1
|
Kyriazi D, Voth L, Bader A, Ewert W, Gerlach J, Elfrink K, Franz P, Tsap MI, Schirmer B, Damiano-Guercio J, Hartmann FK, Plenge M, Salari A, Schöttelndreier D, Strienke K, Bresch N, Salinas C, Gutzeit HO, Schaumann N, Hussein K, Bähre H, Brüsch I, Claus P, Neumann D, Taft MH, Shcherbata HR, Ngezahayo A, Bähler M, Amiri M, Knölker HJ, Preller M, Tsiavaliaris G. An allosteric inhibitor of RhoGAP class-IX myosins suppresses the metastatic features of cancer cells. Nat Commun 2024; 15:9947. [PMID: 39550360 PMCID: PMC11569205 DOI: 10.1038/s41467-024-54181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024] Open
Abstract
Aberrant Ras homologous (Rho) GTPase signalling is a major driver of cancer metastasis, and GTPase-activating proteins (GAPs), the negative regulators of RhoGTPases, are considered promising targets for suppressing metastasis, yet drug discovery efforts have remained elusive. Here, we report the identification and characterization of adhibin, a synthetic allosteric inhibitor of RhoGAP class-IX myosins that abrogates ATPase and motor function, suppressing RhoGTPase-mediated modes of cancer cell metastasis. In human and murine adenocarcinoma and melanoma cell models, including three-dimensional spheroid cultures, we reveal anti-migratory and anti-adhesive properties of adhibin that originate from local disturbances in RhoA/ROCK-regulated signalling, affecting actin-dynamics and actomyosin-based cell-contractility. Adhibin blocks membrane protrusion formation, disturbs remodelling of cell-matrix adhesions, affects contractile ring formation, and disrupts epithelial junction stability; processes severely impairing single/collective cell migration and cytokinesis. Combined with the non-toxic, non-pathological signatures of adhibin validated in organoids, mouse and Drosophila models, this mechanism of action provides the basis for developing anti-metastatic cancer therapies.
Collapse
Affiliation(s)
- Despoina Kyriazi
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Lea Voth
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Almke Bader
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Wiebke Ewert
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Institute for Functional Gene Analytics (IFGA), Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | | | - Kerstin Elfrink
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Peter Franz
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Mariana I Tsap
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | | | - Falk K Hartmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Masina Plenge
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz Universität Hannover, Hannover, Germany
| | - Azam Salari
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | - Katharina Strienke
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Nadine Bresch
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Claudio Salinas
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Nora Schaumann
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Kais Hussein
- Institute of Pathology, KRH Klinikum Nordstadt, Hannover, Germany
| | - Heike Bähre
- Research Core Unit Mass Spectrometry-Metabolomics, Hannover Medical School, Hanover, Germany
| | - Inga Brüsch
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH-Non-Profit Biomedical Research Institute, Hannover, Germany
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Anaclet Ngezahayo
- Department of Cell Physiology and Biophysics, Institute of Cell Biology and Biophysics, Leibniz Universität Hannover, Hannover, Germany
| | - Martin Bähler
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Mahdi Amiri
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Institute for Functional Gene Analytics (IFGA), Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | | |
Collapse
|
2
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
3
|
Assembly of the Non-Canonical Myo9a-RhoGAP and RhoA·GDP Transition State Complex in the Presence of MgF 3. Protein J 2021; 40:842-848. [PMID: 34709522 DOI: 10.1007/s10930-021-10027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
Myo9a is an actin-based molecular motor with a RhoGAP domain in its C-terminal tail. It plays a role in a variety of biological processes, such as in regulating the immune response, neuron development, and cancer progression, and its deregulation can lead to the development of disease conditions. Myo9a acts mainly via its RhoGAP domain. In the current study, we used a pET32a vector with an N-terminal Trx-His6 tag to express Myo9a-RhoGAP in a soluble form. High-purity Myo9a-RhoGAP protein was obtained after two rounds of Ni2+ affinity and size-exclusion chromatography. We mixed Myo9a-RhoGAP and RhoA in equimolar ratios in the presence of 5 mM MgCl2 and 20 mM NaF to achieve a stable RhoA GTP hydrolysis transition state complex. Analytical gel filtration and SDS-PAGE were used to verify complex formation. ITC and GAP assays suggested that Myo9a-RhoGAP could bind to RhoA and accelerate RhoA GTP hydrolysis in vitro. We purified the soluble Myo9a-RhoGAP protein with GAP activity and achieved the Myo9a-RhoGAP/RhoA·GDP/MgF3- complex assembly in vitro for the first time. The data may provide novel insights into Myo9a structure and function.
Collapse
|
4
|
The Balance between Differentiation and Terminal Differentiation Maintains Oral Epithelial Homeostasis. Cancers (Basel) 2021; 13:cancers13205123. [PMID: 34680271 PMCID: PMC8534139 DOI: 10.3390/cancers13205123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Oral cancer affecting the oral cavity represents the most common cancer of the head and neck region. Oral cancer develops in a multistep process in which normal cells gradually accumulate genetic and epigenetic modifications to evolve into a malignant disease. Mortality for oral cancer patients is high and morbidity has a significant long-term impact on the health and wellbeing of affected individuals, typically resulting in facial disfigurement and a loss of the ability to speak, chew, taste, and swallow. The limited scope to which current treatments are able to control oral cancer underlines the need for novel therapeutic strategies. This review highlights the molecular differences between oral cell proliferation, differentiation and terminal differentiation, defines terminal differentiation as an important tumour suppressive mechanism and establishes a rationale for clinical investigation of differentiation-paired therapies that may improve outcomes in oral cancer. Abstract The oral epithelium is one of the fastest repairing and continuously renewing tissues. Stem cell activation within the basal layer of the oral epithelium fuels the rapid proliferation of multipotent progenitors. Stem cells first undergo asymmetric cell division that requires tightly controlled and orchestrated differentiation networks to maintain the pool of stem cells while producing progenitors fated for differentiation. Rapidly expanding progenitors subsequently commit to advanced differentiation programs towards terminal differentiation, a process that regulates the structural integrity and homeostasis of the oral epithelium. Therefore, the balance between differentiation and terminal differentiation of stem cells and their progeny ensures progenitors commitment to terminal differentiation and prevents epithelial transformation and oral squamous cell carcinoma (OSCC). A recent comprehensive molecular characterization of OSCC revealed that a disruption of terminal differentiation factors is indeed a common OSCC event and is superior to oncogenic activation. Here, we discuss the role of differentiation and terminal differentiation in maintaining oral epithelial homeostasis and define terminal differentiation as a critical tumour suppressive mechanism. We further highlight factors with crucial terminal differentiation functions and detail the underlying consequences of their loss. Switching on terminal differentiation in differentiated progenitors is likely to represent an extremely promising novel avenue that may improve therapeutic interventions against OSCC.
Collapse
|
5
|
Schlöndorff JS. My, oh, MYO9A! Just how complex can regulation of the podocyte actin cytoskeleton get? Kidney Int 2021; 99:1065-1067. [PMID: 33892856 DOI: 10.1016/j.kint.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 01/15/2023]
Abstract
Genetics contributes significantly to the development of kidney diseases. In the case of glomerular diseases such as focal segmental glomerulosclerosis, over a dozen genes involved in maintaining and regulating the actin cytoskeleton of podocytes have been implicated. A new study adds the atypical myosin, MYO9A, to that list using a combination of human and mouse genetics, suggesting a link to enhanced RhoA activity. Unraveling the growing web of actin regulators remains a key challenge to understanding podocytopathies.
Collapse
Affiliation(s)
- Johannes S Schlöndorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Kang N, Matsui TS, Deguchi S. Statistical profiling reveals correlations between the cell response to and the primary structure of Rho-GAPs. Cytoskeleton (Hoboken) 2021; 78:67-76. [PMID: 33792196 DOI: 10.1002/cm.21659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 01/13/2023]
Abstract
Rho-GTPase-activating proteins (Rho-GAPs) are essential upstream regulators of the Rho family of GTPases. Currently, it remains unclear if the phenotypic change caused by perturbations to a Rho-GAP is predictable from its amino acid sequence. Here we analyze the relationship between the morphological response of cells to the silencing of Rho-GAPs and their primary structure. For all possible pairs of 57 different Rho-GAPs expressed in MCF10A epithelial cells, the similarity in the Rho-GAP silencing-induced morphological change was quantified and compared to the similarity in the primary structure of the corresponding pairs. We found a distinct correlation between the morphological and sequence similarities in a specific group of RhoA-targeting Rho-GAPs. Thus, the family-wide analysis revealed a common feature shared by the specific Rho-GAPs.
Collapse
Affiliation(s)
- Na Kang
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Tsubasa S Matsui
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
7
|
Ravi K, Paidas MJ, Saad A, Jayakumar AR. Astrocytes in rare neurological conditions: Morphological and functional considerations. J Comp Neurol 2021; 529:2676-2705. [PMID: 33496339 DOI: 10.1002/cne.25118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Astrocytes are a population of central nervous system (CNS) cells with distinctive morphological and functional characteristics that differ within specific areas of the brain and are widely distributed throughout the CNS. There are mainly two types of astrocytes, protoplasmic and fibrous, which differ in morphologic appearance and location. Astrocytes are important cells of the CNS that not only provide structural support, but also modulate synaptic activity, regulate neuroinflammatory responses, maintain the blood-brain barrier, and supply energy to neurons. As a result, astrocytic disruption can lead to widespread detrimental effects and can contribute to the pathophysiology of several neurological conditions. The characteristics of astrocytes in more common neuropathologies such as Alzheimer's and Parkinson's disease have significantly been described and continue to be widely studied. However, there still exist numerous rare neurological conditions in which astrocytic involvement is unknown and needs to be explored. Accordingly, this review will summarize functional and morphological changes of astrocytes in various rare neurological conditions based on current knowledge thus far and highlight remaining neuropathologies where astrocytic involvement has yet to be investigated.
Collapse
Affiliation(s)
- Karthik Ravi
- University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA
| | - Ali Saad
- Pathology and Laboratory Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA.,South Florida VA Foundation for Research and Education Inc, Miami, Florida, USA.,General Medical Research Neuropathology Section, R&D Service, Veterans Affairs Medical Centre, Miami, Florida, USA
| |
Collapse
|
8
|
Li Q, Gulati A, Lemaire M, Nottoli T, Bale A, Tufro A. Rho-GTPase Activating Protein myosin MYO9A identified as a novel candidate gene for monogenic focal segmental glomerulosclerosis. Kidney Int 2021; 99:1102-1117. [PMID: 33412162 DOI: 10.1016/j.kint.2020.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 01/18/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a podocytopathy leading to kidney failure, whose molecular cause frequently remains unresolved. Here, we describe a rare MYO9A loss of function nonsense heterozygous mutation (p.Arg701∗) as a possible contributor to disease in a sibling pair with familial FSGS/proteinuria. MYO9A variants of uncertain significance were identified by whole exome sequencing in a cohort of 94 biopsy proven patients with FSGS. MYO9A is an unconventional myosin with a Rho-GAP domain that controls epithelial cell junction assembly, crosslinks and bundles actin and deactivates the small GTPase protein encoded by the RHOA gene. RhoA activity is associated with cytoskeleton regulation of actin stress fiber formation and actomyosin contractility. Myo9A was detected in mouse and human podocytes in vitro and in vivo. Knockin mice carrying the p.Arg701∗MYO9A (Myo9AR701X) generated by gene editing developed proteinuria, podocyte effacement and FSGS. Kidneys and podocytes from Myo9AR701X/+ mutant mice revealed Myo9A haploinsufficiency, increased RhoA activity, decreased Myo9A-actin-calmodulin interaction, impaired podocyte attachment and migration. Our results indicate that Myo9A is a novel component of the podocyte cytoskeletal apparatus that regulates RhoA activity and podocyte function. Thus, Myo9AR701X/+ knock-in mice recapitulate the proband FSGS phenotype, demonstrate that p.R701X Myo9A is an FSGS-causing mutation in mice and suggest that heterozygous loss-of-function MYO9A mutations may cause a novel form of human autosomal dominant FSGS. Hence, identification of MYO9A pathogenic variants in additional individuals with familial or sporadic FSGS is needed to ascertain the gene contribution to disease.
Collapse
Affiliation(s)
- Qi Li
- Department of Pediatrics, Nephrology Section, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ashima Gulati
- Department of Internal Medicine, Nephrology Section, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mathieu Lemaire
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Timothy Nottoli
- Yale Gene Editing Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Allen Bale
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alda Tufro
- Department of Pediatrics, Nephrology Section, Yale School of Medicine, New Haven, Connecticut, USA; Department of Cell and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
9
|
Wu S, Li H, Wang L, Mak N, Wu X, Ge R, Sun F, Cheng CY. Motor Proteins and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:131-159. [PMID: 34453735 DOI: 10.1007/978-3-030-77779-1_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Unlike the intermediate filament- and septin-based cytoskeletons which are apolar structures, the microtubule (MT) and actin cytoskeletons are polarized structures in mammalian cells and tissues including the testis, most notable in Sertoli cells. In the testis, these cytoskeletons that stretch across the epithelium of seminiferous tubules and lay perpendicular to the basement membrane of tunica propria serve as tracks for corresponding motor proteins to support cellular cargo transport. These cargoes include residual bodies, phagosomes, endocytic vesicles and most notably developing spermatocytes and haploid spermatids which lack the ultrastructures of motile cells (e.g., lamellipodia, filopodia). As such, these developing germ cells require the corresponding motor proteins to facilitate their transport across the seminiferous epithelium during the epithelial cycle of spermatogenesis. Due to the polarized natures of these cytoskeletons with distinctive plus (+) and minus (-) end, directional cargo transport can take place based on the use of corresponding actin- or MT-based motor proteins. These include the MT-based minus (-) end directed motor proteins: dyneins, and the plus (+) end directed motor proteins: kinesins, as well as the actin-based motor proteins: myosins, many of which are plus (+) end directed but a few are also minus (-) end directed motor proteins. Recent studies have shown that these motor proteins are essential to support spermatogenesis. In this review, we briefly summarize and evaluate these recent findings so that this information will serve as a helpful guide for future studies and for planning functional experiments to better understand their role mechanistically in supporting spermatogenesis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Nathan Mak
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Zhejiang, China
| | - Fei Sun
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - C Yan Cheng
- Sir Run Run Shaw Hospital (SRRSH), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Díaz-Díaz C, Baonza G, Martín-Belmonte F. The vertebrate epithelial apical junctional complex: Dynamic interplay between Rho GTPase activity and cell polarization processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183398. [DOI: 10.1016/j.bbamem.2020.183398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
|
11
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
12
|
Jiang Z, Zhou J, Qin X, Zheng H, Gao B, Liu X, Jin G, Zhou Z. MT1-MMP deficiency leads to defective ependymal cell maturation, impaired ciliogenesis, and hydrocephalus. JCI Insight 2020; 5:132782. [PMID: 32229724 DOI: 10.1172/jci.insight.132782] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/26/2020] [Indexed: 01/02/2023] Open
Abstract
Hydrocephalus is characterized by abnormal accumulation of cerebrospinal fluid (CSF) in the ventricular cavity. The circulation of CSF in brain ventricles is controlled by the coordinated beating of motile cilia at the surface of ependymal cells (ECs). Here, we show that MT1-MMP is highly expressed in olfactory bulb, rostral migratory stream, and the ventricular system. Mice deficient for membrane-type 1-MMP (MT1-MMP) developed typical phenotypes observed in hydrocephalus, such as dome-shaped skulls, dilated ventricles, corpus callosum agenesis, and astrocyte hypertrophy, during the first 2 weeks of postnatal development. MT1-MMP-deficient mice exhibited reduced and disorganized motile cilia with the impaired maturation of ECs, leading to abnormal CSF flow. Consistent with the defects in motile cilia morphogenesis, the expression of promulticiliogenic genes was significantly decreased, with a concomitant hyperactivation of Notch signaling in the walls of lateral ventricles in Mmp14-/- brains. Inhibition of Notch signaling by γ-secretase inhibitor restored ciliogenesis in Mmp14-/- ECs. Taken together, these data suggest that MT1-MMP is required for ciliogenesis and EC maturation through suppression of Notch signaling during early brain development. Our findings indicate that MT1-MMP is critical for early brain development and loss of MT1-MMP activity gives rise to hydrocephalus.
Collapse
Affiliation(s)
- Zhixin Jiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Innovation and Research, University of Hong Kong, Shenzhen, China
| | - Jin Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Innovation and Research, University of Hong Kong, Shenzhen, China
| | - Xin Qin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Innovation and Research, University of Hong Kong, Shenzhen, China
| | - Huiling Zheng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Institute for Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Xinguang Liu
- Institute for Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Guoxiang Jin
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Innovation and Research, University of Hong Kong, Shenzhen, China
| |
Collapse
|
13
|
Class IX Myosins: Motorized RhoGAP Signaling Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:381-389. [PMID: 32451867 DOI: 10.1007/978-3-030-38062-5_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Class IX myosins are simultaneously motor and signaling molecules. In addition to myosin class-specific functions of the tail region, they feature unique motor properties. Within their motor region they contain a long insertion with a calmodulin- and a F-actin-binding site. The rate-limiting step in the ATPase cycle is ATP hydrolysis rather than, typical for other myosins, the release of either product. This means that class IX myosins spend a large fraction of their cycle time in the ATP-bound state, which is typically a low F-actin affinity state. Nevertheless, class IX myosins in the ATP-bound state stochastically switch between a low and a high F-actin affinity state. Single motor domains even show characteristics of processive movement towards the plus end of actin filaments. The insertion thereby acts as an actin tether. The motor domain transports as intramolecular cargo a signaling Rho GTPase-activating protein domain located in the tail region. Rho GTPase-activating proteins catalyze the conversion of active GTP-bound Rho to inactive GDP-bound Rho by stimulating GTP hydrolysis. In cells, Rho activity regulates actin cytoskeleton organization and actomyosin II contractility. Thus, class IX myosins regulate cell morphology, cell migration, cell-cell junctions and membrane trafficking. These cellular functions affect embryonic development, adult organ homeostasis and immune responses. Human diseases associated with mutations in the two class IX myosins, Myo9a and Myo9b, have been identified, including hydrocephalus and congenital myasthenic syndrome in connection with Myo9a and autoimmune diseases in connection with Myo9b.
Collapse
|
14
|
Modulation of Agrin and RhoA Pathways Ameliorates Movement Defects and Synapse Morphology in MYO9A-Depleted Zebrafish. Cells 2019; 8:cells8080848. [PMID: 31394789 PMCID: PMC6721702 DOI: 10.3390/cells8080848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
Congenital myasthenic syndromes (CMS) are a group of rare, inherited disorders characterised by impaired function of the neuromuscular junction (NMJ). This is due to defects in one of the many proteins associated with the NMJ. In three patients with CMS, missense mutations in a gene encoding an unconventional myosin protein, MYO9A, were identified as likely causing their disorder. Preliminary studies revealed a potential involvement of the RhoA/ROCK pathway and of a key NMJ protein, agrin, in the pathophysiology of MYO9A-depletion. In this study, a CRISPR/Cas9 approach was used to generate genetic mutants of MYO9A zebrafish orthologues, myo9aa/ab, to expand and refine the morphological analysis of the NMJ. Injection of NT1654, a synthetic agrin fragment compound, improved NMJ structure and zebrafish movement in the absence of Myo9aa/ab. In addition, treatment of zebrafish with fasudil, a ROCK inhibitor, also provided improvements to the morphology of NMJs in early development, as well as rescuing movement defects, but not to the same extent as NT1654 and not at later time points. Therefore, this study highlights a role for MYO9A at the NMJ, the first unconventional myosin motor protein associated with a neuromuscular disease, and provides a potential mechanism of action of MYO9A-pathophysiology.
Collapse
|
15
|
Monies D, Abouelhoda M, Assoum M, Moghrabi N, Rafiullah R, Almontashiri N, Alowain M, Alzaidan H, Alsayed M, Subhani S, Cupler E, Faden M, Alhashem A, Qari A, Chedrawi A, Aldhalaan H, Kurdi W, Khan S, Rahbeeni Z, Alotaibi M, Goljan E, Elbardisy H, ElKalioby M, Shah Z, Alruwaili H, Jaafar A, Albar R, Akilan A, Tayeb H, Tahir A, Fawzy M, Nasr M, Makki S, Alfaifi A, Akleh H, Yamani S, Bubshait D, Mahnashi M, Basha T, Alsagheir A, Abu Khaled M, Alsaleem K, Almugbel M, Badawi M, Bashiri F, Bohlega S, Sulaiman R, Tous E, Ahmed S, Algoufi T, Al-Mousa H, Alaki E, Alhumaidi S, Alghamdi H, Alghamdi M, Sahly A, Nahrir S, Al-Ahmari A, Alkuraya H, Almehaidib A, Abanemai M, Alsohaibaini F, Alsaud B, Arnaout R, Abdel-Salam GMH, Aldhekri H, AlKhater S, Alqadi K, Alsabban E, Alshareef T, Awartani K, Banjar H, Alsahan N, Abosoudah I, Alashwal A, Aldekhail W, Alhajjar S, Al-Mayouf S, Alsemari A, Alshuaibi W, Altala S, Altalhi A, Baz S, Hamad M, Abalkhail T, Alenazi B, Alkaff A, Almohareb F, Al Mutairi F, Alsaleh M, Alsonbul A, Alzelaye S, Bahzad S, Manee AB, Jarrad O, Meriki N, Albeirouti B, Alqasmi A, AlBalwi M, Makhseed N, et alMonies D, Abouelhoda M, Assoum M, Moghrabi N, Rafiullah R, Almontashiri N, Alowain M, Alzaidan H, Alsayed M, Subhani S, Cupler E, Faden M, Alhashem A, Qari A, Chedrawi A, Aldhalaan H, Kurdi W, Khan S, Rahbeeni Z, Alotaibi M, Goljan E, Elbardisy H, ElKalioby M, Shah Z, Alruwaili H, Jaafar A, Albar R, Akilan A, Tayeb H, Tahir A, Fawzy M, Nasr M, Makki S, Alfaifi A, Akleh H, Yamani S, Bubshait D, Mahnashi M, Basha T, Alsagheir A, Abu Khaled M, Alsaleem K, Almugbel M, Badawi M, Bashiri F, Bohlega S, Sulaiman R, Tous E, Ahmed S, Algoufi T, Al-Mousa H, Alaki E, Alhumaidi S, Alghamdi H, Alghamdi M, Sahly A, Nahrir S, Al-Ahmari A, Alkuraya H, Almehaidib A, Abanemai M, Alsohaibaini F, Alsaud B, Arnaout R, Abdel-Salam GMH, Aldhekri H, AlKhater S, Alqadi K, Alsabban E, Alshareef T, Awartani K, Banjar H, Alsahan N, Abosoudah I, Alashwal A, Aldekhail W, Alhajjar S, Al-Mayouf S, Alsemari A, Alshuaibi W, Altala S, Altalhi A, Baz S, Hamad M, Abalkhail T, Alenazi B, Alkaff A, Almohareb F, Al Mutairi F, Alsaleh M, Alsonbul A, Alzelaye S, Bahzad S, Manee AB, Jarrad O, Meriki N, Albeirouti B, Alqasmi A, AlBalwi M, Makhseed N, Hassan S, Salih I, Salih MA, Shaheen M, Sermin S, Shahrukh S, Hashmi S, Shawli A, Tajuddin A, Tamim A, Alnahari A, Ghemlas I, Hussein M, Wali S, Murad H, Meyer BF, Alkuraya FS. Lessons Learned from Large-Scale, First-Tier Clinical Exome Sequencing in a Highly Consanguineous Population. Am J Hum Genet 2019; 104:1182-1201. [PMID: 31130284 DOI: 10.1016/j.ajhg.2019.04.011] [Show More Authors] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
We report the results of clinical exome sequencing (CES) on >2,200 previously unpublished Saudi families as a first-tier test. The predominance of autosomal-recessive causes allowed us to make several key observations. We highlight 155 genes that we propose to be recessive, disease-related candidates. We report additional mutational events in 64 previously reported candidates (40 recessive), and these events support their candidacy. We report recessive forms of genes that were previously associated only with dominant disorders and that have phenotypes ranging from consistent with to conspicuously distinct from the known dominant phenotypes. We also report homozygous loss-of-function events that can inform the genetics of complex diseases. We were also able to deduce the likely causal variant in most couples who presented after the loss of one or more children, but we lack samples from those children. Although a similar pattern of mostly recessive causes was observed in the prenatal setting, the higher proportion of loss-of-function events in these cases was notable. The allelic series presented by the wealth of recessive variants greatly expanded the phenotypic expression of the respective genes. We also make important observations about dominant disorders; these observations include the pattern of de novo variants, the identification of 74 candidate dominant, disease-related genes, and the potential confirmation of 21 previously reported candidates. Finally, we describe the influence of a predominantly autosomal-recessive landscape on the clinical utility of rapid sequencing (Flash Exome). Our cohort's genotypic and phenotypic data represent a unique resource that can contribute to improved variant interpretation through data sharing.
Collapse
Affiliation(s)
- Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mohammed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mirna Assoum
- Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Nabil Moghrabi
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Rafiullah Rafiullah
- Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Naif Almontashiri
- Clinical Molecular and Biochemical Genetics, Taibah University, Madinah 42353, Saudi Arabia
| | - Mohammed Alowain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Moeen Alsayed
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Shazia Subhani
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Edward Cupler
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Jeddah 23433, Saudi Arabia
| | - Maha Faden
- Genetics and Metabolism, King Saud Medical Complex, Riyadh 12746, Saudi Arabia
| | - Amal Alhashem
- Pediatrics Department, Prince Sultan Military Medical Complex, Riyadh 12233, Saudi Arabia
| | - Alya Qari
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Aziza Chedrawi
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Hisham Aldhalaan
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Wesam Kurdi
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Sameena Khan
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Maha Alotaibi
- Genetics and Metabolism, King Saud Medical Complex, Riyadh 12746, Saudi Arabia
| | - Ewa Goljan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hadeel Elbardisy
- Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mohamed ElKalioby
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Zeeshan Shah
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hibah Alruwaili
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Amal Jaafar
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ranad Albar
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| | - Asma Akilan
- Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hamsa Tayeb
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Asma Tahir
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mohammed Fawzy
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mohammed Nasr
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Shaza Makki
- Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Abdullah Alfaifi
- Pediatrics Department, Security Forces Hospital, Riyadh 11481, Saudi Arabia
| | - Hanna Akleh
- Academic and Training Affairs, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Suad Yamani
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Dalal Bubshait
- Pediatrics Department, King Fahad Hospital of the University, Al-Khobar 31952, Saudi Arabia
| | - Mohammed Mahnashi
- Genetics and Medicine, King Fahd Central Hospital, Gizan 82666, Saudi Arabia
| | - Talal Basha
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Jeddah 23433, Saudi Arabia
| | - Afaf Alsagheir
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Musad Abu Khaled
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Khalid Alsaleem
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Maisoon Almugbel
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Manal Badawi
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Fahad Bashiri
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh 11461, Saudi Arabia
| | - Saeed Bohlega
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Raashida Sulaiman
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ehab Tous
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Syed Ahmed
- Pediatric Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Talal Algoufi
- Pediatric Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hamoud Al-Mousa
- Allergy - Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Emadia Alaki
- Allergy - Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Susan Alhumaidi
- Pediatrics Department, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Hadeel Alghamdi
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Jeddah 23433, Saudi Arabia
| | - Malak Alghamdi
- Pediatrics Department, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Ahmed Sahly
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Shapar Nahrir
- Pediatrics Department, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Ali Al-Ahmari
- Pediatric Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Hisham Alkuraya
- Vitreoretinal Surgery, Specialized Medical Centre, Riyadh 11564, Saudi Arabia
| | - Ali Almehaidib
- Gastroenterology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mohammed Abanemai
- Gastroenterology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Fahad Alsohaibaini
- Gastroenterology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Bandar Alsaud
- Allergy - Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Rand Arnaout
- Allergy - Immunology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Hasan Aldhekri
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Suzan AlKhater
- Pediatrics Department, King Fahad Hospital of the University, Al-Khobar 31952, Saudi Arabia; Department of Pediatrics, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Khalid Alqadi
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Essam Alsabban
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Turki Alshareef
- Pediatric Nephrology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Khalid Awartani
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hanaa Banjar
- Pediatric Pulmonology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Nada Alsahan
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ibraheem Abosoudah
- Pediatric Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Jeddah 23433, Saudi Arabia
| | - Abdullah Alashwal
- Pediatric Endocrine and Metabolism, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Wajeeh Aldekhail
- Gastroenterology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Sami Alhajjar
- Pediatric Infectious Diseases, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Sulaiman Al-Mayouf
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Abdulaziz Alsemari
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Walaa Alshuaibi
- Pediatrics Department, King Khalid University Hospital, Riyadh 12372, Saudi Arabia
| | - Saeed Altala
- Pediatrics Department, Armed Forces Hospital, Khamis Mushait 62451, Saudi Arabia
| | - Abdulhadi Altalhi
- Pediatric Nephrology, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Salah Baz
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Muddathir Hamad
- Pediatrics Department, King Khalid University Hospital, Riyadh 12372, Saudi Arabia
| | - Tariq Abalkhail
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Badi Alenazi
- Pediatrics Department, Alyamama Hospital, Riyadh 14222, Saudi Arabia
| | - Alya Alkaff
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Fahad Almohareb
- Oncology Center, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Fuad Al Mutairi
- King Abdullah International Medical Research Centre, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11564, Saudi Arabia; Medical Genetic Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh 14611, Saudi Arabia
| | - Mona Alsaleh
- Pediatric Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Abdullah Alsonbul
- Pediatric Rheumatology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Somaya Alzelaye
- Pediatric Endocrine and Diabetes, Al Qunfudah General Hospital, Al Qunfudhah 28821, Saudi Arabia
| | - Shakir Bahzad
- Kuwait Medical Genetics Center, Kuwait City 65000, Kuwait
| | - Abdulaziz Bin Manee
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ola Jarrad
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Neama Meriki
- Maternal and Fetal Medicine, King Khalid University Hospital, Riyadh 12372, Saudi Arabia
| | - Bassem Albeirouti
- Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Jeddah 23433, Saudi Arabia
| | - Amal Alqasmi
- Pediatrics Department, King Saud Medical City, Riyadh 12746, Saudi Arabia
| | - Mohammed AlBalwi
- Department of Pathology and Laboratory Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
| | - Nawal Makhseed
- Pediatrics Department, Alsoor Clinic, Kuwait City 65000, Kuwait
| | - Saeed Hassan
- Pediatrics Department, King Khalid University Hospital, Riyadh 12372, Saudi Arabia
| | - Isam Salih
- Hepatic-Pancreatic Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Mustafa A Salih
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh 11461, Saudi Arabia
| | - Marwan Shaheen
- Hematology and Bone Marrow Transplant, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Saadeh Sermin
- Pediatric Nephrology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Shamsad Shahrukh
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Jeddah 23433, Saudi Arabia
| | - Shahrukh Hashmi
- Hematology and Bone Marrow Transplant, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ayman Shawli
- Department of Pediatrics, King Abdulaziz Medical City, Jeddah 9515, Saudi Arabia
| | - Ameen Tajuddin
- Neurology, King Fahad Hospital, Medina 59046, Saudi Arabia
| | - Abdullah Tamim
- Pediatrics Neurology, King Faisal Specialist Hospital and Research Centre, Jeddah 23433, Saudi Arabia
| | - Ahmed Alnahari
- Pediatric Department, King Fahad Central Hospital, Gizan, 82666, Saudi Arabia
| | - Ibrahim Ghemlas
- Pediatric Hematology and Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Maged Hussein
- Nephrology Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Sami Wali
- Pediatrics Department, Prince Sultan Military Medical Complex, Riyadh 12233, Saudi Arabia
| | - Hatem Murad
- Neurosciences Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Brian F Meyer
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; Saudi Diagnostic Laboratories, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
| |
Collapse
|
16
|
Simmons AJ, Park R, Sterling NA, Jang MH, van Deursen JMA, Yen TJ, Cho SH, Kim S. Nearly complete deletion of BubR1 causes microcephaly through shortened mitosis and massive cell death. Hum Mol Genet 2019; 28:1822-1836. [PMID: 30668728 PMCID: PMC6522074 DOI: 10.1093/hmg/ddz022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/14/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
BUB-related 1 (BubR1) encoded by Budding Uninhibited by Benzimidazole 1B (BUB1B) is a crucial mitotic checkpoint protein ensuring proper segregation of chromosomes during mitosis. Mutations of BUB1B are responsible for mosaic variegated aneuploidy (MVA), a human congenital disorder characterized by extensive abnormalities in chromosome number. Although microcephaly is a prominent feature of MVA carrying the BUB1B mutation, how BubR1 deficiency disturbs neural progenitor proliferation and neuronal output and leads to microcephaly is unknown. Here we show that conditional loss of BubR1 in mouse cerebral cortex recapitulates microcephaly. BubR1-deficient cortex includes a strikingly reduced number of late-born, but not of early-born, neurons, although BubR1 expression is substantially reduced from an early stage. Importantly, absence of BubR1 decreases the proportion of neural progenitors in mitosis, specifically in metaphase, suggesting shortened mitosis owing to premature chromosome segregation. In the BubR1 mutant, massive apoptotic cell death, which is likely due to the compromised genomic integrity that results from aberrant mitosis, depletes progenitors and neurons during neurogenesis. There is no apparent alteration in centrosome number, spindle formation or primary cilia, suggesting that the major effect of BubR1 deficiency on neural progenitors is to impair the mitotic checkpoint. This finding highlights the importance of the mitotic checkpoint in the pathogenesis of microcephaly. Furthermore, the ependymal cell layer does not form in the conditional knockout, revealing an unrecognized role of BubR1 in assuring the integrity of the ventricular system, which may account for the presence of hydrocephalus in some patients.
Collapse
Affiliation(s)
- Ambrosia J Simmons
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
- MD/Ph.D. program, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| | - Raehee Park
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| | - Noelle A Sterling
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| | - Mi-Hyeon Jang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jan M A van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Seo-Hee Cho
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine Temple University, Philadelphia, PA, USA
| |
Collapse
|
17
|
Wallace AG, Raduwan H, Carlet J, Soto MC. The RhoGAP HUM-7/Myo9 integrates signals to modulate RHO-1/RhoA during embryonic morphogenesis in Caenorhabditiselegans. Development 2018; 145:dev168724. [PMID: 30389847 PMCID: PMC6288380 DOI: 10.1242/dev.168724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/29/2018] [Indexed: 01/23/2023]
Abstract
During embryonic morphogenesis, cells and tissues undergo dramatic movements under the control of F-actin regulators. Our studies of epidermal cell migrations in developing Caenorhabditiselegans embryos have identified multiple plasma membrane signals that regulate the Rac GTPase, thus regulating WAVE and Arp2/3 complexes, to promote branched F-actin formation and polarized enrichment. Here, we describe a pathway that acts in parallel to Rac to transduce membrane signals to control epidermal F-actin through the GTPase RHO-1/RhoA. RHO-1 contributes to epidermal migration through effects on underlying neuroblasts. We identify signals to regulate RHO-1-dependent events in the epidermis. HUM-7, the C. elegans homolog of human MYO9A and MYO9B, regulates F-actin dynamics during epidermal migration. Genetics and biochemistry support that HUM-7 behaves as a GTPase-activating protein (GAP) for the RHO-1/RhoA and CDC-42 GTPases. Loss of HUM-7 enhances RHO-1-dependent epidermal cell behaviors. We identify SAX-3/ROBO as an upstream signal that contributes to attenuated RHO-1 activation through its regulation of HUM-7/Myo9. These studies identify a new role for RHO-1 during epidermal cell migration, and suggest that RHO-1 activity is regulated by SAX-3/ROBO acting on the RhoGAP HUM-7.
Collapse
Affiliation(s)
- Andre G Wallace
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- School of Natural Sciences, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Hamidah Raduwan
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - John Carlet
- School of Natural Sciences, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
18
|
Yang H, Hong D, Cho SY, Park YS, Ko WR, Kim JH, Hur H, Lee J, Kim SJ, Kwon SY, Lee JH, Park DY, Song KS, Chang H, Ryu MH, Cho KS, Kang JW, Kook MC, Thiessen N, He A, Mungall A, Han SU, Kim HK. RhoGAP domain-containing fusions and PPAPDC1A fusions are recurrent and prognostic in diffuse gastric cancer. Nat Commun 2018; 9:4439. [PMID: 30361512 PMCID: PMC6202325 DOI: 10.1038/s41467-018-06747-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 09/21/2018] [Indexed: 01/22/2023] Open
Abstract
We conducted an RNA sequencing study to identify novel gene fusions in 80 discovery dataset tumors collected from young patients with diffuse gastric cancer (DGC). Twenty-five in-frame fusions are associated with DGC, three of which (CLDN18-ARHGAP26, CTNND1-ARHGAP26, and ANXA2-MYO9A) are recurrent in 384 DGCs based on RT-PCR. All three fusions contain a RhoGAP domain in their 3' partner genes. Patients with one of these three fusions have a significantly worse prognosis than those without. Ectopic expression of CLDN18-ARHGAP26 promotes the migration and invasion capacities of DGC cells. Parallel targeted RNA sequencing analysis additionally identifies TACC2-PPAPDC1A as a recurrent and poor prognostic in-frame fusion. Overall, PPAPDC1A fusions and in-frame fusions containing a RhoGAP domain clearly define the aggressive subset (7.5%) of DGCs, and their prognostic impact is greater than, and independent of, chromosomal instability and CDH1 mutations. Our study may provide novel genomic insights guiding future strategies for managing DGCs.
Collapse
Affiliation(s)
- Hanna Yang
- National Cancer Center, Goyang, Gyeonggi 10408 Republic of Korea
| | - Dongwan Hong
- National Cancer Center, Goyang, Gyeonggi 10408 Republic of Korea
| | - Soo Young Cho
- National Cancer Center, Goyang, Gyeonggi 10408 Republic of Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Ri Ko
- National Cancer Center, Goyang, Gyeonggi 10408 Republic of Korea
| | - Ju Hee Kim
- National Cancer Center, Goyang, Gyeonggi 10408 Republic of Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, 443-380 Republic of Korea
| | - Jongkeun Lee
- National Cancer Center, Goyang, Gyeonggi 10408 Republic of Korea
| | - Su-Jin Kim
- Department of Pathology, Dong-A University College of Medicine, Busan, 602-812 Republic of Korea
| | - Sun Young Kwon
- Department of Pathology, Keimyung University School of Medicine, Daegu, 41931 Republic of Korea
| | - Jae-Hyuk Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, 501-746 Republic of Korea
| | - Do Youn Park
- Department of Pathology and BioMedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Busan, 602-739 Republic of Korea
| | - Kyu Sang Song
- Department of Pathology, School of Medicine, Chungnam National University, Daejeon, 301-747 Republic of Korea
| | - Heekyung Chang
- Department of Pathology, Kosin University College of Medicine, Busan, 49267 Republic of Korea
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736 Republic of Korea
| | - Kye Soo Cho
- National Cancer Center, Goyang, Gyeonggi 10408 Republic of Korea
| | - Jeong Won Kang
- National Cancer Center, Goyang, Gyeonggi 10408 Republic of Korea
| | | | - Nina Thiessen
- British Columbia Cancer Agency, Vancouver, BC V5Z 1L3 Canada
| | - An He
- British Columbia Cancer Agency, Vancouver, BC V5Z 1L3 Canada
| | - Andy Mungall
- British Columbia Cancer Agency, Vancouver, BC V5Z 1L3 Canada
| | - Sang-Uk Han
- Department of Surgery, Ajou University School of Medicine, Suwon, 443-380 Republic of Korea
| | - Hark Kyun Kim
- National Cancer Center, Goyang, Gyeonggi 10408 Republic of Korea
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Gyeonggi 10408 Republic of Korea
| |
Collapse
|
19
|
Feldner A, Adam MG, Tetzlaff F, Moll I, Komljenovic D, Sahm F, Bäuerle T, Ishikawa H, Schroten H, Korff T, Hofmann I, Wolburg H, von Deimling A, Fischer A. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med 2018; 9:890-905. [PMID: 28500065 PMCID: PMC5494508 DOI: 10.15252/emmm.201606430] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hydrocephalus is a common congenital anomaly. LCAM1 and MPDZ (MUPP1) are the only known human gene loci associated with non‐syndromic hydrocephalus. To investigate functions of the tight junction‐associated protein Mpdz, we generated mouse models. Global Mpdz gene deletion or conditional inactivation in Nestin‐positive cells led to formation of supratentorial hydrocephalus in the early postnatal period. Blood vessels, epithelial cells of the choroid plexus, and cilia on ependymal cells, which line the ventricular system, remained morphologically intact in Mpdz‐deficient brains. However, flow of cerebrospinal fluid through the cerebral aqueduct was blocked from postnatal day 3 onward. Silencing of Mpdz expression in cultured epithelial cells impaired barrier integrity, and loss of Mpdz in astrocytes increased RhoA activity. In Mpdz‐deficient mice, ependymal cells had morphologically normal tight junctions, but expression of the interacting planar cell polarity protein Pals1 was diminished and barrier integrity got progressively lost. Ependymal denudation was accompanied by reactive astrogliosis leading to aqueductal stenosis. This work provides a relevant hydrocephalus mouse model and demonstrates that Mpdz is essential to maintain integrity of the ependyma.
Collapse
Affiliation(s)
- Anja Feldner
- Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Gordian Adam
- Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Tetzlaff
- Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Iris Moll
- Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dorde Komljenovic
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Bäuerle
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, School of Life Dentistry, Nippon Dental University, Chiyoda-ku Tokyo, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Mannheim Heidelberg University, Mannheim, Germany
| | - Thomas Korff
- Department of Cardiovascular Research, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Ilse Hofmann
- Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Vascular Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hartwig Wolburg
- Department of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Fischer
- Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany .,Vascular Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Medical Clinic I, Endocrinology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
20
|
The mouse Jhy gene regulates ependymal cell differentiation and ciliogenesis. PLoS One 2017; 12:e0184957. [PMID: 29211732 PMCID: PMC5718522 DOI: 10.1371/journal.pone.0184957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022] Open
Abstract
During the first postnatal week of mouse development, radial glial cells lining the ventricles of the brain differentiate into ependymal cells, undergoing a morphological change from pseudostratified cuboidal cells to a flattened monolayer. Concomitant with this change, multiple motile cilia are generated and aligned on each nascent ependymal cell. Proper ependymal cell development is crucial to forming the brain tissue:CSF barrier, and to the establishment of ciliary CSF flow, but the mechanisms that regulate this differentiation event are poorly understood. The JhylacZ mouse line carries an insertional mutation in the Jhy gene (formerly 4931429I11Rik), and homozygous JhylacZ/lacZ mice develop a rapidly progressive juvenile hydrocephalus, with defects in ependymal cilia morphology and ultrastructure. Here we show that beyond just defective motile cilia, JhylacZ/lacZ mice display abnormal ependymal cell differentiation. Ventricular ependyma in JhylacZ/lacZ mice retain an unorganized and multi-layered morphology, representative of undifferentiated ependymal (radial glial) cells, and they show altered expression of differentiation markers. Most JhylacZ/lacZ ependymal cells do eventually acquire some differentiated ependymal characteristics, suggesting a delay, rather than a block, in the differentiation process, but ciliogenesis remains perturbed. JhylacZ/lacZ ependymal cells also manifest disruptions in adherens junction formation, with altered N-cadherin localization, and have defects in the polarized organization of the apical motile cilia that do form. Functional studies showed that cilia of JhylacZ/lacZ mice have severely reduced motility, a potential cause for the development of hydrocephalus. This work shows that JHY does not only control ciliogenesis, but is a crucial component of the ependymal differentiation process, with ciliary defects likely a consequence of altered ependymal differentiation.
Collapse
|
21
|
Fujitani M, Sato R, Yamashita T. Loss of p73 in ependymal cells during the perinatal period leads to aqueductal stenosis. Sci Rep 2017; 7:12007. [PMID: 28931858 PMCID: PMC5607290 DOI: 10.1038/s41598-017-12105-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/05/2017] [Indexed: 11/17/2022] Open
Abstract
The p53 family member p73 plays a critical role in brain development. p73 knockout mice exhibit a number of deficits in the nervous system, such as neuronal death, hydrocephalus, hippocampal dysgenesis, and pheromonal defects. Among these phenotypes, the mechanisms of hydrocephalus remain unknown. In this study, we generated a p73 knock-in (KI) mutant mouse and a conditional p73 knockout mouse. The homozygous KI mutants showed aqueductal stenosis. p73 was expressed in the ependymal cell layer and several brain areas. Unexpectedly, when p73 was disrupted during the postnatal period, animals showed aqueductal stenosis at a later stage but not hydrocephalus. An assessment of the integrity of cilia and basal body (BB) patch formation suggests that p73 is required to establish translational polarity but not to establish rotational polarity or the planar polarization of BB patches. Deletion of p73 in adult ependymal cells did not affect the maintenance of translational polarity. These results suggest that the loss of p73 during the embryonic period is critical for hydrocephalus development.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0872, Japan. .,Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Ryohei Sato
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,World Premier International, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan. .,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Masters TA, Kendrick-Jones J, Buss F. Myosins: Domain Organisation, Motor Properties, Physiological Roles and Cellular Functions. Handb Exp Pharmacol 2017; 235:77-122. [PMID: 27757761 DOI: 10.1007/164_2016_29] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myosins are cytoskeletal motor proteins that use energy derived from ATP hydrolysis to generate force and movement along actin filaments. Humans express 38 myosin genes belonging to 12 classes that participate in a diverse range of crucial activities, including muscle contraction, intracellular trafficking, cell division, motility, actin cytoskeletal organisation and cell signalling. Myosin malfunction has been implicated a variety of disorders including deafness, hypertrophic cardiomyopathy, Usher syndrome, Griscelli syndrome and cancer. In this chapter, we will first discuss the key structural and kinetic features that are conserved across the myosin family. Thereafter, we summarise for each member in turn its unique functional and structural adaptations, cellular roles and associated pathologies. Finally, we address the broad therapeutic potential for pharmacological interventions that target myosin family members.
Collapse
Affiliation(s)
- Thomas A Masters
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| |
Collapse
|
23
|
Self-organization of actin networks by a monomeric myosin. Proc Natl Acad Sci U S A 2016; 113:E8387-E8395. [PMID: 27956608 DOI: 10.1073/pnas.1612719113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The organization of actomyosin networks lies at the center of many types of cellular motility, including cell polarization and collective cell migration during development and morphogenesis. Myosin-IXa is critically involved in these processes. Using total internal reflection fluorescence microscopy, we resolved actin bundles assembled by myosin-IXa. Electron microscopic data revealed that the bundles consisted of highly ordered lattices with parallel actin polarity. The myosin-IXa motor domains aligned across the network, forming cross-links at a repeat distance of precisely 36 nm, matching the helical repeat of actin. Single-particle image processing resolved three distinct conformations of myosin-IXa in the absence of nucleotide. Using cross-correlation of a modeled actomyosin crystal structure, we identified sites of additional mass, which can only be accounted for by the large insert in loop 2 exclusively found in the motor domain of class IX myosins. We show that the large insert in loop 2 binds calmodulin and creates two coordinated actin-binding sites that constrain the actomyosin interactions generating the actin lattices. The actin lattices introduce orientated tracks at specific sites in the cell, which might install platforms allowing Rho-GTPase-activating protein (RhoGAP) activity to be focused at a definite locus. In addition, the lattices might introduce a myosin-related, force-sensing mechanism into the cytoskeleton in cell polarization and collective cell migration.
Collapse
|
24
|
McCallie BR, Parks JC, Patton AL, Griffin DK, Schoolcraft WB, Katz-Jaffe MG. Hypomethylation and Genetic Instability in Monosomy Blastocysts May Contribute to Decreased Implantation Potential. PLoS One 2016; 11:e0159507. [PMID: 27434648 PMCID: PMC4951028 DOI: 10.1371/journal.pone.0159507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/05/2016] [Indexed: 02/03/2023] Open
Abstract
DNA methylation is a key epigenetic mechanism responsible for gene regulation, chromatin remodeling, and genome stability, playing a fundamental role during embryonic development. The aim of this study was to determine if these epigenetic marks are associated with chromosomal aneuploidy in human blastocysts. Surplus, cryopreserved blastocysts that were donated to research with IRB consent were chosen with varying chromosomal aneuploidies and respective implantation potential: monosomies and trisomies 7, 11, 15, 21, and 22. DNA methylation analysis was performed using the Illumina Infinium HumanMethylation450 BeadChip (~485,000 CpG sites). The methylation profiles of these human blastocysts were found to be similar across all samples, independent of chromosome constitution; however, more detailed examination identified significant hypomethylation in the chromosome involved in the monosomy. Real-time PCR was also performed to determine if downstream messenger RNA (mRNA) was affected for genes on the monosomy chromosome. Gene dysregulation was observed for monosomy blastocysts within significant regions of hypo-methylation (AVEN, CYFIP1, FAM189A1, MYO9A, ADM2, PACSIN2, PARVB, and PIWIL3) (P < 0.05). Additional analysis was performed to examine the gene expression profiles of associated methylation regulators including: DNA methyltransferases (DNMT1, DNMT3A, DNMT3B, DNMT3L), chromatin modifying regulators (CSNK1E, KDM1, PRKCA), and a post-translational modifier (PRMT5). Decreased RNA transcription was confirmed for each DNMT, and the regulators that impact DNMT activity, for only monosomy blastocysts (P < 0.05). In summary, monosomy blastocysts displayed hypomethylation for the chromosome involved in the error, as well as transcription alterations of associated developmental genes. Together, these modifications may be contributing to genetic instability and therefore be responsible for the limited implantation potential observed for full monosomy blastocysts.
Collapse
Affiliation(s)
- Blair R. McCallie
- National Foundation for Fertility Research, Lone Tree, Colorado, 80124, United States of America
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
- * E-mail:
| | - Jason C. Parks
- National Foundation for Fertility Research, Lone Tree, Colorado, 80124, United States of America
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Alyssa L. Patton
- National Foundation for Fertility Research, Lone Tree, Colorado, 80124, United States of America
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - William B. Schoolcraft
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, 80124, United States of America
| | - Mandy G. Katz-Jaffe
- National Foundation for Fertility Research, Lone Tree, Colorado, 80124, United States of America
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, 80124, United States of America
| |
Collapse
|
25
|
O'Connor E, Töpf A, Müller JS, Cox D, Evangelista T, Colomer J, Abicht A, Senderek J, Hasselmann O, Yaramis A, Laval SH, Lochmüller H. Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome. Brain 2016; 139:2143-53. [PMID: 27259756 PMCID: PMC4958899 DOI: 10.1093/brain/aww130] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/20/2016] [Indexed: 12/13/2022] Open
Abstract
Congenital myasthenic syndromes are a group of rare and genetically heterogenous disorders resulting from defects in the structure and function of the neuromuscular junction. Patients with congenital myasthenic syndrome exhibit fatigable muscle weakness with a variety of accompanying phenotypes depending on the protein affected. A cohort of patients with a clinical diagnosis of congenital myasthenic syndrome that lacked a genetic diagnosis underwent whole exome sequencing in order to identify genetic causation. Missense biallelic mutations in the MYO9A gene, encoding an unconventional myosin, were identified in two unrelated families. Depletion of MYO9A in NSC-34 cells revealed a direct effect of MYO9A on neuronal branching and axon guidance. Morpholino-mediated knockdown of the two MYO9A orthologues in zebrafish, myo9aa/ab, demonstrated a requirement for MYO9A in the formation of the neuromuscular junction during development. The morphants displayed shortened and abnormally branched motor axons, lack of movement within the chorion and abnormal swimming in response to tactile stimulation. We therefore conclude that MYO9A deficiency may affect the presynaptic motor axon, manifesting in congenital myasthenic syndrome. These results highlight the involvement of unconventional myosins in motor axon functionality, as well as the need to look outside traditional neuromuscular junction-specific proteins for further congenital myasthenic syndrome candidate genes.
Collapse
Affiliation(s)
- Emily O'Connor
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ana Töpf
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Juliane S Müller
- 2 Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Cox
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Teresinha Evangelista
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jaume Colomer
- 3 Neuromuscular Unit, Neurology Department, Fundación Sant Joan de Déu, Hospital Materno-Infantil Sant Joan de Déu, Passeig Sant Joan de Déu, 2, 08950 Esplugues de Llobregat, Barcelona, Spain
| | - Angela Abicht
- 4 Friedrich-Baur-Institute, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Jan Senderek
- 4 Friedrich-Baur-Institute, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Oswald Hasselmann
- 5 Children's Hospital of Eastern Switzerland, Department of Neuropediatrics, Claudiusstrasse 6, 9006 St. Gallen, Switzerland
| | - Ahmet Yaramis
- 6 Paediatric Neurology Unit, Diyarbakır Memorial Hospital, Turkey
| | - Steven H Laval
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Hanns Lochmüller
- 1 John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
26
|
Folci A, Murru L, Vezzoli E, Ponzoni L, Gerosa L, Moretto E, Longo F, Zapata J, Braida D, Pistillo F, Bähler M, Francolini M, Sala M, Bassani S. Myosin IXa Binds AMPAR and Regulates Synaptic Structure, LTP, and Cognitive Function. Front Mol Neurosci 2016; 9:1. [PMID: 26834556 PMCID: PMC4719083 DOI: 10.3389/fnmol.2016.00001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/02/2016] [Indexed: 01/31/2023] Open
Abstract
Myosin IXa (Myo9a) is a motor protein that is highly expressed in the brain. However, the role of Myo9a in neurons remains unknown. Here, we investigated Myo9a function in hippocampal synapses. In rat hippocampal neurons, Myo9a localizes to the postsynaptic density (PSD) and binds the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) GluA2 subunit. Myo9a(+/-) mice displayed a thicker PSD and increased levels of PSD95 and surface AMPAR expression. Furthermore, synaptic transmission, long-term potentiation (LTP) and cognitive functions were impaired in Myo9a(+/-) mice. Together, these results support a key role for Myo9a in controlling the molecular structure and function of hippocampal synapses.
Collapse
Affiliation(s)
- Alessandra Folci
- CNR Institute of NeuroscienceMilano, Italy; Institute of Biophysics, Medical University of GrazGraz, Austria
| | - Luca Murru
- CNR Institute of Neuroscience Milano, Italy
| | - Elena Vezzoli
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), Università degli Studi di MilanoMilano, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di MilanoMilano, Italy
| | - Luisa Ponzoni
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), Università degli Studi di Milano Milano, Italy
| | | | | | | | | | - Daniela Braida
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), Università degli Studi di Milano Milano, Italy
| | | | - Martin Bähler
- Institute of Molecular Cell Biology, Westfälische Wilhelms-Universität Münster Münster, Germany
| | - Maura Francolini
- CNR Institute of NeuroscienceMilano, Italy; Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), Università degli Studi di MilanoMilano, Italy
| | - Mariaelvina Sala
- CNR Institute of NeuroscienceMilano, Italy; Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), Università degli Studi di MilanoMilano, Italy
| | | |
Collapse
|
27
|
Park R, Moon UY, Park JY, Hughes LJ, Johnson RL, Cho SH, Kim S. Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus. Nat Commun 2016; 7:10329. [PMID: 26754915 PMCID: PMC4729961 DOI: 10.1038/ncomms10329] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/26/2015] [Indexed: 11/09/2022] Open
Abstract
Timely generation and normal maturation of ependymal cells along the aqueduct are critical for preventing physical blockage between the third and fourth ventricles and the development of fetal non-communicating hydrocephalus. Our study identifies Yap, the downstream effector of the evolutionarily conserved Hippo pathway, as a central regulator for generating developmentally controlled ependymal cells along the ventricular lining of the aqueduct. Yap function is necessary for proper proliferation of progenitors and apical attachment of ependymal precursor cells. Importantly, an injury signal initiated by lysophosphatidic acid (LPA), an upstream regulator of Yap that can cause fetal haemorrhagic hydrocephalus, deregulates Yap in the developing aqueduct. LPA exposure leads to the loss of N-cadherin concentrations at the apical endfeet, which can be partially restored by forced Yap expression and more efficiently by phosphomimetic Yap. These results reveal a novel function of Yap in retaining tissue junctions during normal development and after fetal brain injury.
Collapse
Affiliation(s)
- Raehee Park
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Uk Yeol Moon
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Jun Young Park
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Lucinda J. Hughes
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Graduate Program of Biomedical Sciences, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Randy L. Johnson
- Department of Cancer Biology, MD Anderson Cancer Research Center, University of Texas, Houston, Texas 77030, USA
| | - Seo-Hee Cho
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatrics Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| |
Collapse
|
28
|
Kong R, Yi F, Wen P, Liu J, Chen X, Ren J, Li X, Shang Y, Nie Y, Wu K, Fan D, Zhu L, Feng W, Wu JY. Myo9b is a key player in SLIT/ROBO-mediated lung tumor suppression. J Clin Invest 2015; 125:4407-20. [PMID: 26529257 PMCID: PMC4665778 DOI: 10.1172/jci81673] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/21/2015] [Indexed: 11/17/2022] Open
Abstract
Emerging evidence indicates that the neuronal guidance molecule SLIT plays a role in tumor suppression, as SLIT-encoding genes are inactivated in several types of cancer, including lung cancer; however, it is not clear how SLIT functions in lung cancer. Here, our data show that SLIT inhibits cancer cell migration by activating RhoA and that myosin 9b (Myo9b) is a ROBO-interacting protein that suppresses RhoA activity in lung cancer cells. Structural analyses revealed that the RhoGAP domain of Myo9b contains a unique patch that specifically recognizes RhoA. We also determined that the ROBO intracellular domain interacts with the Myo9b RhoGAP domain and inhibits its activity; therefore, SLIT-dependent activation of RhoA is mediated by ROBO inhibition of Myo9b. In a murine model, compared with control lung cancer cells, SLIT-expressing cells had a decreased capacity for tumor formation and lung metastasis. Evaluation of human lung cancer and adjacent nontumor tissues revealed that Myo9b is upregulated in the cancer tissue. Moreover, elevated Myo9b expression was associated with lung cancer progression and poor prognosis. Together, our data identify Myo9b as a key player in lung cancer and as a ROBO-interacting protein in what is, to the best of our knowledge, a newly defined SLIT/ROBO/Myo9b/RhoA signaling pathway that restricts lung cancer progression and metastasis. Additionally, our work suggests that targeting the SLIT/ROBO/Myo9b/RhoA pathway has potential as a diagnostic and therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Ruirui Kong
- State Key Laboratory of Brain and Cognitive Science and
| | - Fengshuang Yi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pushuai Wen
- State Key Laboratory of Brain and Cognitive Science and
| | - Jianghong Liu
- State Key Laboratory of Brain and Cognitive Science and
| | - Xiaoping Chen
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jinqi Ren
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, and
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, China
| | - Li Zhu
- State Key Laboratory of Brain and Cognitive Science and
| | - Wei Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jane Y. Wu
- State Key Laboratory of Brain and Cognitive Science and
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
29
|
Abstract
The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors.
Collapse
Key Words
- AJ, adherens junction
- AMOT, angiomotin
- AMPK, Adenosine Monophosphate-Activated Protein Kinase
- APC, adenomatous poliposis coli
- CD2AP, CD2-associated protein
- CGN, cingulin
- CGNL1, paracingulin
- Cdc42
- Cdc42, cell division cycle 42
- DLC, deleted in liver cancer
- Dbl, diffuse B-cell lymphoma
- EPLIN, epithelial protein lost in neoplasm
- ERK, extracellular regulated kinase
- FERM, four.point.one, ezrin, radixin, moesin
- FGD5, FYVE, RhoGEF and PH domain containing 5
- GAP, GTPase activating protein
- GEF, guanine nucleotide exchange factor
- GST, glutathione -S- transferase; JAM = junctional adhesion molecule
- MCF-7, Michigan Cancer Foundation - 7
- MDCK, Madin Darby Canine Kidney
- MKLP1, mitotic kinesin-like protein-1
- MRCK, myotonic dystrophy-related Cdc42-binding kinase
- MgcRacGAP, male germ cell racGAP
- PA, puncta adhaerentia
- PAK, p21-activated kinase; PATJ, Pals1 associated tight junction protein
- PCNA, proliferating cell nuclear antigen
- PDZ, Post synaptic density protein (PSD95), Drosophila, disc large tumour suppressor (DlgA), and zonula occludens-1
- PLEKHA7, pleckstrin homology domain containing, family A member 7
- RICH-1, RhoGAP interacting with CIP4 homologues
- ROCK, Rho-associated protein kinase
- Rac
- Rho
- SH3BP1, (SH3 domain 490 binding protein-1)
- TJ, tight junction
- Tbx-3, T-box-3
- Tiam, Tumor invasion and metastasis
- WASP, Wiskott-Aldrich Syndrome Protein
- WAVE, WASP family Verprolin-homologous protein
- ZA, zonula adhaerens
- ZO, zonula occludens
- ZONAB, (ZO-1)–associated nucleic acid binding protein.
- cytoseleton
- epithelium
- junctions
Collapse
Affiliation(s)
- Sandra Citi
- a Department of Cell Biology ; University of Geneva ; Geneva , Switzerland
| | | | | | | |
Collapse
|
30
|
Thelen S, Abouhamed M, Ciarimboli G, Edemir B, Bähler M. Rho GAP myosin IXa is a regulator of kidney tubule function. Am J Physiol Renal Physiol 2015; 309:F501-13. [PMID: 26136556 DOI: 10.1152/ajprenal.00220.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/29/2015] [Indexed: 11/22/2022] Open
Abstract
Mammalian class IX myosin Myo9a is a single-headed, actin-dependent motor protein with Rho GTPase-activating protein activity that negatively regulates Rho GTPase signaling. Myo9a is abundantly expressed in ciliated epithelial cells of several organs. In mice, genetic deletion of Myo9a leads to the formation of hydrocephalus. Whether Myo9a also has essential functions in the epithelia of other organs of the body has not been explored. In the present study, we report that Myo9a-deficient mice develop bilateral renal disease, characterized by dilation of proximal tubules, calyceal dilation, and thinning of the parenchyma and fibrosis. These structural changes are accompanied by polyuria (with normal vasopressin levels) and low-molecular-weight proteinuria. Immunohistochemistry revealed that Myo9a is localized to the circumferential F-actin belt of proximal tubule cells. In kidneys lacking Myo9a, the multiligand binding receptor megalin and its ligand albumin accumulated at the luminal surface of Myo9a-deficient proximal tubular cells, suggesting that endocytosis is dysregulated. In addition, we found, surprisingly, that levels of murine diaphanous-related formin-1, a Rho effector, were decreased in Myo9a-deficient kidneys as well as in Myo9a knockdown LLC-PK1 cells. In summary, deletion of the Rho GTPase-activating protein Myo9a in mice causes proximal tubular dilation and fibrosis, and we speculate that downregulation of murine diaphanous-related formin-1 and impaired protein reabsorption contribute to the pathophysiology.
Collapse
Affiliation(s)
- Sabine Thelen
- Institute of Molecular Cell Biology, Westfalian Wilhelms University, Münster, Germany; and
| | - Marouan Abouhamed
- Institute of Molecular Cell Biology, Westfalian Wilhelms University, Münster, Germany; and
| | - Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Bayram Edemir
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Martin Bähler
- Institute of Molecular Cell Biology, Westfalian Wilhelms University, Münster, Germany; and
| |
Collapse
|
31
|
Koschützke L, Bertram J, Hartmann B, Bartsch D, Lotze M, von Bohlen und Halbach O. SrGAP3 knockout mice display enlarged lateral ventricles and specific cilia disturbances of ependymal cells in the third ventricle. Cell Tissue Res 2015; 361:645-50. [PMID: 26104135 DOI: 10.1007/s00441-015-2224-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022]
Abstract
In several mouse models of mental retardation, ventricular enlargements have been observed. Mutation in the SrGAP3 gene residing on chromosome 3p25 has previously been associated with intellectual disability in humans. In addition, SrGAP3 is related to Rho-GAPs signaling pathways, which play essential roles in the development and plasticity of the nervous system. About 10 % of postnatal homozygous SrGAP3-deficient mice die due to hydrocephalus, whereas the remaining mice survive into adulthood but display enlarged ventricles. We analyze the ventricular enlargement of these mice by performing a post-mortem MRI approach. We found a more than 15-fold enlargement of the lateral ventricles of homozygous SrGAP3-deficient mice. Moreover, we demonstrate that this phenotype was not accompanied by a stenosis of the aqueduct. Instead, SrGAP3 knockout mice displayed reduced densities of cilia of ependymal cells in These third ventricle compared to age-matched controls. This results indicate that the ventricular enlargement may be due to ciliopathy.
Collapse
Affiliation(s)
- Leif Koschützke
- Institute of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich-Löffler-Straße-23c, 17487, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Zihni C, Balda MS, Matter K. Signalling at tight junctions during epithelial differentiation and microbial pathogenesis. J Cell Sci 2015; 127:3401-13. [PMID: 25125573 DOI: 10.1242/jcs.145029] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tight junctions are a component of the epithelial junctional complex, and they form the paracellular diffusion barrier that enables epithelial cells to create cellular sheets that separate compartments with different compositions. The assembly and function of tight junctions are intimately linked to the actomyosin cytoskeleton and, hence, are under the control of signalling mechanisms that regulate cytoskeletal dynamics. Tight junctions not only receive signals that guide their assembly and function, but transmit information to the cell interior to regulate cell proliferation, migration and survival. As a crucial component of the epithelial barrier, they are often targeted by pathogenic viruses and bacteria, aiding infection and the development of disease. In this Commentary, we review recent progress in the understanding of the molecular signalling mechanisms that drive junction assembly and function, and the signalling processes by which tight junctions regulate cell behaviour and survival. We also discuss the way in which junctional components are exploited by pathogenic viruses and bacteria, and how this might affect junctional signalling mechanisms.
Collapse
Affiliation(s)
- Ceniz Zihni
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Maria S Balda
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Karl Matter
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| |
Collapse
|
33
|
The motorized RhoGAP myosin IXb (Myo9b) in leukocytes regulates experimental autoimmune encephalomyelitis induction and recovery. J Neuroimmunol 2015; 282:25-32. [PMID: 25903725 DOI: 10.1016/j.jneuroim.2015.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/30/2022]
Abstract
Myo9b regulates leukocyte migration by controlling RhoA signaling. Here we assessed its role in active experimental autoimmune encephalomyelitis (EAE). Myo9b(-/-) mice show a delay in the onset of EAE symptoms. The delay in disease onset was accompanied by reduced numbers of Th1 and Th17 cells in the CNS. Myo9b(-/-) mice showed no recovery from disease symptoms and exhibited elevated numbers of both Th17 cells and CD11b+ macrophages. Bone marrow chimeric mice demonstrated that the absence of a leukocyte source of Myo9b was responsible for the delayed leukocyte infiltration into the CNS, delayed EAE onset and lack of recovery.
Collapse
|
34
|
Quiros M, Nusrat A. RhoGTPases, actomyosin signaling and regulation of the epithelial Apical Junctional Complex. Semin Cell Dev Biol 2014; 36:194-203. [PMID: 25223584 DOI: 10.1016/j.semcdb.2014.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 12/22/2022]
Abstract
Epithelial cells form regulated and selective barriers between distinct tissue compartments. The Apical Junctional Complex (AJC) consisting of the tight junction (TJ) and adherens junction (AJ) control epithelial homeostasis, paracellular permeability and barrier properties. The AJC is composed of mutliprotein complexes consisting of transmembrane proteins that affiliate with an underlying perijunctional F-actin myosin ring through cytoplasmic scaffold proteins. AJC protein associations with the apical actin-myosin cytoskeleton are tightly controlled by a number of signaling proteins including the Rho family of GTPases that orchestrate junctional biology, epithelial homeostasis and barrier function. This review highlights the vital relationship of Rho GTPases and AJCs in controlling the epithelial barrier. The pathophysiologic relationship of Rho GTPases, AJC, apical actomyosin cytoskeleton and epithelial barrier function is discussed.
Collapse
Affiliation(s)
- Miguel Quiros
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
35
|
Jain N, Lim LW, Tan WT, George B, Makeyev E, Thanabalu T. Conditional N-WASP knockout in mouse brain implicates actin cytoskeleton regulation in hydrocephalus pathology. Exp Neurol 2014; 254:29-40. [DOI: 10.1016/j.expneurol.2014.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/08/2014] [Accepted: 01/14/2014] [Indexed: 01/09/2023]
|
36
|
Jiménez AJ, Domínguez-Pinos MD, Guerra MM, Fernández-Llebrez P, Pérez-Fígares JM. Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers 2014; 2:e28426. [PMID: 25045600 PMCID: PMC4091052 DOI: 10.4161/tisb.28426] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 12/20/2022] Open
Abstract
The neuroepithelium is a germinal epithelium containing progenitor cells that produce almost all of the central nervous system cells, including the ependyma. The neuroepithelium and ependyma constitute barriers containing polarized cells covering the embryonic or mature brain ventricles, respectively; therefore, they separate the cerebrospinal fluid that fills cavities from the developing or mature brain parenchyma. As barriers, the neuroepithelium and ependyma play key roles in the central nervous system development processes and physiology. These roles depend on mechanisms related to cell polarity, sensory primary cilia, motile cilia, tight junctions, adherens junctions and gap junctions, machinery for endocytosis and molecule secretion, and water channels. Here, the role of both barriers related to the development of diseases, such as neural tube defects, ciliary dyskinesia, and hydrocephalus, is reviewed.
Collapse
Affiliation(s)
- Antonio J Jiménez
- Department of Cell Biology, Genetics, and Physiology; University of Malaga; Malaga, Spain
| | | | - María M Guerra
- Institute of Anatomy, Histology, and Pathology; Austral University of Chile; Valdivia, Chile
| | | | | |
Collapse
|
37
|
McCormack J, Welsh NJ, Braga VMM. Cycling around cell-cell adhesion with Rho GTPase regulators. J Cell Sci 2014; 126:379-91. [PMID: 23547086 DOI: 10.1242/jcs.097923] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The formation and stability of epithelial adhesive systems, such as adherens junctions, desmosomes and tight junctions, rely on a number of cellular processes that ensure a dynamic interaction with the cortical cytoskeleton, and appropriate delivery and turnover of receptors at the surface. Unique signalling pathways must be coordinated to allow the coexistence of distinct adhesive systems at discrete sub-domains along junctions and the specific properties they confer to epithelial cells. Rho, Rac and Cdc42 are members of the Rho small GTPase family, and are well-known regulators of cell-cell adhesion. The spatio-temporal control of small GTPase activation drives specific intracellular processes to enable the hierarchical assembly, morphology and maturation of cell-cell contacts. Here, we discuss the small GTPase regulators that control the precise amplitude and duration of the levels of active Rho at cell-cell contacts, and the mechanisms that tailor the output of Rho signalling to a particular cellular event. Interestingly, the functional interaction is reciprocal; Rho regulators drive the maturation of cell-cell contacts, whereas junctions can also modulate the localisation and activity of Rho regulators to operate in diverse processes in the epithelial differentiation programme.
Collapse
Affiliation(s)
- Jessica McCormack
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London. Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | | |
Collapse
|
38
|
Karagiannis P, Ishii Y, Yanagida T. Molecular machines like myosin use randomness to behave predictably. Chem Rev 2014; 114:3318-34. [PMID: 24484383 DOI: 10.1021/cr400344n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter Karagiannis
- Quantitative Biology Center, Riken (QBiC) , Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
| | | | | |
Collapse
|
39
|
Elfrink K, Liao W, Pieper U, Oeding SJ, Bähler M. The loop2 insertion of type IX myosin acts as an electrostatic actin tether that permits processive movement. PLoS One 2014; 9:e84874. [PMID: 24416302 PMCID: PMC3887004 DOI: 10.1371/journal.pone.0084874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022] Open
Abstract
Although class IX myosins are single-headed, they demonstrate characteristics of processive movement along actin filaments. Double-headed myosins that move processively along actin filaments achieve this by successive binding of the two heads in a hand-over-hand mechanism. This mechanism, obviously, cannot operate in single-headed myosins. However, it has been proposed that a long class IX specific insertion in the myosin head domain at loop2 acts as an F-actin tether, allowing for single-headed processive movement. Here, we tested this proposal directly by analysing the movement of deletion constructs of the class IX myosin from Caenorhabditis elegans (Myo IX). Deletion of the large basic loop2 insertion led to a loss of processive behaviour, while deletion of the N-terminal head extension, a second unique domain of class IX myosins, did not influence the motility of Myo IX. The processive behaviour of Myo IX is also abolished with increasing salt concentrations. These observations directly demonstrate that the insertion located in loop2 acts as an electrostatic actin tether during movement of Myo IX along the actin track.
Collapse
Affiliation(s)
- Kerstin Elfrink
- Institute of Molecular Cell Biology, Westfalian Wilhelms-University, Muenster, Germany
| | - Wanqin Liao
- Institute of Molecular Cell Biology, Westfalian Wilhelms-University, Muenster, Germany
| | - Uwe Pieper
- Institute of Molecular Cell Biology, Westfalian Wilhelms-University, Muenster, Germany
| | - Stefanie J. Oeding
- Institute of Molecular Cell Biology, Westfalian Wilhelms-University, Muenster, Germany
| | - Martin Bähler
- Institute of Molecular Cell Biology, Westfalian Wilhelms-University, Muenster, Germany
- * E-mail:
| |
Collapse
|
40
|
Citalán-Madrid AF, García-Ponce A, Vargas-Robles H, Betanzos A, Schnoor M. Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue Barriers 2013; 1:e26938. [PMID: 24868497 PMCID: PMC3942330 DOI: 10.4161/tisb.26938] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022] Open
Abstract
The intestinal epithelium forms a stable barrier protecting underlying tissues from pathogens in the gut lumen. This is achieved by specialized integral membrane structures such as tight and adherens junctions that connect neighboring cells and provide stabilizing links to the cytoskeleton. Junctions are constantly remodeled to respond to extracellular stimuli. Assembly and disassembly of junctions is regulated by interplay of actin remodeling, endocytotic recycling of junctional proteins, and various signaling pathways. Accumulating evidence implicate small G proteins of the Ras superfamily as important signaling molecules for the regulation of epithelial junctions. They function as molecular switches circling between an inactive GDP-bound and an active GTP-bound state. Once activated, they bind different effector molecules to control cellular processes required for correct junction assembly, maintenance and remodelling. Here, we review recent advances in understanding how GTPases of the Rho, Ras, Rab and Arf families contribute to intestinal epithelial homeostasis.
Collapse
Affiliation(s)
- Alí Francisco Citalán-Madrid
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Alexander García-Ponce
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| |
Collapse
|
41
|
Affiliation(s)
- M Amanda Hartman
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
42
|
Ratheesh A, Priya R, Yap AS. Coordinating Rho and Rac: the regulation of Rho GTPase signaling and cadherin junctions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:49-68. [PMID: 23481190 DOI: 10.1016/b978-0-12-394311-8.00003-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadherin-based cell-cell adhesions are dynamic structures that mediate tissue organization and morphogenesis. They link cells together, mediate cell-cell recognition, and influence cell shape, motility, proliferation, and differentiation. At the cellular level, operation of classical cadherin adhesion systems is coordinated with cytoskeletal dynamics, contractility, and membrane trafficking to support productive interactions. Cadherin-based cell signaling is critical for the coordination of these many cellular processes. Here, we discuss the role of Rho family GTPases in cadherin signaling. We focus on understanding the pathways that utilize Rac and Rho in junctional biology, aiming to identify the mechanisms of upstream regulation and define how the effects of these activated GTPases might regulate the actin cytoskeleton to modulate the cellular processes involved in cadherin-based cell-cell interactions.
Collapse
Affiliation(s)
- Aparna Ratheesh
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | | | | |
Collapse
|
43
|
Roales-Buján R, Páez P, Guerra M, Rodríguez S, Vío K, Ho-Plagaro A, García-Bonilla M, Rodríguez-Pérez LM, Domínguez-Pinos MD, Rodríguez EM, Pérez-Fígares JM, Jiménez AJ. Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol 2012; 124:531-46. [PMID: 22576081 PMCID: PMC3444707 DOI: 10.1007/s00401-012-0992-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 01/10/2023]
Abstract
Hydrocephalic hyh mutant mice undergo a programmed loss of the neuroepithelium/ependyma followed by a reaction of periventricular astrocytes, which form a new cell layer covering the denuded ventricular surface. We present a comparative morphological and functional study of the newly formed layer of astrocytes and the multiciliated ependyma of hyh mice. Transmission electron microscopy, immunocytochemistry for junction proteins (N-cadherin, connexin 43) and proteins involved in permeability (aquaporin 4) and endocytosis (caveolin-1, EEA1) were used. Horseradish peroxidase (HRP) and lanthanum nitrate were used to trace the intracellular and paracellular transport routes. The astrocyte layer shares several cytological features with the normal multiciliated ependyma, such as numerous microvilli projected into the ventricle, extensive cell–cell interdigitations and connexin 43-based gap junctions, suggesting that these astrocytes are coupled to play an unknown function as a cell layer. The ependyma and the astrocyte layers also share transport properties: (1) high expression of aquaporin 4, caveolin-1 and the endosome marker EEA1; (2) internalization into endocytic vesicles and early endosomes of HRP injected into the ventricle; (3) and a similar paracellular route of molecules moving between CSF, the subependymal neuropile and the pericapillary space, as shown by lanthanum nitrate and HRP. A parallel analysis performed in human hydrocephalic foetuses indicated that a similar phenomenon would occur in humans. We suggest that in foetal-onset hydrocephalus, the astrocyte assembly at the denuded ventricular walls functions as a CSF–brain barrier involved in water and solute transport, thus contributing to re-establish lost functions at the brain parenchyma–CSF interphase.
Collapse
Affiliation(s)
- Ruth Roales-Buján
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Patricia Páez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Montserrat Guerra
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Sara Rodríguez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Karin Vío
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Ailec Ho-Plagaro
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - María García-Bonilla
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Luis-Manuel Rodríguez-Pérez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - María-Dolores Domínguez-Pinos
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Esteban-Martín Rodríguez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - José-Manuel Pérez-Fígares
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| | - Antonio-Jesús Jiménez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain
| |
Collapse
|
44
|
Abstract
The development of cell-cell junctions was a fundamental step in metazoan evolution, and human health depends on the formation and function of cell junctions. Although it has long been known that actin and conventional myosin have important roles in cell junctions, research has begun to reveal the specific functions of the different forms of conventional myosin. Exciting new data also reveals that a growing number of unconventional myosins have important roles in cell junctions. Experiments showing that cell junctions act as mechanosensors have also provided new impetus to understand the functions of myosins and the forces they exert. In this review we will summarize recent developments on the roles of myosins in cell junctions.
Collapse
Affiliation(s)
- Katy C Liu
- Department of Cell and Molecular Physiology; School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Richard E Cheney
- Department of Cell and Molecular Physiology; School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| |
Collapse
|
45
|
Lattke M, Magnutzki A, Walther P, Wirth T, Baumann B. Nuclear factor κB activation impairs ependymal ciliogenesis and links neuroinflammation to hydrocephalus formation. J Neurosci 2012; 32:11511-23. [PMID: 22915098 PMCID: PMC6703776 DOI: 10.1523/jneurosci.0182-12.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022] Open
Abstract
Hydrocephalus formation is a frequent complication of neuropathological insults associated with neuroinflammation. However, the mechanistic role of neuroinflammation in hydrocephalus development is unclear. We have investigated the function of the proinflammatory acting inhibitor of κB kinase (IKK)/nuclear factor κB (NF-κB) signaling system in neuroinflammatory processes and generated a novel mouse model that allows conditional activation of the IKK/NF-κB system in astrocytes. Remarkably, NF-κB activation in astrocytes during early postnatal life results in hydrocephalus formation and additional defects in brain development. NF-κB activation causes global neuroinflammation characterized by a strong, astrocyte-specific expression of proinflammatory NF-κB target genes as well as a massive infiltration and activation of macrophages. In this animal model, hydrocephalus formation is specifically induced during a critical time period of early postnatal development, in which IKK/NF-κB-induced neuroinflammation interferes with ependymal ciliogenesis. Our findings demonstrate for the first time that IKK/NF-κB activation is sufficient to induce hydrocephalus formation and provides a potential mechanistic explanation for the frequent association of neuroinflammation and hydrocephalus formation during brain development, namely impairment of ependymal cilia formation. Therefore, our study might open up new perspectives for the treatment of certain types of neonatal and childhood hydrocephalus associated with hemorrhages and infections.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Astrocytes/enzymology
- Brain/enzymology
- Brain/growth & development
- Brain/pathology
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Cerebral Cortex/cytology
- Chemokines/genetics
- Chemokines/metabolism
- Complement System Proteins/genetics
- Complement System Proteins/metabolism
- Disease Models, Animal
- Doxycycline/administration & dosage
- Encephalitis/etiology
- Enzyme Activation/drug effects
- Enzyme Activation/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Glial Fibrillary Acidic Protein/genetics
- Glioma, Subependymal/etiology
- Glioma, Subependymal/pathology
- Humans
- Hydrocephalus/complications
- Hydrocephalus/enzymology
- Hydrocephalus/pathology
- I-kappa B Kinase/genetics
- I-kappa B Kinase/metabolism
- I-kappa B Proteins/metabolism
- Lateral Ventricles/growth & development
- Lateral Ventricles/pathology
- Lateral Ventricles/ultrastructure
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microarray Analysis
- Microscopy, Electron, Scanning
- NF-KappaB Inhibitor alpha
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Statistics, Nonparametric
- Transcription Factor RelA/metabolism
- NF-kappaB-Inducing Kinase
Collapse
Affiliation(s)
| | | | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | | | | |
Collapse
|
46
|
Elbediwy A, Zihni C, Terry SJ, Clark P, Matter K, Balda MS. Epithelial junction formation requires confinement of Cdc42 activity by a novel SH3BP1 complex. J Cell Biol 2012; 198:677-93. [PMID: 22891260 PMCID: PMC3514035 DOI: 10.1083/jcb.201202094] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/11/2012] [Indexed: 12/28/2022] Open
Abstract
Epithelial cell-cell adhesion and morphogenesis require dynamic control of actin-driven membrane remodeling. The Rho guanosine triphosphatase (GTPase) Cdc42 regulates sequential molecular processes during cell-cell junction formation; hence, mechanisms must exist that inactivate Cdc42 in a temporally and spatially controlled manner. In this paper, we identify SH3BP1, a GTPase-activating protein for Cdc42 and Rac, as a regulator of junction assembly and epithelial morphogenesis using a functional small interfering ribonucleic acid screen. Depletion of SH3BP1 resulted in loss of spatial control of Cdc42 activity, stalled membrane remodeling, and enhanced growth of filopodia. SH3BP1 formed a complex with JACOP/paracingulin, a junctional adaptor, and CD2AP, a scaffolding protein; both were required for normal Cdc42 signaling and junction formation. The filamentous actin-capping protein CapZ also associated with the SH3BP1 complex and was required for control of actin remodeling. Epithelial junction formation and morphogenesis thus require a dual activity complex, containing SH3BP1 and CapZ, that is recruited to sites of active membrane remodeling to guide Cdc42 signaling and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Ahmed Elbediwy
- Department of Cell Biology, Institute of
Ophthalmology, University College London, EC1V 9EL London, England,
UK
| | - Ceniz Zihni
- Department of Cell Biology, Institute of
Ophthalmology, University College London, EC1V 9EL London, England,
UK
| | - Stephen J. Terry
- Department of Cell Biology, Institute of
Ophthalmology, University College London, EC1V 9EL London, England,
UK
| | - Peter Clark
- National Heart and Lung Institute, Imperial
College London, South Kensington Campus, SW7 2AZ London, England,
UK
| | - Karl Matter
- Department of Cell Biology, Institute of
Ophthalmology, University College London, EC1V 9EL London, England,
UK
| | - Maria S. Balda
- Department of Cell Biology, Institute of
Ophthalmology, University College London, EC1V 9EL London, England,
UK
| |
Collapse
|
47
|
Abstract
Collective cell migration is a key process during epithelial morphogenesis, tissue regeneration and tumor dissemination. During collective epithelial migration, anterior-posterior polarity, apical-basal polarity and cell-cell junctions must be dynamically coordinated, but the underlying molecular mechanisms controlling this complex behavior are unclear. Rho GTPases regulate the actin cytoskeleton, in particular protrusive and contractile activities at cell-cell contacts. Recently, a number of regulators - nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) - have been identified and suggested to provide spatio-temporal control of Rho GTPases at cell-cell contacts. One of these is myosin IXA, a member of class IX, single-headed actin motors having a conserved RhoGAP domain. Using its actin-binding and motor activities, myosin IX interacts with actin filaments and moves toward filament plus ends. At the plasma membrane, myosin IX's RhoGAP activity negatively regulates Rho to facilitate localized reorganization of the actin cytoskeleton. Here, I discuss how myosin IXA regulates Rho and the actin cytoskeleton during the assembly of nascent cell-cell contacts and how this might contribute to collective epithelial migration.
Collapse
Affiliation(s)
- Tatiana Omelchenko
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
48
|
Chandhoke SK, Mooseker MS. A role for myosin IXb, a motor-RhoGAP chimera, in epithelial wound healing and tight junction regulation. Mol Biol Cell 2012; 23:2468-80. [PMID: 22573889 PMCID: PMC3386211 DOI: 10.1091/mbc.e11-09-0803] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myo9b is a motor–RhoGAP chimera that has been implicated in inflammatory bowel disease. Findings suggest that Myo9b is essential during both collective and individual wound-induced cell migration. It is also important for maintaining tight junction barrier integrity. Polymorphisms in the gene encoding the heavy chain of myosin IXb (Myo9b) have been linked to several forms of inflammatory bowel disease (IBD). Given that Myo9b contains a RhoGTPase-activating protein domain within its tail, it may play key roles in Rho-mediated actin cytoskeletal modifications critical to intestinal barrier function. In wounded monolayers of the intestinal epithelial cell line Caco2BBe (BBe), Myo9b localizes to the extreme leading edge of lamellipodia of migrating cells. BBe cells exhibiting loss of Myo9b expression with RNA interference or Myo9b C-terminal dominant-negative (DN) tail-tip expression lack lamellipodia, fail to migrate into the wound, and form stress fiber–like arrays of actin at the free edges of cells facing the wound. These cells also exhibit disruption of tight junction (TJ) protein localization, including ZO-1, occludin, and claudin-1. Torsional motility and junctional permeability to dextran are greatly increased in cells expressing DN-tail-tip. Of interest, this effect is propagated to neighboring cells. Consistent with a role for Myo9b in regulating levels of active Rho, localization of both RhoGTP and myosin light chain phosphorylation corresponds to Myo9b-knockdown regions of BBe monolayers. These data reveal critical roles for Myo9b during epithelial wound healing and maintenance of TJ integrity—key functions that may be altered in patients with Myo9b-linked IBD.
Collapse
Affiliation(s)
- Surjit K Chandhoke
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
49
|
Liu KC, Jacobs DT, Dunn BD, Fanning AS, Cheney RE. Myosin-X functions in polarized epithelial cells. Mol Biol Cell 2012; 23:1675-87. [PMID: 22419816 PMCID: PMC3338435 DOI: 10.1091/mbc.e11-04-0358] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myosin-X, an unconventional myosin that has been studied primarily in fibroblast-like cells, has been shown to have important functions in polarized epithelial cell junction formation, regulation of paracellular permeability, and epithelial morphogenesis. Myosin-X (Myo10) is an unconventional myosin that localizes to the tips of filopodia and has critical functions in filopodia. Although Myo10 has been studied primarily in nonpolarized, fibroblast-like cells, Myo10 is expressed in vivo in many epithelia-rich tissues, such as kidney. In this study, we investigate the localization and functions of Myo10 in polarized epithelial cells, using Madin-Darby canine kidney II cells as a model system. Calcium-switch experiments demonstrate that, during junction assembly, green fluorescent protein–Myo10 localizes to lateral membrane cell–cell contacts and to filopodia-like structures imaged by total internal reflection fluorescence on the basal surface. Knockdown of Myo10 leads to delayed recruitment of E-cadherin and ZO-1 to junctions, as well as a delay in tight junction barrier formation, as indicated by a delay in the development of peak transepithelial electrical resistance (TER). Although Myo10 knockdown cells eventually mature into monolayers with normal TER, these monolayers do exhibit increased paracellular permeability to fluorescent dextrans. Importantly, knockdown of Myo10 leads to mitotic spindle misorientation, and in three-dimensional culture, Myo10 knockdown cysts exhibit defects in lumen formation. Together these results reveal that Myo10 functions in polarized epithelial cells in junction formation, regulation of paracellular permeability, and epithelial morphogenesis.
Collapse
Affiliation(s)
- Katy C Liu
- Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
50
|
Yung YC, Mutoh T, Lin ME, Noguchi K, Rivera RR, Choi JW, Kingsbury MA, Chun J. Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med 2012; 3:99ra87. [PMID: 21900594 DOI: 10.1126/scitranslmed.3002095] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fetal hydrocephalus (FH), characterized by the accumulation of cerebrospinal fluid, an enlarged head, and neurological dysfunction, is one of the most common neurological disorders of newborns. Although the etiology of FH remains unclear, it is associated with intracranial hemorrhage. Here, we report that lysophosphatidic acid (LPA), a blood-borne lipid that activates signaling through heterotrimeric guanosine 5'-triphosphate-binding protein (G protein)-coupled receptors, provides a molecular explanation for FH associated with hemorrhage. A mouse model of intracranial hemorrhage in which the brains of mouse embryos were exposed to blood or LPA resulted in development of FH. FH development was dependent on the expression of the LPA(1) receptor by neural progenitor cells. Administration of an LPA(1) receptor antagonist blocked development of FH. These findings implicate the LPA signaling pathway in the etiology of FH and suggest new potential targets for developing new treatments for FH.
Collapse
Affiliation(s)
- Yun C Yung
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|