that the recombination of plasmid carrying resistance gene might be a potential risk factor for the prevention and control strategies of drug resistance.
Collapse
Affiliation(s)
- Mingquan Cui
- China Institute of Veterinary Drug Control, Beijing, China
| | - Peng Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Detection for Veterinary Drug Residue and Illegal Additive, MOA, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiyun Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Detection for Veterinary Drug Residue and Illegal Additive, MOA, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chengtao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Detection for Veterinary Drug Residue and Illegal Additive, MOA, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Li Song
- China Institute of Veterinary Drug Control, Beijing, China
| | - Chunping Zhang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Qi Zhao
- China Institute of Veterinary Drug Control, Beijing, China
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Detection for Veterinary Drug Residue and Illegal Additive, MOA, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Monte DF, Lincopan N, Berman H, Cerdeira L, Keelara S, Thakur S, Fedorka-Cray PJ, Landgraf M. Genomic Features of High-Priority Salmonella enterica Serovars Circulating in the Food Production Chain, Brazil, 2000-2016. Sci Rep 2019; 9:11058. [PMID: 31363103 PMCID: PMC6667439 DOI: 10.1038/s41598-019-45838-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/11/2019] [Indexed: 11/09/2022] Open
Abstract
Multidrug-resistant (MDR) Salmonella enterica has been deemed a high-priority pathogen by the World Health Organization. Two hundred and sixty-four Salmonella enterica isolates recovered over a 16-year period (2000 to 2016) from the poultry and swine production chains, in Brazil, were investigated by whole-genome sequencing (WGS). Most international lineages belonging to 28 serovars, including, S. enterica serovars S. Schwarzengrund ST96, S. Typhimurium ST19, S. Minnesota ST548, S. Infantis ST32, S. Heidelberg ST15, S. Newport ST45, S. Brandenburg ST65 and S. Kentucky ST198 displayed MDR and virulent genetic backgrounds. In this regard, resistome analysis revealed presence of qnrE1 (identified for the first time in S. Typhimurium from food chain), qnrB19, qnrS1, blaCTX-M-8, blaCTX-M-2 and blaCMY-2 genes, as well as gyrA mutations; whereas ColpVC, IncHI2A, IncHI2, IncFIA, Incl1, IncA/C2, IncR, IncX1 and po111 plasmids were detected. In addition, phylogenetic analysis revealed multiple independent lineages such as S. enterica serovars S. Infantis, S. Schwarzengrund, S. Minnesota, S. Kentucky and S. Brandenburg. In brief, ocurrence and persistence of international lineages of S. enterica serovars in food production chain is supported by conserved genomes and wide virulome and resistome.
Collapse
Affiliation(s)
- Daniel F Monte
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil. .,Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA.
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Hanna Berman
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Louise Cerdeira
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Shivaramu Keelara
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Paula J Fedorka-Cray
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - Mariza Landgraf
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
22
|
Acar S, Bulut E, Stasiewicz MJ, Soyer Y. Genome analysis of antimicrobial resistance, virulence, and plasmid presence in Turkish Salmonella serovar Infantis isolates. Int J Food Microbiol 2019; 307:108275. [PMID: 31408739 DOI: 10.1016/j.ijfoodmicro.2019.108275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/02/2023]
Abstract
Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) isolates were found to have a multi-drug resistance profile (kanamycin, streptomycin, nalidixic acid, tetracycline, sulfonamide, and sometimes to ampicillin) and high prevalence (91%) in Turkish poultry in our previous studies. To investigate the mechanism behind multi-drug antimicrobial resistance (AMR) and high prevalence in Turkish poultry, 23 of the isolates were sequenced for comparative genomic analyses including: SNP-based comparison to S. Infantis from other countries, comparison of antimicrobial resistance genes (AMGs) with AMR phenotypes, and plasmid identification and annotation. Whole-genome SNP-based phylogenetic analysis found that all 23 Turkish S. Infantis isolates formed a distinct, well-supported clade, separate from 243 comparison S. Infantis genomes in GenomeTrakr identified as from the US and EU; the isolates most closely related to the cluster of these Turkish isolates were from Israel and Egypt. AMGs identified by bioinformatic analysis, without differentiating chromosomal or plasmid located genes, implied AMR phenotypes with 94% similarity overall to wet lab data, which was performed by phenotypic and conventional PCR methods. Most of the S. Infantis (21/23) isolates had identifiable plasmids, with 76% (16/21) larger than 100 kb and 48% (10/21) larger than 200 kb. A plasmid larger than 200 kb, with the incompatibility type of IncX1, similar to United States S. Infantis plasmid N55391 (99% query coverage and 99% identity overall), which itself is similar to Italian and Hungarian S. Infantis plasmids. Turkish S. Infantis plasmids had different beta-lactam resistance genes (blaTEM-70, blaTEM-148 and blaTEM-198) than the gene blaCTX-M-65 found in S. Infantis plasmids from other countries. This is the first observation of these three genes in S. Infantis isolates. The plasmids larger than 200 kb had two distinct regions of interest: Site 1 and Site 2. Site 1 (around 130 kb) had virulence- and bacteriocin- associated genes such as bacteriocin secretion system and type II toxin-antitoxin system genes (vagC, ccdA, ccdB, mchE, cvaB) and an aminoglycoside resistance gene (str). Site 2 (around 75-110 kb) had the antimicrobial resistance genes (aadA, sulI, tetA, tetR) and mercury (mer) resistance gene on tranposons Tn552 and Tn501. Presence of these AMR and virulence genes suggests they may have a role in the emergence of S. Infantis in poultry and support treating this serotype as a an important human health hazard.
Collapse
Affiliation(s)
- Sinem Acar
- Department of Food Engineering, Middle East Technical University, Ankara 06810, Turkey
| | - Ece Bulut
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Matthew J Stasiewicz
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yeşim Soyer
- Department of Food Engineering, Middle East Technical University, Ankara 06810, Turkey.
| |
Collapse
|
23
|
Tang S, Orsi RH, Luo H, Ge C, Zhang G, Baker RC, Stevenson A, Wiedmann M. Assessment and Comparison of Molecular Subtyping and Characterization Methods for Salmonella. Front Microbiol 2019; 10:1591. [PMID: 31354679 PMCID: PMC6639432 DOI: 10.3389/fmicb.2019.01591] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/26/2019] [Indexed: 01/26/2023] Open
Abstract
The food industry is facing a major transition regarding methods for confirmation, characterization, and subtyping of Salmonella. Whole-genome sequencing (WGS) is rapidly becoming both the method of choice and the gold standard for Salmonella subtyping; however, routine use of WGS by the food industry is often not feasible due to cost constraints or the need for rapid results. To facilitate selection of subtyping methods by the food industry, we present: (i) a comparison between classical serotyping and selected widely used molecular-based subtyping methods including pulsed-field gel electrophoresis, multilocus sequence typing, and WGS (including WGS-based serovar prediction) and (ii) a scoring system to evaluate and compare Salmonella subtyping assays. This literature-based assessment supports the superior discriminatory power of WGS for source tracking and root cause elimination in food safety incident; however, circumstances in which use of other subtyping methods may be warranted were also identified. This review provides practical guidance for the food industry and presents a starting point for further comparative evaluation of Salmonella characterization and subtyping methods.
Collapse
Affiliation(s)
- Silin Tang
- Mars Global Food Safety Center, Beijing, China
| | - Renato H. Orsi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Hao Luo
- Mars Global Food Safety Center, Beijing, China
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, China
| | | | | | | | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
24
|
Roschanski N, Hadziabdic S, Borowiak M, Malorny B, Tenhagen BA, Projahn M, Kaesbohrer A, Guenther S, Szabo I, Roesler U, Fischer J. Detection of VIM-1-Producing Enterobacter cloacae and Salmonella enterica Serovars Infantis and Goldcoast at a Breeding Pig Farm in Germany in 2017 and Their Molecular Relationship to Former VIM-1-Producing S. Infantis Isolates in German Livestock Production. mSphere 2019; 4:e00089-19. [PMID: 31189558 PMCID: PMC6563352 DOI: 10.1128/msphere.00089-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/23/2019] [Indexed: 01/30/2023] Open
Abstract
In 2011, VIM-1-producing Salmonella enterica serovar Infantis and Escherichia coli were isolated for the first time in four German livestock farms. In 2015/2016, highly related isolates were identified in German pig production. This raised the issue of potential reservoirs for these isolates, the relation of their mobile genetic elements, and potential links between the different affected farms/facilities. In a piglet-producing farm suspicious for being linked to some blaVIM-1 findings in Germany, fecal and environmental samples were examined for the presence of carbapenemase-producing Enterobacteriaceae and Salmonella spp. Newly discovered isolates were subjected to Illumina whole-genome sequencing (WGS) and S1 pulsed-field gel electrophoresis (PFGE) hybridization experiments. WGS data of these isolates were compared with those for the previously isolated VIM-1-producing Salmonella Infantis isolates from pigs and poultry. Among 103 samples, one Salmonella Goldcoast isolate, one Salmonella Infantis isolate, and one Enterobacter cloacae isolate carrying the blaVIM-1 gene were detected. Comparative WGS analysis revealed that the blaVIM-1 gene was part of a particular Tn21-like transposable element in all isolates. It was located on IncHI2 (ST1) plasmids of ∼290 to 300 kb with a backbone highly similar (98 to 100%) to that of reference pSE15-SA01028. SNP analysis revealed a close relationship of all VIM-1-positive S Infantis isolates described since 2011. The findings of this study demonstrate that the occurrence of the blaVIM-1 gene in German livestock is restricted neither to a certain bacterial species nor to a certain Salmonella serovar but is linked to a particular Tn21-like transposable element located on transferable pSE15-SA01028-like IncHI2 (ST1) plasmids, being present in all of the investigated isolates from 2011 to 2017.IMPORTANCE Carbapenems are considered one of few remaining treatment options against multidrug-resistant Gram-negative pathogens in human clinical settings. The occurrence of carbapenemase-producing Enterobacteriaceae in livestock and food is a major public health concern. Particularly the occurrence of VIM-1-producing Salmonella Infantis in livestock farms is worrisome, as this zoonotic pathogen is one of the main causes for human salmonellosis in Europe. Investigations on the epidemiology of those carbapenemase-producing isolates and associated mobile genetic elements through an in-depth molecular characterization are indispensable to understand the transmission of carbapenemase-producing Enterobacteriaceae along the food chain and between different populations to develop strategies to prevent their further spread.
Collapse
Affiliation(s)
- Nicole Roschanski
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| | - Sead Hadziabdic
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Maria Borowiak
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Burkhard Malorny
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Bernd-Alois Tenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Michaela Projahn
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| | - Annemarie Kaesbohrer
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
- Institute of Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Sebastian Guenther
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| | - Istvan Szabo
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany
| | - Jennie Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment, BfR, Berlin, Germany
| |
Collapse
|
25
|
Bonardi S, Pitino R. Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Ital J Food Saf 2019; 8:7956. [PMID: 31316921 PMCID: PMC6603432 DOI: 10.4081/ijfs.2019.7956] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/09/2019] [Indexed: 01/11/2023] Open
Abstract
Antimicrobial resistance is an increasing global health problem and one of the major concerns for economic impacts worldwide. Recently, resistance against carbapenems (doripenem, ertapenem, imipenem, meropenem), which are critically important antimicrobials for human cares, poses a great risk all over the world. Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and encoded by both chromosomal and plasmidic genes. They hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillins and aztreonam. Despite several studies in human patients and hospital settings have been performed in European countries, the role of livestock animals, wild animals and the terrestrial and aquatic environment in the maintenance and transmission of carbapenemase- producing bacteria has been poorly investigated. The present review focuses on the carbapenemase-producing bacteria detected in pigs, cattle, poultry, fish, mollusks, wild birds and wild mammals in Europe as well as in non-European countries, investigating the genetic mechanisms for their transmission among food-producing animals and wildlife. To shed light on the important role of the environment in the maintenance and genetic exchange of resistance determinants between environmental and pathogenic bacteria, studies on aquatic sources (rivers, lakes, as well as wastewater treatment plants) are described.
Collapse
Affiliation(s)
- Silvia Bonardi
- Department of Veterinary Science, University of Parma, Italy
| | | |
Collapse
|
26
|
Pate M, Mičunovič J, Golob M, Vestby LK, Ocepek M. Salmonella Infantis in Broiler Flocks in Slovenia: The Prevalence of Multidrug Resistant Strains with High Genetic Homogeneity and Low Biofilm-Forming Ability. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4981463. [PMID: 30881988 PMCID: PMC6383402 DOI: 10.1155/2019/4981463] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/30/2018] [Accepted: 01/20/2019] [Indexed: 11/23/2022]
Abstract
For almost a decade, the number of Salmonella enterica subspecies enterica serovar Infantis-positive broiler flocks has been steadily increasing in Slovenia, doubling the number of positive holdings in only a few years. Since multidrug resistant S. Infantis isolates are highly prevalent in the broiler meat industry and may represent a public health concern through the food chain, we aimed to investigate the antimicrobial susceptibility, genetic diversity, and biofilm-forming ability of S. Infantis from Slovenian broiler flocks. A total of 87 S. Infantis strains isolated from broiler faeces in the period between 2007 and 2013 were studied. The samples originated from 41 farms which were subcontractors of three major food business operators and from two autonomously operating holdings (farms). Isolates were phenotypically tested for their susceptibility to 14 antimicrobials from nine classes by determining the minimum inhibitory concentration with the microdilution method. Only 8% of the isolates were susceptible to all of the antimicrobial agents tested, while 88.5% of the isolates were multidrug resistant, with the most common resistance pattern CipNxSSuT (65.5%) followed by CipNxSuT (17.2%). Pulsed-field gel electrophoresis (PFGE) divided the strains into five clusters (A-E) comprising 16 distinct XbaI PFGE profiles. Sixty-five out of 87 isolates were grouped in clusters A and B, with the predominant PFGE profiles A1 and B1 encompassing 33 and 28 isolates, respectively. A vast majority of the isolates (75/87) showed >90% PFGE profile similarity. The biofilm-forming capacity of the tested isolates, determined with crystal violet assay in polystyrene microwell plates, was generally weak. The average biofilm formation for persistent strains was higher than for presumably nonpersistent strains; however, the difference was not significant. It seems that S. Infantis persistence on broiler farms is more related to its widespread occurrence in the broiler production chain and ineffective disinfection protocols than to its ability to form biofilm.
Collapse
Affiliation(s)
- Mateja Pate
- University of Ljubljana, Veterinary Faculty, 1000 Ljubljana, Slovenia
| | - Jasna Mičunovič
- University of Ljubljana, Veterinary Faculty, 1000 Ljubljana, Slovenia
| | - Majda Golob
- University of Ljubljana, Veterinary Faculty, 1000 Ljubljana, Slovenia
| | | | - Matjaž Ocepek
- University of Ljubljana, Veterinary Faculty, 1000 Ljubljana, Slovenia
| |
Collapse
|
27
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Dewulf J, Hald T, Michel V, Niskanen T, Ricci A, Snary E, Boelaert F, Messens W, Davies R. Salmonella control in poultry flocks and its public health impact. EFSA J 2019; 17:e05596. [PMID: 32626222 PMCID: PMC7009056 DOI: 10.2903/j.efsa.2019.5596] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An increase in confirmed human salmonellosis cases in the EU after 2014 triggered investigation of contributory factors and control options in poultry production. Reconsideration of the five current target serovars for breeding hens showed that there is justification for retaining Salmonella Enteritidis, Salmonella Typhimurium (including monophasic variants) and Salmonella Infantis, while Salmonella Virchow and Salmonella Hadar could be replaced by Salmonella Kentucky and either Salmonella Heidelberg, Salmonella Thompson or a variable serovar in national prevalence targets. However, a target that incorporates all serovars is expected to be more effective as the most relevant serovars in breeding flocks vary between Member State (MS) and over time. Achievement of a 1% target for the current target serovars in laying hen flocks is estimated to be reduced by 254,400 CrI95[98,540; 602,700] compared to the situation in 2016. This translates to a reduction of 53.4% CrI95[39.1; 65.7] considering the layer-associated human salmonellosis true cases and 6.2% considering the overall human salmonellosis true cases in the 23 MSs included in attribution modelling. A review of risk factors for Salmonella in laying hens revealed that overall evidence points to a lower occurrence in non-cage compared to cage systems. A conclusion on the effect of outdoor access or impact of the shift from conventional to enriched cages could not be reached. A similar review for broiler chickens concluded that the evidence that outdoor access affects the occurrence of Salmonella is inconclusive. There is conclusive evidence that an increased stocking density, larger farms and stress result in increased occurrence, persistence and spread of Salmonella in laying hen flocks. Based on scientific evidence, an impact of Salmonella control programmes, apart from general hygiene procedures, on the prevalence of Campylobacter in broiler flocks at the holding and on broiler meat at the end of the slaughter process is not expected.
Collapse
|
28
|
Maradiaga M, Echeverry A, Miller MF, den Bakker HC, Nightingale K, Cook PW, Brashears MT, Brashears MM. Characterization of Antimicrobial Resistant (AMR) Salmonella Enterica Isolates Associated With Cattle at Harvest in Mexico. MEAT AND MUSCLE BIOLOGY 2019. [DOI: 10.22175/mmb2017.10.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Despite being the target of control efforts for many decades, Salmonella enterica continues to be linked with a large amount of foodborne illnesses and outbreaks worldwide. Over the years, Salmonella isolated from meat products have exhibited a high level of antibiotic resistance. In this study, a total of 351 Salmonella isolates, recovered from cattle fecal samples (n = 31), hides (n = 105), and beef carcasses (n = 215) from 3 abattoirs in Mexico were analyzed for antimicrobial susceptibility. Resistance to at least one antimicrobial drug was found in 205 (58.4%) isolates and 20 different resistance phenotypes were observed among this Salmonella isolates set. Resistance to tetracycline (40.2%) and nalidixic acid (21.1%) was most commonly observed. Additionally, the most common multidrug-resistant (MDR) phenotypes shared resistance to chloramphenicol, streptomycin, tetracycline, and trimethopin/sulfamethoxazole (11.3%), resistance to ampicillin, tetracycline, and trimethopin/sulfamethoxazole (3.4%), and resistance to ampicillin, streptomycin, and tetracycline (2.5%). When it came to antimicrobial resistance phenotypes in each abattoir, we determined there was no statistical difference in the frequency of resistant vs. susceptible Salmonella isolates among the three abattoirs (P > 0.05). These data indicate that Salmonella isolates recovered from beef cattle in Mexico are commonly resistant to antimicrobials and often multiple antimicrobials. In Mexico, antimicrobial resistance, and in particular, multidrug-resistance, maybe of particular concern due to the much higher prevalence of Salmonella in retail beef. This may lead to the spread of resistance and to the reduction of antibiotic efficacy for the control of animal and human infections. Promoting control measures and inspection standards on imported animals and food products should be applied to avoid the spread of antibiotic resistance in various populations and among countries.
Collapse
Affiliation(s)
- Martha Maradiaga
- Texas Tech University International Center for Food Industry Excellence, Department of Animal and Food Sciences
| | - Alejandro Echeverry
- Texas Tech University International Center for Food Industry Excellence, Department of Animal and Food Sciences
| | - Mark. F. Miller
- Texas Tech University International Center for Food Industry Excellence, Department of Animal and Food Sciences
| | | | - Kendra Nightingale
- Texas Tech University International Center for Food Industry Excellence, Department of Animal and Food Sciences
| | - Peter W. Cook
- Texas Tech University International Center for Food Industry Excellence, Department of Animal and Food Sciences
| | - M. T. Brashears
- Texas Tech University International Center for Food Industry Excellence, Department of Animal and Food Sciences
| | - Mindy M. Brashears
- Texas Tech University International Center for Food Industry Excellence, Department of Animal and Food Sciences
| |
Collapse
|
29
|
Shang K, Wei B, Kang M. Distribution and dissemination of antimicrobial-resistant Salmonella in broiler farms with or without enrofloxacin use. BMC Vet Res 2018; 14:257. [PMID: 30165845 PMCID: PMC6117923 DOI: 10.1186/s12917-018-1590-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella is a major zoonotic food-borne pathogen that persists on poultry farms, and animals undergo reinfection with endemic strains. The present study aimed to investigate the characteristics and dissemination of antimicrobial-resistant Salmonella within and between broiler farms that used enrofloxacin and those that did not. RESULTS Cloacal and environmental (litter, feed, and water) samples from two selected flocks in each of 12 farms owned by the same company were collected three times over a 30-day period of two production cycles during 2015-2016. The rate of Salmonella isolation was 7.8% (123/1584). Nine Salmonella serotypes (116 isolates) and seven untypable isolates were identified, and Salmonella Montevideo was the most prevalent serotype. Azithromycin-resistant (17.9%) and colistin-resistant (3.3%) isolates were detected, and multidrug-resistant isolates (43.1%) were also observed. No isolate was resistant to enrofloxacin or ciprofloxacin; however, intermediate resistance to enrofloxacin was significantly higher (P < 0.05) in farms that used enrofloxacin than in those that did not. The rate of multi-drug resistance among litter isolates (25/44, 56.8%) was significantly higher (P < 0.05) than that among cloacal swab (24/67, 35.8%) and feed (4/12, 33.3%) isolates. Pulsed-field gel electrophoresis (PFGE) analysis of strains of the same serotype was conducted to determine their epidemiological relationship. The PFGE types were classified into 31 groups with a 100% correlation cutoff in dendrograms for Salmonella Montevideo isolates, which showed 100% genomic identity based on age, sample type, flock, and production cycle within and between farms. CONCLUSION The present study highlights the occurrence of horizontal transmission and cyclic contamination with antimicrobial-resistant Salmonella in broiler farms owned by the same company. Litter may be a good indicator of indoor environmental contamination with antimicrobial-resistant Salmonella on farms. Additionally, enrofloxacin use may be one of the factors promoting resistance towards it in Salmonella.
Collapse
Affiliation(s)
- Ke Shang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Chonbuk National University, 79 Gobong-ro, Iksan, 54596 South Korea
| | - Bai Wei
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Chonbuk National University, 79 Gobong-ro, Iksan, 54596 South Korea
| | - Min Kang
- Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Center for Poultry Diseases Control, Chonbuk National University, 79 Gobong-ro, Iksan, 54596 South Korea
| |
Collapse
|
30
|
Murakami K, Noda T, Onozuka D, Kimura H, Fujimoto S. Pulsed-field profile diversities of Salmonella Enteritidis, S. Infantis, and S. Corvallis in Japan. Ital J Food Saf 2017; 6:6808. [PMID: 29071243 PMCID: PMC5641657 DOI: 10.4081/ijfs.2017.6808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 11/25/2022] Open
Abstract
The diversity of pulsed-field profiles (PFPs) within non-typhoidal Salmonella subtypes influences epidemiological analyses of Salmonella outbreaks. Therefore, determining the PFP diversity of each Salmonella serovar is important when evaluating current circulating strains. This study examined the PFP diversity of three important public health Salmonella enterica subspecies enterica serovars, S. Enteritidis (n=177), S. Infantis (n=205), and S. Corvallis (n=90), using pulsed-field gel electrophoresis. Isolates were collected from several sources, primarily from chicken-derived samples, in the Kyushu-Okinawa region of Japan between 1989 and 2005. S. Enteritidis isolates displayed 51 distinct PFPs (E-PFPs), with 92 (52.0%) and 32 (18.1%) isolates displaying types E-PFP1 and E-PFP10, respectively. The 205 S. Infantis isolates showed 54 distinct PFPs (I-PFPs), with 87 (42.4%) and 36 (17.6%) isolates being I-PFP4 and I-PFP2, respectively. I-PFP18 was the dominant I-PFP of layer chicken isolates across a 5-year period. Fourteen distinct S. Corvallis PFPs were detected. Simpson’s index results for the genetic diversities of S. Enteritidis, S. Infantis, and S. Corvallis isolates were 0.70, 0.79, and 0.78, respectively. None of the E-PFPs or I-PFPs of layer chicken isolates overlapped with those of broiler chicken isolates, and the dominant clonal lines existed for >10 years. In conclusion, limited PFP diversities were detected amongst S. Enteritidis, S. Infantis, and S. Corvallis isolates of primarily chicken-derived origins in the Kyushu-Okinawa region of Japan. Therefore, it is important to take into account these limitations in PFP diversities in epidemiological analyses of Salmonella outbreaks.
Collapse
Affiliation(s)
- Koichi Murakami
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo.,Fukuoka Institute of Health and Environmental Sciences, Fukuoka
| | - Tamie Noda
- Fukuoka Institute of Health and Environmental Sciences, Fukuoka
| | - Daisuke Onozuka
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, Fukuoka
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo
| | - Shuji Fujimoto
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Shah DH, Paul NC, Sischo WC, Crespo R, Guard J. Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poult Sci 2017; 96:687-702. [PMID: 27665007 DOI: 10.3382/ps/pew342] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/16/2016] [Indexed: 11/20/2022] Open
Abstract
Salmonella spp. is the most predominant bacterial cause of foodborne gastroenteritis in humans. Due to the risk of human infection associated with poultry products and the prevalence of antimicrobial resistance, Salmonella also poses a significant challenge to commercial poultry production. During the last decade (2002 to 2012), the 12 most prevalent poultry-associated Salmonella serotypes (MPPSTs) were frequently and consistently isolated from poultry products in the United States. These MPPSTs and their percent prevalence in poultry products include Kentucky (4%), Enteritidis (2%) Heidelberg (2%), Typhimurium (2%), S. I 4,[5],12:i:- (0.31%), Montevideo (0.20%), Infantis (0.16%) Schwarzengrund (0.15%), Hadar (0.15%), Mbandaka (0.13%), Thompson (0.12%), and Senftenberg (0.04%). All MPPSTs except Kentucky are among the top 30 clinically significant serotypes that cause human illnesses in the United States. However with the exception of a few widely studied serotypes such as S. Enteritidis and Typhimurium, the ecology and epidemiology of the majority of MPPSTs still remain poorly investigated. Published data from the United States suggests that MPPSTs such as Heidelberg, Typhimurium, Kentucky, and Sentfenberg are more likely to be multi-drug resistant (MDR, ≥3 antimicobial classes) whereas Enteritidis, Montevideo, Schwarzengrund, Hadar, Infantis, Thompson, and Mbandaka are generally pan-susceptible or display resistance to fewer antimicobials. In contrast, the majority of MPPSTs isolated globally have been reported to display MDR phenotype. There also appears to be an international spread of a few MDR serotypes including Kentucky, Schwarzengrund, Hadar, Thomson, Sentfenberg, and Enteritidis, which may pose significant challenges to the public health. The current knowledge gaps on the ecology, epidemiology, and antimicrobial resistance of MPPSTs are discussed.
Collapse
Affiliation(s)
| | | | - Willium C Sischo
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA 99164-7040
| | - Rocio Crespo
- Department of Veterinary Microbiology and Pathology
| | - Jean Guard
- Egg Quality and Safety Research Unit, United States Department of Agriculture, Atlanta, GA 30605, USA
| |
Collapse
|
32
|
Hernández Porras EE, Rosero Torres LE, Parra Barrera EL, Guerrero Montilla JA, Gómez Rubio AL, Moreno Castañeda JE. Brotes de enfermedades transmitidas por los alimentos estudiados mediante técnicas moleculares. Rev Salud Publica (Bogota) 2017; 19:671-678. [DOI: 10.15446/rsap.v19n5.52317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/28/2017] [Indexed: 11/09/2022] Open
Abstract
Objetivo Aplicar una técnica de reacción en cadena de la polimerasa (PCR) múltiple en tiempo real para la detección de Salmonella spp., Listeria monocytogenes y Yersinia enterocolitica, como herramienta de apoyo diagnóstico en la vigilancia de brotes de enfermedad transmitida por alimentos.Materiales y Métodos Se aplicó la metodología molecular en muestras clínicas provenientes de individuos que estaban asociados a brotes de enfermedad transmitida por alimentos de dos departamentos de Colombia. Los resultados se compararon con los datos arrojados por la metodología convencional de cultivo. Adicionalmente a los aislamientos obtenidos se les evaluó relación clonal mediante la técnica de electroforesis de campo pulsado (PFGE).Resultados Se determinó un total de 123 casos de enfermedad transmitida por alimentos de los cuales 45 muestras biológicas fueron confirmadas por laboratorio y 88 mediante nexo epidemiológico. La metodología molecular detectó 35/45 muestras positivas frente a 17/45 muestras positivas detectadas mediante la metodología convencional. La PFGE demostró relación clonal en cada brote.Conclusión Los resultados del estudio demuestran la aplicabilidad de la técnica molecular como herramienta útil de apoyo diagnóstico en la caracterización de brotes de enfermedad transmitida por alimentos, permitiendo una respuesta oportuna y confiable.
Collapse
|
33
|
Murakami K, Maeda-Mitani E, Onozuka D, Noda T, Sera N, Kimura H, Fujimoto S, Murakami S. Simultaneous oral administration of Salmonella Infantis and S. Typhimurium in chicks. Ir Vet J 2017; 70:27. [PMID: 28875013 PMCID: PMC5579891 DOI: 10.1186/s13620-017-0105-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background To confirm the hypothesis that Salmonella enterica subspecies enterica serovar (S.) Infantis has higher basic reproductive rates in chicks compared with other Salmonella serovars, 1-day-old specific-pathogen-free chicks (n = 8) were challenged simultaneously with S. Infantis and S. Typhimurium per os. Challenged chicks (Group A) were then housed with non-infected chicks (Group B, n = 4) for 6 days (from 2 to 8 days of age). Group B birds were then housed with other non-infected birds (Group C, n = 4), which were then transferred to cages containing a further group of untreated chicks (Group D, n = 2). A control group consisting of four non-infected chicks was used for comparison. All chickens were humanely sacrificed at 18 days of age, and Salmonella from bowel and liver samples were enumerated. Results Both serovars were isolated from all groups except the control group. S. Typhimurium was isolated at a greater frequency than S. Infantis from the bowel samples of chicks from Groups B, C and D, while no differences in colonisation rates were observed between the two serovars in liver samples from Groups B, C and D. S. Typhimurium, but not S. Infantis, was immunohistochemically detected in the lamina propria of the cecum and rectum in five birds of Group A. Despite the competitive administration, neither of the two serovars completely excluded the other, and no differences were observed in basic reproductive rates between the two serovars. Conclusions These findings, together with data from previous studies, suggest that the initial quantitative domination of S. Infantis in chicken flocks may explain why this serovar is predominant in broiler chickens.
Collapse
Affiliation(s)
- Koichi Murakami
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo, 208-0011 Japan.,Fukuoka Institute of Health and Environmental Sciences, Mukaizano 39, Dazaifu, Fukuoka, 818-0135 Japan
| | - Eriko Maeda-Mitani
- Fukuoka Institute of Health and Environmental Sciences, Mukaizano 39, Dazaifu, Fukuoka, 818-0135 Japan
| | - Daisuke Onozuka
- Department of Health Care Administration and Management, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Tamie Noda
- Fukuoka Institute of Health and Environmental Sciences, Mukaizano 39, Dazaifu, Fukuoka, 818-0135 Japan.,Present address: Kitachikugo Office for Health, Human Services, and Environmental Issues, 1642-1 Aikawa-machi Kurume, Fukuoka, 839-0861 Japan
| | - Nobuyuki Sera
- Fukuoka Institute of Health and Environmental Sciences, Mukaizano 39, Dazaifu, Fukuoka, 818-0135 Japan
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo, 208-0011 Japan
| | - Shuji Fujimoto
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Satoshi Murakami
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034 Japan
| |
Collapse
|
34
|
Aviv G, Elpers L, Mikhlin S, Cohen H, Vitman Zilber S, Grassl GA, Rahav G, Hensel M, Gal-Mor O. The plasmid-encoded Ipf and Klf fimbriae display different expression and varying roles in the virulence of Salmonella enterica serovar Infantis in mouse vs. avian hosts. PLoS Pathog 2017; 13:e1006559. [PMID: 28817673 PMCID: PMC5560535 DOI: 10.1371/journal.ppat.1006559] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/29/2017] [Indexed: 12/18/2022] Open
Abstract
Salmonella enterica serovar Infantis is one of the prevalent Salmonella serovars worldwide. Different emergent clones of S. Infantis were shown to acquire the pESI virulence-resistance megaplasmid affecting its ecology and pathogenicity. Here, we studied two previously uncharacterized pESI-encoded chaperone-usher fimbriae, named Ipf and Klf. While Ipf homologs are rare and were found only in S. enterica subspecies diarizonae and subspecies VII, Klf is related to the known K88-Fae fimbria and klf clusters were identified in seven S. enterica subspecies I serovars, harboring interchanging alleles of the fimbria major subunit, KlfG. Regulation studies showed that the klf genes expression is negatively and positively controlled by the pESI-encoded regulators KlfL and KlfB, respectively, and are activated by the ancestral leucine-responsive regulator (Lrp). ipf genes are negatively regulated by Fur and activated by OmpR. Furthermore, induced expression of both klf and ipf clusters occurs under microaerobic conditions and at 41°C compared to 37°C, in-vitro. Consistent with these results, we demonstrate higher expression of ipf and klf in chicks compared to mice, characterized by physiological temperature of 41.2°C and 37°C, respectively. Interestingly, while Klf was dispensable for S. Infantis colonization in the mouse, Ipf was required for maximal colonization in the murine ileum. In contrast to these phenotypes in mice, both Klf and Ipf contributed to a restrained infection in chicks, where the absence of these fimbriae has led to moderately higher bacterial burden in the avian host. Taken together, these data suggest that physiological differences between host species, such as the body temperature, can confer differences in fimbriome expression, affecting Salmonella colonization and other host-pathogen interplays.
Collapse
Affiliation(s)
- Gili Aviv
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Laura Elpers
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | | | - Helit Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Guntram A. Grassl
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
35
|
Hindermann D, Gopinath G, Chase H, Negrete F, Althaus D, Zurfluh K, Tall BD, Stephan R, Nüesch-Inderbinen M. Salmonella enterica serovar Infantis from Food and Human Infections, Switzerland, 2010-2015: Poultry-Related Multidrug Resistant Clones and an Emerging ESBL Producing Clonal Lineage. Front Microbiol 2017; 8:1322. [PMID: 28751886 PMCID: PMC5507995 DOI: 10.3389/fmicb.2017.01322] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/29/2017] [Indexed: 01/10/2023] Open
Abstract
Objectives: The aim of this study was to characterize a collection of 520 Salmonella enterica serovar Infantis strains isolated from food (poultry meat), human infections and environmental sources from the years 2010, 2013 and 2015 in Switzerland. Methods: We performed antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE) analysis on all 520 S. Infantis isolates, and whole genome sequencing (WGS) on 32 selected isolates. Results: The majority (74.8%) of the isolates was multidrug resistant (MDR). PFGE analysis revealed that 270 (51.9%) isolates shared an identity of 90%. All isolates subjected to WGS belonged to sequence type (ST) 32 or a double-locus variant thereof (one isolate). Seven (21.9%) of the sequenced isolates were phylogenetically related to the broiler-associated clone B that emerged in Hungary and subsequently spread within and outside of Europe. In addition, three isolates harboring blaCTX-M-65 on a predicted large (∼320 kb) plasmid grouped in a distinct cluster. Conclusion: This study documents the presence of the Hungarian clone B and related clones in food and human isolates between 2010 and 2015, and the emergence of a blaCTX-M-65 harboring MDR S. serovar Infantis lineage.
Collapse
Affiliation(s)
- Denise Hindermann
- Institute for Food Safety and Hygiene, University of ZurichZürich, Switzerland
| | - Gopal Gopinath
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, LaurelMD, United States
| | - Hannah Chase
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, LaurelMD, United States
| | - Flavia Negrete
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, LaurelMD, United States
| | - Denise Althaus
- Institute for Food Safety and Hygiene, University of ZurichZürich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, University of ZurichZürich, Switzerland
| | - Ben D. Tall
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, LaurelMD, United States
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of ZurichZürich, Switzerland
| | | |
Collapse
|
36
|
Papadopoulos T, Petridou E, Zdragas A, Mandilara G, Vafeas G, Passiotou M, Vatopoulos A. Multiple clones and low antimicrobial resistance rates for Salmonella enterica serovar Infantis populations in Greece. Comp Immunol Microbiol Infect Dis 2017; 51:54-58. [PMID: 28504096 DOI: 10.1016/j.cimid.2017.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/23/2017] [Accepted: 02/10/2017] [Indexed: 12/01/2022]
Abstract
All the Salmonella enterica ser. Infantis strains isolated under official control programs in Greece during a four year period were studied, 23 of human origin, 16 from food animals and one from food. Molecular analyses (PFGE) in combination with antimicrobial susceptibility testing were used to study whether the occurrence S. Infantis in Greece resulted from different biotypes or a successful spread of one clone. Low rates of antimicrobial resistance were observed, except for streptomycin among human isolates (48%), indicating that selective pressure due to consumption of antimicrobials has not resulted the spread of dominant clones. Pulsed Field Gel Electrophoresis revealed 31 XbaI distinct pulsotypes among the 40 strains with 60% overall similarity reflecting diversity. Four main clusters were constructed, using an 85% cut off value, clusters A, B, C and D consisting of 14, 6, 8 and 8 isolates respectively. Point source of transmission was not hypothesized as multiple reservoirs of the serovar seem to be present in Greece during the study period.
Collapse
Affiliation(s)
- Theofilos Papadopoulos
- Laboratory of Microbiology, School of Veterinary Medicine, Aristotle University, AUTH Campus, 54124, Thessaloniki, Greece.
| | - Evanthia Petridou
- Laboratory of Microbiology, School of Veterinary Medicine, Aristotle University, AUTH Campus, 54124, Thessaloniki, Greece
| | - Antonios Zdragas
- Veterinary Research Institute of Thessaloniki, National Agricultural Research Foundation, NAGREF Campus, 57001, Thermi, Greece
| | - Georgia Mandilara
- National Reference Centre for Salmonella, National School of Public Health & Central Public Health Laboratory, Hellenic Centre of Disease Control and Prevention, 16672, Vari, Greece
| | - Georgios Vafeas
- Veterinary Research Institute of Thessaloniki, National Agricultural Research Foundation, NAGREF Campus, 57001, Thermi, Greece
| | - Maria Passiotou
- Veterinary Laboratory of Chalkis, Veterinary National Reference Laboratory for Salmonella, 34100, Chalkis, Greece
| | - Alkiviadis Vatopoulos
- National Reference Centre for Salmonella, National School of Public Health & Central Public Health Laboratory, Hellenic Centre of Disease Control and Prevention, 16672, Vari, Greece
| |
Collapse
|
37
|
Vinueza-Burgos C, Cevallos M, Ron-Garrido L, Bertrand S, De Zutter L. Prevalence and Diversity of Salmonella Serotypes in Ecuadorian Broilers at Slaughter Age. PLoS One 2016; 11:e0159567. [PMID: 27414038 PMCID: PMC4944992 DOI: 10.1371/journal.pone.0159567] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/04/2016] [Indexed: 11/18/2022] Open
Abstract
Salmonella is frequently found in poultry and represent an important source for human gastrointestinal infections worldwide. The aim of this study was to investigate the prevalence, genotypes and antimicrobial resistance of Salmonella serotypes in broilers from Ecuador. Caeca content from 388 at random selected broiler batches were collected in 6 slaughterhouses during 1 year and analyzed by the ISO 6579/Amd1 protocol for the isolation for Salmonella. Isolates were serotyped and genotypic variation was acceded by pulsed field gel electrophoresis. MIC values for sulfamethoxazole, gentamicin, ciprofloxacin, ampicillin, cefotaxime, ceftazidime, tetracycline, streptomycin, trimethropim, chloramphenicol, colistin, florfenicol, kanamycin and nalidixic acid were obtained. Presence of blaCTX-M, blaTEM, blaSHV and blaCMY; and mcr-1 plasmid genes was investigated in resistant strains to cefotaxime and colistin respectively. Prevalence at batch level was 16.0%. The most common serotype was S. Infantis (83.9%) followed by S. Enteritidis (14.5%) and S. Corvallis (1.6%). The pulsed field gel electrophoresis analysis showed that S. Corvallis, S. Enteritidis and S. Infantis isolates belonged to 1, 2 and 12 genotypes respectively. S. Infantis isolates showed high resistance rates to 12 antibiotics ranging from 57.7% (kanamycin) up to 98.1% (nalidixic acid and sulfamethoxazole). All S. Enteritidis isolates showed resistance to colistin. High multiresistant patterns were found for all the serotypes. The blaCTX-M gene was present in 33 S. Infantis isolates while mcr-1 was negative in 10 colistin resistant isolates. This study provides the first set of scientific data on prevalence and multidrug-resistant Salmonella coming from commercial poultry in Ecuador.
Collapse
Affiliation(s)
| | - María Cevallos
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Lenin Ron-Garrido
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
- Centro Internacional de Zoonosis, Quito, Ecuador
| | - Sophie Bertrand
- National Reference Centre for Salmonella and Shigella, Bacterial Diseases Division, Communicable and Infectious Diseases, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Lieven De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary, Ghent University, Merelbeke, Belgium
| |
Collapse
|
38
|
SCHROEDER S, HARRIES M, PRAGER R, HÖFIG A, AHRENS B, HOFFMANN L, RABSCH W, MERTENS E, RIMEK D. A prolonged outbreak of Salmonella Infantis associated with pork products in central Germany, April-October 2013. Epidemiol Infect 2016; 144:1429-39. [PMID: 26593246 PMCID: PMC9150579 DOI: 10.1017/s0950268815002629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 09/29/2015] [Accepted: 10/07/2015] [Indexed: 11/07/2022] Open
Abstract
One of the largest and longest Salmonella outbreaks in Germany within the last 10 years occurred in central Germany in 2013. To identify vehicles of infection, we analysed surveillance data, conducted a case-control study and food traceback. We identified 267 cases infected with Salmonella Infantis with symptom onset between 16 April and 26 October 2013 in four neighbouring federal states. Results of our study indicated that cases were more likely to have eaten raw minced pork from local butcher's shops [odds ratio (OR) 2·5, 95% confidence interval (CI) 1·1-5·8] and have taken gastric acid-reducing or -neutralizing medication (OR 3·8, 95% CI 1·3-13) than controls. The outbreak was traced back to contaminated raw pork products found in different butcher's shops supplied by one slaughterhouse, to pigs at one farm and to an animal feed producer. Characterization of isolates of human, food, animal, feed, and environmental origin by phage-typing and pulsed-field gel electrophoresis confirmed the chain of infection. Insufficient hygiene standards in the slaughterhouse were the most probable cause of the ongoing transmission. We recommend that persons taking gastric acid suppressants should refrain from consuming raw pork products. Improving and maintaining adequate hygiene standards and process controls during slaughter is important to prevent future outbreaks.
Collapse
Affiliation(s)
- S. SCHROEDER
- Thuringian State Authority for Consumer Protection, Bad Langensalza, Germany
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - M. HARRIES
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- Governmental Institute of Public Health of Lower Saxony, Hannover, Germany
- Postgraduate Training for Applied Epidemiology (PAE, German Field Epidemiology Training Programme), Robert Koch Institute, Berlin, Germany
| | - R. PRAGER
- Robert Koch Institute, Branch Wernigerode, Germany
| | - A. HÖFIG
- Thuringian State Authority for Consumer Protection, Bad Langensalza, Germany
| | - B. AHRENS
- Thuringian State Authority for Consumer Protection, Bad Langensalza, Germany
| | - L. HOFFMANN
- Thuringian State Authority for Consumer Protection, Bad Langensalza, Germany
| | - W. RABSCH
- Robert Koch Institute, Branch Wernigerode, Germany
| | - E. MERTENS
- Governmental Institute of Public Health of Lower Saxony, Hannover, Germany
| | - D. RIMEK
- Thuringian State Authority for Consumer Protection, Bad Langensalza, Germany
| |
Collapse
|
39
|
Cui M, Xie M, Qu Z, Zhao S, Wang J, Wang Y, He T, Wang H, Zuo Z, Wu C. Prevalence and antimicrobial resistance of Salmonella isolated from an integrated broiler chicken supply chain in Qingdao, China. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Ulrich-Lynge SL, Juul-Madsen HR, Kjærup RB, Okimoto R, Abrahamsen MS, Maurischat S, Sørensen P, Dalgaard TS. Broilers with low serum Mannose-binding Lectin show increased fecal shedding of Salmonella enterica serovar Montevideo. Poult Sci 2016; 95:1779-86. [PMID: 26994208 DOI: 10.3382/ps/pew101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
Mannose-binding lectin (MBL) is a key molecule in innate immunity. MBL binds to carbohydrates on the surface of pathogens, initiating the complement system via the lectin-dependent pathway or facilitates opsonophagocytosis. In vivo studies using inbred chicken lines differing in MBL serum concentration indicate that chicken MBL affects Salmonella resistance; further studies are imperative in conventional broiler chickens. In this study 104 conventional day-old chickens (offspring from a cross between Cobb 500 male and female parent breeders) were orally infected with Salmonella enterica subsp. enterica serovar Montevideo. The chickens were divided into two groups based on polymorphisms in their MBL promoter region, designated L/L for low serum concentrations of MBL and L/H for medium serum concentrations of MBL. A semi-quantitative real-time PCR method for detection of Salmonella in cloacal swabs was used, the log10 CFU quantification was based on a standard curve from artificially spiked cloacal swab samples pre-incubated for 8 h with known concentrations of Salmonella ranging from 10(1) to 10(6) CFU/swabs, with an obtained amplification efficiency of 102% and a linear relationship between the log10 CFU and the threshold cycle Ct values of (R(2) = 0.99). The L/L chickens had significantly higher Log10 CFU/swab at week 5 post infection (pi) than the L/H chickens. A repetition of the study with 86 L/L and 18 L/H chickens, also gave significantly higher log10 CFU ± SEM in cloacal swabs, using the semi-quantitative real-time PCR method from L/L chickens than from the L/H chickens at week 5 pi. These results indicate that genetically determined basic levels of MBL may influence S. Montevideo susceptibility.
Collapse
Affiliation(s)
- Sofie L Ulrich-Lynge
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Helle R Juul-Madsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Rikke B Kjærup
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Ron Okimoto
- Cobb-Vantress Inc., P.O. Box 1030, U.S.-4703, Highway 412 East, Siloam Springs, Arkansas 72761-1030, USA
| | - Mitchell S Abrahamsen
- Cobb-Vantress Inc., P.O. Box 1030, U.S.-4703, Highway 412 East, Siloam Springs, Arkansas 72761-1030, USA
| | - Sven Maurischat
- Federal Institute for Risk Assessment, Unit Molecular Microbiology and Genome Analysis, National Salmonella Reference Laboratory, Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Poul Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Tina S Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| |
Collapse
|
41
|
Cai Y, Tao J, Jiao Y, Fei X, Zhou L, Wang Y, Zheng H, Pan Z, Jiao X. Phenotypic characteristics and genotypic correlation between Salmonella isolates from a slaughterhouse and retail markets in Yangzhou, China. Int J Food Microbiol 2016; 222:56-64. [PMID: 26851738 DOI: 10.1016/j.ijfoodmicro.2016.01.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/22/2015] [Accepted: 01/25/2016] [Indexed: 11/24/2022]
Abstract
An epidemiological investigation of Salmonella spp. in pig and pork samples from one slaughterhouse and its downstream retail markets in Yangzhou, Jiangsu Province, China, was conducted from October 2013 to March 2014. A total of 71.8% (155/216) and 70.9% (78/110), respectively, of the slaughterhouse and retail market samples were recovered positive for Salmonella. All Salmonella isolates were characterized using serotyping, antimicrobial resistance detection, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Seven serotypes were shared by isolates from the two sources, with the most common serotypes being Salmonella Derby, Typhimurium, and Uganda. Antimicrobial sensitivity testing revealed that the highest antimicrobial resistance rate was against tetracycline (49.7% and 37.2% in isolates from the slaughterhouse and retail market, respectively) with many multidrug-resistant (MDR) isolates in both sources. MLST analysis showed that eight sequence type (ST) patterns were shared, and ST40 occupied an absolute superiority among isolates from both sources. PFGE permitted the resolution of XbaI macrorestriction fragments of the selected 31 Salmonella Derby and 19 Salmonella Typhimurium into 30 and 10 distinct pulsotypes, displaying the high similarity between the isolates from the two sources. Our findings indicated that Salmonella isolates from a slaughterhouse and its downstream retail markets were phenotypically and genetically homologous. Additionally, Salmonella may propagate along the slaughter line and pork production chain from the slaughterhouse to retail markets.
Collapse
Affiliation(s)
- Yinqiang Cai
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Jing Tao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yang Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiao Fei
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Le Zhou
- Yangzhou Center for Disease Control and Prevention, Yangzhou, Jiangsu 225002, China
| | - Yan Wang
- Yangzhou Center for Disease Control and Prevention, Yangzhou, Jiangsu 225002, China
| | - Huijuan Zheng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiming Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Xinan Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
42
|
Fluorescence-based bioassays for the detection and evaluation of food materials. SENSORS 2015; 15:25831-67. [PMID: 26473869 PMCID: PMC4634490 DOI: 10.3390/s151025831] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR)-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA)-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials.
Collapse
|
43
|
Murgia M, Bouchrif B, Timinouni M, Al-Qahtani A, Al-Ahdal MN, Cappuccinelli P, Rubino S, Paglietti B. Antibiotic resistance determinants and genetic analysis of Salmonella enterica isolated from food in Morocco. Int J Food Microbiol 2015; 215:31-9. [PMID: 26325598 DOI: 10.1016/j.ijfoodmicro.2015.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/21/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
Antimicrobial-resistant non-typhoidal Salmonella (NTS) are an important cause of infection in Africa, but there is a lack of information on their molecular mechanisms of resistance and epidemiology. This study contributes to fill this gap through the characterization by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), plasmid profiling and analysis of antibiotic-resistance determinants of 94 Salmonella enterica strains isolated from food in Morocco. PFGE revealed considerable heterogeneity among the strains, showing 32 pulsotypes. MLST of strains representative of the different serovars evidenced 13 sequence types (STs), three of which were newly identified (ST1694, ST1768 and ST1818) and nine not previously reported in Morocco. Thirty-four strains harbored from one to four plasmids, of IncI1 group in S. Mbandaka, IncFIIA in S. Typhimurium, IncL/M in S. Hadar and S. Blockley. For the first time in Morocco an intact Salmonella Genomic Island 1 (SGI1) carrying the resistance genes aadA2, floR, tetG, blaPSE-1 and sul1 was detected in S. Typhimurium DT104. In serovar Hadar resistance to ampicillin, tetracycline and streptomycin was associated to blaTEM-1, tetA and strA genes respectively, whereas one mutation in gyrA (Asp87Asn) and one in parC (Thr54Ser) genes conferred resistance to nalidixic acid. These findings improve the information on foodborne Salmonella in Morocco, evidencing the presence of MDR strains potentially dangerous to humans, and provide useful data for future studies.
Collapse
Affiliation(s)
- Manuela Murgia
- Department of Biomedical Sciences, University of Sassari, V. le San Pietro 43/B, 07100 Sassari, Italy.
| | - Brahim Bouchrif
- Laboratoire de microbiologie et d'hygiène des aliments et des eaux, Institut Pasteur in Morocco, 1 place Louis Pasteur, Casablanca 20100, Morocco.
| | - Mohammed Timinouni
- Laboratoire de microbiologie et biologie moléculaire, Institut Pasteur in Morocco, 1 place Louis Pasteur, Casablanca 20100, Morocco.
| | - Ahmed Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354 (MBC-03), Riyadh 11211, Saudi Arabia.
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354 (MBC-03), Riyadh 11211, Saudi Arabia.
| | - Pietro Cappuccinelli
- Department of Biomedical Sciences, University of Sassari, V. le San Pietro 43/B, 07100 Sassari, Italy.
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, V. le San Pietro 43/B, 07100 Sassari, Italy; Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354 (MBC-03), Riyadh 11211, Saudi Arabia.
| | - Bianca Paglietti
- Department of Biomedical Sciences, University of Sassari, V. le San Pietro 43/B, 07100 Sassari, Italy.
| |
Collapse
|
44
|
Ulrich-Lynge SL, Dalgaard TS, Norup LR, Song X, Sørensen P, Juul-Madsen HR. Chicken mannose-binding lectin function in relation to antibacterial activity towards Salmonella enterica. Immunobiology 2015; 220:555-63. [PMID: 25623031 DOI: 10.1016/j.imbio.2014.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022]
Abstract
Mannose-binding lectin (MBL) is a C-type serum lectin of importance in innate immunity. Low serum concentrations of MBL have been associated with greater susceptibility to infections. In this study, binding of purified chicken MBL (cMBL) to Salmonella enterica subsp. enterica (S. enterica) serotypes B, C1 and D was investigated by flow cytometry, and Staphylococcus aureus (S. aureus) was used for comparison. For S. enterica the C1 serotypes were the only group to exhibit binding to cMBL. Furthermore, functional studies of the role of cMBL in phagocytosis and complement activation were performed. Spiking with cMBL had a dose-dependent effect on the HD11 phagocytic activity of S. enterica subsp. enterica serovar Montevideo, and a more pronounced effect in a carbohydrate competitive assay. This cMBL dose dependency of opsonophagocytic activity by HD11 cells was not observed for S. aureus. No difference in complement-dependent bactericidal activity in serum with high or low cMBL concentrations was found for S. Montevideo. On the other hand, serum with high concentrations of cMBL exhibited a greater bactericidal activity to S. aureus than serum with low concentrations of cMBL. The results presented here emphasise that chicken cMBL exhibits functional similarities with its mammalian counterparts, i.e. playing a role in opsonophagocytosis and complement activation.
Collapse
Affiliation(s)
- Sofie L Ulrich-Lynge
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Tina S Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Liselotte R Norup
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu Province, PR China
| | - Poul Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Helle R Juul-Madsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark.
| |
Collapse
|
45
|
Yokoyama E, Ando N, Ohta T, Kanada A, Shiwa Y, Ishige T, Murakami K, Kikuchi T, Murakami S. A novel subpopulation of Salmonella enterica serovar Infantis strains isolated from broiler chicken organs other than the gastrointestinal tract. Vet Microbiol 2014; 175:312-8. [PMID: 25542287 DOI: 10.1016/j.vetmic.2014.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 11/30/2022]
Abstract
Salmonella enterica subsp. enterica serovar Infantis strains were isolated from broiler chickens from six farms in Japan and the pathogenicity associated with the recently reported 280kbp mega plasmid was examined by possession of the plasmid and histopathology of tissues from these chickens. S. Infantis strains were isolated from 10 of 24 chickens. Phylogenetic, network and Bayesian cluster analyses were used to determine whether these strains were in the previously defined Clusters 1-5. Phylogenetic analysis classified the strains isolated in this study in two groups (Groups A and B). Both groups contained strains from gastrointestional contents, but only Group A also contained strains from spleen, liver, and lymphoid tissues. Histopathology showed suppurative splenitis in a spleen from which Group A strains were isolated. Although network and Bayesian cluster analyses were unable to differentiate Group A and B strains from the previously defined Clusters 1-5, population genetic analysis indicated that Group A was a different population from Cluster 5, indicating that Group A would be a subpopulation of Cluster 5. The irp2 gene, which is in the mega plasmid carried by a pathogenic S. Infantis strain recently isolated in Israel, was found in both Groups A and B strains and in the previously reported Clusters 4 and 5 strains. These results suggested that Group A would be a novel subpopulation of the previously defined Cluster 5, and presence of the mega plasmid may not be related whether S. Infantis strains can infect certain organs.
Collapse
Affiliation(s)
- Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba City, Chiba 260-8715, Japan.
| | - Naoshi Ando
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba City, Chiba 260-8715, Japan
| | - Tomohiro Ohta
- Laboratory of Animal Hygiene, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Akina Kanada
- Laboratory of Animal Hygiene, Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Japan
| | - Taichiro Ishige
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Japan
| | - Koichi Murakami
- Division of Pathology and Bacteriology, Fukuoka Institute of Health and Environmental Sciences, Japan
| | - Takashi Kikuchi
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba City, Chiba 260-8715, Japan
| | - Satoshi Murakami
- Laboratory of Animal Hygiene, Department of Animal Science, Tokyo University of Agriculture, Japan
| |
Collapse
|
46
|
Ulrich-Lynge SL, Dalgaard TS, Norup LR, Kjærup RM, Olsen JE, Sørensen P, Juul-Madsen HR. The consequence of low mannose-binding lectin plasma concentration in relation to susceptibility to Salmonella Infantis in chickens. Vet Immunol Immunopathol 2014; 163:23-32. [PMID: 25487759 DOI: 10.1016/j.vetimm.2014.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 12/25/2022]
Abstract
Mannose-binding lectin (MBL) is a key protein in innate immunity. MBL binds to carbohydrates on the surface of pathogens, where it initiates complement activation via the lectin-dependent pathway or facilitates opsonophagocytosis. In vitro studies have shown that human MBL is able to bind to Salmonella, but knowledge in relation to chicken MBL and Salmonella is lacking. In order to study this relation day-old chickens from two selected lines L10H and L10L, differing in MBL serum concentration, were either orally infected with S. Infantis (S.123443) or kept as non-infected controls. The differences between healthy L10H and L10L chicken sublines were more profound than differences caused by the S. Infantis infection. The average daily body weight was higher for L10H than for L10L, regardless of infection, indicating beneficial effects of MBL selection on growth. Salmonella was detected in cloacal swabs and the number of Salmonella positive chickens during the experiment was significantly higher in L10L than L10H, indicating that MBL may affect the magnitude of Salmonella colonisation in day-old chickens. MBL expression was determined in ceca tissue by real-time RT-PCR. L10H chickens showed a significantly higher relative expression than L10L at days 1 and 41 pi, regardless of infection. Finally, flow cytometric analysis of whole blood from infected chickens showed that L10H had a significantly higher count of all assessed leucocyte subsets on day 5 pi, and also a higher count of monocytes on day 12 pi than L10L. No difference was observed between infected and non-infected L10L chicken.
Collapse
Affiliation(s)
- Sofie L Ulrich-Lynge
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Tina S Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Liselotte R Norup
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Rikke M Kjærup
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - John E Olsen
- Department of Veterinary Disease Biology, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Poul Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Helle R Juul-Madsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830 Tjele, Denmark.
| |
Collapse
|
47
|
Yokoyama E, Murakami K, Shiwa Y, Ishige T, Ando N, Kikuchi T, Murakami S. Phylogenetic and population genetic analysis of Salmonella enterica subsp. enterica serovar Infantis strains isolated in Japan using whole genome sequence data. INFECTION GENETICS AND EVOLUTION 2014; 27:62-8. [PMID: 24999237 DOI: 10.1016/j.meegid.2014.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 06/09/2014] [Accepted: 06/14/2014] [Indexed: 01/26/2023]
Abstract
Salmonella enterica subsp. enterica serovar Infantis has been reported to be carried asymptomatically in chickens and isolated from some human patients with diarrhea. The aim of this study was to investigate the phylogeny of S. Infantis strains isolated in Japan from chicken meat, chicken egg shells, environmental samples from a grading and packing center for chicken eggs (GP center), diarrhea patients, and asymptomatic carriers based on whole genome sequence data. The S. Infantis strains were in five clusters in a phylogenetic tree reconstructed by the maximum likelihood method. The five clusters were confirmed by neighbor-net and Bayesian cluster analyses. Two of the five clusters formed a group containing all of the strains isolated from chicken meat and some of the strains isolated from diarrhea patients and asymptomatic carriers. The median-joining network reconstructed in this study showed that strains in one of these two clusters diverged from one node with similar relatively short branches, suggesting clonal dissemination of these strains. The other three clusters formed a group containing all of the strains isolated from chicken egg shells and the GP center, and the remaining strains from diarrhea patients and asymptomatic carriers. Interestingly, strains isolated from patients did not cluster in only one group, indicating that none of the S. Infantis strains in this study had significantly higher human pathogenicity. The population genetic analyses in this study showed the separation of the five clusters into two groups was concordant with the sources where the strains in the clusters were isolated. These results suggested that evolutionary groups with higher hierarchy than the clusters identified in this study may be present, although such groups could not be determined by phylogenetic, neighbor-net, and Bayesian analyses in this study. Determination of higher level S. Infantis evolutionary groups should be investigated using other types of genetic markers.
Collapse
Affiliation(s)
- Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan.
| | - Koichi Murakami
- Division of Pathology and Bacteriology, Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
| | - Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan
| | - Taichiro Ishige
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Tokyo, Japan
| | - Naoshi Ando
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Takashi Kikuchi
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Satoshi Murakami
- Laboratory of Animal Hygiene, Department of Animal Science, Tokyo University of Agriculture, Kanagawa, Japan
| |
Collapse
|
48
|
An emerging public health problem: acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet Microbiol 2014; 171:290-7. [PMID: 24629777 DOI: 10.1016/j.vetmic.2014.02.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/20/2022]
Abstract
Worldwide, the emergence and global spread of microorganisms with acquired carbapenemases is of great concern. The reservoirs for such organisms are increasing, not only in hospitals, but also in the community and environment. A new and important development is the presence of such organisms in livestock, companion animals and wildlife. During the last three years, carbapenemase-producing Escherichia coli, Salmonella spp. (VIM-1 producers) and Acinetobacter spp. (producing OXA-23 and NDM-1) in livestock animals (poultry, cattle and swine) and their environment have been reported. In addition, the isolation of NDM-1-producing E. coli, OXA-48 in E. coli and Klebsiella pneumoniae or OXA-23 in Acinetobacter spp. from companion animals (cats, dogs or horses) has also been observed. Other reports have described the presence of NDM-1-producing Salmonella isolated from wild birds, as well as OXA-23-like-producing Acinetobacter baumannii in ectoparasites. However, until now carbapenemase producers from foods have not been detected. For humans in contrast carbapenem-producing Salmonella isolates are increasingly reported. The real prevalence of carbapenemase-encoding genes in zoonotic bacteria or commensals from animals is unknown. Consequently, there is a need for intensified surveillance on the occurrence of carbapenemase-producing bacteria in the food chain and other animal sources in order to assist in the formulation of measures to prevent their potential spread.
Collapse
|
49
|
Aviv G, Tsyba K, Steck N, Salmon-Divon M, Cornelius A, Rahav G, Grassl GA, Gal-Mor O. A unique megaplasmid contributes to stress tolerance and pathogenicity of an emergent Salmonella enterica serovar Infantis strain. Environ Microbiol 2014; 16:977-94. [PMID: 24320043 DOI: 10.1111/1462-2920.12351] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 11/30/2013] [Indexed: 11/30/2022]
Abstract
Of all known Salmonella enterica serovars, S. Infantis is one of the most commonly isolated and has been recently emerging worldwide. To understand the recent emergence of S. Infantis in Israel, we performed extensive comparative analyses between pre-emergent and the clonal emergent S. Infantis populations. We demonstrate the fixation of adaptive mutations in the DNA gyrase (gyrA) and nitroreductase (nfsA) genes, conferring resistance to quinolones and nitrofurans, respectively, and the carriage of an emergent-specific plasmid, designated pESI. This self-transferred episome is a mosaic megaplasmid (∼280 kb), which increases bacterial tolerance to environmental mercury (mer operon) and oxidative stress, and provides further resistance to tetracycline, sulfamethoxazole and trimethoprim, most likely due to the presence of tetRA, sulI and dfrA genes respectively. Moreover, pESI carries the yersiniabactin siderophore system and two novel chaperone-usher fimbriae. In vitro studies established that pESI conjugation into a plasmidless S. Infantis strain results in superior biofilm formation, adhesion and invasion into avian and mammalian host cells. In vivo mouse infections demonstrated higher pathogenicity and increased intestinal inflammation caused by an S. Infantis strain harboring pESI compared with the plasmidless parental strain. Our results indicate that the presence of pESI that was found only in the emergent population of S. Infantis in Israel contributes significantly to antimicrobials tolerance and pathogenicity of its carrier. It is highly likely that pESI plays a key role in the successful spread of the emergent clone that replaced the local S. Infantis community in the short time of only 2-3 years.
Collapse
Affiliation(s)
- Gili Aviv
- The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | | | |
Collapse
|
50
|
MILLER T, BRAUN PG, FEHLHABER K, PRAGER R, PFEIFER Y, RABSCH W. Typing of Salmonella enterica serovar Infantis isolates from 51 outbreaks in Germany between 1974 and 2009 by a novel phage-typing scheme. Epidemiol Infect 2014; 142:75-83. [PMID: 23517655 PMCID: PMC9161231 DOI: 10.1017/s095026881300037x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 09/11/2012] [Accepted: 01/30/2013] [Indexed: 11/07/2022] Open
Abstract
We developed a new phage-typing method and evaluated its application in combination with XbaI macrorestriction analysis by pulsed-field gel electrophoresis (PFGE) as a useful tool for the long-term epidemiology of Salmonella enterica serovar Infantis. In this study, we investigated 1008 S. Infantis isolates recovered from humans, various animal species and food products from 1973 to 2009. The typing scheme is based on 17 typing phages, defining 61 different patterns within the strain collection. The experiments showed that phage typing is a reliable method for differentiation of outbreaks and sporadic clinical cases as well as for elucidation of chains of transmission. The combined analysis of phage typing and PFGE revealed the existence of epidemic clones with a high stability over time like PT29/XB27 which was identified in nosocomial salmonellosis, community outbreaks as well as in broiler chickens from 2002 to 2009.
Collapse
Affiliation(s)
- T. MILLER
- National Reference Centre for Salmonella and other Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
- Institute of Food Hygiene, Veterinary Faculty of University Leipzig, Germany
| | - P. G. BRAUN
- Institute of Food Hygiene, Veterinary Faculty of University Leipzig, Germany
| | - K. FEHLHABER
- Institute of Food Hygiene, Veterinary Faculty of University Leipzig, Germany
| | - R. PRAGER
- National Reference Centre for Salmonella and other Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Y. PFEIFER
- Nosocomial Infection, Robert Koch Institute, Wernigerode, Germany
| | - W. RABSCH
- National Reference Centre for Salmonella and other Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|