1
|
Sigmund AM, Bayerbach FC, Kugelmann D, Butz E, Moztarzadeh S, Schikora ME, Horn AK, Radeva MY, Engelmayer S, Egu DT, Goebeler M, Schmidt E, Waschke J, Vielmuth F. Epac1 contributes to apremilast-mediated rescue of pemphigus autoantibody-induced loss of keratinocyte adhesion. JCI Insight 2025; 10:e187481. [PMID: 40299565 DOI: 10.1172/jci.insight.187481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
In the bullous autoimmune disease pemphigus vulgaris (PV), autoantibodies directed mainly against desmoglein 1 (Dsg1) and Dsg3 cause loss of desmosomal adhesion. We recently showed that intracellular cAMP increase by the phosphodiesterase 4 inhibitor apremilast was protective in different PV models. Thus, we here analyzed the involvement of the cAMP effector exchange factor directly activated by cAMP1 (Epac1). In Epac1-deficient mice pemphigus antibody-induced blistering was ameliorated in vivo while apremilast had no additional effect. Interestingly, augmented protein levels of Dsg1 and Dsg3 as well as increased Dsg1 mRNA levels and higher numbers of Dsg1- and Dsg3-dependent single-molecule interactions were detected in keratinocytes derived from Epac1-deficient mice. This was paralleled by stronger intercellular adhesion under baseline conditions and prevention of pemphigus autoantibody-induced loss of intercellular adhesion. However, the protective effect of apremilast against loss of intercellular adhesion in response to the pathogenic Dsg3 antibody AK23 was attenuated in Epac1-deficient keratinocytes. Similarly, the Epac1 inhibitor Esi09 protected keratinocytes from pemphigus antibody-induced loss of adhesion. Mechanistically, Epac1 deficiency resulted in lack of apremilast-induced Rap1 activation and phosphorylation of Pg at S665. Taken together, these data indicate that Epac1 is involved in the regulation of baseline and cAMP-mediated stabilization of keratinocyte adhesion.
Collapse
Affiliation(s)
- Anna M Sigmund
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Franziska C Bayerbach
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Daniela Kugelmann
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Elisabeth Butz
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sina Moztarzadeh
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Margarethe Ec Schikora
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anja Ke Horn
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sophia Engelmayer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Desalegn T Egu
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Enno Schmidt
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, University Clinic of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Vu HH, Moellmer SA, McCarty OJ, Puy C. New mechanisms and therapeutic approaches to regulate vascular permeability in systemic inflammation. Curr Opin Hematol 2025; 32:130-137. [PMID: 40063579 PMCID: PMC11949701 DOI: 10.1097/moh.0000000000000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW This review summarizes mechanisms that regulate endothelial vascular permeability in health and disease. In systemic inflammation, the endothelial barrier integrity is disrupted, which exacerbates vascular permeability, leading to organ failure and death. Herein we provide an overview of emerging therapeutic targets to reverse barrier dysfunction and preserve vascular permeability in inflammatory diseases like sepsis. RECENT FINDINGS Endothelial barrier function is regulated in part by the endothelial cell-specific protein, Roundabout 4 (ROBO4), and vascular endothelial (VE)-cadherin, a critical adherens junction protein, which act in concert to suppresses vascular permeability by stabilizing endothelial cell-cell interactions. We recently discovered a pathway by which activation of coagulation factor XI (FXI) enhances the cleavage of VE-cadherin by the metalloproteinase ADAM10, contributing to sepsis-related endothelial damage and loss of barrier function. Targeting FXI improved survival and reduced sVE-cadherin levels in a baboon model of sepsis while enhancing Robo4 expression decreased mortality in LPS-treated mice. SUMMARY Endothelial cell barrier dysfunction is a hallmark of excessive immune responses characteristic of systemic inflammatory diseases such as sepsis. Advances in understanding the molecular mechanisms regulating vascular permeability, for instance the newly discovered roles of FXI or ROBO4, may help identify novel therapeutic targets for mitigating vascular hyperpermeability in septic patients.
Collapse
Affiliation(s)
- Helen H. Vu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Samantha A. Moellmer
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Cristina Puy
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Cajado-Carvalho D, Morone MSLC, da Rós N, Serrano SMT. Interaction and cleavage of cell and plasma proteins by the platelet-aggregating serine protease PA-BJ of Bothrops jararaca venom. Biochimie 2025; 232:127-132. [PMID: 39880297 DOI: 10.1016/j.biochi.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
PA-BJ is a serine protease present in Bothrops jararaca venom that triggers platelet aggregation and granule secretion by activating the protease-activated receptors PAR-1 and PAR-4, without clotting fibrinogen. These receptors also have a relevant role in endothelial cells, however, the interaction of PA-BJ with other membrane-bound or soluble targets is not known. Here we explored the activity of PA-BJ on endothelial cell receptor, cytoskeleton, and coagulation proteins in vitro, and show the degradation of fibrinogen and protein C, and the limited proteolysis of actin, EPCR, PAR-1, and thrombomodulin. Antithrombin, factors XI and XIII and protein S were not cleaved by PA-BJ. Moreover, using surface plasmon resonance PA-BJ was demonstrated to bind to actin, EPCR, fibrinogen, PAR-1, and thrombomodulin, with dissociation constants (KD) in the micromolar range. Considering that these proteins play critical roles in pathways of blood coagulation and maintenance of endothelium integrity, their binding and cleavage by PA-BJ could contribute to the alterations in hemostasis and cell permeability observed in B. jararaca envenomation process.
Collapse
Affiliation(s)
- Daniela Cajado-Carvalho
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Mariana S L C Morone
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Nancy da Rós
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
4
|
Cai B, Kilian D, Ghorbani S, Roth JG, Seymour AJ, Brunel LG, Mejia DR, Rios RJ, Szabo IM, Iranzo SC, Perez A, Rao RR, Shin S, Heilshorn SC. One-step bioprinting of endothelialized, self-supporting arterial and venous networks. Biofabrication 2025; 17:025012. [PMID: 39819775 DOI: 10.1088/1758-5090/adab26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Advances in biofabrication have enabled the generation of freeform perfusable networks mimicking vasculature. However, key challenges remain in the effective endothelialization of these complex, vascular-like networks, including cell uniformity, seeding efficiency, and the ability to pattern multiple cell types. To overcome these challenges, we present an integrated fabrication and endothelialization strategy to directly generate branched, endothelial cell-lined networks using a diffusion-based, embedded 3D bioprinting process. In this strategy, a gelatin microparticle sacrificial ink delivering both cells and crosslinkers is extruded into a crosslinkable gel precursor support bath. A self-supporting, perfusable structure is formed by diffusion-induced crosslinking, after which the sacrificial ink is melted to allow cell release and adhesion to the printed lumen. This approach produces a uniform cell lining throughout networks with complex branching geometries, which are challenging to uniformly and efficiently endothelialize using conventional perfusion-based approaches. Furthermore, the biofabrication process enables high cell viability (>90%) and the formation of a confluent endothelial layer providing vascular-mimetic barrier function and shear stress response. Leveraging this strategy, we demonstrate for the first time the patterning of multiple endothelial cell types, including arterial and venous cells, within a single arterial-venous-like network. Altogether, this strategy enables the fabrication of multi-cellular engineered vasculature with enhanced geometric complexity and phenotypic heterogeneity.
Collapse
Affiliation(s)
- Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - David Kilian
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Sadegh Ghorbani
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Julien G Roth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, United States of America
| | - Alexis J Seymour
- Department of Bioengineering, Stanford University, Stanford, CA 94305, United States of America
| | - Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Daniel Ramos Mejia
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Ricardo J Rios
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Isabella M Szabo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Sean Chryz Iranzo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Andy Perez
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Rameshwar R Rao
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America
- Division of Pediatric Hematology, Oncology, Bone Marrow Transplant, and Cellular Therapies, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, United States of America
| | - Sungchul Shin
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| |
Collapse
|
5
|
Villagomez FR, Lang J, Nunez-Avellaneda D, Behbakht K, Dimmick HL, Webb PG, Nephew KP, Neville M, Woodruff ER, Bitler BG. Claudin-4 Stabilizes the Genome via Nuclear and Cell-Cycle Remodeling to Support Ovarian Cancer Cell Survival. CANCER RESEARCH COMMUNICATIONS 2025; 5:39-53. [PMID: 39625235 PMCID: PMC11705808 DOI: 10.1158/2767-9764.crc-24-0558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
SIGNIFICANCE High-grade serous ovarian carcinoma is marked by chromosomal instability, which can serve to promote disease progression and allow cancer to evade therapeutic insults. The report highlights the role of claudin-4 in regulating genomic instability and proposes a novel therapeutic approach to exploit claudin-4-mediated regulation.
Collapse
Affiliation(s)
- Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel Nunez-Avellaneda
- Deputy Directorate of Technological Development, Linkage, and Innovation, National Council of Humanities, Sciences, and Technologies, Mexico City, Mexico
| | - Kian Behbakht
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hannah L. Dimmick
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Patricia G. Webb
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, Indiana
| | - Margaret Neville
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
6
|
Kumar R, Rao GN. Glucose-Regulated Protein 78, via Releasing β-Catenin from Adherens Junctions, Facilitates Its Interaction with STAT3 in Mediating Retinal Neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2356-2381. [PMID: 39222910 PMCID: PMC11587869 DOI: 10.1016/j.ajpath.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Retinopathy due to neovascularization is one of the major causes of vision loss. To understand the mechanisms underlying retinal neovascularization the oxygen-induced retinopathy (OIR) model was used. Two-dimensional gel matrix-assisted laser desorption/ionization time-of-flight/time-of-flight analysis of normoxic and 24-hour post-OIR mice pups' retinas revealed that glucose-regulated protein 78 (GRP78) was one of the several molecules induced by OIR in the retinal endothelial cells (ECs). Vascular endothelial growth factor A (VEGFA) also induced GRP78 expression independent of endoplasmic reticulum stress response in human retinal microvascular endothelial cells, and its depletion reduced VEGFA-induced EC angiogenic responses. Consistent with these observations, EC-specific deletion of GRP78 inhibited OIR-induced retinal neovascularization. GRP78 bound with vascular endothelial-cadherin and released adherens junction, but not Wnt-mediated, β-catenin. β-catenin, in turn, via interacting with STAT3, triggered cyclin D1 expression. Furthermore, depletion of β-catenin or cyclin D1 levels negated VEGFA-induced EC angiogenic responses and OIR-induced retinal neovascularization. EC-specific deletion of GRP78 also suppressed OIR-induced vascular leakage. Studies of upstream signaling indicated that activating transcription factor 6 mediated GRP78 induction in the modulation of VEGFA-induced EC angiogenic responses and OIR-induced retinal neovascularization. Together, these observations revealed that GRP78, independent of its response to endoplasmic reticulum stress, is involved in mediating EC angiogenic responses by VEGFA and retinal neovascularization by OIR. In view of these findings, GRP78 emerges as a desirable target for drug development against diabetic retinopathy.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
7
|
Brandon KD, Frank WE, Stroka KM. Junctions at the crossroads: the impact of mechanical cues on endothelial cell-cell junction conformations and vascular permeability. Am J Physiol Cell Physiol 2024; 327:C1073-C1086. [PMID: 39129490 PMCID: PMC11481987 DOI: 10.1152/ajpcell.00605.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Cells depend on precisely regulating barrier function within the vasculature to maintain physiological stability and facilitate essential substance transport. Endothelial cells achieve this through specialized adherens and tight junction protein complexes, which govern paracellular permeability across vascular beds. Adherens junctions, anchored by vascular endothelial (VE)-cadherin and associated catenins to the actin cytoskeleton, mediate homophilic adhesion crucial for barrier integrity. In contrast, tight junctions composed of occludin, claudin, and junctional adhesion molecule A interact with Zonula Occludens proteins, reinforcing intercellular connections essential for barrier selectivity. Endothelial cell-cell junctions exhibit dynamic conformations during development, maturation, and remodeling, regulated by local biochemical and mechanical cues. These structural adaptations play pivotal roles in disease contexts such as chronic inflammation, where junctional remodeling contributes to increased vascular permeability observed in conditions from cancer to cardiovascular diseases. Conversely, the brain microvasculature's specialized junctional arrangements pose challenges for therapeutic drug delivery due to their unique molecular compositions and tight organization. This commentary explores the molecular mechanisms underlying endothelial cell-cell junction conformations and their implications for vascular permeability. By highlighting recent advances in quantifying junctional changes and understanding mechanotransduction pathways, we elucidate how physical forces from cellular contacts and hemodynamic flow influence junctional dynamics.
Collapse
Affiliation(s)
- Ken D Brandon
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - William E Frank
- Department of Biology, University of Puerto Rico in Ponce, Ponce, Puerto Rico
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
8
|
Bathrinarayanan PV, Hallam SM, Grover LM, Vigolo D, Simmons MJH. Microfluidics as a Powerful Tool to Investigate Microvascular Dysfunction in Trauma Conditions: A Review of the State-of-the-Art. Adv Biol (Weinh) 2024; 8:e2400037. [PMID: 39031943 DOI: 10.1002/adbi.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Indexed: 07/22/2024]
Abstract
Skeletal muscle trauma such as fracture or crush injury can result in a life-threatening condition called acute compartment syndrome (ACS), which involves elevated compartmental pressure within a closed osteo-fascial compartment, leading to collapse of the microvasculature and resulting in necrosis of the tissue due to ischemia. Diagnosis of ACS is complex and controversial due to the lack of standardized objective methods, which results in high rates of misdiagnosis/late diagnosis, leading to permanent neuro-muscular damage. ACS pathophysiology is poorly understood at a cellular level due to the lack of physiologically relevant models. In this context, microfluidics organ-on-chip systems (OOCs) provide an exciting opportunity to investigate the cellular mechanisms of microvascular dysfunction that leads to ACS. In this article, the state-of-the-art OOCs designs and strategies used to investigate microvasculature dysfunction mechanisms is reviewed. The differential effects of hemodynamic shear stress on endothelial cell characteristics such as morphology, permeability, and inflammation, all of which are altered during microvascular dysfunction is highlighted. The article then critically reviews the importance of microfluidics to investigate closely related microvascular pathologies that cause ACS. The article concludes by discussing potential biomarkers of ACS with a special emphasis on glycocalyx and providing a future perspective.
Collapse
Affiliation(s)
- P Vasanthi Bathrinarayanan
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - S M Hallam
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - L M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - D Vigolo
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - M J H Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| |
Collapse
|
9
|
Villagomez FR, Lang J, Nunez-Avellaneda D, Behbakht K, Dimmick HL, Webb P, Nephew KP, Neville M, Woodruff ER, Bitler BG. Claudin-4 remodeling of nucleus-cell cycle crosstalk maintains ovarian tumor genome stability and drives resistance to genomic instability-inducing agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611120. [PMID: 39282307 PMCID: PMC11398366 DOI: 10.1101/2024.09.04.611120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
During cancer development, the interplay between the nucleus and the cell cycle leads to a state of genomic instability, often accompanied by observable morphological aberrations. These aberrations can be controlled by tumor cells to evade cell death, either by preventing or eliminating genomic instability. In epithelial ovarian cancer (EOC), overexpression of the multifunctional protein claudin-4 is a key contributor to therapy resistance through mechanisms associated with genomic instability. However, the molecular mechanisms underlying claudin-4 overexpression in EOC remain poorly understood. Here, we altered claudin-4 expression and employed a unique claudin-4 targeting peptide (CMP) to manipulate the function of claudin-4. We found that claudin-4 facilitates genome maintenance by linking the nuclear envelope and cytoskeleton dynamics with cell cycle progression. Claudin-4 caused nuclei constriction by excluding lamin B1 and promoting perinuclear F-actin accumulation, associated with remodeling nuclear architecture, thus altering nuclear envelope dynamics. Consequently, cell cycle modifications due to claudin-4 overexpression resulted in fewer cells entering the S-phase and reduced genomic instability. Importantly, disrupting biological interactions of claudin-4 using CMP and forskolin altered oxidative stress cellular response and increased the efficacy of PARP inhibitor treatment. Our data indicate that claudin-4 protects tumor genome integrity by remodeling the crosstalk between the nuclei and the cell cycle, leading to resistance to genomic instability formation and the effects of genomic instability-inducing agents.
Collapse
Affiliation(s)
- Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Daniel Nunez-Avellaneda
- Deputy Directorate of Technological Development, Linkage, and Innovation, National Council of Humanities, Sciences, and Technologies, Mexico City, Mexico
| | - Kian Behbakht
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hannah L. Dimmick
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Patricia Webb
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, Indiana
- Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana
| | - Margaret Neville
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
10
|
Liu XY, Chen B, Zhang R, Zhang MQ, Ma YY, Han Y, Jiang JD, Zhang JP. Atorvastatin-induced intracerebral hemorrhage is inhibited by berberine in zebrafish. J Appl Toxicol 2024; 44:1198-1213. [PMID: 38639436 DOI: 10.1002/jat.4614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Intracerebral hemorrhage (ICH), for which there are currently no effective preventive or treatment methods, has a very high fatality rate. Statins, such as atorvastatin (ATV), are the first-line drugs for regulating blood lipids and treating hyperlipidemia-related cardiovascular diseases. However, ATV-associated ICH has been reported, although its incidence is rare. In this study, we aimed to investigate the protective action and mechanisms of berberine (BBR) against ATV-induced brain hemorrhage. We established an ICH model in zebrafish induced by ATV (2 μM) and demonstrated the effects of BBR (10, 50, and 100 μM) on ICH via protecting the vascular network using hemocyte staining and three transgenic zebrafish. BBR was found to reduce brain inflammation and locomotion injury in ICH-zebrafish. Mechanism research showed that ATV increased the levels of VE-cadherin and occludin proteins but disturbed their localization at the cell membrane by abnormal phosphorylation, which decreased the number of intercellular junctions between vascular endothelial cells (VECs), disrupting the integrity of vascular walls. BBR reversed the effects of ATV by promoting autophagic degradation of phosphorylated VE-cadherin and occludin in ATV-induced VECs examined by co-immunoprecipitation (co-IP). These findings provide crucial insights into understanding the BBR mechanisms involved in the maintenance of vascular integrity and in mitigating adverse reactions to ATV.
Collapse
Affiliation(s)
- Xin-Yan Liu
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Chen
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao-Qing Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Yuan Ma
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Han
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Pu Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Wakasugi R, Suzuki K, Kaneko-Kawano T. Molecular Mechanisms Regulating Vascular Endothelial Permeability. Int J Mol Sci 2024; 25:6415. [PMID: 38928121 PMCID: PMC11203514 DOI: 10.3390/ijms25126415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Vascular endothelial cells form a monolayer in the vascular lumen and act as a selective barrier to control the permeability between blood and tissues. To maintain homeostasis, the endothelial barrier function must be strictly integrated. During acute inflammation, vascular permeability temporarily increases, allowing intravascular fluid, cells, and other components to permeate tissues. Moreover, it has been suggested that the dysregulation of endothelial cell permeability may cause several diseases, including edema, cancer, and atherosclerosis. Here, we reviewed the molecular mechanisms by which endothelial cells regulate the barrier function and physiological permeability.
Collapse
Affiliation(s)
| | | | - Takako Kaneko-Kawano
- Graduate School of Pharmacy, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Shiga, Japan; (R.W.); (K.S.)
| |
Collapse
|
12
|
Villagomez FR, Lang J, Webb P, Neville M, Woodruff ER, Bitler BG. Claudin-4 modulates autophagy via SLC1A5/LAT1 as a tolerance mechanism for genomic instability in ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576263. [PMID: 38293054 PMCID: PMC10827183 DOI: 10.1101/2024.01.18.576263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Genome instability is key for tumor heterogeneity and derives from defects in cell division and DNA damage repair. Tumors show tolerance for this characteristic, but its accumulation is regulated somehow to avoid catastrophic chromosomal alterations and cell death. Claudin-4 is upregulated and closely associated with genome instability and worse patient outcome in ovarian cancer. This protein is commonly described as a junctional protein participating in processes such as cell proliferation and DNA repair. However, its biological association with genomic instability is still poorly-understood. Here, we used CRISPRi and a claudin mimic peptide (CMP) to modulate the cladudin-4 expression and its function, respectively in in-vitro (high-grade serous carcinoma cells) and in-vivo (patient-derived xenograft in a humanized-mice model) systems. We found that claudin-4 promotes a protective cellular-mechanism that links cell-cell junctions to genome integrity. Disruption of this axis leads to irregular cellular connections and cell cycle that results in chromosomal alterations, a phenomenon associated with a novel functional link between claudin-4 and SLC1A5/LAT1 in regulating autophagy. Consequently, claudin-4's disruption increased autophagy and associated with engulfment of cytoplasm-localized DNA. Furthermore, the claudin-4/SLC1A5/LAT1 biological axis correlates with decrease ovarian cancer patient survival and targeting claudin-4 in-vivo with CMP resulted in increased niraparib (PARPi) efficacy, correlating with increased tumoral infiltration of T CD8+ lymphocytes. Our results show that the upregulation of claudin-4 enables a mechanism that promotes tolerance to genomic instability and immune evasion in ovarian cancer; thus, suggesting the potential of claudin-4 as a translational target for enhancing ovarian cancer treatment.
Collapse
|
13
|
Yamamoto K, Watanabe-Takano H, Oguri-Nakamura E, Matsuno H, Horikami D, Ishii T, Ohashi R, Kubota Y, Nishiyama K, Murata T, Mochizuki N, Fukuhara S. Rap1 small GTPase is essential for maintaining pulmonary endothelial barrier function in mice. FASEB J 2023; 37:e23310. [PMID: 38010922 DOI: 10.1096/fj.202300830rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Vascular permeability is dynamically but tightly controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions to maintain homeostasis. Thus, impairments of VE-cadherin-mediated cell adhesions lead to hyperpermeability, promoting the development and progression of various disease processes. Notably, the lungs are a highly vulnerable organ wherein pulmonary inflammation and infection result in vascular leakage. Herein, we showed that Rap1, a small GTPase, plays an essential role for maintaining pulmonary endothelial barrier function in mice. Endothelial cell-specific Rap1a/Rap1b double knockout mice exhibited severe pulmonary edema. They also showed vascular leakage in the hearts, but not in the brains. En face analyses of the pulmonary arteries and 3D-immunofluorescence analyses of the lungs revealed that Rap1 potentiates VE-cadherin-mediated endothelial cell-cell junctions through dynamic actin cytoskeleton reorganization. Rap1 inhibits formation of cytoplasmic actin bundles perpendicularly binding VE-cadherin adhesions through inhibition of a Rho-ROCK pathway-induced activation of cytoplasmic nonmuscle myosin II (NM-II). Simultaneously, Rap1 induces junctional NM-II activation to create circumferential actin bundles, which anchor and stabilize VE-cadherin at cell-cell junctions. We also showed that the mice carrying only one allele of either Rap1a or Rap1b out of the two Rap1 genes are more vulnerable to lipopolysaccharide (LPS)-induced pulmonary vascular leakage than wild-type mice, while activation of Rap1 by administration of 007, an activator for Epac, attenuates LPS-induced increase in pulmonary endothelial permeability in wild-type mice. Thus, we demonstrate that Rap1 plays an essential role for maintaining pulmonary endothelial barrier functions under physiological conditions and provides protection against inflammation-induced pulmonary vascular leakage.
Collapse
Affiliation(s)
- Kiyotake Yamamoto
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
- Department of Pharmaceutical Information Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Haruko Watanabe-Takano
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Eri Oguri-Nakamura
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Hitomi Matsuno
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Daiki Horikami
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Ishii
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Nishiyama
- Laboratory of Vascular and Cellular Dynamics, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
14
|
Stamp MEM, Halwes M, Nisbet D, Collins DJ. Breaking barriers: exploring mechanisms behind opening the blood-brain barrier. Fluids Barriers CNS 2023; 20:87. [PMID: 38017530 PMCID: PMC10683235 DOI: 10.1186/s12987-023-00489-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
The blood-brain barrier (BBB) is a selectively permeable membrane that separates the bloodstream from the brain. While useful for protecting neural tissue from harmful substances, brain-related diseases are difficult to treat due to this barrier, as it also limits the efficacy of drug delivery. To address this, promising new approaches for enhancing drug delivery are based on disrupting the BBB using physical means, including optical/photothermal therapy, electrical stimulation, and acoustic/mechanical stimulation. These physical mechanisms can temporarily and locally open the BBB, allowing drugs and other substances to enter. Focused ultrasound is particularly promising, with the ability to focus energies to targeted, deep-brain regions. In this review, we examine recent advances in physical approaches for temporary BBB disruption, describing their underlying mechanisms as well as evaluating the utility of these physical approaches with regard to their potential risks and limitations. While these methods have demonstrated efficacy in disrupting the BBB, their safety, comparative efficacy, and practicality for clinical use remain an ongoing topic of research.
Collapse
Affiliation(s)
- Melanie E M Stamp
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
| | - Michael Halwes
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - David Nisbet
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
15
|
Vielmuth F, Radeva MY, Yeruva S, Sigmund AM, Waschke J. cAMP: A master regulator of cadherin-mediated binding in endothelium, epithelium and myocardium. Acta Physiol (Oxf) 2023; 238:e14006. [PMID: 37243909 DOI: 10.1111/apha.14006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Regulation of cadherin-mediated cell adhesion is crucial not only for maintaining tissue integrity and barrier function in the endothelium and epithelium but also for electromechanical coupling within the myocardium. Therefore, loss of cadherin-mediated adhesion causes various disorders, including vascular inflammation and desmosome-related diseases such as the autoimmune blistering skin dermatosis pemphigus and arrhythmogenic cardiomyopathy. Mechanisms regulating cadherin-mediated binding contribute to the pathogenesis of diseases and may also be used as therapeutic targets. Over the last 30 years, cyclic adenosine 3',5'-monophosphate (cAMP) has emerged as one of the master regulators of cell adhesion in endothelium and, more recently, also in epithelial cells as well as in cardiomyocytes. A broad spectrum of experimental models from vascular physiology and cell biology applied by different generations of researchers provided evidence that not only cadherins of endothelial adherens junctions (AJ) but also desmosomal contacts in keratinocytes and the cardiomyocyte intercalated discs are central targets in this scenario. The molecular mechanisms involve protein kinase A- and exchange protein directly activated by cAMP-mediated regulation of Rho family GTPases and S665 phosphorylation of the AJ and desmosome adaptor protein plakoglobin. In line with this, phosphodiesterase 4 inhibitors such as apremilast have been proposed as a therapeutic strategy to stabilize cadherin-mediated adhesion in pemphigus and may also be effective to treat other disorders where cadherin-mediated binding is compromised.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sunil Yeruva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna M Sigmund
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
16
|
Mahlandt EK, Palacios Martínez S, Arts JJG, Tol S, van Buul JD, Goedhart J. Opto-RhoGEFs, an optimized optogenetic toolbox to reversibly control Rho GTPase activity on a global to subcellular scale, enabling precise control over vascular endothelial barrier strength. eLife 2023; 12:RP84364. [PMID: 37449837 PMCID: PMC10393062 DOI: 10.7554/elife.84364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The inner layer of blood vessels consists of endothelial cells, which form the physical barrier between blood and tissue. This vascular barrier is tightly regulated and is defined by cell-cell contacts through adherens and tight junctions. To investigate the signaling that regulates vascular barrier strength, we focused on Rho GTPases, regulators of the actin cytoskeleton and known to control junction integrity. To manipulate Rho GTPase signaling in a temporal and spatial manner we applied optogenetics. Guanine-nucleotide exchange factor (GEF) domains from ITSN1, TIAM1, and p63RhoGEF, activating Cdc42, Rac, and Rho, respectively, were integrated into the optogenetic recruitment tool improved light-induced dimer (iLID). This tool allows for Rho GTPase activation at the subcellular level in a reversible and non-invasive manner by recruiting a GEF to a specific area at the plasma membrane, The membrane tag of iLID was optimized and a HaloTag was applied to gain more flexibility for multiplex imaging. The resulting optogenetically recruitable RhoGEFs (Opto-RhoGEFs) were tested in an endothelial cell monolayer and demonstrated precise temporal control of vascular barrier strength by a cell-cell overlap-dependent, VE-cadherin-independent, mechanism. Furthermore, Opto-RhoGEFs enabled precise optogenetic control in endothelial cells over morphological features such as cell size, cell roundness, local extension, and cell contraction. In conclusion, we have optimized and applied the optogenetic iLID GEF recruitment tool, that is Opto-RhoGEFs, to study the role of Rho GTPases in the vascular barrier of the endothelium and found that membrane protrusions at the junction region can rapidly increase barrier integrity independent of VE-cadherin.
Collapse
Affiliation(s)
- Eike K Mahlandt
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
| | - Sebastián Palacios Martínez
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
| | - Janine J G Arts
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Simon Tol
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Jaap D van Buul
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Tokarz VL, Pereira RVS, Jaldin-Fincati JR, Mylvaganam S, Klip A. Junctional integrity and directional mobility of lymphatic endothelial cell monolayers are disrupted by saturated fatty acids. Mol Biol Cell 2023; 34:ar28. [PMID: 36735487 PMCID: PMC10092641 DOI: 10.1091/mbc.e22-08-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The lymphatic circulation regulates transfer of tissue fluid and immune cells toward the venous circulation. While obesity impairs lymphatic vessel function, the contribution of lymphatic endothelial cells (LEC) to metabolic disease phenotypes is poorly understood. LEC of lymphatic microvessels are in direct contact with the interstitial fluid, whose composition changes during the development of obesity, markedly by increases in saturated fatty acids. Palmitate, the most prevalent saturated fatty acid in lymph and blood, is detrimental to metabolism and function of diverse tissues, but its impact on LEC function is relatively unknown. Here, palmitate (but not its unsaturated counterpart palmitoleate) destabilized adherens junctions in human microvascular LEC in culture, visualized as changes in VE-cadherin, α-catenin, and β-catenin localization. Detachment of these proteins from cortical actin filaments was associated with abundant actomyosin stress fibers. The effects were Rho-associated protein kinase (ROCK)- and myosin-dependent, as inhibition with Y27632 or blebbistatin, respectively, prevented stress fiber accumulation and preserved junctions. Without functional junctions, palmitate-treated LEC failed to directionally migrate to close wounds in two dimensions and failed to form endothelial tubes in three dimensions. A reorganization of the lymphatic endothelial actin cytoskeleton may contribute to lymphatic dysfunction in obesity and could be considered as a therapeutic target.
Collapse
Affiliation(s)
- Victoria L Tokarz
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Rafaela V S Pereira
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Sivakami Mylvaganam
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
18
|
Kosutova P, Mikolka P, Mokra D, Calkovska A. Anti-inflammatory activity of non-selective PDE inhibitor aminophylline on the lung tissue and respiratory parameters in animal model of ARDS. J Inflamm (Lond) 2023; 20:10. [PMID: 36927675 PMCID: PMC10018984 DOI: 10.1186/s12950-023-00337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common complication of critical illness characterized by lung inflammation, epithelial and endothelial dysfunction, alveolar-capillary leakage, and worsening respiratory failure. The present study aimed to investigate the anti-inflammatory effects of non-selective phosphodiesterase (PDE) inhibitor aminophylline. New Zealand white rabbits were randomly divided into 3 groups: animals with respiratory failure defined as PaO2/FiO2 ratio (P/F) below < 26.7 kPa, and induced by saline lung lavage (ARDS), animals with ARDS treated with intravenous aminophylline (1 mg/kg; ARDS/AMINO), and healthy ventilated controls (Control). All animals were oxygen ventilated for an additional 4 h and respiratory parameters were recorded regularly. Post mortem, the lung tissue was evaluated for oedema formation, markers of inflammation (tumor necrosis factor, TNFα, interleukin (IL)-1β, -6, -8, -10, -13, -18), markers of epithelial damage (receptor for advanced glycation end products, RAGE) and endothelial injury (sphingosine 1-phosphate, S1P), oxidative damage (thiobarbituric acid reactive substances, TBARS, 3-nitrotyrosine, 3NT, total antioxidant capacity, TAC). Aminophylline therapy decreased the levels of pro-inflammatory cytokines, markers of epithelial and endothelial injury, oxidative modifications in lung tissue, reduced lung oedema, and improved lung function parameters compared to untreated ARDS animals. In conclusion, non-selective PDE inhibitor aminophylline showed a significant anti-inflammatory activity suggesting a potential of this drug to be a valuable component of ARDS therapy.
Collapse
Affiliation(s)
- Petra Kosutova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, SK-03601, Martin, Slovakia. .,Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, SK-03601, Martin, Slovakia.
| | - Pavol Mikolka
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, SK-03601, Martin, Slovakia.,Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, SK-03601, Martin, Slovakia
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, SK-03601, Martin, Slovakia
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4C, SK-03601, Martin, Slovakia
| |
Collapse
|
19
|
Sun X, Wang Y, Zhao Y, Xu X, Lu W, Li Y, Bian F, Xiang L, Zhou L. Activation of the Epac/Rap1 signaling pathway alleviates blood-brain barrier disruption and brain damage following cerebral ischemia/reperfusion injury. Int Immunopharmacol 2023; 117:110014. [PMID: 36931001 DOI: 10.1016/j.intimp.2023.110014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Blood brain barrier (BBB) destruction plays a key role in ischemia stroke, including promoting BBB leakage and brain edema, and leads to unfavorable patient prognosis. Epac/Rap1 signaling pathway is important in mediating endothelial cell barrier function. This study will investigate the regulatory role of Epac/Rap1 signaling pathway in BBB disruption after cerebral ischemia/reperfusion (CI/R) injury. CI/R model was induced by 90 min of transient middle cerebral artery occlusion (MCAO) in male C57BL/6J mice. Injection of Epac/Rap1 signaling pathway agonist was performed half an hour before the MCAO operation. The results showed that CI/R injured the tight connection of BBB and evoked the suppression of the Epac/Rap1 signaling pathway. Based on Epac activation with a cAMP analogue, 8-CPT could improve BBB disfunction by increasing the expression of tight junction protein and reducing the formation of stress fibers. In addition, 8-CPT could ameliorate neurobehavioral disorders, cerebral edema, and cerebral infarction volume in MCAO mice. Moreover, inhibition of Epac pathway with Rap1 inhibitor GGTI298 and Rac1 inhibitor NSC23766 could aggravate the damage of BBB and cerebral injury accordingly. Our results indicate that, the activation of Epac/Rap1 signaling pathway has neuroprotective effects on CI/R damaged brain, through the recovery of BBB.
Collapse
Affiliation(s)
- Xuemei Sun
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China; The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, 213000, China
| | - Yingnan Wang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yuchen Zhao
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | - Xinyi Xu
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Wenjie Lu
- Department of Pharmacology, School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Yuying Li
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Fei Bian
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lan Xiang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lanlan Zhou
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China.
| |
Collapse
|
20
|
Perrelli A, Ferraris C, Berni E, Glading AJ, Retta SF. KRIT1: A Traffic Warden at the Busy Crossroads Between Redox Signaling and the Pathogenesis of Cerebral Cavernous Malformation Disease. Antioxid Redox Signal 2023; 38:496-528. [PMID: 36047808 PMCID: PMC10039281 DOI: 10.1089/ars.2021.0263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/18/2022]
Abstract
Significance: KRIT1 (Krev interaction trapped 1) is a scaffolding protein that plays a critical role in vascular morphogenesis and homeostasis. Its loss-of-function has been unequivocally associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease of genetic origin characterized by defective endothelial cell-cell adhesion and ensuing structural alterations and hyperpermeability in brain capillaries. KRIT1 contributes to the maintenance of endothelial barrier function by stabilizing the integrity of adherens junctions and inhibiting the formation of actin stress fibers. Recent Advances: Among the multiple regulatory mechanisms proposed so far, significant evidence accumulated over the past decade has clearly shown that the role of KRIT1 in the stability of endothelial barriers, including the blood-brain barrier, is largely based on its involvement in the complex machinery governing cellular redox homeostasis and responses to oxidative stress and inflammation. KRIT1 loss-of-function has, indeed, been demonstrated to cause an impairment of major redox-sensitive mechanisms involved in spatiotemporal regulation of cell adhesion and signaling, which ultimately leads to decreased cell-cell junction stability and enhanced sensitivity to oxidative stress and inflammation. Critical Issues: This review explores the redox mechanisms that influence endothelial cell adhesion and barrier function, focusing on the role of KRIT1 in such mechanisms. We propose that this supports a novel model wherein redox signaling forms the common link between the various pathogenetic mechanisms and therapeutic approaches hitherto associated with CCM disease. Future Directions: A comprehensive characterization of the role of KRIT1 in redox control of endothelial barrier physiology and defense against oxy-inflammatory insults will provide valuable insights into the development of precision medicine strategies. Antioxid. Redox Signal. 38, 496-528.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Chiara Ferraris
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Elisa Berni
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
21
|
Abstract
The endothelium is a dynamic, semipermeable layer lining all blood vessels, regulating blood vessel formation and barrier function. Proper composition and function of the endothelial barrier are required for fluid homeostasis, and clinical conditions characterized by barrier disruption are associated with severe morbidity and high mortality rates. Endothelial barrier properties are regulated by cell-cell junctions and intracellular signaling pathways governing the cytoskeleton, but recent insights indicate an increasingly important role for integrin-mediated cell-matrix adhesion and signaling in endothelial barrier regulation. Here, we discuss diseases characterized by endothelial barrier disruption, and provide an overview of the composition of endothelial cell-matrix adhesion complexes and associated signaling pathways, their crosstalk with cell-cell junctions, and with other receptors. We further present recent insights into the role of cell-matrix adhesions in the developing and mature/adult endothelium of various vascular beds, and discuss how the dynamic regulation and turnover of cell-matrix adhesions regulates endothelial barrier function in (patho)physiological conditions like angiogenesis, inflammation and in response to hemodynamic stress. Finally, as clinical conditions associated with vascular leak still lack direct treatment, we focus on how understanding of endothelial cell-matrix adhesion may provide novel targets for treatment, and discuss current translational challenges and future perspectives.
Collapse
Affiliation(s)
- Jurjan Aman
- Department of Pulmonology, Amsterdam University Medical Center, the Netherlands (J.A.)
| | - Coert Margadant
- Department of Medical Oncology, Amsterdam University Medical Center, the NetherlandsInstitute of Biology, Leiden University, the Netherlands (C.M.)
| |
Collapse
|
22
|
Si H, Yin C, Wang W, Davies P, Sanchez E, Suntravat M, Zawieja D, Cromer W. Effect of the snake venom component crotamine on lymphatic endothelial cell responses and lymph transport. Microcirculation 2022; 30:e12775. [PMID: 35689804 PMCID: PMC9850291 DOI: 10.1111/micc.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/16/2022] [Accepted: 06/06/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The pathology of snake envenomation is closely tied to the severity of edema in the tissue surrounding the area of the bite. Elucidating the mechanisms that promote the development of such severe edema is critical to a better understanding of how to treat this life-threatening injury. We focused on one of the most abundant venom components in North American viper venom, crotamine, and the effects it has on the cells and function of the lymphatic system. METHODS We used RT-PCR to identify the location and relative abundance of crotamine's cellular targets (Kvα channels) within the tissues and cells of the lymphatic system. We used calcium flux, nitrate production, and cell morphometry to determine the effects of crotamine on lymphatic endothelial cells. We used tracer transport, node morphometry, and node deposition to determine the effects of crotamine on lymph transport in vivo. RESULTS We found that genes that encode targets of crotamine are highly present in lymphatic tissues and cells and that there is a differential distribution of those genes that correlates with phasic contractile activity. We found that crotamine potentiates calcium flux in human dermal lymphatic endothelial cells in response to stimulation with histamine and sheer stress (but not alone) and that it alters the production of nitric oxide in response to shear as well as changes the level of F-actin polymerization of those same cells. Crotamine alters lymphatic transport of large molecular weight tracers to local lymph nodes and is deposited within the node mostly in the immediate subcapsular region. CONCLUSION This evidence suggests that snake venom components may have an impact on the function of the lymphatic system. This needs to be studied in greater detail as there are numerous venom components that may have effects on aspects of the lymphatic system. This would not only provide basic information on the pathobiology of snakebite but also provide targets for improved therapeutics to treat snakebite.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Medical Physiology, Texas A&M University Health Science Center
| | - Chunhiu Yin
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology
| | - Wei Wang
- Department of Medical Physiology, Texas A&M University Health Science Center
| | - Peter Davies
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology
| | - Elda Sanchez
- National Natural Toxins Research Center, Texas A&M Kingsville
| | | | - David Zawieja
- Department of Medical Physiology, Texas A&M University Health Science Center
| | - Walter Cromer
- Department of Medical Physiology, Texas A&M University Health Science Center
| |
Collapse
|
23
|
Yang K, Fan M, Wang X, Xu J, Wang Y, Gill PS, Ha T, Liu L, Hall JV, Williams DL, Li C. Lactate induces vascular permeability via disruption of VE-cadherin in endothelial cells during sepsis. SCIENCE ADVANCES 2022; 8:eabm8965. [PMID: 35476437 PMCID: PMC9045716 DOI: 10.1126/sciadv.abm8965] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Circulating lactate levels are a critical biomarker for sepsis and are positively correlated with sepsis-associated mortality. We investigated whether lactate plays a biological role in causing endothelial barrier dysfunction in sepsis. We showed that lactate causes vascular permeability and worsens organ dysfunction in CLP sepsis. Mechanistically, lactate induces ERK-dependent activation of calpain1/2 for VE-cadherin proteolytic cleavage, leading to the enhanced endocytosis of VE-cadherin in endothelial cells. In addition, we found that ERK2 interacts with VE-cadherin and stabilizes VE-cadherin complex in resting endothelial cells. Lactate-induced ERK2 phosphorylation promotes ERK2 disassociation from VE-cadherin. In vivo suppression of lactate production or genetic depletion of lactate receptor GPR81 mitigates vascular permeability and multiple organ injury and improves survival outcome in polymicrobial sepsis. Our study reveals that metabolic cross-talk between glycolysis-derived lactate and the endothelium plays a critical role in the pathophysiology of sepsis.
Collapse
Affiliation(s)
- Kun Yang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Min Fan
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jingjing Xu
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yana Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - P. Spencer Gill
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Tuanzhu Ha
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jennifer V. Hall
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - David L. Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Chuanfu Li
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Center of Excellence in Inflammation, Infectious Disease, and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
- Corresponding author.
| |
Collapse
|
24
|
Gorzelak-Pabiś P, Broncel M, Pawlos A, Wojdan K, Gajewski A, Chałubiński M, Woźniak E. Dabigatran: its protective effect against endothelial cell damage by oxysterol. Biomed Pharmacother 2022; 147:112679. [PMID: 35121342 DOI: 10.1016/j.biopha.2022.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Recent data showed that dabigatran can reduce not only procoagulatory effects but also block proinflammatory stimuli by inhibiting the expression of cytokines and chemokines and reducing thrombin-induced endothelial permeability. The aim of our study was to assess the effect of dabigatran on the integrity and inflammatory properties of endothelial cells stimulated by 25-hydroxycholesterol (25-OHC, oxysterol). HUVECs (Human Umbilical Vein Endothelial Cells) were stimulated with 25-hydroxycholesterol 10 µg/ml, dabigatran 100 ng/ml or 500 ng/ml and 25-hydroxycholesterol + dabigatran (100 ng/ml, 500 ng/ml). HUVEC integrity and permeability was measured in the RTCA-DP xCELLigence system and by the paracellular flux system. The mRNA expression of ICAM-1, VEGF, IL-33, MCP-1 and TNF-α was analyzed by Real-time PCR. Cell apoptosis and viability was measured by flow cytometry. VEGF protein concentration was assessed in supernatants by ELISA. VE-cadherin expression in endothelial cells was evaluated by confocal microscopy. Pre-stimulation of HUVECs with 25-OHC decreased endothelial cell integrity (p < 0.001) and increased the expression of IL-33, ICAM-1, MCP-1, VEGF, TNF-α mRNA (p < 0.01) compared to unstimulated controls. Following stimulation of HUVECs with dabigatran 100 ng/ml or 500 ng/ml restored HUVEC integrity interrupted by 25-OHC (p < 0.001). In HUVECs pre-stimulated with oxysterol, dabigatran stimulation decreased mRNA expression of the proinflammatory cytokines IL-33 and TNF-α, chemokines MCP-1 ICAM-1 and VEGF (p < 0.01). Dabigatran 500 mg/ml+ 25-OHC increased the endothelial expression of VE-cadherin as compared to 25-OHC (p < 0.01). Our findings suggest that dabigatran stabilizes the endothelial barrier and inhibits the inflammation caused by oxysterol.
Collapse
Affiliation(s)
- Paulina Gorzelak-Pabiś
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland.
| | - Marlena Broncel
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Agnieszka Pawlos
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Katarzyna Wojdan
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Ewelina Woźniak
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Poland
| |
Collapse
|
25
|
Xiao J, Zhang B, Su Z, Liu Y, Shelite TR, Chang Q, Qiu Y, Bei J, Wang P, Bukreyev A, Soong L, Jin Y, Ksiazek T, Gaitas A, Rossi SL, Zhou J, Laposata M, Saito TB, Gong B. Intracellular receptor EPAC regulates von Willebrand factor secretion from endothelial cells in a PI3K-/eNOS-dependent manner during inflammation. J Biol Chem 2021; 297:101315. [PMID: 34678311 PMCID: PMC8526113 DOI: 10.1016/j.jbc.2021.101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Coagulopathy is associated with both inflammation and infection, including infections with novel severe acute respiratory syndrome coronavirus-2, the causative agent Coagulopathy is associated with both inflammation and infection, including infection with novel severe acute respiratory syndrome coronavirus-2, the causative agent of COVID-19. Clot formation is promoted via cAMP-mediated secretion of von Willebrand factor (vWF), which fine-tunes the process of hemostasis. The exchange protein directly activated by cAMP (EPAC) is a ubiquitously expressed intracellular cAMP receptor that plays a regulatory role in suppressing inflammation. To assess whether EPAC could regulate vWF release during inflammation, we utilized our EPAC1-null mouse model and revealed increased secretion of vWF in endotoxemic mice in the absence of the EPAC1 gene. Pharmacological inhibition of EPAC1 in vitro mimicked the EPAC1-/- phenotype. In addition, EPAC1 regulated tumor necrosis factor-α-triggered vWF secretion from human umbilical vein endothelial cells in a manner dependent upon inflammatory effector molecules PI3K and endothelial nitric oxide synthase. Furthermore, EPAC1 activation reduced inflammation-triggered vWF release, both in vivo and in vitro. Our data delineate a novel regulatory role for EPAC1 in vWF secretion and shed light on the potential development of new strategies to control thrombosis during inflammation.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ben Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yakun Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas R Shelite
- Department of Internal Medicine, Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts, USA
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Angelo Gaitas
- The Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael Laposata
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
26
|
Yamamoto K, Takagi Y, Ando K, Fukuhara S. Rap1 Small GTPase Regulates Vascular Endothelial-Cadherin-Mediated Endothelial Cell-Cell Junctions and Vascular Permeability. Biol Pharm Bull 2021; 44:1371-1379. [PMID: 34602545 DOI: 10.1248/bpb.b21-00504] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The vascular permeability of the endothelium is finely controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions. In the majority of normal adult tissues, endothelial cells in blood vessels maintain vascular permeability at a relatively low level, while in response to inflammation, they limit vascular barrier function to induce plasma leakage and extravasation of immune cells as a defense mechanism. Thus, the dynamic but also simultaneously tight regulation of vascular permeability by endothelial cells is responsible for maintaining homeostasis and, as such, impairments of its underlying mechanisms result in hyperpermeability, leading to the development and progression of various diseases including coronavirus disease 2019 (COVID-19), a newly emerging infectious disease. Recently, increasing numbers of studies have been unveiling the important role of Rap1, a small guanosine 5'-triphosphatase (GTPase) belonging to the Ras superfamily, in the regulation of vascular permeability. Rap1 enhances VE-cadherin-mediated endothelial cell-cell junctions to potentiate vascular barrier functions via dynamic reorganization of the actin cytoskeleton. Importantly, Rap1 signaling activation reportedly improves vascular barrier function in animal models of various diseases associated with vascular hyperpermeability, suggesting that Rap1 might be an ideal target for drugs intended to prevent vascular barrier dysfunction. Here, we describe recent progress in understanding the mechanisms by which Rap1 potentiates VE-cadherin-mediated endothelial cell-cell adhesions and vascular barrier function. We also discuss how alterations in Rap1 signaling are related to vascular barrier dysfunction in diseases such as acute pulmonary injury and malignancies. In addition, we examine the possibility of Rap1 signaling as a target of drugs for treating diseases associated with vascular hyperpermeability.
Collapse
Affiliation(s)
- Kiyotake Yamamoto
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School
| | - Yuki Takagi
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School
| | - Koji Ando
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School
| |
Collapse
|
27
|
Gorzelak-Pabis P, Broncel M, Wojdan K, Gajewski A, Chalubinski M, Gawrysiak M, Wozniak E. Rivaroxaban protects from the oxysterol-induced damage and inflammatory activation of the vascular endothelium. Tissue Barriers 2021; 9:1956284. [PMID: 34323663 PMCID: PMC8794498 DOI: 10.1080/21688370.2021.1956284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Rivaroxaban is one of the direct factor Xa inhibitors. Its function in the inactivated coagulation cascade is unclear. The aim of the study was to assess the effect of rivaroxaban on the endothelial integrity and inflammatory properties of endothelial cells stimulated by 25-hydroxycholesterol (25-OHC). METHODS HUVECs were stimulated with 25-OHC, rivaroxaban and 25-OHC+ rivaroxaban. HUVEC integrity and permeability were measured using the xCELLigence system and paracellular flux assay. The mRNA expression of tissue factor, ICAM-1, VEGF, IL-33, MCP-1, TNF-α was analyzed in the real-time PCR. Apoptosis and viability were measured by flow cytometry. The VEGF protein concentration was assessed by ELISA. The confocal microscope was used to evaluate the expression of VE-cadherin in endothelial cells. RESULTS 25-OHC decreased endothelial cell integrity and increased the mRNA expression of IL-33, tissue factor, ICAM-1, MCP-1, VEGF, TNF-α as compared to unstimulated controls. Following the stimulation with rivaroxaban, HUVEC restored integrity disrupted by 25-OHC (p < .01). In HUVECs pre-stimulated with oxysterol, rivaroxaban decreased mRNA expression of IL-33, TNF-α, chemokines MCP-1, ICAM-1, VEGF and tissue factor (p < .01). Rivaroxaban 100 mg/ml+25-OHC increased the VE-cadherin expression in endothelium as compared to 25-OHC (p < .05). CONCLUSION Our finding suggests that rivaroxaban may restore the endothelial barrier and inhibit the inflammatory activation caused by oxysterol in vitro.
Collapse
Affiliation(s)
- Paulina Gorzelak-Pabis
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Marlena Broncel
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Wojdan
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Maciej Chalubinski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Mateusz Gawrysiak
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Ewelina Wozniak
- Dept. of Internal Diseases and Clinical Pharmacology, The Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
28
|
de Souza MDGC, Cyrino FZGA, Sicuro FL, Bouskela E. Effects of Ruscus extract on muscarinic receptors: Is there a role for endothelium derived relaxing factors on macromolecular permeability protection and microvascular diameter changes? Clin Hemorheol Microcirc 2021; 77:443-459. [PMID: 33459701 DOI: 10.3233/ch-201019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Protective effects of Ruscus extract on macromolecular permeability depend on its capacity to stimulate muscarinic receptors on endothelial cells and induce the release of endothelium derived relaxing factors (EDRFs). OBJECTIVE To investigate if these effects depend only on activation of muscarinic receptors or if EDRFs release are also necessary. We have also investigated the participation of Ruscus extract on muscarinic-induced release of EDRFs on microvascular diameters. METHODS Hamsters were treated daily during two weeks with Ruscus extract (50, 150 and 450 mg/kg/day) and then macromolecular permeability induced by histamine and arteriolar and venular diameters after cyclooxygenase (COX) and nitric oxide synthase (NOS) inhibitors: indomethacin and Nω-Nitro-L-arginine (LNA), respectively applied topically at 10-8M, 10-6M and 10-4M were observed on the cheek pouch preparation. RESULTS Ruscus extract decreased macromolecular permeability in a dose-dependent fashion and did not affect microvascular diameters. NOS and COX inhibitors enhanced its effect on microvascular permeability. NOS inhibition reduced arteriolar diameter and COX blocking decreased arteriolar and venular diameters at the lowest dose and increased them at higher doses of Ruscus extract. CONCLUSION The protective effect of Ruscus extract on macromolecular permeability seems to be mediated only via muscarinic receptors. Muscarinic activation attenuated vasoconstrictive tone through cyclooxygenase-independent endothelium derived relaxing factors.
Collapse
Affiliation(s)
- Maria das Graças C de Souza
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fatima Z G A Cyrino
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando L Sicuro
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eliete Bouskela
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
29
|
Abstract
Spotted fever group rickettsioses (SFRs) are devastating human infections. Vascular endothelial cells (ECs) are the primary targets of rickettsial infection. Edema resulting from EC barrier dysfunction occurs in the brain and lungs in most cases of lethal SFR, but the underlying mechanisms remain unclear. The aim of the study was to explore the potential role of Rickettsia-infected, EC-derived exosomes (Exos) during infection. Using size exclusion chromatography (SEC), we purified Exos from conditioned, filtered, bacterium-free media collected from Rickettsia parkeri-infected human umbilical vein ECs (HUVECs) (R-ECExos) and plasma of Rickettsia australis- or R. parkeri-infected mice (R-plsExos). We observed that rickettsial infection increased the release of heterogeneous plsExos, but endothelial exosomal size, morphology, and production were not significantly altered following infection. Compared to normal plsExos and ECExos, both R-plsExos and R-ECExos induced dysfunction of recipient normal brain microvascular ECs (BMECs). The effect of R-plsExos on mouse recipient BMEC barrier function is dose dependent. The effect of R-ECExos on human recipient BMEC barrier function is dependent on the exosomal RNA cargo. Next-generation sequencing analysis and stem-loop quantitative reverse transcription-PCR (RT-qPCR) validation revealed that rickettsial infection triggered the selective enrichment of endothelial exosomal mir-23a and mir-30b, which potentially target the endothelial barrier. To our knowledge, this is the first report on the functional role of extracellular vesicles following infection by obligately intracellular bacteria.
Collapse
|
30
|
Silvani G, Romanov V, Cox CD, Martinac B. Biomechanical Characterization of Endothelial Cells Exposed to Shear Stress Using Acoustic Force Spectroscopy. Front Bioeng Biotechnol 2021; 9:612151. [PMID: 33614612 PMCID: PMC7891662 DOI: 10.3389/fbioe.2021.612151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/07/2021] [Indexed: 01/27/2023] Open
Abstract
Characterizing mechanical properties of cells is important for understanding many cellular processes, such as cell movement, shape, and growth, as well as adaptation to changing environments. In this study, we explore the mechanical properties of endothelial cells that form the biological barrier lining blood vessels, whose dysfunction leads to development of many cardiovascular disorders. Stiffness of living endothelial cells was determined by Acoustic Force Spectroscopy (AFS), by pull parallel multiple functionalized microspheres located at the cell-cell periphery. The unique configuration of the acoustic microfluidic channel allowed us to develop a long-term dynamic culture protocol exposing cells to laminar flow for up to 48 h, with shear stresses in the physiological range (i.e., 6 dyn/cm2). Two different Endothelial cells lines, Human Aortic Endothelial Cells (HAECs) and Human Umbilical Vein Endothelial Cells (HUVECs), were investigated to show the potential of this tool to capture the change in cellular mechanical properties during maturation of a confluent endothelial monolayer. Immunofluorescence microscopy was exploited to follow actin filament rearrangement and junction formation over time. For both cell types we found that the application of shear-stress promotes the typical phenotype of a mature endothelium expressing a linear pattern of VE-cadherin at the cell-cell border and actin filament rearrangement along the perimeter of Endothelial cells. A staircase-like sequence of increasing force steps, ranging from 186 pN to 3.5 nN, was then applied in a single measurement revealing the force-dependent apparent stiffness of the membrane cortex in the kPa range. We also found that beads attached to cells cultured under dynamic conditions were harder to displace than cells cultured under static conditions, showing a stiffer membrane cortex at cell periphery. All together these results demonstrate that the AFS can identify changes in cell mechanics based on force measurements of adherent cells under conditions mimicking their native microenvironment, thus revealing the shear stress dependence of the mechanical properties of neighboring endothelial cells.
Collapse
Affiliation(s)
- Giulia Silvani
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | - Charles D. Cox
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
31
|
Claesson-Welsh L, Dejana E, McDonald DM. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Mol Med 2020; 27:314-331. [PMID: 33309601 DOI: 10.1016/j.molmed.2020.11.006] [Citation(s) in RCA: 360] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Leakage from blood vessels into tissues is governed by mechanisms that control endothelial barrier function to maintain homeostasis. Dysregulated endothelial permeability contributes to many conditions and can influence disease morbidity and treatment. Diverse approaches used to study endothelial permeability have yielded a wealth of valuable insights. Yet, ongoing questions, technical challenges, and unresolved controversies relating to the mechanisms and relative contributions of barrier regulation, transendothelial sieving, and transport of fluid, solutes, and particulates complicate interpretations in the context of vascular physiology and pathophysiology. Here, we describe recent in vivo findings and other advances in understanding endothelial barrier function with the goal of identifying and reconciling controversies over cellular and molecular processes that regulate the vascular barrier in health and disease.
Collapse
Affiliation(s)
- Lena Claesson-Welsh
- Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala, Sweden.
| | - Elisabetta Dejana
- Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, Uppsala, Sweden; IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Donald M McDonald
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
32
|
Tabata Y, Yoshino D, Funamoto K, Koens R, Kamm RD, Funamoto K. Migration of vascular endothelial cells in monolayers under hypoxic exposure. Integr Biol (Camb) 2020; 11:26-35. [PMID: 31584068 DOI: 10.1093/intbio/zyz002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/26/2018] [Accepted: 01/02/2019] [Indexed: 11/13/2022]
Abstract
The hypoxic microenvironment existing in vivo is known to significantly affect cell morphology and dynamics, and cell group behaviour. Collective migration of vascular endothelial cells is essential for vasculogenesis and angiogenesis, and for maintenance of monolayer integrity. Although hypoxic stress increases vascular endothelial permeability, the changes in collective migration and intracellular junction morphology of vascular endothelial cells remain poorly understood. This study reveals the migration of confluent vascular endothelial cells and changes in their adherens junction, as reflected by changes in the vascular endothelial (VE)-cadherin distribution, under hypoxic exposure. Vascular endothelial monolayers of human umbilical vein endothelial cells (HUVECs) were formed in microfluidic devices with controllability of oxygen tension. The oxygen tension was set to either normoxia (21% O2) or hypoxia (<3% O2) by supplying gas mixtures into separate gas channels. The migration velocity of HUVECs was measured using particle image velocimetry with a time series of phase-contrast microscopic images of the vascular endothelial monolayers. Hypoxia inducible factor-1α (HIF-1α) and VE-cadherin in HUVECs were observed after exposure to normoxic or hypoxic conditions using immunofluorescence staining and quantitative confocal image analysis. Changes in the migration speed of HUVECs were observed in as little as one hour after exposure to hypoxic condition, showing that the migration speed was increased 1.4-fold under hypoxia compared to that under normoxia. Nuclear translocation of HIF-1α peaked after the hypoxic gas mixture was supplied for 2 h. VE-cadherin expression was also found to be reduced. When ethanol was added to the cell culture medium, cell migration increased. By contrast, by strengthening VE-cadherin junctions with forskolin, cell migration decreased gradually in spite the effect of ethanol to stimulate migration. These results indicate that the increase of cell migration by hypoxic exposure was attributable to loosening of intercellular junction resulting from the decrease of VE-cadherin expression.
Collapse
Affiliation(s)
- Yugo Tabata
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Daisuke Yoshino
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Kiyoe Funamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Rei Koens
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, Japan
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, USA
| | - Kenichi Funamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
33
|
Cao Y, Desai TA. TiO 2-Based Nanotopographical Cues Attenuate the Restenotic Phenotype in Primary Human Vascular Endothelial and Smooth Muscle Cells. ACS Biomater Sci Eng 2020; 6:923-932. [PMID: 32529030 PMCID: PMC7288980 DOI: 10.1021/acsbiomaterials.9b01475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coronary and peripheral stents are implants that are inserted into blocked arteries to restore blood flow. After stent deployment, the denudation of the endothelial cell (EC) layer and the resulting inflammatory cascade can lead to restenosis, the renarrowing of the vessel wall due to the hyperproliferation and excessive matrix secretion of smooth muscle cells (SMCs). Despite advances in drug-eluting stents (DES), restenosis remains a clinical challenge and can require repeat revascularizations. In this study, we investigated how vascular cell phenotype can be modulated by nanotopographical cues on the stent surface, with the goal of developing an alternative strategy to DES for decreasing restenosis. We fabricated TiO2 nanotubes and demonstrated that this topography can decrease SMC surface coverage without affecting endothelialization. In addition, to our knowledge, this is the first study reporting that TiO2 nanotube topography dampens the response to inflammatory cytokine stimulation in both endothelial and smooth muscle cells. We observed that compared to flat titanium surfaces, nanotube surfaces attenuated tumor necrosis factor alpha (TNFα)-induced vascular cell adhesion molecule-1 (VCAM-1) expression in ECs by 1.8-fold and decreased TNFα-induced SMC growth by 42%. Further, we found that the resulting cellular phenotype is sensitive to changes in nanotube diameter and that 90 nm diameter nanotubes leads to the greatest magnitude in cell response compared to 30 or 50 nm nanotubes.
Collapse
Affiliation(s)
- Yiqi Cao
- UC San Francisco, San Francisco, California
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Group in Bioengineering, San Francisco, California
| |
Collapse
|
34
|
Abstract
The endothelium physically separates blood from surrounding tissue and yet allows for the regulated passage of nutrients, waste, and leukocytes into and out of the circulation. Trans-endothelium flux occurs across endothelial cells (transcellular) and between endothelial cells (paracellular). Paracellular endothelial barrier function depends on the regulation of cell-cell junctions. Interestingly, a functional relationship between cell-cell junctions and cell-matrix adhesions has long been appreciated but the molecular mechanisms underpinning this relationship are not fully understood. Here we review the evidence that supports the notion that cell-matrix interactions contribute to the regulation of cell-cell junctions, focusing primarily on the important adherens junction protein VE-cadherin. In particular, we will discuss recent insights gained into how integrin signaling impacts VE-cadherin stability in adherens junctions and endothelial barrier function.
Collapse
Affiliation(s)
- Fadi E Pulous
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center (FEP, BGP) and Cancer Biology Graduate Program (FEP), Emory University School of Medicine, Atlanta, GA, USA
| | - Brian G Petrich
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center (FEP, BGP) and Cancer Biology Graduate Program (FEP), Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
35
|
Jeong J, Lee J, Lim J, Cho S, An S, Lee M, Yoon N, Seo M, Lim S, Park S. Soluble RAGE attenuates AngII-induced endothelial hyperpermeability by disrupting HMGB1-mediated crosstalk between AT1R and RAGE. Exp Mol Med 2019; 51:1-15. [PMID: 31562296 PMCID: PMC6802637 DOI: 10.1038/s12276-019-0312-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Increased endothelial permeability, one of the earliest signs of endothelial dysfunction, is associated with the development of cardiovascular diseases such as hypertension and atherosclerosis. Recent studies suggest that the receptor for advanced glycation end products (RAGE) regulates endothelial permeability in inflammation. In the present study, we investigated the regulatory mechanism of RAGE in endothelial hyperpermeability induced by angiotensin II (Ang II), a well-known inflammatory mediator, and the potential therapeutic effect of soluble RAGE (sRAGE), a decoy receptor for RAGE ligands. For in vitro studies, Ang II-treated human umbilical vein endothelial cells (HUVECs) were treated with siRNA specific to either RAGE or sRAGE to disrupt RAGE-mediated signaling. Endothelial permeability was estimated using FITC-labeled dextran 40 and a resistance meter. To evaluate intercellular junction disruption, VE-cadherin expression was examined by western blotting and immunocytochemistry. Ang II increased the expression of the Ang II type 1 receptor (AT1R) and RAGE, and this increase was inhibited by sRAGE. sRAGE prevented Ang II-induced VE-cadherin disruption in HUVECs. For in vivo studies, Ang II-infused, atherosclerosis-prone apolipoprotein E knockout mice were utilized. Endothelial permeability was assessed by Evans blue staining of the aorta. Ang II increased endothelial barrier permeability, and this effect was significantly attenuated by sRAGE. Our data demonstrate that blockade of RAGE signaling using sRAGE attenuates Ang II-induced endothelial barrier permeability in vitro and in vivo and indicate the therapeutic potential of sRAGE in controlling vascular permeability under pathological conditions. A decoy version of a protein involved in regulating the leakiness of blood vessels can help ameliorate vascular problems that lead to high blood pressure and plaque deposition in the arteries. A team from South Korea led by Soyeon Lim from Catholic Kwandong University in Gangneung and Sungha Park from Yonsei University College of Medicine in Seoul induced hyper-permeability in both human vein cells and atherosclerosis-prone mice. They then blocked signaling through a membrane-bound protein called RAGE, a receptor that helps boost vessel permeability by using a soluble version of this same protein. In both the human cells and mouse models, this free-floating RAGE bound and blocked the receptor’s normal activator, leading to suppressed permeability and improved function of the blood vessel lining. This decoy strategy holds therapeutic promise for people prone to cardiovascular disease.
Collapse
Affiliation(s)
- Jisu Jeong
- Graduate Program in Science for Aging, Yonsei University, Seoul, 120-752, Korea.,Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, 120-752, Korea
| | - Jiye Lee
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, 120-752, Korea
| | - Juyeon Lim
- Graduate Program in Science for Aging, Yonsei University, Seoul, 120-752, Korea.,Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, 120-752, Korea
| | - Soyoung Cho
- Graduate Program in Science for Aging, Yonsei University, Seoul, 120-752, Korea.,Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, 120-752, Korea
| | - Soyoung An
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, 120-752, Korea
| | - Myungeun Lee
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, 120-752, Korea
| | - Nara Yoon
- Department of Pathology, The Catholic University of Korea, Incheon St. Mary's Hospital, Incheon, Korea
| | - Miran Seo
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, 120-752, Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, Korea.
| | - Sungha Park
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, 120-752, Korea. .,Cardiovascular Research Institute, Division of Cardiology, Yonsei University College of Medicine, Seoul, 120-752, Korea.
| |
Collapse
|
36
|
Wei H, Sundararaman A, Dickson E, Rennie-Campbell L, Cross E, Heesom KJ, Mellor H. Characterization of the polarized endothelial secretome. FASEB J 2019; 33:12277-12287. [PMID: 31431053 DOI: 10.1096/fj.201900262r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endothelial cells (ECs) form an active barrier between the circulation and the body. In addition to controlling transport of molecules between these 2 compartments, the endothelium is a major secretory organ, releasing proteins both into the circulation and into the vascular matrix. Although it is clearly important that proteins are correctly sorted into these 2 spaces, we currently know little of the polarization of this secretion or how it is controlled. Here, we present an optimized system for the analysis of polarized secretion and show that it allows the derivation of deep, robust proteomes from small numbers of primary ECs. We present the first endothelial apically and basolaterally secreted proteomes, demonstrating that ECs polarize the secretion of extracellular vesicle cargoes to the apical surface. Conversely, we find that protein secretion at the basolateral surface is focused on components of the extracellular matrix (ECM). Finally, we examine the role of liprin-α1 in secretion toward the basolateral compartment and identify a subset of ECM components that share this route with fibronectin.-Wei, H., Sundararaman, A., Dickson, E., Rennie-Campbell, L., Cross, E., Heesom, K. J., Mellor, H. Characterization of the polarized endothelial secretome.
Collapse
Affiliation(s)
- Haoche Wei
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Centre for Growth, Metabolism, and Aging, College of Life Sciences, Sichuan University, Chengdu, China.,School of Biochemistry, Biomedical Sciences Building, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Ananthalakshmy Sundararaman
- School of Biochemistry, Biomedical Sciences Building, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Emily Dickson
- School of Biochemistry, Biomedical Sciences Building, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Lewis Rennie-Campbell
- School of Biochemistry, Biomedical Sciences Building, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Eloise Cross
- School of Biochemistry, Biomedical Sciences Building, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Kate J Heesom
- School of Biochemistry, Biomedical Sciences Building, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Harry Mellor
- School of Biochemistry, Biomedical Sciences Building, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
37
|
Harari E, Guo L, Smith SL, Paek KH, Fernandez R, Sakamoto A, Mori H, Kutyna MD, Habib A, Torii S, Cornelissen A, Jinnouchi H, Gupta A, Kolodgie FD, Virmani R, Finn AV. Direct Targeting of the mTOR (Mammalian Target of Rapamycin) Kinase Improves Endothelial Permeability in Drug-Eluting Stents-Brief Report. Arterioscler Thromb Vasc Biol 2019; 38:2217-2224. [PMID: 30026269 DOI: 10.1161/atvbaha.118.311321] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective- Drug-eluting stents eluting canonical mTOR (mammalian target of rapamycin) inhibitors are widely used to treat coronary artery disease but accelerate the development of atherosclerosis within the stent (neoatherosclerosis)-a leading cause of late stent failure. We recently showed that canonical mTOR inhibitors bind FKBP12.6 (12.6-kDa FK506-binding protein 12), displace it from calcium release channels, resulting in activation of PKCα (protein kinase Cα) and dissociation of p-120-catenin (p120) from VE-CAD (vascular endothelial cadherin; promoting endothelial barrier dysfunction [EBD]). However, the relevance of these findings to drug-eluting stents remains unknown. Newer generation direct mTOR kinase inhibitors do not bind FKBP12.6 and offer the potential of improving endothelial barrier function while maintaining antirestenotic efficacy, but their actual effects are unknown. We examined the effects of 2 different pharmacological targeting strategies-canonical mTOR inhibitor everolimus and mTOR kinase inhibitors Torin-2-on EBD after stenting. Approach and Results- Using the rabbit model of stenting and a combination of Evans blue dye, confocal and scanning electron microscopy studies, everolimus-eluting stents resulted in long-term EBD compared with bare metal stents. EBD was mitigated by using stents that eluted mTOR kinase inhibitors (Torin-2-eluting stent). At 60 days after stent placement, everolimus-eluting stents demonstrated large areas of Evans blue dye staining and evidence of p120 VE-CAD dissociation consistent with EBD. These findings were absent in bare metal stents and significantly attenuated in Torin-2-eluting stent. As proof of concept of the role of EBD in neoatherosclerosis, 100 days after stenting, animals were fed an enriched cholesterol diet for an additional 30 days. Everolimus-eluting stents demonstrated significantly more macrophage infiltration (consistent with neoatherosclerosis) compared with both bare metal stents and Torin-2-eluting stent. Conclusions- Our results pinpoint interactions between FKBP12.6 and canonical mTOR inhibitors as a major cause of vascular permeability and neoatherosclerosis, which can be overcome by using mTOR kinase inhibitors. Our study suggests further refinement of molecular targeting of the mTOR complex may be a promising strategy (Graphic Abstract).
Collapse
Affiliation(s)
- Emanuel Harari
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.).,Division of Cardiology, Rabin Medical Center, Petah-Tikva, Israel (E.H.).,Tel Aviv University, Israel (E.H.)
| | - Liang Guo
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Samantha L Smith
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Ka Hyun Paek
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Raquel Fernandez
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Atsushi Sakamoto
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Hiroyoshi Mori
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Matthew D Kutyna
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Anwer Habib
- Parkview Heart Institute, Fort Wayne, IN (A.H.)
| | - Sho Torii
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Anne Cornelissen
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Hiroyuki Jinnouchi
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Anuj Gupta
- Department of Medicine, University of Maryland School of Medicine, Baltimore (A.G., A.V.F.)
| | - Frank D Kolodgie
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Renu Virmani
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.)
| | - Aloke V Finn
- From the CVPath Institute, Gaithersburg, MD (E.H., L.G., S.L.S., K.H.P., R.F., A.S., H.M., M.D.K., S.T., A.C., H.J., F.D.K., R.V., A.V.F.).,Department of Medicine, University of Maryland School of Medicine, Baltimore (A.G., A.V.F.)
| |
Collapse
|
38
|
Braun LJ, Zinnhardt M, Vockel M, Drexler HC, Peters K, Vestweber D. VE-PTP inhibition stabilizes endothelial junctions by activating FGD5. EMBO Rep 2019; 20:e47046. [PMID: 31267715 PMCID: PMC6607018 DOI: 10.15252/embr.201847046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/01/2019] [Accepted: 04/18/2019] [Indexed: 01/06/2023] Open
Abstract
Inhibition of VE-PTP, an endothelial receptor-type tyrosine phosphatase, triggers phosphorylation of the tyrosine kinase receptor Tie-2, which leads to the suppression of inflammation-induced vascular permeability. Analyzing the underlying mechanism, we show here that inhibition of VE-PTP and activation of Tie-2 induce tyrosine phosphorylation of FGD5, a GTPase exchange factor (GEF) for Cdc42, and stimulate its translocation to cell contacts. Interfering with the expression of FGD5 blocks the junction-stabilizing effect of VE-PTP inhibition in vitro and in vivo. Likewise, FGD5 is required for strengthening cortical actin bundles and inhibiting radial stress fiber formation, which are each stimulated by VE-PTP inhibition. We identify Y820 of FGD5 as the direct substrate for VE-PTP. The phosphorylation of FGD5-Y820 is required for the stabilization of endothelial junctions and for the activation of Cdc42 by VE-PTP inhibition but is dispensable for the recruitment of FGD5 to endothelial cell contacts. Thus, activation of FGD5 is a two-step process that comprises membrane recruitment and phosphorylation of Y820. These steps are necessary for the junction-stabilizing effect stimulated by VE-PTP inhibition and Tie-2 activation.
Collapse
Affiliation(s)
- Laura J Braun
- Max Planck Institute of Molecular BiomedicineMünsterGermany
| | | | - Matthias Vockel
- Max Planck Institute of Molecular BiomedicineMünsterGermany
- Present address:
Institute for Human GeneticsUniversity of MünsterMünsterGermany
| | | | | | | |
Collapse
|
39
|
Dorard C, Cseh B, Ehrenreiter K, Wimmer R, Varga A, Hirschmugl T, Maier B, Kramer K, Fürlinger S, Doma E, Baccarini M. RAF dimers control vascular permeability and cytoskeletal rearrangements at endothelial cell-cell junctions. FEBS J 2019; 286:2277-2294. [PMID: 30828992 PMCID: PMC6617973 DOI: 10.1111/febs.14802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/17/2019] [Accepted: 03/01/2019] [Indexed: 01/07/2023]
Abstract
The endothelium functions as a semipermeable barrier regulating fluid homeostasis, nutrient, and gas supply to the tissue. Endothelial permeability is increased in several pathological conditions including inflammation and tumors; despite its clinical relevance, however, there are no specific therapies preventing vascular leakage. Here, we show that endothelial cell-restricted ablation of BRAF, a kinase frequently activated in cancer, prevents vascular leaking as well metastatic spread. BRAF regulates endothelial permeability by promoting the cytoskeletal rearrangements necessary for the remodeling of VE-Cadherin-containing endothelial cell-cell junctions and the formation of intercellular gaps. BRAF kinase activity and the ability to form complexes with RAS/RAP1 and dimers with its paralog RAF1 are required for proper permeability control, achieved mechanistically by modulating the interaction between RAF1 and the RHO effector ROKα. Thus, RAF dimerization impinges on RHO pathways to regulate cytoskeletal rearrangements, junctional plasticity, and endothelial permeability. The data advocate the development of RAF dimerization inhibitors, which would combine tumor cell autonomous effect with stabilization of the vasculature and antimetastatic spread.
Collapse
Affiliation(s)
| | - Botond Cseh
- Max F. Perutz LaboratoriesUniversity of ViennaAustria
- Present address:
Winnovation Consulting GmbHViennaAustria
| | | | - Reiner Wimmer
- Max F. Perutz LaboratoriesUniversity of ViennaAustria
- Present address:
Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Andrea Varga
- Max F. Perutz LaboratoriesUniversity of ViennaAustria
- Present address:
Department of Biophysics and Radiation BiologySemmelweis UniversityTűzoltó u. 37‐47BudapestH‐1094Hungary
| | - Tatjana Hirschmugl
- Max F. Perutz LaboratoriesUniversity of ViennaAustria
- Present address:
Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
| | - Barbara Maier
- Max F. Perutz LaboratoriesUniversity of ViennaAustria
- Present address:
Mount Sinai School of MedicineNew YorkNYUSA
| | - Karina Kramer
- Max F. Perutz LaboratoriesUniversity of ViennaAustria
- Present address:
Department for Health Sciences, Medicine and ResearchCenter for Regenerative MedicineDanube University KremsKremsAustria
| | - Sabine Fürlinger
- Max F. Perutz LaboratoriesUniversity of ViennaAustria
- Present address:
Boehringer Ingelheim Pharma GmbH & Co. KGBiberach a.d. RissGermany
| | - Eszter Doma
- Max F. Perutz LaboratoriesUniversity of ViennaAustria
- Present address:
Institute of Pharmacology and ToxicologyUniversity of Veterinary MedicineViennaAustria
| | | |
Collapse
|
40
|
Rho SS, Kobayashi I, Oguri-Nakamura E, Ando K, Fujiwara M, Kamimura N, Hirata H, Iida A, Iwai Y, Mochizuki N, Fukuhara S. Rap1b Promotes Notch-Signal-Mediated Hematopoietic Stem Cell Development by Enhancing Integrin-Mediated Cell Adhesion. Dev Cell 2019; 49:681-696.e6. [DOI: 10.1016/j.devcel.2019.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 02/16/2019] [Accepted: 03/22/2019] [Indexed: 01/09/2023]
|
41
|
Klusmeier N, Schnittler HJ, Seebach J. A Novel Microscopic Assay Reveals Heterogeneous Regulation of Local Endothelial Barrier Function. Biophys J 2019; 116:1547-1559. [PMID: 30878197 PMCID: PMC6486479 DOI: 10.1016/j.bpj.2019.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Blood vessels are covered with endothelial cells on their inner surfaces, forming a selective and semipermeable barrier between the blood and the underlying tissue. Many pathological processes, such as inflammation or cancer metastasis, are accompanied by an increased vascular permeability. Progress in live cell imaging techniques has recently revealed that the structure of endothelial cell contacts is constantly reorganized and that endothelial junctions display high heterogeneities at a subcellular level even within one cell. Although it is assumed that this dynamic remodeling is associated with a local change in endothelial barrier function, a direct proof is missing mainly because of a lack of appropriate experimental techniques. Here, we describe a new assay to dynamically measure local endothelial barrier function with a lateral resolution of ∼15 μm and a temporal resolution of 1 min. In this setup, fluorescence-labeled molecules are added to the apical compartment of an endothelial monolayer, and the penetration of molecules from the apical to the basal compartment is recorded by total internal reflection fluorescence microscopy utilizing the generated evanescent field. With this technique, we found a remarkable heterogeneity in the local permeability for albumin within confluent endothelial cell layers. In regions with low permeability, stimulation with the proinflammatory agent histamine results in a transient increase in paracellular permeability. The effect showed a high variability along the contact of one individual cell, indicating a local regulation of endothelial barrier function. In regions with high basal permeability, histamine had no obvious effect. In contrast, the barrier-enhancing drug forskolin reduces the permeability for albumin and dextran uniformly along the cell junctions. Because this new approach can be readily combined with other live cell imaging techniques, it will contribute to a better understanding of the mechanisms underlying subcellular junctional reorganization during wound healing, inflammation, and angiogenesis.
Collapse
Affiliation(s)
- Nadine Klusmeier
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Hans-Joachim Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jochen Seebach
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
42
|
Epac agonist improves barrier function in iPSC-derived endothelial colony forming cells for whole organ tissue engineering. Biomaterials 2019; 200:25-34. [PMID: 30754017 DOI: 10.1016/j.biomaterials.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/06/2019] [Indexed: 02/03/2023]
Abstract
Whole organ engineering paradigms typically involve repopulating acellular organ scaffolds with recipient-compatible cells, to generate a neo-organ that may provide key physiological functions. In the case of whole lung engineering, functionally endothelialized pulmonary vasculature is critical for establishing a fluid-tight barrier at the level of the alveolus, so that oxygen and carbon dioxide can be exchanged in the organ. We have previously developed a protocol to efficiently seed endothelial cells into the microvascular channels of decellularized lung scaffolds, but fully functional endothelial coverage, in terms of barrier function and resistance to thrombosis, was not achieved. In this study, we investigated whether various small molecules could favorably impact endothelial functionality after seeding into decellularized lung scaffolds. We demonstrated that the Epac-selective cAMP analog 8CPT-2Me-cAMP improves endothelial barrier function in repopulated lung scaffolds. When treated with the Epac agonist, barrier function of human umbilical vein endothelial cells (HUVECs) improved, and was maintained for at least three days, whereas the effect of other tested molecules lasted for only 5 h. Treatment with the Epac agonist re-organized actin structure, and appeared to increase the continuity of junction proteins such as VE-cadherin and ZO1. Blockade of actin polymerization abolished the effect of the Epac agonist on barrier function and actin reorganization, confirming a strong actin-mediated effect. Similarly, after treatment with Epac agonist, the barrier function in iPSC-derived endothelial colony forming cells (ECFCs) was increased and the enhanced barrier was maintained for at least 60 h. After culture in lung scaffolds for 5 days, iPSC-ECFCs maintained their phenotype by expressing CD31, eNOS, vWF, and VE-Cadherin. Treatment with the Epac agonist significantly improved the barrier function of iPSC-ECFC-repopulated lung for at least 6 h. Taken together, these findings demonstrated that Epac-selective 8CPT-2Me-cAMP activation enhanced vascular barrier in iPSC-ECFC-engineered lungs, and may be useful to improve endothelial functionality for whole organ tissue engineering.
Collapse
|
43
|
He X, Drelich A, Yu S, Chang Q, Gong D, Zhou Y, Qu Y, Yuan Y, Su Z, Qiu Y, Tang SJ, Gaitas A, Ksiazek T, Xu Z, Zhou J, Feng Z, Wakamiya M, Lu F, Gong B. Exchange protein directly activated by cAMP plays a critical role in regulation of vascular fibrinolysis. Life Sci 2019; 221:1-12. [PMID: 30738042 DOI: 10.1016/j.lfs.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023]
Abstract
Plasmin-mediated fibrinolysis at the surface of vascular endothelial cells (SVEC) plays a key role in maintaining vascular hemostasis, in which the cAMP pathway participates. After externalization to the SVEC, annexin A2 (ANXA2) serves as a platform for conversion of plasminogen to plasmin. Here we describe a regulatory role of the exchange protein directly activated by cAMP (EPAC) in ANXA2 externalization and vascular fibrinolysis. Knockout of EPAC1 in mice results in a decreased ANXA2 expression on the SVEC associated with increased fibrin deposition and fibrinolytic dysfunction. Reduced levels of EPAC1 are also found in endocardial tissues beneath atrial mural thrombi in patients. Notably, administration of recombinant ANXA2 ameliorates fibrinolytic dysfunction in the EPAC1-null mice. Mechanistically, EPAC1 regulates the SVEC plasminogen conversion depended on ANXA2. EPAC1 promotes tyrosine-23 phosphorylation of ANXA2, a prerequisite for its recruitment to the SVEC. Our data thus reveal a novel regulatory role for EPAC1 in vascular fibrinolysis.
Collapse
Affiliation(s)
- Xi He
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Aleksandra Drelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shangyi Yu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dejun Gong
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Yixuan Zhou
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Yue Qu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yang Yuan
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yuan Qiu
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Angelo Gaitas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Fanglin Lu
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China.
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
44
|
Usuba R, Pauty J, Soncin F, Matsunaga YT. EGFL7 regulates sprouting angiogenesis and endothelial integrity in a human blood vessel model. Biomaterials 2019; 197:305-316. [PMID: 30684886 DOI: 10.1016/j.biomaterials.2019.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/28/2018] [Accepted: 01/12/2019] [Indexed: 12/17/2022]
Abstract
Elucidating the mechanisms underlying sprouting angiogenesis and permeability should enable the development of more effective therapies for various diseases, including retinopathy, cancer, and other vascular disorders. We focused on epidermal growth factor-like domain 7 (EGFL7) which plays an important role in NOTCH signaling and in the organization of angiogenic sprouts. We developed an EGFL7-knockdown in vitro microvessel model and investigated the effect of EGFL7 at a tissue level. We found EGFL7 knockdown suppressed VEGF-A-induced sprouting angiogenesis accompanied by an overproduction of endothelial filopodia and reduced collagen IV deposition at the basal side of endothelial cells. We also observed impaired barrier function which reflected an inflammatory condition. Furthermore, our results showed that proper formation of adherens junctions and phosphorylation of VE-cadherin was disturbed. In conclusion, by using a 3D microvessel model we identified novel roles for EGFL7 in endothelial function during sprouting angiogenesis.
Collapse
Affiliation(s)
- Ryo Usuba
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Joris Pauty
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Fabrice Soncin
- LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; CNRS/IIS/COL/Lille University SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, Lille, Cedex 59046, France; Université de Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T, F-59000 Lille, France.
| | - Yukiko T Matsunaga
- Center for International Research on Integrative Biomedical Systems (CIBiS), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; CNRS/IIS/COL/Lille University SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, Lille, Cedex 59046, France.
| |
Collapse
|
45
|
Cao J, Schnittler H. Putting VE-cadherin into JAIL for junction remodeling. J Cell Sci 2019; 132:132/1/jcs222893. [DOI: 10.1242/jcs.222893] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Junction dynamics of endothelial cells are based on the integration of signal transduction, cytoskeletal remodeling and contraction, which are necessary for the formation and maintenance of monolayer integrity, but also enable repair and regeneration. The VE-cadherin–catenin complex forms the molecular basis of the adherence junctions and cooperates closely with actin filaments. Several groups have recently described small actin-driven protrusions at the cell junctions that are controlled by the Arp2/3 complex, contributing to cell junction regulation. We identified these protrusions as the driving force for VE-cadherin dynamics, as they directly induce new VE-cadherin-mediated adhesion sites, and have accordingly referred to these structures as junction-associated intermittent lamellipodia (JAIL). JAIL extend over only a few microns and thus provide the basis for a subcellular regulation of adhesion. The local (subcellular) VE-cadherin concentration and JAIL formation are directly interdependent, which enables autoregulation. Therefore, this mechanism can contribute a subcellularly regulated adaptation of cell contact dynamics, and is therefore of great importance for monolayer integrity and relative cell migration during wound healing and angiogenesis, as well as for inflammatory responses. In this Review, we discuss the mechanisms and functions underlying these actin-driven protrusions and consider their contribution to the dynamic regulation of endothelial cell junctions.
Collapse
Affiliation(s)
- Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| |
Collapse
|
46
|
Hilfenhaus G, Nguyen DP, Freshman J, Prajapati D, Ma F, Song D, Ziyad S, Cuadrado M, Pellegrini M, Bustelo XR, Iruela-Arispe ML. Vav3-induced cytoskeletal dynamics contribute to heterotypic properties of endothelial barriers. J Cell Biol 2018; 217:2813-2830. [PMID: 29858212 PMCID: PMC6080943 DOI: 10.1083/jcb.201706041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022] Open
Abstract
Through multiple cell-cell and cell-matrix interactions, epithelial and endothelial sheets form tight barriers. Modulators of the cytoskeleton contribute to barrier stability and act as rheostats of vascular permeability. In this study, we sought to identify cytoskeletal regulators that underlie barrier diversity across vessels. To achieve this, we correlated functional and structural barrier features to gene expression of endothelial cells (ECs) derived from different vascular beds. Within a subset of identified candidates, we found that the guanosine nucleotide exchange factor Vav3 was exclusively expressed by microvascular ECs and was closely associated with a high-resistance barrier phenotype. Ectopic expression of Vav3 in large artery and brain ECs significantly enhanced barrier resistance and cortical rearrangement of the actin cytoskeleton. Mechanistically, we found that the barrier effect of Vav3 is dependent on its Dbl homology domain and downstream activation of Rap1. Importantly, inactivation of Vav3 in vivo resulted in increased vascular leakage, highlighting its function as a key regulator of barrier stability.
Collapse
Affiliation(s)
- Georg Hilfenhaus
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Dai Phuong Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Jonathan Freshman
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Divya Prajapati
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Dana Song
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Safiyyah Ziyad
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Myriam Cuadrado
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer, Consejo Superior de Investigaciones Científicas, and University of Salamanca, Campus Unamuno, Salamanca, Spain
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer, Consejo Superior de Investigaciones Científicas, and University of Salamanca, Campus Unamuno, Salamanca, Spain
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
47
|
Dynamic of VE-cadherin-mediated spermatid-Sertoli cell contacts in the mouse seminiferous epithelium. Histochem Cell Biol 2018; 150:173-185. [PMID: 29797291 DOI: 10.1007/s00418-018-1682-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 02/04/2023]
Abstract
Spermatids are haploid differentiating cells that, in the meantime they differentiate, translocate along the seminiferous epithelium towards the tubule lumen to be just released as spermatozoa. The success of such a migration depends on dynamic of spermatid-Sertoli cell contacts, the molecular nature of which has not been well defined yet. It was demonstrated that the vascular endothelial cadherin (VEC) is expressed transitorily in the mouse seminiferous epithelium. Here, we evaluated the pattern of VEC expression by immunohistochemistry first in seminiferous tubules at different stages of the epithelial cycle when only unique types of germ cell associations are present. Changes in the pattern of VEC localization according to the step of spermatid differentiation were analysed in detail using testis fragments and spontaneously released germ cells. Utilizing the first wave of spermatogenesis as an in vivo model to have at disposal spermatids at progressive steps of differentiation, we checked for level of looser VEC association with the membrane by performing protein solubilisation under mild detergent conditions and assays through VEC-immunoblotting. Being changes in VEC solubilisation paralleled in changes in phosphotyrosine (pY) content, we evaluated if spermatid VEC undergoes Y658 phosphorylation and if this correlates with VEC solubilisation and spermatid progression in differentiation. Altogether, our study shows a temporally restricted pattern of VEC expression that culminates with the presence of round spermatids to progressively decrease starting from spermatid elongation. Conversely, pY658-VEC signs elongating spermatids; its intracellular polarized compartmentalization suggests a possible involvement of pY658-VEC in the acquisition of spermatid cell polarity.
Collapse
|
48
|
Lysophosphatidic Acid Receptor 4 Activation Augments Drug Delivery in Tumors by Tightening Endothelial Cell-Cell Contact. Cell Rep 2018; 20:2072-2086. [PMID: 28854359 DOI: 10.1016/j.celrep.2017.07.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023] Open
Abstract
Vascular normalization in tumors may improve drug delivery and anti-tumor immunity. Angiogenesis inhibitors induce hypoxia, which may facilitate malignant progression; therefore, we investigated other methods to promote vascular maturation. Here, we show that lysophosphatidic acid (LPA) enhances blood flow by promoting fine vascular networks, thereby improving vascular permeability and suppressing tumor growth when combined with anti-cancer drug treatment. Six different G protein-coupled receptors have been identified as LPA receptors (LPA1-6). In studies using mutant mice, we found that LPA4 is involved in vascular network formation. LPA4 activation induces circumferential actin bundling beneath the cell membrane and enhances linear adherens junction formation by VE-cadherin in endothelial cells. Therefore, we conclude that activation of LPA4 is a promising approach for vascular regulation.
Collapse
|
49
|
Rho SS, Ando K, Fukuhara S. Dynamic Regulation of Vascular Permeability by Vascular Endothelial Cadherin-Mediated Endothelial Cell-Cell Junctions. J NIPPON MED SCH 2018; 84:148-159. [PMID: 28978894 DOI: 10.1272/jnms.84.148] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial cells lining blood vessels regulate vascular barrier function, which controls the passage of plasma proteins and circulating cells across the endothelium. In most normal adult tissues, endothelial cells preserve basal vascular permeability at a low level, while they increase permeability in response to inflammation. Therefore, vascular permeability is tightly controlled by a number of extracellular stimuli and mediators to maintain tissue homeostasis. Accordingly, impaired regulation of endothelial permeability causes various diseases, including chronic inflammation, asthma, edema, sepsis, acute respiratory distress syndrome, anaphylaxis, tumor angiogenesis, and diabetic retinopathy. Vascular endothelial (VE)-cadherin, a member of the classical cadherin superfamily, is a component of cell-to-cell adherens junctions in endothelial cells and plays an important role in regulating vascular permeability. VE-cadherin mediates intercellular adhesion through trans-interactions formed by its extracellular domain, while its cytoplasmic domain is anchored to the actin cytoskeleton via α- and β-catenins, leading to stabilization of VE-cadherin at cell-cell junctions. VE-cadherin-mediated cell adhesions are dynamically, but tightly, controlled by mechanisms that involve protein phosphorylation and reorganization of the actomyosin cytoskeleton. Phosphorylation of VE-cadherin, and its associated-catenins, results in dissociation of the VE-cadherin/catenin complex and internalization of VE-cadherin, leading to increased vascular permeability. Furthermore, reorganization of the actomyosin cytoskeleton by Rap1, a small GTPase that belongs to the Ras subfamily, and Rho family small GTPases, regulates VE-cadherin-mediated cell adhesions to control vascular permeability. In this review, we describe recent progress in understanding the signaling mechanisms that enable dynamic regulation of VE-cadherin adhesions and vascular permeability. In addition, we discuss the possibility of novel therapeutic approaches targeting the signaling pathways controlling VE-cadherin-mediated cell adhesion in diseases associated with vascular hyper-permeability.
Collapse
Affiliation(s)
- Seung-Sik Rho
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School Musashi Kosugi Hospital
| | - Koji Ando
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School Musashi Kosugi Hospital
| |
Collapse
|
50
|
Lakshmikanthan S, Sobczak M, Li Calzi S, Shaw L, Grant MB, Chrzanowska-Wodnicka M. Rap1B promotes VEGF-induced endothelial permeability and is required for dynamic regulation of the endothelial barrier. J Cell Sci 2018; 131:jcs207605. [PMID: 29222111 PMCID: PMC5818062 DOI: 10.1242/jcs.207605] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/27/2017] [Indexed: 01/10/2023] Open
Abstract
Vascular endothelial growth factor (VEGF), a key angiogenic and permeability factor, plays an important role in new blood vessel formation. However, abnormal VEGF-induced VEGFR2 signaling leads to hyperpermeability. We have shown previously that Rap1, best known for promoting cell adhesion and vessel stability, is a critical regulator of VEGFR2-mediated angiogenic and shear-stress EC responses. To determine the role of Rap1 role in endothelial barrier dynamics, we examined vascular permeability in EC-specific Rap1A- and Rap1B-knockout mice, cell-cell junction remodeling and EC monolayer resistivity in Rap1-deficient ECs under basal, inflammatory or elevated VEGF conditions. Deletion of either Rap1 isoform impaired de novo adherens junction (AJ) formation and recovery from LPS-induced barrier disruption in vivo However, only Rap1A deficiency increased permeability in ECs and lung vessels. Interestingly, Rap1B deficiency attenuated VEGF-induced permeability in vivo and AJ remodeling in vitro Therefore, only Rap1A is required for the maintenance of normal vascular integrity. Importantly, Rap1B is the primary isoform essential for normal VEGF-induced EC barrier dissolution. Deletion of either Rap1 isoform protected against hyper permeability in the STZ-induced diabetes model, suggesting clinical implications for targeting Rap1 in pathologies with VEGF-induced hyperpermeability.
Collapse
Affiliation(s)
| | - Magdalena Sobczak
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Sergio Li Calzi
- Department of Ophthalmology, University of Alabama, Birmingham, AL 35294, USA
| | - Lynn Shaw
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Maria B Grant
- Department of Ophthalmology, University of Alabama, Birmingham, AL 35294, USA
| | | |
Collapse
|