1
|
Ji M, Cui W, Feng Q, Qi J, Wang X, Zhu H, Zhang W, Fu W. NME7 maintains primary cilium assembly, ciliary microtubule stability, and Hedgehog signaling. Life Sci Alliance 2025; 8:e202402933. [PMID: 39824631 PMCID: PMC11742093 DOI: 10.26508/lsa.202402933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
NME7 (nucleoside diphosphate kinase 7), a lesser studied member of the non-metastatic expressed (NME) family, has been reported as a potential subunit of the γ-tubulin ring complex (γTuRC). However, its role in the cilium assembly and function remains unclear. Our research demonstrated that NME7 is located at the centrosome, including at the spindle poles during metaphase and at the basal bodies during cilium assembly. Notably, a small fraction of NME7 localizes within the cilium. Detailed analysis of cilium assembly after NME7 knockdown and knockout revealed that NME7 is required for this process. NME7 knockout cells exhibited sensitivity to nocodazole, indicating its role in ciliary microtubule stability. In addition, NME7 deficiency impacted the Hedgehog signaling pathway, evident from reduced smoothened (Smo) fluorescence within primary cilia. This role of NME7 in Hedgehog signaling may depend on its nucleoside diphosphate kinase activity and γTuRC association. In conclusion, these findings enhance our understanding of the γTuRC roles in primary cilia in mammalian cells, highlighting the importance of NME7 in ciliary functions and signaling pathways.
Collapse
Affiliation(s)
- Menghui Ji
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Wenjuan Cui
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qian Feng
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingjin Qi
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xinmin Wang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Hong Zhu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Wenqing Zhang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Wenxiang Fu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
2
|
Gao Q, Hofer FW, Filbeck S, Vermeulen BJA, Würtz M, Neuner A, Kaplan C, Zezlina M, Sala C, Shin H, Gruss OJ, Schiebel E, Pfeffer S. Structural mechanisms for centrosomal recruitment and organization of the microtubule nucleator γ-TuRC. Nat Commun 2025; 16:2453. [PMID: 40074789 PMCID: PMC11903878 DOI: 10.1038/s41467-025-57729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The γ-tubulin ring complex (γ-TuRC) acts as a structural template for microtubule formation at centrosomes, associating with two main compartments: the pericentriolar material and the centriole lumen. In the pericentriolar material, the γ-TuRC is involved in microtubule organization, while the function of the centriole lumenal pool remains unclear. The conformational landscape of the γ-TuRC, which is crucial for its activity, and its centrosomal anchoring mechanisms, which determine γ-TuRC activity and turnover, are not understood. Using cryo-electron tomography, we analyze γ-TuRCs in human cells and purified centrosomes. Pericentriolar γ-TuRCs simultaneously associate with the essential adapter NEDD1 and the microcephaly protein CDK5RAP2. NEDD1 forms a tetrameric structure at the γ-TuRC base through interactions with four GCP3/MZT1 modules and GCP5/6-specific extensions, while multiple copies of CDK5RAP2 engage the γ-TuRC in two distinct binding patterns to promote γ-TuRC closure and activation. In the centriole lumen, the microtubule branching factor Augmin tethers a condensed cluster of γ-TuRCs to the centriole wall with defined directional orientation. Centriole-lumenal γ-TuRC-Augmin is protected from degradation during interphase and released in mitosis to aid chromosome alignment. This study provides a unique view on γ-TuRC structure and molecular organization at centrosomes and identifies an important cellular function of centriole-lumenal γ-TuRCs.
Collapse
Affiliation(s)
- Qi Gao
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Florian W Hofer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Sebastian Filbeck
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Bram J A Vermeulen
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | | | - Maja Zezlina
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Cornelia Sala
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Hyesu Shin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | | | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany.
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany.
| |
Collapse
|
3
|
Gao Q, Vermeulen BJA, Würtz M, Shin H, Erdogdu D, Zheng A, Hofer FW, Neuner A, Pfeffer S, Schiebel E. The structure of the γ-TuRC at the microtubule minus end - not just one solution. Bioessays 2024; 46:e2400117. [PMID: 39044599 DOI: 10.1002/bies.202400117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
In cells, microtubules (MTs) assemble from α/β-tubulin subunits at nucleation sites containing the γ-tubulin ring complex (γ-TuRC). Within the γ-TuRC, exposed γ-tubulin molecules act as templates for MT assembly by interacting with α/β-tubulin. The vertebrate γ-TuRC is scaffolded by γ-tubulin-interacting proteins GCP2-6 arranged in a specific order. Interestingly, the γ-tubulin molecules in the γ-TuRC deviate from the cylindrical geometry of MTs, raising the question of how the γ-TuRC structure changes during MT nucleation. Recent studies on the structure of the vertebrate γ-TuRC attached to the end of MTs came to varying conclusions. In vitro assembly of MTs, facilitated by an α-tubulin mutant, resulted in a closed, cylindrical γ-TuRC showing canonical interactions between all γ-tubulin molecules and α/β-tubulin subunits. Conversely, native MTs formed in a frog extract were capped by a partially closed γ-TuRC, with some γ-tubulin molecules failing to align with α/β-tubulin. This review discusses these outcomes, along with the broader implications.
Collapse
Affiliation(s)
- Qi Gao
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Bram J A Vermeulen
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Hyesu Shin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Dilara Erdogdu
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Anjun Zheng
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Florian W Hofer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| |
Collapse
|
4
|
Ning J, Sala M, Reina J, Kalagiri R, Hunter T, McCullough BS. Histidine Phosphorylation: Protein Kinases and Phosphatases. Int J Mol Sci 2024; 25:7975. [PMID: 39063217 PMCID: PMC11277029 DOI: 10.3390/ijms25147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.
Collapse
Affiliation(s)
- Jia Ning
- Correspondence: (J.N.); (B.S.M.)
| | | | | | | | | | - Brandon S. McCullough
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (M.S.); (J.R.); (R.K.); (T.H.)
| |
Collapse
|
5
|
Johnston JN, Zarate CA, Kvarta MD. Esketamine in depression: putative biomarkers from clinical research. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01865-1. [PMID: 38997425 PMCID: PMC11725628 DOI: 10.1007/s00406-024-01865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
The discovery of racemic (R, S)-ketamine as a rapid-acting antidepressant and the subsequent FDA approval of its (S)-enantiomer, esketamine, for treatment-resistant depression (TRD) are significant advances in the development of novel neuropsychiatric therapeutics. Esketamine is now recognized as a powerful tool for addressing persistent symptoms of TRD compared to traditional oral antidepressants. However, research on biomarkers associated with antidepressant response to esketamine has remained sparse and, to date, has been largely extrapolated from racemic ketamine studies. Genetic, proteomic, and metabolomic profiles suggest that inflammation and mitochondrial function may play a role in esketamine's antidepressant effects, though these preliminary results require verification. In addition, neuroimaging research has consistently implicated the prefrontal cortex, striatum, and anterior cingulate cortex in esketamine's effects. Esketamine also shows promise in perioperative settings for reducing depression and anxiety, and these effects appear to correlate with increased peripheral biomarkers such as brain-derived neurotrophic factor and serotonin. Further indications are likely to be identified with the continued repurposing of racemic ketamine, providing further opportunity for biomarker study and mechanistic understanding of therapeutic effects. Novel methodologies and well-designed biomarker-focused clinical research trials are needed to more clearly elucidate esketamine's therapeutic actions as well as biologically identify those most likely to benefit from this agent, allowing for the improved personalization of antidepressant treatment.
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Mark D Kvarta
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Rai D, Song Y, Hua S, Stecker K, Monster JL, Yin V, Stucchi R, Xu Y, Zhang Y, Chen F, Katrukha EA, Altelaar M, Heck AJR, Wieczorek M, Jiang K, Akhmanova A. CAMSAPs and nucleation-promoting factors control microtubule release from γ-TuRC. Nat Cell Biol 2024; 26:404-420. [PMID: 38424271 PMCID: PMC10940162 DOI: 10.1038/s41556-024-01366-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
γ-Tubulin ring complex (γ-TuRC) is the major microtubule-nucleating factor. After nucleation, microtubules can be released from γ-TuRC and stabilized by other proteins, such as CAMSAPs, but the biochemical cross-talk between minus-end regulation pathways is poorly understood. Here we reconstituted this process in vitro using purified components. We found that all CAMSAPs could bind to the minus ends of γ-TuRC-attached microtubules. CAMSAP2 and CAMSAP3, which decorate and stabilize growing minus ends but not the minus-end tracking protein CAMSAP1, induced microtubule release from γ-TuRC. CDK5RAP2, a γ-TuRC-interactor, and CLASP2, a regulator of microtubule growth, strongly stimulated γ-TuRC-dependent microtubule nucleation, but only CDK5RAP2 suppressed CAMSAP binding to γ-TuRC-anchored minus ends and their release. CDK5RAP2 also improved selectivity of γ-tubulin-containing complexes for 13- rather than 14-protofilament microtubules in microtubule-capping assays. Knockout and overexpression experiments in cells showed that CDK5RAP2 inhibits the formation of CAMSAP2-bound microtubules detached from the microtubule-organizing centre. We conclude that CAMSAPs can release newly nucleated microtubules from γ-TuRC, whereas nucleation-promoting factors can differentially regulate this process.
Collapse
Affiliation(s)
- Dipti Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Yinlong Song
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Shasha Hua
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kelly Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Jooske L Monster
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Yixin Xu
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, Zurich, Switzerland
| | - Yaqian Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Fangrui Chen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Michal Wieczorek
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, Zurich, Switzerland
| | - Kai Jiang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Valdez VA, Neahring L, Petry S, Dumont S. Mechanisms underlying spindle assembly and robustness. Nat Rev Mol Cell Biol 2023; 24:523-542. [PMID: 36977834 PMCID: PMC10642710 DOI: 10.1038/s41580-023-00584-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 03/30/2023]
Abstract
The microtubule-based spindle orchestrates chromosome segregation during cell division. Following more than a century of study, many components and pathways contributing to spindle assembly have been described, but how the spindle robustly assembles remains incompletely understood. This process involves the self-organization of a large number of molecular parts - up to hundreds of thousands in vertebrate cells - whose local interactions give rise to a cellular-scale structure with emergent architecture, mechanics and function. In this Review, we discuss key concepts in our understanding of spindle assembly, focusing on recent advances and the new approaches that enabled them. We describe the pathways that generate the microtubule framework of the spindle by driving microtubule nucleation in a spatially controlled fashion and present recent insights regarding the organization of individual microtubules into structural modules. Finally, we discuss the emergent properties of the spindle that enable robust chromosome segregation.
Collapse
Affiliation(s)
| | - Lila Neahring
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA, USA
- Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA, USA
| | - Sabine Petry
- Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA, USA.
- Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA, USA.
- Department of Biochemistry & Biophysics, UCSF, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
8
|
Smyth LJ, Dahlström EH, Syreeni A, Kerr K, Kilner J, Doyle R, Brennan E, Nair V, Fermin D, Nelson RG, Looker HC, Wooster C, Andrews D, Anderson K, McKay GJ, Cole JB, Salem RM, Conlon PJ, Kretzler M, Hirschhorn JN, Sadlier D, Godson C, Florez JC, Forsblom C, Maxwell AP, Groop PH, Sandholm N, McKnight AJ. Epigenome-wide meta-analysis identifies DNA methylation biomarkers associated with diabetic kidney disease. Nat Commun 2022; 13:7891. [PMID: 36550108 PMCID: PMC9780337 DOI: 10.1038/s41467-022-34963-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes affects over nine million individuals globally, with approximately 40% developing diabetic kidney disease. Emerging evidence suggests that epigenetic alterations, such as DNA methylation, are involved in diabetic kidney disease. Here we assess differences in blood-derived genome-wide DNA methylation associated with diabetic kidney disease in 1304 carefully characterised individuals with type 1 diabetes and known renal status from two cohorts in the United Kingdom-Republic of Ireland and Finland. In the meta-analysis, we identify 32 differentially methylated CpGs in diabetic kidney disease in type 1 diabetes, 18 of which are located within genes differentially expressed in kidneys or correlated with pathological traits in diabetic kidney disease. We show that methylation at 21 of the 32 CpGs predict the development of kidney failure, extending the knowledge and potentially identifying individuals at greater risk for diabetic kidney disease in type 1 diabetes.
Collapse
Affiliation(s)
- Laura J Smyth
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Emma H Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Anna Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Katie Kerr
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Jill Kilner
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Ross Doyle
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Viji Nair
- Department of Medicine-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Damian Fermin
- Department of Pediatrics-Nephrology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Christopher Wooster
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Darrell Andrews
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Kerry Anderson
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Gareth J McKay
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Joanne B Cole
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rany M Salem
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Peter J Conlon
- Department of Nephrology and Transplantation, Beaumont Hospital and Department of Medicine Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Joel N Hirschhorn
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Alexander P Maxwell
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
| | - Amy Jayne McKnight
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
9
|
Rale MJ, Romer B, Mahon BP, Travis SM, Petry S. The conserved centrosomin motif, γTuNA, forms a dimer that directly activates microtubule nucleation by the γ-tubulin ring complex (γTuRC). eLife 2022; 11:e80053. [PMID: 36515268 PMCID: PMC9859039 DOI: 10.7554/elife.80053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
To establish the microtubule cytoskeleton, the cell must tightly regulate when and where microtubules are nucleated. This regulation involves controlling the initial nucleation template, the γ-tubulin ring complex (γTuRC). Although γTuRC is present throughout the cytoplasm, its activity is restricted to specific sites including the centrosome and Golgi. The well-conserved γ-tubulin nucleation activator (γTuNA) domain has been reported to increase the number of microtubules (MTs) generated by γTuRCs. However, previously we and others observed that γTuNA had a minimal effect on the activity of antibody-purified Xenopus γTuRCs in vitro (Thawani et al., eLife, 2020; Liu et al., 2020). Here, we instead report, based on improved versions of γTuRC, γTuNA, and our TIRF assay, the first real-time observation that γTuNA directly increases γTuRC activity in vitro, which is thus a bona fide γTuRC activator. We further validate this effect in Xenopus egg extract. Via mutation analysis, we find that γTuNA is an obligate dimer. Moreover, efficient dimerization as well as γTuNA's L70, F75, and L77 residues are required for binding to and activation of γTuRC. Finally, we find that γTuNA's activating effect opposes inhibitory regulation by stathmin. In sum, our improved assays prove that direct γTuNA binding strongly activates γTuRCs, explaining previously observed effects of γTuNA expression in cells and illuminating how γTuRC-mediated microtubule nucleation is regulated.
Collapse
Affiliation(s)
- Michael J Rale
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Brianna Romer
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Brian P Mahon
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Sophie M Travis
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Sabine Petry
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
10
|
Sulimenko V, Dráberová E, Dráber P. γ-Tubulin in microtubule nucleation and beyond. Front Cell Dev Biol 2022; 10:880761. [PMID: 36158181 PMCID: PMC9503634 DOI: 10.3389/fcell.2022.880761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules composed of αβ-tubulin dimers are dynamic cytoskeletal polymers that play key roles in essential cellular processes such as cell division, organelle positioning, intracellular transport, and cell migration. γ-Tubulin is a highly conserved member of the tubulin family that is required for microtubule nucleation. γ-Tubulin, together with its associated proteins, forms the γ-tubulin ring complex (γ-TuRC), that templates microtubules. Here we review recent advances in the structure of γ-TuRC, its activation, and centrosomal recruitment. This provides new mechanistic insights into the molecular mechanism of microtubule nucleation. Accumulating data suggest that γ-tubulin also has other, less well understood functions. We discuss emerging evidence that γ-tubulin can form oligomers and filaments, has specific nuclear functions, and might be involved in centrosomal cross-talk between microtubules and microfilaments.
Collapse
Affiliation(s)
| | | | - Pavel Dráber
- *Correspondence: Vadym Sulimenko, ; Pavel Dráber,
| |
Collapse
|
11
|
Willekers S, Tessadori F, van der Vaart B, Henning HH, Stucchi R, Altelaar M, Roelen BAJ, Akhmanova A, Bakkers J. The centriolar satellite protein Cfap53 facilitates formation of the zygotic microtubule organizing center in the zebrafish embryo. Development 2022; 149:dev198762. [PMID: 35980365 PMCID: PMC9481976 DOI: 10.1242/dev.198762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/20/2022] [Indexed: 12/02/2023]
Abstract
In embryos of most animal species, the zygotic centrosome is assembled by the centriole derived from the sperm cell and pericentriolar proteins present in the oocyte. This zygotic centrosome acts as a microtubule organizing center (MTOC) to assemble the sperm aster and mitotic spindle. As MTOC formation has been studied mainly in adult cells, very little is known about the formation of the zygotic MTOC. Here, we show that zebrafish (Danio rerio) embryos lacking either maternal or paternal Cfap53, a centriolar satellite protein, arrest during the first cell cycle. Although Cfap53 is dispensable for sperm aster function, it aids proper formation of the mitotic spindle. During cell division, Cfap53 colocalizes with γ-tubulin and with other centrosomal and centriolar satellite proteins at the MTOC. Furthermore, we find that γ-tubulin localization at the MTOC is impaired in the absence of Cfap53. Based on these results, we propose a model in which Cfap53 deposited in the oocyte and the sperm participates in the organization of the zygotic MTOC to allow mitotic spindle formation.
Collapse
Affiliation(s)
- Sven Willekers
- Hubrecht Institute-KNAW, Utrecht 3584 CT, The Netherlands
| | | | - Babet van der Vaart
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Heiko H. Henning
- Equine Sciences, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Bernard A. J. Roelen
- Embryology, Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CT, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW, Utrecht 3584 CT, The Netherlands
- Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584 EA, The Netherlands
| |
Collapse
|
12
|
Ji W, Tang Z, Chen Y, Wang C, Tan C, Liao J, Tong L, Xiao G. Ependymal Cilia: Physiology and Role in Hydrocephalus. Front Mol Neurosci 2022; 15:927479. [PMID: 35903173 PMCID: PMC9315228 DOI: 10.3389/fnmol.2022.927479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 01/10/2023] Open
Abstract
Cerebrospinal fluid (CSF), a colorless liquid that generally circulates from the lateral ventricles to the third and fourth ventricles, provides essential nutrients for brain homeostasis and growth factors during development. As evidenced by an increasing corpus of research, CSF serves a range of important functions. While it is considered that decreased CSF flow is associated to the development of hydrocephalus, it has recently been postulated that motile cilia, which line the apical surfaces of ependymal cells (ECs), play a role in stimulating CSF circulation by cilia beating. Ependymal cilia protrude from ECs, and their synchronous pulsing transports CSF from the lateral ventricle to the third and fourth ventricles, and then to the subarachnoid cavity for absorption. As a result, we postulated that malfunctioning ependymal cilia could disrupt normal CSF flow, raising the risk of hydrocephalus. This review aims to demonstrate the physiological functions of ependymal cilia, as well as how cilia immobility or disorientation causes problems. We also conclude conceivable ways of treatment of hydrocephalus currently for clinical application and provide theoretical support for regimen improvements by investigating the relationship between ependymal cilia and hydrocephalus development.
Collapse
Affiliation(s)
- Weiye Ji
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Tang
- Department of Neurosurgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yibing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chuansen Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changwu Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Tong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Gelei Xiao,
| |
Collapse
|
13
|
Zhang Y, Hong X, Hua S, Jiang K. Reconstitution and mechanistic dissection of the human microtubule branching machinery. J Cell Biol 2022; 221:e202109053. [PMID: 35604367 PMCID: PMC9129923 DOI: 10.1083/jcb.202109053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 01/07/2023] Open
Abstract
Branching microtubule (MT) nucleation is mediated by the augmin complex and γ-tubulin ring complex (γ-TuRC). However, how these two complexes work together to promote this process remains elusive. Here, using purified components from native and recombinant sources, we demonstrate that human augmin and γ-TuRC are sufficient to reconstitute the minimal MT branching machinery, in which NEDD1 bridges between augmin holo complex and GCP3/MZT1 subcomplex of γ-TuRC. The single-molecule experiment suggests that oligomerization of augmin may activate the branching machinery. We provide direct biochemical evidence that CDK1- and PLK1-dependent phosphorylation are crucial for NEDD1 binding to augmin, for their synergistic MT-binding activities, and hence for branching MT nucleation. In addition, we unveil that NEDD1 possesses an unanticipated intrinsic affinity for MTs via its WD40 domain, which also plays a pivotal role in the branching process. In summary, our study provides a comprehensive understanding of the underlying mechanisms of branching MT nucleation in human cells.
Collapse
Affiliation(s)
- Yaqian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xing Hong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shasha Hua
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Kai Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
In heart failure reactivation of RNA-binding proteins is associated with the expression of 1,523 fetal-specific isoforms. PLoS Comput Biol 2022; 18:e1009918. [PMID: 35226669 PMCID: PMC8912908 DOI: 10.1371/journal.pcbi.1009918] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/10/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2023] Open
Abstract
Reactivation of fetal-specific genes and isoforms occurs during heart failure. However, the underlying molecular mechanisms and the extent to which the fetal program switch occurs remains unclear. Limitations hindering transcriptome-wide analyses of alternative splicing differences (i.e. isoform switching) in cardiovascular system (CVS) tissues between fetal, healthy adult and heart failure have included both cellular heterogeneity across bulk RNA-seq samples and limited availability of fetal tissue for research. To overcome these limitations, we have deconvoluted the cellular compositions of 996 RNA-seq samples representing heart failure, healthy adult (heart and arteria), and fetal-like (iPSC-derived cardiovascular progenitor cells) CVS tissues. Comparison of the expression profiles revealed that reactivation of fetal-specific RNA-binding proteins (RBPs), and the accompanied re-expression of 1,523 fetal-specific isoforms, contribute to the transcriptome differences between heart failure and healthy adult heart. Of note, isoforms for 20 different RBPs were among those that reverted in heart failure to the fetal-like expression pattern. We determined that, compared with adult-specific isoforms, fetal-specific isoforms encode proteins that tend to have more functions, are more likely to harbor RBP binding sites, have canonical sequences at their splice sites, and contain typical upstream polypyrimidine tracts. Our study suggests that compared with healthy adult, fetal cardiac tissue requires stricter transcriptional regulation, and that during heart failure reversion to this stricter transcriptional regulation occurs. Furthermore, we provide a resource of cardiac developmental stage-specific and heart failure-associated genes and isoforms, which are largely unexplored and can be exploited to investigate novel therapeutics for heart failure. Heart failure is a chronic condition in which the heart does not pump enough blood. It has been shown that in heart failure, the adult heart reverts to a fetal-like metabolic state and oxygen consumption. Additionally, genes and isoforms that are expressed in the heart only during fetal development (i.e. not in the healthy adult heart) are turned on in heart failure. However, the underlying molecular mechanisms and the extent to which the switch to a fetal gene program occurs remains unclear. In this study, we initially characterized the differences between the fetal and adult heart transcriptomes (entire set of expressed genes and isoforms). We found that RNA binding proteins (RBPs), a family of genes that regulate multiple aspects of a transcript’s maturation, including transcription, splicing and post-transcriptional modifications, play a central role in the differences between fetal and adult heart tissues. We observed that many RBPs that are only expressed in the heart during fetal development become reactivated in heart failure, resulting in the expression of 1,523 fetal-specific isoforms. These findings suggest that reactivation of fetal-specific RBPs in heart failure drives a transcriptome-wide switch to expression of fetal-specific isoforms; and hence that RBPs could potentially serve as novel therapeutic targets.
Collapse
|
15
|
Ren X, Rong Z, Liu X, Gao J, Xu X, Zi Y, Mu Y, Guan Y, Cao Z, Zhang Y, Zeng Z, Fan Q, Wang X, Pei Q, Wang X, Xin H, Li Z, Nie Y, Qiu Z, Li N, Sun L, Deng Y. The protein kinase activity of NME7 activates Wnt/β-Catenin signaling to promote one-carbon metabolism in hepatocellular carcinoma. Cancer Res 2021; 82:60-74. [PMID: 34764205 DOI: 10.1158/0008-5472.can-21-1020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
Metabolic reprogramming by oncogenic signaling is a hallmark of cancer. Hyperactivation of Wnt/β-catenin signaling has been reported in hepatocellular carcinoma (HCC). However, the mechanisms inducing hyperactivation of Wnt/β-catenin signaling and strategies for targeting this pathway are incompletely understood. In this study, we find nucleoside diphosphate kinase 7 (NME7) to be a positive regulator of Wnt/β-catenin signaling. Upregulation of NME7 positively correlated with the clinical features of HCC. Knockdown of NME7 inhibited HCC growth in vitro and in vivo, while overexpression of NME7 cooperated with c-Myc to drive tumorigenesis in a mouse model and promote the growth of tumor-derived organoids. Mechanistically, NME7 bound and phosphorylated serine 9 of GSK3β to promote β-catenin activation. Furthermore, MTHFD2, the key enzyme in one-carbon metabolism, was a target gene of β-catenin and mediated the effects of NME7. Tumor-derived organoids with NME7 overexpression exhibited increased sensitivity to MTHFD2 inhibition. Additionally, expression levels of NME7, β-catenin and MTHFD2 correlated with each other and with poor prognosis in HCC patients. Collectively, this study emphasizes the crucial roles of NME7 protein kinase activity in promoting Wnt/β-catenin signaling and one-carbon metabolism, suggesting NME7 and MTHFD2 as potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xinxin Ren
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Zhuoxian Rong
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Xiaoyu Liu
- Department of Interventional Radiology, Ruijin Hospital
| | - Jie Gao
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Xu Xu
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yuyuan Zi
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Yun Mu
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | | | - Zhen Cao
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Yuefang Zhang
- Institute of Neuroscience, State Kay Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences
| | - Zimei Zeng
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Qi Fan
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Xitao Wang
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Qian Pei
- Xiangya Hospital Central South University
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University
| | - Haiguang Xin
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhi Li
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | - Zilong Qiu
- Molecular Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences
| | - Nan Li
- The Eestern Hepatobiliary Surgery Hospital, Second Military Medical University
| | | | - Yuezhen Deng
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| |
Collapse
|
16
|
Dráber P, Dráberová E. Dysregulation of Microtubule Nucleating Proteins in Cancer Cells. Cancers (Basel) 2021; 13:cancers13225638. [PMID: 34830792 PMCID: PMC8616210 DOI: 10.3390/cancers13225638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The dysfunction of microtubule nucleation in cancer cells changes the overall cytoskeleton organization and cellular physiology. This review focuses on the dysregulation of the γ-tubulin ring complex (γ-TuRC) proteins that are essential for microtubule nucleation. Recent research on the high-resolution structure of γ-TuRC has brought new insight into the microtubule nucleation mechanism. We discuss the effect of γ-TuRC protein overexpression on cancer cell behavior and new drugs directed to γ-tubulin that may offer a viable alternative to microtubule-targeting agents currently used in cancer chemotherapy. Abstract In cells, microtubules typically nucleate from microtubule organizing centers, such as centrosomes. γ-Tubulin, which forms multiprotein complexes, is essential for nucleation. The γ-tubulin ring complex (γ-TuRC) is an efficient microtubule nucleator that requires additional centrosomal proteins for its activation and targeting. Evidence suggests that there is a dysfunction of centrosomal microtubule nucleation in cancer cells. Despite decades of molecular analysis of γ-TuRC and its interacting factors, the mechanisms of microtubule nucleation in normal and cancer cells remains obscure. Here, we review recent work on the high-resolution structure of γ-TuRC, which brings new insight into the mechanism of microtubule nucleation. We discuss the effects of γ-TuRC protein dysregulation on cancer cell behavior and new compounds targeting γ-tubulin. Drugs inhibiting γ-TuRC functions could represent an alternative to microtubule targeting agents in cancer chemotherapy.
Collapse
|
17
|
Abstract
As one of four filament types, microtubules are a core component of the cytoskeleton and are essential for cell function. Yet how microtubules are nucleated from their building blocks, the αβ-tubulin heterodimer, has remained a fundamental open question since the discovery of tubulin 50 years ago. Recent structural studies have shed light on how γ-tubulin and the γ-tubulin complex proteins (GCPs) GCP2 to GCP6 form the γ-tubulin ring complex (γ-TuRC). In parallel, functional and single-molecule studies have informed on how the γ-TuRC nucleates microtubules in real time, how this process is regulated in the cell and how it compares to other modes of nucleation. Another recent surprise has been the identification of a second essential nucleation factor, which turns out to be the well-characterized microtubule polymerase XMAP215 (also known as CKAP5, a homolog of chTOG, Stu2 and Alp14). This discovery helps to explain why the observed nucleation activity of the γ-TuRC in vitro is relatively low. Taken together, research in recent years has afforded important insight into how microtubules are made in the cell and provides a basis for an exciting era in the cytoskeleton field.
Collapse
Affiliation(s)
- Akanksha Thawani
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
18
|
Heterozygous Nme7 Mutation Affects Glucose Tolerance in Male Rats. Genes (Basel) 2021; 12:genes12071087. [PMID: 34356103 PMCID: PMC8305224 DOI: 10.3390/genes12071087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/28/2022] Open
Abstract
Complex metabolic conditions such as type 2 diabetes and obesity result from the interaction of numerous genetic and environmental factors. While the family of Nme proteins has been connected so far mostly to development, proliferation, or ciliary functions, several lines of evidence from human and experimental studies point to the potential involvement of one of its members, NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) in carbohydrate and lipid metabolism. As a complete lack of Nme7 is semilethal in rats, we compared morphometric, metabolic, and transcriptomic profiles of standard diet-fed heterozygous Nme7+/− on male rats vs. their wild-type Nme7+/+ controls. Nme7+/− animals showed increased body weight, adiposity, higher insulin levels together with decreased glucose tolerance. Moreover, they displayed pancreatic islet fibrosis and kidney tubular damage. Despite no signs of overt liver steatosis or dyslipidemia, we found significant changes in the hepatic transcriptome of Nme7+/− male rats with a concerted increase of expression of lipogenic enzymes including Scd1, Fads1, Dhcr7 and a decrease of Cyp7b1 and Nme7. Network analyses suggested possible links between Nme7 and the activation of Srebf1 and Srebf2 upstream regulators. These results further support the implication of NME7 in the pathogenesis of glucose intolerance and adiposity.
Collapse
|
19
|
Böhler A, Vermeulen BJA, Würtz M, Zupa E, Pfeffer S, Schiebel E. The gamma-tubulin ring complex: Deciphering the molecular organization and assembly mechanism of a major vertebrate microtubule nucleator. Bioessays 2021; 43:e2100114. [PMID: 34160844 DOI: 10.1002/bies.202100114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022]
Abstract
Microtubules are protein cylinders with functions in cell motility, signal sensing, cell organization, intracellular transport, and chromosome segregation. One of the key properties of microtubules is their dynamic architecture, allowing them to grow and shrink in length by adding or removing copies of their basic subunit, the heterodimer αβ-tubulin. In higher eukaryotes, de novo assembly of microtubules from αβ-tubulin is initiated by a 2 MDa multi-subunit complex, the gamma-tubulin ring complex (γ-TuRC). For many years, the structure of the γ-TuRC and the function of its subunits remained enigmatic, although structural data from the much simpler yeast counterpart, the γ-tubulin small complex (γ-TuSC), were available. Two recent breakthroughs in the field, high-resolution structural analysis and recombinant reconstitution of the complex, have revolutionized our knowledge about the architecture and function of the γ-TuRC and will form the basis for addressing outstanding questions about biogenesis and regulation of this essential microtubule organizer.
Collapse
Affiliation(s)
- Anna Böhler
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Bram J A Vermeulen
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Erik Zupa
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Wang H, Jiang X, Cheng Y, Ren H, Hu Y, Zhang Y, Su H, Zou Z, Wang Q, Liu Z, Zhang J, Qiu X. MZT2A promotes NSCLC viability and invasion by increasing Akt phosphorylation via the MOZART2 domain. Cancer Sci 2021; 112:2210-2222. [PMID: 33754417 PMCID: PMC8177791 DOI: 10.1111/cas.14900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitotic spindle organizing protein 2A (MZT2A) is localized at the centrosome and regulates microtubule nucleation activity in cells. This study assessed the role of MZT2A in non-small-cell lung cancer (NSCLC). Differential MZT2A expression was bioinformatically assessed using TCGA database, the GEPIA database, and Kaplan-Meier survival data to determine the association between MZT2A expression and NSCLC prognosis. Furthermore, NSCLC tissue specimens were evaluated by immunohistochemistry. MZT2A was overexpressed or knocked down in NSCLC cells using cDNA and siRNA, respectively. The cells were subjected to various assays and treated with the selective Akt inhibitor LY294002 or co-transfected with galectin-3-binding protein (LGALS3BP) siRNA. MZT2A mRNA and protein levels were upregulated in NSCLC lesions and MTZ2A expression was associated with poor NSCLC prognosis. MZT2A protein was also highly expressed in NSCLC cells compared with the expression in normal bronchial cells. MZT2A expression promoted NSCLC cell viability and invasion, whereas MTZ2A siRNA had the opposite effect on NSCLC cells in vitro. At the protein level, MZT2A induced Akt phosphorylation, promoting NSCLC proliferation and invasion (but the selective Akt inhibitor blocked these effects) through upregulation of LGALS3BP via the MTZ2A MOZART2 domain, whereas LGALS3BP siRNA suppressed MTZ2A activity in NSCLC cells. The limited in vivo experiments confirmed the in vitro data. In conclusion, MZT2A exhibits oncogenic activity by activating LGALS3BP and Akt in NSCLC. Future studies will assess MTZ2A as a biomarker to predict NSCLC prognosis or as a target in the control of NSCLC progression.
Collapse
Affiliation(s)
- Huanxi Wang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Xizi Jiang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Yu Cheng
- Department of PathologyChina Medical UniversityShenyangChina
- Departemt of PathologyCancer Research LaboratoryChengde Medical CollegeChengdeChina
| | - Hongjiu Ren
- Department of PathologyChina Medical UniversityShenyangChina
| | - Yujiao Hu
- Department of PathologyChina Medical UniversityShenyangChina
| | - Yao Zhang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Hongbo Su
- Department of PathologyChina Medical UniversityShenyangChina
| | - Zifang Zou
- Department of Thoracic SurgeryThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Qiongzi Wang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Zongang Liu
- Department of Thoracic SurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Jiameng Zhang
- Department of PathologyChina Medical UniversityShenyangChina
| | - Xueshan Qiu
- Department of PathologyChina Medical UniversityShenyangChina
- Department of PathologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
21
|
Sharma A, Singh D, Gupta P, Bhardwaj SK, Kaur I, Kumar V. Molecular changes associated with migratory departure from wintering areas in obligate songbird migrants. J Exp Biol 2021; 224:269085. [PMID: 34105726 DOI: 10.1242/jeb.242153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/28/2021] [Indexed: 11/20/2022]
Abstract
Day length regulates the development of spring migratory and subsequent reproductive phenotypes in avian migrants. This study used molecular approaches, and compared mRNA and proteome-wide expression in captive redheaded buntings that were photostimulated under long-day (LD) conditions for 4 days (early stimulated, LD-eS) or for ∼3 weeks until each bird had shown 4 successive nights of Zugunruhe (stimulated, LD-S); controls were maintained under short days. After ∼3 weeks of LD, photostimulated indices of the migratory preparedness (fattening, weight gain and Zugunruhe) were paralleled with upregulated expression of acc, dgat2 and apoa1 genes in the liver, and of cd36, fabp3 and cpt1 genes in the flight muscle, suggesting enhanced fatty acid (FA) synthesis and transport in the LD-S state. Concurrently, elevated expression of genes involved in the calcium ion signalling and transport (camk1 and atp2a2; camk2a in LD-eS), cellular stress (hspa8 and sod1, not nos2) and metabolic pathways (apoa1 and sirt1), but not of genes associated with migratory behaviour (adcyap1 and vps13a), were found in the mediobasal hypothalamus (MBH). Further, MBH-specific quantitative proteomics revealed that out of 503 annotated proteins, 28 were differentially expressed (LD-eS versus LD-S: 21 up-regulated and 7 down-regulated) and they enriched five physiological pathways that are associated with FA transport and metabolism. These first comprehensive results on gene and protein expression suggest that changes in molecular correlates of FA transport and metabolism may aid the decision for migratory departure from wintering areas in obligate songbird migrants.
Collapse
Affiliation(s)
- Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Devraj Singh
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Priya Gupta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, Delhi 110 067, India
| | | | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, Delhi 110 067, India.,Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India
| |
Collapse
|
22
|
Tovey CA, Tsuji C, Egerton A, Bernard F, Guichet A, de la Roche M, Conduit PT. Autoinhibition of Cnn binding to γ-TuRCs prevents ectopic microtubule nucleation and cell division defects. J Cell Biol 2021; 220:212197. [PMID: 34042945 PMCID: PMC8164090 DOI: 10.1083/jcb.202010020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/25/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
γ-Tubulin ring complexes (γ-TuRCs) nucleate microtubules. They are recruited to centrosomes in dividing cells via binding to N-terminal CM1 domains within γ-TuRC–tethering proteins, including Drosophila Centrosomin (Cnn). Binding promotes microtubule nucleation and is restricted to centrosomes in dividing cells, but the mechanism regulating binding remains unknown. Here, we identify an extreme N-terminal CM1 autoinhibition (CAI) domain found specifically within the centrosomal isoform of Cnn (Cnn-C) that inhibits γ-TuRC binding. Robust binding occurs after removal of the CAI domain or with the addition of phosphomimetic mutations, suggesting that phosphorylation helps relieve inhibition. We show that regulation of Cnn binding to γ-TuRCs is isoform specific and that misregulation of binding can result in ectopic cytosolic microtubules and major defects during cell division. We also find that human CDK5RAP2 is autoinhibited from binding γ-TuRCs, suggesting conservation across species. Overall, our results shed light on how and why CM1 domain binding to γ-TuRCs is regulated.
Collapse
Affiliation(s)
- Corinne A Tovey
- Department of Zoology, University of Cambridge, Cambridge, UK.,Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - Chisato Tsuji
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alice Egerton
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Fred Bernard
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - Antoine Guichet
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - Marc de la Roche
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Paul T Conduit
- Department of Zoology, University of Cambridge, Cambridge, UK.,Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| |
Collapse
|
23
|
Šedová L, Buková I, Bažantová P, Petrezsélyová S, Prochazka J, Školníková E, Zudová D, Včelák J, Makovický P, Bendlová B, Šeda O, Sedlacek R. Semi-Lethal Primary Ciliary Dyskinesia in Rats Lacking the Nme7 Gene. Int J Mol Sci 2021; 22:ijms22083810. [PMID: 33916973 PMCID: PMC8067621 DOI: 10.3390/ijms22083810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) is a member of a gene family with a profound effect on health/disease status. NME7 is an established member of the ciliome and contributes to the regulation of the microtubule-organizing center. We aimed to create a rat model to further investigate the phenotypic consequences of Nme7 gene deletion. The CRISPR/Cas9 nuclease system was used for the generation of Sprague Dawley Nme7 knock-out rats targeting the exon 4 of the Nme7 gene. We found the homozygous Nme7 gene deletion to be semi-lethal, as the majority of SDNme7−/− pups died prior to weaning. The most prominent phenotypes in surviving SDNme7−/− animals were hydrocephalus, situs inversus totalis, postnatal growth retardation, and sterility of both sexes. Thinning of the neocortex was histologically evident at 13.5 day of gestation, dilation of all ventricles was detected at birth, and an external sign of hydrocephalus, i.e., doming of the skull, was usually apparent at 2 weeks of age. Heterozygous SDNme7+/− rats developed normally; we did not detect any symptoms of primary ciliary dyskinesia. The transcriptomic profile of liver and lungs corroborated the histological findings, revealing defects in cell function and viability. In summary, the knock-out of the rat Nme7 gene resulted in a range of conditions consistent with the presentation of primary ciliary dyskinesia, supporting the previously implicated role of the centrosomally located Nme7 gene in ciliogenesis and control of ciliary transport.
Collapse
Affiliation(s)
- Lucie Šedová
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (S.P.); (E.Š.); (R.S.)
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and the General University Hospital, 128 00 Prague, Czech Republic; (P.B.); (O.Š.)
- Correspondence:
| | - Ivana Buková
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| | - Pavla Bažantová
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and the General University Hospital, 128 00 Prague, Czech Republic; (P.B.); (O.Š.)
| | - Silvia Petrezsélyová
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (S.P.); (E.Š.); (R.S.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| | - Elena Školníková
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (S.P.); (E.Š.); (R.S.)
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and the General University Hospital, 128 00 Prague, Czech Republic; (P.B.); (O.Š.)
| | - Dagmar Zudová
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| | - Josef Včelák
- Department of Molecular Endocrinology, Institute of Endocrinology, 116 94 Prague, Czech Republic; (J.V.); (B.B.)
| | - Pavol Makovický
- Department of Biology, Faculty of Education, J. Selye University, 945 01 Komarno, Slovakia;
| | - Běla Bendlová
- Department of Molecular Endocrinology, Institute of Endocrinology, 116 94 Prague, Czech Republic; (J.V.); (B.B.)
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, The First Faculty of Medicine, Charles University and the General University Hospital, 128 00 Prague, Czech Republic; (P.B.); (O.Š.)
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (S.P.); (E.Š.); (R.S.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 252 50 Vestec, Czech Republic; (I.B.); (J.P.); (D.Z.)
| |
Collapse
|
24
|
Würtz M, Böhler A, Neuner A, Zupa E, Rohland L, Liu P, Vermeulen BJA, Pfeffer S, Eustermann S, Schiebel E. Reconstitution of the recombinant human γ-tubulin ring complex. Open Biol 2021; 11:200325. [PMID: 33529551 PMCID: PMC8061689 DOI: 10.1098/rsob.200325] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cryo-electron microscopy recently resolved the structure of the vertebrate γ-tubulin ring complex (γ-TuRC) purified from Xenopus laevis egg extract and human cells to near-atomic resolution. These studies clarified the arrangement and stoichiometry of γ-TuRC components and revealed that one molecule of actin and the small protein MZT1 are embedded into the complex. Based on this structural census of γ-TuRC core components, we developed a recombinant expression system for the reconstitution and purification of human γ-TuRC from insect cells. The recombinant γ-TuRC recapitulates the structure of purified native γ-TuRC and has similar functional properties in terms of microtubule nucleation and minus end capping. This recombinant system is a central step towards deciphering the activation mechanisms of the γ-TuRC and the function of individual γ-TuRC core components.
Collapse
Affiliation(s)
- Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Anna Böhler
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Erik Zupa
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Lukas Rohland
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Peng Liu
- Centre for Organismal Studies Universität Heidelberg (COS), Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany
| | - Bram J A Vermeulen
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Sebastian Eustermann
- European Molecular Biology Laboratory (EMBL), Heidelberg Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| |
Collapse
|
25
|
Jaiswal S, Kasera H, Jain S, Khandelwal S, Singh P. Centrosome: A Microtubule Nucleating Cellular Machinery. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00213-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Zupa E, Liu P, Würtz M, Schiebel E, Pfeffer S. The structure of the γ-TuRC: a 25-years-old molecular puzzle. Curr Opin Struct Biol 2020; 66:15-21. [PMID: 33002806 DOI: 10.1016/j.sbi.2020.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
The nucleation of microtubules from αβ-tubulin dimers is an essential cellular process dependent on γ-tubulin complexes. Mechanistic understanding of the nucleation reaction was hampered by the lack of γ-tubulin complex structures at sufficiently high resolution. The recent technical developments in cryo-electron microscopy have allowed resolving the vertebrate γ-tubulin ring complex (γ-TuRC) structure at near-atomic resolution. These studies clarified the arrangement and stoichiometry of gamma-tubulin complex proteins in the γ-TuRC, characterized the surprisingly versatile integration of the small proteins MZT1/2 into the complex, and identified actin as an integral component of the γ-TuRC. In this review, we summarize the structural insights into the molecular architecture, the assembly pathway, and the regulation of the microtubule nucleation reaction.
Collapse
Affiliation(s)
- Erik Zupa
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Peng Liu
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Structure, Folding and Stability of Nucleoside Diphosphate Kinases. Int J Mol Sci 2020; 21:ijms21186779. [PMID: 32947863 PMCID: PMC7554756 DOI: 10.3390/ijms21186779] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/29/2022] Open
Abstract
Nucleoside diphosphate kinases (NDPK) are oligomeric proteins involved in the synthesis of nucleoside triphosphates. Their tridimensional structure has been solved by X-ray crystallography and shows that individual subunits present a conserved ferredoxin fold of about 140 residues in prokaryotes, archaea, eukaryotes and viruses. Monomers are functionally independent from each other inside NDPK complexes and the nucleoside kinase catalytic mechanism involves transient phosphorylation of the conserved catalytic histidine. To be active, monomers must assemble into conserved head to tail dimers, which further assemble into hexamers or tetramers. The interfaces between these oligomeric states are very different but, surprisingly, the assembly structure barely affects the catalytic efficiency of the enzyme. While it has been shown that assembly into hexamers induces full formation of the catalytic site and stabilizes the complex, it is unclear why assembly into tetramers is required for function. Several additional activities have been revealed for NDPK, especially in metastasis spreading, cytoskeleton dynamics, DNA binding and membrane remodeling. However, we still lack the high resolution structural data of NDPK in complex with different partners, which is necessary for deciphering the mechanism of these diverse functions. In this review we discuss advances in the structure, folding and stability of NDPKs.
Collapse
|
28
|
Adam K, Ning J, Reina J, Hunter T. NME/NM23/NDPK and Histidine Phosphorylation. Int J Mol Sci 2020; 21:E5848. [PMID: 32823988 PMCID: PMC7461546 DOI: 10.3390/ijms21165848] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
The NME (Non-metastatic) family members, also known as NDPKs (nucleoside diphosphate kinases), were originally identified and studied for their nucleoside diphosphate kinase activities. This family of kinases is extremely well conserved through evolution, being found in prokaryotes and eukaryotes, but also diverges enough to create a range of complexity, with homologous members having distinct functions in cells. In addition to nucleoside diphosphate kinase activity, some family members are reported to possess protein-histidine kinase activity, which, because of the lability of phosphohistidine, has been difficult to study due to the experimental challenges and lack of molecular tools. However, over the past few years, new methods to investigate this unstable modification and histidine kinase activity have been reported and scientific interest in this area is growing rapidly. This review presents a global overview of our current knowledge of the NME family and histidine phosphorylation, highlighting the underappreciated protein-histidine kinase activity of NME family members, specifically in human cells. In parallel, information about the structural and functional aspects of the NME family, and the knowns and unknowns of histidine kinase involvement in cell signaling are summarized.
Collapse
Affiliation(s)
| | | | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (K.A.); (J.N.); (J.R.)
| |
Collapse
|
29
|
Genome-wide association study and polygenic risk score analysis of esketamine treatment response. Sci Rep 2020; 10:12649. [PMID: 32724131 PMCID: PMC7387452 DOI: 10.1038/s41598-020-69291-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
To elucidate the genetic underpinnings of the antidepressant efficacy of S-ketamine (esketamine) nasal spray in major depressive disorder (MDD), we performed a genome-wide association study (GWAS) in cohorts of European ancestry (n = 527). This analysis was followed by a polygenic risk score approach to test for associations between genetic loading for psychiatric conditions, symptom profiles and esketamine efficacy. We identified a genome-wide significant locus in IRAK3 (p = 3.57 × 10–8, rs11465988, β = − 51.6, SE = 9.2) and a genome-wide significant gene-level association in NME7 (p = 1.73 × 10–6) for esketamine efficacy (i.e. percentage change in symptom severity score compared to baseline). Additionally, the strongest association with esketamine efficacy identified in the polygenic score analysis was from the genetic loading for depressive symptoms (p = 0.001, standardized coefficient β = − 3.1, SE = 0.9), which did not reach study-wide significance. Pathways relevant to neuronal and synaptic function, immune signaling, and glucocorticoid receptor/stress response showed enrichment among the suggestive GWAS signals.
Collapse
|
30
|
Thawani A, Rale MJ, Coudray N, Bhabha G, Stone HA, Shaevitz JW, Petry S. The transition state and regulation of γ-TuRC-mediated microtubule nucleation revealed by single molecule microscopy. eLife 2020; 9:e54253. [PMID: 32538784 PMCID: PMC7338055 DOI: 10.7554/elife.54253] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
Determining how microtubules (MTs) are nucleated is essential for understanding how the cytoskeleton assembles. While the MT nucleator, γ-tubulin ring complex (γ-TuRC) has been identified, precisely how γ-TuRC nucleates a MT remains poorly understood. Here, we developed a single molecule assay to directly visualize nucleation of a MT from purified Xenopus laevis γ-TuRC. We reveal a high γ-/αβ-tubulin affinity, which facilitates assembly of a MT from γ-TuRC. Whereas spontaneous nucleation requires assembly of 8 αβ-tubulins, nucleation from γ-TuRC occurs efficiently with a cooperativity of 4 αβ-tubulin dimers. This is distinct from pre-assembled MT seeds, where a single dimer is sufficient to initiate growth. A computational model predicts our kinetic measurements and reveals the rate-limiting transition where laterally associated αβ-tubulins drive γ-TuRC into a closed conformation. NME7, TPX2, and the putative activation domain of CDK5RAP2 h γ-TuRC-mediated nucleation, while XMAP215 drastically increases the nucleation efficiency by strengthening the longitudinal γ-/αβ-tubulin interaction.
Collapse
Affiliation(s)
- Akanksha Thawani
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Michael J Rale
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Nicolas Coudray
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Gira Bhabha
- Department of Cell Biology, New York University School of MedicineNew YorkUnited States
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton UniversityPrincetonUnited States
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative GenomicsPrincetonUnited States
- Department of Physics, Princeton UniversityPrincetonUnited States
| | - Sabine Petry
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
31
|
Adam K, Lesperance J, Hunter T, Zage PE. The Potential Functional Roles of NME1 Histidine Kinase Activity in Neuroblastoma Pathogenesis. Int J Mol Sci 2020; 21:ijms21093319. [PMID: 32392889 PMCID: PMC7247550 DOI: 10.3390/ijms21093319] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood. Gain of chromosome 17q material is found in >60% of neuroblastoma tumors and is associated with poor patient prognosis. The NME1 gene is located in the 17q21.3 region, and high NME1 expression is correlated with poor neuroblastoma patient outcomes. However, the functional roles and signaling activity of NME1 in neuroblastoma cells and tumors are unknown. NME1 and NME2 have been shown to possess histidine (His) kinase activity. Using anti-1- and 3-pHis specific monoclonal antibodies and polyclonal anti-pH118 NME1/2 antibodies, we demonstrated the presence of pH118-NME1/2 and multiple additional pHis-containing proteins in all tested neuroblastoma cell lines and in xenograft neuroblastoma tumors, supporting the presence of histidine kinase activity in neuroblastoma cells and demonstrating the potential significance of histidine kinase signaling in neuroblastoma pathogenesis. We have also demonstrated associations between NME1 expression and neuroblastoma cell migration and differentiation. Our demonstration of NME1 histidine phosphorylation in neuroblastoma and of the potential role of NME1 in neuroblastoma cell migration and differentiation suggest a functional role for NME1 in neuroblastoma pathogenesis and open the possibility of identifying new therapeutic targets and developing novel approaches to neuroblastoma therapy.
Collapse
Affiliation(s)
- Kevin Adam
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA; (K.A.); (T.H.)
| | - Jacqueline Lesperance
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA;
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA; (K.A.); (T.H.)
| | - Peter E. Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence:
| |
Collapse
|
32
|
Wieczorek M, Urnavicius L, Ti SC, Molloy KR, Chait BT, Kapoor TM. Asymmetric Molecular Architecture of the Human γ-Tubulin Ring Complex. Cell 2020; 180:165-175.e16. [PMID: 31862189 PMCID: PMC7027161 DOI: 10.1016/j.cell.2019.12.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/21/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
The γ-tubulin ring complex (γ-TuRC) is an essential regulator of centrosomal and acentrosomal microtubule formation, yet its structure is not known. Here, we present a cryo-EM reconstruction of the native human γ-TuRC at ∼3.8 Å resolution, revealing an asymmetric, cone-shaped structure. Pseudo-atomic models indicate that GCP4, GCP5, and GCP6 form distinct Y-shaped assemblies that structurally mimic GCP2/GCP3 subcomplexes distal to the γ-TuRC "seam." We also identify an unanticipated structural bridge that includes an actin-like protein and spans the γ-TuRC lumen. Despite its asymmetric architecture, the γ-TuRC arranges γ-tubulins into a helical geometry poised to nucleate microtubules. Diversity in the γ-TuRC subunits introduces large (>100,000 Å2) surfaces in the complex that allow for interactions with different regulatory factors. The observed compositional complexity of the γ-TuRC could self-regulate its assembly into a cone-shaped structure to control microtubule formation across diverse contexts, e.g., within biological condensates or alongside existing filaments.
Collapse
Affiliation(s)
- Michal Wieczorek
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Linas Urnavicius
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Laboratory of Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shih-Chieh Ti
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
33
|
Characterization of Nme5-Like Gene/Protein from the Red Alga Chondrus Crispus. Mar Drugs 2019; 18:md18010013. [PMID: 31877804 PMCID: PMC7024210 DOI: 10.3390/md18010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
The Nme gene/protein family of nucleoside diphosphate kinases (NDPK) was originally named after its member Nm23-H1/Nme1, the first identified metastasis suppressor. Human Nme proteins are divided in two groups. They all possess nucleoside diphosphate kinase domain (NDK). Group I (Nme1-Nme4) display a single type NDK domain, whereas Group II (Nme5-Nme9) display a single or several different NDK domains, associated or not associated with extra-domains. Data strongly suggest that, unlike Group I, none of the members of Group II display measurable NDPK activity, although some of them autophosphorylate. The multimeric form is required for the NDPK activity. Group I proteins are known to multimerize, while there are no data on the multimerization of Group II proteins. The Group II ancestral type protein was shown to be conserved in several species from three eukaryotic supergroups. Here, we analysed the Nme protein from an early branching eukaryotic lineage, the red alga Chondrus crispus. We show that the ancestral type protein, unlike its human homologue, was fully functional multimeric NDPK with high affinity to various types of DNA and dispersed localization throughout the eukaryotic cell. Its overexpression inhibits both cell proliferation and the anchorage-independent growth of cells in soft agar but fails to deregulate cell apoptosis. We conclude that the ancestral gene has changed during eukaryotic evolution, possibly in correlation with the protein function.
Collapse
|
34
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
35
|
Thawani A, Stone HA, Shaevitz JW, Petry S. Spatiotemporal organization of branched microtubule networks. eLife 2019; 8:43890. [PMID: 31066674 PMCID: PMC6519983 DOI: 10.7554/elife.43890] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
To understand how chromosomes are segregated, it is necessary to explain the precise spatiotemporal organization of microtubules (MTs) in the mitotic spindle. We use Xenopus egg extracts to study the nucleation and dynamics of MTs in branched networks, a process that is critical for spindle assembly. Surprisingly, new branched MTs preferentially originate near the minus-ends of pre-existing MTs. A sequential reaction model, consisting of deposition of nucleation sites on an existing MT, followed by rate-limiting nucleation of branches, reproduces the measured spatial profile of nucleation, the distribution of MT plus-ends and tubulin intensity. By regulating the availability of the branching effectors TPX2, augmin and γ-TuRC, combined with single-molecule observations, we show that first TPX2 is deposited on pre-existing MTs, followed by binding of augmin/γ-TuRC to result in the nucleation of branched MTs. In sum, regulating the localization and kinetics of nucleation effectors governs the architecture of branched MT networks.
Collapse
Affiliation(s)
- Akanksha Thawani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, United States
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States.,Department of Physics, Princeton University, Princeton, United States
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
36
|
Menezes MC, Kitano ES, Bauer VC, Oliveira AK, Cararo-Lopes E, Nishiyama MY, Zelanis A, Serrano SMT. Early response of C2C12 myotubes to a sub-cytotoxic dose of hemorrhagic metalloproteinase HF3 from Bothrops jararaca venom. J Proteomics 2019; 198:163-176. [PMID: 30553073 DOI: 10.1016/j.jprot.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Manifestations of local tissue damage, such as hemorrhage and myonecrosis, are among the most dramatic effects of envenomation by viperid snakes. Snake venom metalloproteinases (SVMPs) of the P-III class are main players of the hemorrhagic effect due to their activities in promoting blood vessel disruption. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, shows a minimum hemorrhagic dose of 240 fmol on rabbit skin. The aim of this study was to assess the effects of a sub-cytotoxic dose of HF3 (50 nM) on the proteomic profile of C2C12 differentiated cells (myotubes) in culture, and on the peptidomic profile of the culture supernatant. Quantitative proteomic analysis using stable-isotope dimethyl labeling showed differential abundance of various proteins including enzymes involved in oxidative stress and inflammation responses. Identification of peptides in the supernatant of HF3-treated myotubes revealed proteolysis and pointed out potential new substrates of HF3, including glyceraldehyde-3-phosphate dehydrogenase, and some damage-associated molecular patterns (DAMPs). These experiments demonstrate the subtle effects of HF3 on muscle cells and illustrate for the first time the early proteolytic events triggered by HF3 on myotubes. Moreover, they may contribute to future studies aimed at explaining the inflammation process, hemorrhage and myonecrosis caused by SVMPs. SIGNIFICANCE: One of the main features of viperid snake envenomation is myotoxicity at the bite site, which, in turn is often associated with edema, blistering and hemorrhage, composing a complex pattern of local tissue damage. In this scenario, besides muscle cells, other types of cells, components of the extracellular matrix and blood vessels may also be affected, resulting in an outcome of deficient muscle regeneration. The main venom components participating in this pathology are metalloproteinases and phospholipases A2. Muscle necrosis induced by metalloproteinases is considered as an indirect effect related to ischemia, due to hemorrhage resulted from damage to the microvasculature. The pathogenesis of local effects induced by Bothrops venoms or isolated toxins has been studied by traditional methodologies. More recently, proteomic and peptidomic approaches have been used to study venom-induced pathogenesis. Here, in order to investigate the role of metalloproteinase activity in local tissue damage, we asked whether the hemorrhagic metalloproteinase HF3, at sub-cytotoxic levels, could alter the proteome of C2C12 myotubes in culture, thereby providing an insight into the mechanisms for the development of myonecrosis. Our results from mass spectrometric analyses showed subtle, early changes in the cells, including differential abundance of some proteins and proteolysis in the culture supernatant. The data illustrate the potential ability of metalloproteinases to trigger early systemic responses progressing from local cells and up to tissues.
Collapse
Affiliation(s)
- Milene C Menezes
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Eduardo S Kitano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Verena C Bauer
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Ana K Oliveira
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil; Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Eduardo Cararo-Lopes
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Milton Y Nishiyama
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - André Zelanis
- Department of Science and Technology, Federal University of São Paulo (ICT-UNIFESP), São José dos Campos, SP, Brazil
| | - Solange M T Serrano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
37
|
Abstract
Microtubules are major constituents of the cytoskeleton in all eukaryotic cells. They are essential for chromosome segregation during cell division, for directional intracellular transport and for building specialized cellular structures such as cilia or flagella. Their assembly has to be controlled spatially and temporally. For this, the cell uses multiprotein complexes containing γ-tubulin. γ-Tubulin has been found in two different types of complexes, γ-tubulin small complexes and γ-tubulin ring complexes. Binding to adaptors and activator proteins transforms these complexes into structural templates that drive the nucleation of new microtubules in a highly controlled manner. This review discusses recent advances on the mechanisms of assembly, recruitment and activation of γ-tubulin complexes at microtubule-organizing centres.
Collapse
Affiliation(s)
- Dorian Farache
- Centre de Biologie Intégrative, Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France
| | - Laurent Emorine
- Centre de Biologie Intégrative, Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France
| | - Laurence Haren
- Centre de Biologie Intégrative, Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France
| | - Andreas Merdes
- Centre de Biologie Intégrative, Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France
| |
Collapse
|
38
|
Šedová L, Školníková E, Hodúlová M, Včelák J, Šeda O, Bendlová B. Expression profiling of Nme7 interactome in experimental models of metabolic syndrome. Physiol Res 2018; 67:S543-S550. [PMID: 30484681 DOI: 10.33549/physiolres.934021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nucleoside diphosphate kinase 7, non-metastatic cells 7 (NME7) is an acknowledged member of ciliome and is involved in the biogenesis or function of cilia. As obesity and diabetes are common in several ciliopathies, we aimed to analyze changes of gene expression within Nme7 interactome in genetically designed rat models of metabolic syndrome. We assessed the liver transcriptome by Affymetrix microarrays in adult males of 14 PXO recombinant inbred rat strains and their two progenitor strains, SHR-Lx and BXH2. In the strains with the lowest expression of Nme7, we have identified significant enrichment of transcripts belonging to Nme7 interactome. In the subsequent network analysis, we have identified three major upstream regulators - Hnf4a, Ppara and Nr1h4 and liver steatosis (p=0.0001) and liver necrosis/cell death (apoptosis of liver cells, p=0.0003) among the most enriched Tox categories. The mechanistic network reaching the top score showed substantial overlap with Assembly of non-motile cilium and Glucose metabolism disorder gene lists. In summary, we show in a genetic model of metabolic syndrome that rat strains with the lowest expression of Nme7 present gene expression shifts of Nme7 interactome that are perturbing networks relevant for carbohydrate and lipid metabolism as well as ciliogenesis.
Collapse
Affiliation(s)
- L Šedová
- Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic.
| | | | | | | | | | | |
Collapse
|
39
|
Microtubule nucleation by γ-tubulin complexes and beyond. Essays Biochem 2018; 62:765-780. [PMID: 30315097 PMCID: PMC6281477 DOI: 10.1042/ebc20180028] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
In this short review, we give an overview of microtubule nucleation within cells. It is nearly 30 years since the discovery of γ-tubulin, a member of the tubulin superfamily essential for proper microtubule nucleation in all eukaryotes. γ-tubulin associates with other proteins to form multiprotein γ-tubulin ring complexes (γ-TuRCs) that template and catalyse the otherwise kinetically unfavourable assembly of microtubule filaments. These filaments can be dynamic or stable and they perform diverse functions, such as chromosome separation during mitosis and intracellular transport in neurons. The field has come a long way in understanding γ-TuRC biology but several important and unanswered questions remain, and we are still far from understanding the regulation of microtubule nucleation in a multicellular context. Here, we review the current literature on γ-TuRC assembly, recruitment, and activation and discuss the potential importance of γ-TuRC heterogeneity, the role of non-γ-TuRC proteins in microtubule nucleation, and whether γ-TuRCs could serve as good drug targets for cancer therapy.
Collapse
|
40
|
Tillery MML, Blake-Hedges C, Zheng Y, Buchwalter RA, Megraw TL. Centrosomal and Non-Centrosomal Microtubule-Organizing Centers (MTOCs) in Drosophila melanogaster. Cells 2018; 7:E121. [PMID: 30154378 PMCID: PMC6162459 DOI: 10.3390/cells7090121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
The centrosome is the best-understood microtubule-organizing center (MTOC) and is essential in particular cell types and at specific stages during Drosophila development. The centrosome is not required zygotically for mitosis or to achieve full animal development. Nevertheless, centrosomes are essential maternally during cleavage cycles in the early embryo, for male meiotic divisions, for efficient division of epithelial cells in the imaginal wing disc, and for cilium/flagellum assembly in sensory neurons and spermatozoa. Importantly, asymmetric and polarized division of stem cells is regulated by centrosomes and by the asymmetric regulation of their microtubule (MT) assembly activity. More recently, the components and functions of a variety of non-centrosomal microtubule-organizing centers (ncMTOCs) have begun to be elucidated. Throughout Drosophila development, a wide variety of unique ncMTOCs form in epithelial and non-epithelial cell types at an assortment of subcellular locations. Some of these cell types also utilize the centrosomal MTOC, while others rely exclusively on ncMTOCs. The impressive variety of ncMTOCs being discovered provides novel insight into the diverse functions of MTOCs in cells and tissues. This review highlights our current knowledge of the composition, assembly, and functional roles of centrosomal and non-centrosomal MTOCs in Drosophila.
Collapse
Affiliation(s)
- Marisa M L Tillery
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Caitlyn Blake-Hedges
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Yiming Zheng
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Rebecca A Buchwalter
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA.
| |
Collapse
|
41
|
Kumari A, Panda D. Regulation of microtubule stability by centrosomal proteins. IUBMB Life 2018; 70:602-611. [DOI: 10.1002/iub.1865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Anuradha Kumari
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| | - Dulal Panda
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| |
Collapse
|
42
|
Thawani A, Kadzik RS, Petry S. XMAP215 is a microtubule nucleation factor that functions synergistically with the γ-tubulin ring complex. Nat Cell Biol 2018; 20:575-585. [PMID: 29695792 PMCID: PMC5926803 DOI: 10.1038/s41556-018-0091-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
How microtubules (MTs) are generated in the cell is a major question in understanding how the cytoskeleton is assembled. For several decades, γ-tubulin has been accepted as the universal MT nucleator of the cell. Although there is evidence that γ-tubulin complexes are not the sole MT nucleators, identification of other nucleation factors has proven difficult. Here, we report that the well-characterized MT polymerase XMAP215 (chTOG/Msps/Stu2p/Alp14/Dis1 homologue) is essential for MT nucleation in Xenopus egg extracts. The concentration of XMAP215 determines the extent of MT nucleation. Even though XMAP215 and the γ-tubulin ring complex (γ-TuRC) possess minimal nucleation activity individually, together, these factors synergistically stimulate MT nucleation in vitro. The amino-terminal TOG domains 1-5 of XMAP215 bind to αβ-tubulin and promote MT polymerization, whereas the conserved carboxy terminus is required for efficient MT nucleation and directly binds to γ-tubulin. In summary, XMAP215 and γ-TuRC together function as the principal nucleation module that generates MTs in cells.
Collapse
Affiliation(s)
- Akanksha Thawani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Rachel S Kadzik
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
43
|
Sharma A, Singh D, Das S, Kumar V. Hypothalamic and liver transcriptome from two crucial life-history stages in a migratory songbird. Exp Physiol 2018; 103:559-569. [PMID: 29380464 DOI: 10.1113/ep086831] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the molecular underpinnings of the seasonal adaptation in a latitudinal migratory songbird? What is the main finding and its importance? We found changes in mRNA levels after a photoperiod-induced alteration of seasonal state in a captive long-distance latitudinal avian migrant. The hypothalamus and liver transcriptomes revealed genes involved in the regulatory and functional pathways between non-migratory and migratory states. Our results provide insights into mechanisms underlying homeostasis during seasonal changes that are conserved across most species, including humans. ABSTRACT Very little is understood about genetic mechanisms underlying the onset of spring migration in latitudinal avian migrants. To gain insight into the genetic architecture of the hypothalamus and liver tissues of a long-distance migrant, we examined and compared the transcriptome profile of captive night-migratory black-headed buntings (Emberiza melanocephala) between photoperiod-induced winter non-migratory (WnM) and spring migratory (SM) life-history states under short and long days, respectively. High-throughput 454 pyrosequenced transcripts were mapped initially with reference to the genome of two phylogenetically close species, Taeniopygia guttata and Ficedula albicollis. The F. albicollis genome gave higher annotation results and was used for further analysis. A total of 216 (78 in hypothalamus; 138 in liver) genes were found to be expressed differentially between the WnM and SM life-history states. These genes were enriched for physiological pathways that might be involved in the regulation of seasonal migrations in birds. For example, genes for the ATP binding pathway in the hypothalamus were expressed at a significantly higher level in SM than in the WnM life-history state. Likewise, upregulated genes associated with the myelin sheath and focal adhesion were enriched in the hypothalamus, and those with cell-to-cell junction, intracellular protein transport, calcium ion transport and small GTPase-mediated signal transduction were enriched in the liver. Many of these genes are a part of physiological pathways potentially involved in the regulation of seasonal migration in birds. These results show molecular changes at the regulatory and metabolic levels associated with seasonal transitions in a long-distance migrant and provide the basis for future studies aimed at unravelling the genetic control of migration in birds.
Collapse
Affiliation(s)
- Aakansha Sharma
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi, India
| | - Devraj Singh
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi, India
| | - Subhajit Das
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi, India
| | - Vinod Kumar
- IndoUS Center for Biological Timing, Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
44
|
Adam K, Hunter T. Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. J Transl Med 2018; 98:233-247. [PMID: 29058706 PMCID: PMC5815933 DOI: 10.1038/labinvest.2017.118] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation is the most common type of post-translational modification in eukaryotes. The phosphoproteome is defined as the complete set of experimentally detectable phosphorylation sites present in a cell's proteome under various conditions. However, we are still far from identifying all the phosphorylation sites in a cell mainly due to the lack of information about phosphorylation events involving residues other than Ser, Thr and Tyr. Four types of phosphate-protein linkage exist and these generate nine different phosphoresidues-pSer, pThr, pTyr, pHis, pLys, pArg, pAsp, pGlu and pCys. Most of the effort in studying protein phosphorylation has been focused on Ser, Thr and Tyr phosphorylation. The recent development of 1- and 3-pHis monoclonal antibodies promises to increase our understanding of His phosphorylation and the kinases and phosphatases involved. Several His kinases are well defined in prokaryotes, especially those involved in two-component system (TCS) signaling. However, in higher eukaryotes, NM23, a protein originally characterized as a nucleoside diphosphate kinase, is the only characterized protein-histidine kinase. This ubiquitous and conserved His kinase autophosphorylates its active site His, and transfers this phosphate either onto a nucleoside diphosphate or onto a protein His residue. Studies of NM23 protein targets using newly developed anti-pHis antibodies will surely help illuminate the elusive His phosphorylation-based signaling pathways. This review discusses the role that the NM23/NME/NDPK phosphotransferase has, how the addition of the pHis phosphoproteome will expand the phosphoproteome and make His phosphorylation part of the global phosphorylation world. It also summarizes why our understanding of phosphorylation is still largely restricted to the acid stable phosphoproteome, and highlights the study of NM23 histidine kinase as an entrée into the world of histidine phosphorylation.
Collapse
Affiliation(s)
- Kevin Adam
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
45
|
Microtubule-Organizing Centers: Towards a Minimal Parts List. Trends Cell Biol 2017; 28:176-187. [PMID: 29173799 DOI: 10.1016/j.tcb.2017.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022]
Abstract
Despite decades of molecular analysis of the centrosome, an important microtubule-organizing center (MTOC) of animal cells, the molecular basis of microtubule organization remains obscure. A major challenge is the sheer complexity of the interplay of the hundreds of proteins that constitute the centrosome. However, this complexity owes not only to the centrosome's role as a MTOC but also to the requirements of its duplication cycle and to various other functions such as the formation of cilia, the integration of various signaling pathways, and the organization of actin filaments. Thus, rather than using the parts lists to reconstruct the centrosome, we propose to identify the subset of proteins minimally needed to assemble a MTOC and to study this process at non-centrosomal sites.
Collapse
|
46
|
Zhu X, Poghosyan E, Gopal R, Liu Y, Ciruelas KS, Maizy Y, Diener DR, King SM, Ishikawa T, Yang P. General and specific promotion of flagellar assembly by a flagellar nucleoside diphosphate kinase. Mol Biol Cell 2017; 28:3029-3042. [PMID: 28877983 PMCID: PMC5662260 DOI: 10.1091/mbc.e17-03-0156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
NDK5 promotes assembly of motile cilia and flagella with its structure and protein phosphorylation–related reactions instead of the canonical NDK activity. The novel mechanisms and dominant-negative effect of mutated functional NDK5 reveal the remarkable versatility of a molecular platform that is used in diverse cellular processes. Nucleoside diphosphate kinases (NDKs) play a central role in diverse cellular processes using the canonical NDK activity or alternative mechanisms that remain poorly defined. Our study of dimeric NDK5 in a flagellar motility control complex, the radial spoke (RS), has revealed new modalities. The flagella in Chlamydomonas ndk5 mutant were paralyzed, albeit only deficient in three RS subunits. RS morphology appeared severely changed in averaged cryo-electron tomograms, suggesting that NDK5 is crucial for the intact spokehead formation as well as RS structural stability. Intriguingly, ndk5’s flagella were also short, resembling those of an allelic spoke-less mutant. All ndk5’s phenotypes were rescued by expressions of NDK5 or a mutated NDK5 lacking the canonical kinase activity. Importantly, the mutated NDK5 that appeared fully functional in ndk5 cells elicited a dominant-negative effect in wild-type cells, causing paralyzed short flagella with hypophosphorylated, less abundant, but intact RSs, and accumulated hypophosphorylated NDK5 in the cell body. We propose that NDK5 dimer is an RS structural subunit with an additional mechanism that uses cross-talk between the two NDK monomers to accelerate phosphorylation-related assembly of RSs and entire flagella.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Emiliya Poghosyan
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Radhika Gopal
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Kristine S Ciruelas
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Yousif Maizy
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Dennis R Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Takashi Ishikawa
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
47
|
The secret life of kinases: insights into non-catalytic signalling functions from pseudokinases. Biochem Soc Trans 2017; 45:665-681. [PMID: 28620028 DOI: 10.1042/bst20160331] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/31/2022]
Abstract
Over the past decade, our understanding of the mechanisms by which pseudokinases, which comprise ∼10% of the human and mouse kinomes, mediate signal transduction has advanced rapidly with increasing structural, biochemical, cellular and genetic studies. Pseudokinases are the catalytically defective counterparts of conventional, active protein kinases and have been attributed functions as protein interaction domains acting variously as allosteric modulators of conventional protein kinases and other enzymes, as regulators of protein trafficking or localisation, as hubs to nucleate assembly of signalling complexes, and as transmembrane effectors of such functions. Here, by categorising mammalian pseudokinases based on their known functions, we illustrate the mechanistic diversity among these proteins, which can be viewed as a window into understanding the non-catalytic functions that can be exerted by conventional protein kinases.
Collapse
|
48
|
Abstract
The organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end-stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.
Collapse
Affiliation(s)
- Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| |
Collapse
|
49
|
Alfaro-Aco R, Thawani A, Petry S. Structural analysis of the role of TPX2 in branching microtubule nucleation. J Cell Biol 2017; 216:983-997. [PMID: 28264915 PMCID: PMC5379942 DOI: 10.1083/jcb.201607060] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/03/2016] [Accepted: 01/09/2017] [Indexed: 12/14/2022] Open
Abstract
TPX2 is required for microtubule nucleation in mitosis, but the mechanism underlying its function is unclear. Alfaro-Aco et al. analyze the domains of TPX2 necessary for its activity and identify the minimal region required for branching microtubule nucleation. The mitotic spindle consists of microtubules (MTs), which are nucleated by the γ-tubulin ring complex (γ-TuRC). How the γ-TuRC gets activated at the right time and location remains elusive. Recently, it was uncovered that MTs nucleate from preexisting MTs within the mitotic spindle, which requires the protein TPX2, but the mechanism basis for TPX2 action is unknown. Here, we investigate the role of TPX2 in branching MT nucleation. We establish the domain organization of Xenopus laevis TPX2 and define the minimal TPX2 version that stimulates branching MT nucleation, which we find is unrelated to TPX2’s ability to nucleate MTs in vitro. Several domains of TPX2 contribute to its MT-binding and bundling activities. However, the property necessary for TPX2 to induce branching MT nucleation is contained within newly identified γ-TuRC nucleation activator motifs. Separation-of-function mutations leave the binding of TPX2 to γ-TuRC intact, whereas branching MT nucleation is abolished, suggesting that TPX2 may activate γ-TuRC to promote branching MT nucleation.
Collapse
Affiliation(s)
| | - Akanksha Thawani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
50
|
Wanka H, Lutze P, Staar D, Peters B, Morch A, Vogel L, Chilukoti RK, Homuth G, Sczodrok J, Bäumgen I, Peters J. (Pro)renin receptor (ATP6AP2) depletion arrests As4.1 cells in the G0/G1 phase thereby increasing formation of primary cilia. J Cell Mol Med 2017; 21:1394-1410. [PMID: 28215051 PMCID: PMC5487920 DOI: 10.1111/jcmm.13069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/24/2016] [Indexed: 01/07/2023] Open
Abstract
The (pro)renin receptor [(P)RR, ATP6AP2] is a multifunctional transmembrane protein that activates local renin-angiotensin systems, but also interacts with Wnt pathways and vacuolar H+ -ATPase (V-ATPase) during organogenesis. The aim of this study was to characterize the role of ATP6AP2 in the cell cycle in more detail. ATP6AP2 down-regulation by siRNA in renal As4.1 cells resulted in a reduction in the rate of proliferation and a G0/G1 phase cell cycle arrest. We identified a number of novel target genes downstream of ATP6AP2 knock-down that were related to the primary cilium (Bbs-1, Bbs-3, Bbs-7, Rabl5, Ttc26, Mks-11, Mks-5, Mks-2, Tctn2, Nme7) and the cell cycle (Pierce1, Clock, Ppif). Accordingly, the number of cells expressing the primary cilium was markedly increased. We found no indication that these effects were dependent of V-ATPase activity, as ATP6AP2 knock-down did not affect lysosomal pH and bafilomycin A neither influenced the ciliary expression pattern nor the percentage of ciliated cells. Furthermore, ATP6AP2 appears to be essential for mitosis. ATP6AP2 translocated from the endoplasmatic reticulum to mitotic spindle poles (pro-, meta- and anaphase) and the central spindle bundle (telophase) and ATP6AP2 knock-down results in markedly deformed spindles. We conclude that ATP6AP2 is necessary for cell division, cell cycle progression and mitosis. ATP6AP2 also inhibits ciliogenesis, thus promoting proliferation and preventing differentiation.
Collapse
Affiliation(s)
- Heike Wanka
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Philipp Lutze
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Doreen Staar
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Barbara Peters
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Anica Morch
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Lukas Vogel
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Ravi Kumar Chilukoti
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst Moritz Arndt-University Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst Moritz Arndt-University Greifswald, Greifswald, Germany
| | - Jaroslaw Sczodrok
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Inga Bäumgen
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Jörg Peters
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| |
Collapse
|