1
|
Mehrazin H, Sakha M, Safi S. Effects of Age, Sex, and Exercise on Measurement of Serum CTnI Levels and Some Parameters Related to the Cardiovascular Capacity of Caspian Horses. Vet Med Sci 2025; 11:e70202. [PMID: 40065591 PMCID: PMC11893729 DOI: 10.1002/vms3.70202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/19/2024] [Accepted: 12/30/2024] [Indexed: 03/14/2025] Open
Abstract
Due to their high specificity and exclusive cardiac myocyte sensitivity, cardiac troponins T and I (cTnT, cTnI) are currently regarded as ideal biomarkers to identify cardiomyocyte damage, myocardial injury, myocardial infarction, and chronic heart failure. In fact, cTnI is considered the most reliable biomarker for diagnosing heart-related issues. This study aimed to investigate the effects of age, gender, and exercise training on serum cTnI levels and various parameters related to the cardiovascular capacity of Caspian horses. For this purpose, 50 adult Caspian horses over 3 years old, both male and female, were selected from horse breeding centres and clubs in the provinces of Tehran, Alborz, and Gilan. To account for age-related differences, the horses were divided into three groups: Group A (less than 5 years), Group B (between 5 and 10 years), and Group C (over 10 years). To measure cTnI levels, 10 mL of blood was collected from the jugular vein of each horse using a venoject blood collection tube before exercise and another 10 mL 2 h post-exercise. The samples were refrigerated and centrifuged for 30 min after collection. Two millilitres of serum obtained from each horse at both time points was stored at -20°C for subsequent analysis. Troponin I levels were measured in the laboratory using the electrochemical luminescence (ECL) method. The results of this study reveal for the first time that the normal average of serum cTnI, packed cell volume (PCV), and blood haemoglobin (Hb) levels in Caspian horses is 2.5 ng/L, 35.52%, and 12.1%, respectively. Furthermore, the findings indicate that exercise significantly increases serum levels of cTnI, PCV, and blood haemoglobin; however, age and gender did not appear to affect these measured parameters. Therefore, it can be concluded that exercise stimulates the release of troponin due to myocardial injury.
Collapse
Affiliation(s)
- Hossein Mehrazin
- Department of Clinical ScienceSchool of Veterinary MedicineScience and research branch,Islamic Azad UniversityTehranIran
| | - Mehdi Sakha
- Department of Clinical ScienceSchool of Veterinary MedicineScience and research branch,Islamic Azad UniversityTehranIran
| | - Shahabeddin Safi
- Department of PathobiologyFaculty of Veterinary MedicineScience and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
2
|
Dai X, Liang B, Sun Y. Luteolin ameliorates rat model of metabolic syndrome-induced cardiac injury by apoptosis suppression and autophagy promotion via NR4A2/p53 regulation. BMC Complement Med Ther 2025; 25:14. [PMID: 39833877 PMCID: PMC11744851 DOI: 10.1186/s12906-025-04749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Reduced cardiac autophagy, inflammation, and apoptosis contribute to cardiovascular complications caused by metabolic syndrome (MetS). It is documented that the nuclear receptor 4A2 (NR4A2) could modulate autophagy and apoptosis in cardiac complications. The aim of this investigation was to assess the therapeutic potential of luteolin, with documented beneficial properties, against MetS-associated cardiac injury. METHODS Forty male albino Wistar rats were divided into 5 groups randomly as controls, MetS, and MetS animals treated with luteolin (25, 50, 100 mg/kg ip). The animal's weight, blood pressure, lipid profile, tolerance to glucose and insulin, and cardiac histopathology were evaluated. Moreover, troponin T, creatine kinase-myocardial band (CK-MB), inflammatory profile (IL-6, IL-1β, TNF-α), transforming growth factor-β1 (TGF-β1), oxidative stress, and matrix metalloproteinase-9 (MMP-9) were analyzed to determine the cardiac state. Cardiac NR4A2 and p53, as well as apoptotic (B-cell leukemia/lymphoma 2 [BCL-2], Caspase [CASP]-3, and CASP-9) and autophagic mediators (Sequestosome-1/p62, Microtubule-associated protein 1 A/1B-light chain 3 [LC3], and Beclin-1) were measured by RT-qPCR and ELISA. RESULTS Luteolin remarkably restored MetS-induced biochemical derangements and related cardiac injury via the suppression of apoptosis, inflammation, and stress but promotion of autophagy (p-value < 0.001). CONCLUSION Current findings revealed the promising therapeutical properties of luteolin against MetS-associated cardiovascular risks.
Collapse
Affiliation(s)
- Xiyan Dai
- Department of Comprehensive, Maoming People's Hospital, Maoming, 525000, China
| | - Bo Liang
- Department of MRI, Maoming People's Hospital, Maoming, 525000, China
| | - Yaolin Sun
- Department of Cardiovascular Medicine, First Hospital of Northwest University, Xi'an, 710043, China.
| |
Collapse
|
3
|
Zrinski Topic R, Lenicek Krleza J. Cardiac Markers in Pediatric Laboratory Medicine: Critical Review. Diagnostics (Basel) 2025; 15:165. [PMID: 39857049 PMCID: PMC11763470 DOI: 10.3390/diagnostics15020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Currently, there are no validated guidelines or recommendations for how to interpret cardiac biomarkers in the pediatric population. The most commonly used cardiac biomarkers are cardiac troponins and natriuretic peptides, but the clinical value of common cardiac biomarkers in pediatric laboratory medicine is restricted due to age- and sex-specific interpretations, and there are no standardized cut-off values. The results from the studies on reference values, as well as results from clinical studies, are difficult to compare with identical studies due to the heterogeneity of subject characteristics (gestational and chronological age, sex, pubertal status, menstrual cycle, exercise), assay characteristics (type of assay, generation of assay, analytical platform used), and experimental protocol characteristics (prospective or retrospective studies, reference population selection, patient population selection, inclusion and exclusion criteria, number of subjects). Future studies need to establish evidence-based cut-offs for specific indications to optimize utilization and standardize the interpretation of common cardiac biomarkers in neonates, children, and adolescents. The aim of this article was to summarize the current analytical and clinical limitations of cardiac troponins and natriuretic peptides in the pediatric population, as informed by the existing published literature.
Collapse
Affiliation(s)
- Renata Zrinski Topic
- Department of Laboratory Diagnostics, Children’s Hospital Zagreb, 10000 Zagreb, Croatia;
- Department of Laboratory Medical Diagnostics, University of Applied Health Sciences, 10000 Zagreb, Croatia
| | - Jasna Lenicek Krleza
- Department of Laboratory Diagnostics, Children’s Hospital Zagreb, 10000 Zagreb, Croatia;
- Department of Laboratory Medical Diagnostics, University of Applied Health Sciences, 10000 Zagreb, Croatia
- Department of Nursing, Catholic University of Croatia, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Zhu L, He J. Morin Ameliorates Myocardial Injury in Diabetic Rats via Modulation of Autophagy, Apoptosis, Inflammation, and Oxidative Stress. Diabetes Metab Syndr Obes 2024; 17:4867-4882. [PMID: 39742288 PMCID: PMC11687097 DOI: 10.2147/dmso.s476867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025] Open
Abstract
Background Morin is a flavonol with beneficial effects on diabetic-related injuries. However, the effect of morin on diabetic cardiomyopathy and its association with autophagy, apoptosis, inflammation, and oxidative stress remains unclear. The current study aimed to reveal the mechanisms underlying morin-mediated protection against cardiac failure in diabetic rats. Methods Diabetic cardiomyopathy in albino Wistar rats was induced by streptozotocin (STZ). After treatment with a dose of 25, 50, and 100 mg/kg/day orally for the next 60 days, autophagic (p62, LC3, and BECN1), apoptotic (BCL2, CASP-3, and CASP9), inflammatory (IL-1β, IL-6, TNF-α), and oxidative stress (CAT, SOD, and MDA) markers in protein and gene levels as well as cardiac function tests were measured. Results The findings revealed that long-term morin treatment improved weight gain, lipid and glycemic profile, hypertension, and cardiac hypertrophy and fibrosis in diabetic rats compared to controls (p-value<0.001). Moreover, the upregulation of BCL-2, LC3, and BECN1 along with the downregulation of p62, CASP-3, and CASP-9 revealed that morin suppressed apoptosis and promoted autophagy in the cardiac tissue of rats with diabetes (p-value<0.05). Additionally, the reduction in IL-1β, IL-6, TNF-α, and MDA levels and the increment of SOD and CAT activity suggested that morin decreased inflammation and apoptosis in the heart of the rat models of diabetes (p-value<0.01). Conclusion These results may highlight the potential properties of morin as a therapeutic strategy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, 475000, People’s Republic of China
| | - Jizhong He
- Department of Cardiology, Yan’an People’s Hospital, Yan’an, 716000, People’s Republic of China
| |
Collapse
|
5
|
Wang C, Zhang X, Wang P, Yang X, Yu H, Xu W, Chen L, Mu D. The role of obesity in mortality from digestive diseases in UK Biobank. Sci Rep 2024; 14:27126. [PMID: 39511256 PMCID: PMC11544038 DOI: 10.1038/s41598-024-75787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Most current studies use body mass index (BMI) or waist circumference (WC) to define obesity, and BMI, which reflects subcutaneous fat independent of visceral fat, is the most commonly used indicator of obesity. WC reflects subcutaneous and visceral fat. This research aims to investigate the effect of obesity on mortality in people with digestive diseases. According to BMI and WC, we divided patients with obesity into the following four groups: general obesity, abdominal obesity, combined obesity, and non-obese. The effects of different obesity types on mortality in a population with digestive diseases were analysed via Cox regression and inverse probability-weighted Cox regression. Our research employed multivariate imputation via the chained equations method to interpolate missing values. A total of 254,445 participants, with a mean age of 57.8 ± 7.8 years, were included in the analysis. Of these participants, 227,111 (89.3%) participants were censored, and 27,334 (10.7%) participants died. Abdominal obesity and combined obesity were independent predictors of mortality in patients with digestive diseases. The combination of BMI and WC was valuable and significant for considering the type of obesity. In addition, our study revealed that sex, socioeconomic status, lifestyle habits, and physical activity were also associated with death in people with digestive disorders. Combined obesity, which is determined by both BMI and WC, is an important factor that influences mortality in a population with digestive diseases, and it plays a stronger role than abdominal obesity alone. These modifiable risk factors for mortality can provide guidance to populations with digestive diseases to avoid poor lifestyles and prolong survival time.
Collapse
Affiliation(s)
- Changcong Wang
- Division of Clinical Research, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun, 130021, China
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xinyue Zhang
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ping Wang
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xinyu Yang
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Haitao Yu
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Weihang Xu
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Liping Chen
- Department of Echocardiography, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Dongmei Mu
- Division of Clinical Research, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun, 130021, China.
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Shi G, Jiang C, Wang J, Cui P, Shan W. Mechanical stimulation promotes the maturation of cardiomyocyte-like cells from P19 cells and the function in a mouse model of myocardial infarction. Cell Tissue Res 2024:10.1007/s00441-024-03922-6. [PMID: 39395051 DOI: 10.1007/s00441-024-03922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
In this study, we aimed to promote the maturation of cardiomyocytes-like cells by mechanical stimulation, and evaluate their therapeutic potential against myocardial infarction. The cyclic tensile strain was used to induce the maturation of cardsiomyocyte-like cells from P19 cells in vitro. Western blot and qPCR assays were performed to examine protein and gene expression, respectively. High-resolution respirometry was used to assay cell function. The induced cells were then evaluated for their therapeutic effect. In vitro, we observed cyclic tensile strain induced P19 cell differentiation into cardiomyocyte-like cells, as indicated by the increased expression of cardiomyocyte maturation-related genes such as Myh6, Myl2, and Gja1. Furthermore, cyclic tensile strain increased the antioxidant capacity of cardiomyocytes by upregulating the expression Sirt1, a gene important for P19 maturation into cardiomyocyte-like cells. High-resolution respirometry analysis of P19 cells following cyclic tensile strain showed enhanced metabolic function. In vivo, stimulated P19 cells enhanced cardiac function in a mouse model of myocardial infarction, and these mice showed decreased infarction-related biomarkers. The current study demonstrates a simple yet effective mean to induce the maturation of P19 cells into cardiomyocyte-like cells, with a promising therapeutic potential for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Guiliang Shi
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Chaopeng Jiang
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China.
| | - Jiwei Wang
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Ping Cui
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Weixin Shan
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| |
Collapse
|
7
|
Zoroddu S, Zinellu A, Carru C, Sotgia S. Analytical Insights into Methods for Measuring Ischemia-Modified Albumin. Molecules 2024; 29:4636. [PMID: 39407566 PMCID: PMC11478104 DOI: 10.3390/molecules29194636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Ischemia-modified albumin (IMA) has emerged as a pivotal biomarker for the early detection of ischemic conditions, particularly myocardial ischemia, where timely diagnosis is crucial for effective intervention. This review provides an overview of the analytical methods for assessment of IMA, including Albumin Cobalt Binding (ACB), Albumin Copper Binding (ACuB), Enzyme-Linked Immunosorbent Assay (ELISA), new techniques such as liquid crystal biosensors (LCB), quantum dot coupled X-ray fluorescence spectroscopy (Q-XRF), mass spectrometry (MS), and electron paramagnetic resonance (EPR) spectroscopy. Each method was thoroughly examined for its analytical performance in terms of sensitivity, specificity, and feasibility. The ACB assay is the most readily implementable method in clinical laboratories for its cost-effectiveness and operational simplicity. On the other hand, the ACuB assay exhibits enhanced sensitivity and specificity, driven by the superior binding affinity of copper to IMA. Furthermore, nanoparticle-enhanced immunoassays and liquid crystal biosensors, while more resource-intensive, significantly improve the analytical sensitivity and specificity of IMA detection, enabling earlier and more accurate identification of ischemic events. Additionally, different biological matrices, such as serum, saliva, and urine, were reviewed to identify the most suitable for accurate measurements in clinical application. Although serum was considered the gold standard, non-invasive matrices such as saliva and urine are becoming increasingly feasible due to advances in technology. This review underscores the role of IMA in clinical diagnostics and suggests how advanced analytical techniques have the potential to significantly enhance patient outcomes in ischemic disease management.
Collapse
Affiliation(s)
- Stefano Zoroddu
- Department of Biomedical Sciences, School of Medicine, University of Sassari, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, School of Medicine, University of Sassari, 07100 Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, School of Medicine, University of Sassari, 07100 Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, School of Medicine, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
8
|
Zhao M, Wu Q, Duanmu W, Shen J, Yuan W, Sun Y, Zhang X, Zhang J, He S. Clinical Analysis of Myocardial Injury in Highlanders with Pulmonary Hypertension. High Alt Med Biol 2024; 25:205-211. [PMID: 38900692 DOI: 10.1089/ham.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Background: Pulmonary hypertension (PH) is a prevalent adverse cardiovascular event at high-altitude environments. Prolonged exposure to high altitudes may result in myocardial injury, which is associated with poor clinical outcomes. This study aims to investigate the clinical characteristics of myocardial injury in patients with PH at high altitude. Methods: Consecutive patients admitted to a general tertiary hospital at the altitude of 3,650 m were selected into this retrospective study. Clinical and biochemical data were collected, as well as based on cardiac troponin I (cTnI) and echocardiography, patients were divided into myocardial injury group and non-myocardial injury group. Results: A total of 231 patients were enrolled, among whom 29 (12.6%) had myocardial injury. We found that body mass index, left ventricular end-diastolic dimension, and serum level of creatine kinase-MB (CK-MB) in myocardial injury group were significantly higher than non-myocardial injury group. Spearman correlation analysis revealed that cTnI has a significant positive correlation with CK-MB and lactic dehydrogenase instead of aspartate aminotransferase. A receiver operating characteristic curve was drawn to demonstrate that CK-MB could significantly predict the occurrence of myocardial injury with an area under the curve of 0.749, and a level of 3.035 (sensitivity = 59.3%, specificity = 90.5%) was optimal cutoff value. Conclusion: The incidence of myocardial injury in highlanders with PH is significant. CK-MB, as a convenient and efficient marker, has been found to be closely associated with cTnI and plays a predictive role in the occurrence of myocardial injury with PH in individuals exposed to high altitude.
Collapse
Affiliation(s)
- Maolin Zhao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, China
| | - Qianjin Wu
- Department of Health Service, Tibetan Military General Hospital, Lhasa, China
| | - Wangsheng Duanmu
- Department of Neurology, Tibetan Military General Hospital, Lhasa, China
| | - Junxian Shen
- Department of Neurology, Tibetan Military General Hospital, Lhasa, China
| | - Weixin Yuan
- Department of Neurology, Tibetan Military General Hospital, Lhasa, China
| | - Yingbin Sun
- Department of Cardiology, Tibetan Military General Hospital, Lhasa, China
| | - Xu Zhang
- Department of Cardiology, Tibetan Military General Hospital, Lhasa, China
| | - Jinbao Zhang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, China
| | - Siyi He
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
9
|
Zhang Y, Zhang L, Li Z, Liu X, He P, Gu Y, Liu L, Jin Y, Cheng S, Zhou F, Jia Y. Gualou-Xiebai-Banxia-Tang regulates liver-gut axis to ameliorate Metabolic Syndrome in HFD-fed mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155320. [PMID: 38901285 DOI: 10.1016/j.phymed.2023.155320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/08/2023] [Accepted: 12/25/2023] [Indexed: 06/22/2024]
Abstract
BACKGROUND Metabolic syndrome (MetS), characterized by obesity, hyperglycemia, and abnormal blood lipid levels, is the pathological basis of many cardiovascular diseases. Gualou-Xiebai-Banxia-Tang decoction (GT) was first described in the Synopsis of the Golden Chamber, the earliest traditional Chinese medicine (TCM) monograph on diagnosis and treatment of miscellaneous diseases in China. According to TCM precepts, based on its ability to activate yang to release stagnation, activate qi to reduce depression, remove phlegm, and broaden the chest, GT has been used for more than 2,000 years to treat cardiovascular ailments. However, the molecular bases of its therapeutic mechanisms remain unclear. PURPOSE The aim of this study was to identify lipid- and glucose-related hepatic genes differentially regulated by GT, and to assess GT impact on gut microbiota composition, in mice with high-fat diet (HFD)-induced MetS. STUDY DESIGN AND METHODS ApoE-/- mice were fed with an HFD for 24 weeks, with or without concurrent GT supplementation, to induce MetS. At the study's end, body weight, visceral fat weight, blood lipid levels, and insulin sensitivity were measured, and histopathological staining was used to evaluate hepatosteatosis and intestinal barrier integrity. Liver transcriptomics was used for analysis of differentially expressed genes in liver and prediction of relevant regulatory pathways. Hepatic lipid/glucose metabolism-related genes and proteins were detected by RT-qPCR and western blotting. Gut microbial composition was determined by 16S rRNA gene sequencing. RESULTS GT administration reduced MetS-related liver steatosis and weight gain, promoted insulin sensitivity and lipid metabolism, and beneficially modulated gut microbiota composition by decreasing the relative abundance of g_Lachnospiraceae_NK4A136_group and increasing the relative abundance of g_Alistipes. Liver transcriptomics revealed that GT regulated the expression of genes related to lipid and glucose metabolism (Pparγ, Igf1, Gpnmb, and Trem2) and of genes encoding chemokines/chemokine receptors (e.g. Cxcl9 and Cx3cr1). Significant, positive correlations were found for Ccr2, Ccl4, Ccr1, and Cx3cr1 and the g_Lachnospiraceae_NK4A136_group, and between Cxcl9, Ccr2, Ccl4, and Cx3cr1 and g_Desulfovibrio. GT treatment downregulated the protein expressions of SCD1 and CX3CR1 and upregulated the expression of PCK1 protein. CONCLUSION GT supplementation alleviates HFD-induced MetS in mice by improving hepatic lipid and glucose metabolism. The anti-metabolic syndrome effects of GT may be related to the regulation of the gut-liver axis.
Collapse
Affiliation(s)
- Yaxin Zhang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lifang Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhaoyong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoyu Liu
- Pingshan General Hospital (Shenzhen Pingshan District Medical Healthcare Group), Southern Medical University, Shenzhen, Guangdong Province, China
| | - Peikun He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuyan Gu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - LinLing Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yao Jin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
10
|
Xie Q, Zhang X, Liu F, Luo J, Liu C, Zhang Z, Yang Y, Li X. Identification and verification of immune-related genes for diagnosing the progression of atherosclerosis and metabolic syndrome. BMC Cardiovasc Disord 2024; 24:405. [PMID: 39095691 PMCID: PMC11295872 DOI: 10.1186/s12872-024-04026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Atherosclerosis and metabolic syndrome are the main causes of cardiovascular events, but their underlying mechanisms are not clear. In this study, we focused on identifying genes associated with diagnostic biomarkers and effective therapeutic targets associated with these two diseases. METHODS Transcriptional data sets of atherosclerosis and metabolic syndrome were obtained from GEO database. The differentially expressed genes were analyzed by RStudio software, and the function-rich and protein-protein interactions of the common differentially expressed genes were analyzed.Furthermore, the hub gene was screened by Cytoscape software, and the immune infiltration of hub gens was analyzed. Finally, relevant clinical blood samples were collected for qRT-PCR verification of the three most important hub genes. RESULTS A total of 1242 differential genes (778 up-regulated genes and 464 down-regulated genes) were screened from GSE28829 data set. A total of 1021 differential genes (492 up-regulated genes and 529 down-regulated genes) were screened from the data set GSE98895. Then 23 up-regulated genes and 11 down-regulated genes were screened by venn diagram. Functional enrichment analysis showed that cytokines and immune activation were involved in the occurrence and development of these two diseases. Through the construction of the Protein-Protein Interaction(PPI) network and Cytoscape software analysis, we finally screened 10 hub genes. The immune infiltration analysis was further improved. The results showed that the infiltration scores of 7 kinds of immune cells in GSE28829 were significantly different among groups (Wilcoxon Test < 0.05), while in GSE98895, the infiltration scores of 4 kinds of immune cells were significantly different between groups (Wilcoxon Test < 0.05). Spearman method was used to analyze the correlation between the expression of 10 key genes and 22 kinds of immune cell infiltration scores in two data sets. The results showed that there were 42 pairs of significant correlations between 10 genes and 22 kinds of immune cells in GSE28829 (|Cor| > 0.3 & P < 0.05). There were 41 pairs of significant correlations between 10 genes and 22 kinds of immune cells in GSE98895 (|Cor| > 0.3 & P < 0.05). Finally, our results identified 10 small molecules with the highest absolute enrichment value, and the three most significant key genes (CX3CR1, TLR5, IL32) were further verified in the data expression matrix and clinical blood samples. CONCLUSION We have established a co-expression network between atherosclerotic progression and metabolic syndrome, and identified key genes between the two diseases. Through the method of bioinformatics, we finally obtained 10 hub genes in As and MS, and selected 3 of the most significant genes (CX3CR1, IL32, TLR5) for blood PCR verification. This may be helpful to provide new research ideas for the diagnosis and treatment of AS complicated with MS.
Collapse
Affiliation(s)
- Qian Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, Tel, 830054, People's Republic of China
| | - Xuehe Zhang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, Tel, 830054, People's Republic of China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Junyi Luo
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, Tel, 830054, People's Republic of China
| | - Chang Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, Tel, 830054, People's Republic of China
| | - Zhiyang Zhang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, Tel, 830054, People's Republic of China
| | - Yining Yang
- Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China.
- Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China.
- Key Laboratory of Cardiovascular Disease Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| | - Xiaomei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, Tel, 830054, People's Republic of China
| |
Collapse
|
11
|
Ning DS, Zhou ZQ, Zhou SH, Chen JM. Identification of macrophage differentiation related genes and subtypes linking atherosclerosis plaque processing and metabolic syndrome via integrated bulk and single-cell sequence analysis. Heliyon 2024; 10:e34295. [PMID: 39130409 PMCID: PMC11315131 DOI: 10.1016/j.heliyon.2024.e34295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Metabolic syndrome(MS) is a separate risk factor for the advancement of atherosclerosis(AS) plaque but mechanism behind this remains unclear. There may be a significant role for the immune system in this process. This study aims to identify potential diagnostic genes in MS patients at a higher risk of developing and progressing to AS. Datasets were retrevied from gene expression omnibus(GEO) database and differentially expressed genes were identified. Hub genes, immune cell dysregulation and AS subtypes were identified using a conbination of muliple bioinformatic analysis, machine learning and consensus clustering. Diagnostic value of hub genes was estimated using a nomogram and ROC analysis. Finally, enrichment analysis, competing endogenous RNA(ceRNA) network, single-cell RNA(scRNA) sequencing analysis and drug-protein interaction prediction was constructed to identify the functional roles, potential regulators and distribution for hub genes. Four hub genes and two macrophage-related subtypes were identified. Their strong diagnostic value was validated and functional process were identified. ScRNA analysis identified the macrophage differentiation regulation function of F13A1. CeRNA network and drug-protein binding modes revealed the potential therapeutic method. Four immune-correlated hub genes(F13A1, MMRN1, SLCO2A1 and ZNF521) were identified with their diagnostic value being assesed, which F13A1 was found strong correlated with macrophage differentiation and could be potential diagnostic and therapeutic marker for AS progression in MS patients.
Collapse
Affiliation(s)
- Da-Sheng Ning
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Zi-Qing Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Shu-Heng Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Ji-Mei Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, PR China
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
- Southern China Key Laboratory of Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| |
Collapse
|
12
|
Guo L, Yan H, Gong Q, Zheng W, Zhong L, Gong T, Sun X, Zhang Z, Ping Y, Zhu Z, Xu J, Zhang Y. Glomerulus-Targeted ROS-Responsive Polymeric Nanoparticles for Effective Membranous Nephropathy Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35447-35462. [PMID: 38940537 DOI: 10.1021/acsami.4c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Membranous nephropathy (MN) is a common immune-mediated glomerular disease that requires the development of safe and highly effective therapies. Celastrol (CLT) has shown promise as a therapeutic molecule candidate, but its clinical use is currently limited due to off-target toxicity. Given that excess levels of reactive oxygen species (ROS) contributing to podocyte damage is a key driver of MN progression to end-stage renal disease, we rationally designed ROS-responsive cationic polymeric nanoparticles (PPS-CPNs) with a well-defined particle size and surface charge by employing poly(propylene sulfide)-polyethylene glycol (PPS-PEG) and poly(propylene sulfide)-polyethylenimine (PPS-PEI) to selectively deliver CLT to the damaged glomerulus for MN therapy. Experimental results show that PPS-CPNs successfully crossed the fenestrated endothelium, accumulated in the glomerular basement membrane (GBM), and were internalized by podocytes where rapid drug release was triggered by the overproduction of ROS, thereby outperforming nonresponsive CLT nanotherapy to alleviate subepithelial immune deposits, podocyte foot process effacement, and GBM expansion in a rat MN model. Moreover, the ROS-responsive CLT nanotherapy was associated with significantly lower toxicity to major organs than free CLT. These results suggest that encapsulating CLT into PPS-CPNs can improve efficacy and reduce toxicity as a promising treatment option for MN.
Collapse
Affiliation(s)
- Ling Guo
- National Engineering Technology Research Center for Miao Medicine, Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Hanyu Yan
- National Engineering Technology Research Center for Miao Medicine, Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Qinqin Gong
- National Engineering Technology Research Center for Miao Medicine, Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Weili Zheng
- National Engineering Technology Research Center for Miao Medicine, Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Liang Zhong
- National Engineering Technology Research Center for Miao Medicine, Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Tao Gong
- West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610041, P. R. China
| | - Xun Sun
- West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610041, P. R. China
| | - Zhirong Zhang
- West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu 610041, P. R. China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zilan Zhu
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Jian Xu
- National Engineering Technology Research Center for Miao Medicine, Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| | - Yongping Zhang
- National Engineering Technology Research Center for Miao Medicine, Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, P. R. China
| |
Collapse
|
13
|
Rafaqat S, Radoman Vujacic I, Behnoush AH, Sharif S, Klisic A. Role of Cardiac Biomarkers in Hepatic Disorders: A Literature Review. Metab Syndr Relat Disord 2024; 22:251-262. [PMID: 38377607 DOI: 10.1089/met.2023.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Various studies have reported the association between cardiac markers and hepatic disorders. The main objective of this review article was to elucidate the significance of important cardiac indicators such as ischemia-modified albumin, cardiac troponin, cardiac natriuretic peptides, creatine kinase, creatine kinase-MB, lactate dehydrogenase, heart-type fatty acid-binding protein, osteopontin, soluble suppression of tumorigenicity 2, C-reactive protein, and lipoprotein(a) in the development of hepatic disorders. In addition, it highlighted recent notable discoveries and accomplishments in this field and identified areas requiring further investigation, ongoing discussions, and potential avenues for future research. Early identification and control of these cardiac markers might be helpful to control the prevalence of hepatic disorders associated with cardiovascular diseases.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore, Pakistan
| | - Irena Radoman Vujacic
- Department of Internal Medicine, Clinical Center of Montenegro, University of Montenegro-Faculty of Medicine, Podgorica, Montenegro
| | | | - Saima Sharif
- Department of Zoology (Molecular Physiology), Lahore College for Women University, Lahore, Pakistan
| | - Aleksandra Klisic
- University of Montenegro-Faculty of Medicine, Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, Podgorica, Montenegro
| |
Collapse
|
14
|
Zou G, Yu R, Zhao D, Duan Z, Guo S, Wang T, Ma L, Yuan Z, Yu C. Celastrol ameliorates energy metabolism dysfunction of hypertensive rats by dilating vessels to improve hemodynamics. J Nat Med 2024; 78:191-207. [PMID: 38032498 DOI: 10.1007/s11418-023-01759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
The impact of hypertension on tissue and organ damage is mediated through its influence on the structure and function of blood vessels. This study aimed to examine the potential of celastrol, a bioactive compound derived from Tripterygium wilfordii Hook F, in mitigating hypertension-induced energy metabolism disorder and enhancing blood perfusion and vasodilation. In order to investigate this phenomenon, we conducted in vivo experiments on renovascular hypertensive rats, employing indirect calorimetry to measure energy metabolism and laser speckle contrast imaging to evaluate hemodynamics. In vitro, we assessed the vasodilatory effects of celastrol on the basilar artery and superior mesenteric artery of rats using the Multi Wires Myograph System. Furthermore, we conducted preliminary investigations to elucidate the underlying mechanism. Moreover, administration of celastrol at doses of 1 and 2 mg/kg yielded a notable enhancement in blood flow ranging from 6 to 31% across different cerebral and mesenteric vessels in hypertensive rats. Furthermore, celastrol demonstrated a concentration-dependent (1 × 10-7 to 1 × 10-5 M) arterial dilation, independent of endothelial function. This vasodilatory effect could potentially be attributed to the inhibition of Ca2+ channels on vascular smooth muscle cells induced by celastrol. These findings imply that celastrol has the potential to ameliorate hemodynamics through vasodilation, thereby alleviating energy metabolism dysfunctions in hypertensive rats. Consequently, celastrol may hold promise as a novel therapeutic agent for the treatment of hypertension.
Collapse
Affiliation(s)
- Gang Zou
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Ruihong Yu
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Dezhang Zhao
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Research Center for Innovative Pharmaceutical and Experiment Analysis Technology, Chongqing, 400016, China
| | - Zhaohui Duan
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Shimin Guo
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Tingting Wang
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Limei Ma
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Zhiyi Yuan
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Chao Yu
- Collage of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
15
|
Kutlu E, Avci E, Acar K. Postmortem biochemistry in deaths from ischemic heart disease. J Forensic Leg Med 2023; 100:102599. [PMID: 37839363 DOI: 10.1016/j.jflm.2023.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/05/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Ischemic heart disease (IHD) is one of the leading causes of morbidity and sudden cardiac death worldwide and is an important public health problem. The presence of ischemia in clinical applications can be detected by ECG, biochemical markers, and radiological methods. Myocardial infarction is also frequently encountered in forensic autopsies. Postmortem diagnosis is determined as a result of histopathological examinations and additional exclusionary examinations (toxicology, microbiology, etc.). However, routine histopathological examinations are insufficient, especially when death occurs in the early period of ischemia. It creates a problem for forensic pathologists and forensic medicine specialists in such cases of sudden cardiac death. Postmortem biochemistry is one of the important and promising disciplines in which forensic applications work in order to diagnose these cases correctly. The issue of whether biomarkers used in the diagnosis of myocardial infarction in clinical studies can be used reliably in postmortem cases has been discussed by forensic medicine researchers for some time. This manuscript aims to review and summarize biomarkers belonging to various categories that have been studied in IHD-related deaths, in biological fluids taken at autopsy, or in animal experiments. Our study shows that the postmortem use of biochemical markers in the diagnosis of IHD yields promising results. However, it should not be forgotten that postmortem biochemistry is different from clinical applications due to its dynamics and that the body causes unpredictable changes in markers in the postmortem process. Therefore, comprehensive studies are needed to evaluate the postmortem stability of these markers in different biological fluids, their significance among various causes of death, and whether they are affected by any variable (Cardiopulmonary resuscitation, Postmortem interval, medications, etc.) before they are routinely applied. It is suggested by the authors that the cut-off values of biomarkers whose significance has been proven by these studies should be determined and that they should be used in this way in routine applications.
Collapse
Affiliation(s)
- Erdi Kutlu
- Department of Forensic Medicine, Ministry of Health Harakani State Hospital, Kars, Turkey.
| | - Esin Avci
- Department of Biochemistry, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Kemalettin Acar
- Department of Forensic Medicine, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
16
|
Rafaqat S, Rafaqat S, Ijaz H. The Role of Biochemical Cardiac Markers in Atrial Fibrillation. J Innov Card Rhythm Manag 2023; 14:5611-5621. [PMID: 37927395 PMCID: PMC10621624 DOI: 10.19102/icrm.2023.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/13/2023] [Indexed: 11/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. Proteins are a component of cardiac biomarkers containing cell structures that are released into the circulation when a myocardial injury occurs. They are essential in the diagnosis, risk assessment, and treatment of patients who have chest pain, are thought to have acute coronary syndrome, or are experiencing acute heart failure exacerbations. There are numerous biochemical cardiac markers, but this article summarizes the basic role of major biochemical cardiac markers, including cardiac natriuretic peptides, cardiac troponins, C-reactive protein (CRP), creatine kinase-MB, heart-type fatty acid-binding protein, ischemia-modified albumin, lipoprotein (a), osteopontin (OPN), and soluble suppression of tumorigenicity 2 (sST2), in AF. Atrial natriuretic peptide may serve as an indicator of atrial integrity, which may help to select appropriate treatment approaches for AF. Higher levels of N-terminal pro-B-type natriuretic peptide and brain natriuretic peptide are predictive of incidental AF. Increased troponin T release may indicate better clinical results following AF ablation. Similarly, CRP increases the risk of the AF-increasing calcium (Ca) influx in atrial myocytes, but not because of atrial fibrosis. Patients with postoperative AF have lower FABP3 gene expression in the atrium. Lipoprotein (a) (Lp[a]) may play a causative role in the onset of AF and impact various cardiac tissues. Clinical trials for Lp(a)-lowering drugs should assess their impact on preventing AF. Also, OPN was highly expressed in the circulation of AF patients and further increased with the progression of AF. sST2 was a reliable predictor of new-onset AF and can improve the accuracy of the AF risk model. There is a greater chance that these cardiac biomarkers might be employed to enhance clinical risk stratification in AF.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Sana Rafaqat
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Hafsa Ijaz
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
17
|
Abdrabouh AES. Toxicological and histopathological alterations in the heart of young and adult albino rats exposed to mosquito coil smoke. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93070-93087. [PMID: 37501034 PMCID: PMC10447284 DOI: 10.1007/s11356-023-28812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Mosquito coil repellents are well-known indoor air pollutant with significant health concerns. The present study investigated the toxic effects of mosquito coil smoke on the heart of young and adult male rats. The animals were subjected to the smoke for 6 h/day, 6 days/week, for 4 weeks. Within the first hour after lighting the coil, significant amounts of formaldehyde, total volatile organic compounds, and particulate matter (PM2.5 and PM10) were detected. Both exposed ages, particularly the young group, showed a significant increase in the activities of serum aspartate aminotransferase, lactate dehydrogenase, creatine kinase-MB, and the levels of troponin I, myoglobin, Na+ levels, lipid profile, and inflammatory markers (interleukin-6 and C-reactive protein) as well as a significant decrease in K+ levels and cardiac Na-K ATPase activity, indicating development of cardiac inflammation and dysfunction. Furthermore, the toxic stress response was validated by significant downregulation at expression of the detoxifying enzyme cytochrome p450. Histopathological studies in both age groups, especially the young group, revealed cardiomyocyte degeneration and necrotic areas. Moreover, upregulation at the pro-apoptotic markers, caspase3, P53, and cytochrome C expressions, was detected by immunohistochemical approach in heart sections of the exposed groups. Finally, the myocardial dysfunctional effects of the coil active ingredient, meperfluthrin, were confirmed by the docking results which indicated a high binding affinity of meperfluthrin, with Na-K ATPase and caspase 3. In conclusion, both the young and adult exposed groups experienced significant cardiac toxicity changes evidenced by cell apoptosis and histopathological alterations as well as disruption of biochemical indicators.
Collapse
|
18
|
Seksaria S, Mehan S, Dutta BJ, Gupta GD, Ganti SS, Singh A. Oxymatrine and insulin resistance: Focusing on mechanistic intricacies involve in diabetes associated cardiomyopathy via SIRT1/AMPK and TGF-β signaling pathway. J Biochem Mol Toxicol 2023; 37:e23330. [PMID: 36890713 DOI: 10.1002/jbt.23330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cardiomyopathy (CDM) and related morbidity and mortality are increasing at an alarming rate, in large part because of the increase in the number of diabetes mellitus cases. The clinical consequence associated with CDM is heart failure (HF) and is considerably worse for patients with diabetes mellitus, as compared to nondiabetics. Diabetic cardiomyopathy (DCM) is characterized by structural and functional malfunctioning of the heart, which includes diastolic dysfunction followed by systolic dysfunction, myocyte hypertrophy, cardiac dysfunctional remodeling, and myocardial fibrosis. Indeed, many reports in the literature indicate that various signaling pathways, such as the AMP-activated protein kinase (AMPK), silent information regulator 1 (SIRT1), PI3K/Akt, and TGF-β/smad pathways, are involved in diabetes-related cardiomyopathy, which increases the risk of functional and structural abnormalities of the heart. Therefore, targeting these pathways augments the prevention as well as treatment of patients with DCM. Alternative pharmacotherapy, such as that using natural compounds, has been shown to have promising therapeutic effects. Thus, this article reviews the potential role of the quinazoline alkaloid, oxymatrine obtained from the Sophora flavescensin CDM associated with diabetes mellitus. Numerous studies have given a therapeutic glimpse of the role of oxymatrine in the multiple secondary complications related to diabetes, such as retinopathy, nephropathy, stroke, and cardiovascular complications via reductions in oxidative stress, inflammation, and metabolic dysregulation, which might be due to targeting signaling pathways, such as AMPK, SIRT1, PI3K/Akt, and TGF-β pathways. Thus, these pathways are considered central regulators of diabetes and its secondary complications, and targeting these pathways with oxymatrine might provide a therapeutic tool for the diagnosis and treatment of diabetes-associated cardiomyopathy.
Collapse
Affiliation(s)
- Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Bhaskar J Dutta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Ghanshyam D Gupta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Subrahmanya S Ganti
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| |
Collapse
|
19
|
Saygi M, Uzman O, Birdal O, Karagoz A, Yumurtas AC, Tezen O, Tanboga IH, Karabay CY. The Relation of Body Mass Index with In-Hospital Mortality in Patients with ST-Segment Elevation Myocardial Infarction. Metab Syndr Relat Disord 2023; 21:94-100. [PMID: 36459115 DOI: 10.1089/met.2022.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Objectives: In this study, we aimed to determine whether body mass index (BMI) is an independent predictor of in-hospital mortality in ST-segment elevation myocardial infarction (STEMI) patients and to assess the relationship between BMI and mortality. Methods: One thousand three hundred fifty-seven patients with STEMI were included to the study. Primary outcome was in-hospital mortality. The multivariable logistic regression was used to assess the relationship between BMI and in-hospital mortality using age, gender, diabetes mellitus, systolic blood pressure, heart rate, smoking status, serum creatinine and hemoglobin, type of STEMI, and Killip class as adjustment variables. Results: The frequency of in-hospital mortality was 14.7%. The mean BMI was found to be 28.2 ± 4.8 kg/m2. Considering the in-hospital mortality frequencies between the groups, mortality was observed in 61.7% of the BMI <20 kg/m2 group, 15.5% of the 20-25 kg/m2 group, 8.5% of the 25-30 kg/m2 group, and 9.5% of the >30 kg/m2 group (chi-square P value <0.001). In the multivariable logistic regression analysis, a change in BMI from 20 to 30 kg/m2 was associated with a reduced risk of in-hospital mortality (odds ratio: 0.39, 95% confidence interval: 0.23-0.67, P < 0.001). Conclusion: Our study results revealed that there was inverse significant association between BMI and in-hospital mortality in STEMI patients.
Collapse
Affiliation(s)
- Mehmet Saygi
- Department of Cardiology, Hisar Intercontinental Hospital, Istanbul, Turkey
| | - Osman Uzman
- Department of Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Education Research Hospital, Istanbul, Turkey
| | - Oguzhan Birdal
- Department of Cardiology, Ataturk University Medical School, Erzurum, Turkey
| | - Ali Karagoz
- Department of Cardiology, Kosuyolu Education Research Hospital, Istanbul, Turkey
| | - Ahmet Cagdas Yumurtas
- Department of Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Education Research Hospital, Istanbul, Turkey
| | - Ozan Tezen
- Department of Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Education Research Hospital, Istanbul, Turkey
| | - Ibrahim Halil Tanboga
- Department of Biostatistics and Cardiology, Nisantasi University Medical School, Istanbul, Turkey
| | - Can Yucel Karabay
- Department of Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Education Research Hospital, Istanbul, Turkey
| |
Collapse
|
20
|
de Oliveira TF, Peringer VS, Forgiarini Junior LA, Eibel B. PEEP-ZEEP Compared with Bag Squeezing and Chest Compression in Mechanically Ventilated Cardiac Patients: Randomized Crossover Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2824. [PMID: 36833521 PMCID: PMC9957294 DOI: 10.3390/ijerph20042824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Background and Objectives: Perform the bag squeezing and PEEP-ZEEP techniques associated with manual chest compression in mechanically ventilated cardiac patients in order to observe their effectiveness in the removal of pulmonary secretions and safety from a hemodynamic and ventilatory point of view. Methods: This is a randomized crossover clinical trial developed in a hospital in southern Brazil. We included hemodynamically stable male and female patients aged over 18 years who used invasive mechanical ventilation for at least 48 h. The control group was established for the bag-squeezing technique and the intervention group for the PEEP-ZEEP maneuver, both associated with manual chest compression. Tracheal aspiration was performed 2 h before in order to match the groups in relation to the volume of secretion, and also immediately at the end of the techniques in order to measure the amount of secretion collected. Results: The sample had 36 individuals with a mean age of 70.3 years, 21% of the patients were male, and the majority (10.4%) were hospitalized for ischemic heart disease. DBP (p = 0.024), MAP (p = 0.004) and RR (p = 0.041) showed a significant difference in the post-moment in both groups. There was a significant difference in the reduction of peak pressure values (p = 0.011), in the moment after performing the techniques, and also in the Cdyn (p = 0.004) in the control group versus moment. Conclusions: Both maneuvers are safe in terms of hemodynamics and ventilatory mechanics, in addition to being capable of favoring airway clearance through secretion removal, and they can be used in routine physiotherapeutic care.
Collapse
Affiliation(s)
- Taís Flores de Oliveira
- Instituto de Cardiologia, Fundação Universitária de Cardiologia (IC/FUC), 395 Princesa Isabel Avenue, Porto Alegre 90620-001, Brazil
| | - Vinicius Serra Peringer
- Instituto de Cardiologia, Fundação Universitária de Cardiologia (IC/FUC), 395 Princesa Isabel Avenue, Porto Alegre 90620-001, Brazil
| | | | - Bruna Eibel
- Instituto de Cardiologia, Fundação Universitária de Cardiologia (IC/FUC), 395 Princesa Isabel Avenue, Porto Alegre 90620-001, Brazil
| |
Collapse
|
21
|
Can the Correlation of Periodontopathies with Gastrointestinal Diseases Be Used as Indicators in Severe Colorectal Diseases? Biomedicines 2023; 11:biomedicines11020402. [PMID: 36830938 PMCID: PMC9953596 DOI: 10.3390/biomedicines11020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Gastrointestinal problems are among the most common health problems which can acutely affect the healthy population and chronically involve health risks, seriously affecting the quality of life. Identifying the risk of gastrointestinal diseases in the early phase by indirect methods can increase the healing rate and the quality of life.: The proposal of this study is to verify a correlation between gastrointestinal and periodontal problems and the risk of inflammatory gastrointestinal diseases (IBD). The study was conducted on 123 people who were observed to have gastrointestinal and psychological problems. The participants were divided into three groups, depending on each one's diagnosis. The control group (CG) was composed of 37 people who did not fit either irritable bowel syndrome (IBS) according to the ROME IV criteria, nor were inflammatory markers positive for IBD. Group 2 (IBS) was composed of 44 participants diagnosed with IBS according to the ROME IV criteria. Group 3 was composed of 42 participants who were diagnosed with IBD. All study participants underwent anthropometric, micro-Ident, and quality of life tests. A directly proportional relationship of the presence of bacteria with IBD patients with the exception of Capnocytophaga spp. and Actinobacillus actinomycetemcomitans was observed. These two bacteria correlated significantly with IBS. Follow-up of the study participants will help determine whether periodontal disease can be used as an indicator of severe colorectal disease. In addition, this study should be continued especially in the case of IBD more thoroughly to follow and reduce the risk of malignancy.
Collapse
|
22
|
Rafaqat S, Afzal S, Rafaqat S, Khurshid H, Rafaqat S. Cardiac markers: Role in the pathogenesis of arterial hypertension. World J Hypertens 2022; 10:1-14. [DOI: 10.5494/wjh.v10.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/03/2022] [Accepted: 10/14/2022] [Indexed: 02/08/2023] Open
Affiliation(s)
- Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore 5400, Pakistan
| | - Shaheed Afzal
- Emergency Department of Cardiology, Punjab Institute of Cardiology, Lahore 5400, Pakistan
| | - Sana Rafaqat
- Department of Biotechnology, Lahore College for Women University, Lahore 5400, Pakistan
| | - Huma Khurshid
- Department of Zoology, Lahore College for Women University, Lahore 5400, Pakistan
| | - Simon Rafaqat
- Department of Business, Forman Christian College, Lahore 5400, Pakistan
| |
Collapse
|
23
|
Thupakula S, Nimmala SSR, Ravula H, Chekuri S, Padiya R. Emerging biomarkers for the detection of cardiovascular diseases. Egypt Heart J 2022; 74:77. [PMID: 36264449 PMCID: PMC9584006 DOI: 10.1186/s43044-022-00317-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Background The prevalence of cardiovascular disease (CVD) has been continuously increasing, and this trend is projected to continue. CVD is rapidly becoming a significant public health issue. Every year there is a spike in hospital cases of CVD, a critical health concern in lower- and middle-income countries. Based on identification of novel biomarkers, it would be necessary to study and evaluate the diagnostic requirements or CVD to expedite early detection. Main body The literature review was written using a wide range of sources, such as well-known medical journals, electronic databases, manuscripts, texts, and other writings from the university library. After that, we analysed the specific markers of CVD and compiled a systematic review. A growing body of clinical research aims to identify people who are at risk for cardiovascular disease by looking for biomolecules. A small number of biomarkers have been shown to be useful and reliable in medicine. Biomarkers can be used for a variety of clinical applications, such as predicting heart disease risk, diagnosing disease, or predicting outcomes. As a result of the ability for a single molecule to act as a biomarker, its usefulness in medicine is expected to increase significantly. Conclusions Based on assessing the current trends in the application of CVD markers, we discussed and described the requirements for the application of CVD biomarkers in coronary heart disease, cerebrovascular disease, rheumatic heart disease, and other cardiovascular illnesses. Furthermore, the current review focuses on biomarkers for CVD and the procedures that should be considered to establish the comprehensive nature of the expression of biomarkers for cardiovascular illness.
Collapse
Affiliation(s)
- Sreenu Thupakula
- grid.412419.b0000 0001 1456 3750Department of Biochemistry, Osmania University, Amberpet, Hyderabad, Telangana 500007 India
| | - Shiva Shankar Reddy Nimmala
- grid.412419.b0000 0001 1456 3750Department of Biochemistry, Osmania University, Amberpet, Hyderabad, Telangana 500007 India
| | - Haritha Ravula
- grid.18048.350000 0000 9951 5557Department of Plant Sciences, University of Hyderabad, Gopanpalle, Hyderabad, Telangana 500019 India
| | - Sudhakar Chekuri
- grid.412419.b0000 0001 1456 3750Department of Genetics, Osmania University, Amberpet, Hyderabad, Telangana 500007 India
| | - Raju Padiya
- grid.412419.b0000 0001 1456 3750Department of Biochemistry, Osmania University, Amberpet, Hyderabad, Telangana 500007 India
| |
Collapse
|
24
|
Termkwancharoen C, Malakul W, Phetrungnapha A, Tunsophon S. Naringin Ameliorates Skeletal Muscle Atrophy and Improves Insulin Resistance in High-Fat-Diet-Induced Insulin Resistance in Obese Rats. Nutrients 2022; 14:nu14194120. [PMID: 36235772 PMCID: PMC9571698 DOI: 10.3390/nu14194120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Obesity causes progressive lipid accumulation and insulin resistance within muscle cells and affects skeletal muscle fibres and muscle mass that demonstrates atrophy and dysfunction. This study investigated the effects of naringin on the metabolic processes of skeletal muscle in obese rats. Male Sprague Dawley rats were divided into five groups: the control group with normal diet and the obese groups, which were induced with a high-fat diet (HFD) for the first 4 weeks and then treated with 40 mg/kg of simvastatin and 50 and 100 mg/kg of naringin from week 4 to 8. The naringin-treated group showed reduced body weight, biochemical parameters, and the mRNA expressions of protein degradation. Moreover, increased levels of antioxidant enzymes, glycogen, glucose uptake, the expression of the insulin receptor substrate 1 (IRS-1), the glucose transporter type 4 (GLUT4), and the mRNA expressions of protein synthesis led to improved muscle mass in the naringin-treated groups. The in vitro part showed the inhibitory effects of naringin on digestive enzymes related to lipid and glucose homeostasis. This study demonstrates the potential benefits of naringin as a supplement for treating muscle abnormalities in obese rats by modulating the antioxidative status, regulating protein metabolism, and improved insulin resistance in skeletal muscle of HFD-induced insulin resistance in obese rats.
Collapse
Affiliation(s)
- Chutimon Termkwancharoen
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wachirawadee Malakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Amnat Phetrungnapha
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sakara Tunsophon
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence: ; Tel.: +66-55-964655
| |
Collapse
|
25
|
Al-Kuraishy HM, Al-Gareeb AI, Alkhuriji AF, Al-Megrin WAI, Elekhnawy E, Negm WA, De Waard M, Batiha GES. Investigation of the impact of rosuvastatin and telmisartan in doxorubicin-induced acute cardiotoxicity. Biomed Pharmacother 2022; 154:113673. [PMID: 36942604 DOI: 10.1016/j.biopha.2022.113673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 12/06/2022] Open
Abstract
Cardiac injury is the main dose-limiting factor for doxorubicin (Dox) use as an anticancer agent. The cardiotoxicity of Dox is linked to a number of complex mechanisms, including oxidative stress, mitochondrial damage, intracellular calcium dysregulation, and apoptosis/necrosis. This study investigates several aspects of Dox-induced cardiotoxicity. We investigated the effects of pre-treatment with rosuvastatin and telmisartan, which were used in different doses alone or combination, on the acute cardiotoxicity induced by Dox. The results of this study showed that Dox induced significant pathological changes in the cardiomyocytes. Adverse effects were observed on several biomarkers related to cardiac damage like cardiac troponin I (cTnI) and lactate dehydrogenase (LDH), oxidative stress like malondialdehyde (MDA), an inflammatory process like interleukin-17 (IL-17) with important histopathological changes. We illusterate the cardio-protective contribution of the two pharmacological agents against the acute cardiotoxic effects of Dox. This is manifested by the significant improvement in the biomarker levels and the associated histological damage. This study points out the beneficial use of both rosuvastatin and telmisartan alone or in combination as a clinical option for decreasing the acute toxicity of Dox on cardiomyocytes.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-mustansiriyiah University, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-mustansiriyiah University, Iraq.
| | - Afrah Fahad Alkhuriji
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Wafa Abdullah I Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France; L'institut du Thorax, INSERM, CNRS, UNIV NANTES, F-44007 Nantes, France; LabEx Ion Channels, Science & Therapeutics, Université de Nice Sophia-Antipolis, F-06560 Valbonne, France.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AL Beheira, Egypt.
| |
Collapse
|
26
|
Bauer S, Eigenmann J, Zhao Y, Fleig J, Hawe JS, Pan C, Bongiovanni D, Wengert S, Ma A, Lusis AJ, Kovacic JC, Björkegren JLM, Maegdefessel L, Schunkert H, von Scheidt M. Identification of the Transcription Factor ATF3 as a Direct and Indirect Regulator of the LDLR. Metabolites 2022; 12:840. [PMID: 36144244 PMCID: PMC9504235 DOI: 10.3390/metabo12090840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Coronary artery disease (CAD) is a complex, multifactorial disease caused, in particular, by inflammation and cholesterol metabolism. At the molecular level, the role of tissue-specific signaling pathways leading to CAD is still largely unexplored. This study relied on two main resources: (1) genes with impact on atherosclerosis/CAD, and (2) liver-specific transcriptome analyses from human and mouse studies. The transcription factor activating transcription factor 3 (ATF3) was identified as a key regulator of a liver network relevant to atherosclerosis and linked to inflammation and cholesterol metabolism. ATF3 was predicted to be a direct and indirect (via MAF BZIP Transcription Factor F (MAFF)) regulator of low-density lipoprotein receptor (LDLR). Chromatin immunoprecipitation DNA sequencing (ChIP-seq) data from human liver cells revealed an ATF3 binding motif in the promoter regions of MAFF and LDLR. siRNA knockdown of ATF3 in human Hep3B liver cells significantly upregulated LDLR expression (p < 0.01). Inflammation induced by lipopolysaccharide (LPS) stimulation resulted in significant upregulation of ATF3 (p < 0.01) and subsequent downregulation of LDLR (p < 0.001). Liver-specific expression data from human CAD patients undergoing coronary artery bypass grafting (CABG) surgery (STARNET) and mouse models (HMDP) confirmed the regulatory role of ATF3 in the homeostasis of cholesterol metabolism. This study suggests that ATF3 might be a promising treatment candidate for lowering LDL cholesterol and reducing cardiovascular risk.
Collapse
Affiliation(s)
- Sabine Bauer
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Jana Eigenmann
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Julia Fleig
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
| | - Johann S. Hawe
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
| | - Calvin Pan
- Departments of Medicine, Human Genetics, Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Dario Bongiovanni
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Simon Wengert
- Helmholtz Pioneer Campus, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Oberschleißheim, Germany
| | - Angela Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aldons J. Lusis
- Departments of Medicine, Human Genetics, Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jason C. Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, NSW 2010, Australia
- St. Vincent’s Clinical School, University of New South Wales, Darlinghurst, Sydney, NSW 2010, Australia
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY 10029, USA
| | - Johan L. M. Björkegren
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Clinical Gene Networks AB, 114 44 Stockholm, Sweden
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Novum, Huddinge, 171 77 Stockholm, Sweden
| | - Lars Maegdefessel
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
- Department of Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Moritz von Scheidt
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
27
|
Arkew M, Gemechu K, Haile K, Asmerom H. Red Blood Cell Distribution Width as Novel Biomarker in Cardiovascular Diseases: A Literature Review. J Blood Med 2022; 13:413-424. [PMID: 35942475 PMCID: PMC9356613 DOI: 10.2147/jbm.s367660] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Red blood cell distribution width (RDW) is a measure of the change in size of red blood cells and it is used in combination with other hematological parameters for the differential diagnosis of anemias. Recent evidence suggested that the change in RDW level may be a predictive biomarker of morbidity and mortality in cardiovascular diseases (CVDs). Cardiovascular diseases are the most common cause of death globally as compared to cancer and communicable diseases. Early diagnosis and prompt intervention of these diseases are very important to minimize their complications. Nowadays, the diagnosis of most cardiovascular diseases majorly depends on clinical judgment, electrocardiography and biochemical parameters. Red blood cell distribution width as a new predictive biomarker may play a pivotal role in assessing the severity and progression of CVDs. However, the underlying mechanisms for the association between RDW and CVDs are not clear. A deeper understanding of their association could help the physicians in more careful identification, early prevention, intervention, and treatment to prevent adverse cardiovascular events. This review aims to elaborate on the recent knowledge on the association between RDW and cardiovascular diseases and some possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- Mesay Arkew
- School of Medical Laboratory Sciences, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Kabtamu Gemechu
- School of Medical Laboratory Sciences, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Kassahun Haile
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wolkite University, Wolkite, Ethiopia
| | - Haftu Asmerom
- School of Medical Laboratory Sciences, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| |
Collapse
|
28
|
Anti-atherosclerotic Effects of Myrtenal in High-Fat Diet-Induced Atherosclerosis in Rats. Appl Biochem Biotechnol 2022; 194:5717-5733. [PMID: 35804285 DOI: 10.1007/s12010-022-04044-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
The major cause of death worldwide is atherosclerosis-related cardiovascular disease (ACD). Myrtenal was studied to determine control rats were given standard diets and a high-fat diet was given to AS model groups. Atherosclerosis-related cardiovascular disease (ACD) is globally attributed to being a predominant cause of mortality. While the beneficial effects of Myrtenal, the monoterpene from natural compounds, are increasingly being acknowledged, its anti-atherosclerotic activity has not been demonstrated clearly. The present study is proposed to determine the anti-atherosclerotic activity of Myrtenal in high-fat diet-induced atherosclerosis (AS) rat models. Control groups were maintained with standard diets, the AS model rats were provided a high-fat diet, two of the experimental groups fed with a high-fat diet were treated with Myrtenal (50 mg/kg and 100 mg/kg), and one experimental group on high-fat diet was treated with simvastatin (10 mg/kg) for 30 days. The levels of inflammatory cytokines were analyzed using kits. The lipoproteins and the lipid profile were estimated using an auto-analyzer. The atherogenic index and marker enzyme activities were also determined. Serum concentrations of 6-keto-prostaglandin F1α (6-keto-PGF1α), thromboxaneB2 (TXB2), endothelin (ET), and nitric oxide (NO) were measured. The AS model groups indicated altered lipid profile, lipoprotein content, atherogenic index, calcium levels, HMG-CoA reductase activity, collagen level, and mild mineralization indicating atherosclerosis, while the AS-induced Myrtenal-treated groups demonstrated anti-atherogenic activity. The Myrtenal-treated groups exhibited a decreased TC, TG, and LDLc levels; increased HDLc levels; and a decline in the inflammatory cytokines such as CRP, IL-1β, IL-8, and IL-18 when compared to the untreated AS rats. Furthermore, Myrtenal decreased ET, TXB2, and 6-keto-PGF1α levels indicating its anti-atherosclerotic activity. The study results thus indicate that Myrtenal modulates the lipid metabolic pathway to exert its anti-atherosclerotic activity.
Collapse
|
29
|
Mei Y, Hu H, Deng L, Sun X, Tan W. Isosteviol sodium attenuates high fat/high cholesterol-induced myocardial dysfunction by regulating the Sirt1/AMPK pathway. Biochem Biophys Res Commun 2022; 621:80-87. [PMID: 35810595 DOI: 10.1016/j.bbrc.2022.06.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
A fat-rich diet triggers obesity, and promotes cardiomyocyte injury. Till now, no prior investigations suggested a beneficial role of Isosteviol Sodium (STVNa) in cardiac activity in high fat diet (HFD)-exposed obese rats. However, there is evidence that STVNa accelerates healing of multiple tissue injuries. Herein, we explored the underlying mechanism behind the STVNa-based protection against HFD-induced myocardial dysfunction (MCD) in a rat model of myocardial injury. We employed dosages of 1, 10, and 20 mg/kg STVNa to treat MCD in rats fed with a HFD. Based on our results, STVNa repressed MCD (as indicated by ecocardiographic analysis), myocardium function, pathological structure, and myocardial enzymes. Mechanistically, the STVNa-mediated protection against HFD-induced MCD involved inhibition of inflammation and oxidative stress. Furthermore, using Western blot analysis, we revealed that the critical members of the Sirt1/AMPK network were markedly activated in the STVNa-treated group, relative to HFD-fed controls. Collectively, these evidences suggested that the STVNa offered strong protection against HFD-induced MCD. Moreover, this effect was mediated by the activation of the Sirt1/AMPK network, which, in turn, promoted lipid metabolism.
Collapse
Affiliation(s)
- Ying Mei
- School of Pharmacy, Jinan University, Guangzhou, 510632, China; YZ Health-tech Inc, Hengqin District, Zhuhai, 519000, China
| | - Hui Hu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Liangjun Deng
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Wen Tan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500, Malaysia.
| |
Collapse
|
30
|
Gholipour A, Shakerian F, Zahedmehr A, Irani S, Malakootian M, Mowla SJ. Bioinformatics Analysis to Find Novel Biomarkers for Coronary Heart Disease. IRANIAN JOURNAL OF PUBLIC HEALTH 2022; 51:1152-1160. [PMID: 36407720 PMCID: PMC9643247 DOI: 10.18502/ijph.v51i5.9430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Coronary heart disease (CHD), a major cause of death worldwide, is defined as a narrowing or blockage of the coronary arteries that supply oxygen and blood to the heart. We aimed to find potential biomarkers for coronary artery disease, by comparing the expression profile of blood exosomes of both normal and CHD samples. METHODS Datasets of 6 CHD and 6 normal samples of blood exosomes were downloaded, and differentially expressed RNAs, with adjusted P<0.01 and log2FoldChange≥1 were achieved. Moreover, gene ontology (GO) and pathway analysis were accomplished by PANTHER database for datasets. RESULTS Our data analysis found 119 differentially expressed genes between two datasets. By comparing transcriptome profiles, we candidate the highest downregulated gene, ACSBG1, and the highest upregulated one, DEFA4, as specific biomarkers for CHD. Furthermore, GO and pathway analysis depicted that aforementioned differentially expressed genes are mostly involved in different molecular metabolic process, inflammation, immune system process and response to stimulus pathways which all cause cardiovascular diseases. CONCLUSION We have provided new potential biomarkers for CHD, though experimental validation is still needed to confirm the suitability of the candidate genes for early detection of CHD.
Collapse
Affiliation(s)
- Akram Gholipour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshad Shakerian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zahedmehr
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
31
|
Balamurugesan K, Karthik S, Fredrick J. Comparison of Heart Rate Variability, QTc, and JT Interval Between Diabetic Patients and Healthy Controls: Role of Gender and Phases of Menstrual Cycle. Cureus 2022; 14:e24179. [PMID: 35592207 PMCID: PMC9110070 DOI: 10.7759/cureus.24179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2022] [Indexed: 11/05/2022] Open
Abstract
Background and objectives Type 2 Diabetes mellitus (T2DM) is a heterogeneous group of metabolic disorders with variable degrees of insulin resistance and altered glucose metabolism. Increased attention in studying the role of gonadal hormones in diabetes is not only due to their relation to insulin sensitivity, and glucose tolerance but also to the gender-specific nature of the prevalence of various diabetic complications. The cyclical change in the hormone level in females will make it necessary to consider the menstrual cycle while analyzing the risk factors for diabetes. Hence, the role of gender and menstrual cycle in T2DM are analyzed here using the simple non-invasive cardiovascular risk indices like heart rate variability (HRV), QT interval corrected for heart rate (QTc), and JT interval. Materials and methods In this analytical study, T2DM patients in the age group of 18-45 years with less than five years duration from diagnosis and taking not more than two anti-hyperglycemic drugs were included. Time and frequency domains of HRV analysis, QTc, and JT intervals were compared with age and BMI matched control group. The comparison of these parameters was also made between two genders in the diabetic group and they were analyzed across different phases of the menstrual cycle in female diabetic patients when physiological variation in the gonadal hormones occurred as a natural phenomenon. Results HRV parameters were reduced and the QTc and JT intervals were prolonged in diabetic patients of both genders. Reduction in low-frequency (LF) band power and high-frequency (HF) band power of HRV analysis in diabetic females were statistically significant in the luteal phase of the menstrual cycle in comparison with age and BMI-matched healthy controls. There was no significant difference in the HRV parameters, QTc, and JT interval between the male and female diabetic groups. HF band power is significantly reduced in the menstrual phase and relatively higher in the follicular phase when compared to the luteal phase among female diabetic patients. Conclusion The reduced sympathetic and parasympathetic activity were observed in diabetic patients of both genders and they were significant in the luteal phase of diabetic females compared to the healthy control group. Vagal activity is relatively higher in the follicular phase of the menstrual cycle in female diabetic patients.
Collapse
|
32
|
Ghitea TC, Aleya L, Tit DM, Behl T, Stoicescu M, Sava C, Iovan C, El-Kharoubi A, Uivarosan D, Pallag A, Bungau S. Influence of diet and sport on the risk of sleep apnea in patients with metabolic syndrome associated with hypothyroidism - a 4-year survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23158-23168. [PMID: 34802081 DOI: 10.1007/s11356-021-17589-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Apnea is a common problem observed among obese individuals, affecting the quality of sleep and increasing cardiovascular risk and mortality. The current study monitored the risk of obstructive sleep apnea (OSA) following diet therapy and sports-associated diet therapy in patients with metabolic syndrome (MS) and hypothyroidism. The subjects included in the study were divided into 3 groups: control group (CG) (n=36), diet therapy group (DG) (including patients following a personalized diet therapy program) (n=76), and diet therapy and sports group (DSG) (which considered patients doing sports in addition to following a personalized diet therapy program) (n=80). The evaluation methods included body analysis (body mass index, fat mass, and visceral fat), paraclinical analysis (homeostasis model assessment of insulin resistance), assessment of difficulty in breathing, stress monitoring, hypothyroidism, and risk of OSA. The OSA index was assessed using the Berlin Questionnaire of Sleep Apnea and Epworth Sleepiness Scale. The correlation between OSA with body mass index (BMI), homeostasis model assessment of insulin resistance (HOMA-IR) index, fat mass, and visceral fat showed a statistically significant positive ratio (p<0.05; F=3.871). The obtained results indicated that diet therapy and physical activity reduced the OSA risk by 78.72%.
Collapse
Affiliation(s)
- Timea Claudia Ghitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania
| | - Lotfi Aleya
- Laboratoire Chrono-environment, CNRS 6249, Université de Franche-Comté, Besançon, France.
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073, Oradea, Romania
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania
| | - Cristian Sava
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania
| | - Ciprian Iovan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410068, Oradea, Romania
| | - Amina El-Kharoubi
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073, Oradea, Romania
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410068, Oradea, Romania
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073, Oradea, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania.
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073, Oradea, Romania.
| |
Collapse
|
33
|
Rochette L. Emerging New Biomarkers for Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms23063274. [PMID: 35328695 PMCID: PMC8953083 DOI: 10.3390/ijms23063274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- Luc Rochette
- Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne-Franche Comté, 7 Bd Jeanne d'Arc, 21000 Dijon, France
| |
Collapse
|
34
|
Silveira Rossi JL, Barbalho SM, Reverete de Araujo R, Bechara MD, Sloan KP, Sloan LA. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab Res Rev 2022; 38:e3502. [PMID: 34614543 DOI: 10.1002/dmrr.3502] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MS) is a chronic non-infective syndrome characterised clinically by a set of vascular risk factors that include insulin resistance, hypertension, abdominal obesity, impaired glucose metabolism, and dyslipidaemia. These risk factors are due to a pro-inflammatory state, oxidative stress, haemodynamic dysfunction, and ischaemia, which overlap in 'dysmetabolic' patients. This review aimed to evaluate the relationship between the traditional components of MS with cardiovascular disease (CVD), inflammation, and oxidative stress. MEDLINE-PubMed, EMBASE, and Cochrane databases were searched. Chronic low-grade inflammatory states and metaflammation are often accompanied by metabolic changes directly related to CVD incidence, such as diabetes mellitus, hypertension, and obesity. Moreover, the metaflammation is characterised by an increase in the serum concentration of pro-inflammatory cytokines, mainly interleukin-1 β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α), originating from the chronically inflamed adipose tissue and associated with oxidative stress. The increase of reactive oxygen species overloads the antioxidant systems causing post-translational alterations of proteins, lipids, and DNA leading to oxidative stress. Hyperglycaemia contributes to the increase in oxidative stress and the production of advanced glycosylation end products (AGEs) which are related to cellular and molecular dysfunction. Oxidative stress and inflammation are associated with cellular senescence and CVD. CVD should not be seen only as being triggered by classical MS risk factors. Atherosclerosis is a multifactorial pathological process with several triggering and aetiopathogenic mechanisms. Its medium and long-term repercussions, however, invariably constitute a significant cause of morbidity and mortality. Implementing preventive and therapeutic measures against oxy-reductive imbalances and metaflammation states has unquestionable potential for favourable clinical outcomes in cardiovascular medicine.
Collapse
Affiliation(s)
- João Leonardo Silveira Rossi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation - University of Marília, Marília, São Paulo, Brazil
- School of Food and Technology of Marilia, Marilia, São Paulo, Brazil
| | - Renan Reverete de Araujo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília, São Paulo, Brazil
| | | | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, Texas, USA
- University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
35
|
Zaki S, Moiz J, Bhati P, Menon G. Efficacy of high-intensity interval training on cardiac autonomic modulation in cardiovascular diseases and lifestyle disorders: a systematic review and meta-analysis. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep210009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The study aims to investigate the literature on the effect of high-intensity interval training (HIIT) on cardiac autonomic function in individuals with cardiovascular disease (CVD) and lifestyle disorders. We performed electronic database search from CENTRAL, WoS, Scopus, Pubmed, and PEDro up to 25th February 2021. Randomised control trials/quasi-experimental trials/cross-over trials that assessed the effects of HIIT with control/alternative treatment on cardiac autonomic control were included in this review. A total of 11 studies were included for qualitative analysis and among them, 8 were quantitatively analysed. A random-effect model of standardised mean difference (SMD) and mean difference of the respective outcome measures for cardiac autonomic control was determined. The findings of the qualitative analysis revealed the beneficial effects of HIIT on cardiac autonomic modulation. However, the majority of the studies had an unclear or high risk of bias for randomisation, concealment methods, and blinding of participants to the intervention that could have influenced the interpretation of the findings. The SMD revealed a significant effect of HIIT on standard deviation of N-N intervals (SDNN) (ms) [SMD: 0.40, 95% confidence interval (CI): -0.001 to 0.80, P=0.05], high frequency power (HF) (ms2) [0.46, 95% CI: 0.17 to 0.76, P=0.002], and ratio of low and high frequency power, (LF/HF) [-0.80, 95% CI: -1.27 to -0.33, P=0.0008]. In conclusion, HIIT may effectively modulate cardiac autonomic function by increasing parasympathetic dominance, sympathetic withdrawal, and sympathovagal balance in individuals with CVD and lifestyle disorders. The study has a PROSPERO registration number: CRD42021231225
Collapse
Affiliation(s)
- S. Zaki
- Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, 110025, New Delhi, India
| | - J.A. Moiz
- Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, 110025, New Delhi, India
| | - P. Bhati
- Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, Haryana, India
| | - G.R. Menon
- National Institute of Medical Statistics, Indian Council of Medical Research, 110029, New Delhi, India
| |
Collapse
|
36
|
Salvaras L, Kovacic T, Janega P, Liptak B, Sasvariova M, Michalikova D, Tyukos Kaprinay B, Bezek S, Sotnikova R, Knezl V, Sankovicova T, Gasparova Z. Synthetic Pyridoindole and Rutin Affect Upregulation of Endothelial Nitric Oxide Synthase and Heart Function in Rats Fed a High-Fat-Fructose Diet. Physiol Res 2021; 70:851-863. [PMID: 34717058 PMCID: PMC8815465 DOI: 10.33549/physiolres.934670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
Metabolic syndrome (MetS) belongs to the serious health complications expanding in cardiovascular diseases, obesity, insulin resistance, and hyperglycemia. In this study, hypertriacylglycerolemic rats fed a high-fat-fructose diet (HFFD) were used as an experimental model of MetS to explore the effect of tested compounds. Effects of a new prospective pyridoindole derivative coded SMe1EC2 and the natural polyphenol rutin were tested. Endothelial nitric oxide synthase (NOS3) and nuclear factor kappa B (NF-?B) expression were assessed in the left ventricle immunohistochemically and left ventricle activity was monitored in isolated perfused rat hearts. NOS3 activity in the left ventricle decreased markedly as a result of a HFFD. NOS3 expression was upregulated by both substances. NF-?B expression was increased in the MetS group in comparison to control rats and the expression further increased in the SMe1EC2 treatment. This compound significantly improved the coronary flow in comparison to the control group during reperfusion of the heart followed after ischemia. Further, it tended to increase left ventricular systolic pressure, heart product, rate of maximal contraction and relaxation, and coronary flow during baseline assessment. Moreover, the compound SMe1EC2 decreased the sensitivity of hearts to electrically induced ventricular fibrillation. Contrary to this rutin decreased coronary flow in reperfusion. Present results suggest that despite upregulation of NOS3 by both substances tested, pyridoindole SMe1EC2 rather than rutin could be suitable in treatment strategies of cardiovascular disorders in MetS-like conditions.
Collapse
Affiliation(s)
- L Salvaras
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Osuna-Prieto FJ, Martinez-Tellez B, Ortiz-Alvarez L, Di X, Jurado-Fasoli L, Xu H, Ceperuelo-Mallafré V, Núñez-Roa C, Kohler I, Segura-Carretero A, García-Lario JV, Gil A, Aguilera CM, Llamas-Elvira JM, Rensen PCN, Vendrell J, Ruiz JR, Fernández-Veledo S. Elevated plasma succinate levels are linked to higher cardiovascular disease risk factors in young adults. Cardiovasc Diabetol 2021; 20:151. [PMID: 34315463 PMCID: PMC8314524 DOI: 10.1186/s12933-021-01333-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Succinate is produced by both host and microbiota, with a key role in the interplay of immunity and metabolism and an emerging role as a biomarker for inflammatory and metabolic disorders in middle-aged adults. The relationship between plasma succinate levels and cardiovascular disease (CVD) risk in young adults is unknown. METHODS Cross-sectional study in 100 (65% women) individuals aged 18-25 years from the ACTIvating Brown Adipose Tissue through Exercise (ACTIBATE) study cohort. CVD risk factors, body composition, dietary intake, basal metabolic rate, and cardiorespiratory fitness were assessed by routine methods. Plasma succinate was measured with an enzyme-based assay. Brown adipose tissue (BAT) was evaluated by positron emission tomography, and circulating oxylipins were assessed by targeted metabolomics. Fecal microbiota composition was analyzed in a sub-sample. RESULTS Individuals with higher succinate levels had higher levels of visceral adipose tissue (VAT) mass (+ 42.5%), triglycerides (+ 63.9%), C-reactive protein (+ 124.2%), diastolic blood pressure (+ 5.5%), and pro-inflammatory omega-6 oxylipins than individuals with lower succinate levels. Succinate levels were also higher in metabolically unhealthy individuals than in healthy overweight/obese peers. Succinate levels were not associated with BAT volume or activity or with fecal microbiota composition and diversity. CONCLUSIONS Plasma succinate levels are linked to a specific pro-inflammatory omega-6 signature pattern and higher VAT levels, and seem to reflect the cardiovascular status of young adults.
Collapse
Affiliation(s)
- Francisco J Osuna-Prieto
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lourdes Ortiz-Alvarez
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Xinyu Di
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Lucas Jurado-Fasoli
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Huiwen Xu
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Victoria Ceperuelo-Mallafré
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII-Institut d ́Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Rovira i Virgili University, Tarragona, Spain
| | - Catalina Núñez-Roa
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII-Institut d ́Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | | | - Angel Gil
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Biohealth Research Institute in Granada (Ibs, GRANADA), Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
- Biohealth Research Institute in Granada (Ibs, GRANADA), Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jose M Llamas-Elvira
- Nuclear Medicine Service, Virgen de las Nieves University Hospital, Biohealth Research Institute in Granada (Ibs. GRANADA), Granada, Spain
| | - Patrick C N Rensen
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Joan Vendrell
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII-Institut d ́Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
- Rovira i Virgili University, Tarragona, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health Through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII-Institut d ́Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
38
|
Tilea I, Varga A, Serban RC. Past, Present, and Future of Blood Biomarkers for the Diagnosis of Acute Myocardial Infarction-Promises and Challenges. Diagnostics (Basel) 2021; 11:diagnostics11050881. [PMID: 34063483 PMCID: PMC8156776 DOI: 10.3390/diagnostics11050881] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/28/2022] Open
Abstract
Despite important advancements in acute myocardial infarction (AMI) management, it continues to represent a leading cause of mortality worldwide. Fast and reliable AMI diagnosis can significantly reduce mortality in this high-risk population. Diagnosis of AMI has relied on biomarker evaluation for more than 50 years. The upturn of high-sensitivity cardiac troponin testing provided extremely sensitive means to detect cardiac myocyte necrosis, but this increased sensitivity came at the cost of a decrease in diagnostic specificity. In addition, although cardiac troponins increase relatively early after the onset of AMI, they still leave a time gap between the onset of myocardial ischemia and our ability to detect it, thus precluding very early management of AMI. Newer biomarkers detected in processes such as inflammation, neurohormonal activation, or myocardial stress occur much earlier than myocyte necrosis and the diagnostic rise of cardiac troponins, allowing us to expand biomarker research in these areas. Increased understanding of the complex AMI pathophysiology has spurred the search of new biomarkers that could overcome these shortcomings, whereas multi-omic and multi-biomarker approaches promise to be game changers in AMI biomarker assessment. In this review, we discuss the evolution, current application, and emerging blood biomarkers for the diagnosis of AMI; we address their advantages and promises to improve patient care, as well as their challenges, limitations, and technical and diagnostic pitfalls. Questions that remain to be answered and hotspots for future research are also emphasized.
Collapse
Affiliation(s)
- Ioan Tilea
- Department M4, Clinical Sciences, Faculty of Medicine, “G. E. Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Department of Cardiology II, Emergency Clinical County Hospital, 540042 Targu Mures, Romania
| | - Andreea Varga
- Department of Cardiology II, Emergency Clinical County Hospital, 540042 Targu Mures, Romania
- Department ME2, Faculty of Medicine in English, “G. E. Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Correspondence: ; Tel.: +40-730808111
| | - Razvan Constantin Serban
- Cardiac Catheterization Laboratory, The Emergency Institute for Cardiovascular Diseases and Transplantation, 540136 Targu Mures, Romania;
| |
Collapse
|
39
|
Jain SK, Micinski D, Parsanathan R. l-Cysteine Stimulates the Effect of Vitamin D on Inhibition of Oxidative Stress, IL-8, and MCP-1 Secretion in High Glucose Treated Monocytes. J Am Coll Nutr 2021; 40:327-332. [PMID: 33596158 DOI: 10.1080/07315724.2020.1850371] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: Vitamin D deficiency is common in the general population and diabetic patients, and supplementation with vitamin D is widely used to help lower oxidative stress and inflammation. The cytokine storm in SARS-CoV2 infection has been linked with both diabetes and Vitamin D deficiency. This study examined the hypothesis that supplementation with vitamin D, in combination with l-cysteine (LC), is better at reducing oxidative stress and thereby, more effective, at inhibiting the secretion of the pro-inflammatory cytokines, Interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) in U937 monocytes exposed to high glucose concentrations. Methods: U937 monocytes were pretreated with 1,25 (OH)2 vitamin D (VD, 10 nM) or LC (250 µM) or VD + LC for 24 h and then exposed to control or high glucose (HG, 25 mM) for another 24 h. Results: There were significantly greater reactive oxygen species (ROS) levels in monocytes treated with HG than those in controls. Combined supplementation with VD and LC showed a more significant reduction in ROS (46%) in comparison with treatment with LC (19%) or VD (26%) alone in monocytes exposed to HG. Similarly, VD supplementation, together with LC, caused a more significant inhibition in the secretion of IL-8 (36% versus 16%) and MCP-1 (46% versus 26%) in comparison with that of VD (10 nM) alone in high-glucose treated monocytes. Conclusions: These results suggest that combined supplementation with vitamin D and LC has the potential to be more effective than either VD or LC alone in lowering the risk of oxidative stress and inflammation associated with type 2 diabetes or COVID-19 infection. Further, this combined vitamin D with LC/N-acetylcysteine may be a potent alternative therapy for SARS-CoV2 infected subjects. This approach can prevent cellular damage due to cytokine storm in comorbid systemic inflammatory conditions, such as diabetes, obesity, and hypertension.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - David Micinski
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Rajesh Parsanathan
- Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
40
|
Ferrer-Suay S, Alonso-Iglesias E, Tortajada-Girbés M, Carrasco-Luna J, Codoñer-Franch P. Vitamin D receptor gene ApaI and FokI polymorphisms and its association with inflammation and oxidative stress in vitamin D sufficient Caucasian Spanish children. Transl Pediatr 2021; 10:103-111. [PMID: 33633942 PMCID: PMC7882298 DOI: 10.21037/tp-20-198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Vitamin D has gone from being just one vitamin to being an important prohormone with multiple effects on different tissue types. The mechanism of action of the active form or calcitriol is mediated by the intracellular vitamin D receptor (VDR). The interaction of the VDR with calcitriol modulates the expression of target genes involved in cell proliferation and cytokine production. Several studies have explored the effects of vitamin D deficiency in inflammatory disorders. Furthermore, some mutations in the VDR can affect its functionality. The focus of this study was to explore associations between VDR single nucleotide polymorphisms (SNPs) and markers of inflammation and oxidative stress in vitamin D sufficient children. METHODS This is a cross-sectional study of a Caucasian Spanish population including 155 healthy children (87 males, 68 females) aged 10 to 14 years. FokI, ApaI and TaqI SNPs of the VDR gene were genotyped. Routine biochemistry, serum levels of interleukin-6, tumor necrosis factor-α, interferon-γ, 8-isoprostaglandin F2α and nitrates were determined. RESULTS The homozygous major allele AA in the FokI SNP was associated with increased levels of high-density lipoprotein cholesterol in a recessive inheritance mode (P=0.025). The minor allele A of ApaI was significantly associated with decreased serum tumor necrosis factor-α and 8-isoprostaglandin F2α in an additive mode (P=0.016 and P=0.020 respectively). No significant associations were observed between the TaqI SNP and any of the parameters evaluated. Haplotype analysis confirmed the significance of the relationships between ApaI and FokI SNPs and parameters associated with inflammation and oxidative stress. CONCLUSIONS Genetic variations of VDR are associated with subtle changes in metabolic, inflammatory and oxidative stress markers. These results may provide a better understanding of the relationships between vitamin D and these clinical parameters.
Collapse
Affiliation(s)
- Sara Ferrer-Suay
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | | | - Miguel Tortajada-Girbés
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
- Service of Pediatrics, University Hospital Doctor Peset, Foundation for Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Joaquín Carrasco-Luna
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
- Department of Experimental Sciences, Catholic University of Valencia, Valencia, Spain
| | - Pilar Codoñer-Franch
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
- Service of Pediatrics, University Hospital Doctor Peset, Foundation for Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| |
Collapse
|
41
|
Jain SK, Parsanathan R, Levine SN, Bocchini JA, Holick MF, Vanchiere JA. The potential link between inherited G6PD deficiency, oxidative stress, and vitamin D deficiency and the racial inequities in mortality associated with COVID-19. Free Radic Biol Med 2020; 161:84-91. [PMID: 33038530 PMCID: PMC7539020 DOI: 10.1016/j.freeradbiomed.2020.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/08/2023]
Abstract
There is a marked variation in mortality risk associated with COVID-19 infection in the general population. Low socioeconomic status and other social determinants have been discussed as possible causes for the higher burden in African American communities compared with white communities. Beyond the social determinants, the biochemical mechanism that predisposes individual subjects or communities to the development of excess and serious complications associated with COVID-19 infection is not clear. Virus infection triggers massive ROS production and oxidative damage. Glutathione (GSH) is essential and protects the body from the harmful effects of oxidative damage from excess reactive oxygen radicals. GSH is also required to maintain the VD-metabolism genes and circulating levels of 25-hydroxyvitamin D (25(OH)VD). Glucose-6-phosphate dehydrogenase (G6PD) is necessary to prevent the exhaustion and depletion of cellular GSH. X-linked genetic G6PD deficiency is common in the AA population and predominantly in males. Acquired deficiency of G6PD has been widely reported in subjects with conditions of obesity and diabetes. This suggests that individuals with G6PD deficiency are vulnerable to excess oxidative stress and at a higher risk for inadequacy or deficiency of 25(OH)VD, leaving the body unable to protect its 'oxidative immune-metabolic' physiological functions from the insults of COVID-19. An association between subclinical interstitial lung disease with 25(OH)VD deficiencies and GSH deficiencies has been previously reported. We hypothesize that the overproduction of ROS and excess oxidative damage is responsible for the impaired immunity, secretion of the cytokine storm, and onset of pulmonary dysfunction in response to the COVID-19 infection. The co-optimization of impaired glutathione redox status and excess 25(OH)VD deficiencies has the potential to reduce oxidative stress, boost immunity, and reduce the adverse clinical effects of COVID-19 infection in the AA population.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | - Rajesh Parsanathan
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA; Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Steve N Levine
- School of Medicine, Section of Endocrinology & Metabolism, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Joseph A Bocchini
- Department of Pediatrics, Tulane University, 2508 Bert Kouns Industrial Loop, Suite 103, Shreveport, LA 71118, USA
| | - Michael F Holick
- Section of Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Vitamin D, Skin, and Bone Research Laboratory, Boston University School of Medicine, Boston, MA, USA
| | - John A Vanchiere
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
42
|
Plaza-Florido A, Alcantara JMA, Amaro-Gahete FJ, Sacha J, Ortega FB. Cardiovascular Risk Factors and Heart Rate Variability: Impact of the Level of the Threshold-Based Artefact Correction Used to Process the Heart Rate Variability Signal. J Med Syst 2020; 45:2. [PMID: 33237459 DOI: 10.1007/s10916-020-01673-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023]
Abstract
The associations between cardiovascular disease (CVD) risk factors and heart rate variability (HRV) have shown some inconsistencies. To examine the impact of the different Kubios threshold-based artefact correction levels on the associations between different CVD risk factors and a heart rate variability (HRV) score in three independent human cohorts. A total of 107 children with overweight/obesity, 132 young adults, and 73 middle-aged adults were included in the present study. Waist circumference and the HRV score were negatively associated using the medium and the strong Kubios filters in children (β = -0.22 and - 0.24, P = 0.03 and 0.02 respectively) and the very strong Kubios filter in middle-aged adults (β = -0.39, P = 0.01). HDL-C was positively associated with the HRV score across Kubios filters (β ranged from 0.21 to 0.31, all P ≤ 0.04), while triglycerides were negatively associated with the HRV score using the very strong Kubios filter in young adults (β = -0.22, P = 0.02). Glucose metabolism markers (glucose, insulin, and HOMA index) were inversely associated with the HRV score across Kubios filters in young adults (β ranged from -0.29 to -0.22; all P ≤ 0.03). Importantly, most of these associations disappeared after including HR as a covariate, especially in children and young adults. It should be mandatory to report the Kubios filter used and to include the HR (as a confounder factor) to allow the comparability of the results across different studies.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Carretera de Alfacar, s/n CP, 18071, Granada, Spain.
| | - J M A Alcantara
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Carretera de Alfacar, s/n CP, 18071, Granada, Spain
| | - Francisco J Amaro-Gahete
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Carretera de Alfacar, s/n CP, 18071, Granada, Spain.,EFFECTS-262 Research Group, Department of Physiology, School of Medicine, University of Granada, 18071, Granada, Spain
| | - Jerzy Sacha
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland.,Department of Cardiology, University Hospital in Opole, University of Opole, Opole, Poland
| | - Francisco B Ortega
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Carretera de Alfacar, s/n CP, 18071, Granada, Spain
| |
Collapse
|
43
|
Etli M. Investigation of serum ischemia-modified albumin levels in coronary artery disease patients. Indian J Thorac Cardiovasc Surg 2020; 37:147-152. [PMID: 33642712 DOI: 10.1007/s12055-020-01061-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022] Open
Abstract
Objective Ischemia-modified albumin (IMA) is a novel marker for the detection of ischemia. The value of this biomarker has been studied in patients with coronary artery disease (CAD). However, the relationship between the severity of coronary stenosis and serum IMA levels remains unknown. Therefore, we aimed to investigate the potential role of serum IMA levels in predicting the severity of coronary atherosclerosis. Materials and methods One hundred and forty-two individuals who underwent coronary angiography for coronary artery disease complaints were included in the study. Participants were divided into three groups based on their diagnosis as control (healthy subjects), group I (subjects with lower Gensini score), and group II (subjects with higher Gensini score). Global Registry of Acute Coronary Events (GRACE) risk score and Gensini scores were calculated after coronary angiogram in the patient groups. Then, venous blood samples were collected from each participant. Serum IMA levels and the levels of routine laboratory markers were measured. Results The serum lymphocyte, neutrophil, and high-density lipid (HDL) levels were statistically insignificant between the groups. The white blood cell (WBC) count and IMA levels were significantly higher in the patient groups (p < 0.05). The GRACE and Gensini scores were significantly different in the patient groups (p < 0.05). However, there was no significant correlation between the GRACE and Gensini scores and serum IMA levels. Conclusion Although IMA levels can be a significant predictor for ischemia according to previous reports, this biomarker seems to be insufficient for determining the severity of disease in patients with CAD.
Collapse
Affiliation(s)
- Mustafa Etli
- Department of Cardiovascular Surgery, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| |
Collapse
|
44
|
Ramesh P, Chauhan A, Goyal P, Singh A. H-FABP: A beacon of hope for prediabetic heart disease. J Family Med Prim Care 2020; 9:3421-3428. [PMID: 33102307 PMCID: PMC7567222 DOI: 10.4103/jfmpc.jfmpc_296_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/14/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Prediabetes is increasingly being studied in the context of its association with cardiovascular disease (CVD). Besides raised HbA1c and sugar levels, the major underlying defect seems to be insulin resistance (IR). Subclinical atherosclerosis, measured by high sensitivity C reactive protein (hsCRP) and carotid artery intima media thickness (CIMT) underlies the pathogenesis of CVD in prediabetes. Heart-type fatty acid binding protein (H-FABP), a novel cardiac biomarker also might have a role in predictin prediabetic heart disease. Aims: The aim of the study is to compare serum levels of H-FABP in prediabetics and controls and correlate them with the atherosclerotic markers, hsCRP and CIMT. Setting and Design: 50 prediabetic patients and 50 age, sex and BMI matched controls were employed in the case control study. Serum F & PPBS, (HbA1c), fasting insulin levels were measured in cases and controls. Serum H-FABP was measured in both cases and controls. All cases and controls were subjected to bilateral CIMT measurements and Serum hsCRP levels. The values were compared between both the groups and subjected to appropriate statistical analysis. Statistical Analysis Used: Categorical variables were presented in number and percentage (%) and continuous variables were presented as mean ± SD and median. Normality of data was tested by Kolmogorov-Smirnov test. If the normality was rejected then non parametric test was used. Quantitative variables were compared using Independent t test/Mann-Whitney Test (when the data sets were not normally distributed) between the two groups. Qualitative variables were correlated using Chi-Square test/Fisher's Exact test. Spearman rank correlation coefficient was used to find out the correlation of various parameters with each other. Univariate linear regression was used to find out the cause and effect relationship between various parameters. A p <0.05 was considered statistically significant. The data analysis was done using Statistical Package for Social Sciences (SPSS) version 21.0. Results: The mean serum levels of H-FABP among cases and controls were 6.38± 2.76ng/ml and 3.24 ± 2.47 ng/ml respectively (p <0.0001). Mean CIMT was found to be higher in prediabetics (0.59 ± 0.11 mm ) compared to controls (0.45 ± 0.07mm) (p<0.0001). Serum hsCRP levels were also statistically higher in prediabetics (5.75± 4.16 mg/l) then that of controls (1.86± 1.67 mg/l) (p <0.0001). The correlations of the two variables, hsCRP and CIMT with H-FABP were both strongly positive (r = 0.687) & (r = 0.779) respectively [both cases (p < 0.0001)]. Conclusion: The novel cardiac biomarker H-FAPB might be a good predictor of cardiovascular risks in prediabetics.
Collapse
Affiliation(s)
| | - Ajay Chauhan
- Professor of Medicine, PGIMER, Dr. RMLH, New Delhi, India
| | - Parul Goyal
- Professor of Biochemistry, PGIMER, Dr. RMLH, New Delhi, India
| | - Akanksha Singh
- Department of Medicine, PGIMER, Dr. RMLH, New Delhi, India
| |
Collapse
|
45
|
Parsanathan R, Jain SK. Glucose-6-Phosphate Dehydrogenase Deficiency Activates Endothelial Cell and Leukocyte Adhesion Mediated via the TGFβ/NADPH Oxidases/ROS Signaling Pathway. Int J Mol Sci 2020; 21:ijms21207474. [PMID: 33050491 PMCID: PMC7589139 DOI: 10.3390/ijms21207474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common genetic inherited trait among humans, affects ~7% of the global population, and is associated with excess risk of cardiovascular disease (CVD). Transforming growth factor-β (TGF-β) regulates immune function, proliferation, epithelial-mesenchymal transition, fibrosis, cancer, and vascular dysfunction. This study examined whether G6PD deficiencies can alter TGF-β-mediated NADPH oxidases (NOX) and cell adhesion molecules (CAM) in human aortic endothelial cells (HAEC). Results show that treatment with high glucose and the saturated free fatty acid palmitate significantly downregulated G6PD; in contrast, mRNA levels of TGF-β components, NOX and its activity, and reactive oxygen species (ROS) were significantly upregulated in HAEC. The expression levels of TGF-β and its receptors, NOX and its activity, and ROS were significantly higher in HG-exposed G6PD-deficient cells (G6PD siRNA) compared to G6PD-normal cells. The protein levels of adhesion molecules (ICAM-1 and VCAM-1) and inflammatory cytokines (MCP-1 and TNF) were significantly increased in HG-exposed G6PD-deficient cells compared to G6PD-normal cells. The adherence of monocytes (SC cells) to HAEC was significantly elevated in HG-treated G6PD-deficient cells compared to control cells. Pharmacological inhibition of G6PD enhances ROS, NOX and its activity, and endothelial monocyte adhesion; these effects were impeded by NOX inhibitors. The inhibition of TGF-β prevents NOX2 and NOX4 mRNA expression and activity, ROS, and adhesion of monocytes to HAEC. L-Cysteine ethyl ester (cell-permeable) suppresses the mRNA levels of TGF-β and its receptors, along with NOX2 and NOX4, and decreases NOX activity, ROS, and adhesion of monocytes to HAEC. This suggests that G6PD deficiency promotes TGF-β/NADPH oxidases/ROS signaling, the expression of ICAM-1 and VCAM-1, and the adhesion of leukocytes to the endothelial monolayer, which can contribute to a higher risk for CVD.
Collapse
|
46
|
Berezin AE, Berezin AA. Emerging Role of Natriuretic Peptides in Diabetes Mellitus. HEART AND MIND 2020; 4:100-108. [DOI: 10.4103/hm.hm_3_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Prediabetes and diabetes mellitus (DM) are established risk factors for newly occurred heart failure (HF) with reduced and preserved ejection fraction. Natriuretic peptides (NPs) were found to be useful tool for CV risk stratification among patients with prediabetes and type 2 DM (T2DM) regardless of HF phenotype. Previous clinical studies have shown that elevated levels of NPs predicted all-cause mortality and CV mortality, risk of HF occurrence and progression, as well as a risk readmission due to HF. The discriminative potency of NPs for CV death and HF-related clinical events in prediabetes and T2DM populations has not been demonstrated beyond traditional CV risk factors. The aim of the review is to accumulate knowledge regarding predictive value of circulating NPs depending on presentation of prediabetes and established T2DM. It has been found that HFrEF or HFpEF in T2DM patients may require modification of NP cutoff points to primary diagnose HF and determine HF-related risks. There are several controversies between clinical outcomes and dynamic of circulating levels of NPs in diabetics treated with glucagon-like peptide-1 agonists and sodium-glucose cotransporter-2 inhibitors that require to be elucidated in large clinical studies in the future.
Collapse
|
47
|
Wesseling M, de Poel JH, de Jager SC. Growth differentiation factor 15 in adverse cardiac remodelling: from biomarker to causal player. ESC Heart Fail 2020; 7:1488-1501. [PMID: 32424982 PMCID: PMC7373942 DOI: 10.1002/ehf2.12728] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Heart failure is a growing health issue as a negative consequence of improved survival upon myocardial infarction, unhealthy lifestyle, and the ageing of our population. The large and complex pathology underlying heart failure makes diagnosis and especially treatment very difficult. There is an urgent demand for discriminative biomarkers to aid disease management of heart failure. Studying cellular pathways and pathophysiological mechanisms contributing to disease initiation and progression is crucial for understanding the disease process and will aid to identification of novel biomarkers and potential therapeutic targets. Growth differentiation factor 15 (GDF15) is a proven valuable biomarker for different pathologies, including cancer, type 2 diabetes, and cardiovascular diseases. Although the prognostic value of GDF15 in heart failure is robust, the biological function of GDF15 in adverse cardiac remodelling is not fully understood. GDF15 is a distant member of the transforming growth factor-β family and involved in various biological processes including inflammation, cell cycle, and apoptosis. However, more research is suggesting a role in fibrosis, hypertrophy, and endothelial dysfunction. As GDF15 is a pleiotropic protein, elucidating the exact role of GDF15 in complex disease processes has proven to be a challenge. In this review, we provide an overview of the role GDF15 plays in various intracellular and extracellular processes underlying heart failure, and we touch upon crucial points that need consideration before GDF15 can be integrated as a biomarker in standard care or when considering GDF15 for therapeutic intervention.
Collapse
Affiliation(s)
- Marian Wesseling
- Laboratory for Experimental CardiologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
- Laboratory for Clinical Chemistry and HematologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Julius H.C. de Poel
- Laboratory for Experimental CardiologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Saskia C.A. de Jager
- Laboratory for Experimental CardiologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
- Laboratory for Translational ImmunologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
| |
Collapse
|
48
|
The Effect of Whole Blood Lead (Pb-B) Levels on Changes in Peripheral Blood Morphology and Selected Biochemical Parameters, and the Severity of Depression in Peri-Menopausal Women at Risk of Metabolic Syndrome or with Metabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145033. [PMID: 32668760 PMCID: PMC7400500 DOI: 10.3390/ijerph17145033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023]
Abstract
The aim of our study was to assess the impact of whole blood lead (Pb-B) levels on changes in peripheral blood morphology and selected biochemical parameters, and the severity of depression in peri-menopausal women at risk of metabolic syndrome (pre-MetS) or with metabolic syndrome (MetS). The study involved 233 women from the general population of the West Pomeranian Province (Poland) aged 44–65 years. The intensity of menopausal symptoms and the severity of depression was examined using the Blatt–Kupperman Index (KI) and the Beck Depression Inventory (BDI). C-reactive protein (CRP), insulin, glucose, glycated hemoglobin (HbA1C), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, triglyceride levels (TG), cortisol, morphology of blood cells and homeostasis model assessment for insulin resistance (HOMA-IR) and Pb-B was measured. Women with MetS had higher levels of glucose, HbA1C, HDL, LDL, TG, cortisol, insulin and higher HOMA-IR. No significant differences in Pb-B were observed between pre-MetS and the control group, and between pre-MetS and the MetS group. A significant correlation was noticed between Pb-B vs. the percentage of monocytes in blood, and blood cortisol levels in women with MetS; Pb-B vs. lymphocyte count and HbA1C in the pre-MetS group, as well as in the BDI scores between the MetS and pre-MetS group. We cannot clearly state that exposure to Pb is an environmental factor that can be considered as a risk factor for MetS in this studied group.
Collapse
|
49
|
G6PD deficiency shifts polarization of monocytes/macrophages towards a proinflammatory and profibrotic phenotype. Cell Mol Immunol 2020; 18:770-772. [PMID: 32523113 DOI: 10.1038/s41423-020-0428-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 01/13/2023] Open
|
50
|
Berezin AE, Berezin AA. Circulating Cardiac Biomarkers in Diabetes Mellitus: A New Dawn for Risk Stratification-A Narrative Review. Diabetes Ther 2020; 11:1271-1291. [PMID: 32430864 PMCID: PMC7261294 DOI: 10.1007/s13300-020-00835-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this narrative review is to update the current knowledge on the differential choice of circulating cardiac biomarkers in patients with prediabetes and established type 2 diabetes mellitus (T2DM). There are numerous circulating biomarkers with unconfirmed abilities to predict clinical outcomes in pre-DM and DM individuals; the prognostication ability of the cardiac biomarkers reported here has been established, and they are still being studied. The conventional cardiac biomarkers, such as natriuretic peptides (NPs), soluble suppressor tumorigenisity-2, high-sensitivity circulating cardiac troponins and galectin-3, were useful to ascertain cardiovascular (CV) risk. Each cardiac biomarker has its strengths and weaknesses that affect the price of usage, specificity, sensitivity, predictive value and superiority in face-to-face comparisons. Additionally, there have been confusing reports regarding their abilities to be predictably relevant among patients without known CV disease. The large spectrum of promising cardiac biomarkers (growth/differential factor-15, heart-type fatty acid-binding protein, cardiotrophin-1, carboxy-terminal telopeptide of collagen type 1, apelin and non-coding RNAs) is discussed in the context of predicting CV diseases and events in patients with known prediabetes and T2DM. Various reasons have been critically discussed related to the variable findings regarding biomarker-based prediction of CV risk among patients with metabolic disease. It was found that NPs and hs-cTnT are still the most important tools that have an affordable price as well as high sensitivity and specificity to predict clinical outcomes among patients with pre-DM and DM in routine clinical practice, but other circulating biomarkers need to be carefully investigated in large trials in the future.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, Ministry of Health of Ukraine, State Medical University, Zaporozhye, 69035, Ukraine.
| | - Alexander A Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, 69096, Ukraine
| |
Collapse
|