1
|
Kasera H, Sanghi S, Singh P. PLK4 Homodimerization is Required for CEP152 Centrosome Localization and Spindle Organization. J Mol Biol 2025; 437:169152. [PMID: 40222413 DOI: 10.1016/j.jmb.2025.169152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/18/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
The centrosome-specific Polo-Like Kinase 4 (PLK4) is a unique serine/threonine kinase family member that homodimerizes using its cryptic polo-box (CPB) region. PLK4 homodimerization causes transphosphorylation, which activates its ubiquitin-mediated degradation. The same CPB interacts with upstream centrosome recruiters, CEP152 and CEP192 in human cells. However, the involvement of PLK4 homodimerization with the CEP192-CEP152 network remains unexplored. This work identified a cancerous PLK4 variant, which truncated the protein to disrupt the CPB at 774 residue. The truncated PLK4 is unable to homodimerize or interact with CEP152 or CEP192. During the S-phase, CEP152 recruits PLK4 to centrosomes, and the homodimerization of PLK4 is needed to maintain CEP152 at centrosomes. The reduction in levels of CEP152 on PLK4 homodimerization mutant expression correlates to pericentrin at S-phase centrosomes, which causes unfocussed spindles at the M-phase and reduces cell viability. The work shows a cross-dependency between CEP152 and PLK4 homodimerization for centrosome functioning, which is disrupted in cancer.
Collapse
Affiliation(s)
- Harshita Kasera
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342037, Jodhpur, Rajasthan, India
| | - Srishti Sanghi
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342037, Jodhpur, Rajasthan, India
| | - Priyanka Singh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Nagaur Road, Karwar 342037, Jodhpur, Rajasthan, India.
| |
Collapse
|
2
|
Li M, Böke E, Yang J. Centrosome-assisted assembly of the Balbiani body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637656. [PMID: 39990491 PMCID: PMC11844453 DOI: 10.1101/2025.02.11.637656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The Balbiani body (Bb), which was discovered about 170 years ago, is a membraneless organelle in the oocyte in most species. In organisms like Xenopus and Zebrafish, Bb accumulates mitochondria, endoplasmic reticulum (ER), and germline determinants and regulates the proper localization of germline determinants. The Bb forms around the centrosome in the oocyte during early oogenesis. The mechanism behind its assembly has gained attention only very recently. Here, we report that overexpression of the germ plasm matrix protein Xvelo leads to the formation of a 'Bb-like' structure in somatic cells. The 'Bb-like' structure assembles around the centrosome and selectively recruits mitochondria, ER, and germline determinants. Taking advantage of this system, we investigated the roles of centrosome components on the assembly of Xvelo. Our results reveal that multiple components of the centrosome, including Sas6, Cenexin, and DZIP1, interact with Xvelo and promote its assembly, with Sas6 exhibiting the most prominent activity. Importantly, knocking down Sas6, Cenexin, and DZIP1 individually or in combination resulted in reduced Xvelo aggregates. Taken together, our work suggests that the centrosome may function as a nucleation center to promote the initiation of Xvelo assembly, resulting in the formation of the Bb around the centrosome.
Collapse
|
3
|
Rajam SM, Varghese PC, Shirude MB, Syed KM, Devarajan A, Natarajan K, Dutta D. Kinase activity of histone chaperone APLF maintains steady state of centrosomes in mouse embryonic stem cells. Eur J Cell Biol 2024; 103:151439. [PMID: 38968704 DOI: 10.1016/j.ejcb.2024.151439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Our recent studies revealed the role of mouse Aprataxin PNK-like Factor (APLF) in development. Nevertheless, the comprehensive characterization of mouse APLF remains entirely unexplored. Based on domain deletion studies, here we report that mouse APLF's Acidic Domain and Fork Head Associated (FHA) domain can chaperone histones and repair DNA like the respective human orthologs. Immunofluorescence studies in mouse embryonic stem cells showed APLF co-localized with γ-tubulin within and around the centrosomes and govern the number and integrity of centrosomes via PLK4 phosphorylation. Enzymatic analysis established mouse APLF as a kinase. Docking studies identified three putative ATP binding sites within the FHA domain. Site-directed mutagenesis showed that R37 residue within the FHA domain is indispensable for the kinase activity of APLF thereby regulating the centrosome number. These findings might assist us comprehend APLF in different pathological and developmental conditions and reveal non-canonical kinase activity of proteins harbouring FHA domains that might impact multiple cellular processes.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India; Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Pallavi Chinnu Varghese
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Mayur Balkrishna Shirude
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India; Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Khaja Mohieddin Syed
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Anjali Devarajan
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Kathiresan Natarajan
- Rajiv Gandhi Centre for Biotechnology (RGCB), Transdisciplinary Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Debasree Dutta
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India.
| |
Collapse
|
4
|
Kalbfuss N, Gönczy P. Towards understanding centriole elimination. Open Biol 2023; 13:230222. [PMID: 37963546 PMCID: PMC10645514 DOI: 10.1098/rsob.230222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 11/16/2023] Open
Abstract
Centrioles are microtubule-based structures crucial for forming flagella, cilia and centrosomes. Through these roles, centrioles are critical notably for proper cell motility, signalling and division. Recent years have advanced significantly our understanding of the mechanisms governing centriole assembly and architecture. Although centrioles are typically very stable organelles, persisting over many cell cycles, they can also be eliminated in some cases. Here, we review instances of centriole elimination in a range of species and cell types. Moreover, we discuss potential mechanisms that enable the switch from a stable organelle to a vanishing one. Further work is expected to provide novel insights into centriole elimination mechanisms in health and disease, thereby also enabling scientists to readily manipulate organelle fate.
Collapse
Affiliation(s)
- Nils Kalbfuss
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Wang Y, Risteski P, Yang Y, Chen H, Droby G, Walens A, Jayaprakash D, Troester M, Herring L, Chernoff J, Tolić I, Bowser J, Vaziri C. The TRIM69-MST2 signaling axis regulates centrosome dynamics and chromosome segregation. Nucleic Acids Res 2023; 51:10568-10589. [PMID: 37739411 PMCID: PMC10602929 DOI: 10.1093/nar/gkad766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
Stringent control of centrosome duplication and separation is important for preventing chromosome instability. Structural and numerical alterations in centrosomes are hallmarks of neoplastic cells and contribute to tumorigenesis. We show that a Centrosome Amplification 20 (CA20) gene signature is associated with high expression of the Tripartite Motif (TRIM) family member E3 ubiquitin ligase, TRIM69. TRIM69-ablation in cancer cells leads to centrosome scattering and chromosome segregation defects. We identify Serine/threonine-protein kinase 3 (MST2) as a new direct binding partner of TRIM69. TRIM69 redistributes MST2 to the perinuclear cytoskeleton, promotes its association with Polo-like kinase 1 (PLK1) and stimulates MST2 phosphorylation at S15 (a known PLK1 phosphorylation site that is critical for centrosome disjunction). TRIM69 also promotes microtubule bundling and centrosome segregation that requires PRC1 and DYNEIN. Taken together, we identify TRIM69 as a new proximal regulator of distinct signaling pathways that regulate centrosome dynamics and promote bipolar mitosis.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Patrik Risteski
- Division of Molecular Biology, Ruđer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Huan Chen
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gaith Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrea Walens
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Deepika Jayaprakash
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Oral and Craniofacial Biomedicine Program, Adam’s School of Dentistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Melissa Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Laura Herring
- Department of Pharmacology, UNC Proteomics Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Iva M Tolić
- Division of Molecular Biology, Ruđer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Jessica Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Song S, Jung S, Kwon M. Expanding roles of centrosome abnormalities in cancers. BMB Rep 2023; 56:216-224. [PMID: 36945828 PMCID: PMC10140484 DOI: 10.5483/bmbrep.2023-0025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 12/10/2024] Open
Abstract
Centrosome abnormalities are hallmarks of human cancers. Structural and numerical centrosome abnormalities correlate with tumor aggressiveness and poor prognosis, implicating that centrosome abnormalities could be a cause of tumorigenesis. Since Boveri made his pioneering recognition of the potential causal link between centrosome abnormalities and cancer more than a century ago, there has been significant progress in the field. Here, we review recent advances in the understanding of the causes and consequences of centrosome abnormalities and their connection to cancers. Centrosome abnormalities can drive the initiation and progression of cancers in multiple ways. For example, they can generate chromosome instability through abnormal mitosis, accelerating cancer genome evolution. Remarkably, it is becoming clear that the mechanisms by which centrosome abnormalities promote several steps of tumorigenesis are far beyond what Boveri had initially envisioned. We highlight various cancer-promoting mechanisms exerted by cells with centrosome abnormalities and how these cells possessing oncogenic potential can be monitored. [BMB Reports 2023; 56(4): 216-224].
Collapse
Affiliation(s)
- Soohyun Song
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Surim Jung
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Mijung Kwon
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
7
|
Song S, Jung S, Kwon M. Expanding roles of centrosome abnormalities in cancers. BMB Rep 2023; 56:216-224. [PMID: 36945828 PMCID: PMC10140484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/23/2023] Open
Abstract
Centrosome abnormalities are hallmarks of human cancers. Structural and numerical centrosome abnormalities correlate with tumor aggressiveness and poor prognosis, implicating that centrosome abnormalities could be a cause of tumorigenesis. Since Boveri made his pioneering recognition of the potential causal link between centrosome abnormalities and cancer more than a century ago, there has been significant progress in the field. Here, we review recent advances in the understanding of the causes and consequences of centrosome abnormalities and their connection to cancers. Centrosome abnormalities can drive the initiation and progression of cancers in multiple ways. For example, they can generate chromosome instability through abnormal mitosis, accelerating cancer genome evolution. Remarkably, it is becoming clear that the mechanisms by which centrosome abnormalities promote several steps of tumorigenesis are far beyond what Boveri had initially envisioned. We highlight various cancer-promoting mechanisms exerted by cells with centrosome abnormalities and how these cells possessing oncogenic potential can be monitored. [BMB Reports 2023; 56(4): 216-224].
Collapse
Affiliation(s)
- Soohyun Song
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Surim Jung
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Mijung Kwon
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
8
|
Portelinha A, da Silva Ferreira M, Erazo T, Jiang M, Asgari Z, de Stanchina E, Younes A, Wendel HG. Synthetic lethality of drug-induced polyploidy and BCL-2 inhibition in lymphoma. Nat Commun 2023; 14:1522. [PMID: 36934096 PMCID: PMC10024740 DOI: 10.1038/s41467-023-37216-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
Spontaneous whole genome duplication and the adaptive mutations that disrupt genome integrity checkpoints are infrequent events in B cell lymphomas. This suggests that lymphomas might be vulnerable to therapeutics that acutely trigger genomic instability and polyploidy. Here, we report a therapeutic combination of inhibitors of the Polo-like kinase 4 and BCL-2 that trigger genomic instability and cell death in aggressive lymphomas. The synthetic lethality is selective for tumor cells and spares vital organs. Mechanistically, inhibitors of Polo-like kinase 4 impair centrosome duplication and cause genomic instability. The elimination of polyploid cells largely depends on the pro-apoptotic BAX protein. Consequently, the combination of drugs that induce polyploidy with the BCL-2 inhibitor Venetoclax is highly synergistic and safe against xenograft and PDX models. We show that B cell lymphomas are ill-equipped for acute, therapy-induced polyploidy and that BCL-2 inhibition further enhances the removal of polyploid lymphoma cells.
Collapse
Affiliation(s)
- Ana Portelinha
- Cancer Biology & Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine Lymphoma Service Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Tatiana Erazo
- Department of Medicine Lymphoma Service Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Man Jiang
- Cancer Biology & Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Zahra Asgari
- Department of Medicine Lymphoma Service Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anas Younes
- Department of Medicine Lymphoma Service Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.
- AstraZeneca, Medimmune Way, Gaithersburg, MD, USA.
| | - Hans-Guido Wendel
- Cancer Biology & Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Huang RL, Liu C, Fu R, Yan Y, Yang J, Wang X, Li Q. Downregulation of PLK4 expression induces apoptosis and G0/G1-phase cell cycle arrest in keloid fibroblasts. Cell Prolif 2022; 55:e13271. [PMID: 35670224 PMCID: PMC9251049 DOI: 10.1111/cpr.13271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives Keloids are benign fibroproliferative tumors that display many cancer‐like characteristics, such as progressive uncontrolled growth, lack of spontaneous regression, and extremely high rates of recurrence. Polo‐like kinase 4 (PLK4) was recently identified as a master regulator of centriole replication, and its aberrant expression is closely associated with tumorigenesis. This study aimed to investigate the expression and biological role of PLK4 in the pathogenesis of keloids. Materials and Methods We evaluated the expression of PLK4 in keloids and adjacent normal skin tissue samples. Then, we established PLK4 knockdown and overexpression cell lines in keloid fibroblasts (KFs) and normal skin fibroblasts (NFs), respectively, to investigate the roles of PLK4 in the regulation of proliferation, migration, invasion, apoptosis, and cell cycle in KFs. Centrinone B (Cen‐B), a highly selective PLK4 inhibitor, was used to inhibit PLK4 activity in KFs to evaluate the therapeutic effect on KFs. Results We discovered that PLK4 was overexpressed in keloid dermal samples and KFs compared with adjacent normal skin samples and NFs derived from the same patients. High PLK4 expression was positively associated with the proliferation, migration, and invasion of KFs. Furthermore, knockdown of PLK4 expression or inhibition of PLK4 activity by Cen‐B suppressed KF growth, induced KF apoptosis via the caspase‐9/3 pathway, and induced cell cycle arrest at the G0/G1 phase in vitro. Conclusions These findings demonstrate that PLK4 is a critical regulator of KF proliferation, migration, and invasion, and thus, Cen‐B is a promising candidate drug for keloid treatment.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinggang Wang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Cunningham NHJ, Bouhlel IB, Conduit PT. Daughter centrioles assemble preferentially towards the nuclear envelope in Drosophila syncytial embryos. Open Biol 2022; 12:210343. [PMID: 35042404 PMCID: PMC8767211 DOI: 10.1098/rsob.210343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Centrosomes are important organizers of microtubules within animal cells. They comprise a pair of centrioles surrounded by the pericentriolar material, which nucleates and organizes the microtubules. To maintain centrosome numbers, centrioles must duplicate once and only once per cell cycle. During S-phase, a single new ‘daughter’ centriole is built orthogonally on one side of each radially symmetric ‘mother’ centriole. Mis-regulation of duplication can result in the simultaneous formation of multiple daughter centrioles around a single mother centriole, leading to centrosome amplification, a hallmark of cancer. It remains unclear how a single duplication site is established. It also remains unknown whether this site is pre-defined or randomly positioned around the mother centriole. Here, we show that within Drosophila syncytial embryos daughter centrioles preferentially assemble on the side of the mother facing the nuclear envelope, to which the centrosomes are closely attached. This positional preference is established early during duplication and remains stable throughout daughter centriole assembly, but is lost in centrosomes forced to lose their connection to the nuclear envelope. This shows that non-centrosomal cues influence centriole duplication and raises the possibility that these external cues could help establish a single duplication site.
Collapse
Affiliation(s)
- Neil H J Cunningham
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Imène B Bouhlel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Paul T Conduit
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| |
Collapse
|
11
|
Keep Calm and Carry on with Extra Centrosomes. Cancers (Basel) 2022; 14:cancers14020442. [PMID: 35053604 PMCID: PMC8774008 DOI: 10.3390/cancers14020442] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Precise chromosome segregation during mitosis is a vital event orchestrated by formation of bipolar spindle poles. Supernumerary centrosomes, caused by centrosome amplification, deteriorates mitotic processes, resulting in segregation defects leading to chromosomal instability (CIN). Centrosome amplification is frequently observed in various types of cancer and considered as a significant contributor to destabilization of chromosomes. This review provides a comprehensive overview of causes and consequences of centrosome amplification thoroughly describing molecular mechanisms. Abstract Aberrations in the centrosome number and structure can readily be detected at all stages of tumor progression and are considered hallmarks of cancer. Centrosome anomalies are closely linked to chromosome instability and, therefore, are proposed to be one of the driving events of tumor formation and progression. This concept, first posited by Boveri over 100 years ago, has been an area of interest to cancer researchers. We have now begun to understand the processes by which these numerical and structural anomalies may lead to cancer, and vice-versa: how key events that occur during carcinogenesis could lead to amplification of centrosomes. Despite the proliferative advantages that having extra centrosomes may confer, their presence can also lead to loss of essential genetic material as a result of segregational errors and cancer cells must deal with these deadly consequences. Here, we review recent advances in the current literature describing the mechanisms by which cancer cells amplify their centrosomes and the methods they employ to tolerate the presence of these anomalies, focusing particularly on centrosomal clustering.
Collapse
|
12
|
Oh H, Kim SG, Bae SU, Byun SJ, Kim S, Lee JH, Hwang I, Kwon SY, Lee HW. Polo-like kinase 4 as a potential predictive biomarker of chemoradioresistance in locally advanced rectal cancer. J Pathol Transl Med 2022; 56:40-47. [PMID: 34775733 PMCID: PMC8743804 DOI: 10.4132/jptm.2021.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Polo-like kinase 4 (PLK4) is a serine/threonine protein kinase located in the centriole of the chromosome during the cell cycle. PLK4 overexpression has been described in a variety of many common human epithelial tumors. Conversely, PLK4 acts as a haploinsufficient tumor suppressor in some situations, highlighting the importance of strict regulation of PLK4 expression, activity, and function. Meanwhile, the importance of chemoradiation resistance in rectal cancer is being emphasized more than ever. We aimed to analyze PLK4 expression and the tumor regression grade (TRG) in patients with rectal cancer, treated with chemoradiotherapy (CRT). METHODS A retrospective study was conducted on 102 patients with rectal cancer who received preoperative CRT. Immunohistochemistry for PLK4 in paraffin-embedded tissue was performed from the biopsy and surgical specimens. RESULTS We found significant association between high expression of PLK4 and poor response to neoadjuvant CRT (according to both Mandard and The Korean Society of Pathologists TRG systems) in the pre-CRT specimens. Other clinicopathologic parameters did not reveal any correlation with PLK4 expression. CONCLUSIONS This study revealed an association between high expression of PLK4 in the pre-CRT specimens and TRG. Our results indicated that PLK4 could potentially be a new predictor for CRT effect in patients with rectal cancer.
Collapse
Affiliation(s)
- Hyunseung Oh
- Department of Pathology, Keimyung University School of Medicine, Daegu,
Korea
| | - Soon Gu Kim
- Department of Education Support Center, Keimyung University School of Medicine, Daegu,
Korea
| | - Sung Uk Bae
- Division of Colorectal Surgery, Department of Surgery, Keimyung University School of Medicine, Daegu,
Korea
| | - Sang Jun Byun
- Department of Radiation Oncology, Keimyung University School of Medicine, Daegu,
Korea
| | - Shin Kim
- Department of Immunology, Keimyung University School of Medicine, Daegu,
Korea
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Daegu,
Korea
| | - Ilseon Hwang
- Department of Pathology, Keimyung University School of Medicine, Daegu,
Korea
| | - Sun Young Kwon
- Department of Pathology, Keimyung University School of Medicine, Daegu,
Korea
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu,
Korea
| |
Collapse
|
13
|
Roopasree OJ, Adivitiya, Chakraborty S, Kateriya S, Veleri S. Centriole is the pivot coordinating dynamic signaling for cell proliferation and organization during early development in the vertebrates. Cell Biol Int 2021; 45:2178-2197. [PMID: 34288241 DOI: 10.1002/cbin.11667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/12/2021] [Indexed: 11/07/2022]
Abstract
Vertebrates have an elaborate and functionally segmented body. It evolves from a single cell by systematic cell proliferation but attains a complex body structure with exquisite precision. This development requires two cellular events: cell cycle and ciliogenesis. For these events, the dynamic molecular signaling is converged at the centriole. The cell cycle helps in cell proliferation and growth of the body and is a highly regulated and integrated process. Its errors cause malignancies and developmental disorders. The cells newly proliferated are organized during organogenesis. For a cellular organization, dedicated signaling hubs are developed in the cells, and most often cilia are utilized. The cilium is generated from one of the centrioles involved in cell proliferation. The developmental signaling pathways hosted in cilia are essential for the elaboration of the body plan. The cilium's compartmental seclusion is ideal for noise-free molecular signaling and is essential for the precision of the body layout. The dysfunctional centrioles and primary cilia distort the development of body layout that manifest as serious developmental disorders. Thus, centriole has a dual role in the growth and cellular organization. It organizes dynamically expressed molecules of cell cycle and ciliogenesis and plays a balancing act to generate new cells and organize them during development. A putative master molecule may regulate and coordinate the dynamic gene expression at the centrioles. The convergence of many critical signaling components at the centriole reiterates the idea that centriole is a major molecular workstation involved in elaborating the structural design and complexity in vertebrates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- O J Roopasree
- Agroprocessing Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019 and Academy of CSIR, Uttar Pradesh - 201002, India
| | - Adivitiya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Soura Chakraborty
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad, 500007, India
| |
Collapse
|
14
|
Li J, Urabe G, Huang Y, Zhang M, Wang B, Marcho L, Shen H, Kent KC, Guo LW. A Role for Polo-Like Kinase 4 in Vascular Fibroblast Cell-Type Transition. JACC Basic Transl Sci 2021; 6:257-283. [PMID: 33778212 PMCID: PMC7987547 DOI: 10.1016/j.jacbts.2020.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/08/2022]
Abstract
PLK4, previously known as a centriole-associated factor, regulates the transcription factor activity of serum response factor. PLK4 inhibition blocks the profibrogenic cell state transition of vascular fibroblasts. PLK4’s activation and gene expression are regulated by PDGF receptor and epigenetic reader BRD4, respectively. Periadventitial administration of a PLK4 inhibitor mitigates vascular fibrosis.
Polo-like kinase 4 (PLK4) is canonically known for its cytoplasmic function in centriole duplication. Here we show a noncanonical PLK4 function of regulating the transcription factor SRF’s nuclear activity and associated myofibroblast-like cell-type transition. In this context, we have further found that PLK4’s phosphorylation and transcription are respectively regulated by PDGF receptor and epigenetic factor BRD4. Furthermore, in vivo experiments suggest PLK4 inhibition as a potential approach to mitigating vascular fibrosis.
Collapse
Key Words
- AA, PDGF-AA
- BET, bromo/extraterminal domain–containing protein
- BRD4
- BRD4, bromodomain protein 4
- CenB, centrinone-B
- EEL, external elastic lamina
- JQ1, a BET family–selective epigenetic modulator drug
- MRTF-A, myocardin-related transcription factor A
- PDGF receptor
- PDGF, platelet-derived growth factor
- PDGFR, PDGF receptor
- PLK, polo-like kinase
- PLK4
- SRF
- SRF, serum response factor
- fibroblast cell-type transition
- αSMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Go Urabe
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Cellular and Molecular Pathology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Lynn Marcho
- Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Hongtao Shen
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
15
|
Zhang X, Wei C, Liang H, Han L. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Front Oncol 2021; 11:587554. [PMID: 33777739 PMCID: PMC7994899 DOI: 10.3389/fonc.2021.587554] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors' perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
16
|
Balestra FR, Domínguez-Calvo A, Wolf B, Busso C, Buff A, Averink T, Lipsanen-Nyman M, Huertas P, Ríos RM, Gönczy P. TRIM37 prevents formation of centriolar protein assemblies by regulating Centrobin. eLife 2021; 10:62640. [PMID: 33491649 PMCID: PMC7870141 DOI: 10.7554/elife.62640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
TRIM37 is an E3 ubiquitin ligase mutated in Mulibrey nanism, a disease with impaired organ growth and increased tumor formation. TRIM37 depletion from tissue culture cells results in supernumerary foci bearing the centriolar protein Centrin. Here, we characterize these centriolar protein assemblies (Cenpas) to uncover the mechanism of action of TRIM37. We find that an atypical de novo assembly pathway can generate Cenpas that act as microtubule-organizing centers (MTOCs), including in Mulibrey patient cells. Correlative light electron microscopy reveals that Cenpas are centriole-related or electron-dense structures with stripes. TRIM37 regulates the stability and solubility of Centrobin, which accumulates in elongated entities resembling the striped electron dense structures upon TRIM37 depletion. Furthermore, Cenpas formation upon TRIM37 depletion requires PLK4, as well as two parallel pathways relying respectively on Centrobin and PLK1. Overall, our work uncovers how TRIM37 prevents Cenpas formation, which would otherwise threaten genome integrity.
Collapse
Affiliation(s)
- Fernando R Balestra
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Andrés Domínguez-Calvo
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Benita Wolf
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Coralie Busso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Alizée Buff
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Tessa Averink
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Marita Lipsanen-Nyman
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Rosa M Ríos
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
17
|
Raab CA, Raab M, Becker S, Strebhardt K. Non-mitotic functions of polo-like kinases in cancer cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188467. [PMID: 33171265 DOI: 10.1016/j.bbcan.2020.188467] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics. The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.
Collapse
Affiliation(s)
| | - Monika Raab
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Sven Becker
- Department of Gynecology, Goethe-University, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, Frankfurt, Germany.
| |
Collapse
|
18
|
Park JE, Meng L, Ryu EK, Nagashima K, Baxa U, Bang JK, Lee KS. Autophosphorylation-induced self-assembly and STIL-dependent reinforcement underlie Plk4's ring-to-dot localization conversion around a human centriole. Cell Cycle 2020; 19:3419-3436. [PMID: 33323015 DOI: 10.1080/15384101.2020.1843772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Polo-like kinase 4 (Plk4) is a key regulator of centriole biogenesis. Studies have shown that Plk4 undergoes dynamic relocalization from a ring-like pattern around a centriole to a dot-like morphology at the procentriole assembly site and this event is central for inducing centriole biogenesis. However, the detailed mechanisms underlying Plk4's capacity to drive its symmetry-breaking ring-to-dot relocalization remain largely unknown. Here, we showed that Plk4 self-initiates this process in an autophosphorylation-dependent manner and that STIL, its downstream target, is not required for this event. Time-dependent analyses with mEOS-fused photoconvertible Plk4 revealed that a portion of ring-state Plk4 acquires a capacity, presumably through autophosphorylation, to linger around a centriole, ultimately generating a dot-state morphology. Interestingly, Plk4 WT, but not its catalytically inactive mutant, showed the ability to form a nanoscale spherical assembly in the cytosol of human cells or heterologous E. coli, demonstrating its autophosphorylation-dependent self-organizing capacity. At the biochemical level, Plk4 - unlike its N-terminal βTrCP degron motif - robustly autophosphorylated the PC3 SSTT motif within its C-terminal cryptic polo-box, an event critical for inducing its physical clustering. Additional in vivo experiments showed that although STIL was not required for Plk4's initial ring-to-dot conversion, coexpressed STIL greatly enhanced Plk4's ability to generate a spherical condensate and recruit Sas6, a major component of the centriolar cartwheel structure. We propose that Plk4's autophosphorylation-induced clustering is sufficient to induce its ring-to-dot localization conversion and that subsequently recruited STIL potentiates this process to generate a procentriole assembly body critical for Plk4-dependent centriole biogenesis.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Lingjun Meng
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute , Cheongju, Republic of Korea
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research , Frederick, MD, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research , Frederick, MD, USA
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute , Cheongju, Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
19
|
Use of the Polo-like kinase 4 (PLK4) inhibitor centrinone to investigate intracellular signalling networks using SILAC-based phosphoproteomics. Biochem J 2020; 477:2451-2475. [PMID: 32501498 PMCID: PMC7338032 DOI: 10.1042/bcj20200309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Polo-like kinase 4 (PLK4) is the master regulator of centriole duplication in metazoan organisms. Catalytic activity and protein turnover of PLK4 are tightly coupled in human cells, since changes in PLK4 concentration and catalysis have profound effects on centriole duplication and supernumerary centrosomes, which are associated with aneuploidy and cancer. Recently, PLK4 has been targeted with a variety of small molecule kinase inhibitors exemplified by centrinone, which rapidly induces inhibitory effects on PLK4 and leads to on-target centrosome depletion. Despite this, relatively few PLK4 substrates have been identified unequivocally in human cells, and PLK4 signalling outside centriolar networks remains poorly characterised. We report an unbiased mass spectrometry (MS)-based quantitative analysis of cellular protein phosphorylation in stable PLK4-expressing U2OS human cells exposed to centrinone. PLK4 phosphorylation was itself sensitive to brief exposure to the compound, resulting in PLK4 stabilisation. Analysing asynchronous cell populations, we report hundreds of centrinone-regulated cellular phosphoproteins, including centrosomal and cell cycle proteins and a variety of likely 'non-canonical' substrates. Surprisingly, sequence interrogation of ∼300 significantly down-regulated phosphoproteins reveals an extensive network of centrinone-sensitive [Ser/Thr]Pro phosphorylation sequence motifs, which based on our analysis might be either direct or indirect targets of PLK4. In addition, we confirm that NMYC and PTPN12 are PLK4 substrates, both in vitro and in human cells. Our findings suggest that PLK4 catalytic output directly controls the phosphorylation of a diverse set of cellular proteins, including Pro-directed targets that are likely to be important in PLK4-mediated cell signalling.
Collapse
|
20
|
Kazazian K, Haffani Y, Ng D, Lee CMM, Johnston W, Kim M, Xu R, Pacholzyk K, Zih FSW, Tan J, Smrke A, Pollett A, Wu HST, Swallow CJ. FAM46C/TENT5C functions as a tumor suppressor through inhibition of Plk4 activity. Commun Biol 2020; 3:448. [PMID: 32807875 PMCID: PMC7431843 DOI: 10.1038/s42003-020-01161-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Polo like kinase 4 (Plk4) is a tightly regulated serine threonine kinase that governs centriole duplication. Increased Plk4 expression, which is a feature of many common human cancers, causes centriole overduplication, mitotic irregularities, and chromosomal instability. Plk4 can also promote cancer invasion and metastasis through regulation of the actin cytoskeleton. Herein we demonstrate physical interaction of Plk4 with FAM46C/TENT5C, a conserved protein of unknown function until recently. FAM46C localizes to centrioles, inhibits Plk4 kinase activity, and suppresses Plk4-induced centriole duplication. Interference with Plk4 function by FAM46C was independent of the latter's nucleotidyl transferase activity. In addition, FAM46C restrained cancer cell invasion and suppressed MDA MB-435 cancer growth in a xenograft model, opposing the effect of Plk4. We demonstrate loss of FAM46C in patient-derived colorectal cancer tumor tissue that becomes more profound with advanced clinical stage. These results implicate FAM46C as a tumor suppressor that acts by inhibiting Plk4 activity.
Collapse
Affiliation(s)
- Karineh Kazazian
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada.,Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Yosr Haffani
- Laboratory of Physiopathology, Alimentation and Biomolecules LR17ES03, Higher Institute of Biotechnology, Sidi Thabet, University of Manouba, Ariana, 2020, Tunisia
| | - Deanna Ng
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Chae Min Michelle Lee
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Wendy Johnston
- Department of Radiation Oncology, University of Toronto, Toronto, ON, M5T 1P5, Canada
| | - Minji Kim
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Roland Xu
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Karina Pacholzyk
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Francis Si-Wah Zih
- Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Julie Tan
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Alannah Smrke
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Aaron Pollett
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hannah Sun-Tsi Wu
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Carol Jane Swallow
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada. .,Department of Surgical Oncology, University of Toronto, Toronto, ON, M5G 2M9, Canada.
| |
Collapse
|
21
|
Sullenberger C, Vasquez-Limeta A, Kong D, Loncarek J. With Age Comes Maturity: Biochemical and Structural Transformation of a Human Centriole in the Making. Cells 2020; 9:cells9061429. [PMID: 32526902 PMCID: PMC7349492 DOI: 10.3390/cells9061429] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Centrioles are microtubule-based cellular structures present in most human cells that build centrosomes and cilia. Proliferating cells have only two centrosomes and this number is stringently maintained through the temporally and spatially controlled processes of centriole assembly and segregation. The assembly of new centrioles begins in early S phase and ends in the third G1 phase from their initiation. This lengthy process of centriole assembly from their initiation to their maturation is characterized by numerous structural and still poorly understood biochemical changes, which occur in synchrony with the progression of cells through three consecutive cell cycles. As a result, proliferating cells contain three structurally, biochemically, and functionally distinct types of centrioles: procentrioles, daughter centrioles, and mother centrioles. This age difference is critical for proper centrosome and cilia function. Here we discuss the centriole assembly process as it occurs in somatic cycling human cells with a focus on the structural, biochemical, and functional characteristics of centrioles of different ages.
Collapse
|
22
|
Structural and Functional Analyses of the FAM46C/Plk4 Complex. Structure 2020; 28:910-921.e4. [PMID: 32433990 DOI: 10.1016/j.str.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
FAM46C, a non-canonical poly(A) polymerase, is frequently mutated in multiple myeloma. Loss of function of FAM46C promotes cell survival of multiple myeloma, suggesting a tumor-suppressive role. FAM46C is also essential for fastening sperm head and flagellum, indispensable for male fertility. The molecular mechanisms of these functions of FAM46C remain elusive. We report the crystal structure of FAM46C to provide the basis for its poly(A) polymerase activity and rationalize mutations associated with multiple myeloma. In addition, we found that FAM46C interacts directly with the serine/threonine kinase Plk4, the master regulator of centrosome duplication. We present the structure of FAM46C in complex with the Cryptic Polo-Box 1-2 domains of Plk4. Our structure-based mutational analyses show that the interaction with Plk4 recruits FAM46C to centrosomes. Our data suggest that Plk4-mediated localization of FAM46C enables its regulation of centrosome structure and functions, which may underlie the roles for FAM46C in cell proliferation and sperm development.
Collapse
|
23
|
Wang J, Ren D, Sun Y, Xu C, Wang C, Cheng R, Wang L, Jia G, Ren J, Ma J, Tu Y, Ji H. Inhibition of PLK4 might enhance the anti-tumour effect of bortezomib on glioblastoma via PTEN/PI3K/AKT/mTOR signalling pathway. J Cell Mol Med 2020; 24:3931-3947. [PMID: 32126150 PMCID: PMC7171416 DOI: 10.1111/jcmm.14996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/26/2019] [Accepted: 11/23/2019] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is one of the most common aggressive cancers of the central nervous system in adults with a high mortality rate. Bortezomib is a boronic acid-based potent proteasome inhibitor that has been actively studied for its anti-tumour effects through inhibition of the proteasome. The proteasome is a key component of the ubiquitin-proteasome pathway that is critical for protein homeostasis, regulation of cellular growth, and apoptosis. Overexpression of polo-like kinase 4 (PLK4) is commonly reported in tumour cells and increases their invasive and metastatic abilities. In this study, we established a cell model of PLK4 knockdown and overexpression in LN-18, A172 and LN-229 cells and found that knockdown of PLK4 expression enhanced the anti-tumour effect of bortezomib. We further found that this effect may be mediated by the PTEN/PI3K/AKT/mTOR signalling pathway and that the apoptotic and oxidative stress processes were activated, while the expression of matrix metalloproteinases (MMPs) was down-regulated. Similar phenomenon was observed using in vitro experiments. Thus, we speculate that PLK4 inhibition may be a new therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Jing Wang
- Department of neurosurgery, Shanxi academy of medical science, Shanxi Bethune Hospital, Taiyuan, China
| | - Dengpeng Ren
- Department of neurosurgery, Central Hospital of Yuncheng city, Yuncheng, China
| | - Yan Sun
- Neurological intensive care unit, Special medical center of PAP, Tianjin, China
| | - Chao Xu
- Neurological intensive care unit, Special medical center of PAP, Tianjin, China
| | - Chunhong Wang
- Department of neurosurgery, Shanxi people's hospital, Taiyuan, China
| | - Rui Cheng
- Department of neurosurgery, Shanxi people's hospital, Taiyuan, China
| | - Lina Wang
- Neurological intensive care unit, Special medical center of PAP, Tianjin, China
| | - Guijun Jia
- Department of neurosurgery, Shanxi people's hospital, Taiyuan, China
| | - Jinrui Ren
- Department of neurosurgery, Shanxi people's hospital, Taiyuan, China
| | - Jiuhong Ma
- Department of neurosurgery, Shanxi people's hospital, Taiyuan, China
| | - Yue Tu
- Neurological intensive care unit, Special medical center of PAP, Tianjin, China
| | - Hongming Ji
- Department of neurosurgery, Shanxi people's hospital, Taiyuan, China
| |
Collapse
|
24
|
Badarudeen B, Gupta R, Nair SV, Chandrasekharan A, Manna TK. The ubiquitin ligase FBXW7 targets the centriolar assembly protein HsSAS-6 for degradation and thereby regulates centriole duplication. J Biol Chem 2020; 295:4428-4437. [PMID: 32086376 DOI: 10.1074/jbc.ac119.012178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/19/2020] [Indexed: 11/06/2022] Open
Abstract
Formation of a single new centriole from a pre-existing centriole is strictly controlled to maintain correct centrosome number and spindle polarity in cells. However, the mechanisms that govern this process are incompletely understood. Here, using several human cell lines, immunofluorescence and structured illumination microscopy methods, and ubiquitination assays, we show that the E3 ubiquitin ligase F-box and WD repeat domain-containing 7 (FBXW7), a subunit of the SCF ubiquitin ligase, down-regulates spindle assembly 6 homolog (HsSAS-6), a key protein required for procentriole cartwheel assembly, and thereby regulates centriole duplication. We found that FBXW7 abrogation stabilizes HsSAS-6 and increases its recruitment to the mother centriole at multiple sites, leading to supernumerary centrioles. Ultrastructural analyses revealed that FBXW7 is broadly localized on the mother centriole and that its presence is reduced at the site where the HsSAS-6-containing procentriole is formed. This observation suggested that FBXW7 restricts procentriole assembly to a specific site to generate a single new centriole. In contrast, during HsSAS-6 overexpression, FBXW7 strongly associated with HsSAS-6 at the centriole. We also found that SCFFBXW7 interacts with HsSAS-6 and targets it for ubiquitin-mediated degradation. Further, we identified putative phosphodegron sites in HsSAS-6, whose substitutions rendered it insensitive to FBXW7-mediated degradation and control of centriole number. In summary, SCFFBXW7 targets HsSAS-6 for degradation and thereby controls centriole biogenesis by restraining HsSAS-6 recruitment to the mother centriole, a molecular mechanism that controls supernumerary centrioles/centrosomes and the maintenance of bipolar spindles.
Collapse
Affiliation(s)
- Binshad Badarudeen
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Ria Gupta
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Sreeja V Nair
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, Kerala, India
| | | | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
25
|
Bornens M. A moment at the cell centre. Biol Cell 2019; 111:294-307. [PMID: 31621092 DOI: 10.1111/boc.201900068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 11/29/2022]
Abstract
I have been invited by the board of the French Society of Cell Biology (SBCF) to write a text around my presentation in the Symposium 'A day at the Cell Centre', held at the Curie Institute on May 17, 2019, and organized by four of my former students, namely Juliette Azimzadeh, Nathalie Delgehyr, Matthieu Piel and Manuel Théry. I have to thank them warmly for the quality of the science during this day. It was also a moving day for me indeed to listen to so many figures in the field.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, PSL Research University, CNRS, Paris, France
| |
Collapse
|
26
|
Luo Y, Barrios-Rodiles M, Gupta GD, Zhang YY, Ogunjimi AA, Bashkurov M, Tkach JM, Underhill AQ, Zhang L, Bourmoum M, Wrana JL, Pelletier L. Atypical function of a centrosomal module in WNT signalling drives contextual cancer cell motility. Nat Commun 2019; 10:2356. [PMID: 31142743 PMCID: PMC6541620 DOI: 10.1038/s41467-019-10241-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Centrosomes control cell motility, polarity and migration that is thought to be mediated by their microtubule-organizing capacity. Here we demonstrate that WNT signalling drives a distinct form of non-directional cell motility that requires a key centrosome module, but not microtubules or centrosomes. Upon exosome mobilization of PCP-proteins, we show that DVL2 orchestrates recruitment of a CEP192-PLK4/AURKB complex to the cell cortex where PLK4/AURKB act redundantly to drive protrusive activity and cell motility. This is mediated by coordination of formin-dependent actin remodelling through displacement of cortically localized DAAM1 for DAAM2. Furthermore, abnormal expression of PLK4, AURKB and DAAM1 is associated with poor outcomes in breast and bladder cancers. Thus, a centrosomal module plays an atypical function in WNT signalling and actin nucleation that is critical for cancer cell motility and is associated with more aggressive cancers. These studies have broad implications in how contextual signalling controls distinct modes of cell migration.
Collapse
Affiliation(s)
- Yi Luo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Miriam Barrios-Rodiles
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Gagan D Gupta
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Ying Y Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Abiodun A Ogunjimi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Mikhail Bashkurov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Johnny M Tkach
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Ainsley Q Underhill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Liang Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Mohamed Bourmoum
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
27
|
Abstract
The mitotic protein polo-like kinase 4 (PLK4) plays a critical role in centrosome duplication for cell division. By using immunofluorescence, we confirm that PLK4 is localized to centrosomes. In addition, we find that phospho-PLK4 (pPLK4) is cleaved and distributed to kinetochores (metaphase and anaphase), spindle midzone/cleavage furrow (anaphase and telophase), and midbody (cytokinesis) during cell division in immortalized epithelial cells as well as breast, ovarian, and colorectal cancer cells. The distribution of pPLK4 midzone/cleavage furrow and midbody positions pPLK4 to play a functional role in cytokinesis. Indeed, we found that inhibition of PLK4 kinase activity with a small-molecule inhibitor, CFI-400945, prevents translocation to the spindle midzone/cleavage furrow and prevents cellular abscission, leading to the generation of cells with polyploidy, increased numbers of duplicated centrosomes, and vulnerability to anaphase or mitotic catastrophe. The regulatory role of PLK4 in cytokinesis makes it a potential target for therapeutic intervention in appropriately selected cancers.
Collapse
|
28
|
Suri A, Bailey AW, Tavares MT, Gunosewoyo H, Dyer CP, Grupenmacher AT, Piper DR, Horton RA, Tomita T, Kozikowski AP, Roy SM, Sredni ST. Evaluation of Protein Kinase Inhibitors with PLK4 Cross-Over Potential in a Pre-Clinical Model of Cancer. Int J Mol Sci 2019; 20:E2112. [PMID: 31035676 PMCID: PMC6540285 DOI: 10.3390/ijms20092112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
Polo-like kinase 4 (PLK4) is a cell cycle-regulated protein kinase (PK) recruited at the centrosome in dividing cells. Its overexpression triggers centrosome amplification, which is associated with genetic instability and carcinogenesis. In previous work, we established that PLK4 is overexpressed in pediatric embryonal brain tumors (EBT). We also demonstrated that PLK4 inhibition exerted a cytostatic effect in EBT cells. Here, we examined an array of PK inhibitors (CFI-400945, CFI-400437, centrinone, centrinone-B, R-1530, axitinib, KW-2449, and alisertib) for their potential crossover to PLK4 by comparative structural docking and activity inhibition in multiple established embryonal tumor cell lines (MON, BT-12, BT-16, DAOY, D283). Our analyses demonstrated that: (1) CFI-400437 had the greatest impact overall, but similar to CFI-400945, it is not optimal for brain exposure. Also, their phenotypic anti-cancer impact may, in part, be a consequence of the inhibition of Aurora kinases (AURKs). (2) Centrinone and centrinone B are the most selective PLK4 inhibitors but they are the least likely to penetrate the brain. (3) KW-2449, R-1530 and axitinib are the ones predicted to have moderate-to-good brain penetration. In conclusion, a new selective PLK4 inhibitor with favorable physiochemical properties for optimal brain exposure can be beneficial for the treatment of EBT.
Collapse
Affiliation(s)
- Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| | - Maurício T Tavares
- Department of Pharmacy, University of São Paulo, São Paulo, SP 05508-900, Brazil.
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Perth, WA 6102, Australia.
| | - Connor P Dyer
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| | - Alex T Grupenmacher
- Department of Ophtalmology, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil.
| | - David R Piper
- Thermo Fisher Scientific, Research and Development, Biosciences Division, Carlsbad, CA 92008, USA.
| | - Robert A Horton
- Thermo Fisher Scientific, Research and Development, Biosciences Division, Carlsbad, CA 92008, USA.
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | - Saktimayee M Roy
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Simone T Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
29
|
Pallavicini G, Berto GE, Di Cunto F. Precision Revisited: Targeting Microcephaly Kinases in Brain Tumors. Int J Mol Sci 2019; 20:ijms20092098. [PMID: 31035417 PMCID: PMC6539168 DOI: 10.3390/ijms20092098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme and medulloblastoma are the most frequent high-grade brain tumors in adults and children, respectively. Standard therapies for these cancers are mainly based on surgical resection, radiotherapy, and chemotherapy. However, intrinsic or acquired resistance to treatment occurs almost invariably in the first case, and side effects are unacceptable in the second. Therefore, the development of new, effective drugs is a very important unmet medical need. A critical requirement for developing such agents is to identify druggable targets required for the proliferation or survival of tumor cells, but not of other cell types. Under this perspective, genes mutated in congenital microcephaly represent interesting candidates. Congenital microcephaly comprises a heterogeneous group of disorders in which brain volume is reduced, in the absence or presence of variable syndromic features. Genetic studies have clarified that most microcephaly genes encode ubiquitous proteins involved in mitosis and in maintenance of genomic stability, but the effects of their inactivation are particularly strong in neural progenitors. It is therefore conceivable that the inhibition of the function of these genes may specifically affect the proliferation and survival of brain tumor cells. Microcephaly genes encode for a few kinases, including CITK, PLK4, AKT3, DYRK1A, and TRIO. In this review, we summarize the evidence indicating that the inhibition of these molecules could exert beneficial effects on different aspects of brain cancer treatment.
Collapse
Affiliation(s)
- Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy.
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
- Neuroscience Institute of Turin (NIT), 10126 Turin, Italy.
| |
Collapse
|
30
|
Denu RA, Sass MM, Johnson JM, Potts GK, Choudhary A, Coon JJ, Burkard ME. Polo-like kinase 4 maintains centriolar satellite integrity by phosphorylation of centrosomal protein 131 (CEP131). J Biol Chem 2019; 294:6531-6549. [PMID: 30804208 PMCID: PMC6484138 DOI: 10.1074/jbc.ra118.004867] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
The centrosome, consisting of two centrioles surrounded by a dense network of proteins, is the microtubule-organizing center of animal cells. Polo-like kinase 4 (PLK4) is a Ser/Thr protein kinase and the master regulator of centriole duplication, but it may play additional roles in centrosome function. To identify additional proteins regulated by PLK4, we generated an RPE-1 human cell line with a genetically engineered "analog-sensitive" PLK4AS, which genetically encodes chemical sensitivity to competitive inhibition via a bulky ATP analog. We used this transgenic line in an unbiased multiplex phosphoproteomic screen. Several hits were identified and validated as direct PLK4 substrates by in vitro kinase assays. Among them, we confirmed Ser-78 in centrosomal protein 131 (CEP131, also known as AZI1) as a direct substrate of PLK4. Using immunofluorescence microscopy, we observed that although PLK4-mediated phosphorylation of Ser-78 is dispensable for CEP131 localization, ciliogenesis, and centriole duplication, it is essential for maintaining the integrity of centriolar satellites. We also found that PLK4 inhibition or use of a nonphosphorylatable CEP131 variant results in dispersed centriolar satellites. Moreover, replacement of endogenous WT CEP131 with an S78D phosphomimetic variant promoted aggregation of centriolar satellites. We conclude that PLK4 phosphorylates CEP131 at Ser-78 to maintain centriolar satellite integrity.
Collapse
Affiliation(s)
- Ryan A Denu
- From the Medical Scientist Training Program
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Madilyn M Sass
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - James M Johnson
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Gregory K Potts
- the Department of Chemistry
- the Department of Biomolecular Chemistry
- the Genome Center, and
| | - Alka Choudhary
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Joshua J Coon
- the Department of Chemistry
- the Department of Biomolecular Chemistry
- the Genome Center, and
| | - Mark E Burkard
- the Division of Hematology/Oncology, Department of Medicine,
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
31
|
Yamamoto S, Kitagawa D. Self-organization of Plk4 regulates symmetry breaking in centriole duplication. Nat Commun 2019; 10:1810. [PMID: 31000710 PMCID: PMC6472344 DOI: 10.1038/s41467-019-09847-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/01/2019] [Indexed: 01/01/2023] Open
Abstract
During centriole duplication, a single daughter centriole is formed next to the mother centriole. The molecular mechanism that determines a single duplication site remains a long-standing question. Here, we show that intrinsic self-organization of Plk4 is implicated in symmetry breaking in the process of centriole duplication. We demonstrate that Plk4 has an ability to phase-separate into condensates via an intrinsically disordered linker and that the condensation properties of Plk4 are regulated by autophosphorylation. Consistently, the dissociation dynamics of centriolar Plk4 are controlled by autophosphorylation. We further found that autophosphorylated Plk4 is already distributed as a single focus around the mother centriole before the initiation of procentriole formation, and is subsequently targeted for STIL-HsSAS6 loading. Perturbation of Plk4 self-organization affects the asymmetry of centriolar Plk4 distribution and proper centriole duplication. Overall, we propose that the spatial pattern formation of Plk4 is a determinant of a single duplication site per mother centriole.
Collapse
Affiliation(s)
- Shohei Yamamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Daiju Kitagawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
| |
Collapse
|
32
|
Abstract
The centriole organelle consists of microtubules (MTs) that exhibit a striking 9-fold radial symmetry. Centrioles play fundamental roles across eukaryotes, notably in cell signaling, motility and division. In this Cell Science at a Glance article and accompanying poster, we cover the cellular life cycle of this organelle - from assembly to disappearance - focusing on human centrioles. The journey begins at the end of mitosis when centriole pairs disengage and the newly formed centrioles mature to begin a new duplication cycle. Selection of a single site of procentriole emergence through focusing of polo-like kinase 4 (PLK4) and the resulting assembly of spindle assembly abnormal protein 6 (SAS-6) into a cartwheel element are evoked next. Subsequently, we cover the recruitment of peripheral components that include the pinhead structure, MTs and the MT-connecting A-C linker. The function of centrioles in recruiting pericentriolar material (PCM) and in forming the template of the axoneme are then introduced, followed by a mention of circumstances in which centrioles form de novo or are eliminated.
Collapse
Affiliation(s)
- Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | - Georgios N Hatzopoulos
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
33
|
Vitiello E, Moreau P, Nunes V, Mettouchi A, Maiato H, Ferreira JG, Wang I, Balland M. Acto-myosin force organization modulates centriole separation and PLK4 recruitment to ensure centriole fidelity. Nat Commun 2019; 10:52. [PMID: 30604763 PMCID: PMC6318293 DOI: 10.1038/s41467-018-07965-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Abstract
The presence of aberrant number of centrioles is a recognized cause of aneuploidy and hallmark of cancer. Hence, centriole duplication needs to be tightly regulated. It has been proposed that centriole separation limits centrosome duplication. The mechanism driving centriole separation is poorly understood and little is known on how this is linked to centriole duplication. Here, we propose that actin-generated forces regulate centriole separation. By imposing geometric constraints via micropatterns, we were able to prove that precise acto-myosin force arrangements control direction, distance and time of centriole separation. Accordingly, inhibition of acto-myosin contractility impairs centriole separation. Alongside, we observed that organization of acto-myosin force modulates specifically the length of S-G2 phases of the cell cycle, PLK4 recruitment at the centrosome and centriole fidelity. These discoveries led us to suggest that acto-myosin forces might act in fundamental mechanisms of aneuploidy prevention.
Collapse
Affiliation(s)
- Elisa Vitiello
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France.
| | - Philippe Moreau
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| | - Vanessa Nunes
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Amel Mettouchi
- Institut Pasteur, Département de Microbiologie, Unité des Toxines Bactériennes, Université Paris Descartes, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Irène Wang
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| | - Martial Balland
- Laboratoire interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Domaine universitaire, Bat. E45 140, Rue de la physique, BP 87, 38402, Saint Martin d'Hères, Cedex 9, France
| |
Collapse
|
34
|
Fisk HA, Thomas JL, Nguyen TB. Breaking Bad: Uncoupling of Modularity in Centriole Biogenesis and the Generation of Excess Centrioles in Cancer. Results Probl Cell Differ 2019; 67:391-411. [PMID: 31435805 DOI: 10.1007/978-3-030-23173-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Centrosomes are tiny yet complex cytoplasmic structures that perform a variety of roles related to their ability to act as microtubule-organizing centers. Like the genome, centrosomes are single copy structures that undergo a precise semi-conservative replication once each cell cycle. Precise replication of the centrosome is essential for genome integrity, because the duplicated centrosomes will serve as the poles of a bipolar mitotic spindle, and any number of centrosomes other than two will lead to an aberrant spindle that mis-segregates chromosomes. Indeed, excess centrosomes are observed in a variety of human tumors where they generate abnormal spindles in situ that are thought to participate in tumorigenesis by driving genomic instability. At the heart of the centrosome is a pair of centrioles, and at the heart of centrosome duplication is the replication of this centriole pair. Centriole replication proceeds through a complex macromolecular assembly process. However, while centrosomes may contain as many as 500 proteins, only a handful of proteins have been shown to be essential for centriole replication. Our observations suggest that centriole replication is a modular, bottom-up process that we envision akin to building a house; the proper site of assembly is identified, a foundation is assembled at that site, and subsequent modules are added on top of the foundation. Here, we discuss the data underlying our view of modularity in the centriole assembly process, and suggest that non-essential centriole assembly factors take on greater importance in cancer cells due to their function in coordination between centriole modules, using the Monopolar spindles 1 protein kinase and its substrate Centrin 2 to illustrate our model.
Collapse
Affiliation(s)
- Harold A Fisk
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| | - Jennifer L Thomas
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tan B Nguyen
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
35
|
Boese CJ, Nye J, Buster DW, McLamarrah TA, Byrnes AE, Slep KC, Rusan NM, Rogers GC. Asterless is a Polo-like kinase 4 substrate that both activates and inhibits kinase activity depending on its phosphorylation state. Mol Biol Cell 2018; 29:2874-2886. [PMID: 30256714 PMCID: PMC6249866 DOI: 10.1091/mbc.e18-07-0445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 11/26/2022] Open
Abstract
Centriole assembly initiates when Polo-like kinase 4 (Plk4) interacts with a centriole "targeting-factor." In Drosophila, Asterless/Asl (Cep152 in humans) fulfills the targeting role. Interestingly, Asl also regulates Plk4 levels. The N-terminus of Asl (Asl-A; amino acids 1-374) binds Plk4 and promotes Plk4 self-destruction, although it is unclear how this is achieved. Moreover, Plk4 phosphorylates the Cep152 N-terminus, but the functional consequence is unknown. Here, we show that Plk4 phosphorylates Asl and mapped 13 phospho-residues in Asl-A. Nonphosphorylatable alanine (13A) and phosphomimetic (13PM) mutants did not alter Asl function, presumably because of the dominant role of the Asl C-terminus in Plk4 stabilization and centriolar targeting. To address how Asl-A phosphorylation specifically affects Plk4 regulation, we generated Asl-A fragment phospho-mutants and expressed them in cultured Drosophila cells. Asl-A-13A stimulated kinase activity by relieving Plk4 autoinhibition. In contrast, Asl-A-13PM inhibited Plk4 activity by a novel mechanism involving autophosphorylation of Plk4's kinase domain. Thus, Asl-A's phosphorylation state determines which of Asl-A's two opposing effects are exerted on Plk4. Initially, nonphosphorylated Asl binds Plk4 and stimulates its kinase activity, but after Asl is phosphorylated, a negative-feedback mechanism suppresses Plk4 activity. This dual regulatory effect by Asl-A may limit Plk4 to bursts of activity that modulate centriole duplication.
Collapse
Affiliation(s)
- Cody J. Boese
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Jonathan Nye
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Daniel W. Buster
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Tiffany A. McLamarrah
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Amy E. Byrnes
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kevin C. Slep
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nasser M. Rusan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
36
|
Bailey AW, Suri A, Chou PM, Pundy T, Gadd S, Raimondi SL, Tomita T, Sredni ST. Polo-Like Kinase 4 (PLK4) Is Overexpressed in Central Nervous System Neuroblastoma (CNS-NB). Bioengineering (Basel) 2018; 5:E96. [PMID: 30400339 PMCID: PMC6315664 DOI: 10.3390/bioengineering5040096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in pediatrics, with rare occurrences of primary and metastatic tumors in the central nervous system (CNS). We previously reported the overexpression of the polo-like kinase 4 (PLK4) in embryonal brain tumors. PLK4 has also been found to be overexpressed in a variety of peripheral adult tumors and recently in peripheral NB. Here, we investigated PLK4 expression in NBs of the CNS (CNS-NB) and validated our findings by performing a multi-platform transcriptomic meta-analysis using publicly available data. We evaluated the PLK4 expression by quantitative real-time PCR (qRT-PCR) on the CNS-NB samples and compared the relative expression levels among other embryonal and non-embryonal brain tumors. The relative PLK4 expression levels of the NB samples were found to be significantly higher than the non-embryonal brain tumors (p-value < 0.0001 in both our samples and in public databases). Here, we expand upon our previous work that detected PLK4 overexpression in pediatric embryonal tumors to include CNS-NB. As we previously reported, inhibiting PLK4 in embryonal tumors led to decreased tumor cell proliferation, survival, invasion and migration in vitro and tumor growth in vivo, and therefore PLK4 may be a potential new therapeutic approach to CNS-NB.
Collapse
Affiliation(s)
- Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| | - Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| | - Pauline M Chou
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Tatiana Pundy
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
| | - Samantha Gadd
- Department of Pathology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Chicago, IL 60614, USA.
| |
Collapse
|
37
|
Leda M, Holland AJ, Goryachev AB. Autoamplification and Competition Drive Symmetry Breaking: Initiation of Centriole Duplication by the PLK4-STIL Network. iScience 2018; 8:222-235. [PMID: 30340068 PMCID: PMC6197440 DOI: 10.1016/j.isci.2018.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
Centrioles, the cores of centrosomes and cilia, duplicate every cell cycle to ensure their faithful inheritance. How only a single procentriole is produced on each mother centriole remains enigmatic. We propose the first mechanistic biophysical model for procentriole initiation which posits that interactions between kinase PLK4 and its activator-substrate STIL are central for procentriole initiation. The model recapitulates the transition from a uniform "ring" of PLK4 surrounding the mother centriole to a single PLK4 "spot" that initiates procentriole assembly. This symmetry breaking requires autocatalytic activation of PLK4 and enhanced centriolar anchoring of PLK4 by phosphorylated STIL. We find that in situ degradation of active PLK4 cannot break symmetry. The model predicts that competition between transient PLK4 activity maxima for PLK4-STIL complexes destabilizes the PLK4 ring and produces instead a single PLK4 spot. Weakening of competition by overexpression of PLK4 and STIL causes progressive addition of supernumerary procentrioles, as observed experimentally.
Collapse
Affiliation(s)
- Marcin Leda
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK.
| |
Collapse
|
38
|
Ohta M, Watanabe K, Ashikawa T, Nozaki Y, Yoshiba S, Kimura A, Kitagawa D. Bimodal Binding of STIL to Plk4 Controls Proper Centriole Copy Number. Cell Rep 2018; 23:3160-3169.e4. [DOI: 10.1016/j.celrep.2018.05.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 03/12/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022] Open
|
39
|
Asymmetric Centriole Numbers at Spindle Poles Cause Chromosome Missegregation in Cancer. Cell Rep 2018; 20:1906-1920. [PMID: 28834753 DOI: 10.1016/j.celrep.2017.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/12/2017] [Accepted: 07/28/2017] [Indexed: 12/28/2022] Open
Abstract
Chromosomal instability is a hallmark of cancer and correlates with the presence of extra centrosomes, which originate from centriole overduplication. Overduplicated centrioles lead to the formation of centriole rosettes, which mature into supernumerary centrosomes in the subsequent cell cycle. While extra centrosomes promote chromosome missegregation by clustering into pseudo-bipolar spindles, the contribution of centriole rosettes to chromosome missegregation is unknown. We used multi-modal imaging of cells with conditional centriole overduplication to show that mitotic rosettes in bipolar spindles frequently harbor unequal centriole numbers, leading to biased chromosome capture that favors binding to the prominent pole. This results in chromosome missegregation and aneuploidy. Rosette mitoses lead to viable offspring and significantly contribute to progeny production. We further show that centrosome abnormalities in primary human malignancies frequently consist of centriole rosettes. As asymmetric centriole rosettes generate mitotic errors that can be propagated, rosette mitoses are sufficient to cause chromosome missegregation in cancer.
Collapse
|
40
|
Betleja E, Nanjundappa R, Cheng T, Mahjoub MR. A novel Cep120-dependent mechanism inhibits centriole maturation in quiescent cells. eLife 2018; 7:35439. [PMID: 29741480 PMCID: PMC5986273 DOI: 10.7554/elife.35439] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022] Open
Abstract
The two centrioles of the centrosome in quiescent cells are inherently asymmetric structures that differ in age, morphology and function. How these asymmetric properties are established and maintained during quiescence remains unknown. Here, we show that a daughter centriole-associated ciliopathy protein, Cep120, plays a critical inhibitory role at daughter centrioles. Depletion of Cep120 in quiescent mouse and human cells causes accumulation of pericentriolar material (PCM) components including pericentrin, Cdk5Rap2, ninein and Cep170. The elevated PCM levels result in increased microtubule-nucleation activity at the centrosome. Consequently, loss of Cep120 leads to aberrant dynein-dependent trafficking of centrosomal proteins, dispersal of centriolar satellites, and defective ciliary assembly and signaling. Our results indicate that Cep120 helps to maintain centrosome homeostasis by inhibiting untimely maturation of the daughter centriole, and defines a potentially new molecular defect underlying the pathogenesis of ciliopathies such as Jeune Asphyxiating Thoracic Dystrophy and Joubert syndrome. Among the countless components of an animal cell, microtubules perform many important roles. These hollow filaments support the cell’s shape and help to transport different materials around within it. They also form a hair-like projection on the cell surface called the primary cilium, which helps the cell sense its environment. Most microtubules in an animal cell are organized by a structure called the centrosome, which has two smaller cylindrical structures called centrioles at its core. In cells that are not dividing, these two centrioles are different in age. The older of the two centrioles was assembled at least two cell divisions ago and is commonly called the “mother” centriole. The younger one, which was assembled the previous time the cell divided, is called the “daughter” centriole. Most activities at the centrosome are controlled by the mother centriole. For example, the mother centriole contains protein complexes called appendages that allow it to dock at the cell surface and build the cilium. The mother centriole also contains a complex of proteins called the pericentriolar material, which helps it assemble microtubules and anchor them in place. In contrast, the daughter centriole lacks appendages, does not form a cilium, has less pericentriolar material and so assembles fewer microtubules. Why the daughter centriole cannot recruit these protein complexes remains a mystery. One possibly important difference between mother and daughter centrioles is that daughter centrioles in non-dividing cells have much higher levels of a protein called Cep120. Now, Betleja et al. have studied the role of this protein in more detail. Experiments with mouse and human cells show that Cep120 plays an important inhibitory role at the daughter centriole. When the production of Cep120 was blocked, more pericentriolar material associated with the daughter centriole, and more microtubules were assembled by the centrosome. This interfered with the movement of other proteins to the centrosome, which ultimately disrupted both the centrosome’s ability to assemble cilia and the cell’s ability to sense its environment. The findings of Betleja et al. show that a Cep120-dependent mechanism actively regulates the centrosome’s function in non-dividing cells. These experiments uncover a potentially new type of molecular defect that may be responsible for diseases caused by faulty cilia, such as Joubert Syndrome and Jeune Asphyxiating Thoracic Dystrophy. The next challenge will be to understand how Cep120 inhibits the levels of pericentriolar material only at the daughter centriole but not the mother centriole.
Collapse
Affiliation(s)
- Ewelina Betleja
- Department of Medicine (Nephrology Division), Washington University, St Louis, United States
| | - Rashmi Nanjundappa
- Department of Medicine (Nephrology Division), Washington University, St Louis, United States
| | - Tao Cheng
- Department of Medicine (Nephrology Division), Washington University, St Louis, United States
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division), Washington University, St Louis, United States.,Department of Cell Biology and Physiology, Washington University, St Louis, United States
| |
Collapse
|
41
|
Aydogan MG, Wainman A, Saurya S, Steinacker TL, Caballe A, Novak ZA, Baumbach J, Muschalik N, Raff JW. A homeostatic clock sets daughter centriole size in flies. J Cell Biol 2018; 217:1233-1248. [PMID: 29500190 PMCID: PMC5881511 DOI: 10.1083/jcb.201801014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Centrioles are highly structured organelles whose size is remarkably consistent within any given cell type. New centrioles are born when Polo-like kinase 4 (Plk4) recruits Ana2/STIL and Sas-6 to the side of an existing "mother" centriole. These two proteins then assemble into a cartwheel, which grows outwards to form the structural core of a new daughter. Here, we show that in early Drosophila melanogaster embryos, daughter centrioles grow at a linear rate during early S-phase and abruptly stop growing when they reach their correct size in mid- to late S-phase. Unexpectedly, the cartwheel grows from its proximal end, and Plk4 determines both the rate and period of centriole growth: the more active the centriolar Plk4, the faster centrioles grow, but the faster centriolar Plk4 is inactivated and growth ceases. Thus, Plk4 functions as a homeostatic clock, establishing an inverse relationship between growth rate and period to ensure that daughter centrioles grow to the correct size.
Collapse
Affiliation(s)
- Mustafa G Aydogan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, England, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Thomas L Steinacker
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Anna Caballe
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Janina Baumbach
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Nadine Muschalik
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| |
Collapse
|
42
|
Sredni ST, Bailey AW, Suri A, Hashizume R, He X, Louis N, Gokirmak T, Piper DR, Watterson DM, Tomita T. Inhibition of polo-like kinase 4 (PLK4): a new therapeutic option for rhabdoid tumors and pediatric medulloblastoma. Oncotarget 2017; 8:111190-111212. [PMID: 29340047 PMCID: PMC5762315 DOI: 10.18632/oncotarget.22704] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/05/2017] [Indexed: 01/08/2023] Open
Abstract
Rhabdoid tumors (RT) are highly aggressive and vastly unresponsive embryonal tumors. They are the most common malignant CNS tumors in infants below 6 months of age. Medulloblastomas (MB) are embryonal tumors that arise in the cerebellum and are the most frequent pediatric malignant brain tumors. Despite the advances in recent years, especially for the most favorable molecular subtypes of MB, the prognosis of patients with embryonal tumors remains modest with treatment related toxicity dreadfully high. Therefore, new targeted therapies are needed. The polo-like kinase 4 (PLK4) is a critical regulator of centriole duplication and consequently, mitotic progression. We previously established that PLK4 is overexpressed in RT and MB. We also demonstrated that inhibiting PLK4 with a small molecule inhibitor resulted in impairment of proliferation, survival, migration and invasion of RT cells. Here, we showed in MB the same effects that we previously described for RT. We also demonstrated that PLK4 inhibition induced apoptosis, senescence and polyploidy in RT and MB cells, thereby increasing the susceptibility of cancer cells to DNA-damaging agents. In order to test the hypothesis that PLK4 is a CNS druggable target, we demonstrated efficacy with oral administration to an orthotropic xenograft model. Based on these results, we postulate that targeting PLK4 with small-molecule inhibitors could be a novel strategy for the treatment of RT and MB and that PLK4 inhibitors (PLK4i) might be promising agents to be used solo or in combination with cytotoxic agents.
Collapse
Affiliation(s)
- Simone Treiger Sredni
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Division of Pediatric Neurosurgery, Chicago, IL 60611, USA
- Northwestern University, Feinberg School of Medicine, Department of Surgery, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute, Cancer Biology and Epigenomics, Chicago, IL 60614, USA
| | - Anders W. Bailey
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Division of Pediatric Neurosurgery, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute, Cancer Biology and Epigenomics, Chicago, IL 60614, USA
| | - Amreena Suri
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Division of Pediatric Neurosurgery, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute, Cancer Biology and Epigenomics, Chicago, IL 60614, USA
| | - Rintaro Hashizume
- Northwestern University, Feinberg School of Medicine, Department of Neurological Surgery, Chicago, IL 60611, USA
| | - Xingyao He
- Northwestern University, Feinberg School of Medicine, Department of Neurological Surgery, Chicago, IL 60611, USA
| | - Nundia Louis
- Northwestern University, Feinberg School of Medicine, Department of Neurological Surgery, Chicago, IL 60611, USA
| | - Tufan Gokirmak
- Thermo Fisher Scientific, Research and Development, Biosciences Division, Carlsbad, CA 92008, USA
| | - David R. Piper
- Thermo Fisher Scientific, Research and Development, Biosciences Division, Carlsbad, CA 92008, USA
| | - Daniel M. Watterson
- Northwestern University, Feinberg School of Medicine, Department of Pharmacology, Chicago, IL 60611, USA
| | - Tadanori Tomita
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Division of Pediatric Neurosurgery, Chicago, IL 60611, USA
- Northwestern University, Feinberg School of Medicine, Department of Surgery, Chicago, IL 60611, USA
| |
Collapse
|
43
|
Weisz Hubshman M, Broekman S, van Wijk E, Cremers F, Abu-Diab A, Khateb S, Tzur S, Lagovsky I, Smirin-Yosef P, Sharon D, Haer-Wigman L, Banin E, Basel-Vanagaite L, de Vrieze E. Whole-exome sequencing reveals POC5 as a novel gene associated with autosomal recessive retinitis pigmentosa. Hum Mol Genet 2017; 27:614-624. [DOI: 10.1093/hmg/ddx428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/08/2017] [Indexed: 01/01/2023] Open
|
44
|
Sredni ST, Suzuki M, Yang JP, Topczewski J, Bailey AW, Gokirmak T, Gross JN, de Andrade A, Kondo A, Piper DR, Tomita T. A functional screening of the kinome identifies the Polo-like kinase 4 as a potential therapeutic target for malignant rhabdoid tumors, and possibly, other embryonal tumors of the brain. Pediatr Blood Cancer 2017; 64. [PMID: 28398638 DOI: 10.1002/pbc.26551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Malignant rhabdoid tumors (MRTs) are deadly embryonal tumors of the infancy. With poor survival and modest response to available therapies, more effective and less toxic treatments are needed. We hypothesized that a systematic screening of the kinome will reveal kinases that drive rhabdoid tumors and can be targeted by specific inhibitors. METHODS We individually mutated 160 kinases in a well-characterized rhabdoid tumor cell line (MON) using lentiviral clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The kinase that most significantly impaired cell growth was further validated. Its expression was evaluated by microarray gene expression (GE) within 111 pediatric tumors, and functional assays were performed. A small molecule inhibitor was tested in multiple rhabdoid tumor cell lines and its toxicity evaluated in zebrafish larvae. RESULTS The Polo-like kinase 4 (PLK4) was identified as the kinase that resulted in higher impairment of cell proliferation when mutated by CRISPR/Cas9. PLK4 CRISPR-mutated rhabdoid cells demonstrated significant decrease in proliferation, viability, and survival. GE showed upregulation of PLK4 in rhabdoid tumors and other embryonal tumors of the brain. The PLK4 inhibitor CFI-400945 showed cytotoxic effects on rhabdoid tumor cell lines while sparing non-neoplastic human fibroblasts and developing zebrafish larvae. CONCLUSIONS Our findings indicate that rhabdoid tumor cell proliferation is highly dependent on PLK4 and suggest that targeting PLK4 with small-molecule inhibitors may hold a novel strategy for the treatment of MRT and possibly other embryonal tumors of the brain. This is the first time that PLK4 has been described as a potential target for both brain and pediatric tumors.
Collapse
Affiliation(s)
- Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Mario Suzuki
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois.,Department of Neurosurgery, School of Medicine, Juntendo University, Tokyo, Japan
| | - Jian-Ping Yang
- Research and Development, Biosciences Division, Thermo Fisher Scientific, Carlsbad, California
| | - Jacek Topczewski
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Developmental Biology, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Tufan Gokirmak
- Research and Development, Biosciences Division, Thermo Fisher Scientific, Carlsbad, California
| | - Jeffrey N Gross
- Department of Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Alexandre de Andrade
- Research and Development, Biosciences Division, Thermo Fisher Scientific, Carlsbad, California
| | - Akihide Kondo
- Department of Neurosurgery, School of Medicine, Juntendo University, Tokyo, Japan
| | - David R Piper
- Research and Development, Biosciences Division, Thermo Fisher Scientific, Carlsbad, California
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
45
|
Analysis of centrosome and DNA damage response in PLK4 associated Seckel syndrome. Eur J Hum Genet 2017; 25:1118-1125. [PMID: 28832566 DOI: 10.1038/ejhg.2017.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 05/18/2017] [Accepted: 06/27/2017] [Indexed: 11/08/2022] Open
Abstract
Microcephalic primordial dwarfism (MPD) is a group of autosomal recessive inherited single-gene disorders with intrauterine and postnatal global growth failure. Seckel syndrome is the most common form of the MPD. Ten genes are known with Seckel syndrome. Using genome-wide SNP genotyping and homozygosity mapping we mapped a Seckel syndrome gene to chromosomal region 4q28.1-q28.3 in a Turkish family. Direct sequencing of PLK4 (polo-like kinase 4) revealed a homozygous splicing acceptor site transition (c.31-3 A>G) that results in a premature translation termination (p.[=,Asp11Profs*14]) causing deletion of all known functional domains of the protein. PLK4 is a master regulator of centriole biogenesis and its deficiency has recently been associated with Seckel syndrome. However, the role of PLK4 in genomic stability and the DNA damage response is unclear. Evaluation of the PLK4-Seckel fibroblasts obtained from patient revealed the expected impaired centriole biogenesis, disrupted mitotic morphology, G2/M delay, and extended cell doubling time. Analysis of the PLK4-Seckel cells indicated that PLK4 is also essential for genomic stability and DNA damage response. These findings provide mechanistic insight into the pathogenesis of the severe growth failure associated with PLK4-deficiency.
Collapse
|
46
|
Banterle N, Gönczy P. Centriole Biogenesis: From Identifying the Characters to Understanding the Plot. Annu Rev Cell Dev Biol 2017; 33:23-49. [PMID: 28813178 DOI: 10.1146/annurev-cellbio-100616-060454] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centriole is a beautiful microtubule-based organelle that is critical for the proper execution of many fundamental cellular processes, including polarity, motility, and division. Centriole biogenesis, the making of this miniature architectural wonder, has emerged as an exemplary model to dissect the mechanisms governing the assembly of a eukaryotic organelle. Centriole biogenesis relies on a set of core proteins whose contributions to the assembly process have begun to be elucidated. Here, we review current knowledge regarding the mechanisms by which these core characters function in an orderly fashion to assemble the centriole. In particular, we discuss how having the correct proteins at the right place and at the right time is critical to first scaffold, then initiate, and finally execute the centriole assembly process, thus underscoring fundamental principles governing organelle biogenesis.
Collapse
Affiliation(s)
- Niccolò Banterle
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland;
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015, Lausanne, Switzerland;
| |
Collapse
|
47
|
Peel N, Iyer J, Naik A, Dougherty MP, Decker M, O’Connell KF. Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication. PLoS Genet 2017; 13:e1006543. [PMID: 28103229 PMCID: PMC5289615 DOI: 10.1371/journal.pgen.1006543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 02/02/2017] [Accepted: 12/16/2016] [Indexed: 01/01/2023] Open
Abstract
In humans perturbations of centriole number are associated with tumorigenesis and microcephaly, therefore appropriate regulation of centriole duplication is critical. The C. elegans homolog of Plk4, ZYG-1, is required for centriole duplication, but our understanding of how ZYG-1 levels are regulated remains incomplete. We have identified the two PP1 orthologs, GSP-1 and GSP-2, and their regulators I-2SZY-2 and SDS-22 as key regulators of ZYG-1 protein levels. We find that down-regulation of PP1 activity either directly, or by mutation of szy-2 or sds-22 can rescue the loss of centriole duplication associated with a zyg-1 hypomorphic allele. Suppression is achieved through an increase in ZYG-1 levels, and our data indicate that PP1 normally regulates ZYG-1 through a post-translational mechanism. While moderate inhibition of PP1 activity can restore centriole duplication to a zyg-1 mutant, strong inhibition of PP1 in a wild-type background leads to centriole amplification via the production of more than one daughter centriole. Our results thus define a new pathway that limits the number of daughter centrioles produced each cycle. The centrosomes are responsible for organizing the mitotic spindle a microtubule-based structure that centers, then segregates, the chromosomes during cell division. When a cell divides it normally possesses two centrosomes, allowing it to build a bipolar spindle and accurately segregate the chromosomes to two daughter cells. Appropriate control of centrosome number is therefore crucial to maintaining genome stability. Centrosome number is largely controlled by their regulated duplication. In particular, the protein Plk4, which is essential for duplication, must be strictly limited as an overabundance leads to excess centrosome duplication. We have identified protein phosphatase 1 as a critical regulator of the C. elegans Plk4 homolog (known as ZYG-1). When protein phosphatase 1 is down-regulated, ZYG-1 levels increase leading to centrosome amplification. Thus our work identifies a novel mechanism that limits centrosome duplication.
Collapse
Affiliation(s)
- Nina Peel
- Department of Biology, The College of New Jersey, Ewing, NJ, United States of America
- * E-mail: (NP); (KFO)
| | - Jyoti Iyer
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
| | - Anar Naik
- Department of Biology, The College of New Jersey, Ewing, NJ, United States of America
| | - Michael P. Dougherty
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
| | - Markus Decker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Kevin F. O’Connell
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD, United States of America
- * E-mail: (NP); (KFO)
| |
Collapse
|
48
|
Plk4 Promotes Cancer Invasion and Metastasis through Arp2/3 Complex Regulation of the Actin Cytoskeleton. Cancer Res 2016; 77:434-447. [DOI: 10.1158/0008-5472.can-16-2060] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/07/2016] [Accepted: 11/08/2016] [Indexed: 11/16/2022]
|
49
|
Fournier M, Orpinell M, Grauffel C, Scheer E, Garnier JM, Ye T, Chavant V, Joint M, Esashi F, Dejaegere A, Gönczy P, Tora L. KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification. Nat Commun 2016; 7:13227. [PMID: 27796307 PMCID: PMC5095585 DOI: 10.1038/ncomms13227] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/14/2016] [Indexed: 12/12/2022] Open
Abstract
Lysine acetylation is a widespread post-translational modification regulating various biological processes. To characterize cellular functions of the human lysine acetyltransferases KAT2A (GCN5) and KAT2B (PCAF), we determined their acetylome by shotgun proteomics. One of the newly identified KAT2A/2B substrate is polo-like kinase 4 (PLK4), a key regulator of centrosome duplication. We demonstrate that KAT2A/2B acetylate the PLK4 kinase domain on residues K45 and K46. Molecular dynamics modelling suggests that K45/K46 acetylation impairs kinase activity by shifting the kinase to an inactive conformation. Accordingly, PLK4 activity is reduced upon in vitro acetylation of its kinase domain. Moreover, the overexpression of the PLK4 K45R/K46R mutant in cells does not lead to centrosome overamplification, as observed with wild-type PLK4. We also find that impairing KAT2A/2B-acetyltransferase activity results in diminished phosphorylation of PLK4 and in excess centrosome numbers in cells. Overall, our study identifies the global human KAT2A/2B acetylome and uncovers that KAT2A/2B acetylation of PLK4 prevents centrosome amplification. The acetyltransferases KAT2A and KAT2B are essential regulators of transcription, cell cycle progression and DNA repair. Here the authors describe a KAT2A/2B-dependent acetylome, and show that acetylation of the protein kinase PLK4 contributes to the regulation of centrosome number.
Collapse
Affiliation(s)
- Marjorie Fournier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Meritxell Orpinell
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Cédric Grauffel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Virginie Chavant
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Mathilde Joint
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Annick Dejaegere
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
50
|
Graciotti M, Fang Z, Johnsson K, Gönczy P. Chemical Genetic Screen Identifies Natural Products that Modulate Centriole Number. Chembiochem 2016; 17:2063-2074. [DOI: 10.1002/cbic.201600327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Michele Graciotti
- Institute of Chemical Sciences and Engineering; Swiss Federal Institute of Technology Lausanne (EPFL); 1015 Lausanne Switzerland
- National Centre of Competence in Research (NCCR) in Chemical Biology; 1015 Lausanne Switzerland
| | - Zhou Fang
- Swiss Institute for Experimental Cancer Research (ISREC); Swiss Federal Institute of Technology Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Kai Johnsson
- Institute of Chemical Sciences and Engineering; Swiss Federal Institute of Technology Lausanne (EPFL); 1015 Lausanne Switzerland
- National Centre of Competence in Research (NCCR) in Chemical Biology; 1015 Lausanne Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC); Swiss Federal Institute of Technology Lausanne (EPFL); 1015 Lausanne Switzerland
- National Centre of Competence in Research (NCCR) in Chemical Biology; 1015 Lausanne Switzerland
| |
Collapse
|