1
|
Lourenço AL, Chuo SW, Bohn MF, Hann B, Khan S, Yevalekar N, Patel N, Yang T, Xu L, Lv D, Drakas R, Lively S, Craik CS. High-throughput optofluidic screening of single B cells identifies novel cross-reactive antibodies as inhibitors of uPAR with antibody-dependent effector functions. MAbs 2023; 15:2184197. [PMID: 36859773 PMCID: PMC9988344 DOI: 10.1080/19420862.2023.2184197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is an essential regulator for cell signaling in tumor cell proliferation, adhesion, and metastasis. The ubiquitous nature of uPAR in many aggressive cancer types makes uPAR an attractive target for immunotherapy. Here, we present a rapid and successful workflow for developing cross-reactive anti-uPAR recombinant antibodies (rAbs) using high-throughput optofluidic screening of single B-cells from human uPAR-immunized mice. A total of 80 human and cynomolgus uPAR cross-reactive plasma cells were identified, and selected mouse VH/VL domains were linked to the trastuzumab (Herceptin®) constant domains for the expression of mouse-human chimeric antibodies. The resulting rAbs were characterized by their tumor-cell recognition, binding activity, and cell adhesion inhibition on triple-negative breast cancer cells. In addition, the rAbs were shown to enact antibody-dependent cellular cytotoxicity (ADCC) in the presence of either human natural killer cells or peripheral blood mononuclear cells, and were evaluated for the potential use of uPAR-targeting antibody-drug conjugates (ADCs). Three lead antibodies (11857, 8163, and 3159) were evaluated for their therapeutic efficacy in vivo and were shown to suppress tumor growth. Finally, the binding epitopes of the lead antibodies were characterized, providing information on their unique binding modes to uPAR. Altogether, the strategy identified unique cross-reactive antibodies with ADCC, ADC, and functional inhibitory effects by targeting cell-surface uPAR, that can be tested in safety studies and serve as potential immunotherapeutics.
Collapse
Affiliation(s)
- André Luiz Lourenço
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shih-Wei Chuo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Markus F Bohn
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Shireen Khan
- ChemPartner, South San Francisco, California, USA
| | | | - Nitin Patel
- ChemPartner, South San Francisco, California, USA
| | - Teddy Yang
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Lina Xu
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Dandan Lv
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Robert Drakas
- ShangPharma Innovation Inc, South San Francisco, California, USA
| | - Sarah Lively
- ChemPartner, South San Francisco, California, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Lykke K, Assentoft M, Hørlyck S, Helms HC, Stoica A, Toft-Bertelsen TL, Tritsaris K, Vilhardt F, Brodin B, MacAulay N. Evaluating the involvement of cerebral microvascular endothelial Na +/K +-ATPase and Na +-K +-2Cl - co-transporter in electrolyte fluxes in an in vitro blood-brain barrier model of dehydration. J Cereb Blood Flow Metab 2019; 39:497-512. [PMID: 28994331 PMCID: PMC6421245 DOI: 10.1177/0271678x17736715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The blood-brain barrier (BBB) is involved in brain water and salt homeostasis. Blood osmolarity increases during dehydration and water is osmotically extracted from the brain. The loss of water is less than expected from pure osmotic forces, due to brain electrolyte accumulation. Although the underlying molecular mechanisms are unresolved, the current model suggests the luminally expressed Na+-K+-2Cl- co-transporter 1 (NKCC1) as a key component, while the role of the Na+/K+-ATPase remains uninvestigated. To test the involvement of these proteins in brain electrolyte flux under mimicked dehydration, we employed a tight in vitro co-culture BBB model with primary cultures of brain endothelial cells and astrocytes. The Na+/K+-ATPase and the NKCC1 were both functionally dominant in the abluminal membrane. Exposure of the in vitro BBB model to conditions mimicking systemic dehydration, i.e. hyperosmotic conditions, vasopressin, or increased [K+]o illustrated that NKCC1 activity was unaffected by exposure to vasopressin and to hyperosmotic conditions. Hyperosmotic conditions and increased K+ concentrations enhanced the Na+/K+-ATPase activity, here determined to consist of the α1 β1 and α1 β3 isozymes. Abluminally expressed endothelial Na+/K+-ATPase, and not NKCC1, may therefore counteract osmotic brain water loss during systemic dehydration by promoting brain Na+ accumulation.
Collapse
Affiliation(s)
- Kasper Lykke
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Assentoft
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Hørlyck
- 2 Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Cc Helms
- 2 Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anca Stoica
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine L Toft-Bertelsen
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katerina Tritsaris
- 3 Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Vilhardt
- 3 Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birger Brodin
- 2 Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
de Geus SWL, Boogerd LSF, Swijnenburg RJ, Mieog JSD, Tummers WSFJ, Prevoo HAJM, Sier CFM, Morreau H, Bonsing BA, van de Velde CJH, Vahrmeijer AL, Kuppen PJK. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery. Mol Imaging Biol 2016; 18:807-819. [PMID: 27130234 PMCID: PMC5093212 DOI: 10.1007/s11307-016-0959-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to identify suitable molecular targets for tumor-specific imaging of pancreatic adenocarcinoma. PROCEDURES The expression of eight potential imaging targets was assessed by the target selection criteria (TASC)-score and immunohistochemical analysis in normal pancreatic tissue (n = 9), pancreatic (n = 137), and periampullary (n = 28) adenocarcinoma. RESULTS Integrin αvβ6, carcinoembryonic antigen (CEA), epithelial growth factor receptor (EGFR), and urokinase plasminogen activator receptor (uPAR) showed a significantly higher (all p < 0.001) expression in pancreatic adenocarcinoma compared to normal pancreatic tissue and were confirmed by the TASC score as promising imaging targets. Furthermore, these biomarkers were expressed in respectively 88 %, 71 %, 69 %, and 67 % of the pancreatic adenocarcinoma patients. CONCLUSIONS The results of this study show that integrin αvβ6, CEA, EGFR, and uPAR are suitable targets for tumor-specific imaging of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Susanna W L de Geus
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Leonora S F Boogerd
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Willemieke S F J Tummers
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Hendrica A J M Prevoo
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Cornelis J H van de Velde
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
4
|
Abstract
Endocytosis can be separated into the categories of phagocytosis and pinocytosis. Phagocytosis can be distinguished from pinocytosis primarily by the size of particle ingested and by its dependence on actin polymerization as a key step in particle ingestion. Several specific forms of pinocytosis have been identified that can be distinguished based on their dependence on clathrin or caveolin. Both clathrin and caveolin-dependent pinocytosis appear to require the participation of dynamin to internalize the plasma membrane. Other, less well-characterized forms of pinocytosis have also been described. Although endocytosis has long been known to affect receptor density, recent studies have demonstrated that endocytosis through clathrin- and caveolin-dependent processes plays a key role in receptor-mediated signal transduction. In some cases, blockade of these processes attenuates, or even prevents, signal transduction from taking place. This information, coupled with a better understanding of endocytosis mechanisms, will help advance the field of cell biology as well as present new targets for drug development and disease treatment.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Medicine, Room 12, Ruppert Center, 3120 Glendale Avenue, Toledo, OH 43614, USA.
| | | |
Collapse
|
5
|
Abstract
UNLABELLED The entry mechanism of murine amphotropic retrovirus (A-MLV) has not been unambiguously determined. We show here that A-MLV is internalized not by caveolae or other pinocytic mechanisms but by macropinocytosis. Thus, A-MLV infection of mouse embryonic fibroblasts deficient for caveolin or dynamin, and NIH 3T3 cells knocked down for caveolin expression, was unaffected. Conversely, A-MLV infection of NIH 3T3 and HeLa cells was sensitive to amiloride analogues and actin-depolymerizing drugs that interfere with macropinocytosis. Further manipulation of the actin cytoskeleton through conditional expression of dominant positive or negative mutants of Rac1, PAK1, and RhoG, to increase or decrease macropinocytosis, similarly correlated with an augmented or inhibited infection with A-MLV, respectively. The same experimental perturbations affected the infection of viruses that use clathrin-coated-pit endocytosis or other pathways for entry only mildly or not at all. These data agree with immunofluorescence studies and cryo-immunogold labeling for electron microscopy, which demonstrate the presence of A-MLV in protrusion-rich areas of the cell surface and in cortical fluid phase (dextran)-filled macropinosomes, which also account for up to a half of the cellular uptake of the cell surface-binding lectin concanavalin A. We conclude that A-MLV use macropinocytosis as the predominant entry portal into cells. IMPORTANCE Binding and entry of virus particles into mammalian cells are the first steps of infection. Understanding how pathogens and toxins exploit or divert endocytosis pathways has advanced our understanding of membrane trafficking pathways, which benefits development of new therapeutic schemes and methods of drug delivery. We show here that amphotropic murine leukemia virus (A-MLV) pseudotyped with the amphotropic envelope protein (which expands the host range to many mammalian cells) gains entry into host cells by macropinocytosis. Macropinosomes form as large, fluid-filled vacuoles (up to 10 μm) following the collapse of cell surface protrusions and membrane scission. We used drugs or the introduction of mutant proteins that affect the actin cytoskeleton and cell surface dynamics to show that macropinocytosis and A-MLV infection are correlated, and we provide both light- and electron-microscopic evidence to show the localization of A-MLV in macropinosomes. Finally, we specifically exclude some other potential entry portals, including caveolae, previously suggested to internalize A-MLV.
Collapse
|
6
|
Liu X, Lan Y, Zhang D, Wang K, Wang Y, Hua ZC. SPRY1 promotes the degradation of uPAR and inhibits uPAR-mediated cell adhesion and proliferation. Am J Cancer Res 2014; 4:683-97. [PMID: 25520860 PMCID: PMC4266704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023] Open
Abstract
Urokinase plasminogen activator receptor (uPAR) is a GPI anchored cell surface protein that is closely associated with invasion, migration, and metastasis of cancer cells. Many functional extracellular proteins and transmembrane receptors interact with uPAR. However, few studies have examined the association of uPAR with cytoplasm proteins. We previously used yeast two-hybrid screening to isolate several novel uPAR-interacting cytoplasmic proteins, including Sprouty1 (SPRY1), an inhibitor of the (Ras-mitogen-activated protein kinase) MAPK pathway. In this study, we show that SPRY1 interacts with uPAR and directs it toward lysosomal-mediated degradation. Overexpression of SPRY1 decreased the cell surface and cytoplasmic uPAR protein level. Moreover, SPRY1 overexpression augmented uPAR-induced cell adhesion to vitronectin as well as proliferation of cancer cells. Our results also further support the critical role of SPRY1 contribution to tumor growth. In a subcutaneous tumor model, overexpression of SPRY1 in HCT116 or A549 xenograft in athymic nude mice led to great suppression of tumor growth. These results show that SPRY1 may affect tumor cell function through direct interaction with uPAR and promote its lysosomal degradation.
Collapse
Affiliation(s)
- Xiufeng Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University22 Han Kou Road, Nanjing 210093, P. R. China
| | - Yan Lan
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University22 Han Kou Road, Nanjing 210093, P. R. China
| | - Di Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University22 Han Kou Road, Nanjing 210093, P. R. China
| | - Kai Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University22 Han Kou Road, Nanjing 210093, P. R. China
| | - Yao Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University22 Han Kou Road, Nanjing 210093, P. R. China
- Division of Critical Care and Surgery, St. George Hospital, University of New South WalesSydney, NSW2217, Australia
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University22 Han Kou Road, Nanjing 210093, P. R. China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou 213164, P. R. China
| |
Collapse
|
7
|
Ejlerskov P, Rasmussen I, Nielsen TT, Bergström AL, Tohyama Y, Jensen PH, Vilhardt F. Tubulin polymerization-promoting protein (TPPP/p25α) promotes unconventional secretion of α-synuclein through exophagy by impairing autophagosome-lysosome fusion. J Biol Chem 2013; 288:17313-35. [PMID: 23629650 DOI: 10.1074/jbc.m112.401174] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aggregation of α-synuclein can be promoted by the tubulin polymerization-promoting protein/p25α, which we have used here as a tool to study the role of autophagy in the clearance of α-synuclein. In NGF-differentiated PC12 catecholaminergic nerve cells, we show that de novo expressed p25α co-localizes with α-synuclein and causes its aggregation and distribution into autophagosomes. However, p25α also lowered the mobility of autophagosomes and hindered the final maturation of autophagosomes by preventing their fusion with lysosomes for the final degradation of α-synuclein. Instead, p25α caused a 4-fold increase in the basal level of α-synuclein secreted into the medium. Secretion was strictly dependent on autophagy and could be up-regulated (trehalose and Rab1A) or down-regulated (3-methyladenine and ATG5 shRNA) by enhancers or inhibitors of autophagy or by modulating minus-end-directed (HDAC6 shRNA) or plus-end-directed (Rab8) trafficking of autophagosomes along microtubules. Finally, we show in the absence of tubulin polymerization-promoting protein/p25α that α-synuclein release was modulated by dominant mutants of Rab27A, known to regulate exocytosis of late endosomal (and amphisomal) elements, and that both lysosomal fusion block and secretion of α-synuclein could be replicated by knockdown of the p25α target, HDAC6, the predominant cytosolic deacetylase in neurons. Our data indicate that unconventional secretion of α-synuclein can be mediated through exophagy and that factors, which increase the pool of autophagosomes/amphisomes (e.g. lysosomal disturbance) or alter the polarity of vesicular transport of autophagosomes on microtubules, can result in an increased release of α-synuclein monomer and aggregates to the surroundings.
Collapse
Affiliation(s)
- Patrick Ejlerskov
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | | | | | | | | | | |
Collapse
|
8
|
Ejlerskov P, Christensen DP, Beyaie D, Burritt JB, Paclet MH, Gorlach A, van Deurs B, Vilhardt F. NADPH oxidase is internalized by clathrin-coated pits and localizes to a Rab27A/B GTPase-regulated secretory compartment in activated macrophages. J Biol Chem 2011; 287:4835-52. [PMID: 22157766 DOI: 10.1074/jbc.m111.293696] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Here, we report that activation of different types of tissue macrophages, including microglia, by lipopolysaccharide (LPS) or GM-CSF stimulation correlates with the quantitative redistribution of NADPH oxidase (cyt b(558)) from the plasma membrane to an intracellular stimulus-responsive storage compartment. Cryo-immunogold labeling of gp91(phox) and CeCl(3) cytochemistry showed the presence of gp91(phox) and oxidant production in numerous small (<100 nm) vesicles. Cell homogenization and sucrose gradient centrifugation in combination with transferrin-HRP/DAB ablation showed that more than half of cyt b(558) is present in fractions devoid of endosomal markers, which is supported by morphological evidence to show that the cyt b(558)-containing compartment is distinct from endosomes or biosynthetic organelles. Streptolysin-O-mediated guanosine 5'-3-O-(thio)triphosphate loading of Ra2 microglia caused exocytosis of a major complement of cyt b(558) under conditions where lysosomes or endosomes were not mobilized. We establish phagocytic particles and soluble mediators ATP, TNFα, and CD40L as physiological inducers of cyt b(558) exocytosis to the cell surface, and by shRNA knockdown, we identify Rab27A/B as positive or negative regulators of vesicular mobilization to the phagosome or the cell surface, respectively. Exocytosis was followed by clathrin-dependent internalization of cyt b(558), which could be blocked by a dominant negative mutant of the clathrin-coated pit-associated protein Eps15. Re-internalized cyt b(558) did not reach lysosomes but associated with recycling endosomes and undefined vesicular elements. In conclusion, cyt b(558) depends on clathrin for internalization, and in activated macrophages NADPH oxidase occupies a Rab27A/B-regulated secretory compartment, which allows rapid agonist-induced redistribution of superoxide production in the cell.
Collapse
Affiliation(s)
- Patrick Ejlerskov
- Department of Cellular and Molecular Medicine, Panum Institute, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Welling PA, Weisz OA. Sorting it out in endosomes: an emerging concept in renal epithelial cell transport regulation. Physiology (Bethesda) 2011; 25:280-92. [PMID: 20940433 DOI: 10.1152/physiol.00022.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ion and water transport by the kidney is continually adjusted in response to physiological cues. Selective endocytosis and endosomal trafficking of ion transporters are increasingly appreciated as mechanisms to acutely modulate renal function. Here, we discuss emerging paradigms in this new area of investigation.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
10
|
Yang L, Peng XH, Wang YA, Wang X, Cao Z, Ni C, Karna P, Zhang X, Wood WC, Gao X, Nie S, Mao H. Receptor-targeted nanoparticles for in vivo imaging of breast cancer. Clin Cancer Res 2009; 15:4722-32. [PMID: 19584158 DOI: 10.1158/1078-0432.ccr-08-3289] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Cell-surface receptor-targeted magnetic iron oxide nanoparticles provide molecular magnetic resonance imaging contrast agents for improving specificity of the detection of human cancer. EXPERIMENTAL DESIGN The present study reports the development of a novel targeted iron oxide nanoparticle using a recombinant peptide containing the amino-terminal fragment of urokinase-type plasminogen activator (uPA) conjugated to magnetic iron oxide nanoparticles amino-terminal fragment conjugated-iron oxide (ATF-IO). This nanoparticle targets uPA receptor, which is overexpressed in breast cancer tissues. RESULTS ATF-IO nanoparticles are able to specifically bind to and be internalized by uPA receptor-expressing tumor cells. Systemic delivery of ATF-IO nanoparticles into mice bearing s.c. and i.p. mammary tumors leads to the accumulation of the particles in tumors, generating a strong magnetic resonance imaging contrast detectable by a clinical magnetic resonance imaging scanner at a field strength of 3 tesla. Target specificity of ATF-IO nanoparticles showed by in vivo magnetic resonance imaging is further confirmed by near-IR fluorescence imaging of the mammary tumors using near-IR dye-labeled amino-terminal fragment peptides conjugated to iron oxide nanoparticles. Furthermore, mice administered ATF-IO nanoparticles exhibit lower uptake of the particles in the liver and spleen compared with those receiving nontargeted iron oxide nanoparticles. CONCLUSIONS Our results suggest that uPA receptor-targeted ATF-IO nanoparticles have potential as molecularly targeted, dual modality imaging agents for in vivo imaging of breast cancer.
Collapse
Affiliation(s)
- Lily Yang
- Department of Surgery and Winship Cancer Institute, Emory University School of Medicine, C-4088, 1365 C Clifton Road NE, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yang L, Cao Z, Sajja HK, Mao H, Wang L, Geng H, Xu H, Jiang T, Wood WC, Nie S, Wang YA. Development of Receptor Targeted Magnetic Iron Oxide Nanoparticles for Efficient Drug Delivery and Tumor Imaging. J Biomed Nanotechnol 2008; 4:439-449. [PMID: 25152701 DOI: 10.1166/jbn.2008.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of multifunctional nanoparticles that have dual capabilities of tumor imaging and delivering therapeutic agents into tumor cells holds great promises for novel approaches for tumor imaging and therapy. We have engineered urokinase plasminogen activator receptor (uPAR) targeted biodegradable nanoparticles using a size uniform and amphiphilic polymer-coated magnetic iron oxide (IO) nanoparticle conjugated with the amino-terminal fragment (ATF) of urokinase plasminogen activator (uPA), which is a high affinity natural ligand for uPAR. We further developed methods to encapsulate hydrophobic chemotherapeutic drugs into the polymer layer on the IO nanoparticles, making these targeted magnetic resonance imaging (MRI) sensitive nanoparticles drug delivery vehicles. Using a fluorescent drug doxorubicin (Dox) as a model system, we showed that this hydrophobic drug can be efficiently encapsulated into the uPAR-targeted IO nanoparticles. This class of Dox-loaded nanoparticles has a compact size and is stable in pH 7.4 buffer. However, encapsulated Doxcan be released from the nanoparticles at pH 4.0 to 5.0 within 2 hrs. In comparison with the effect of equivalent dosage of free drug or non-targeted IO-Dox nanoparticles, uPAR-targeted IO-Dox nanoparticles deliver higher levels of Dox into breast cancer cells and produce a stronger inhibitory effect on tumor cell growth. Importantly, Dox-loaded IO nanoparticles maintain their T2 MRI contrast effect after being internalized into the tumor cells due to their significant susceptibility effect in the cells, indicating that this drug delivery nanoparticle has the potential to be used as targeted therapeutic imaging probes for monitoring the drug delivery using MRI.
Collapse
Affiliation(s)
- Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, GA 30322, USA ; Radiology, Emory University School of Medicine, Atlanta, Georgia, GA 30322, USA
| | - Zehong Cao
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, GA 30322, USA
| | - Hari Krishna Sajja
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, GA 30322, USA
| | - Hui Mao
- Radiology, Emory University School of Medicine, Atlanta, Georgia, GA 30322, USA
| | - Liya Wang
- Radiology, Emory University School of Medicine, Atlanta, Georgia, GA 30322, USA
| | - Huaying Geng
- Ocean Nanotech, LLC, 700 Research Center Blvd, 72701, Fayetteville, Arkansas, USA
| | - Hengyi Xu
- Ocean Nanotech, LLC, 700 Research Center Blvd, 72701, Fayetteville, Arkansas, USA
| | - Tieshan Jiang
- Ocean Nanotech, LLC, 700 Research Center Blvd, 72701, Fayetteville, Arkansas, USA
| | - William C Wood
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, GA 30322, USA
| | - Shuming Nie
- Biomedical Engineering, Emory University School of Medicine, Atlanta, Georgia, GA 30322, USA
| | - Y Andrew Wang
- Ocean Nanotech, LLC, 700 Research Center Blvd, 72701, Fayetteville, Arkansas, USA
| |
Collapse
|
12
|
Cortese K, Sahores M, Madsen CD, Tacchetti C, Blasi F. Clathrin and LRP-1-independent constitutive endocytosis and recycling of uPAR. PLoS One 2008; 3:e3730. [PMID: 19008962 PMCID: PMC2579578 DOI: 10.1371/journal.pone.0003730] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/24/2008] [Indexed: 01/02/2023] Open
Abstract
Background The urokinase receptor (uPAR/CD87) is highly expressed in malignant tumours. uPAR, as a GPI anchored protein, is preferentially located at the cell surface, where it interacts with its ligands urokinase (uPA) and the extracellular matrix protein vitronectin, thus promoting plasmin generation, cell-matrix interactions and intracellular signalling events. Interaction with a complex formed by uPA and its inhibitor PAI-1 induces cell surface down regulation and recycling of the receptor via the clathrin-coated pathway, a process dependent on the association to LRP-1. Methodology/Principal Findings In this study, we have found that along with the ligand-induced down-regulation, uPAR also internalizes and recycles constitutively through a second pathway that is independent of LRP-1 and clathrin but shares some properties with macropinocytosis. The ligand-independent route is amiloride-sensitive, does not require uPAR partitioning into lipid rafts, is independent of the activity of small GTPases RhoA, Rac1 and Cdc42, and does not require PI3K activity. Constitutively endocytosed uPAR is found in EEA1 positive early/recycling endosomes but does not reach lysosomes in the absence of ligands. Electron microscopy analysis reveals the presence of uPAR in ruffling domains at the cell surface, in macropinosome-like vesicles and in endosomal compartments. Conclusions/Significance These results indicate that, in addition to the ligand-induced endocytosis of uPAR, efficient surface expression and membrane trafficking might also be driven by an uncommon macropinocytic mechanism coupled with rapid recycling to the cell surface.
Collapse
Affiliation(s)
- Katia Cortese
- Centro di Ricerca MicroSCoBio/IFOM, FIRC Institute of Molecular Oncology, Dipartimento di Medicina Sperimentale, Sezione di Anatomia Umana, Università di Genova, Genova, Italy
| | - Macarena Sahores
- Molecular Genetics Unit, Università Vita Salute San Raffaele and IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| | - Chris D. Madsen
- Molecular Genetics Unit, Università Vita Salute San Raffaele and IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| | - Carlo Tacchetti
- Centro di Ricerca MicroSCoBio/IFOM, FIRC Institute of Molecular Oncology, Dipartimento di Medicina Sperimentale, Sezione di Anatomia Umana, Università di Genova, Genova, Italy
- * E-mail: Francesco.Blasi@ hsr.it (FB); (CT)
| | - Francesco Blasi
- Molecular Genetics Unit, Università Vita Salute San Raffaele and IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
- * E-mail: Francesco.Blasi@ hsr.it (FB); (CT)
| |
Collapse
|
13
|
Song Z, Ma N, Hayashi T, Gabazza EC, Sugimura Y, Suzuki K. Intracellular localization of protein C inhibitor (PCI) and urinary plasminogen activator in renal tubular epithelial cells from humans and human PCI gene transgenic mice. Histochem Cell Biol 2008; 128:293-300. [PMID: 18193533 DOI: 10.1007/s00418-007-0330-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Urinary plasminogen activator (uPA) is a serine protease that plays important roles in various extracellular proteolytic processes. In humans, protein C inhibitor (PCI) is known to regulate the activity of the serine proteases involved in blood coagulation, wound healing, and tumor metastasis, whereas PCI is not present in murine plasma or tissues other than the reproductive tissues. The large amount of uPA-PCI complexes found in human urine suggests that these complexes are formed in the kidneys. In the present study, we performed immunofluorescence double labeling and electron microscopic immunocytochemistry using renal tissues from humans and human PCI gene transgenic (PCI-TG) mice. In human renal tissues, PCI and uPA colocalized in the cytoplasm of renal proximal tubular epithelial cells (RPTECs), and juxtaposition of PCI and uPA immunoreactive particles was detected in the microvilli and lysosomes in the RPTECs. The intracellular distributions of PCI and uPA in the RPTECs from PCI-TG mice were similar to those observed in human RPTECs. These findings hint at the physiological roles of uPA and PCI in human kidneys, and also suggest that the PCI-TG mice will be useful for evaluating the roles of PCI in human physiological and pathological conditions.
Collapse
Affiliation(s)
- Zhenhu Song
- Department of Molecular Pathobiology, Mie University Graduate School of Medicine, Tsu-city, Mie 514-8507, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Roepstorff K, Rasmussen I, Sawada M, Cudre-Maroux C, Salmon P, Bokoch G, van Deurs B, Vilhardt F. Stimulus-dependent regulation of the phagocyte NADPH oxidase by a VAV1, Rac1, and PAK1 signaling axis. J Biol Chem 2007; 283:7983-93. [PMID: 18160398 DOI: 10.1074/jbc.m708281200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The p21-activated kinase-1 (PAK1) is best known for its role in the regulation of cytoskeletal and transcriptional signaling pathways. We show here in the microglia cell line Ra2 that PAK1 regulates NADPH oxidase (NOX-2) activity in a stimulus-specific manner. Thus, conditional expression of PAK1 dominant-positive mutants enhanced, whereas dominant-negative mutants inhibited, NADPH oxidase-mediated superoxide generation following formyl-methionyl-leucylphenylalanine or phorbol 12-myristate 13-acetate stimulation. Both Rac1 and the GTP exchange factor VAV1 were required as upstream signaling proteins in the formyl-methionyl-leucyl-phenylalanine-induced activation of endogenous PAK1. In contrast, PAK1 mutants had no effect on superoxide generation downstream of FcgammaR signaling during phagocytosis of IgG-immune complexes. We further present evidence that the effect of PAK1 on the respiratory burst is mediated through phosphorylation of p47(Phox), and we show that expression of a p47(Phox) (S303D/S304D/S320D) mutant, which mimics phosphorylation by PAK1, induced basal superoxide generation in vivo. In contrast PAK1 substrates LIMK-1 or RhoGDI are not likely to contribute to the PAK1 effect on NADPH oxidase activation. Collectively, our findings define a VAV1-Rac1-PAK1 signaling axis in mononuclear phagocytes regulating superoxide production in a stimulus-dependent manner.
Collapse
Affiliation(s)
- Kirstine Roepstorff
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200N Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen L, Maures TJ, Jin H, Huo JS, Rabbani SA, Schwartz J, Carter-Su C. SH2B1beta (SH2-Bbeta) enhances expression of a subset of nerve growth factor-regulated genes important for neuronal differentiation including genes encoding urokinase plasminogen activator receptor and matrix metalloproteinase 3/10. Mol Endocrinol 2007; 22:454-76. [PMID: 17947375 DOI: 10.1210/me.2007-0384] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previous work showed that the adapter protein SH2B adapter protein 1beta (SH2B1) (SH2-B) binds to the activated form of the nerve growth factor (NGF) receptor TrkA and is critical for both NGF-dependent neurite outgrowth and maintenance. To identify SH2B1beta-regulated genes critical for neurite outgrowth, we performed microarray analysis of control PC12 cells and PC12 cells stably overexpressing SH2B1beta (PC12-SH2B1beta) or the dominant-negative SH2B1beta(R555E) [PC12-SH2B1beta(R555E)]. NGF-induced microarray expression of Plaur and Mmp10 genes was greatly enhanced in PC12-SH2B1beta cells, whereas NGF-induced Plaur and Mmp3 expression was substantially depressed in PC12-SH2B1beta(R555E) cells. Plaur, Mmp3, and Mmp10 are among the 12 genes most highly up-regulated after 6 h of NGF. Their protein products [urokinase plasminogen activator receptor (uPAR), matrix metalloproteinase 3 (MMP3), and MMP10] lie in the same pathway of extracellular matrix degradation; uPAR has been shown previously to be critical for NGF-induced neurite outgrowth. Quantitative real-time PCR analysis revealed SH2B1beta enhancement of NGF induction of all three genes and the suppression of NGF induction of all three when endogenous SH2B1 was reduced using short hairpin RNA against SH2B1 and in PC12-SH2B1beta(R555E) cells. NGF-induced levels of uPAR and MMP3/10 and neurite outgrowth through Matrigel (MMP3-dependent) were also increased in PC12-SH2B1beta cells. These results suggest that SH2B1beta stimulates NGF-induced neuronal differentiation at least in part by enhancing expression of a specific subset of NGF-sensitive genes, including Plaur, Mmp3, and/or Mmp10, required for neurite outgrowth.
Collapse
Affiliation(s)
- Linyi Chen
- Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Knisely JM, Li Y, Griffith JM, Geuze HJ, Schwartz AL, Bu G. Slow endocytosis of the LDL receptor-related protein 1B: implications for a novel cytoplasmic tail conformation. Exp Cell Res 2007; 313:3298-307. [PMID: 17658514 PMCID: PMC2002472 DOI: 10.1016/j.yexcr.2007.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 05/09/2007] [Accepted: 05/29/2007] [Indexed: 11/19/2022]
Abstract
The LDL receptor-related protein 1B (LRP1B) is a putative tumor suppressor homologous to LRP1. Both LRP1 and LRP1B contain cytoplasmic tails with several potential endocytosis motifs. Although the positions of these endocytic motifs are similar in both receptors, LRP1B is internalized at a 15-fold slower rate than LRP1. To determine whether the slow endocytosis of LRP1B is due to the utilization of an endocytosis motif other than the YATL motif used by LRP1, we tested minireceptors with mutations in each of the five potential motifs in the LRP1B tail. Only mutation of both NPXY motifs together abolished LRP1B endocytosis, suggesting that LRP1B can use either of these motifs for internalization. LRP1B contains a unique insertion of 33 amino acids not present in LRP1 that could lead to altered recognition of trafficking motifs. Surprisingly, deletion of this insertion had no effect on the endocytosis rate of LRP1B. However, replacing either half of the LRP1B tail with the corresponding LRP1 sequence markedly accelerated LRP1B endocytosis. From these data, we propose that both halves of the LRP1B cytoplasmic tail contribute to a unique global conformation, which results in less efficient recognition by endocytic adaptors and a slow endocytosis rate.
Collapse
Affiliation(s)
- Jane M. Knisely
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yonghe Li
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Janice M. Griffith
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hans J. Geuze
- Department of Cell Biology and Institute of Biomembranes, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alan L. Schwartz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Guojun Bu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Send correspondence to: Guojun Bu, Department of Pediatrics, Washington University School of Medicine, Campus Box 8208, 660 South Euclid Avenue, St. Louis, MO 63110, Tel: (314)286-2860, Fax: (314)286-2894,
| |
Collapse
|
17
|
Boucquey A, Vilhardt F, Mitrovic T, Franco D, Weber A, Horellou P. Retroviral display of urokinase-binding domain fused to amphotropic envelope protein. Biochem Biophys Res Commun 2005; 331:1485-93. [PMID: 15883041 DOI: 10.1016/j.bbrc.2005.04.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Indexed: 11/21/2022]
Abstract
Tumors frequently express urokinase (uPA) receptor (uPAR). To investigate whether uPAR can efficiently target cancerous cells using amphotropic retroviral vectors, we generated a retrovirus displaying the amino-terminal fragment (ATF) of uPA as an N-terminal extension of viral envelope protein. We also made use of a "two-step strategy" by inserting a uPA cleavage site between the ATF moiety and the envelope. We measured the ability of ATF-bearing chimeric envelopes to infect huPAR-overexpressing Madin-Darby canine kidney (MDCK) and control MDCK II cells. The ATF-viruses infected both MDCK cell lines with an equivalent efficiency, suggesting that the chimeric viruses were not sequestered by uPAR and infect cells preferentially via the Pit-2 receptor. The addition of a uPA cleavage site increased the infection level of huPAR-MDCK cells by 2-fold when uPA was present in the infection medium. Surprisingly, ATF-env viruses infected huPAR-MDCK cells 5.5-fold more efficiently in the presence of exogenous uPA. This stimulatory effect of uPA on infection of huPAR-MDCK cells by the ATF-env virus was completely abolished by methyl-beta-cyclodextrin, suggesting that this effect involves the caveolar endocytosis pathway.
Collapse
Affiliation(s)
- Antoine Boucquey
- EMI 00-20, INSERM and Université Paris XI, Bat Grégory Pincus, 80 rue du Général Leclerc, 94276 Le Kremlin Bicêtre Cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Pan W, Kastin AJ, Zankel TC, van Kerkhof P, Terasaki T, Bu G. Efficient transfer of receptor-associated protein (RAP) across the blood-brain barrier. J Cell Sci 2004; 117:5071-8. [PMID: 15383619 DOI: 10.1242/jcs.01381] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have sought to identify a high-capacity transport system that mediates transcytosis of proteins from the blood to the brain. The 39 kDa receptor-associated protein (RAP) functions as a specialized endoplasmic reticulum chaperone assisting in the folding and trafficking of members of the low-density lipoprotein (LDL) receptor family. RAP efficiently binds to these receptors and antagonizes binding of other ligands. Previous studies have shown that two large members of the LDL receptor family, LDL receptor-related protein 1 (LRP1) and LDL receptor-related protein 2 (LRP2 or megalin), possess the ability to mediate transcytosis of ligands across the brain capillary endothelium. Here, we tested whether blood-borne RAP crosses the blood-brain barrier (BBB) by LRP1- or megalin-mediated transport by studying the pharmacokinetics of [125I]-RAP transport into the brain in intact mice and across cell monolayers in vitro. Our results show that [125I]-RAP is relatively stable in blood for 30 minutes and has a mean influx constant of 0.62±0.08 μl/g-minute from blood to brain. In situ brain perfusion in blood-free buffer shows that transport of [125I]-RAP across the BBB is a saturable process. Capillary depletion of brain homogenates indicates that 70% of [125I]-RAP is localized in the parenchyma rather than in the vasculature of the brain. Results of transport in stably transfected MDCK cells are consistent with the hypothesis that megalin mediates most of the apical-to-basolateral transport across polarized epithelial cells. The inhibition of [125I]-RAP influx by excess RAP and the involvement of megalin indicate the presence of a saturable transport system at the BBB. The higher permeability of RAP compared with that of melanotransferrin and transferrin show that the LRP receptor is a high capacity transport system. These studies suggest that RAP may provide a novel means of protein-based drug delivery to the brain.
Collapse
Affiliation(s)
- Weihong Pan
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge 70808, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Morris R, Cox H, Mombelli E, Quinn PJ. Rafts, little caves and large potholes: how lipid structure interacts with membrane proteins to create functionally diverse membrane environments. Subcell Biochem 2004; 37:35-118. [PMID: 15376618 DOI: 10.1007/978-1-4757-5806-1_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This chapter reviews how diverse lipid microdomains form in the membrane and partition proteins into different functional units that regulate cell trafficking, signalling and movement. We will concentrate upon five major issues: 1. the diversity of lipid structure that produces diverse microenvironments into which different subsets of proteins partition; 2. why ordered lipid domains exclude proteins, and the conditions required for select subsets of proteins to enter these domains; 3. the coupling of the inner and outer leaflets within ordered microdomains; 4. the effect of ordered lipid domains upon membrane properties including curvature and hydrophobicity that affect membrane fission, fusion and extension of filopodia; 5. the biological effects of these structural constraints; in particular how the properties of these domains combine to provide a very different signalling, trafficking and membrane fusion environment to that found in disordered (fluid mosaic) membrane. In addressing these problems, the review draws upon studies ranging from molecular dynamic modelling of lipid interactions, through physical studies of model membrane systems to structural and biological studies of whole cells, examining in the process problems inherent in visualising and purifying these microdomains. While the diversity of structure and function of ordered lipid microdomains is emphasised, some general roles emerge. In particular, the basis for having quite different, non-interacting ordered lipid domains on the same membrane is evident in the diversity of lipid structure and plays a key role in sorting signalling systems. The exclusion of ordered membrane from coated pits, and hence rapid endocytosis, is suggested to underlie the ability of highly ordered domains to establish stable secondary signalling systems required, for instance, in T cell receptor, insulin and neurotrophin signalling.
Collapse
Affiliation(s)
- Roger Morris
- Molecular Neurobiology Group, MRC Centre for Developmental Neurobiology, King's College, London, UK
| | | | | | | |
Collapse
|
20
|
Sunyach C, Jen A, Deng J, Fitzgerald KT, Frobert Y, Grassi J, McCaffrey MW, Morris R. The mechanism of internalization of glycosylphosphatidylinositol-anchored prion protein. EMBO J 2003; 22:3591-601. [PMID: 12853474 PMCID: PMC165614 DOI: 10.1093/emboj/cdg344] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mode of internalization of glycosylphosphatidylinositol-anchored proteins, lacking any cytoplasmic domain by which to engage adaptors to recruit them into coated pits, is problematical; that of prion protein in particular is of interest since its cellular trafficking appears to play an essential role in its pathogenic conversion. Here we demonstrate, in primary cultured neurons and the N2a neural cell line, that prion protein is rapidly and constitutively endocytosed. While still on the cell surface, prion protein leaves lipid 'raft' domains to enter non-raft membrane, from which it enters coated pits. The N-terminal domain (residues 23-107) of prion protein is sufficient to direct internalization, an activity dependent upon its initial basic residues (NH(2)-KKRPKP). The effect of this changing membrane environment upon the susceptibility of prion protein to pathogenic conversion is discussed.
Collapse
Affiliation(s)
- Claire Sunyach
- Molecular Neurobiology Group, MRC Centre for Developmental Neurobiology, King's College London Guy's Campus, London SEI 1UL, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Stefansson S, Lawrence DA. Old dogs and new tricks: proteases, inhibitors, and cell migration. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:pe24. [PMID: 12837933 DOI: 10.1126/stke.2003.189.pe24] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A new model for the actions of plasminogen activator inhibitors (PAIs) on cell migration may resolve the conflicting research data on these proteins in metastasis and angiogenesis. Results from two groups reveal a role for PAI-1 in promoting cycles of attachment and detachment of the cell from the extracellular matrix that is independent of its role as an enzymatic inhibitor of urokinase-type plasminogen activator (uPA). Through the formation of a complex of integrins, uPA and its receptor, and the clearance receptors of the low-density lipoprotein family, PAI-1 may promote endocytosis and recycling of these adhesion-controlling proteins, allowing cycling of cellular attachment and detachment.
Collapse
Affiliation(s)
- Steingrimur Stefansson
- Vascular Biology Department, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, USA
| | | |
Collapse
|
22
|
Stefansson S, Lawrence DA. Old Dogs and New Tricks, Proteases, Inhibitors, and Cell Migration. Sci Signal 2003. [DOI: 10.1126/scisignal.1892003pe24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Zhang G, Kim H, Cai X, López-Guisa JM, Alpers CE, Liu Y, Carmeliet P, Eddy AA. Urokinase receptor deficiency accelerates renal fibrosis in obstructive nephropathy. J Am Soc Nephrol 2003; 14:1254-1271. [PMID: 12707394 DOI: 10.1097/01.asn.0000064292.37793.fb] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The urokinase cellular receptor (uPAR) recognizes the N-terminal growth factor domain of urokinase-type plasminogen activator (uPA) and is expressed by several cell types. The present study was designed to test the hypothesis that uPAR regulates the renal fibrogenic response to chronic injury. Groups of uPAR wild-type (+/+) and deficient (-/-) mice were investigated between 3 and 14 d after unilateral ureteral obstruction (UUO) or sham surgery. Not detected in normal kidneys, uPAR mRNA was expressed in response to UUO in the +/+ mice. By in situ hybridization, uPAR mRNA transcripts were detected in renal tubules and interstitial cells of the obstructed uPAR+/+ kidneys. The severity of renal fibrosis, based on the measurement of total collagen (13.5 +/- 1.5 versus 9.8 +/- 1.0 microg/mg kidney on day 14; -/- versus +/+) and interstitial area stained by Masson trichrome (22 +/- 4% versus 14 +/- 3% on day 14; -/- versus +/+) was significantly greater in the uPAR-/- mice. In the absence of uPAR, renal uPA activity was significantly decreased compared with the wild-type animals after UUO (62 +/- 20 versus 135 +/- 13 units at day 3 UUO; 74 +/- 17 versus 141 +/- 16 at day 7 UUO; 98 +/- 20 versus 165 +/- 10 at day 14 UUO; -/- versus +/+). In contrast, renal expression of several genes that regulate plasmin activity were similar in both genotypes, including uPA, tPA, PAI-1, protease nexin-1, and alpha2-antiplasmin. Worse renal fibrosis in the uPAR-/- mice appears to be TGF-beta-independent, as TGF-beta activity was actually reduced by 65% in the -/- mice despite similar renal TGF-beta1 mRNA levels. Significantly lower levels of the major 2.3-kb transcript and the 69-kd active protein of hepatocyte growth factor (HGF), a known anti-fibrotic growth factor, in the uPAR-/- mice suggests a potential link between HGF and the renoprotective effects of uPAR. These data suggest that renal uPAR attenuates the fibrogenic response to renal injury, an outcome that is mediated in part by urokinase-dependent but plasminogen-independent functions.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Division of Nephrology, University of Washington, Children's Hospital and Regional Medical Center, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang G, Kim H, Cai X, Lopez-Guisa JM, Carmeliet P, Eddy AA. Urokinase receptor modulates cellular and angiogenic responses in obstructive nephropathy. J Am Soc Nephrol 2003; 14:1234-53. [PMID: 12707393 DOI: 10.1097/01.asn.0000064701.70231.3f] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Interstitial cells have been implicated in the pathogenesis of renal fibrosis. Given that the urokinase receptor (uPAR) is known to play a role in cell adhesion, migration, and angiogenesis, the present study was designed to evaluate the role of uPAR in the regulation of the phenotypic composition of interstitial cells (macrophages, myofibroblasts, capillaries) in response to chronic renal injury. Groups of uPAR wild-type (+/+) and knockout (-/-) mice were investigated between 3 and 14 d after unilateral ureteral obstruction (UUO) or sham surgery (n = 8 mice per group). The density of F4/80+ interstitial macrophages (Mphi) was significantly lower in the -/- mice (3.3 +/- 0.4 versus 6.9 +/- 1.7% area at day 3 UUO; 10.8 +/- 1.6 versus 15.7 +/- 1.0% at day 14 UUO; -/- versus +/+). In contrast, in the -/- mice there were significantly more alpha smooth muscle actin (alphaSMA)-positive cells (12.9 +/- 3.2 versus 7.8 +/- 1.5% area at day 3 UUO; 21.0 +/- 4.7 versus 9.7 +/- 1.9% at day 14 UUO) and CD34-positive endothelial cells (8.4 +/- 1.9 versus 4.0 +/- 1.1% area at day 14 UUO). These differences were associated with significantly more interstitial fibrosis in the -/- mice based on Sirius red staining (4.6 +/- 0.9 versus 2.3 +/- 0.9% area at 14 d UUO). Absence of the uPAR scavenger receptor was associated with significantly greater accumulation of plasminogen activator inhibitor-1 protein (PAI-1) (20.5 +/- 3.5 versus 9.1 +/- 2.9% area, day 14 UUO) and vitronectin protein (2.4 +/- 1.1 versus 0.9 +/- 0.4% area, day 14 UUO). By immunostaining alphaSMA+ cells, CD34+ cells, vitronectin and PAI-1 co-localized to the same tubulointerstitial area. The number of apoptotic cells increased in response to UUO but was significantly higher in the -/- mice (2.0 +/- 0.2 versus 1.2 +/- 0.2 per 100 tubulointerstitial cells, day 14 UUO) while the number of proliferating cells was significantly lower in the uPAR-/- mice. These data suggest that uPAR deficiency suppresses renal Mphi recruitment, but the absence of this scavenger receptor actually accentuates the fibrogenic response, likely due in part to the delayed clearance of angiogenic/profibrotic molecules such as PAI-1 and decreased receptor-associated uPA activity.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Children's Hospital and Regional Medical Center, Division of Nephrology, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | | | | | | | | | | |
Collapse
|
25
|
Leksa V, Godár S, Cebecauer M, Hilgert I, Breuss J, Weidle UH, Horejsí V, Binder BR, Stockinger H. The N terminus of mannose 6-phosphate/insulin-like growth factor 2 receptor in regulation of fibrinolysis and cell migration. J Biol Chem 2002; 277:40575-82. [PMID: 12189157 DOI: 10.1074/jbc.m207979200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Leukocyte migration to sites of inflammation is a multistep process involving transient adhesion to the endothelium followed by cell surface-controlled proteolysis for transmigration through the vessel wall and chemotactic movement within tissues. One of the key players in this machinery appears to be the urokinase-type plasminogen activator (uPA)/uPA receptor system. The role of uPA and its receptor (CD87) in plasminogen (Plg) activation, cell adhesion, and chemotaxis is well established; however, less is known of how these activities are regulated. Here we provide evidence that the mannose 6-phosphate/insulin-like growth factor 2 receptor (CD222) controls CD87-mediated functions. Expression of human CD222 in CD222-/- mouse fibroblasts down-regulated Plg activation, cell adhesion, and chemotaxis induced by the uPA/CD87 system. In addition, we demonstrate that the N-terminal region of CD222, which is similar to the Plg-binding site of streptokinase, plays a crucial role in binding of CD87 and Plg. A peptide derived from this region in CD222 is able to disrupt the physical interaction of CD222 with CD87 and, furthermore, mimics the inhibitory effects of CD222 on CD87 functions. Taken together, our results indicate a novel role for CD222 in regulation of fibrinolysis, cell adhesion, and migration.
Collapse
Affiliation(s)
- Vladimír Leksa
- Institute of Immunology, Vienna International Research Cooperation Center at Novartis Forschungs-institut, University of Vienna, Vienna A-1235, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Membrane rafts enriched in cholesterol and sphingolipids have been hypothesized to be key mediators of sorting and signaling functions of associated molecules. Apart from a limited number of biophysical studies in living cell membranes, raft-association has been defined by a simple biochemical criterion, namely the ability to partition with detergent-resistant membranes (DRMs). Here we examine the evidence for the specification of internalization mechanisms and endocytic pathways by rafts as defined by this criterion. We have surveyed the endocytic trafficking of a variety of molecules such as lipids, toxins, glycosylphosphatidylinositol (GPI)-anchored proteins, and DRM-associated transmembrane proteins.
Collapse
Affiliation(s)
- Pranav Sharma
- National Centre for Biological Sciences, UAS-GKVK Campus, GKVK P.O., Bangalore-560065, India
| | | | | |
Collapse
|
27
|
Kjøller L. The urokinase plasminogen activator receptor in the regulation of the actin cytoskeleton and cell motility. Biol Chem 2002; 383:5-19. [PMID: 11928822 DOI: 10.1515/bc.2002.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cell migration is a complex process requiring tight control of several mechanisms including dynamic reorganization of the actin cytoskeleton and adhesion to the extracellular matrix. The GPI-anchored urokinase plasminogen activator receptor (uPAR) has an important role in the regulation of cell motility in many cell types. This is partly due to the localization of proteolytic activity on the cell surface by binding of the serine protease uPA. Results accumulated over the last decade suggest that uPAR is also involved in motility control through other mechanisms. These include induction of signal transduction events after ligation with uPA, binding to the extracellular matrix molecule vitronectin (VN), and association with integrins and other transmembrane partners. In this review these mechanisms will be discussed with a special emphasis on how the GPI-linked receptor transmits signals to the intracellular milieu and how uPAR participates in the regulation of actin cytoskeleton reorganization and cell adhesion during cell migration.
Collapse
Affiliation(s)
- Lars Kjøller
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
28
|
Abstract
Endocytosis is involved in an enormous variety of cellular processes. To date, most studies on endocytosis in mammalian cells have focused on pathways that start with uptake through clathrin-coated pits. Recently, new techniques and reagents have allowed a wider range of endocytic pathways to begin to be characterized. Various non-clathrin endocytic mechanisms have been identified, including uptake through caveolae, macropinosomes and via a separate constitutive pathway. Many markers for clathrin-independent endocytosis are found in detergent-resistant membrane fractions, or lipid rafts. We will discuss these emerging new findings and their implications for the nature of lipid rafts themselves, as well as for the potential roles of non-clathrin endocytic pathways in remodeling of the plasma membrane and in regulating the membrane composition of specific intracellular organelles.
Collapse
Affiliation(s)
- B J Nichols
- MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, UK.
| | | |
Collapse
|
29
|
Silver DL, Wang N, Xiao X, Tall AR. High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type 1 results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion. J Biol Chem 2001; 276:25287-93. [PMID: 11301333 DOI: 10.1074/jbc.m101726200] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High density lipoprotein (HDL) mediates reverse transport of cholesterol from atheroma foam cells to the liver, but the mechanisms of hepatic uptake and trafficking of HDL particles are poorly understood. In contrast to its accepted role as a cell surface receptor, scavenger receptor class B type 1 (SR-BI) is shown to be an endocytic receptor that mediates HDL particle uptake and recycling, but not degradation, in both transfected Chinese hamster ovary cells and hepatocytes. Confocal microscopy of polarized primary hepatocytes shows that HDL particles enter both the endocytic recycling compartment and the apical canalicular region paralleling the movement of SR-BI. In polarized epithelial cells (Madin-Darby canine kidney) expressing SR-BI, HDL protein and cholesterol undergo selective sorting with recycling of HDL protein from the basolateral membrane and secretion of HDL-derived cholesterol through the apical membrane. Thus, HDL particles, internalized via SR-BI, undergo a novel process of selective transcytosis, leading to polarized cholesterol transport. A distinct process not mediated by SR-BI is involved in uptake and degradation of apoE-free HDL in hepatocytes.
Collapse
Affiliation(s)
- D L Silver
- Department of Medicine, Division of Molecular Medicine, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
30
|
Hansen CB, Pyke C, Petersen LC, Rao LV. Tissue factor-mediated endocytosis, recycling, and degradation of factor VIIa by a clathrin-independent mechanism not requiring the cytoplasmic domain of tissue factor. Blood 2001; 97:1712-20. [PMID: 11238112 DOI: 10.1182/blood.v97.6.1712] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endocytosis and recycling of coagulation factor VIIa (VIIa) bound to tissue factor (TF) was investigated in baby hamster kidney (BHK) cells stably transfected with TF or TF derivatives. Cell surface expression of TF on BHK cells was required for VIIa internalization and degradation. Approximately 50% of cell surface-bound VIIa was internalized in one hour, and a majority of the internalized VIIa was degraded soon thereafter. Similar rates of VIIa internalization and degradation were obtained with BHK cells transfected with a cytoplasmic domain-deleted TF variant or with a substitution of serine for cysteine at amino acid residue 245 (C245S). Endocytosis of VIIa bound to TF was an active process. Acidification of the cytosol, known to inhibit the internalization via clathrin-coated pits, did not affect the internalization of VIIa. Furthermore, receptor-associated protein, known to block binding of all established ligands to members of the low-density lipoprotein receptor family, was without an effect on the internalization of VIIa. Addition of tissue factor pathway inhibitor/factor Xa complex did not affect the internalization rate significantly. A substantial portion (20% to 25%) of internalized VIIa was recycled back to the cell surface as an intact and functional protein. Although the recycled VIIa constitutes to only approximately 10% of available cell surface TF/VIIa sites, it accounts for 65% of the maximal activation of factor X by the cell surface TF/VIIa. In summary, the present data provide evidence that TF-dependent internalization of VIIa in kidney cells occurs through a clathrin-independent mechanism and does not require the cytoplasmic domain of TF.
Collapse
Affiliation(s)
- C B Hansen
- Department of Tissue Factor/Factor VIIa (TF/VIIa) Research, Health Care Discovery, Novo Nordisk A/S, Maalov, Denmark
| | | | | | | |
Collapse
|
31
|
Bayer N, Schober D, Hüttinger M, Blaas D, Fuchs R. Inhibition of clathrin-dependent endocytosis has multiple effects on human rhinovirus serotype 2 cell entry. J Biol Chem 2001; 276:3952-62. [PMID: 11073943 DOI: 10.1074/jbc.m004722200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Minor group human rhinoviruses (exemplified by human rhinovirus serotype 2 (HRV2)) use members of the low density lipoprotein receptor family for cell entry; all these receptors possess clathrin-coated pit localization signals. Viral infection should thus be inhibited under conditions of impaired clathrin-mediated endocytosis. However, Madshus et al. reported an increase in the cytopathic effect of HRV2 infection in HEp-2 cells upon suppression of clathrin-dependent endocytosis by hypotonic shock and potassium depletion (Madshus, I. H., Sandvig, K., Olsnes, S., and van Deurs, B. (1987) J. Cell. Physiol. 131, 14-22.) To resolve this apparent contradiction, we investigated the binding, internalization, conformational changes, and productive uncoating of HRV2 in HeLa cells subjected to hypotonic shock and potassium depletion. This treatment led to an increase in HRV2 binding, with internalization being barely affected. The generation of C-antigenic particles requiring pH </=5.6 was strongly reduced due to an elevation of the pH in endosomal compartments. However, K(+) depletion only slightly affected de novo viral protein synthesis, suggesting that productivity of viral RNA in the cytoplasm is enhanced and thus compensates for the reduction in C-antigenic particles. The distinct steps in the entry pathway of HRV2 are thus differently influenced by potassium depletion. Viral internalization under conditions of inhibited clathrin-dependent endocytosis without the need to disturb the ionic milieu was confirmed in HeLa cells overexpressing the nonfunctional dynamin-1 mutant K44A. Unexpectedly, overexpression of dynamin-1 K44A resulted in elevated endosomal pH compared with overexpression of wild-type dynamin.
Collapse
Affiliation(s)
- N Bayer
- Departments of Pathophysiology and Medical Chemistry, University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
32
|
Li Y, Marzolo MP, van Kerkhof P, Strous GJ, Bu G. The YXXL motif, but not the two NPXY motifs, serves as the dominant endocytosis signal for low density lipoprotein receptor-related protein. J Biol Chem 2000; 275:17187-94. [PMID: 10747918 DOI: 10.1074/jbc.m000490200] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All members of the low density lipoprotein (LDL) receptor family contain at least one copy of the NPXY sequence within their cytoplasmic tails. For the LDL receptor, it has been demonstrated that the NPXY motif serves as a signal for rapid endocytosis through coated pits. Thus, it is generally believed that the NPXY sequences function as endocytosis signals for all the LDL receptor family members. The primary aim of this study is to define the endocytosis signal(s) within the cytoplasmic tail of LDL receptor-related protein (LRP). By using LRP minireceptors, which mimic the function and trafficking of full-length endogenous LRP, we demonstrate that the YXXL motif, but not the two NPXY motifs, serves as the dominant signal for LRP endocytosis. We also found that the distal di-leucine motif within the LRP tail contributes to its endocytosis, and its function is independent of the YXXL motif. Although the proximal NPXY motif and the proximal di-leucine motif each play a limited role in LRP endocytosis in the context of the full-length tail, these motifs were functional within the truncated receptor tail. In addition, we show that LRP minireceptor mutants defective in endocytosis signal(s) accumulate at the cell surface and are less efficient in delivery of ligand for degradation.
Collapse
Affiliation(s)
- Y Li
- Departments of Pediatrics, and Cell Biology and Physiology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
33
|
Herschman HR, Ferguson GD, Feldman JD, Farias-Eisner R, Vician L. Searching for depolarization-induced genes that modulate synaptic plasticity and neurotrophin-induced genes that mediate neuronal differentiation. Neurochem Res 2000; 25:591-602. [PMID: 10905620 DOI: 10.1023/a:1007546600535] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We identify and characterize two classes of immediate-early genes: (i) genes, induced by depolarization in neurons, that play a role in depolarization-induced neuronal plasticity and (ii) genes, induced in neuronal precursors by neurotrophins, that play a causal role in neurotrophin-directed neuronal differentiation. We use rat PC12 pheochromocytoma cells to identify (i) genes preferentially induced by [depolarization or forskolin] versus [Nerve Growth Factor (NGF) or Epidermal Growth Factor (EGF)] and (ii) genes preferentially induced by NGF versus EGF. We describe (i) a collection of genes preferentially induced by depolarization/forskolin in PC12 cells and by kainic acid in vivo, and (ii) a collection of genes preferentially induced by NGF. The synaptotagmin IV gene encodes a synaptic vesicle protein whose level is modulated by depolarization. NGF preferentially induces the urokinase-plasminogen activator receptor in PC12 cells. Antisense oligonucleotide and anti-UPAR antibody experiments demonstrate that NGF-induced UPAR expression is required for NGF-driven PC12 cell differentiation.
Collapse
Affiliation(s)
- H R Herschman
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
34
|
Drapkin PT, O'Riordan CR, Yi SM, Chiorini JA, Cardella J, Zabner J, Welsh MJ. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia. J Clin Invest 2000; 105:589-96. [PMID: 10712430 PMCID: PMC292456 DOI: 10.1172/jci8858] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Developing gene therapy for cystic fibrosis has been hindered by limited binding and endocytosis of vectors by human airway epithelia. Here we show that the apical membrane of airway epithelia express the urokinase plasminogen activator receptor (uPAR). Urokinase plasminogen activator (uPA), or a 7-residue peptide derived from this protein (u7-peptide), bound the receptor and stimulated apical endocytosis. Both ligands enhanced gene transfer by nonspecifically bound adenovirus and adeno-associated virus vectors and by a modified adenovirus vector that had been coupled to the u7-peptide. These data provide the first evidence that targeting an apical receptor can circumvent the two most important barriers to gene transfer in airway epithelia. Thus, the uPA/uPAR system may offer significant advantages for delivering genes and other pharmaceuticals to airway epithelia.
Collapse
Affiliation(s)
- P T Drapkin
- Program in Gene Therapy, Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Brown PS, Wang E, Aroeti B, Chapin SJ, Mostov KE, Dunn KW. Definition of distinct compartments in polarized Madin-Darby canine kidney (MDCK) cells for membrane-volume sorting, polarized sorting and apical recycling. Traffic 2000; 1:124-40. [PMID: 11208093 DOI: 10.1034/j.1600-0854.2000.010205.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous studies of fibroblasts have demonstrated that recycling of endocytic receptors occurs through a default mechanism of membrane-volume sorting. Epithelial cells require an additional level of polar membrane sorting, but there are conflicting models of polar sorting, some suggesting that it occurs in early endosomes, others suggesting it occurs in a specialized apical recycling endosome (ARE). The relationship between endocytic sorting to the lysosomal, recycling and transcytotic pathways in polarized cells was addressed by characterizing the endocytic itineraries of LDL, transferrin (Tf) and IgA, respectively, in polarized Madin-Darby canine kidney (MDCK) cells. Quantitative analyses of 3-dimensional images of living and fixed polarized cells demonstrate that endocytic sorting occurs sequentially. Initially internalized into lateral sorting endosomes, Tf and IgA are jointly sorted from LDL into apical and medical recycling endosomes, in a manner consistent with default sorting of membrane from volume. While Tf is recycled to the basolateral membrane from recycling endosomes, IgA is sorted to the ARE prior to apical delivery. Quantifications of the efficiency of sorting of IgA from Tf between the recycling endosomes and the ARE match biochemical measurements of transepithelial protein transport, indicating that all polar sorting occurs in this step. Unlike fibroblasts, rab11 is not associated with Tf recycling compartments in either polarized or glass-grown MDCK cells, rather it is associated with the compartments to which IgA is directed after sorting from Tf. These results complicate a suggested homology between the ARE and the fibroblast perinuclear recycling compartment and provide a framework that justifies previous conflicting models of polarized sorting.
Collapse
Affiliation(s)
- P S Brown
- Department of Medicine, Indiana University School of Medicine, 1120 South Drive, FH115, Indianapolis, IN 46202-5116, USA
| | | | | | | | | | | |
Collapse
|
36
|
The urokinase plasminogen activator receptor (UPAR) is preferentially induced by nerve growth factor in PC12 pheochromocytoma cells and is required for NGF-driven differentiation. J Neurosci 2000. [PMID: 10627600 DOI: 10.1523/jneurosci.20-01-00230.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nerve growth factor (NGF)-driven differentiation of PC12 pheochromocytoma cells is a well studied model used both to identify molecular, biochemical, and physiological correlates of neurotrophin-driven neuronal differentiation and to determine the causal nature of specific events in this differentiation process. Although epidermal growth factor (EGF) elicits many of the same early biochemical and molecular changes in PC12 cells observed in response to NGF, EGF does not induce molecular or morphological differentiation of PC12 cells. The identification of genes whose expression is differentially regulated by NGF versus EGF in PC12 cells has, therefore, been considered a source of potential insight into the molecular specificity of neurotrophin-driven neuronal differentiation. A "second generation" representational difference analysis procedure now identifies the urokinase plasminogen activator receptor (UPAR) as a gene that is much more extensively induced by NGF than by EGF in PC12 cells. Both an antisense oligonucleotide for the UPAR mRNA and an antibody directed against UPAR protein block NGF-induced morphological and biochemical differentiation of PC12 cells; NGF-induced UPAR expression is required for subsequent NGF-driven differentiation.
Collapse
|
37
|
Farias-Eisner R, Vician L, Silver A, Reddy S, Rabbani SA, Herschman HR. The urokinase plasminogen activator receptor (UPAR) is preferentially induced by nerve growth factor in PC12 pheochromocytoma cells and is required for NGF-driven differentiation. J Neurosci 2000; 20:230-9. [PMID: 10627600 PMCID: PMC6774117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Nerve growth factor (NGF)-driven differentiation of PC12 pheochromocytoma cells is a well studied model used both to identify molecular, biochemical, and physiological correlates of neurotrophin-driven neuronal differentiation and to determine the causal nature of specific events in this differentiation process. Although epidermal growth factor (EGF) elicits many of the same early biochemical and molecular changes in PC12 cells observed in response to NGF, EGF does not induce molecular or morphological differentiation of PC12 cells. The identification of genes whose expression is differentially regulated by NGF versus EGF in PC12 cells has, therefore, been considered a source of potential insight into the molecular specificity of neurotrophin-driven neuronal differentiation. A "second generation" representational difference analysis procedure now identifies the urokinase plasminogen activator receptor (UPAR) as a gene that is much more extensively induced by NGF than by EGF in PC12 cells. Both an antisense oligonucleotide for the UPAR mRNA and an antibody directed against UPAR protein block NGF-induced morphological and biochemical differentiation of PC12 cells; NGF-induced UPAR expression is required for subsequent NGF-driven differentiation.
Collapse
Affiliation(s)
- R Farias-Eisner
- Department of Obstetrics and Gynecology, University of California, Los Angeles, Center for the Health Sciences, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
38
|
Skretting G, Torgersen ML, van Deurs B, Sandvig K. Endocytic mechanisms responsible for uptake of GPI-linked diphtheria toxin receptor. J Cell Sci 1999; 112 ( Pt 22):3899-909. [PMID: 10547351 DOI: 10.1242/jcs.112.22.3899] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have here used diphtheria toxin as a tool to investigate the type of endocytosis used by a glycosylphosphatidylinositol-linked molecule, a glycosylphosphatidylinositol-linked version of the diphtheria toxin receptor that is able to mediate intoxication. The receptor is expressed in HeLa cells where clathrin-dependent endocytosis can be blocked by overexpression of mutant dynamin. Diphtheria toxin intoxicates cells by first binding to cell-surface receptors, then the toxin is endocytosed, and upon exposure to low endosomal pH, the toxin enters the cytosol where it inhibits protein synthesis. Inhibition of protein synthesis by the toxin can therefore be used to probe the entry of the glycosylphosphatidylinositol-linked receptor into an acidic compartment. Furthermore, degradation of the toxin can be used as an indicator of entry into the endosomal/lysosomal compartment. The data show that although expression of mutant dynamin inhibits intoxication mediated via the wild-type receptors, mutant dynamin does not affect intoxication or endocytosis and degradation of diphtheria toxin bound to the glycosylphosphatidylinositol-linked receptor. Confocal microscopy demonstrated that diphtheria toxin is transported to vesicles containing EEA1, a marker for early endosomes. Biochemical and ultrastructural studies of the HeLa cells used reveal that they have very low levels of caveolin-1 and that they contain very few if any caveolae at the cell surface. Furthermore, the endocytic uptake of diphtheria toxin bound to the glycosylphosphatidylinositol-linked receptor was not reduced by methyl-beta-cyclodextrin or by nystatin which both disrupt caveolar structure and functions. Thus, uptake of a glycosylphosphatidylinositol-linked protein, in this case the diphtheria toxin receptor, into the endosomal/lysosomal system can occur independently of both caveolae and clathrin-coated vesicles.
Collapse
Affiliation(s)
- G Skretting
- Institute for Cancer Research at The Norwegian Radium Hospital, Montebello, Norway
| | | | | | | |
Collapse
|