1
|
Lone JK, Pandey R, Gayacharan. Microgreens on the rise: Expanding our horizons from farm to fork. Heliyon 2024; 10:e25870. [PMID: 38390124 PMCID: PMC10881865 DOI: 10.1016/j.heliyon.2024.e25870] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Escalating public health concerns necessitate innovative approaches to food sources. Microgreens, nutrient-rich seedlings of vegetables and herbs, have gained recognition as functional foods. This review explores the evolution of microgreens, cultivation methods, biochemical changes during germination, nutritional content, health benefits, and commercial significance. Comprehensive studies have demonstrated that microgreens have an elevated level of various nutrients. Further, in vitro and in vivo research validated their antioxidant, anticancer, antibacterial, anti-inflammatory, anti-obesity, and antidiabetic properties. Microgreens, termed "desert food," show promise for sustainable food production in climate-vulnerable regions. This paper synthesizes recent research on microgreens, addressing challenges and gaps in understanding their nutritional content and health benefits. It contributes valuable insights for future research, fostering sustainable agriculture and enhancing understanding of microgreens in human health and nutrition.
Collapse
Affiliation(s)
- Jafar K. Lone
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| |
Collapse
|
2
|
Li X, Cai Z, Yang F, Wang Y, Pang X, Sun J, Li X, Lu Y. Broccoli Improves Lipid Metabolism and Intestinal Flora in Mice with Type 2 Diabetes Induced by HFD and STZ Diet. Foods 2024; 13:273. [PMID: 38254574 PMCID: PMC10814524 DOI: 10.3390/foods13020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, type 2 diabetes (T2DM) is on the rise. Maintaining a healthy diet is crucial for both treating and preventing T2DM.As a common vegetable in daily diet, broccoli has antioxidant, anti-inflammatory and anticarcoma physiological activities. We developed a mouse model of type 2 diabetes and carried out a systematic investigation to clarify the function of broccoli in reducing T2DM symptoms and controlling intestinal flora. The findings demonstrated that broccoli could successfully lower fasting blood glucose (FBG), lessen insulin resistance, regulate lipid metabolism, lower the levels of TC, TG, LDL-C, and MDA, stop the expression of IL-1β and IL-6, and decrease the harm that diabetes causes to the pancreas, liver, fat, and other organs and tissues. Furthermore, broccoli altered the intestinal flora's makeup in mice with T2DM. At the genus level, the relative abundance of Allobaculum decreased, and that of Odoribacter and Oscillospira increased; At the family level, the relative abundances of Odoribacteraceae, Rikenellaceae and S24-7 decreased, while the relative abundances of Erysipelotrichaceae and Rikenellaceae increased.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
- Priority Academic Program, Development of Jiangsu Higher Education Institutions (PAPD), Nanjing 210023, China
| | - Zifan Cai
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Feiyu Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yunfan Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; (X.L.); (Z.C.); (Y.W.); (X.P.); (J.S.); (Y.L.)
| |
Collapse
|
3
|
Liu X, Chang Y, Li Y, Zhang X, Li F, Song J, Shi H, Chen X, Cui J. Prospective cohort study of broccoli consumption frequency and all-cause and cause-specific mortality risks. Front Nutr 2024; 10:1286658. [PMID: 38260084 PMCID: PMC10800680 DOI: 10.3389/fnut.2023.1286658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Background Broccoli is rich in vitamins, minerals, and antioxidants with broad health benefits, but its intake frequency and dose-response relationship with mortality risk remain unclear. Methods Using data from the U.S. National Health and Nutrition Examination Survey 2003-2006, 12,486 adults were included. Broccoli intake frequency was evaluated by a food frequency questionnaire, and all-cause and cause-specific mortality risks were followed up. The relationship between broccoli intake and mortality risk was analyzed using Cox models. Results Compared with never consumption of broccoli, different frequencies of broccoli consumption were associated with significantly decreased risks of all-cause mortality (p for trend <0.001). Consuming broccoli 1-2 times per week was associated with a 32-43% lower mortality risk. More frequent broccoli consumption was negatively correlated with cardiovascular and cancer mortality risks (p < 0.05). Consuming broccoli 1-2 times per week for males and ≥ 3 times per week for females could significantly reduce all-cause mortality risk. Conclusion Moderate and frequent consumption of broccoli may reduce the risks of all-cause and cause-specific mortality. Optimal intake frequencies may differ by gender.
Collapse
Affiliation(s)
- Xiangliang Liu
- The First Hospital of Jilin University, Changchun, China
| | - Yu Chang
- The First Hospital of Jilin University, Changchun, China
| | - Yuguang Li
- The First Hospital of Jilin University, Changchun, China
| | - Xinwei Zhang
- The First Hospital of Jilin University, Changchun, China
| | - Fangqi Li
- The First Hospital of Jilin University, Changchun, China
| | - Jia Song
- The First Hospital of Jilin University, Changchun, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, The 9th Clinical College, Beijing, China
| | - Xiao Chen
- The First Hospital of Jilin University, Changchun, China
| | - Jiuwei Cui
- The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Mohamadi N, Baradaran Rahimi V, Fadaei MR, Sharifi F, Askari VR. A mechanistic overview of sulforaphane and its derivatives application in diabetes and its complications. Inflammopharmacology 2023; 31:2885-2899. [PMID: 37955784 DOI: 10.1007/s10787-023-01373-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Sulforaphane (SFN) is a type of phytochemical found in many cruciferous vegetables that has been shown to positively benefit the control of Type 2 Diabetes Mellitus (T2DM). The search was done from 2000 until December 2022 using PubMed, Scopus, Web of Sciences, and Google Scholar databases. We included all in vitro, in vivo, and clinical trials. Sulforaphane has been demonstrated to activate the PI3K/AKT and AMP-activated protein kinase pathways and the glucose transporter type 4 to increase insulin production and reduce insulin resistance. Interestingly, SFN possesses protective effects against diabetes complications, such as diabetic-induced hepatic damage, vascular inflammation and endothelial dysfunction, nephropathy, and neuropathy via nuclear factor erythroid 2-related factor 2 activation that leads to the translation of several anti-oxidant enzymes and regulation glycolysis, pentose phosphate pathway, fatty acid metabolism, glutamine metabolism, and glutathione metabolism. Furthermore, multiple clinical trial studies emphasized the ameliorating effects of SFN on T2DM patients. This review provides sufficient evidence for further research and development of sulforaphane as a hypoglycemic drug.
Collapse
Affiliation(s)
- Neda Mohamadi
- Herbal and Traditional Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Syed RU, Moni SS, Break MKB, Khojali WMA, Jafar M, Alshammari MD, Abdelsalam K, Taymour S, Alreshidi KSM, Elhassan Taha MM, Mohan S. Broccoli: A Multi-Faceted Vegetable for Health: An In-Depth Review of Its Nutritional Attributes, Antimicrobial Abilities, and Anti-inflammatory Properties. Antibiotics (Basel) 2023; 12:1157. [PMID: 37508253 PMCID: PMC10376324 DOI: 10.3390/antibiotics12071157] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Broccoli, Brassica oleracea var. italica, has recently gained considerable attention due to its remarkable nutritional composition and numerous health benefits. In this review, the nutritional aspects of broccoli are examined, highlighting its rich nutrient content and essential bioactive compounds. The cruciferous vegetable broccoli is a rich source of several important nutrients, including fiber, vitamins (A, C, and K), minerals (calcium, potassium, and iron), and antioxidants. It has also been shown to contain bioactive compounds such as glucosinolates, sulforaphane, and indole-3-carbinol, all of which have been shown to have significant health-promoting effects. These chemicals are known to have potent antioxidant, anti-inflammatory, and anticancer effects. This review article aims to comprehensively examine the diverse spectrum of nutrients contained in broccoli and explore its medicinal potential to promote human health.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | | | - Mohammed Khaled Bin Break
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Weam M A Khojali
- Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Al Khartoum 14415, Sudan
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Karim Abdelsalam
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Soha Taymour
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | | | | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602105, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| |
Collapse
|
6
|
Beneficial Effects of Sulforaphane-Yielding Broccoli Sprout on Cardiometabolic Health: A Systematic Review and Meta-Analysis. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-129402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: Cruciferous vegetables are complementary dietary therapies for disease prevention and health promotion. Sulforaphane-yielding broccoli sprouts are gaining popularity in managing cardiometabolic diseases. Objectives: Given the increasing prevalence of cardiometabolic diseases worldwide, this systematic review and meta-analysis aimed to study the cardiometabolic implications of broccoli sprout supplementation within the literature. Methods: Eligible literature was retrieved through Pubmed and Scopus up to June 2022. Results: Ten clinical trials investigating broccoli sprout supplementation and cardiometabolic health among human subjects were extracted for meta-analysis. The earliest study was published in 2004, and the most recent was released in 2019. Seven studies included control groups for valid comparison. Overall, the dietary intake of broccoli sprouts significantly reduced systolic (-10.9 mmHg; 95% confidence interval (CI): -17.0, -4.86) and diastolic (-6.95 mmHg; 95% CI: -10.6, -3.28) blood pressures. Marginally significant changes were also detected in blood lipid biomarkers compared to the baseline. Conclusions: Our results confirm the hypotensive properties of broccoli sprout and highlight the potential sulforaphane-dependent effects of this vegetable.
Collapse
|
7
|
Targeting NRF2 in Type 2 diabetes mellitus and depression: Efficacy of natural and synthetic compounds. Eur J Pharmacol 2022; 925:174993. [PMID: 35513015 DOI: 10.1016/j.ejphar.2022.174993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022]
Abstract
Evidence supports a strong bidirectional association between depression and Type 2 diabetes mellitus (T2DM). The harmful impact of oxidative stress and chronic inflammation on the development of both disorders is widely accepted. Nuclear factor erythroid 2-related factor 2 (NRF2) is a pertinent target in disease management owing to its reputation as the master regulator of antioxidant responses. NRF2 influences the expression of various cytoprotective phase 2 antioxidant genes, which is hampered in both depression and T2DM. Through interaction and crosstalk with several signaling pathways, NRF2 endeavors to contain the widespread oxidative damage and persistent inflammation involved in the pathophysiology of depression and T2DM. NRF2 promotes the neuroprotective and insulin-sensitizing properties of its upstream and downstream targets, thereby interrupting and preventing disease advancement. Standard antidepressant and antidiabetic drugs may be powerful against these disorders, but unfortunately, they come bearing distressing side effects. Therefore, exploiting the therapeutic potential of NRF2 activators presents an exciting opportunity to manage such bidirectional and comorbid conditions.
Collapse
|
8
|
Meuffels FM, Isenmann E, Strube M, Lesch A, Oberste M, Brinkmann C. Exercise Interventions Combined With Dietary Supplements in Type 2 Diabetes Mellitus Patients—A Systematic Review of Relevant Health Outcomes. Front Nutr 2022; 9:817724. [PMID: 35356737 PMCID: PMC8959696 DOI: 10.3389/fnut.2022.817724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 01/08/2023] Open
Abstract
IntroductionPhysical training can improve several health variables in patients with type 2 diabetes mellitus (T2DM). A growing body of studies also finds a positive influence of dietary supplement (DS) intake. The aim of this review is to shed light on the possible effects of training interventions combined with DS intake in T2DM patients.MethodsA systematic search was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in the PubMed and BISp Surf databases. Inclusion criteria were defined using the Patient-Intervention-Comparison-Outcome (PICO) scheme. The Physiotherapy Evidence Database (PEDro) scale was used for quality assessment and risk of bias analysis.ResultsTen controlled interventional studies with a total number of 643 subjects met the inclusion criteria. These studies investigated the effects of (a) vitamin D (VD), (b) VD + whey protein, (c) polyphenol containing antioxidant capsules, (d) creatine, (e) L-arginine, (f) leucine-rich amino acids, and (g) broccoli sprouts powder. Eight studies investigated effects on one or more of the following health outcomes: body mass index, fat mass, insulin resistance, glycemic control, lipid profile, oxidative stress/antioxidative capacity and/or inflammatory markers/molecules. Five of the studies show clear superior effects of physical training combined with DS intake (supplements a, b, c, e) on some of these variables compared with training only. However, one study indicates that VD intake might attenuate the training effects on triglyceride levels. Another study found that training + VD + whey protein intake increased tumor necrosis factor-α levels in T2DM patients. The effects of training combined with DS intake on renal function (supplement d) or incretin metabolism (supplement a) were investigated in two further studies. These studies do not show any additional effects of DS intake. The quality of the majority of the studies was high.ConclusionDS intake can potentially increase the benefits of physical training for specific health outcomes in T2DM patients. However, negative effects can also be observed. Possible cellular and molecular mechanisms behind potential synergistic or divergent effects of exercise training and DS use in T2DM should be explored in detail in future studies for the development of safe recommendations.
Collapse
Affiliation(s)
- Frederike Maria Meuffels
- Department of Preventive and Rehabilitative Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
- IST University of Applied Sciences, Düsseldorf, Germany
| | - Eduard Isenmann
- IST University of Applied Sciences, Düsseldorf, Germany
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Malte Strube
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Alessio Lesch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Max Oberste
- Institute of Medical Statistics and Computational Biology (IMSB), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christian Brinkmann
- Department of Preventive and Rehabilitative Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
- IST University of Applied Sciences, Düsseldorf, Germany
- *Correspondence: Christian Brinkmann
| |
Collapse
|
9
|
Çakır I, Lining Pan P, Hadley CK, El-Gamal A, Fadel A, Elsayegh D, Mohamed O, Rizk NM, Ghamari-Langroudi M. Sulforaphane reduces obesity by reversing leptin resistance. eLife 2022; 11:67368. [PMID: 35323110 PMCID: PMC8947770 DOI: 10.7554/elife.67368] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/21/2022] [Indexed: 12/11/2022] Open
Abstract
The ascending prevalence of obesity in recent decades is commonly associated with soaring morbidity and mortality rates, resulting in increased health-care costs and decreased quality of life. A systemic state of stress characterized by low-grade inflammation and pathological formation of reactive oxygen species (ROS) usually manifests in obesity. The transcription factor nuclear factor erythroid-derived 2-like 2 (NRF2) is the master regulator of the redox homeostasis and plays a critical role in the resolution of inflammation. Here, we show that the natural isothiocyanate and potent NRF2 activator sulforaphane reverses diet-induced obesity through a predominantly, but not exclusively, NRF2-dependent mechanism that requires a functional leptin receptor signaling and hyperleptinemia. Sulforaphane does not reduce the body weight or food intake of lean mice but induces an anorectic response when coadministered with exogenous leptin. Leptin-deficient Lepob/ob mice and leptin receptor mutant Leprdb/db mice display resistance to the weight-reducing effect of sulforaphane, supporting the conclusion that the antiobesity effect of sulforaphane requires functional leptin receptor signaling. Furthermore, our results suggest the skeletal muscle as the most notable site of action of sulforaphane whose peripheral NRF2 action signals to alleviate leptin resistance. Transcriptional profiling of six major metabolically relevant tissues highlights that sulforaphane suppresses fatty acid synthesis while promoting ribosome biogenesis, reducing ROS accumulation, and resolving inflammation, therefore representing a unique transcriptional program that leads to protection from obesity. Our findings argue for clinical evaluation of sulforaphane for weight loss and obesity-associated metabolic disorders.
Collapse
Affiliation(s)
- Işın Çakır
- Life Sciences Institute, University of Michigan
- Department of Molecular Physiology & Biophysics, Vanderbilt University
| | | | - Colleen K Hadley
- Life Sciences Institute, University of Michigan
- College of Literature, Science, and the Arts, University of Michigan
| | - Abdulrahman El-Gamal
- Biomedical Sciences Department, College of Health Sciences, Qu- Health, Qatar University
| | - Amina Fadel
- Biomedical Research Center, Qatar University
| | | | | | - Nasser M Rizk
- Biomedical Sciences Department, College of Health Sciences, Qu- Health, Qatar University
- Biomedical Research Center, Qatar University
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology & Biophysics, Vanderbilt University
- Warren Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University
| |
Collapse
|
10
|
Physiological Effects of Green-Colored Food-Derived Bioactive Compounds on Cardiovascular and Metabolic Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiovascular and metabolic diseases are a leading cause of death worldwide. Epidemiological studies strongly highlight various benefits of consuming colorful fruits and vegetables in everyday life. In this review, we aimed to revisit previous studies conducted in the last few decades regarding green-colored foods and their bioactive compounds in consideration of treating and/or preventing cardiovascular and metabolic diseases. This review draws a comprehensive summary and assessment of research on the physiological effects of various bioactive compounds, mainly polyphenols, derived from green-colored fruits and vegetables. In particular, their health-beneficial effects, including antioxidant, anti-inflammatory, anti-diabetic, anti-obesity, cardioprotective, and lipid-lowering properties, will be discussed. Furthermore, the bioavailability and significance of action of these bioactive compounds on cardiovascular and metabolic diseases will be discussed in detail.
Collapse
|
11
|
Smita RM, Shuvo APR, Raihan S, Jahan R, Simin FA, Rahman A, Biswas S, Salem L, Sagor MAT. The Role of Mineral Deficiencies in Insulin Resistance and Obesity. Curr Diabetes Rev 2022; 18:e171121197987. [PMID: 34789132 DOI: 10.2174/1573399818666211117104626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/06/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Minerals are critical for maintaining overall health. These tiny chemical compounds are responsible for enzymatic activation, maintaining healthy teeth and bones, regulating energy metabolism, enhancing immunity, and aiding muscle and brain function. However, mineral deficiency in the form of inadequate or under nourished intake affects millions of people throughout the world, with well-documented adverse health consequences of malnutrition. Conversely, mineral deficiency may also be a risk factor for Insulin Resistance (IR) and obesity. This review focuses on another, more "less discussed" form of malnutrition, namely mineral deficiency and its contribution to metabolic disorders. At the cellular level, minerals maintain not only molecular communication but also trigger several key biochemical pathways. Disturbances in these processes due to mineral insufficiency may gradually lead to metabolic disorders such as insulin resistance, pre-diabetes, and central obesity, which might lead to renal failure, cardiac arrest, hepatic carcinoma, and various neurodegenerative diseases. Here we discuss the burden of disease promoted by mineral deficiencies and the medical, social, and economic consequences. Mineral deficiency-mediated IR and obesity have a considerable negative impact on individual well-being, physical consideration, and economic productivity. We discuss possible molecular mechanisms of mineral deficiency that may lead to IR and obesity and suggest strategies to counter these metabolic disorders. To protect mankind from mineral nutrient deficiencies, the key is to take a variety of foods in reasonable quantities, such as organic and pasture-raised eggs, low fat dairy, and grass-fed and finished meats, insecticide, and pesticide-free vegetables and fruits.
Collapse
Affiliation(s)
| | | | - Sabbir Raihan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Rajib Jahan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Faria Anjum Simin
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Ashiqur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Soumick Biswas
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Liyad Salem
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md Abu Taher Sagor
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
12
|
Petkovic M, Leal EC, Alves I, Bose C, Palade PT, Singh P, Awasthi S, Børsheim E, Dalgaard LT, Singh SP, Carvalho E. Dietary supplementation with sulforaphane ameliorates skin aging through activation of the Keap1-Nrf2 pathway. J Nutr Biochem 2021; 98:108817. [PMID: 34271100 PMCID: PMC10580548 DOI: 10.1016/j.jnutbio.2021.108817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/08/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022]
Abstract
Visible impairments in skin appearance, as well as a subtle decline in its functionality at the molecular level, are hallmarks of skin aging. Activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-pathway, which is important in controlling inflammation and oxidative stress that occur during aging, can be triggered by sulforaphane (SFN), an isothiocyanate found in plants from the Brassicaceae family. This study aimed to assess the effects of SFN intake on age-related skin alterations. Male C57BL6 young (2 months) and old (21 months) mice were treated for 3 months with SFN diet (442.5 mg per kg) or control diet. The antioxidant capacities of the skin were increased in old SFN-treated animals as measured by mRNA levels of Nrf2 (P<.001) and its target genes NQO1 (P<.001) and HO1 (P<.01). Protein expression for Nrf2 was also increased in old SFN fed animals (P<.01), but not the protein expression of NQO1 or HO1. Additionally, ROS and MMP9 protein levels were significantly decreased (P<.05) in old SFN fed animals. Histopathological analysis confirmed that there was no difference in epidermal thickness in old, when compared to young, SFN treated animals, while the dermal layer thickness was lower in old vs. young, treated animals (P<.05). Moreover, collagen deposition was improved with SFN treatment in young (P<.05) and structurally significantly improved in the old mice (P<.001). SFN dietary supplementation therefore ameliorates skin aging through activation of the Nrf2-pathway.
Collapse
Affiliation(s)
- Marija Petkovic
- Department of Science and Environment, Roskilde University, Roskilde, Denmark; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ermelindo C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ines Alves
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Chanda Bose
- Department of Internal Medicine, Division of Hematology and Oncology Texas Tech University Medical Sciences Center, Lubbock, Texas, USA
| | - Philip T Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Preeti Singh
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology and Oncology Texas Tech University Medical Sciences Center, Lubbock, Texas, USA
| | - Elisabet Børsheim
- Department of Pediatrics, University of Arkansas for Medical Sciences; Arkansas Children's Research Institute, Little Rock, AR, USA; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Sharda P Singh
- Department of Internal Medicine, Division of Hematology and Oncology Texas Tech University Medical Sciences Center, Lubbock, Texas, USA; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
13
|
Marino M, Martini D, Venturi S, Tucci M, Porrini M, Riso P, Del Bo' C. An Overview of Registered Clinical Trials on Glucosinolates and Human Health: The Current Situation. Front Nutr 2021; 8:730906. [PMID: 34778334 PMCID: PMC8578719 DOI: 10.3389/fnut.2021.730906] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Epidemiological studies suggest a potential role of glucosinolates (GSLs) and isothiocyanates on human health. However, evidence from intervention studies, due to heterogeneity in features of study design, duration, participants, food or food components administered, and outcomes analyzed, is still insufficient. The current review aims to provide an overview of the trials on GSLs and GSL-rich foods registered over the last 20 years with the intention to summarize the main topics and results, but also the existing gaps that still need to be covered. Studies were collected by using ClinicalTrials.gov and the International Standard Randomized Controlled Trial Number (ISRCTN) registry. A total of 87 registered trials were identified with which most of them were performed by using extracts or pure compounds (n = 60) while few were conducted with GSL-rich foods (n = 27). In detail, sulforaphane was the most investigated compound, while broccoli was the most frequent food tested in the trials. The majority of the studies assessed the health effects of GSLs focusing on outcomes related to cancer and cognitive function, even if the current findings are not univocal. Emerging topics also included the study of GSLs and gut microbiota interaction and impact on skin health. Further attention was also drawn to the bioavailability of GSLs and/or derivatives from foods, extracts, and single compounds by also considering the contribution of the different genetic polymorphisms. In conclusion, although considerable efforts have been made to study GSLs and GSL-rich foods, further studies are necessary to provide evidence-based research and to corroborate the findings obtained. The interindividual response due to genetic polymorphisms should be further investigated in order to explore the contribution to the overall beneficial effect.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
14
|
The Effects of Aerobic-Resistance Training and Broccoli Supplementation on Plasma Dectin-1 and Insulin Resistance in Males with Type 2 Diabetes. Nutrients 2021; 13:nu13093144. [PMID: 34579020 PMCID: PMC8471572 DOI: 10.3390/nu13093144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/11/2023] Open
Abstract
Background: This study aimed to evaluate the effects of a combination of aerobic-resistance training (CARET) and broccoli supplementation on dectin-1 levels and insulin resistance in men with type 2 diabetes mellitus (T2D). Methods: Forty-four males with T2D were randomly allocated to four groups (n = 11 each group): CARET + broccoli supplement (TS), CARET + placebo (TP), control + broccoli supplement (S), and control + placebo (CP). CARET was performed three days per week for 12 weeks. TS and S groups received 10 g of broccoli supplement per day for 12 weeks. All variables were assessed at baseline and 12 weeks. Results: Plasma dectin-1 levels were decreased in TS and TP groups compared with the CP group (p < 0.05). Cardiometabolic risk factors showed significant reductions in TP and TS groups compared to S and CP groups (p < 0.05). Conclusion: The combination of CARET and broccoli supplementation produced the largest improvements in insulin resistance and dectin-1 and other complications of T2D.
Collapse
|
15
|
DiNicolantonio JJ, McCarty MF, Barroso-Aranda J, Assanga S, Lujan LML, O'Keefe JH. A nutraceutical strategy for downregulating TGFβ signalling: prospects for prevention of fibrotic disorders, including post-COVID-19 pulmonary fibrosis. Open Heart 2021; 8:openhrt-2021-001663. [PMID: 33879509 PMCID: PMC8061562 DOI: 10.1136/openhrt-2021-001663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- James J DiNicolantonio
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | | | | - Simon Assanga
- Department of Research and Postgraduate Studies in Food, University of Sonora, Sonora, Mexico
| | | | - James H O'Keefe
- University of Missouri-Kansas City, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
16
|
Dickerson F, Origoni A, Katsafanas E, Squire A, Newman T, Fahey J, Xiao JC, Stallings C, Goga J, Khushalani S, Yolken R. Randomized controlled trial of an adjunctive sulforaphane nutraceutical in schizophrenia. Schizophr Res 2021; 231:142-144. [PMID: 33839372 DOI: 10.1016/j.schres.2021.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 01/04/2023]
Affiliation(s)
- Faith Dickerson
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America.
| | - Andrea Origoni
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America
| | - Emily Katsafanas
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America
| | - Amalia Squire
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America
| | - Theresa Newman
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America
| | - Jed Fahey
- Johns Hopkins School of Medicine, Division of Clinical Pharmacology, Department of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, United States of America
| | - Jian-Chun Xiao
- Johns Hopkins School of Medicine, Stanley Neurovirology Laboratory, 600 North Wolfe St., Baltimore, MD 21205, United States of America
| | - Cassie Stallings
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America
| | - Joshana Goga
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America
| | - Sunil Khushalani
- Sheppard Pratt, 6501 North Charles St., Baltimore, MD 21204, United States of America
| | - Robert Yolken
- Johns Hopkins School of Medicine, Stanley Neurovirology Laboratory, 600 North Wolfe St., Baltimore, MD 21205, United States of America
| |
Collapse
|
17
|
Carrizzo A, Izzo C, Forte M, Sommella E, Di Pietro P, Venturini E, Ciccarelli M, Galasso G, Rubattu S, Campiglia P, Sciarretta S, Frati G, Vecchione C. A Novel Promising Frontier for Human Health: The Beneficial Effects of Nutraceuticals in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E8706. [PMID: 33218062 PMCID: PMC7698807 DOI: 10.3390/ijms21228706] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) such as hypertension, atherosclerosis, myocardial infarction, and diabetes are a significant public health problem worldwide. Although several novel pharmacological treatments to reduce the progression of CVDs have been discovered during the last 20 years, the better way to contain the onset of CVDs remains prevention. In this regard, nutraceuticals seem to own a great potential in maintaining human health, exerting important protective cardiovascular effects. In the last years, there has been increased focus on identifying natural compounds with cardiovascular health-promoting effects and also to characterize the molecular mechanisms involved. Although many review articles have focused on the individual natural compound impact on cardiovascular diseases, the aim of this manuscript was to examine the role of the most studied nutraceuticals, such as resveratrol, cocoa, quercetin, curcumin, brassica, berberine and Spirulina platensis, on different CVDs.
Collapse
Affiliation(s)
- Albino Carrizzo
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Carmine Izzo
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Maurizio Forte
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Paola Di Pietro
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Eleonora Venturini
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
| | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Gennaro Galasso
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Speranza Rubattu
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S.Andrea, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Petro Campiglia
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Sebastiano Sciarretta
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100 Latina, Italy
| | - Giacomo Frati
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100 Latina, Italy
| | - Carmine Vecchione
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| |
Collapse
|
18
|
Le TN, Chiu CH, Hsieh PC. Bioactive Compounds and Bioactivities of Brassica oleracea L. var. Italica Sprouts and Microgreens: An Updated Overview from a Nutraceutical Perspective. PLANTS 2020; 9:plants9080946. [PMID: 32727144 PMCID: PMC7465980 DOI: 10.3390/plants9080946] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Sprouts and microgreens, the edible seedlings of vegetables and herbs, have received increasing attention in recent years and are considered as functional foods or superfoods owing to their valuable health-promoting properties. In particular, the seedlings of broccoli (Brassica oleracea L. var. Italica) have been highly prized for their substantial amount of bioactive constituents, including glucosinolates, phenolic compounds, vitamins, and essential minerals. These secondary metabolites are positively associated with potential health benefits. Numerous in vitro and in vivo studies demonstrated that broccoli seedlings possess various biological properties, including antioxidant, anticancer, anticancer, antimicrobial, anti-inflammatory, anti-obesity and antidiabetic activities. The present review summarizes the updated knowledge about bioactive compounds and bioactivities of these broccoli products and discusses the relevant mechanisms of action. This review will serve as a potential reference for food selections of consumers and applications in functional food and nutraceutical industries.
Collapse
|
19
|
Fan C, Liang W, Wei M, Gou X, Han S, Bai J. Effects of D-Chiro-Inositol on Glucose Metabolism in db/db Mice and the Associated Underlying Mechanisms. Front Pharmacol 2020; 11:354. [PMID: 32273844 PMCID: PMC7113635 DOI: 10.3389/fphar.2020.00354] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 03/10/2020] [Indexed: 01/16/2023] Open
Abstract
In this study, we observed the effect of D-chiro-inositol (DCI) on glucose consumption in type 2 diabetic db/db mice, and investigated the relevant mechanism. We discovered that the stability of 24-h blood glucose under the nonfasting condition and decreased glucose tolerance were both alleviated after treatment with DCI. Moreover, the content of glycosylated protein and advanced glycation end products in the serum was reduced, the damage in the liver tissue was alleviated, and the synthesis of liver glycogen was significantly promoted. In addition, DCI increased the expression of insulin receptor substrate 2 (IRS2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), glucose transporters 4 (GLUT4), and phospho-AKT (S473) protein. In contrast, DCI decreased the expression level of glycogen synthase kinase 3β (GSK3β) protein in liver tissue to various degrees, as shown by immunohistochemistry and western blotting. Furthermore, DCI increased the mRNA expression of IRS2, PI3K, AKT, and GLUT4, and reduced that of GSK3β in liver tissue, as demonstrated by polymerase chain reaction. Finally, DCI promoted glucose consumption in high glucose-stimulating HepG2 cells and increased the expression of IRS2 protein in HepG2 cells, as revealed by fluorescence staining and flow cytometry. Our results indicate that DCI can significantly improve glucose metabolism in diabetic mice and HepG2 cells. This effect may be associated with the upregulation of IRS2, PI3K, AKT, and GLUT4 and downregulation of GSK3β.
Collapse
Affiliation(s)
- Chunxue Fan
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Weishi Liang
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Min Wei
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Xiangbo Gou
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Shuying Han
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Jing Bai
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
20
|
Li W, Sargsyan D, Wu R, Li S, Wang L, Cheng D, Kong AN. DNA Methylome and Transcriptome Alterations in High Glucose-Induced Diabetic Nephropathy Cellular Model and Identification of Novel Targets for Treatment by Tanshinone IIA. Chem Res Toxicol 2019; 32:1977-1988. [PMID: 31525975 DOI: 10.1021/acs.chemrestox.9b00117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy (DN) is a diabetes complication that comes from overactivation of Renin-Angiotensin System, excessive pro-inflammatory factors, reactive oxygen species (ROS) overproduction, and potential epigenetic changes. Tanshinone IIA (TIIA), a diterpene quinone phytochemical, has been shown to possess powerful antioxidant, anti-inflammatory, epigenetics, and protective effects against different diseases including DN by inhibiting ROS induced by high glucose (HG). However, epigenomic and transcriptomic study of DN and the protective effect of TIIA are lacking. In this study, next-generation sequencing of RNA and DNA methylation profiles on the potential underlying mechanisms of a DN model in mouse kidney mesangial mes13 cells challenged with HG and treatment with TIIA were conducted. Bioinformatic analysis coupled with Ingenuity Pathway analysis of RNA-seq was performed, and 1780 genes from HG/LG and 1416 genes from TIIA/HG were significantly altered. Several pro-inflammatory pathways like leukotriene biosynthesis and eicosanoid signaling pathways were activated by HG stimulation, while TIIA treatment would enhance glutathione-mediated detoxification pathway to overcome the excess oxidative stress and inflammation triggered by HG. Combination analysis of RNA-seq and Methyl-seq data sets, DNA methylation, and RNA expression of a list of DN associated genes, Nmu, Fgl2, Glo, and Kcnip2, were found to be altered in HG-induced mes13 DN model, and TIIA treatment would effectively restore the alterations. Taken together, these findings provide novel insights into the understanding of how epigenetic/epigenomic modifications could affect the progression of DN and the potential preventive effect of TIIA in DN.
Collapse
Affiliation(s)
- Wenji Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, P. R. China,Jiangsu Key laboratory of integrated traditional Chinese and Western
Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, P. R. China
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States.,Graduate Program in Pharmaceutical Sciences , Ernest Mario School of Pharmacy, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States.,Graduate Program in Pharmaceutical Sciences , Ernest Mario School of Pharmacy, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States.,Graduate Program in Pharmaceutical Sciences , Ernest Mario School of Pharmacy, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - David Cheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States.,Graduate Program in Pharmaceutical Sciences , Ernest Mario School of Pharmacy, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 160 Frelinghuysen Road , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
21
|
Aranaz P, Navarro-Herrera D, Romo-Hualde A, Zabala M, López-Yoldi M, González-Ferrero C, Gil AG, Alfredo Martinez J, Vizmanos JL, Milagro FI, González-Navarro CJ. Broccoli extract improves high fat diet-induced obesity, hepatic steatosis and glucose intolerance in Wistar rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
22
|
Natural Hydrogen Sulfide Donors from Allium sp. as a Nutraceutical Approach in Type 2 Diabetes Prevention and Therapy. Nutrients 2019; 11:nu11071581. [PMID: 31336965 PMCID: PMC6682899 DOI: 10.3390/nu11071581] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes mellitus (DM) is a socially relevant chronic disease with high prevalence worldwide. DM may lead to several vascular, macrovascular, and microvascular complications (cerebrovascular, coronary artery, and peripheral arterial diseases, retinopathy, neuropathy, and nephropathy), often accelerating the progression of atherosclerosis. Dietary therapy is generally considered to be the first step in the treatment of diabetic patients. Among the current therapeutic options, such as insulin therapy and hypoglycemic drugs, in recent years, attention has been shifting to the effects and properties-that are still not completely known-of medicinal plants as valid and inexpensive therapeutic supports with limited side effects. In this review, we report the relevant effects of medicinal plants and nutraceuticals in diabetes. In particular, we paid attention to the organosulfur compounds (OSCs) present in plant extracts that due to their antioxidant, hypoglycemic, anti-inflammatory, and immunomodulatory effects, can contribute as cardioprotective agents in type 2 DM. OSCs derived from garlic (Allium sp.), due to their properties, can represent a valuable support to the diet in type 2 DM, as outlined in this manuscript based on both in vitro and in vivo studies. Moreover, a relevant characteristic of garlic OSCs is their ability to produce the gasotransmitter H2S, and many of their effects can be explained by this property. Indeed, in recent years, several studies have demonstrated the relevant effects of endogenous and exogenous H2S in human DM, including by in vitro and in vivo experiments and clinical trials; therefore, here, we summarize the effects and the underlying molecular mechanisms of H2S and natural H2S donors.
Collapse
|
23
|
Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8267234. [PMID: 31191805 PMCID: PMC6525823 DOI: 10.1155/2019/8267234] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/08/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MS) represents worldwide public health issue characterized by a set of cardiovascular risk factors including obesity, diabetes, dyslipidemia, hypertension, and impaired glucose tolerance. The link between the MS and the associated diseases is represented by oxidative stress (OS) and by the intracellular redox imbalance, both caused by the persistence of chronic inflammatory conditions that characterize MS. The increase in oxidizing species formation in MS has been accepted as a major underlying mechanism for mitochondrial dysfunction, accumulation of protein and lipid oxidation products, and impairment of the antioxidant systems. These oxidative modifications are recognized as relevant OS biomarkers potentially able to (i) clarify the role of reactive oxygen and nitrogen species in the etiology of the MS, (ii) contribute to the diagnosis/evaluation of the disease's severity, and (iii) evaluate the utility of possible therapeutic strategies based on natural antioxidants. The antioxidant therapies indeed could be able to (i) counteract systemic as well as mitochondrial-derived OS, (ii) enhance the endogenous antioxidant defenses, (iii) alleviate MS symptoms, and (iv) prevent the complications linked to MS-derived cardiovascular diseases. The focus of this review is to summarize the current knowledge about the role of OS in the development of metabolic alterations characterizing MS, with particular regard to the occurrence of OS-correlated biomarkers, as well as to the use of therapeutic strategies based on natural antioxidants.
Collapse
|
24
|
Wu Y, Shen Y, Zhu Y, Mupunga J, Zou L, Liu C, Liu S, Mao J. Broccoli ingestion increases the glucosinolate hydrolysis activity of microbiota in the mouse gut. Int J Food Sci Nutr 2019; 70:585-594. [DOI: 10.1080/09637486.2018.1554624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China
| | - Yuke Shen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China
| | - Ye Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China
| | - Jothame Mupunga
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China
| | - Ligen Zou
- Hangzhou Academy of Agricultural Sciences, Zhejiang, Hangzhou, China
| | - Chao Liu
- Hangzhou Academy of Agricultural Sciences, Zhejiang, Hangzhou, China
| | - Shiwang Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Produces, Zhejiang, Hangzhou, China
| |
Collapse
|
25
|
Shawky NM, Shehatou GSG, Suddek GM, Gameil NM. Comparison of the effects of sulforaphane and pioglitazone on insulin resistance and associated dyslipidemia, hepatosteatosis, and endothelial dysfunction in fructose-fed rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 66:43-54. [PMID: 30597379 DOI: 10.1016/j.etap.2018.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The purpose of this work was to compare the influences of sulforaphane (SFN) to those of the standard insulin sensitizer pioglitazone (PIO) on high fructose diet (HFrD)-induced insulin resistance, dyslipidemia, hepatosteatosis, and vascular dysfunction in rats. Male Sprague Dawley rats (150-200 g) were fed on a standard diet (control) or a high fructose diet (HFrD, 60% w/w fructose) for 60 days. From day 16, two subgroups of HFrD-fed rats received either SFN (0.5 mg/kg/day, orally) or PIO (5 mg/kg/day, orally) along with HFrD until the end of the experiment. Fructose-fed rats showed significant decreases in food intake, body weight and feeding efficiency; effects that were not altered by either treatment. Data from insulin tolerance test (ITT), oral glucose tolerance test (OGTT), and HOMA-IR and HOMA-β indices demonstrated impaired insulin sensitivity and glucose utilization in HFrD-fed rats. SFN and PIO treatments significantly reduced OGTTAUC (Glass's Delta values = 1.12 and 0.84, respectively), decreased ITTAUC (Glass's Delta values = 1.05 and 0.71, respectively), significantly diminished HOMA-IR index (by 55.6% and 77.6%, respectively), and increased HOMA-β value (by 1.8 and 1.3 fold, respectively) compared to the HFrD rats. Moreover, SFN and PIO ameliorated hepatic oxidative stress and reduced serum levels of C-reactive protein and lactate dehydrogenase in HFrD-fed rats. Furthermore, SFN and PIO administrations improved insulin resistance-associated heaptosteatosis and enhanced vascular responsiveness to acetylcholine-induced relaxations. However, only SFN was able to enhance serum HDL-C levels in HFrD group. These finding suggests that SFN elicited insulin-sensitizing, hepatoprotective, and vasculoprotective effects in HFrD insulin-resistant rats that were comparable to those exerted by PIO.
Collapse
Affiliation(s)
- Noha M Shawky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - George S G Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nariman M Gameil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
26
|
Onaolapo AY, Onaolapo OJ. Nutraceuticals and Diet-based Phytochemicals in Type 2 Diabetes Mellitus: From Whole Food to Components with Defined Roles and Mechanisms. Curr Diabetes Rev 2019; 16:12-25. [PMID: 30378500 DOI: 10.2174/1573399814666181031103930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Over the past decades, the development and use of an array of prescription medications have considerably improved the clinical management of type 2 diabetes mellitus and the quality of life of patients. However, as our knowledge of the associated risk factors and approaches to its management increases, the increasing roles of diet and the composition of the diet in the etiology and successful management of diabetes mellitus are being illuminated. Presently, a lot of attention is being given to nutraceuticals and certain phytochemicals that are integral parts of the human diet. It is believed that a clearer understanding of their roles may be crucial to 'non-invasive' or minimallyintrusive management, with regards to daily living of patients. In this review, an overview of nutraceutical components and phytochemicals that may be of benefit, or had been known to be beneficial in diabetes mellitus is given. Also, how the roles of such dietary components are evolving in the management of this disorder is highlighted. Lastly, the obstacles that need to be overcome before nutraceuticals can be considered as options for the clinical management of diabetes mellitus areconsidered. CONCLUSION Despite studies that demonstrate their efficacy, no nutraceutical or food-derived compound has been formally adopted as a direct replacement for any class of antidiabetic drugs.
Collapse
Affiliation(s)
- Adejoke Yetunde Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Olakunle James Onaolapo
- Department of Pharmacology, Behavioural Neuroscience/Neuropharmacology Unit, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| |
Collapse
|
27
|
Martins T, Colaço B, Venâncio C, Pires MJ, Oliveira PA, Rosa E, Antunes LM. Potential effects of sulforaphane to fight obesity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2837-2844. [PMID: 29363750 DOI: 10.1002/jsfa.8898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Obesity is linked to the onset of many diseases such as diabetes mellitus, cardiovascular diseases and cancer, among others. The prevalence of obesity nearly doubled worldwide between 1980 and 2014. Simultaneously, in the last decade, the effects of sulforaphane as a potential treatment for obesity have been investigated, with promising results. Fruits and vegetables and their processed agri-food co-products are good sources of natural health-promoting compounds. Brassica crops are among the most produced crops in the world and are a good source of glucoraphanin, which, following hydrolysis, releases sulforaphane. The Brassicaceae family generates large amounts of co-products with no intended use, causing negative economic and environmental impact. Valorization of these co-products could be achieved through their exploitation for the extraction of bioactive compounds such as sulforaphane. However, the extraction process still needs further improvement for its economic feasibility. This article reviews the potential effects of sulforaphane in the treatment of obesity, linked to the relevance of giving Brassica co-products added value, which is of key importance for the competitiveness of farmers and the agri-food industry. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tânia Martins
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Animal Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Animal Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Maria J Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory Animal Science Group, Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- Institute for Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
28
|
Liang H, Wei Y, Li R, Cheng L, Yuan Q, Zheng F. Intensifying sulforaphane formation in broccoli sprouts by using other cruciferous sprouts additions. Food Sci Biotechnol 2018; 27:957-962. [PMID: 30263824 DOI: 10.1007/s10068-018-0347-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/06/2018] [Accepted: 03/01/2018] [Indexed: 12/26/2022] Open
Abstract
Sulforaphane is a significant chemopreventive compound which is the predominant glucosinolate in broccoli sprouts. However, the existence of the epithiospecifier protein could direct the hydrolysis of glucosinolates toward sulforaphane nitrile formation instead of sulforaphane. Therefore, the study aimed on improving the yielding of sulforaphane in broccoli sprouts with a new method of the united hydrolysis of cruciferous sprouts. According to the results, the addition of radish, rocket and rape sprouts to broccoli sprouts could promote the hydrolysis of the glucoraphanin to anticancer effective sulforaphane to 2.03, 2.32 and 1.95-fold, respectively, compared to single broccoli sprouts. Meanwhile, the formation of non-bioactive sulforaphane nitrile in these three groups decreased greatly. However, the addition of mustard sprouts had no positive effect. These observations could make a contribution to the potential chemoprotective effects of broccoli sprouts.
Collapse
Affiliation(s)
- Hao Liang
- 1State Key laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Yongqin Wei
- 1State Key laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Ruimin Li
- 1State Key laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Li Cheng
- 1State Key laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Qipeng Yuan
- 1State Key laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Fuping Zheng
- 2Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048 People's Republic of China
| |
Collapse
|
29
|
Mikołajczyk-Stecyna J, Malinowska AM, Chmurzynska A. TAS2R38 and CA6 genetic polymorphisms, frequency of bitter food intake, and blood biomarkers among elderly woman. Appetite 2017; 116:57-64. [DOI: 10.1016/j.appet.2017.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/22/2017] [Accepted: 04/24/2017] [Indexed: 12/29/2022]
|
30
|
Zhang Y, Jiang Z, Wang L, Xu L. Extraction optimization, antioxidant, and hypoglycemic activities in vitro of polysaccharides from broccoli byproducts. J Food Biochem 2017. [DOI: 10.1111/jfbc.12387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaojie Zhang
- College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004, PR China
| | - Zhenyu Jiang
- College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004, PR China
| | - Lizhi Wang
- College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004, PR China
| | - Lishan Xu
- College of Chemistry and Life Science; Zhejiang Normal University; Jinhua 321004, PR China
| |
Collapse
|
31
|
Menini S, Iacobini C, Pugliese G, Pesce C. Dietary interventions to contrast the onset and progression of diabetic nephropathy: A critical survey of new data. Crit Rev Food Sci Nutr 2017; 58:1671-1680. [PMID: 28128635 DOI: 10.1080/10408398.2016.1278355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article is a critical overview of recent contributions on the dietary corrections and the foods that have been claimed to delay or hinder the onset of diabetic nephropathy (DN) and its progression to end-stage renal disease. Innovative dietary and behavioral approaches to the prevention and therapy of DN appear to be the most captivating in consideration of the rather well-established protocols for glucose and blood pressure control in use. In addition to restricted caloric intake to contrast obesity and the metabolic syndrome, adjustments in the patient's macronutrients intake, and in particular some degree of reduction in protein, have been long considered in the prevention of DN progression. More recently, the focus has shifted to the source of proteins and the content of glycotoxins in the diet as well as to the role of specific micronutrients. Few clinical trials have specifically addressed the role of those micronutrients associated with diet proteins that show the most protective effect against DN. Research on clinical outcome and mechanisms of action of such micronutrients appears the most promising in order to develop both effective intervention on nutritional education of the patient and selection of functional foods capable of contrasting the onset and progression of DN.
Collapse
Affiliation(s)
- Stefano Menini
- a Department of Clinical and Molecular Medicine , "La Sapienza" University , Rome , Italy
| | - Carla Iacobini
- a Department of Clinical and Molecular Medicine , "La Sapienza" University , Rome , Italy
| | - Giuseppe Pugliese
- a Department of Clinical and Molecular Medicine , "La Sapienza" University , Rome , Italy
| | - Carlo Pesce
- b DINOGMI, University of Genoa Medical School , Genoa , Italy
| |
Collapse
|
32
|
Kitamura S, Morisseau C, Harris TR, Inceoglu B, Hammock BD. Occurrence of urea-based soluble epoxide hydrolase inhibitors from the plants in the order Brassicales. PLoS One 2017; 12:e0176571. [PMID: 28472063 PMCID: PMC5417501 DOI: 10.1371/journal.pone.0176571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/12/2017] [Indexed: 01/08/2023] Open
Abstract
Recently, dibenzylurea-based potent soluble epoxide hydrolase (sEH) inhibitors were identified in Pentadiplandra brazzeana, a plant in the order Brassicales. In an effort to generalize the concept, we hypothesized that plants that produce benzyl glucosinolates and corresponding isothiocyanates also produce these dibenzylurea derivatives. Our overall aim here was to examine the occurrence of urea derivatives in Brassicales, hoping to find biologically active urea derivatives from plants. First, plants in the order Brassicales were analyzed for the presence of 1, 3-dibenzylurea (compound 1), showing that three additional plants in the order Brassicales produce the urea derivatives. Based on the hypothesis, three dibenzylurea derivatives with sEH inhibitory activity were isolated from maca (Lepidium meyenii) roots. Topical application of one of the identified compounds (compound 3, human sEH IC50 = 222 nM) effectively reduced pain in rat inflammatory pain model, and this compound was bioavailable after oral administration in mice. The biosynthetic pathway of these urea derivatives was investigated using papaya (Carica papaya) seed as a model system. Finally, a small collection of plants from the Brassicales order was grown, collected, extracted and screened for sEH inhibitory activity. Results show that several plants of the Brassicales order could be potential sources of urea-based sEH inhibitors.
Collapse
Affiliation(s)
- Seiya Kitamura
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Todd R. Harris
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Bora Inceoglu
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Spahis S, Borys JM, Levy E. Metabolic Syndrome as a Multifaceted Risk Factor for Oxidative Stress. Antioxid Redox Signal 2017; 26:445-461. [PMID: 27302002 DOI: 10.1089/ars.2016.6756] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Metabolic syndrome (MetS) is associated with a greater risk of diabetes and cardiovascular diseases. It is estimated that this multifactorial condition affects 20%-30% of the world's population. A detailed understanding of MetS mechanisms is crucial for the development of effective prevention strategies and adequate intervention tools that could curb its increasing prevalence and limit its comorbidities, particularly in younger age groups. With advances in basic redox biology, oxidative stress (OxS) involvement in the complex pathophysiology of MetS has become widely accepted. Nevertheless, its clear association with and causative effects on MetS require further elucidation. Recent Advances: Although a better understanding of the causes, risks, and effects of MetS is essential, studies suggest that oxidant/antioxidant imbalance is a key contributor to this condition. OxS is now understood to be a major underlying mechanism for mitochondrial dysfunction, ectopic lipid accumulation, and gut microbiota impairment. CRITICAL ISSUES Further studies, particularly in the field of translational research, are clearly required to understand and control the production of reactive oxygen species (ROS) levels, especially in the mitochondria, since the various therapeutic trials conducted to date have not targeted this major ROS-generating system, aimed to delay MetS onset, or prevent its progression. FUTURE DIRECTIONS Multiple relevant markers need to be identified to clarify the role of ROS in the etiology of MetS. Future clinical trials should provide important proof of concept for the effectiveness of antioxidants as useful therapeutic approaches to simultaneously counteract mitochondrial OxS, alleviate MetS symptoms, and prevent complications. Antioxid. Redox Signal. 26, 445-461.
Collapse
Affiliation(s)
- Schohraya Spahis
- 1 Research Center , Ste-Justine MUHC, Montreal, Canada .,2 Department of Nutrition, Université de Montréal , Montreal, Canada
| | | | - Emile Levy
- 1 Research Center , Ste-Justine MUHC, Montreal, Canada .,2 Department of Nutrition, Université de Montréal , Montreal, Canada .,3 EPODE International Network , Paris, France
| |
Collapse
|
34
|
Guzmán-Pérez V, Bumke-Vogt C, Schreiner M, Mewis I, Borchert A, Pfeiffer AFH. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells. PLoS One 2016; 11:e0162397. [PMID: 27622707 PMCID: PMC5021297 DOI: 10.1371/journal.pone.0162397] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/22/2016] [Indexed: 01/11/2023] Open
Abstract
Nasturtium (Tropaeolum majus L.) contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate-the benzyl isothiocyanate (BITC)-modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1). FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC-extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase-to modulate i) the insulin-signaling pathway, ii) the intracellular localization of FOXO1 and, iii) the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS) with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein) were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB) and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived)-like2 (NRF2) and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1). The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance.
Collapse
Affiliation(s)
- Valentina Guzmán-Pérez
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
- Department of Nutrition and Biochemistry, Sciences Faculty—Pontificia Universidad Javeriana, Bogotá D.C, Colombia
- * E-mail:
| | - Christiane Bumke-Vogt
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité- Universitätsmedizin Berlin, Berlin, Germany
- Department of Plant Quality, Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V, Erfurt, Germany
| | - Monika Schreiner
- Department of Plant Quality, Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V, Erfurt, Germany
| | - Inga Mewis
- Department of Plant Quality, Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V, Erfurt, Germany
| | - Andrea Borchert
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Andreas F. H. Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité- Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
Xu H, Zhao CF, Tian GG, Qian LR, Yu LJ. Characterization of active constituents in Pyracantha fortuneana fruit extract and their effects on hyperlipidaemia, obesity, and oxidative stress in rodents. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
Ceriello A, Testa R, Genovese S. Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr Metab Cardiovasc Dis 2016; 26:285-292. [PMID: 27036849 DOI: 10.1016/j.numecd.2016.01.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/23/2015] [Accepted: 01/11/2016] [Indexed: 02/07/2023]
Abstract
AIMS The possible link between hyperglycaemia-induced oxidative stress (OxS) and diabetic complications is suggested by many in vitro studies. However, not much attention has been paid to the clinical evidence supporting this hypothesis, as well as to their possible therapeutic implications. DATA SYNTHESIS Some prospective studies show a direct correlation between an increase in OxS biomarkers and the appearance of diabetes complications. This is consistent with the evidence that any acute increase of glycaemia, particularly post-prandial, and hypoglycaemia causes endothelial dysfunction and inflammation, through the generation of an OxS. However, the detection of free radicals is difficult as they are highly reactive molecules with a short half-life. Instead, the metabolites of OxS are measured. Interventional trials with supplemented antioxidants have failed to show any beneficial effects. Conversely, natural foods show very promising results. CONCLUSIONS The "new antioxidant" approach includes the possibility of controlling free radical production and increasing intracellular antioxidant defence, a concept different from the old one, when antioxidant activities implied scavenging the free radicals already produced. A synergistic action in this respect could convincingly be obtained with a balanced 'Mediterranean Diet' (MedD) type. Early intensive glucose control is still the best strategy to avoid OxS and its associated diabetes complications.
Collapse
Affiliation(s)
- A Ceriello
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion Biomèdica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Barcelona, Spain.
| | - R Testa
- Experimental Models in Clinical Pathology, INRCA-IRCCS National Institute, Ancona, Italy
| | - S Genovese
- Department of Cardiovascular and Metabolic Diseases, IRCCS Multimedica, Sesto San Giovanni, Milan, Italy.
| |
Collapse
|
37
|
Sulforaphane improves dysregulated metabolic profile and inhibits leptin-induced VSMC proliferation: Implications toward suppression of neointima formation after arterial injury in western diet-fed obese mice. J Nutr Biochem 2016; 32:73-84. [PMID: 27142739 DOI: 10.1016/j.jnutbio.2016.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 12/24/2022]
Abstract
Sulforaphane (SFN), a dietary phase-2 enzyme inducer that mitigates cellular oxidative stress through nuclear factor erythroid 2-related factor 2 (Nrf2) activation, is known to exhibit beneficial effects in the vessel wall. For instance, it inhibits vascular smooth muscle cell (VSMC) proliferation, a major event in atherosclerosis and restenosis after angioplasty. In particular, SFN attenuates the mitogenic and pro-inflammatory actions of platelet-derived growth factor (PDGF) and tumor necrosis factor-α (TNFα), respectively, in VSMCs. Nevertheless, the vasoprotective role of SFN has not been examined in the setting of obesity characterized by hyperleptinemia and insulin resistance. Using the mouse model of western diet-induced obesity, the present study demonstrates for the first time that subcutaneous delivery of SFN (0.5mg/Kg/day) for~3weeks significantly attenuates neointima formation in the injured femoral artery [↓ (decrease) neointima/media ratio by~60%; n=5-8]. This was associated with significant improvements in metabolic parameters, including ↓ weight gain by~52%, ↓ plasma leptin by~42%, ↓ plasma insulin by~63%, insulin resistance [↓ homeostasis model assessment of insulin resistance (HOMA-IR) index by~73%], glucose tolerance (↓ AUCGTT by~24%), and plasma lipid profile (e.g., ↓ triglycerides). Under in vitro conditions, SFN significantly decreased leptin-induced VSMC proliferation by~23% (n=5) with associated diminutions in leptin-induced cyclin D1 expression and the phosphorylation of p70S6kinase and ribosomal S6 protein (n=3-4). The present findings reveal that, in addition to improving systemic metabolic parameters, SFN inhibits leptin-induced VSMC proliferative signaling that may contribute in part to the suppression of injury-induced neointima formation in diet-induced obesity.
Collapse
|
38
|
Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster. Int J Mol Sci 2016; 17:251. [PMID: 26901196 PMCID: PMC4783981 DOI: 10.3390/ijms17020251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 02/07/2023] Open
Abstract
We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus.
Collapse
|
39
|
Quassinti L, Gianfranceschi G, Lupidi G, Miano A, Bramucci M. Antioxidant and Pro-Oxidant Activities of Savoy Cabbage (Brassica Oleracea
L. Var. Sabauda)
Sprout Extracts. J Food Biochem 2016. [DOI: 10.1111/jfbc.12247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Luana Quassinti
- School of Pharmacy; University of Camerino; Via Gentile III da Varano Camerino (MC) Italy
| | | | - Giulio Lupidi
- School of Pharmacy; University of Camerino; Via Gentile III da Varano Camerino (MC) Italy
| | - Antonino Miano
- School of Biosciences and Veterinary Medicine; University of Camerino; Via Gentile III da Varano Camerino (MC) Italy
| | - Massimo Bramucci
- School of Pharmacy; University of Camerino; Via Gentile III da Varano Camerino (MC) Italy
| |
Collapse
|
40
|
Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD)-Fed Rats. Nutrients 2015; 7:9946-59. [PMID: 26633482 PMCID: PMC4690066 DOI: 10.3390/nu7125514] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/10/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
Excess free fatty acid accumulation from abnormal lipid metabolism results in the insulin resistance in peripheral cells, subsequently causing hyperinsulinemia, hyperglycemia and/or hyperlipidemia in diabetes mellitus (DM) patients. Herein, we investigated the effect of phenolic acids on glucose uptake in an insulin-resistant cell-culture model and on hepatic insulin resistance and inflammation in rats fed a high-fat diet (HFD). The results show that vanillic acid (VA) demonstrated the highest glucose uptake ability among all tested phenolic acids in insulin-resistant FL83B mouse hepatocytes. Furthermore, rats fed HFD for 16 weeks were orally administered with VA daily (30 mg/kg body weight) at weeks 13-16. The results show that levels of serum insulin, glucose, triglyceride, and free fatty acid were significantly decreased in VA-treated HFD rats (p < 0.05), indicating the protective effects of VA against hyperinsulinemia, hyperglycemia and hyperlipidemia in HFD rats. Moreover, VA significantly reduced values of area under the curve for glucose (AUCglucose) in oral glucose tolerance test and homeostasis model assessment-insulin resistance (HOMA-IR) index, suggesting the improving effect on glucose tolerance and insulin resistance in HFD rats. The Western blot analysis revealed that VA significantly up-regulated expression of hepatic insulin-signaling and lipid metabolism-related protein, including insulin receptor, phosphatidylinositol-3 kinase, glucose transporter 2, and phosphorylated acetyl CoA carboxylase in HFD rats. VA also significantly down-regulated hepatic inflammation-related proteins, including cyclooxygenase-2 and monocyte chemoattractant protein-1 expressions in HFD rats. These results indicate that VA might ameliorate insulin resistance via improving hepatic insulin signaling and alleviating inflammation pathways in HFD rats. These findings also suggest the potential of VA in preventing the progression of DM.
Collapse
|
41
|
Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:407580. [PMID: 26583056 PMCID: PMC4637098 DOI: 10.1155/2015/407580] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 01/18/2023]
Abstract
Cardiovascular disease (CVD) causes an unparalleled proportion of the global burden of disease and will remain the main cause of mortality for the near future. Oxidative stress plays a major role in the pathophysiology of cardiac disorders. Several studies have highlighted the cardinal role played by the overproduction of reactive oxygen or nitrogen species in the pathogenesis of ischemic myocardial damage and consequent cardiac dysfunction. Isothiocyanates (ITC) are sulfur-containing compounds that are broadly distributed among cruciferous vegetables. Sulforaphane (SFN) is an ITC shown to possess anticancer activities by both in vivo and epidemiological studies. Recent data have indicated that the beneficial effects of SFN in CVD are due to its antioxidant and anti-inflammatory properties. SFN activates NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor that serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than a hundred cytoprotective proteins, including antioxidants and phase II detoxifying enzymes. This review will summarize the evidence from clinical studies and animal experiments relating to the potential mechanisms by which SFN modulates Nrf2 activation and protects against CVD.
Collapse
|
42
|
Zhou X, Liu W, Gu M, Zhou H, Zhang G. Helicobacter pylori infection causes hepatic insulin resistance by the c-Jun/miR-203/SOCS3 signaling pathway. J Gastroenterol 2015; 50:1027-40. [PMID: 25689935 DOI: 10.1007/s00535-015-1051-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/31/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Epidemiological studies have indicated that patients with chronic Helicobacter pylori infection have an increased risk of developing type 2 diabetes mellitus, but the underlying mechanisms remain largely unknown. This study aimed to investigate whether H. pylori infection contributes to the development of insulin resistance, as well as the underlying mechanisms both in vivo and in vitro. METHODS The effect of H. pylori infection on glucose metabolism was evaluated in humans and mouse models. The role of the c-Jun/miR-203/suppressor of cytokine signaling 3 (SOCS3) pathway in H. pylori-induced insulin resistance was determined in vitro and was validated in vivo. RESULTS Average fasting glucose levels were increased in patients (P = 0.012) and mice (P = 0.004) with H. pylori infection. Diabetic mice with H. pylori infection showed impaired glucose metabolism and insulin tolerance and hyperinsulinemia. Furthermore, H. pylori infection impaired insulin signaling in primary hepatocytes. H. pylori infection could upregulate SOCS3, a well-known insulin signaling inhibitor, by downregulating miR-203. SOCS3 overexpression interfered with insulin signaling proteins, and knockdown of SOCS3 alleviated H. pylori-induced impairment of insulin signaling. The transcription factor c-Jun, which affects gene expression, was induced by H. pylori infection and suppressed miR-203 expression. CONCLUSIONS Our results demonstrated that H. pylori infection induced hepatic insulin resistance by the c-Jun/miR-203/SOCS3 signaling pathway and provide possible implications with regard to resolving insulin resistance.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Wei Liu
- Department of Gastroenterology, The First People's Hospital of Suqian, Suqian, Jiangsu, China
| | - Min Gu
- Department of Pediatrics, Changzhou Children's Hospital, Changzhou, Jiangsu, China
| | - Hongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
43
|
Natural Nrf2 activators in diabetes. Clin Chim Acta 2015; 448:182-92. [PMID: 26165427 DOI: 10.1016/j.cca.2015.07.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/30/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022]
Abstract
Prediabetes and diabetes are rising worldwide. Control of blood glucose is crucial to prevent or delay diabetic complications that frequently result in increased morbidity and mortality. Most strategies include medical treatment and changes in lifestyle and diet. Some nutraceutical compounds have been recognized as adjuvants in diabetes control. Many of them can activate the nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which has been recognized as a master regulator of the antioxidant response. Recent studies have described the role of Nrf2 in obesity, metabolic syndrome, nephropathy, retinopathy and neuropathy, where its activation prevents the development of diabetes and its complications. It has been demonstrated that natural compounds derived from plants, vegetables, fungi and micronutrients (such as curcumin, sulforaphane, resveratrol and vitamin D among others) can activate Nrf2 and, thus, promote antioxidant pathways to mitigate oxidative stress and hyperglycemic damage. The role of some natural Nrf2 activators and its effect in diabetes is discussed.
Collapse
|
44
|
Nagaveni V, Prabhakar S. Insights into the binding sites of sulforaphane on insulin studied by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1155-1164. [PMID: 25981546 DOI: 10.1002/rcm.7212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
RATIONALE Sulforaphane (SFN) is a natural isothiocyanate, known to reduce the risk of cancer and also aortic damage and diabetic cardiomyopathy induced by type 2 diabetes, etc. A more detailed knowledge on the direct interaction of SFN with insulin and its binding sites is necessary for better understanding the role of SFN on diabetes. METHODS Liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) and in-source fragmentation experiments were performed on a Thermo Exactive orbitrap mass spectrometer. The solution of insulin and SFN was incubated and analyzed by mass spectrometry. Isotopic distribution pattern, accurate mass values and theoretical product ions were used to analyze the mass spectrometry data. The nature of binding of SFN and its binding sites with insulin were evaluated by LC/MS data. RESULTS ESI-MS analysis of the incubated solution of insulin and SFN showed 1:1 and 1:2 complexes of [Insulin-SFN]. LC/MS analysis revealed that the [Insulin+SFN] complexes were due to covalent binding of SFN at two different sites. The in-source fragmentation experiments revealed that the SFN is binding to the NH2 groups of N-terminal amino acids of A and B chains of insulin. Further study of SFN with insulin reduced with dithiothreitol (DTT) showed exclusive modification of cysteines with SFN. CONCLUSIONS The interaction of SFN was studied with insulin using ESI-MS. SFN is found to bind covalently with the free NH2 group of the N-terminal of the A and B chains of insulin. However, when insulin is reduced SFN preferably binds to SH groups of cysteines. Hence, the present study helps in the understanding of the binding sites of SFN on insulin.
Collapse
Affiliation(s)
- V Nagaveni
- National Centre for Mass Spectrometry, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
| | - S Prabhakar
- National Centre for Mass Spectrometry, CSIR - Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India
| |
Collapse
|
45
|
Waterman C, Rojas-Silva P, Tumer TB, Kuhn P, Richard AJ, Wicks S, Stephens JM, Wang Z, Mynatt R, Cefalu W, Raskin I. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance, and hepatic gluconeogenesis in mice. Mol Nutr Food Res 2015; 59:1013-24. [PMID: 25620073 DOI: 10.1002/mnfr.201400679] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/02/2023]
Abstract
SCOPE Moringa oleifera (moringa) is tropical plant traditionally used as an antidiabetic food. It produces structurally unique and chemically stable moringa isothiocyanates (MICs) that were evaluated for their therapeutic use in vivo. METHODS AND RESULTS C57BL/6L mice fed very high fat diet (VHFD) supplemented with 5% moringa concentrate (MC, delivering 66 mg/kg/d of MICs) accumulated fat mass, had improved glucose tolerance and insulin signaling, and did not develop fatty liver disease compared to VHFD-fed mice. MC-fed group also had reduced plasma insulin, leptin, resistin, cholesterol, IL-1β, TNFα, and lower hepatic glucose-6-phosphatase (G6P) expression. In hepatoma cells, MC and MICs at low micromolar concentrations inhibited gluconeogenesis and G6P expression. MICs and MC effects on lipolysis in vitro and on thermogenic and lipolytic genes in adipose tissue in vivo argued these are not likely primary targets for the anti-obesity and anti-diabetic effects observed. CONCLUSION Data suggest that MICs are the main anti-obesity and anti-diabetic bioactives of MC, and that they exert their effects by inhibiting rate-limiting steps in liver gluconeogenesis resulting in direct or indirect increase in insulin signaling and sensitivity. These conclusions suggest that MC may be an effective dietary food for the prevention and treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Carrie Waterman
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Patricio Rojas-Silva
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Tugba Boyunegmez Tumer
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Peter Kuhn
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | | - Shawna Wicks
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Zhong Wang
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Randy Mynatt
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - William Cefalu
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Ilya Raskin
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
46
|
Armah CN, Derdemezis C, Traka MH, Dainty JR, Doleman JF, Saha S, Leung W, Potter JF, Lovegrove JA, Mithen RF. Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials. Mol Nutr Food Res 2015; 59:918-26. [PMID: 25851421 PMCID: PMC4692095 DOI: 10.1002/mnfr.201400863] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/15/2015] [Accepted: 02/06/2015] [Indexed: 01/05/2023]
Abstract
SCOPE Cruciferous-rich diets have been associated with reduction in plasma LDL-cholesterol (LDL-C), which may be due to the action of isothiocyanates derived from glucosinolates that accumulate in these vegetables. This study tests the hypothesis that a diet rich in high glucoraphanin (HG) broccoli will reduce plasma LDL-C. METHODS AND RESULTS One hundred and thirty volunteers were recruited to two independent double-blind, randomly allocated parallel dietary intervention studies, and were assigned to consume either 400 g standard broccoli or 400 g HG broccoli per week for 12 weeks. Plasma lipids were quantified before and after the intervention. In study 1 (37 volunteers), the HG broccoli diet reduced plasma LDL-C by 7.1% (95% CI: -1.8%, -12.3%, p = 0.011), whereas standard broccoli reduced LDL-C by 1.8% (95% CI +3.9%, -7.5%, ns). In study 2 (93 volunteers), the HG broccoli diet resulted in a reduction of 5.1% (95% CI: -2.1%, -8.1%, p = 0.001), whereas standard broccoli reduced LDL-C by 2.5% (95% CI: +0.8%, -5.7%, ns). When data from the two studies were combined the reduction in LDL-C by the HG broccoli was significantly greater than standard broccoli (p = 0.031). CONCLUSION Evidence from two independent human studies indicates that consumption of high glucoraphanin broccoli significantly reduces plasma LDL-C.
Collapse
|
47
|
Zhang Z, Zhou S, Jiang X, Wang YH, Li F, Wang YG, Zheng Y, Cai L. The role of the Nrf2/Keap1 pathway in obesity and metabolic syndrome. Rev Endocr Metab Disord 2015; 16:35-45. [PMID: 25540093 DOI: 10.1007/s11154-014-9305-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear factor erythroid 2 related factor 2 (Nrf2) is a key regulator of antioxidant signaling that may prevent the development of metabolic syndrome and related cardiovascular diseases. However, emerging evidence shows that lack of Nrf2 could ameliorate insulin resistance, adipogenesis and adipocyte differentiation. Consistent with this, overexpression of Nrf2 gene could also cause insulin resistance under certain conditions. Furthermore, an increasing number of studies indicate that redox balance can be a critical element that contributes to the contradictory effects of Nrf2 on insulin sensitivity and resistance. Reactive oxygen species can promote normal insulin-mediated signal transduction under physiological conditions but also induce insulin resistance under certain pathological conditions. Therefore, the contradictory effects of Nrf2 on insulin signaling pathways may be related to its regulation of redox homeostasis. This review attempts to summarize the latest developments in our understanding of the mechanisms of Nrf2-mediated signaling and its role in the modulation of metabolic homeostasis.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Departments of Cardiovascular Disorders, Gerontology & Radiation Oncology at the First Hospital, Jilin University, Changchun, 130021, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Baskar V, Park SW, Nile SH. An Update on Potential Perspectives of Glucosinolates on Protection against Microbial Pathogens and Endocrine Dysfunctions in Humans. Crit Rev Food Sci Nutr 2015; 56:2231-49. [DOI: 10.1080/10408398.2014.910748] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Han JH, Lee HJ, Kim TS, Kang MH. The effect of glutathione S-transferase M1 and T1 polymorphisms on blood pressure, blood glucose, and lipid profiles following the supplementation of kale (Brassica oleracea acephala) juice in South Korean subclinical hypertensive patients. Nutr Res Pract 2015; 9:49-56. [PMID: 25671068 PMCID: PMC4317480 DOI: 10.4162/nrp.2015.9.1.49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND/OBJECTIVES Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of reactive oxygen species. This study examines whether daily supplementation of kale juice can modulate blood pressure (BP), levels of lipid profiles, and blood glucose, and whether this modulation could be affected by the GSTM1 and GSTT1 polymorphisms. SUBJECTS/METHODS 84 subclinical hypertensive patients showing systolic BP over 130 mmHg or diastolic BP over 85 mmHg received 300 ml/day of kale juice for 6 weeks, and blood samples were collected on 0-week and 6-week in order to evaluate plasma lipid profiles (total cholesterol, triglyceride, HDL-cholesterol, and LDL-cholesterol) and blood glucose. RESULTS Systolic and diastolic blood pressure was significantly decreased in all patients regardless of their GSTM1 or GSTT1 polymorphisms after kale juice supplementation. Blood glucose level was decreased only in the GSTM1-present genotype, and plasma lipid profiles showed no difference in both the GSTM1-null and GSTM1-present genotypes. In the case of GSTT1, on the other hand, plasma HDL-C was increased and LDL-C was decreased only in the GSTT1-present type, while blood glucose was decreased only in the GSTT1-null genotype. CONCLUSIONS These findings suggest that the supplementation of kale juice affected blood pressure, lipid profiles, and blood glucose in subclinical hypertensive patients depending on their GST genetic polymorphisms, and the improvement of lipid profiles was mainly greater in the GSTT1-present genotype and the decrease of blood glucose was greater in the GSTM1-present or GSTT1-null genotypes.
Collapse
Affiliation(s)
- Jeong-Hwa Han
- Department of Food and Nutrition, College of Life Science and Nano-technology, Hannam University, 461-6 Jeonmin-dong, Yuseong-gu, Daejeon 305-811, Korea
| | - Hye-Jin Lee
- Department of Food and Nutrition, College of Life Science and Nano-technology, Hannam University, 461-6 Jeonmin-dong, Yuseong-gu, Daejeon 305-811, Korea
| | - Tae-Seok Kim
- R&D Center, Pulmuone Co., Ltd., Seodaemun-gu, Seoul 120-600, Korea
| | - Myung-Hee Kang
- Department of Food and Nutrition, College of Life Science and Nano-technology, Hannam University, 461-6 Jeonmin-dong, Yuseong-gu, Daejeon 305-811, Korea
| |
Collapse
|
50
|
Ergin V, Bali EB, Hariry RE, Karasu C. Natural products and the aging process. Horm Mol Biol Clin Investig 2015; 16:55-64. [PMID: 25436747 DOI: 10.1515/hmbci-2013-0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/26/2013] [Indexed: 11/15/2022]
Abstract
Abstract Literature surveys show that the most of the research that have been conducted on the effect of herbal remedies on many tissue pathologies, including metabolic disturbances, cardiovascular decline, neurodegeneration, cataract, diabetic retinopathy and skin inflammation, all lead to an accelerated aging process. The increased carbonylation of proteins (carbonyl stress) disturbing their function has been indicated as an underlying mechanism of cellular senescence and age-related diseases. Because it is also linked to the carbonyl stress, aging chronic disease and inflammation plays an important role in understanding the clinical implications of cellular stress response and relevant markers. Greater knowledge of the molecular and cellular mechanisms involved in several pathologies associated with aging would provide a better understanding to help us to develop suitable strategies, use specific targets to mitigate the effect of human aging, prevent particularly chronic degenerative diseases and improve quality of life. However, research is lacking on the herbal compounds affecting cellular aging signaling as well as studies regarding the action mechanism(s) of natural products in prevention of the age-related disease. This review provides leads for identifying new medicinal agents or potential phytochemical drugs from plant sources for the prevention or delaying cellular aging processes and the treatment of some disorders related with accelerated body aging.
Collapse
|