1
|
Frappaolo A, Zaccagnini G, Giansanti MG. GOLPH3-mTOR Crosstalk and Glycosylation: A Molecular Driver of Cancer Progression. Cells 2025; 14:439. [PMID: 40136688 PMCID: PMC11941073 DOI: 10.3390/cells14060439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Originally identified in proteomic-based studies of the Golgi, Golgi phosphoprotein 3 (GOLPH3) is a highly conserved protein from yeast to humans. GOLPH3 localizes to the Golgi through the interaction with phosphatidylinositol-4-phosphate and is required for Golgi architecture and vesicular trafficking. Many studies revealed that the overexpression of GOLPH3 is associated with tumor metastasis and a poor prognosis in several cancer types, including breast cancer, glioblastoma multiforme, and colon cancer. The purpose of this review article is to provide the current progress of our understanding of GOLPH3 molecular and cellular functions, which may potentially reveal therapeutic avenues to inhibit its activity. Specifically, recent papers have demonstrated that GOLPH3 protein functions as a cargo adaptor for COP I-coated intra Golgi vesicles and impinges on Golgi glycosylation pathways. In turn, GOLPH3-dependent defects have been associated with malignant phenotypes in cancer cells. Additionally, the oncogenic activity of GOLPH3 has been linked with enhanced signaling downstream of mechanistic target of rapamycin (mTOR) in several cancer types. Consistent with these data, GOLPH3 controls organ growth in Drosophila by associating with mTOR signaling proteins. Finally, compelling evidence demonstrates that GOLPH3 is essential for cytokinesis, a process required for the maintenance of genomic stability.
Collapse
Affiliation(s)
| | | | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy; (A.F.); (G.Z.)
| |
Collapse
|
2
|
Chen Y, Wu Y, Tian X, Shao G, Lin Q, Sun A. Golgiphagy: a novel selective autophagy to the fore. Cell Biosci 2024; 14:130. [PMID: 39438975 PMCID: PMC11495120 DOI: 10.1186/s13578-024-01311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The Golgi apparatus is the central hub of the cellular endocrine pathway and plays a crucial role in processing, transporting, and sorting proteins and lipids. Simultaneously, it is a highly dynamic organelle susceptible to degradation or fragmentation under various physiological or pathological conditions, potentially contributing to the development of numerous human diseases. Autophagy serves as a vital pathway for eukaryotes to manage intracellular and extracellular stress and maintain homeostasis by targeting damaged or redundant organelles for removal. Recent research has revealed that autophagy mechanisms can specifically degrade Golgi components, known as Golgiphagy. This review summarizes recent findings on Golgiphagy while also addressing unanswered questions regarding its mechanisms and regulation, aiming to advance our understanding of the role of Golgiphagy in human disease.
Collapse
Affiliation(s)
- Yifei Chen
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yihui Wu
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
3
|
Polanco CM, Cavieres VA, Galarza AJ, Jara C, Torres AK, Cancino J, Varas-Godoy M, Burgos PV, Tapia-Rojas C, Mardones GA. GOLPH3 Participates in Mitochondrial Fission and Is Necessary to Sustain Bioenergetic Function in MDA-MB-231 Breast Cancer Cells. Cells 2024; 13:316. [PMID: 38391929 PMCID: PMC10887169 DOI: 10.3390/cells13040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
In this study, we investigated the inter-organelle communication between the Golgi apparatus (GA) and mitochondria. Previous observations suggest that GA-derived vesicles containing phosphatidylinositol 4-phosphate (PI(4)P) play a role in mitochondrial fission, colocalizing with DRP1, a key protein in this process. However, the functions of these vesicles and potentially associated proteins remain unknown. GOLPH3, a PI(4)P-interacting GA protein, is elevated in various types of solid tumors, including breast cancer, yet its precise role is unclear. Interestingly, GOLPH3 levels influence mitochondrial mass by affecting cardiolipin synthesis, an exclusive mitochondrial lipid. However, the mechanism by which GOLPH3 influences mitochondria is not fully understood. Our live-cell imaging analysis showed GFP-GOLPH3 associating with PI(4)P vesicles colocalizing with YFP-DRP1 at mitochondrial fission sites. We tested the functional significance of these observations with GOLPH3 knockout in MDA-MB-231 cells of breast cancer, resulting in a fragmented mitochondrial network and reduced bioenergetic function, including decreased mitochondrial ATP production, mitochondrial membrane potential, and oxygen consumption. Our findings suggest a potential negative regulatory role for GOLPH3 in mitochondrial fission, impacting mitochondrial function and providing insights into GA-mitochondria communication.
Collapse
Affiliation(s)
- Catalina M. Polanco
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
| | - Viviana A. Cavieres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Los Leones, Providencia, Santiago 7510156, Chile
| | - Abigail J. Galarza
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
| | - Claudia Jara
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile
| | - Angie K. Torres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6210427, Chile
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile
| | - Patricia V. Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile
| | - Gonzalo A. Mardones
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
| |
Collapse
|
4
|
Zhang T, Wang Y, Yao W, Chen Y, Zhang D, Gao Y, Jin S, Li L, Yang S, Wu Y. Metformin antagonizes nickel-refining fumes-induced cell pyroptosis via Nrf2/GOLPH3 pathway in vitro and in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114233. [PMID: 36334342 DOI: 10.1016/j.ecoenv.2022.114233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 05/16/2023]
Abstract
Nickel compounds, an international carcinogen in the industrial environment, increased the risk of lung inflammation even lung cancer in Ni refinery workers. Metformin has displayed the intense anti-inflammation and anti-cancer properties through regulating pyroptosis. This study was designed to explore whether Nickel-refining fumes (NiRF) can induce cell pyroptosis and how AMPK/CREB/Nrf2 mediated the protection afforded by metformin against Ni particles-induced lung impairment. Our results represented that Ni fumes exposure evoked pyroptosis via GOLPH3 and induced oxidative stress, while, metformin treatment alleviated Ni particles-mediated above changes. Moreover, nuclear factor erythroid 2-related factor 2 (Nrf2) involved in the protection of metformin, and the deficiency of Nrf2 attenuated the beneficial protection. We also determined that Nrf2 was a downstream molecule of AMPK/CREB pathway. Furthermore, male C57BL/6 mice were administered with Ni at a dose of 2 mg/kg by non-exposed endotracheal instillation and metformin (100, 200 and 300 mg/kg) via oral gavage for 4 weeks. The results indicated that NiRF promoted GOLPH3 and pyroptosis by stimulating NLRP3, caspase-1, N-GSDMD, IL-18 and IL-1β expression. However, various doses of metformin reduced GOLPH3 and the above protein levels of pyroptosis, also improved AMPK/CREB/Nrf2 expression. In summary, we found that metformin suppressed NiRF-connected GOLPH3-prompted pyroptosis via AMPK/CREB/Nrf2 signaling pathway to confer pulmonary protection.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Yue Wang
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Wenxue Yao
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Yangyang Chen
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Dan Zhang
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Ying Gao
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Shuo Jin
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Lina Li
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Shikuan Yang
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China
| | - Yonghui Wu
- Department of Occupational Health, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province 150086, PR China.
| |
Collapse
|
5
|
Giansanti MG, Piergentili R. Linking GOLPH3 and Extracellular Vesicles Content-a Potential New Route in Cancer Physiopathology and a Promising Therapeutic Target is in Sight? Technol Cancer Res Treat 2022; 21:15330338221135724. [PMID: 36320176 PMCID: PMC9630892 DOI: 10.1177/15330338221135724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3), a highly conserved phosphatidylinositol 4-phosphate effector, is required for maintenance of Golgi architecture, vesicle trafficking, and Golgi glycosylation. GOLPH3 overexpression has been reported in several human solid cancers, including glioblastoma, breast cancer, colorectal cancer, nonsmall cell lung cancer, epithelial ovarian cancer, prostate cancer, gastric cancer, and hepatocellular carcinoma. Although the molecular mechanisms that link GOLPH3 to tumorigenesis require further investigation, it is likely that GOLPH3 may act by controlling the intracellular movement of key oncogenic molecules, between the Golgi compartments and/or between the Golgi and the endoplasmic reticulum. Indeed, numerous evidence indicates that deregulation of intracellular vesicle trafficking contributes to several aspects of cancer phenotypes. However, a direct and clear link between extracellular vesicle movements and GOLPH3 is still missing. In the past years several lines of evidence have implicated GOLPH3 in the regulation of extracellular vesicle content. Specifically, a new role for GOLPH3 has emerged in controlling the internalization of exosomes containing either oncogenic proteins or noncoding RNAs, especially micro-RNA. Although far from being elucidated, growing evidence indicates that GOLPH3 does not increase quantitatively the excretion of exosomes, but rather regulates the exosome content. In particular, recent data support a role for GOLPH3 for loading specific oncogenic molecules into the exosomes, driving both tumor malignancy and metastasis formation. Additionally, the older literature indirectly implicates GOLPH3 in cancerogenesis through its function in controlling hepatitis C virus secretion, which in turn is linked to hepatocellular carcinoma formation. Thus, GOLPH3 might promote tumorigenesis in unexpected ways, involving both direct and indirect routes. If these data are further confirmed, the spectrum of action of GOLPH3 in tumor formation will significantly expand, indicating this protein as a strong candidate for targeted cancer therapy.
Collapse
Affiliation(s)
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR
(CNR-IBPM), Roma, Italy,Roberto Piergentili, Istituto di Biologia e
Patologia Molecolari del CNR (CNR-IBPM), Piazzale Aldo Moro 5, 00185, Roma,
Italy.
| |
Collapse
|
6
|
Sechi S, Karimpour-Ghahnavieh A, Frappaolo A, Di Francesco L, Piergentili R, Schininà E, D’Avino PP, Giansanti MG. Identification of GOLPH3 Partners in Drosophila Unveils Potential Novel Roles in Tumorigenesis and Neural Disorders. Cells 2021; 10:cells10092336. [PMID: 34571985 PMCID: PMC8468827 DOI: 10.3390/cells10092336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Laura Di Francesco
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Eugenia Schininà
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK;
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
- Correspondence: ; Tel.: +39-064-991-2555
| |
Collapse
|
7
|
The Close Relationship between the Golgi Trafficking Machinery and Protein Glycosylation. Cells 2020; 9:cells9122652. [PMID: 33321764 PMCID: PMC7764369 DOI: 10.3390/cells9122652] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glycosylation is the most common post-translational modification of proteins; it mediates their correct folding and stability, as well as their transport through the secretory transport. Changes in N- and O-linked glycans have been associated with multiple pathological conditions including congenital disorders of glycosylation, inflammatory diseases and cancer. Glycoprotein glycosylation at the Golgi involves the coordinated action of hundreds of glycosyltransferases and glycosidases, which are maintained at the correct location through retrograde vesicle trafficking between Golgi cisternae. In this review, we describe the molecular machinery involved in vesicle trafficking and tethering at the Golgi apparatus and the effects of mutations in the context of glycan biosynthesis and human diseases.
Collapse
|
8
|
Arriagada C, Cavieres VA, Luchsinger C, González AE, Muñoz VC, Cancino J, Burgos PV, Mardones GA. GOLPH3 Regulates EGFR in T98G Glioblastoma Cells by Modulating Its Glycosylation and Ubiquitylation. Int J Mol Sci 2020; 21:E8880. [PMID: 33238647 PMCID: PMC7700535 DOI: 10.3390/ijms21228880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Protein trafficking is altered when normal cells acquire a tumor phenotype. A key subcellular compartment in regulating protein trafficking is the Golgi apparatus, but its role in carcinogenesis is still not well defined. Golgi phosphoprotein 3 (GOLPH3), a peripheral membrane protein mostly localized at the trans-Golgi network, is overexpressed in several tumor types including glioblastoma multiforme (GBM), the most lethal primary brain tumor. Moreover, GOLPH3 is currently considered an oncoprotein, however its precise function in GBM is not fully understood. Here, we analyzed in T98G cells of GBM, which express high levels of epidermal growth factor receptor (EGFR), the effect of stable RNAi-mediated knockdown of GOLPH3. We found that silencing GOLPH3 caused a significant reduction in the proliferation of T98G cells and an unexpected increase in total EGFR levels, even at the cell surface, which was however less prone to ligand-induced autophosphorylation. Furthermore, silencing GOLPH3 decreased EGFR sialylation and fucosylation, which correlated with delayed ligand-induced EGFR downregulation and its accumulation at endo-lysosomal compartments. Finally, we found that EGF failed at promoting EGFR ubiquitylation when the levels of GOLPH3 were reduced. Altogether, our results show that GOLPH3 in T98G cells regulates the endocytic trafficking and activation of EGFR likely by affecting its extent of glycosylation and ubiquitylation.
Collapse
Affiliation(s)
- Cecilia Arriagada
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Viviana A. Cavieres
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Charlotte Luchsinger
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Alexis E. González
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Vanessa C. Muñoz
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| | - Jorge Cancino
- Center for Cell Biology and Biomedicine, School of Science and Medicine, Universidad San Sebastián, Santiago 7510235, Chile; (J.C.); (P.V.B.)
| | - Patricia V. Burgos
- Center for Cell Biology and Biomedicine, School of Science and Medicine, Universidad San Sebastián, Santiago 7510235, Chile; (J.C.); (P.V.B.)
- Center for Aging and Regeneration (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Gonzalo A. Mardones
- Department of Physiology, School of Medicine and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile; (C.A.); (V.A.C.); (C.L.); (A.E.G.); (V.C.M.)
| |
Collapse
|
9
|
Human Golgi phosphoprotein 3 is an effector of RAB1A and RAB1B. PLoS One 2020; 15:e0237514. [PMID: 32790781 PMCID: PMC7425898 DOI: 10.1371/journal.pone.0237514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a peripheral membrane protein localized at the trans-Golgi network that is also distributed in a large cytosolic pool. GOLPH3 has been involved in several post-Golgi protein trafficking events, but its precise function at the molecular level is not well understood. GOLPH3 is also considered the first oncoprotein of the Golgi apparatus, with important roles in several types of cancer. Yet, it is unknown how GOLPH3 is regulated to achieve its contribution in the mechanisms that lead to tumorigenesis. Binding of GOLPH3 to Golgi membranes depends on its interaction to phosphatidylinositol-4-phosphate. However, an early finding showed that GTP promotes the binding of GOLPH3 to Golgi membranes and vesicles. Nevertheless, it remains largely unknown whether this response is consequence of the function of GTP-dependent regulatory factors, such as proteins of the RAB family of small GTPases. Interestingly, in Drosophila melanogaster the ortholog of GOLPH3 interacts with- and behaves as effector of the ortholog of RAB1. However, there is no experimental evidence implicating GOLPH3 as a possible RAB1 effector in mammalian cells. Here, we show that human GOLPH3 interacted directly with either RAB1A or RAB1B, the two isoforms of RAB1 in humans. The interaction was nucleotide dependent and it was favored with GTP-locked active state variants of these GTPases, indicating that human GOLPH3 is a bona fide effector of RAB1A and RAB1B. Moreover, the expression in cultured cells of the GTP-locked variants resulted in less distribution of GOLPH3 in the Golgi apparatus, suggesting an intriguing model of GOLPH3 regulation.
Collapse
|
10
|
Regulation of the Golgi apparatus via GOLPH3-mediated new selective autophagy. Life Sci 2020; 253:117700. [DOI: 10.1016/j.lfs.2020.117700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022]
|
11
|
Zhao C, Zhang J, Ma L, Wu H, Zhang H, Su J, Geng B, Yao Q, Zheng J. GOLPH3 Promotes Angiogenesis of Lung Adenocarcinoma by Regulating the Wnt/β-Catenin Signaling Pathway. Onco Targets Ther 2020; 13:6265-6277. [PMID: 32636646 PMCID: PMC7335312 DOI: 10.2147/ott.s249994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/16/2020] [Indexed: 02/02/2023] Open
Abstract
Purpose We aim to investigate the role of Golgi phosphoprotein 3 (GOLPH3) and the possible regulation mechanism underlying lung adenocarcinoma (LADC). Methods The level of GOLPH3 was performed by quantitative real time (qRT)-PCR, Western blot and immunohistochemistry. Patient survival rate was analyzed by Kaplan–Meier method. MTT was used to detect cell viability. The levels of p-serine/threonine-protein kinase (Akt), Akt, p-p65, p65 and β-catenin were determined by Western blot. Cell apoptosis was tested using flow cytometry. Angiogenesis was determined by in vitro angiogenesis assay. qPCR and Western blot were performed to identify apoptotic protein B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) and vascular endothelial growth factor (VEGF). Results GOLPH3 was highly expressed in LADC cell lines and tissues and was significantly correlated with poor overall survival among patients with LADC. Furthermore, GOLPH3 expression was reduced in A549 and H23 cells in a cisplatin-dependent manner. Silencing of GOLPH3 enhanced inhibition of A549 and H23 cells by cisplatin and suppressed the protein expression of p-Akt, while p-p65 expression remained stable. However, overexpression of GOLPH3 weakened the inhibition of A549 and H23 cells by cisplatin and improved the protein expression of p-Akt, while p-p65 expression remained stable. XAV939, an inhibitor of Wnt/β-catenin signaling pathway, decreased GOLPH3 overexpression-induced proliferation and enhanced cisplatin-induced angiogenesis inhibition and apoptosis, which was supported by the changes of VEGF, Bax and Bcl-2. Conclusion GOLPH3 promotes proliferation capacity in LADC through activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Canjun Zhao
- Department of Traditional Chinese Medicine, The Second Hospital Affiliated to Air Force Medical University, Xi'an, People's Republic of China
| | - Jin Zhang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Litian Ma
- Department of Traditional Chinese Medicine, The Second Hospital Affiliated to Air Force Medical University, Xi'an, People's Republic of China
| | - Hao Wu
- Department of Traditional Chinese Medicine, The Second Hospital Affiliated to Air Force Medical University, Xi'an, People's Republic of China
| | - Hui Zhang
- Department of Traditional Chinese Medicine, The Second Hospital Affiliated to Air Force Medical University, Xi'an, People's Republic of China
| | - Jialin Su
- Department of Traditional Chinese Medicine, The Second Hospital Affiliated to Air Force Medical University, Xi'an, People's Republic of China
| | - Bizu Geng
- Department of Traditional Chinese Medicine, The Second Hospital Affiliated to Air Force Medical University, Xi'an, People's Republic of China
| | - Qinghua Yao
- Department of Integrated Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, The Second Hospital Affiliated to Air Force Medical University, Xi'an, People's Republic of China
| |
Collapse
|
12
|
Hu P, Wang K, Zhou D, Wang L, Zhao M, Wang W, Zhang Y, Liu Y, Yu R, Zhou X. GOLPH3 Regulates Exosome miRNA Secretion in Glioma Cells. J Mol Neurosci 2020; 70:1257-1266. [PMID: 32227282 DOI: 10.1007/s12031-020-01535-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
We aimed to examine whether golgi protein GOLPH3 could affect the secretion of glioma cell-derived exosomes. The exosomes were extracted by ultra-centrifugation from the supernatant of U251 and U87 cell cultures and identified by transmission electron microscopy (TEM), Malvern analyzer, and western blot. The quantity of exosomes was examined by measuring the total protein levels and the number of multiple vesicle bodies (MVBs), the source of exosomes. The exosome miRNAs were analyzed by high-throughput sequencing followed by GO and KEGG analysis, and validated by qRT-PCR. GOLPH3 could not affect the total protein levels of exosomes and the number of MVBs. However, we found 149 differentially expressed miRNAs in exosomes between vector and GOLPH3 over-expression group, and 14 miRNAs were only examined in GOLPH3 over-expression cells. The predicted target genes of these miRNAs had functions in binding and catalytic activity, which were enriched in the pathways of endocytosis, RNA transportation, thyroid hormone signaling and miRNAs in cancer. GOLPH3 could not affect the quantity of exosomes, but rather contribute to miRNA expression in exosomes, which may play some functions in the promotion effect of GOLPH3 on glioma development.
Collapse
Affiliation(s)
- Pengfei Hu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ding Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Min Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weibing Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yushuai Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China. .,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
13
|
Oncogenic Roles of GOLPH3 in the Physiopathology of Cancer. Int J Mol Sci 2020; 21:ijms21030933. [PMID: 32023813 PMCID: PMC7037725 DOI: 10.3390/ijms21030933] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3), a Phosphatidylinositol 4-Phosphate [PI(4)P] effector at the Golgi, is required for Golgi ribbon structure maintenance, vesicle trafficking and Golgi glycosylation. GOLPH3 has been validated as an oncoprotein through combining integrative genomics with clinopathological and functional analyses. It is frequently amplified in several solid tumor types including melanoma, lung cancer, breast cancer, glioma, and colorectal cancer. Overexpression of GOLPH3 correlates with poor prognosis in multiple tumor types including 52% of breast cancers and 41% to 53% of glioblastoma. Roles of GOLPH3 in tumorigenesis may correlate with several cellular activities including: (i) regulating Golgi-to-plasma membrane trafficking and contributing to malignant secretory phenotypes; (ii) controlling the internalization and recycling of key signaling molecules or increasing the glycosylation of cancer relevant glycoproteins; and (iii) influencing the DNA damage response and maintenance of genomic stability. Here we summarize current knowledge on the oncogenic pathways involving GOLPH3 in human cancer, GOLPH3 influence on tumor metabolism and surrounding stroma, and its possible role in tumor metastasis formation.
Collapse
|
14
|
Yu LN, Liu Z, Tian Y, Zhao PP, Hua X. FAP-a and GOLPH3 Are Hallmarks of DCIS Progression to Invasive Breast Cancer. Front Oncol 2019; 9:1424. [PMID: 31921678 PMCID: PMC6929240 DOI: 10.3389/fonc.2019.01424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/29/2019] [Indexed: 11/13/2022] Open
Abstract
Biological markers that could predict the progression of ductal carcinoma in-situ (DCIS) to invasive breast cancer (IDC) are required urgently for personalized therapy for patients diagnosed with DCIS. As stroma was invaded by malignant cells, perturbed stromal-epithelial interactions would bring about tissue remodeling. With the specific expression of the fibroblast activation protein-alpha (FAP-a), Carcinoma-associated fibroblasts (CAFs) are the main cell populations in the remodeled tumor stroma. Golgi phosphoprotein 3 (GOLPH3), a documented oncogene possessing potent transforming capacity, is not only up-regulated in many tumors but also an efficient indicator of poor prognosis and more malignant tumors. The present study aimed to retrospectively evaluate the pathological value of FAP-a and GOLPH3 in predicting the recurrence or progression of DCIS to invasive breast cancer. Immunohistochemical techniques were applied to investigate the expression of FAP-a GOLPH3 in 449 cases of DCIS patients received extensive resection and with close follow-up, but not being treated with any form of chemo- or radio-therapy. The combination of FAP-a and GOLPH3 in predicating the recurrence or progression of DCIS into invasive breast cancer was specifically examined. The study demonstrated that the overexpression of FAP-a in stromal fibroblasts and GOLPH3 in carcinoma cells are highly predictive of DCIS recurrence and progression into invasive breast cancer. Both FAP-a and GOLPH3 have high specificity and sensitivity to predict the recurrence of DCIS. Moreover, the combination of FAP-a and GOLPH3 tends to further improve the specificity and sensitivity of DCIS recurrence by 9.72–10.31 and 2.72–3.63%, respectively. FAP-a and GOLPH3 serve as novel markers in predicting the recurrence or progression of DCIS into invasive breast cancer.
Collapse
Affiliation(s)
- Li-Na Yu
- Department of Pathology, Nanfang Hospital, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Zhen Liu
- Department of Pathology, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yan Tian
- Department of Pathology, Nanfang Hospital, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Pei-Pei Zhao
- Department of Pathology, Nanfang Hospital, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Xing Hua
- Department of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Makowski SL, Kuna RS, Field SJ. Induction of membrane curvature by proteins involved in Golgi trafficking. Adv Biol Regul 2019; 75:100661. [PMID: 31668661 PMCID: PMC7056495 DOI: 10.1016/j.jbior.2019.100661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
Abstract
The Golgi apparatus serves a key role in processing and sorting lipids and proteins for delivery to their final cellular destinations. Vesicle exit from the Golgi initiates with directional deformation of the lipid bilayer to produce a bulge. Several mechanisms have been described by which lipids and proteins can induce directional membrane curvature to promote vesicle budding. Here we review some of the mechanisms implicated in inducing membrane curvature at the Golgi to promote vesicular trafficking to various cellular destinations.
Collapse
Affiliation(s)
- Stefanie L Makowski
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ramya S Kuna
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seth J Field
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Lu J, Zhong F, Sun B, Wang C. Diagnostic Utility of Serum Golgi Phosphoprotein 3 in Bladder Cancer Patients. Med Sci Monit 2019; 25:6736-6741. [PMID: 31494662 PMCID: PMC6752096 DOI: 10.12659/msm.915950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background This study assessed whether serum Golgi phosphoprotein 3 (GOLPH3) could be used as a biomarker for detecting bladder cancer. Material/Methods Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) assay were performed to measure GOLPH3 expression in serum and tissue samples, respectively, of bladder cancer patients. The associations of serum GOLPH3 expression with clinicopathological factors and the diagnostic accuracy were statistically evaluated using the chi-square test and receiver operating characteristic (ROC) curve analysis. Results Compared with the healthy control group, serum GOLPH3 level was distinctly enhanced in bladder cancer patients (P<0.001). Moreover, compared to the non-malignant tissues, GOLPH3 showed positive expression in bladder cancer tissues. The abnormal GOLPH3 levels were tightly related to grade (P=0.018), tumor stage (P=0.000), lymph node status (P=0.030), and muscle invasion (P=0.012). ROC analysis showed that serum GOLPH3 exhibited a high diagnostic value to distinguish bladder cancer patients from healthy persons. The area under the ROC curve (AUC) was 0.948. The specificity and sensitivity were 92.5% and 83.8%, respectively. Conclusions GOLPH3 was highly expressed in bladder cancer patients and could be used as a diagnostic tool.
Collapse
Affiliation(s)
- Jianlei Lu
- Department of Surgical Urology, First People's Hospital, Jining, Shandong, China (mainland)
| | - Feng Zhong
- Department of Surgical Urology, Affiliated Hospital of the Academy of Medical Sciences, Jinan, Shandong, China (mainland)
| | - Beibei Sun
- Department of Operating Rooms, Second People's Hospital, Jining, Shandong, China (mainland)
| | - Chao Wang
- Department of Surgical Urology, First People's Hospital, Jining, Shandong, China (mainland)
| |
Collapse
|
17
|
Kulkarni-Gosavi P, Makhoul C, Gleeson PA. Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Lett 2019; 593:2289-2305. [PMID: 31378930 DOI: 10.1002/1873-3468.13567] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
Abstract
In addition to the classical functions of the Golgi in membrane transport and glycosylation, the Golgi apparatus of mammalian cells is now recognised to contribute to the regulation of a range of cellular processes, including mitosis, DNA repair, stress responses, autophagy, apoptosis and inflammation. These processes are often mediated, either directly or indirectly, by membrane scaffold molecules, such as golgins and GRASPs which are located on Golgi membranes. In many cases, these scaffold molecules also link the actin and microtubule cytoskeleton and influence Golgi morphology. An emerging theme is a strong relationship between the morphology of the Golgi and regulation of a variety of signalling pathways. Here, we review the molecular regulation of the morphology of the Golgi, especially the role of the golgins and other scaffolds in the interaction with the microtubule and actin networks. In addition, we discuss the impact of the modulation of the Golgi ribbon in various diseases, such as neurodegeneration and cancer, to the pathology of disease.
Collapse
Affiliation(s)
- Prajakta Kulkarni-Gosavi
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Christian Makhoul
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
18
|
Rahajeng J, Kuna RS, Makowski SL, Tran TTT, Buschman MD, Li S, Cheng N, Ng MM, Field SJ. Efficient Golgi Forward Trafficking Requires GOLPH3-Driven, PI4P-Dependent Membrane Curvature. Dev Cell 2019; 50:573-585.e5. [PMID: 31231041 PMCID: PMC7583631 DOI: 10.1016/j.devcel.2019.05.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/22/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
Vesicle budding for Golgi-to-plasma membrane trafficking is a key step in secretion. Proteins that induce curvature of the Golgi membrane are predicted to be required, by analogy to vesicle budding from other membranes. Here, we demonstrate that GOLPH3, upon binding to the phosphoinositide PI4P, induces curvature of synthetic membranes in vitro and the Golgi in cells. Moreover, efficient Golgi-to-plasma membrane trafficking critically depends on the ability of GOLPH3 to curve the Golgi membrane. Interestingly, uncoupling of GOLPH3 from its binding partner MYO18A results in extensive curvature of Golgi membranes, producing dramatic tubulation of the Golgi, but does not support forward trafficking. Thus, forward trafficking from the Golgi to the plasma membrane requires the ability of GOLPH3 both to induce Golgi membrane curvature and to recruit MYO18A. These data provide fundamental insight into the mechanism of Golgi trafficking and into the function of the unique Golgi secretory oncoproteins GOLPH3 and MYO18A.
Collapse
Affiliation(s)
- Juliati Rahajeng
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ramya S Kuna
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefanie L Makowski
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thuy T T Tran
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew D Buschman
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sheng Li
- Department of Medicine, Division of Rheumatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Norton Cheng
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michelle M Ng
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seth J Field
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Wang X, Wang Z, Zhang Y, Wang Y, Zhang H, Xie S, Xie P, Yu R, Zhou X. Golgi phosphoprotein 3 sensitizes the tumour suppression effect of gefitinib on gliomas. Cell Prolif 2019; 52:e12636. [PMID: 31094020 PMCID: PMC6669003 DOI: 10.1111/cpr.12636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives We previously reported that Golgi phosphoprotein 3 (GOLPH3) promotes glioma progression by inhibiting EGFR endocytosis and degradation, leading to EGFR accumulation and PI3K‐AKT pathway over‐activation. In the current study, we examine whether GOLPH3 affects the response of glioma cells to gefitinib, an EGFR selective inhibitor. Materials and Methods The expression of GOLPH3 and EGFR in glioma cells was detected by immunofluorescence and immunoblotting. The cell viability or growth in vitro was determined by CCK‐8, EdU incorporation and clonogenic assays. The primary glioma cells were cultured by trypsin and mechanical digestion. The transwell invasion assay was used to examine the primary glioma cell motility. Intracranial glioma model in nude mice were established to explore the sensitivity of gefitinib to GOLPH3 high cancer cells in vivo. Results Both the immortalized and primary glioma cells with GOLPH3 over‐expression hold higher EGFR protein levels on the cell membrane and exhibited higher sensitivity to gefitinib. In addition, primary glioma cells with higher GOLPH3 level exhibited stronger proliferation behaviour. Importantly, GOLPH3 enhanced the anti‐tumour effect of gefitinib in vivo. Consistently, after gefitinib treatment, tumours derived from GOLPH3 over‐expression cells exhibited lower Ki67‐positive and higher cleaved caspase‐3–positive cells than control tumours. Conclusions Our results demonstrate that GOLPH3 increases the sensitivity of glioma cells to gefitinib. Our study provides foundation for further exploring whether GOLPH3 high gliomas will be more sensitive to anti‐EGFR therapy in clinic and give ideas for developing new possible treatments for individual glioma patients.
Collapse
Affiliation(s)
- Xu Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhaohao Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Zhang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shao Xie
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng Xie
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
20
|
The knocking down of the oncoprotein Golgi phosphoprotein 3 in T98G cells of glioblastoma multiforme disrupts cell migration by affecting focal adhesion dynamics in a focal adhesion kinase-dependent manner. PLoS One 2019; 14:e0212321. [PMID: 30779783 PMCID: PMC6380552 DOI: 10.1371/journal.pone.0212321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/31/2019] [Indexed: 01/29/2023] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a conserved protein of the Golgi apparatus that in humans has been implicated in tumorigenesis. However, the precise function of GOLPH3 in malignant transformation is still unknown. Nevertheless, clinicopathological data shows that in more than a dozen kinds of cancer, including gliomas, GOLPH3 could be found overexpressed, which correlates with poor prognosis. Experimental data shows that overexpression of GOLPH3 leads to transformation of primary cells and to tumor growth enhancement. Conversely, the knocking down of GOLPH3 in GOLPH3-overexpressing tumor cells reduces tumorigenic features, such as cell proliferation and cell migration and invasion. The cumulative evidence indicate that GOLPH3 is an oncoprotein that promotes tumorigenicity by a mechanism that impact at different levels in different types of cells, including the sorting of Golgi glycosyltransferases, signaling pathways, and the actin cytoskeleton. How GOLPH3 connects mechanistically these processes has not been determined yet. Further studies are important to have a more complete understanding of the role of GOLPH3 as oncoprotein. Given the genetic diversity in cancer, a still outstanding aspect is how in this inherent heterogeneity GOLPH3 could possibly exert its oncogenic function. We have aimed to evaluate the contribution of GOLPH3 overexpression in the malignant phenotype of different types of tumor cells. Here, we analyzed the effect on cell migration that resulted from stable, RNAi-mediated knocking down of GOLPH3 in T98G cells of glioblastoma multiforme, a human glioma cell line with unique features. We found that the reduction of GOLPH3 levels produced dramatic changes in cell morphology, involving rearrangements of the actin cytoskeleton and reduction in the number and dynamics of focal adhesions. These effects correlated with decreased cell migration and invasion due to affected persistence and directionality of cell motility. Moreover, the knocking down of GOLPH3 also caused a reduction in autoactivation of focal adhesion kinase (FAK), a cytoplasmic tyrosine kinase that regulates focal adhesions. Our data support a model in which GOLPH3 in T98G cells promotes cell migration by stimulating the activity of FAK.
Collapse
|
21
|
Kuna RS, Field SJ. GOLPH3: a Golgi phosphatidylinositol(4)phosphate effector that directs vesicle trafficking and drives cancer. J Lipid Res 2018; 60:269-275. [PMID: 30266835 DOI: 10.1194/jlr.r088328] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/25/2018] [Indexed: 12/17/2022] Open
Abstract
GOLPH3 is a peripheral membrane protein localized to the Golgi and its vesicles, but its purpose had been unclear. We found that GOLPH3 binds specifically to the phosphoinositide phosphatidylinositol(4)phosphate [PtdIns(4)P], which functions at the Golgi to promote vesicle exit for trafficking to the plasma membrane. PtdIns(4)P is enriched at the trans-Golgi and so recruits GOLPH3. Here, a GOLPH3 complex is formed when it binds to myosin18A (MYO18A), which binds F-actin. This complex generates a pulling force to extract vesicles from the Golgi; interference with this GOLPH3 complex results in dramatically reduced vesicle trafficking. The GOLPH3 complex has been identified as a driver of cancer in humans, likely through multiple mechanisms that activate secretory trafficking. In this review, we summarize the literature that identifies the nature of the GOLPH3 complex and its role in cancer. We also consider the GOLPH3 complex as a hub with the potential to reveal regulation of the Golgi and suggest the possibility of GOLPH3 complex inhibition as a therapeutic approach in cancer.
Collapse
Affiliation(s)
- Ramya S Kuna
- Division of Endocrinology and Metabolism, Department of Medicine, University of California at San Diego, La Jolla, CA
| | - Seth J Field
- Division of Endocrinology and Metabolism, Department of Medicine, University of California at San Diego, La Jolla, CA
| |
Collapse
|
22
|
Zhou X, Xie S, Wu S, Qi Y, Wang Z, Zhang H, Lu D, Wang X, Dong Y, Liu G, Yang D, Shi Q, Bian W, Yu R. Golgi phosphoprotein 3 promotes glioma progression via inhibiting Rab5-mediated endocytosis and degradation of epidermal growth factor receptor. Neuro Oncol 2018; 19:1628-1639. [PMID: 28575494 DOI: 10.1093/neuonc/nox104] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Golgi phosphoprotein 3 (GOLPH3) is associated with worse prognosis of gliomas, but its role and mechanism in glioma progression remain largely unknown. This study aimed to explore the role and mechanism of GOLPH3 in glioma progression. Methods The expression of GOLPH3 in glioma tissues was detected by quantitative PCR, immunoblotting, and immunohistochemistry. GOLPH3's effect on glioma progression was examined using cell growth assays and an intracranial glioma model. The effect of GOLPH3 on epidermal growth factor receptor (EGFR) stability, endocytosis, and degradation was examined by immunoblotting and immunofluorescence. The activity of Rab5 was checked by glutathione S-transferase pulldown assay. Results GOLPH3 was upregulated in gliomas, and its downregulation inhibited glioma cell proliferation both in vitro and in vivo. Furthermore, GOLPH3 depletion dampened EGFR signaling by enhancing EGFR endocytosis, driving EGFR into late endosome and promoting lysosome-mediated degradation. Interestingly, GOLPH3 bound to Rab5 and GOLPH3 downregulation promoted the activation of Rab5. In addition, Rab5 depletion abolished the effect of GOLPH3 on EGFR endocytosis and degradation. Conclusion Our results imply that GOLPH3 promotes glioma cell proliferation via inhibiting Rab5-mediated endocytosis and degradation of EGFR, thereby activating the phosphatidylinositol-3 kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway. We find a new mechanism by which GOLPH3 promotes tumor progression through regulating cell surface receptor trafficking. Extensive and intensive understanding of the role of GOLPH3 in glioma progression may provide an opportunity to develop a novel molecular therapeutic target for gliomas.
Collapse
Affiliation(s)
- Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shao Xie
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shishuang Wu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanhua Qi
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhaohao Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dong Lu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Dong
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guanzheng Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongxu Yang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiong Shi
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenbin Bian
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
23
|
Wu S, Fu J, Dong Y, Yi Q, Lu D, Wang W, Qi Y, Yu R, Zhou X. GOLPH3 promotes glioma progression via facilitating JAK2-STAT3 pathway activation. J Neurooncol 2018; 139:269-279. [PMID: 29713848 DOI: 10.1007/s11060-018-2884-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Our recent work reported that GOLPH3 promotes glioma progression via inhibiting endocytosis and degradation of EGFR. The current study aimed to explore the potential regulating mechanism of GOLPH3 on JAK2-STAT3 signaling, a downstream effector of EGFR, in glioma progression. METHODS The expression of JAK2, STAT3 and GOLPH3 in glioma tissues was detected by western blotting, tissue microarray and immunohistochemistry. The U251 and U87 cells with GOLPH3 down-regulation or over-expression were generated by lentivirus system. The effects of GOLPH3 on the activity of JAK2 and STAT3 were detected by western blotting and reverse transcription polymerase chain reaction. Co-immunoprecipitation was used to detect the association of GOLPH3 with JAK2 and STAT3. Cell proliferation was detected by CCK8 and EdU assay. RESULTS The level of JAK2, STAT3 and GOLPH3 were significantly up-regulated and exhibited pairwise correlation in human glioma tissues. The level of p-JAK2 and p-STAT3, as well as the mRNA and protein levels of cyclin D1 and c-myc, two target genes of STAT3, decreased after GOLPH3 down-regulation, while they increased after GOLPH3 over-expression both in U251 and U87 cells. Interestingly, GOLPH3, JAK2 and STAT3 existed in the same protein complex and GOLPH3 affected the interaction of JAK2 and STAT3. Importantly, down-regulation of STAT3 partially abolished cell proliferation induced by GOLPH3 over-expression. CONCLUSIONS GOLPH3 may act as a scaffold protein to regulate JAK2-STAT3 interaction and then its activation, which therefore mediates the effect of GOLPH3 on cell proliferation.
Collapse
Affiliation(s)
- Shishuang Wu
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jiale Fu
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Yu Dong
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Qinghao Yi
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Dong Lu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Weibing Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Yanhua Qi
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China.,Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Wang P, Chen X, Goldbeck C, Chung E, Kang BH. A distinct class of vesicles derived from the trans-Golgi mediates secretion of xylogalacturonan in the root border cell. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:596-610. [PMID: 28865155 DOI: 10.1111/tpj.13704] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/21/2017] [Accepted: 08/29/2017] [Indexed: 05/05/2023]
Abstract
Root border cells lie on the surface of the root cap and secrete massive amounts of mucilage that contains polysaccharides and proteoglycans. Golgi stacks in the border cells have hypertrophied margins, reflecting elevated biosynthetic activity to produce the polysaccharide components of the mucilage. To investigate the three-dimensional structures and macromolecular compositions of these Golgi stacks, we examined high-pressure frozen/freeze-substituted alfalfa root cap cells with electron microscopy/tomography. Golgi stacks in border cells and peripheral cells, precursor cells of border cells, displayed similar morphological features, such as proliferation of trans cisternae and swelling of the trans cisternae and trans-Golgi network (TGN) compartments. These swollen margins give rise to two types of vesicles larger than other Golgi-associated vesicles. Margins of trans-Golgi cisternae accumulate the LM8 xylogalacturonan (XGA) epitope, and they become darkly stained large vesicles (LVs) after release from the Golgi. Epitopes for xyloglucan (XG), polygalacturonic acid/rhamnogalacturonan-I (PGA/RG-I) are detected in the trans-most cisternae and TGN compartments. LVs produced from TGN compartments (TGN-LVs) stained lighter than LVs and contained the cell wall polysaccharide epitopes seen in the TGN. LVs carrying the XGA epitope fuse with the plasma membrane only in border cells, whereas TGN-LVs containing the XG and PGA/RG-I epitopes fuse with the plasma membrane of both peripheral cells and border cells. Taken together, these results indicate that XGA is secreted by a novel type of secretory vesicles derived from trans-Golgi cisternae. Furthermore, we simulated the collapse in the central domain of the trans-cisternae accompanying polysaccharide synthesis with a mathematical model.
Collapse
Affiliation(s)
- Pengfei Wang
- Cellular and Molecular Biology Program, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Xinshi Chen
- Department of Mathematics, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Cameron Goldbeck
- Department of Mathematics, University of California, Santa Barbara, CA, 93106, USA
| | - Eric Chung
- Department of Mathematics, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Byung-Ho Kang
- Cellular and Molecular Biology Program, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| |
Collapse
|
25
|
Rizzo R, Parashuraman S, D’Angelo G, Luini A. GOLPH3 and oncogenesis: What is the molecular link? Tissue Cell 2017; 49:170-174. [DOI: 10.1016/j.tice.2016.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022]
|
26
|
Sun J, Yang X, Zhang R, Liu S, Gan X, Xi X, Zhang Z, Feng Y, Sun Y. GOLPH3 induces epithelial-mesenchymal transition via Wnt/β-catenin signaling pathway in epithelial ovarian cancer. Cancer Med 2017; 6:834-844. [PMID: 28332316 PMCID: PMC5387163 DOI: 10.1002/cam4.1040] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 12/15/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3), a newly recognized oncogene, is associated with tumor growth, metastasis, and poor prognosis in several types of cancer. However, its biological role and underlying mechanism in epithelial ovarian cancer (EOC) remain poorly understood. Here, we found that GOLPH3 was overexpressed in EOC tissues and cell lines. This overexpression promoted the migration and invasion of EOC cells. Moreover, GOLPH3 upregulated the expression of epithelial–mesenchymal transition (EMT) markers, such as N‐cadherin and Snail, and the Wnt/β‐catenin‐related genes cyclin‐D1 and c‐Myc, which were restored via silencing of GOLPH3 expression. Furthermore, the inhibitor and activator of the Wnt/β‐catenin pathway, XAV939 and LiCl, enhanced or decreased, respectively, the effect of GOLPH3 on EMT, which further confirmed that GOLPH3 promoted EMT progression via activation of Wnt/β‐catenin signaling. In addition, we found that EDD, the human hyperplastic discs gene, was consistent with GOLPH3 expression and also promoted the EMT process and activated Wnt/β‐catenin signaling. These findings demonstrate that EDD might be a downstream factor of GOLPH3. Taken together, our findings demonstrate the existence of a GOLPH3–Wnt/β‐catenin–EMT axis in EOC and provide a new therapeutic target to treat EOC.
Collapse
Affiliation(s)
- Jing Sun
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoming Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ru Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suqing Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xupei Gan
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenbo Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youji Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunyan Sun
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Liu Y, Sun Y, Zhao A. MicroRNA-134 suppresses cell proliferation in gastric cancer cells via targeting of GOLPH3. Oncol Rep 2017; 37:2441-2448. [DOI: 10.3892/or.2017.5488] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/25/2016] [Indexed: 11/05/2022] Open
|
28
|
Makowski SL, Tran TT, Field SJ. Emerging themes of regulation at the Golgi. Curr Opin Cell Biol 2017; 45:17-23. [PMID: 28213314 DOI: 10.1016/j.ceb.2017.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
The Golgi is generally recognized for its central role in the secretory pathway to orchestrate protein post-translational modification and trafficking of proteins and lipids to their final destination. Despite the common view of the Golgi as an inert sorting organelle, emerging data demonstrate that important signaling events occur at the Golgi, including those that regulate the trafficking function of the Golgi. The phosphatidylinositol-4-phosphate/GOLPH3/MYO18A/F-actin complex serves as a hub for signals that regulate Golgi trafficking function. Furthermore, the Golgi is increasingly appreciated for its important role in cell growth and in driving oncogenic transformation, as illuminated by the discovery that GOLPH3 and MYO18A are cancer drivers.
Collapse
Affiliation(s)
- Stefanie L Makowski
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, CA 92093-0707, USA
| | - Thuy Tt Tran
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, CA 92093-0707, USA
| | - Seth J Field
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, CA 92093-0707, USA.
| |
Collapse
|
29
|
Lipid transfer proteins and the tuning of compartmental identity in the Golgi apparatus. Chem Phys Lipids 2016; 200:42-61. [DOI: 10.1016/j.chemphyslip.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
30
|
Yu KN, Kim HJ, Kim S, Dawaadamdin O, Lee AY, Hong SH, Chang SH, Choi SJ, Shim SM, Lee K, Cho MH. Cigarette Smoking Condensate Disrupts Endoplasmic Reticulum-Golgi Network Homeostasis Through GOLPH3 Expression in Normal Lung Epithelial Cells. Nicotine Tob Res 2016; 18:1877-1885. [PMID: 27611309 DOI: 10.1093/ntr/ntw079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2023]
Abstract
INTRODUCTION Cigarette smoke (CS) is associated with a broad range of diseases including lung cancer. Many researchers have suggested that cigarette smoke condensate (CSC) may be more toxic compared to cigarette smoke extract (CSE) because CSC contains the lipid-soluble faction of smoke while CSE contains the hydrophilic or gas phase. The aim of this research is to investigate the effects of CSC on the disruption of endoplasmic reticulum (ER)-Golgi homeostasis in normal lung epithelial cells. METHODS CS was generated according to the ISO 3308 method. To ascertain the mechanistic effects of CSC on lung toxicity, normal lung epithelial cells of the cell line 16HBE14o- were treated with CSC (0.1mg/mL) for 48 hours. The toxic effects of CSC on ER-Golgi homeostasis and GOLPH3 expression were observed through diverse molecular tools including transmission electron microscope analysis. RESULTS Our results demonstrated that CSC treatment increased reactive oxygen species generation in lung cells and led to the alteration of ER-Golgi homeostasis in conjunction with increased autophagy. In particular, GOLPH3, known as an oncogene and a marker protein for the trans-Golgi network, was upregulated in CSC-treated cells. GOLPH3 protein overexpression was also confirmed in the lungs of human lung cancer patients as well as NNK-treated mice. CONCLUSION Our study revealed that CSC caused lung damage through the disruption of ER-Golgi homeostasis and autophagy induction. The expression level of the trans-Golgi marker protein GOLPH3 could serve as a reliable bio-indicator for CS-related lung cancer. IMPLICATIONS CS is a harmful factor in the development of many diseases including cancer. In this research, we demonstrated that CSC treatment led to malfunction of the ER-Golgi network, with the disrupted ER and Golgi causing GOLPH3 overexpression and abnormal autophagy accumulation. In addition, although the value of GOLPH3 as a predictor remains to be fully elucidated, our data suggest that GOLPH3 levels may be a novel prognostic biomarker of tobacco related lung disease.
Collapse
Affiliation(s)
- Kyeong-Nam Yu
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH
| | - Hyeon-Jeong Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University , Seoul , Korea
| | - Sanghwa Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Graduate Group of Tumor Biology, Seoul National University, Seoul, Korea
| | | | - Ah-Young Lee
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University , Seoul , Korea
| | - Sung-Ho Hong
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University , Seoul , Korea
| | - Seung-Hee Chang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University , Seoul , Korea
| | - Seong-Jin Choi
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, Jeongeup, Korea
- Human and Environment Toxicology, University of Science and Technology, Daejeon, Korea
| | - Soon-Mi Shim
- Department of Food Science and Technology, Sejong University , Seoul , Korea
| | - Kyuhong Lee
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, Jeongeup, Korea
- Human and Environment Toxicology, University of Science and Technology, Daejeon, Korea
| | - Myung-Haing Cho
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Graduate Group of Tumor Biology, Seoul National University, Seoul, Korea
- Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Korea
- Institute of GreenBio Science Technology, Seoul National University, Pyeongchang-gun, Korea
| |
Collapse
|
31
|
Tenorio MJ, Ross BH, Luchsinger C, Rivera-Dictter A, Arriagada C, Acuña D, Aguilar M, Cavieres V, Burgos PV, Ehrenfeld P, Mardones GA. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231. PLoS One 2016; 11:e0154719. [PMID: 27123979 PMCID: PMC4849736 DOI: 10.1371/journal.pone.0154719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/18/2016] [Indexed: 01/08/2023] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes.
Collapse
Affiliation(s)
- María J. Tenorio
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Breyan H. Ross
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Charlotte Luchsinger
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Andrés Rivera-Dictter
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Cecilia Arriagada
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Diego Acuña
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Marcelo Aguilar
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Viviana Cavieres
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Patricia V. Burgos
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Department of Anatomy, Histology and Pathology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
32
|
Tang W, Han M, Ruan B, Jin W, Lou J, Yuan X, Chen D, Chen Y, Shin VY, Jin H, Wang X. Overexpression of GOLPH3 is associated with poor survival in Non-small-cell lung cancer. Am J Transl Res 2016; 8:1756-62. [PMID: 27186299 PMCID: PMC4859904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
As a highly conserved protein of the Golgi apparatus, Golgi phosphoprotein 3 (GOLPH3) has been shown to be involved in tumorigenesis. This study aims to explore the expression and significance of GOLPH3 in non-small-cell lung cancer (NSCLC). We found that GOLPH3 expression was significantly elevated in NSCLC tissues when compared with adjacent lung tissues (p<0.01). Moreover, GOLPH3 expression was significantly associated with histological type (p<0.01), differentiation (p<0.01), and lymph node metastasis (p<0.05). Kaplan-Meier survival analysis showed that overall survival of patients with high expression of GOLPH3 was significantly shorter (n=100, p<0.05). In addition, GOLPH3 knock-down in two independent NSCLC cell lines inhibited cell viability through the induction of cell cycle arrest and apoptosis. In conclusion, GOLPH3 is closely related to the progression in NSCLC and could be served as a potential prognostic biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Wanfen Tang
- Department of Medical Oncology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang UniversityChina
- Department of Medical Oncology, Jinhua Guangfu HospitalJinhua, China
| | - Mengjiao Han
- Department of Medical Oncology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang UniversityChina
| | - Beihong Ruan
- Department of Medical Oncology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang UniversityChina
| | - Wei Jin
- Department of Medical Oncology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang UniversityChina
| | - Jun Lou
- Department of Medical Oncology, Jinhua Guangfu HospitalJinhua, China
| | - Xiamei Yuan
- Department of Medical Oncology, Jinhua Guangfu HospitalJinhua, China
| | - Dingwei Chen
- Department of General Surgery, Sir Runrun Shaw Hospital, Medical School of Zhejiang UniversityChina
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongChina
| | - Vivian Y Shin
- Department of Surgery, Faculty of Medicine, The University of Hong KongChina
| | - Hongchuan Jin
- Department of Medical Oncology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang UniversityChina
| | - Xian Wang
- Department of Medical Oncology, Key Laboratory of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang UniversityChina
| |
Collapse
|
33
|
Zhang Q, Zhuang J, Deng Y, Zhao X, Tang B, Yao D, Zhao W, Chang C, Lu Q, Chen W, Zhang S, Ji C, Cao L, Guo H. GOLPH3 is a potential therapeutic target and a prognostic indicator of poor survival in bladder cancer treated by cystectomy. Oncotarget 2015; 6:32177-32192. [PMID: 26375441 PMCID: PMC4741668 DOI: 10.18632/oncotarget.4867] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) has been reported to be involved in the development of several human cancers. However, its clinical significance and biological role in bladder cancer remains unclear. In this study, we sought to analyze the GOLPH3 expression in bladder cancer samples and cells, and explore its clinical significance and biological role. We found that GOLPH3 was significantly increased in bladder cancer tissues and cells. Overexpression of GOLPH3 had significant correlation with poorer survival for bladder cancer patients treated by cystectomy. Knockdown of GOLPH3 inhibited the proliferation, migration and invasion of cancer cells, and tumor growth in a xenograft mouse model. GOLPH3 silencing inhibited AKT/m-TOR signaling, increased the cyclin-dependent kinase (CDK) inhibitor p27 and decreased the CDK regulator cyclin D1 and matrix metallopeptidase 9 (MMP9). Thus, GOLPH3 is likely to play important roles in bladder cancer progression via modulating AKT/mTOR signaling, and it is a novel prognostic biomarker and promising therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Junlong Zhuang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Yongming Deng
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Xiaozhi Zhao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Bo Tang
- Vazyme Biotech Co., Ltd, Nanjing 210000, Jiangsu, PR China
| | - Dongwei Yao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Wei Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Cunjie Chang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Qun Lu
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Shiwei Zhang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Changwei Ji
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| | - Lin Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
- Vazyme Biotech Co., Ltd, Nanjing 210000, Jiangsu, PR China
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing 210008, Jiangsu, PR China
| |
Collapse
|
34
|
The roles of the oncoprotein GOLPH3 in contractile ring assembly and membrane trafficking during cytokinesis. Biochem Soc Trans 2015; 43:117-21. [PMID: 25619256 DOI: 10.1042/bst20140264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cytokinesis is an intricate process that requires an intimate interplay between actomyosin ring constriction and plasma membrane remodelling at the cleavage furrow. However, the molecular mechanisms involved in coupling the cytoskeleton dynamics with vesicle trafficking during cytokinesis are poorly understood. The highly conserved Golgi phosphoprotein 3 (GOLPH3), functions as a phosphatidylinositol 4-phosphate (PI4P) effector at the Golgi. Recent studies have suggested that GOLPH3 is up-regulated in several cancers and is associated with poor prognosis and more aggressive tumours. In Drosophila melanogaster, GOLPH3 localizes at the cleavage furrow of dividing cells, is required for successful cytokinesis and acts as a key molecule in coupling phosphoinositide (PI) signalling with actomyosin ring dynamics. Because cytokinesis failures have been linked with pre-malignant disease and cancer, the novel connection between GOLPH3 and cytokinesis imposes new fields of investigation in cancer biology and therapy.
Collapse
|
35
|
Jiang Y, Su Y, Zhao Y, Pan C, Chen L. Golgi phosphoprotein3 overexpression is associated with poor survival in patients with solid tumors: a meta-analysis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10615-24. [PMID: 26617771 PMCID: PMC4637586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
Golgi phosphoprotein3 (GOLPH3) is known as an oncoprotein and may be a prognostic biomarker in various tumors. Here we performed a meta-analysis on the association of GOLPH3 expression and survival in solid tumors. All eligible studies were identified in Embase, PubMed and Web of Science Databases up to November 2014. Data about overall survival (OS), and disease-free survival (DFS) were extracted and pooled hazard ratios (HRs) of GOLPH3 for survival were calculated by using a random-effect model. Heterogeneity and publication bias were also assessed. A total of 15 eligible studies which comprised of 2529 cases were included in this global analysis: 14 were dealing with overall survival (OS) and 6 were with disease-free survival (DFS). We found that GOLPH3 overexpression was associated with shorter OS (HR 2.487, 95% CI 1.897-3.258, P < 0.001) and DFS (HR 1.911, 95% CI 1.245-2.932, P = 0.003) in general carcinomas. Importantly, subgroup analysis suggested that overexpression of GOLPH3 correlated with shorter OS in urogenital system cancers (HR 4.258, 95% CI 1.81-4.91, P < 0.001). Moreover, publication bias was not significant (P > 0.05). In conclusion, the present meta-analysis showed that overexpression of GOLPH3 predicts poor prognosis in solid tumors.
Collapse
Affiliation(s)
- Yaqi Jiang
- Department of Oncology, Subei People’s Hospital, Yangzhou UniversityYangzhou 215002, Jiangsu, China
| | - Yuqi Su
- Department of Oncology, The First People’s Hospital of YueyangYueyang 414000, Hunan, China
| | - Yang Zhao
- Department of Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong 510515, China
| | - Changqie Pan
- Department of Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong 510515, China
| | - Li Chen
- Department of Oncology, Subei People’s Hospital, Yangzhou UniversityYangzhou 215002, Jiangsu, China
| |
Collapse
|
36
|
Lu M, Tian Y, Yue WM, Li L, Li SH, Qi L, Hu WS, Gao C, Si LB, Tian H. GOLPH3, a good prognostic indicator in early-stage NSCLC related to tumor angiogenesis. Asian Pac J Cancer Prev 2015; 15:5793-8. [PMID: 25081702 DOI: 10.7314/apjcp.2014.15.14.5793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Golgi phosphoprotein-3 (GOLPH3) is implicated in cancer development and progression. The aim of this study was to evaluate the prognostic significance of GOLPH3 protein and its association with tumor angiogenesis in patients with early-stage NSCLC. MATERIALS AND METHODS Immunohistochemistry was performed to determine GOLPH3 protein expression and allow assessment of intratumoral microvessel density (MVD) by counting CD-34 positive immunostained endothelial cells. Correlations of expression with MVD, clinicopathologic features and clinical prognosis were analyzed. RESULTS A notably higher level of GOLPH3 expression was found in early-stage NSCC tissues at the protein level. However, we do not find any correlation between GOLPH3 expression and clinicopathologic features (p>0.05), although higher MVD was positively associated with GOLPH3 overexpression (p<0.001). Expression of GOLPH3 was found to be an independent prognostic factor in early- stage NSCLC patients, those expressing high levels of GOLPH3 exhibiting a substantially lower 5-year overall survival than GOLPH3-negative patients (adjusted HR =1.899, 95% CI: 1.021-3.532, p=0.043). CONCLUSIONS High expression of the GOLPH3 protein is common in early-stage NSCC, and is closely associated with tumor progression, increased tumor angiogenesis, and poor survival. We conclude a possibility of its use as a diagnostic and prognostic marker in early-stage NSCC patients.
Collapse
Affiliation(s)
- Ming Lu
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Jinan, China E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sechi S, Frappaolo A, Belloni G, Colotti G, Giansanti MG. The multiple cellular functions of the oncoprotein Golgi phosphoprotein 3. Oncotarget 2015; 6:3493-506. [PMID: 25691054 PMCID: PMC4414131 DOI: 10.18632/oncotarget.3051] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/07/2015] [Indexed: 12/13/2022] Open
Abstract
The highly conserved Golgi phosphoprotein 3 (GOLPH3) protein, a component of Trans-Golgi Network (TGN), has been defined as a "first-in-class Golgi oncoprotein" and characterized as a Phosphatidylinositol 4-phosphate [PI(4)P] effector at the Golgi. GOLPH3 is commonly amplified in several solid tumors. Furthermore this protein has been associated with poor prognosis in many cancers. Highly conserved from yeast to humans, GOLPH3 provides an essential function in vesicle trafficking and Golgi structure. Recent data have also implicated this oncoprotein in regulation of cytokinesis, modulation of mitochondrial mass and cellular response to DNA damage. A minute dissection of the molecular pathways that require GOLPH3 protein will be helpful to develop new therapeutic cancer strategies.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Giorgio Belloni
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Gianni Colotti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, 00185 Roma, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
38
|
Li W, Guo F, Gu M, Wang G, He X, Zhou J, Peng Y, Wang Z, Wang X. Increased Expression of GOLPH3 is Associated with the Proliferation of Prostate Cancer. J Cancer 2015; 6:420-9. [PMID: 25874005 PMCID: PMC4392050 DOI: 10.7150/jca.11228] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/19/2015] [Indexed: 12/14/2022] Open
Abstract
Background: Golgi phosphoprotein 3 (GOLPH3) is a metastasis-associated gene, however its role in cell proliferation of prostate cancer (PCa) has not yet been elucidated. Methods: The level of expression of GOLPH3 and other genes was examined by quantitative real-time PCR (QPCR) and western blot analysis. Furthermore, we performed a comprehensive analysis of the expression of GOLPH3 in PCa using a tissue microarray (TMA) and correlated our findings with pathological parameters of PCa. RNA interference (RNAi) was used to silence the expression of GOLPH3 in PC-3 cells and to measure the effects on proliferation and cell cycle using the CCK-8 assay and flow cytometry. Western blots were also employed to assess AKT-mTOR and cell cycle-related proteins. Results: We showed that the expression of GOLPH3 was located at the trans-Golgi membranes in PCa cells. We found that GOLPH3 was expressed in all PCa cells and was significantly higher in two androgen-independent cell lines, DU145 and PC-3. TMA immunohistochemistry showed that GOLPH3 was positive in 64% of cancer tissue samples compared with 20% in normal and 30% in benign samples (P<0.05). In vitro, silencing GOLPH3 expression inhibited cell proliferation and arrested the cell cycle at the G2/M phase. Silencing GOLPH3 also activated P21 expression but suppressed the expression of CDK1/2 and cyclinB1 protein together with the phosphorylation of AKT and mTOR. Conclusions: The expression of the GOLPH3 protein was significantly elevated in PCa. GOLPH3 can promote cell proliferation by enhancing the activity of AKT-mTOR signaling. Altogether, these findings suggest that GOLPH3 play important roles in proliferation and cell cycle regulation in PCa and might serve as promising biomarkers for PCa progression as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Wenzhi Li
- 1. Department of Urology, Linyi People's Hospital Affiliated to Shandong University, Shandong, China ; 2. Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fengfu Guo
- 1. Department of Urology, Linyi People's Hospital Affiliated to Shandong University, Shandong, China
| | - Meng Gu
- 2. Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Guangjian Wang
- 1. Department of Urology, Linyi People's Hospital Affiliated to Shandong University, Shandong, China
| | - Xiangfei He
- 1. Department of Urology, Linyi People's Hospital Affiliated to Shandong University, Shandong, China
| | - Juan Zhou
- 2. Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yubing Peng
- 2. Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhong Wang
- 2. Department of Urology, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiang Wang
- 3. Department of Urology, HuaShan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Li T, You H, Mo X, He W, Tang X, Jiang Z, Chen S, Chen Y, Zhang J, Hu Z. GOLPH3 Mediated Golgi Stress Response in Modulating N2A Cell Death upon Oxygen-Glucose Deprivation and Reoxygenation Injury. Mol Neurobiol 2015; 53:1377-1385. [PMID: 25633094 DOI: 10.1007/s12035-014-9083-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023]
Abstract
Increasing evidence implicating that the organelle-dependent initiation of cell death merits further research. The evidence also implicates Golgi as a sensor and common downstream-effector of stress signals in cell death pathways, and it undergoes disassembly and fragmentation during apoptosis in several neurological disorders. It has also been reported that during apoptotic cell death, there is a cross talk between ER, mitochondria, and Golgi. Thus, we hypothesized that Golgi might trigger death signals during oxidative stress through its own machinery. The current study found that GOLPH3, an outer membrane protein of the Golgi complex, was significantly upregulated in N2A cells upon oxygen-glucose deprivation and reoxygenation (OGD/R), positioning from the compact perinuclear ribbon to dispersed vesicle-like structures throughout the cytoplasm. Additionally, elevated GOLPH3 promoted a stress-induced conversion of the LC3 subunit I to II and reactive oxygen species (ROS) production in long-term OGD/R groups. The collective data indicated that GOLPH3 not only acted as a sensor of Golgi stress for its prompt upregulation during oxidative stress but also as an initiator that triggered and propagated specific Golgi stress signals to downstream effectors. This affected ROS production and stress-related autophagy and finally controlled the entry into apoptosis. The data also supported the hypothesis that the Golgi apparatus could be an ideal target for stroke, neurodegenerative diseases, or cancer therapy through its own functional proteins.
Collapse
Affiliation(s)
- Ting Li
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Hong You
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xiaoye Mo
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Wenfang He
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xiangqi Tang
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Zheng Jiang
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Shiyu Chen
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yang Chen
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Jie Zhang
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China.
| | - Zhiping Hu
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China.
| |
Collapse
|
40
|
Peng J, Fang Y, Tao Y, Li K, Su T, Nong Y, Xie F, Lai M. Mechanisms of GOLPH3 associated with the progression of gastric cancer: a preliminary study. PLoS One 2014; 9:e107362. [PMID: 25286393 PMCID: PMC4186759 DOI: 10.1371/journal.pone.0107362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/07/2014] [Indexed: 02/06/2023] Open
Abstract
Study Design To investigate the specific mechanisms by which Golgi phosphoprotein 3 (GOLPH3) affects the progression of gastric cancer and to explore its clinical significance. Methods Immunohistochemical analysis was used to evaluate the correlations between GOLPH3, phosphorylated mTOR (p-mTOR), phosphorylated Akt (p-Akt), phosphorylated p70S6 (p-p70S6), phosphorylated 4E-BP1 (p-4E-BP1) and the clinicopathological features of gastric cancer. The mRNA expression levels of GOLPH3, mTOR, Akt, p70S6 and 4E-BP1 in gastric cancer, carcinoma-adjacent and paired normal tissue were analyzed using RT-PCR. Western blotting was used to determine the protein expression of GOLPH3, p-mTOR, p-Akt, p-p70S6 and p-4E-BP1 in tissues. Results High expression protein levels of GOLPH3, p-AKT, p-mTOR, p70S6, p-4E-BP1 were positively associated with histological grade (p<0.05), depth of invasion (p<0.05), distant metastasis (p<0.05) and lymph node involvement (p<0.05). Compared with carcinoma-adjacent and paired normal tissues, the mRNA expression levels of GOLPH3, AKT, mTOR, p70S6 and 4EBP1 in gastric cancer tissues were significantly higher. The protein expression levels of GOLPH3, p-AKT, p-mTOR, p-p70S6 and p-4E-BP1 in gastric cancer tissues were also significantly higher than in carcinoma-adjacent and paired normal tissues. A strong positive correlation was observed between GOLPH3, p-mTOR, p-p70S6 and p-4EBP1 expression (r = 0.410, 0.303 and 0.276, respectively, p<0.05), but no significant correlation between the expression of GOLPH3 and p-Akt was observed. Conclusions The GOPLH3 expression level is highly correlated with Akt/mTOR signaling in human gastric cancer samples. GOLPH3 combined with Akt/mTOR signaling activation may play an important role in the development, differentiation, invasion and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Jinzhen Peng
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Ye Fang
- Department of Spine Osteopathia, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yong Tao
- Department of Spine Osteopathia, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Keke Li
- Department of Spine Osteopathia, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Ting Su
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yuncui Nong
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Fang Xie
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Mingyu Lai
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
- * E-mail:
| |
Collapse
|
41
|
Zhou X, Xue P, Yang M, Shi H, Lu D, Wang Z, Shi Q, Hu J, Xie S, Zhan W, Yu R. Protein kinase D2 promotes the proliferation of glioma cells by regulating Golgi phosphoprotein 3. Cancer Lett 2014; 355:121-9. [PMID: 25218347 DOI: 10.1016/j.canlet.2014.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/16/2023]
Abstract
Protein kinase D2 (PKD2) has been demonstrated to promote tumorigenesis in many types of cancers. However, how PKD2 regulates cancer cell growth is largely unknown. In this study, we found that over-expression of PKD2 promoted glioma cell growth but down-regulation of PKD2 inhibited it. Further investigation indicated that PKD2 down-regulation decreased the protein level of Golgi phosphoprotein 3(GOLPH3) as well as p-AKT level. On the contrary, over-expression of PKD2 increased the protein level of GOLPH3 and p-AKT. In addition, GOLPH3 exhibited similar effect on glioma cell growth to that of PKD2. Importantly, GOLPH3 down-regulation partially abolished glioma cell proliferation induced by PKD2 over-expression, while over-expression of GOLPH3 also partially rescued the inhibition effect of PKD2 down-regulation on glioma cell growth. Interestingly, the level of PKD2 and GOLPH3 significantly increased and was positively correlated in a cohort of glioma patients, as well as in patients from TCGA database. Taken together, these results reveal that PKD2 promotes glioma cell proliferation by regulating GOLPH3 and then AKT activation. Our findings indicate that both PKD2 and GOLPH3 play important roles in the progression of human gliomas and PKD2-GOLPH3-AKT signaling pathway might be a potential glioma therapeutic target.
Collapse
Affiliation(s)
- Xiuping Zhou
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Pengfei Xue
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Minglin Yang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Dong Lu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhaohao Wang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Qiong Shi
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jinxia Hu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shao Xie
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wenjian Zhan
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China; Insititute of Nervous System Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| |
Collapse
|
42
|
Zhang X, Ding Z, Mo J, Sang B, Shi Q, Hu J, Xie S, Zhan W, Lu D, Yang M, Bian W, Zhou X, Yu R. GOLPH3 promotes glioblastoma cell migration and invasion via the mTOR-YB1 pathway in vitro. Mol Carcinog 2014; 54:1252-63. [PMID: 25156912 DOI: 10.1002/mc.22197] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Xu Zhang
- Brain Hospital; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
- Insititute of Nervous System Diseases; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Zhijun Ding
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Jianbing Mo
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Ben Sang
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Qiong Shi
- Brain Hospital; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
- Insititute of Nervous System Diseases; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Jinxia Hu
- Brain Hospital; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
- Insititute of Nervous System Diseases; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Shao Xie
- Brain Hospital; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
- Insititute of Nervous System Diseases; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Wenjian Zhan
- Brain Hospital; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
- Insititute of Nervous System Diseases; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Dong Lu
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Minglin Yang
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Wenbin Bian
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Xiuping Zhou
- Brain Hospital; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
- Insititute of Nervous System Diseases; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Rutong Yu
- Brain Hospital; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
- Insititute of Nervous System Diseases; Xuzhou Medical College; Xuzhou Jiangsu China
| |
Collapse
|
43
|
Farber-Katz SE, Dippold HC, Buschman MD, Peterman MC, Xing M, Noakes CJ, Tat J, Ng MM, Rahajeng J, Cowan DM, Fuchs GJ, Zhou H, Field SJ. DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3. Cell 2014; 156:413-27. [PMID: 24485452 DOI: 10.1016/j.cell.2013.12.023] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/04/2013] [Accepted: 11/14/2013] [Indexed: 01/29/2023]
Abstract
The response to DNA damage, which regulates nuclear processes such as DNA repair, transcription, and cell cycle, has been studied thoroughly. However, the cytoplasmic response to DNA damage is poorly understood. Here, we demonstrate that DNA damage triggers dramatic reorganization of the Golgi, resulting in its dispersal throughout the cytoplasm. We further show that DNA-damage-induced Golgi dispersal requires GOLPH3/MYO18A/F-actin and the DNA damage protein kinase, DNA-PK. In response to DNA damage, DNA-PK phosphorylates GOLPH3, resulting in increased interaction with MYO18A, which applies a tensile force to the Golgi. Interference with the Golgi DNA damage response by depletion of DNA-PK, GOLPH3, or MYO18A reduces survival after DNA damage, whereas overexpression of GOLPH3, as is observed frequently in human cancers, confers resistance to killing by DNA-damaging agents. Identification of the DNA-damage-induced Golgi response reveals an unexpected pathway through DNA-PK, GOLPH3, and MYO18A that regulates cell survival following DNA damage.
Collapse
Affiliation(s)
- Suzette E Farber-Katz
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Holly C Dippold
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Matthew D Buschman
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Marshall C Peterman
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Mengke Xing
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Christopher J Noakes
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - John Tat
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Michelle M Ng
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Juliati Rahajeng
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - David M Cowan
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Greg J Fuchs
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093-0653, USA
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093-0653, USA
| | - Seth J Field
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA.
| |
Collapse
|
44
|
Xue Y, Wu G, Liao Y, Xiao G, Ma X, Zou X, Zhang G, Xiao R, Wang X, Liu Q, Long D, Yang J, Xu H, Liu F, Liu M, Xie K, Huang R. GOLPH3 is a novel marker of poor prognosis and a potential therapeutic target in human renal cell carcinoma. Br J Cancer 2014; 110:2250-60. [PMID: 24595000 PMCID: PMC4007226 DOI: 10.1038/bjc.2014.124] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/16/2014] [Accepted: 02/11/2014] [Indexed: 01/03/2023] Open
Abstract
Background: Golgi phosphoprotein 3 (GOLPH3) has been reported to be involved in the development of several human cancers. The present study was conducted to investigate the expression of GOLPH3 and its prognostic significance in renal cell carcinoma (RCC). Meanwhile, the function of GOLPH3 in human RCC was further investigated in cell culture models. Methods: Expression of GOLPH3 was examined in 43 fresh RCC tissues and paired adjacent normal renal tissues by real-time quantitative PCR and western blotting. Immunohistochemistry for GOLPH3 was performed on additional 218 RCC tissues. The clinical significance of GOLPH3 expression was analysed. Downregulation of GOLPH3 was performed using small-interfering RNA (siRNA) in Caki-1 and 786-O cells with high abundance of GOLPH3, and the effects of GOLPH3 silencing on cell proliferation, migration, invasion in vitro, and tumour growth in vivo were evaluated. Results: Expression of GOLPH3 was upregulated in the majority of the RCC clinical tissue specimens at both mRNA and protein levels. Clinicopathological analysis showed that GOLPH3 expression was significantly correlated with T stage (P<0.001), lymph-node status (P=0.003), distant metastasis (P<0.001), tumour-node-metastasis (TNM) stage (P<0.001), and Fuhman grade (P=0.001). Expression of GOLPH3 was inversely correlated with both overall and recurrence-free survival of RCC patients. Multivariate analysis showed that GOLPH3 expression was an independent prognostic indicator for patient's survival. Knockdown of the GOLPH3 expression reduced cell proliferation, anchorage-independent growth, migration, invasion, and tumour growth in xenograft model mice. Conclusions: These results suggest that GOLPH3 expression is likely to have important roles in RCC development and progression, and that GOLPH3 is a prognostic biomarker and a promising therapeutic target for RCC.
Collapse
Affiliation(s)
- Y Xue
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, People's Republic of China
| | - G Wu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, People's Republic of China
| | - Y Liao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, People's Republic of China
| | - G Xiao
- Department of Graduate School, Medical College of Nanchang University, Nanchang, People's Republic of China
| | - X Ma
- Department of Urology, PLA General Hospital, Beijing, People's Republic of China
| | - X Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, People's Republic of China
| | - G Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, People's Republic of China
| | - R Xiao
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, People's Republic of China
| | - X Wang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, People's Republic of China
| | - Q Liu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, People's Republic of China
| | - D Long
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, People's Republic of China
| | - J Yang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, People's Republic of China
| | - H Xu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, People's Republic of China
| | - F Liu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, People's Republic of China
| | - M Liu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, People's Republic of China
| | - K Xie
- Department of Urology, First Affiliated Hospital of Gannan Medical University, No. 23, Qing Nian Road, Ganzhou 341000, People's Republic of China
| | - R Huang
- Department of Graduate School, Medical College of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
45
|
High GOLPH3 expression is associated with a more aggressive behavior of epithelial ovarian carcinoma. Virchows Arch 2014; 464:443-52. [PMID: 24458516 DOI: 10.1007/s00428-014-1536-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 12/07/2013] [Accepted: 01/02/2014] [Indexed: 01/16/2023]
Abstract
Overexpression of GOLPH3 (Golgi phosphoprotein 3, 34 kDa) is associated with the progression of many solid tumor types leading to an unfavorable clinical outcome. The present study examined the association between GOLPH3 expression and tumor development, clinicopathological factors, and prognosis of epithelial ovarian carcinoma. GOLPH3 expression was examined by immunohistochemistry in 18 normal ovarian samples, 28 benign tumors, 55 serous borderline ovarian tumors, and 135 epithelial ovarian carcinomas. The association of GOLPH3 expression with clinical characteristics, response to chemotherapy, and overall survival of epithelial ovarian carcinoma patients was analyzed on fresh tissue samples. GOLPH3 mRNA and protein expression in ovarian cancer and normal ovarian tissues were detected by real-time quantitative RT-PCR and Western blotting, respectively. The results are the following: (1) GOLPH3 immunostaining localized to the cytoplasm in two patterns, condensed into large granules with perinuclear distribution, and dispersed in the cytoplasm as fine granules. (2) GOLPH3 expression was higher in epithelial ovarian carcinoma than in normal ovarian tissues at the mRNA and protein level. The frequency of high-level expression of GOLPH3 increased progressively from benign (cystadenoma) to borderline neoplasms to malignant lesions. (3) Dispersed cytoplasmic GOLPH3 expression in epithelial ovarian carcinoma patients was highly correlated with FIGO stage (p < 0.001), tumor histological grade (p = 0.003), lymph node involvement (p = 0.001), and chemotherapy response (p = 0.034). (4) A dispersed pattern of GOLPH3 expression was an independent prognostic factor for poor overall survival. Patients with low dispersed cytoplasmic GOLPH3 expression had significantly longer overall survival than patients with high dispersed cytoplasmic expression. In contrast, GOLPH3 condensed expression was not correlated with clinicopathological features, chemotherapy response, or prognosis. GOLPH3 gene expression might play a role in tumorigenesis in epithelial ovarian carcinoma as upregulation of GOLPH3 expression is associated with a more aggressive tumor phenotype. GOLPH3 immunohistochemistry may be of value to predict the outcome of ovarian carcinoma patients.
Collapse
|
46
|
Study of GOLPH3: a Potential Stress-Inducible Protein from Golgi Apparatus. Mol Neurobiol 2014; 49:1449-59. [DOI: 10.1007/s12035-013-8624-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
|
47
|
PtdIns(4)P signalling and recognition systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:59-83. [PMID: 23775691 DOI: 10.1007/978-94-007-6331-9_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Golgi apparatus is a sorting platform that exchanges extensively with the endoplasmic reticulum (ER), endosomes (Es) and plasma membrane (PM) compartments. The last compartment of the Golgi, the trans-Golgi Network (TGN) is a large complex of highly deformed membranes from which vesicles depart to their targeted organelles but also are harbored from retrograde pathways. The phosphoinositide (PI) composition of the TGN is marked by an important contingent of phosphatidylinositol-4-phosphate (PtdIns(4)P). Although this PI is present throughout the Golgi, its proportion grows along the successive cisternae and peaks at the TGN. The levels of this phospholipid are controlled by a set of kinases and phosphatases that regulate its concentrations in the Golgi and maintain a dynamic gradient that determines the cellular localization of several interacting proteins. Though not exclusive to the Golgi, the synthesis of PtdIns(4)P in other membranes is relatively marginal and has unclear consequences. The significance of PtdIns(4)P within the TGN has been demonstrated for numerous cellular events such as vesicle formation, lipid metabolism, and membrane trafficking.
Collapse
|
48
|
Chang WL, Chang CW, Chang YY, Sung HH, Lin MD, Chang SC, Chen CH, Huang CW, Tung KS, Chou TB. The Drosophila GOLPH3 homolog regulates the biosynthesis of heparan sulfate proteoglycans by modulating the retrograde trafficking of exostosins. Development 2013; 140:2798-807. [DOI: 10.1242/dev.087171] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The exostosin (EXT) genes encode glycosyltransferases required for glycosaminoglycan chain polymerization in the biosynthesis of heparan sulfate proteoglycans (HSPGs). Mutations in the tumor suppressor genes EXT1 and EXT2 disturb HSPG biosynthesis and cause multiple osteochondroma (MO). How EXT1 and EXT2 traffic within the Golgi complex is not clear. Here, we show that Rotini (Rti), the Drosophila GOLPH3, regulates the retrograde trafficking of EXTs. A reduction in Rti shifts the steady-state distribution of EXTs to the trans-Golgi. These accumulated EXTs tend to be degraded and their re-entrance towards the route for polymerizing GAG chains is disengaged. Conversely, EXTs are mislocalized towards the transitional endoplasmic reticulum/cis-Golgi when Rti is overexpressed. Both loss of function and overexpression of rti result in incomplete HSPGs and perturb Hedgehog signaling. Consistent with Drosophila, GOLPH3 modulates the dynamic retention and protein stability of EXT1/2 in mammalian species. Our data demonstrate that GOLPH3 modulates the activities of EXTs, thus implicating a putative role for GOLPH3 in the formation of MO.
Collapse
Affiliation(s)
- Wei-Ling Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, No.1 Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
| | - Che-Wei Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, No.1 Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
| | - Yu-Yun Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, No.1 Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
| | - Hsin-Ho Sung
- Institute of Molecular and Cellular Biology, National Taiwan University, No.1 Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
| | - Ming-Der Lin
- Institute of Molecular and Cellular Biology, National Taiwan University, No.1 Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
| | - Shu-Chuan Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, No.1 Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
| | - Chung-Hao Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, No.1 Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
| | - Chia-Wei Huang
- Institute of Molecular and Cellular Biology, National Taiwan University, No.1 Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
| | - Kuei-Shu Tung
- Institute of Molecular and Cellular Biology, National Taiwan University, No.1 Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
| | - Tze-Bin Chou
- Institute of Molecular and Cellular Biology, National Taiwan University, No.1 Sec.4 Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
49
|
De Matteis MA, Wilson C, D'Angelo G. Phosphatidylinositol-4-phosphate: The Golgi and beyond. Bioessays 2013; 35:612-22. [DOI: 10.1002/bies.201200180] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine; Naples; Italy
| | - Giovanni D'Angelo
- Institute of Protein Biochemistry; National Research Council (CNR); Naples; Italy
| |
Collapse
|
50
|
Ng MM, Dippold HC, Buschman MD, Noakes CJ, Field SJ. GOLPH3L antagonizes GOLPH3 to determine Golgi morphology. Mol Biol Cell 2013; 24:796-808. [PMID: 23345592 PMCID: PMC3596250 DOI: 10.1091/mbc.e12-07-0525] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
GOLPH3 is a ubiquitous PI4P effector, critical for Golgi function, and also an oncogene. GOLPH3L, a paralogue in vertebrates, also binds PI4P and localizes to the Golgi, but its expression is restricted to secretory cells. Despite some similarities to GOLPH3, GOLPH3L fails to interact with myosin 18A and functions at the Golgi to antagonize GOLPH3. GOLPH3 is a phosphatidylinositol-4-phosphate (PI4P) effector that plays an important role in maintaining Golgi architecture and anterograde trafficking. GOLPH3 does so through its ability to link trans-Golgi membranes to F-actin via its interaction with myosin 18A (MYO18A). GOLPH3 also is known to be an oncogene commonly amplified in human cancers. GOLPH3L is a GOLPH3 paralogue found in all vertebrate genomes, although previously it was largely uncharacterized. Here we demonstrate that although GOLPH3 is ubiquitously expressed in mammalian cells, GOLPH3L is present in only a subset of tissues and cell types, particularly secretory tissues. We show that, like GOLPH3, GOLPH3L binds to PI4P, localizes to the Golgi as a consequence of its PI4P binding, and is required for efficient anterograde trafficking. Surprisingly, however, we find that perturbations of GOLPH3L expression produce effects on Golgi morphology that are opposite to those of GOLPH3 and MYO18A. GOLPH3L differs critically from GOLPH3 in that it is largely unable to bind to MYO18A. Our data demonstrate that despite their similarities, unexpectedly, GOLPH3L antagonizes GOLPH3/MYO18A at the Golgi.
Collapse
Affiliation(s)
- Michelle M Ng
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|